
GemStone®
GemBuilder for Smalltalk
Tutorial

March 2005
GemStone/S

For use with GemBuilder for Smalltalk Version 6.1

and Cincom VisualWorks Version 7.3

GemBuilder for Smalltalk Tutorial

ii GemStone Systems, Inc. March 2005

IMPORTANT NOTICE

This manual and the information contained in it are furnished for informational use only
and are subject to change without notice. GemStone Systems, Inc. assumes no
responsibility or liability for any errors or inaccuracies that may appear in this manual or in
the information contained in it. The manual, or any part of it, may not be reproduced,
displayed, photocopied, transmitted or otherwise copied in any form or by any means now
known or later developed, such as electronic, optical or mechanical means, without written
authorization from GemStone Systems, Inc. Any unauthorized copying may be a violation
of law.

The software installed in accordance with this manual is copyrighted and licensed by
GemStone Systems, Inc. under separate license agreement. This software may only be used
pursuant to the terms and conditions of such license agreement. Any other use may be a
violation of law.

Limitations

The software described in this manual is a customer-supported product. Due to the
customer’s ability to change any part of a Smalltalk image, GemStone Systems, Inc. cannot
guarantee that GemBuilder for Smalltalk will function on all Smalltalk images.

© 2005 by GemStone Systems, Inc. All rights reserved.

Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Trademarks

GEMSTONE™, GemBuilder, and the GemStone logo are trademarks or registered
trademarks of GemStone Systems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Sun, Sun Microsystems and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds and others.

HP and HP-UX are registered trademarks of Hewlett Packard Company.

Microsoft, MS, Windows, Windows XP and Windows 2000 are registered trademarks of
Microsoft Corporation in the United States and other countries.

All other trademarks are the property of their respective owners.

Preface
About This Tutorial
This tutorial is a task-oriented introduction to writing applications using the
GemStone/S object-oriented database and GemBuilder for Smalltalk®. It is
organized in four lessons, each of which concentrates on a specific aspect of
application development. When you have completed the lessons, you will have
worked through a basic Smalltalk application for the GemStone/S object server.

This tutorial introduces you to the basics of the GemBuilder interface and code
development tools. Use it with your own private copy of the GemStone/S object
repository, so that you can feel free to explore as you wish without impacting the
work of others, or your own later work.

This tutorial is intended to work with a VisualWorks image, Version 7.2 or later, in
which GemBuilder for Smalltalk Version 6.1 or later has been installed.

Intended Audience

This tutorial assumes that you are familiar with the Smalltalk programming
language and user interface, and that you have a basic understanding of the
principal database concepts. It further assumes that your system meets the
requirements listed in the installation section of the GemStone/S Installation Guide,
March 2005 GemStone Systems, Inc. iii

GemBuilder for Smalltalk Tutorial
that GemStone/S system has been correctly installed on your host computer as
described in that guide, and that GemBuilder for Smalltalk has been installed in
your VisualWorks image on your host computer according to the instructions in
the GemBuilder for Smalltalk Installation Guide.

Organization

An introduction describes the example application and lists the included files. The
tutorial contains the following lessons:

 • Lesson 1 shows how a GemBuilder for Smalltalk image differs from the
unmodified VisualWorks Smalltalk image and points out some of its unique
and helpful features.

 • Lesson 2 explains how to connect an object in the Smalltalk client image with
an object in the database so that changes to one are reflected in the other.

 • Lesson 3 shows how GemStone users are represented by user profiles and how
more than one user can access the same object using a symbol list dictionary.

 • Lesson 4 shows how to query the repository.

Documentation Conventions
We use the following typeface and vocabulary conventions in order to keep the
instructions concise and clear:

 • Key names are enclosed in KeyFont. For example, the Return key is indicated
by Return.

 • Menu items appear in MenuFont. For example, the “accept” menu item
appears as accept. When menu items cascade to submenus, the menu and
submenu items both appear, separated by a right-arrow symbol (>). For
example, the save submenu item of the special menu item is written as
special > save.

 • This tutorial refers to mouse buttons according to the default Smalltalk
conventions: the left mouse button is the select button and the right mouse
button is the operate button. If you have remapped your mouse buttons, make
the appropriate adjustments as you follow the instructions.

 • Work in the repository is done using GemStone Smalltalk, the GemStone
programming language. Work in GemBuilder for Smalltalk is done using
VisualWorks Smalltalk. Text that refers to the Smalltalk image refers to a
VisualWorks image in which GemBuilder for VisualWorks has been installed.
iv GemStone Systems, Inc. March 2005

 • Execution in GemStone Smalltalk is accomplished using the menu items
GS-Do it, GS-Print it, or GS-Inspect it. Execution in the client Smalltalk is
accomplished using the menu items Do it, Print it, or Inspect it. Unless
further amplified, the expression “execute in GemStone Smalltalk” is
interchangeable with “execute using GS-Do it,” and the expression “execute
in the client Smalltalk” is interchangeable with “execute using Do it.”

 • In Smalltalk examples of either kind, client or GemStone code appears in a
monospace typeface. The values returned from either kind of Smalltalk
execution, such as those returned from a Print it or GS-Print it expression,
appear underlined. For example:

(PimUserProfile allUserProfiles at: ’PimRoot’) scheduleitems ==
(PimUserProfile allUserProfiles at: ’PimUser1’) scheduleitems

true

Other Useful Documents
While developing applications for GemStone/S, you will probably need to consult
other GemStone documentation. A list of other GemStone documentation is
provided at the end of the last lesson.

If you wish to learn about Smalltalk programming, see Smalltalk-80: The Language
and its Implementation, by Goldberg and Robson (Addison-Wesley, 1983), and
Smalltalk-80: The Interactive Programming Environment, by Goldberg
(Addison-Wesley, 1984).

For good general discussion of object-oriented design, see Object-Oriented Design
with Applications by Grady Booch (Benjamin Cummings Publishing, 1991) or
Designing Object-Oriented Software, by Wirfs-Brock, Wilkerson, and Wiener
(Prentice Hall, 1990).

For discussion of object-oriented databases, see Object-Oriented Databases, by
Chorafas and Steinmann (Prentice Hall, 1993), Object Data Management, by Catell
(Addison Wesley, 1991), or Object-Oriented Concepts, Databases, and Applications,
edited by Kim and Lochovsky (ACM Press, 1989).

Technical Support
GemStone provides several sources for product information and support. The
product-specific manuals and online help provide extensive documentation, and
March 2005 GemStone Systems, Inc. v

GemBuilder for Smalltalk Tutorial
should always be your first source of information. GemStone Technical Support
engineers will refer you to these documents when applicable.

GemStone Web Site: http://support.gemstone.com

GemStone’s Technical Support website provides a variety of resources to help you
use GemStone products. Use of this site requires an account, but registration is free
of charge. To get an account, just complete the Registration Form, found in the
same location. You’ll be able to access the site as soon as you submit the web form.

The following types of information are provided at this web site:

Help Request allows designated support contacts to submit new requests for
technical assistance and to review or update previous requests.

Documentation for GemBuilder for Smalltalk is provided in PDF format. This is
the same documentation that is included with your GemBuilder for Smalltalk
product.

Release Notes and Install Guides for your product software are provided in PDF
format in the Documentation section.

Downloads and Patches provide code fixes and enhancements that have been
developed after product release. Most code fixes and enhancements listed on the
GemStone Web site are available for direct downloading.

Bugnotes, in the Learning Center section, identify performance issues or error
conditions that you may encounter when using a GemStone product. A bugnote
describes the cause of the condition, and, when possible, provides an alternative
means of accomplishing the task. In addition, bugnotes identify whether or not a
fix is available, either by upgrading to another version of the product, or by
applying a patch. Bugnotes are updated regularly.

TechTips, also in the Learning Center section, provide information and
instructions for topics that usually relate to more effective or efficient use of
GemStone products. Some Tips may contain code that can be downloaded for use
at your site.

Community Links provide customer forums for discussion of GemStone product
issues.

Technical information on the GemStone Web site is reviewed and updated
regularly. We recommend that you check this site on a regular basis to obtain the
latest technical information for GemStone products. We also welcome suggestions
and ideas for improving and expanding our site to better serve you.

You may need to contact Technical Support directly for the following reasons:
vi GemStone Systems, Inc. March 2005

 • Your technical question is not answered in the documentation.

 • You receive an error message that directs you to contact GemStone Technical
Support.

 • You want to report a bug.

 • You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

 • Your name, company name, and GemStone/S license number

 • The GemStone product and version you are using

 • The hardware platform and operating system you are using

 • A description of the problem or request

 • Exact error message(s) received, if any

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, the support website is the preferred way to contact
Technical Support. Only designated support contacts may submit help requests
via the support website. If you are a designated support contact for your company,
or the designated contacts have changed, please contact us to update the
appropriate user accounts.

Email: support@gemstone.com

Telephone: (800) 243-4772 or (503) 533-3503

Requests for technical assistance may also be submitted by email or by telephone.
We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production system that is non-
operational. In these cases, please also submit your request via the web or email,
including pertinent details such error messages and relevant log files.

If you are reporting an emergency by telephone, select the option to transfer your
call to the technical support administrator, who will take down your customer
information and immediately contact an engineer.
March 2005 GemStone Systems, Inc. vii

GemBuilder for Smalltalk Tutorial
Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact us 24 hours a day, 7 days a week, 365 days a
year, if they encounter problems that cause their production application to go
down, or that have the potential to bring their production application down. For
more details, contact your GemStone account manager.

Training and Consulting
Consulting and training for all GemStone products are available through
GemStone’s Professional Services organization.

 • Training courses for GemStone/S are offered periodically at GemStone’s
offices in Beaverton, Oregon, or you can arrange for onsite training at your
desired location.

 • Customized consulting services can help you make the best use of
GemStone products in your business environment.

Contact your GemStone account representative for more details or to obtain
consulting services.
viii GemStone Systems, Inc. March 2005

Contents
Introduction to the Example Application

Lesson 1. A Tour of GemBuilder for Smalltalk
1.1 Objectives . 1-1
1.2 Logging In and Out, and Managing Transactions 1-2

Logging Into GemStone . 1-2
Committing a Transaction . 1-4
Aborting a Transaction. 1-6
Logging Out of GemStone . 1-6
Managing the Transcript . 1-7

1.3 GemStone and Smalltalk Execution . 1-7
1.4 Inspecting GemStone Objects . 1-10
1.5 Creating and Filing Code In and Out 1-13
1.6 Debugging in GemStone . 1-17
1.7 Summary . 1-21
March 2005 GemStone Systems, Inc. ix

GemBuilder for Smalltalk Tutorial
Lesson 2. Persistence
2.1 Objectives . 2-2
2.2 Connectors . 2-2
2.3 Summary . 2-6

Lesson 3. User Profiles and Symbol Lists
3.1 Objectives . 3-2
3.2 Set Up and Explore the Tutorial Application 3-2
3.3 Exploring User Profiles . 3-7
3.4 Making the Schema Persistent . 3-15
3.5 Initializing the Application . 3-19
3.6 Summary . 3-23

Lesson 4. Sharing and Querying Data
4.1 Objectives . 4-2
4.2 Sharing Data . 4-2
4.3 Querying . 4-8
4.4 Conclusion . 4-14
x GemStone Systems, Inc. March 2005

List of
Figures
FIGURE 1.1 The GemStone Session Browser 1-3
FIGURE 1.2 Providing Session Parameters 1-3
FIGURE 1.3 The Workspace Menu . .1-5
FIGURE 1.4 Smalltalk and GemStone Bag Inspectors 1-11
FIGURE 1.5 Smalltalk and GemStone Set Inspectors. 1-12
FIGURE 1.6 GemStone Class Creation Template 1-14
FIGURE 1.7 GemStone Debugger . 1-18
FIGURE 1.8 GemStone Breakpoint Browser. 1-20
FIGURE 2.1 GemStone Connector Browser2-3
FIGURE 3.1 Personal Information Manager Initial Window 3-3
FIGURE 3.2 Calendar Item Added . .3-5
FIGURE 3.3 GemStone User List . .3-8
FIGURE 3.4 Creating PimAdmin . .3-9
FIGURE 3.5 Segment Tool . 3-11
FIGURE 3.6 Giving Write Access to the Group 3-12
FIGURE 3.7 PimAdmin’s Session Parameters 3-13
FIGURE 3.8 Inspector on a UserProfile . 3-13
FIGURE 3.9 Settings Browser . 3-15
March 2005 GemStone Systems, Inc. xi

GemBuilder for Smalltalk Tutorial
FIGURE 3.10 GemStone Classes Browser Displays its Associated Session
Parameters . 3-16
FIGURE 3.11 PimModel Connected . 3-17
FIGURE 3.12 PimGlobals Symbol Dictionary. 3-18
FIGURE 3.13 PimUser1 Sees PimGlobals 3-22
FIGURE 3.14 AllUserProfiles Inspected . 3-23
FIGURE 4.1 New Class PimScheduleItems 4-3
xii GemStone Systems, Inc. March 2005

Chapter

Introduction to the
Example Application
In this tutorial, you will be working with an example application: a Personal
Information Manager that keeps track of your calendar, your to-do list, and a list
of contacts. A set of classes with their accompanying methods implements the
application in VisualWorks; it is provided in parcel format as the files GsPim.pcl
and GsPim.pst in your tutorial distribution directory.

To save you the labor of typing as you work through the exercises (as well as
possible confusion resulting from typographical errors), many of the expressions
you will need are provided in a file, also in the tutorial directory, named
tutorialWorkspace.txt. If you don’t wish to type, open this file in a File Browser, then
execute in client or GemStone Smaltalk.

In addition, the tutorial directory contains a small class
definition—GemStoneAdministrator.gs— and a file containing just its
methods—GemStoneAdministrator-methods.gs—for practice filing in GemStone
code and managing class versions.

With these building blocks you will create and modify the application in
GemStone/S.

Each lesson is designed to highlight specific features of the GemStone/S
repository. As you work through this tutorial, you will first explore useful features
of the GemBuilder for Smalltalk interface. Then you will persist appropriate parts
March 2005 GemStone Systems, Inc. Intro-1

GemBuilder for Smalltalk Tutorial
of the example application in GemStone/S and create GemStone/S users who can
view and add to the data. Finally, you’ll modify the application so that data can be
shared and users can query it.

Naturally, within one tutorial application, we can only touch on aspects of these
features: for deeper and more thorough discussions, consult the other GemStone
documentation described at the end of the last lesson.

In one critical matter, however, the tutorial application is probably unlike an
application you are likely to write. This tutorial can be run by one person using a
single host machine and a single VisualWorks image. However, more than one
imaginary user has to share that image. This is not the ordinary situation—more
commonly, each GemStone user runs his or her own Smalltalk image (or other
interface). Several users sharing one image has led to some less-than-perfect
compromises with respect to connectors. If you take the final lesson to its obvious
conclusion, you’ll get a connector error. This imperfection is the inevitable result
of using a tool (in this case, the Smalltalk image) in a way that it was not intended
to be used. We hope you do not find this confusing; we have done our best to
explain the cause as well as providing a work-around.

One final caution: this tutorial is not intended to be an actual production
application. Your Personal Information Manager users’ default passwords are
password. Needless to say, we do not recommend this approach to system
security.

Happy coding!
Intro-2 GemStone Systems, Inc. March 2005

Chapter

1 A Tour of GemBuilder
for Smalltalk
This lesson aims to make Smalltalk programmers more comfortable with
GemBuilder for Smalltalk (GBS) and able to manage its principal differences from
your client Smalltalk. It introduces you to the most important differences between
GBS and the client Smalltalk image as it is shipped.

This lesson assumes that you are familiar with the Smalltalk programming
language, and that you have already installed GBS according to the instructions
provided in your GemBuilder Release Notes. For more information about GBS, see
the GemBuilder manual for your client Smalltalk.

1.1 Objectives
When you have finished this lesson, you will be able to:

● log into GemStone from GBS, start a transaction, end a transaction, and log out
from GemStone;

● understand the messages that GemStone prints to the Transcript, and know
how to turn them on or off;

● understand the difference between executing GemStone code and client
Smalltalk code, and when it is appropriate or required to do each;
March 2005 GemStone Systems, Inc. 1-1

Logging In and Out, and Managing Transactions GemBuilder for Smalltalk Tutorial
● use the special inspectors GemStone provides to inspect nonsequenceable
collections;

● create and file in GemStone code, and manage class versions; and

● understand the mixed GemStone and client Smalltalk contexts in the
debugger, and set or clear GemStone method breakpoints.

1.2 Logging In and Out, and Managing Transactions
This exercise teaches you how to use the GemStone Session Browser to log into or
out of GemStone, and to commit or abort transactions.

Logging Into GemStone

Step 1. Start your image as specified in the GBS Installation Guide.

Step 2. Before you can log in to a GemStone repository, you need to specify the
name and path to the appropriate shared library for that version of GemStone.
Provided the shared libraries are on your operating system search path, you
can set this by opening a VisualWorks workspace and executing the following
code:

On Windows:

GbsConfiguration current libraryName: 'gcilw61.dll'

On Linus and Solaris:

GbsConfiguration current libraryName: 'libgcilnk61.so'

On HPUX:

GbsConfiguration current libraryName: 'libgcilnk61.sl'

After doing this, save your image.

Under some installations, you may need to use a different library name, or
include the path; in this case please contact your GemStone system
administrator.

Step 3. From the GemStone menu, execute the menu item Tools > Browse
Sessions or select the toolbar icon. The GemStone Session Browser appears.
1-2 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Logging In and Out, and Managing Transactions
FIGURE 1.1 The GemStone Session Browser

Step 4. Click the button labeled Add.

Step 5. A new window appears, prompting you for the session parameters. Enter
your own repository’s Stone name. Instead of providing your own GemStone
username, type DataCurator. Instead of providing your own password,
type swordfish. Click Remember, then OK. The window disappears, and
the session parameters you have provided appear in the top left pane.

FIGURE 1.2 Providing Session Parameters
March 2005 GemStone Systems, Inc. 1-3

Logging In and Out, and Managing Transactions GemBuilder for Smalltalk Tutorial
Step 6. Back in the Session Browser, select the session parameters you provided
in the previous step. The line highlights when you click on it, and the buttons
to the right are enabled.

Step 7. Click on the button labeled Login Lnk, if it is available, or Login Rpc if it
is not. When the session appears in the session (middle) pane, you are logged
into GemStone. Most buttons at the bottom of the Session Browser are now
also enabled, and the following message (or a similar one for a remote session)
prints in the System Transcript:

Logged in Session 1 (linked) for 'DataCurator' on 'yourStoneName'

Leave the Session Browser open and leave yourself logged in for the next exercise.

Committing a Transaction
Now we will create a new symbol dictionary, an object you can use to store an
application schema and data. Symbol dictionaries are a mechanism for
GemStone to allow more than one user to access an object at the same time. We
will use another for the tutorial application. Having a whole application stored
in its own dictionary makes it easier to reclaim all the storage used by the
tutorial objects after they are no longer of interest to you.

Step 1. From the GemStone menu, open a Classes Browser by executing
Browse > All Classes or select the toolbar icon.

Step 2. The top leftmost pane of the Classes Browser lists symbol dictionaries.
Choose add from the operate button popup menu.

Step 3. In the resulting dialog, enter UserClasses.

Step 4. Open a workspace, using the toolbar icon. Move and frame the workspace
as you require.

Step 5. In the workspace, type the following:

System myUserProfile insertDictionary: UserClasses at: 1.

This line adds the new symbol dictionary to your user profile. (We will explore
symbol dictionaries and user profiles in more detail later.)

Step 6. Select the text that you just typed in the workspace, and bring up the
operate button menu.
1-4 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Logging In and Out, and Managing Transactions
Notice that the menu has several new items: GS-Do it, GS-Print it, GS-
Inspect it, and GS-Debug it. We will explore these items in greater detail in
the next exercise.

Execute the menu item GS-Do it.

FIGURE 1.3 The Workspace Menu

Step 7. In the Session Browser, select the current session listed in the bottom list
pane, if necessary, to enable the bottom row of buttons.
March 2005 GemStone Systems, Inc. 1-5

Logging In and Out, and Managing Transactions GemBuilder for Smalltalk Tutorial
Step 8. Click the button on the bottom row labeled Commit..., and respond to the
confirmer by clicking on yes. Notice that a message prints in the Transcript,
confirming that the transaction has been committed.

Session 1 (linked) for 'DataCurator' on 'yourStoneName' committed
transaction at 2:04:15 pm.

Your new dictionary is now part of your GemStone database, available for
sharing.

Aborting a Transaction

Step 1. In the same workspace, type:

System myUserProfile removeDictionaryAt: 1.

Step 2. Select the text you just typed and execute the menu item GS-Do it. This
removes the new dictionary from your symbol list.

Step 3. In the Session Browser, click the button on the bottom row labeled
Abort..., and respond to the confirmer by clicking on yes. After all, we don’t
really want to remove this dictionary yet.

Your new dictionary remains part of your GemStone database.

Logging Out of GemStone

Step 1. In the Session Browser, select the current session listed in the bottom list
pane if it is not already selected.

Step 2. Click the bottom button labeled Logout....

Step 3. Respond to the confirmer by clicking on No. Because you have done no
useful work since the last transaction you committed, you have no need to
commit this transaction.

The transcript faithfully echoes this latest change as well:

Logging out Session 1(linked) for 'DataCurator' on 'yourStoneName'
1-6 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk GemStone and Smalltalk Execution
Managing the Transcript
In addition to logging in and out, committing transactions, or aborting them, the
Transcript can echo changes in transaction mode, code filing in or out, and classes
being generated. You can turn off these messages by executing the client Smalltalk
code:

GBSM verbose: false

You can turn them on again by executing the client Smalltalk code:

GBSM verbose: true.

For the tutorial, however, leave GBSM verbose set to true.

Log back into the database when you are ready to continue with the tutorial. Now
that you know the basics of logging in and out and managing transactions, we can
touch on some deeper differences between GemStone and client Smalltalk.

1.3 GemStone and Smalltalk Execution
Although a Smalltalk image in which you have installed GBS looks very much like
an ordinary Smalltalk image, it has one key feature that fundamentally changes the
way you work. We have already touched on this feature in the previous exercise;
indeed, it is difficult to avoid it. A client Smalltalk image that includes GemBuilder
for Smalltalk is managing two different worlds: client Smalltalk and GemStone
Smalltalk. It incorporates two different name spaces, two different execution
engines (for client Smalltalk and GemStone Smalltalk), and two different sets of
tools. Indeed, you are working with two different images: the client Smalltalk
image in your computer’s memory, and a multiuser persistent server
image—GemStone—on disk.

Sometimes these two worlds are blended so you can look at everything at once,
and sometimes, as with the Smalltalk and GemStone System Browsers, they are
presented as entirely separate. And sometimes it is up to you to determine which
world you need to enter and which tools are appropriate to accomplish your aims.

For example, you are probably already familiar with Smalltalk workspaces. GBS
adds new menu items to this menu, so you can use it for executing client Smalltalk
code as you always have, you can also execute GemStone Smalltalk code, if you are
March 2005 GemStone Systems, Inc. 1-7

GemStone and Smalltalk Execution GemBuilder for Smalltalk Tutorial
logged into GemStone. Log back into GemStone and open one now, if a workspace
is not already open.

Step 1. If necessary, open the Session Browser and log in again as DataCurator.

Step 2. After you are logged in, open a workspace, if necessary.

Step 3. In the workspace, type Array new: 4.

Step 4. Invoke the operate button menu. As you saw earlier, it includes a number
of additional items: GS-Do it, GS-Print it, GS-Inspect it, GS-Debug it, and
GS-File it In. They are directly comparable to the ordinary Smalltalk
workspace menu items Do it, Print it, Inspect it, Debug it, and File it In. The
menu item GS-Do it invokes the GemStone Smalltalk compiler instead of the
client Smalltalk compiler; the menu item GS-Print it invokes the GemStone
Smalltalk compiler and prints the result; and so on. These menu items are only
enabled when you are logged in to the GemStone server.

Step 5. Select the text you typed. Array new: 4 works in both client Smalltalk
and GemStone Smalltalk. First execute print it. The client Smalltalk execution
cursor appears—an arrow with a star—and the compiler prints
#(nil nil nil nil) in the workspace.

Step 6. Now select it again and execute GS-Print it. The GemStone Smalltalk
execution cursor appears—a gem—and the compiler prints anArray(nil,
nil, nil, nil) in the workspace (its printString method works
differently).

The two different execution cursors are not surprising in this context, but on
occasion the cursor can be a detail worth noticing, because under less obvious
circumstances it can provide insight into what is really happening.

Step 7. In the workspace again, type Smalltalk.

Step 8. Select it and execute print it. The word Smalltalk is echoed—delete it.

Step 9. Select Smalltalk again and execute GS-Print it. The words undefined
symbol->Smalltalk appear. The GemStone Smalltalk compiler doesn’t
know anything about client Smalltalk global variables, including the global
Smalltalk.

Step 10. In the workspace again, type UserClasses.
1-8 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk GemStone and Smalltalk Execution
Step 11. Select it and execute GS-Print it, and notice the gem cursor again. The
string aSymbolDictionary(aSymbolDictionary) appears. We met
symbol dictionaries briefly in the previous exercise, when we made our new
UserClasses dictionary. They are a mechanism for GemStone to allow more
than one user to access an object at the same time.

A symbol dictionary contains any number of keys—names—which it
associates with values—specific objects. The dictionary, and therefore the
objects it refers to, can be made accessible to all users of the system, to you
alone, or to a specific subset of users.

Each GemStone user has a symbol list: an array of symbol dictionaries. By
default, each user has access to three: Globals, UserGlobals, and Published.
The dictionary Globals refers to all the GemStone kernel classes; it is accessible
to all users of the database, so that they can each use the same class Array, for
example. The dictionary UserGlobals is unique for each user. You can use it to
refer to objects that you create and use, but which no one else needs to access.
The dictionary Published is for objects you or others create that are intended
to be globally accessible.

If you are developing an application with a group, you can make a special
symbol dictionary for the application and add it to the symbol list of each user
in the group, as we will do in this tutorial.

For example, we will make another symbol dictionary to refer to all the objects
in the tutorial example application. We’ll do this to make it easier to reclaim
storage later, but you can also add this symbol dictionary to another user’s
symbol list if you wish to share the tutorial with someone else.

Step 12. Select UserClasses again and this time execute Print it. Unsurprisingly,
the client Smalltalk does not recognize this new, undefined symbol, and
therefore prompts you to declare it in some manner. Click on Cancel from the
dialog that pops up.

Step 13. It’s also possible for the same code to produce two different outcomes,
due to the two execution engines. For example, in the workspace again, type 1
to: 220.

Step 14. Select it and execute the operate button menu item Inspect it. As the title
bar of the Inspector window reveals, the client Smalltalk produces an instance
of class Interval. Explore the inspector as you wish and close it when you’re
done.
March 2005 GemStone Systems, Inc. 1-9

Inspecting GemStone Objects GemBuilder for Smalltalk Tutorial
Step 15. Select 1 to: 220 again and execute GS-Inspect it. GemStone Smalltalk
produces an instance of class Array. Explore the inspector as you wish and
close it when you’re done.

Although your workspace looks like one seamless window, it has a dual nature,
like the image of which it is a part. Within it, you can execute client Smalltalk code
for your application and GemStone Smalltalk code to access the repository.

1.4 Inspecting GemStone Objects
As you’ve seen, the workspace menu item GS-Inspect it invokes GemStone
inspectors instead of client Smalltalk ones. In most cases, these behave similarly to
the Smalltalk inspectors already familiar to you (although they will usually be
inspecting GemStone objects). This is not true, however, for inspectors on
nonsequenceable collections. To see the difference, let’s inspect an instance of Bag
and an instance of Set in both client Smalltalk and GemStone Smalltalk.

Step 1. In a workspace, type:

Bag with: 'string' with: 23 with: 23.

Step 2. Select the text you just typed and execute the operate button menu item
Inspect. This invokes a client Smalltalk inspector on the instance of Bag you
created. It contains two items in the left pane. The first, self, is the bag itself.
The second, contents, reveals that Bags are implemented as dictionaries.

Step 3. Select the text again, and this time execute GS-Inspect it. (This code also
works in either client Smalltalk or GemStone Smalltalk.) The resulting
inspector has three panes instead of two. The top left pane contains three
items: self (the Bag instance), dict (the dictionary that implements it), and
size (the bag contains three items). The bottom pane contains the objects you
placed in the bag.
1-10 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Inspecting GemStone Objects
FIGURE 1.4 Smalltalk and GemStone Bag Inspectors

Step 4. In the bottom pane, select the string and invoke the operate button menu
item inspect to open another GemStone inspector on the string. Its constituent
characters are now available for further manipulation, if you wish.

Notice that, in addition to inspect, when an item is selected in the bottom
pane, the bottom pane menu also allows you to add objects to the bag, remove
objects from it, or update the inspector as a whole in case you have made
changes to the bag from another window.

Step 5. Close all the inspectors.

Step 6. In a workspace, type:

Set with: 'anotherString' with: 856.

Step 7. Select the text you just typed and execute the operate button menu item
Inspect to invoke a client Smalltalk inspector on the instance of Set you
created. The Set inspector has an additional tab, “Elements”, along the top.
Click on the tab “Basic” to see the underlying structure of the Set. This tab
contains a two-pane inspector containing five items: self (the Set instance),
tally (the number of items in the set, which is 2), and three objects that it
contains, appearing as 1, 2, etc. The object 1 has the value nil, , 2 has the
value anotherString, and 3 holds the integer you put into the set.
March 2005 GemStone Systems, Inc. 1-11

Inspecting GemStone Objects GemBuilder for Smalltalk Tutorial
Step 8. Select the text again, and this time execute GS-Inspect it. (This code also
works in either client or GemStone Smalltalk.) The resulting inspector has
three panes instead of two. The top left pane contains two items, self and
dict. The bottom pane contains the objects you placed in the set. When an
item is selected, the same operate button menu appears here as you saw in the
Bag inspector’s bottom pane.

Step 9. Close both inspectors.

FIGURE 1.5 Smalltalk and GemStone Set Inspectors

Step 10. In a workspace, type:

Set new addAll: (1 to: 220); yourself.

Step 11. Open a client Smalltalk inspector on this new set. The client Smalltalk
inspector Elements tabs shows the contents ordered alphabetically, and
grouped into ranges. The Basic tab also shows ranges, but in numerical order.
Also, item 1 received the value nil, so that all items have values that are off by
one. Items 222 through 331 are all nil.

Step 12. Open a GemStone server inspector on this new set. The GemStone
inspector shows items 1 through 100 in the bottom pane. If you inspect each,
you will find it has the value you expect. More to the point, however, the
operate button menu in the bottom pane has an additional menu item: more.
1-12 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Creating and Filing Code In and Out
Execute it, and it doubles the number of items visible in the lower pane, to 200.
Execute it again; it would again double the number of items shown, but the set
has only 20 more. They become visible (scroll the pane down to see them), and
more is no longer on the menu, because the entire set is now visible.

Step 13. Close the inspectors when you have finished exploring them.

GemStone provides different inspectors for nonsequenceable collections because
collections of objects are a natural way to represent data in a database, and are
therefore central to GemStone applications. GemStone provides tools that are
optimized for tasks commonly associated with database applications. Experiment
further with these inspectors if you wish, and when you are finished, feel free to
close both inspectors and the workspace; this lesson makes no further use of them.

1.5 Creating and Filing Code In and Out
In this exercise, we’ll create a test class and experiment with some of the
conveniences provided by the GemStone Classes Browser.

Step 1. Open a GemStone Classes Browser. From the GemStone menu, execute
Browse > All Classes.

Step 2. Unlike the VisualWorks System Browser (the Refactoring Browser), which
lists categories, packages, or parcels, the top left pane of the GemStone Classes
Browser lists symbol dictionaries. You’ll see at least Globals, UserGlobals,
Published, and UserClasses—the symbol dictionary you made earlier.

Another difference between the GemStone and client Smalltalk System
Browsers is that the GemStone Classes Browser includes commit and abort
menu items in the dictionary pane operate popup menu.

Step 3. Select UserClasses. The class creation template appears in the text pane
below. It probably looks familiar to you; it’s quite similar to the class creation
template available in the Smalltalk System Browser. However, as you’ve
probably guessed, classes created using the GemStone Classes Browser are
March 2005 GemStone Systems, Inc. 1-13

Creating and Filing Code In and Out GemBuilder for Smalltalk Tutorial
GemStone Smalltalk classes, not client Smalltalk classes. Therefore, a few
items are different:

● The name of the class being created is delimited by single quotation marks
instead of being preceded by a # sign.

● A keyword is present to specify contraints on the values of the instance
variables.

● Another line specifies the symbol dictionary that will refer to the class.
This line, beginning with the keyword inDictionary:, is already filled
in with the name of the selected dictionary—in this case, UserClasses.

Naturally, this is editable, but for this exercise we will accept the default,
placing the new class in UserClasses.

FIGURE 1.6 GemStone Class Creation Template

For practice in creating GemStone Smalltalk classes, as well as to highlight a
few conveniences provided by the GemStone Classes Browser, we’ll create a
small utility class called GemStoneAdministrator. This class allows you to
automate repository backups by generating a file name guaranteed to be
unique.

Step 4. With UserClasses still selected, select NameOfSuperClass and replace it
with Object.
1-14 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Creating and Filing Code In and Out
Step 5. Select NameOfClass and replace it with GemStoneAdministrator.

Step 6. Double-click inside the parentheses after instVarNames and delete
them. This class has no instance variables.

Step 7. Repeat the previous step with classVars and classInstVars to delete
those variables as well.

Step 8. Still in the text pane, execute the operate menu item accept. The new class
has now been created.

Step 9. From the operate button popup menu in the dictionary pane, commit the
transaction.

Step 10. Like the client Smalltalk System Browser, the GemStone Classes Browser
lets you file out code. Return to the Classes Browser and select the class
GemStoneAdministrator, if it isn’t still selected.

Step 11. Still in the class pane, access the operate menu. Notice that you can file
out an entire class definition with the item file out as..., or just its methods
with the menu item file out methods as.... Execute the item file out as.... The
resulting dialog prompts you for a file name; the default is the class name with
.gs appended. Cancel the operation.

Step 12. The GemStoneAdministrator class has various methods. In the message
category pane, execute the operate popup menu item add. A dialog appears to
receive the new category name. Enter utilities.

Step 13. In the method template pane, select the template text and type the
following method, which uses today’s date to create a string that will be part
of the backup file name, thus guaranteeing its uniqueness:

todaysDateString
^Date today asStringUsingFormat: #(2 1 3 $_ 1 2)

When you are finished, execute accept.

Step 14. The GemStoneAdministrator class has several more methods, and you
may not wish to type in all of them. To file in the class and its methods, open
a File Browser.
March 2005 GemStone Systems, Inc. 1-15

Creating and Filing Code In and Out GemBuilder for Smalltalk Tutorial
Step 15. Point the File Browser to the tutorial subdirectory of your GemBuilder
installation directory, and list the files it contains.

Step 16. The files in the tutorial directory appear in the top right pane. Select the
file GemStoneAdministrator.gs.

Step 17. In the top right pane, hold down the operate menu button. Notice that
since the extension .gs is not a Smalltalk code extension, there is no menu item
File In..., but the menu does have an extra item: GS-File In.

Step 18. With the file GemStoneAdministrator.gs selected, execute GS-File in. The
gem cursor appears and the class files in; you can see a message to that effect
in the System Transcript. Leave the File List open—we’ll need it again soon.

Step 19. Return to the Classes Browser (refresh it if necessary), and you’ll see that
you now have two versions of the class GemStoneAdministrator: the [2]
appended to the class name indicates that the one you just filed in is the second
version. Because the two versions are identical, this duplication is pointless.

Step 20. Return to the Session Browser and abort the current transaction to rid
yourself of the needless duplicate.

Step 21. You now have the class definition but none of the methods. Return to the
File List and this time, select the file GemStoneAdministrator-methods.gs. This
file contains only the methods for the class, not the class definition itself.
Execute GS-File in to file in the methods.

Step 22. In the Classes Browser, select the class (update the browser if necessary),
and take a moment to explore the methods.

Step 23. Select the method setPathFrom:in the category private and change
the UNIX-based default ~/ to a more reasonable path for your
system—where you want the backup file to be written.

Step 24. Do the same for the methods backupDevelopmentServer and
backupProductionServer in the category backup.

Step 25. Commit your transaction.

Step 26. To use the new class, in a workspace, execute using GS-Do it:

UserClasses at: #Administrator put: GemStoneAdministrator new
1-16 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Debugging in GemStone
This makes a global symbol named Administrator and puts it in your new
symbol dictionary. Since it is a symbol, rather than a class, it does not show up
in the list of classes in this SymbolDictionary. To see it, use the operation menu
item inspect to inspect the SymbolDictionary.

Step 27. Commit the transaction.

NOTE
The following step assumes that you are working on your own
private copy of the repository, and that it is small. If that is not true,
the next step will take a lot of time and disk space, and you may
prefer to skip it.

Step 28. Again in the workspace, execute using GS-Do it:

Administrator backupDevelopmentServer

This backs up your development repository. You will probably want to delete
the file after you’ve logged out.

As you can see, creating classes and methods in GemStone Smalltalk is very similar
to the process you use to do in client Smalltalk. The chief difference is that
GemStone, being a multiuser system, requires you to choose the symbol dictionary
that will hold the reference to the class. The symbol dictionary is the mechanism
by which you can control an object’s visibility to other users, allowing you to share
code and data when needed, and to prevent mix-ups when sharing isn’t needed.

In addition to the critical choice of symbol dictionary. the GemStone Classes
Browser provides conveniences for automatically compiling accessing and
updating methods for variables, and for creating comparable classes in client
Smalltalk and mapping them to GemStone Smalltalk classes. We will explore these
conveniences in later exercises. For now, explore the Classes Browser as you wish,
and close it when you’re ready to begin the next exercise.

1.6 Debugging in GemStone
You have now seen many of the special facilities in GemBuilder for Smalltalk. Only
two more remain unexplored: the ability, with the debugger, to view GemStone
Smalltalk and client Smalltalk contexts mixed together in the stack, and the ability
March 2005 GemStone Systems, Inc. 1-17

Debugging in GemStone GemBuilder for Smalltalk Tutorial
to set and clear two kinds of breakpoints without modifying source code. In this
exercise, we explore these features of debugging in GemStone.

Step 1. In order to reach a debugger, we must first invoke an error notifier. Open
a workspace if one is not already open. In it, use the menu item Do it to execute
the following code:

GBSM currentSession execute: '#abc at: 5'

Step 2. In the resulting error notifier, click Debug to invoke the debugger.

Step 3. The debugger appears. Notice that the top contexts are GemStone
Smalltalk contexts (you can see the prepended string GS:). Scroll down the
messages on the stack until you come to GS: Executed Code. Select it to
examine it; it is the seam between the GemStone and Smalltalk worlds. The
next contexts below are client Smalltalk contexts. Scroll down to see the client
Smalltalk code you executed. When you are finished exploring, close the
debugger.

FIGURE 1.7 GemStone Debugger
1-18 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Debugging in GemStone
Step 4. Open a GemStone Classes Browser to the class GemStoneAdministrator
(in the symbol dictionary UserClasses), message category backup, message
backupServer: toDirectory:. (Use the operate button menu item find
class... if you need to.)

You can invoke a debugger in client Smalltalk by inserting the expression
self halt in a method. The GemStone Smalltalk equivalent is the expression
self pause. However, modifying source code in this manner can be time-
consuming and error-prone; you may not even be authorized to do so. For this
reason, GemStone allows you to set breakpoints in another way.

Step 5. In the text pane of the GemStone Classes Browser, place the text cursor on
the line above the return operator, at the end of the line (immediately to the
right of the period), and execute the operate button menu item set break. You
have now set a breakpoint in the method GemStoneAdministrator >>
backupServer: toDirectory: when it reaches that message-send. A
breakpoint halts execution and invokes a debugger when the compiler reaches
its particular location in a particular method. The breakpoint is now
highlighted to show you exactly where execution will halt

NOTE
The following step assumes that you are working on your own
private copy of the repository, and that it is small. If that is not true,
the next step will take a lot of time and disk space, and you may
prefer to skip it.

Step 6. Again in the workspace, select and use GS-Do it. to execute:

Administrator backupDevelopmentServer

Step 7. In the resulting error notifier, click Debug to invoke the debugger.

Step 8. A debugger appears, informing you that you have hit a method
breakpoint. Select the top element in the stack, which is the breakpoint.

Step 9. In the code window, inspect the code:

stream contents

which you’ll find at the end of the last line. Click on self to see the string
constructed to name the backup file.
March 2005 GemStone Systems, Inc. 1-19

Debugging in GemStone GemBuilder for Smalltalk Tutorial
Step 10. Close the inspector and debugger windows.

Step 11. To remove breakpoints, from the GemStone menu, select Tools >
Breakpoints.

FIGURE 1.8 GemStone Breakpoint Browser

Step 12. In the resulting GemStone Breakpoint Browser, the top pane lists
breakpoints. Select one, and the associated source code is displayed in the
bottom pane, with the breakpoint highlighted. In the breakpoint list, execute
the operate button menu item remove to clear the selected method breakpoint.
(You can also clear all breakpoints at once by executing remove all.) Close the
Breakpoint Browser when you are done.

NOTE
You can also remove all breakpoints by logging out of the repository.
Breakpoints do not persist.
1-20 GemStone Systems, Inc. March 2005

A Tour of GemBuilder for Smalltalk Summary
Setting breakpoints and using the breakpoint browser allows you to debug
your GemStone Smalltalk code without encumbering it with self pause
statements.

Step 13. Log out of the repository without committing the transaction.

Step 14. Delete any backup files you’ve made.

1.7 Summary
As you can see, working in GemStone is in many respects quite similar to working
in Smalltalk. However, the two tools have different ultimate purposes, which
naturally are reflected by different functionality and behavior under certain
circumstances. GemBuilder for Smalltalk is designed to provide as seamless a
bridge as possible between the two environments.

The next lesson shows how you can make the temporary objects in your client
Smalltalk image become GemStone Smalltalk objects that are permanent residents
of the GemStone repository. It also describes the mechanism for ensuring that the
two sets of objects remain consistent.
March 2005 GemStone Systems, Inc. 1-21

Summary GemBuilder for Smalltalk Tutorial
1-22 GemStone Systems, Inc. March 2005

Chapter

2 Persistence
This lesson explores further the interface between the client Smalltalk image and
the GemStone repository. You can create objects in the client Smalltalk image, and
you can create objects in the GemStone repository. Sometimes, however, you want
objects you have created in your image to become GemStone objects that reside
permanently in the repository. When a client Smalltalk object becomes a GemStone
object, we say that it has become persistent.

Once you have created an object in the repository from an application in your
image, you often want that object to faithfully reflect the state of its counterpart in
the repository. Or you may want an object in the repository to mirror the changes
it is undergoing in your client Smalltalk application. When a client Smalltalk object
and its GemStone counterpart can be counted on to remain in consistent states, we
say that the connection between them has become transparent.

This lesson shows you some of the mechanisms that GemBuilder for Smalltalk has
implemented for creating and managing object persistence.
March 2005 GemStone Systems, Inc. 2-1

Objectives GemBuilder for Smalltalk Tutorial
2.1 Objectives
When you have finished this lesson, you will:

● know how to manage the connections between Smalltalk objects and
GemStone objects, and make Smalltalk objects persistent residents of the
repository.

2.2 Connectors
GemStone repository objects can be set up to propagate changes automatically to
the corresponding client Smalltalk objects, or vice-versa. However, you must first
establish the initial relationship between the GemStone and Smalltalk objects.
Connectors are the mechanisms we use to establish such relationships. You can
create any of several kinds of connectors using a Connector Browser.

Step 1. Log in to your private copy of the repository as DataCurator, if you are
not already so logged in.

Step 2. From the GemStone menu, execute Browse Connectors to open a
Connector Browser. Two sets of connectors are referred to in the top list pane:
Global connectors and Session connectors. You can define session connectors
for each session whose parameters you have defined.
2-2 GemStone Systems, Inc. March 2005

Persistence Connectors
FIGURE 2.1 GemStone Connector Browser

Step 3. Click on Global connectors to select it. A large list of connectors appears
in the middle list pane; they connect the GemStone Smalltalk kernel classes to
their client Smalltalk counterparts. They are all of type “Fast.” Fast connectors
connect an object in client Smalltalk to an object identifier in GemStone. If the
GemStone object is renamed or redefined, a fast connector continues to point
to the old object—the one with the same object identifier.

Four other types of connectors are also available: names, classes, class
variables, and class instance variables can all be connected. A name connector
connects client Smalltalk and GemStone objects by name. Unlike a fast
connector, if one of them is redefined, the connector will point to the new
object, as long as it has the same name.

A class connector connects two classes, verifying that they have the same
storage type and instance variables.

A class variable connector connects two class variables (shared variables in
VisualWorks).

A class instance variable connector connects two class instance variables.
March 2005 GemStone Systems, Inc. 2-3

Connectors GemBuilder for Smalltalk Tutorial
Step 4. Select Session connectors.

Step 5. To make a new connector, put the cursor in the middle pane and execute
the operate button menu item add....

Step 6. A dialog appears, asking you to specify the type of connector. Select Name
and click on OK.

Step 7. Another dialog asks you to name the Smalltalk object. Enter STRainbow.

Step 8. Another dialog asks you to name the GemStone object. Enter GSRainbow.

Step 9. Finally, you are prompted for the name of the dictionary in which to place
the GemStone object. Accept the default value of UserGlobals.

Step 10. Under “Post Connect Action” in the lower right, select update GS. The
postconnect action defines which side of the connection initially represents
valid data and must therefore update the other when the objects are first
connected. In this case, update GS indicates that the Smalltalk image has the
valid data and must update GemStone. If GemStone had the valid data
instead, you would select updateST.

The postconnect action affects what occurs at login only. After the initial
connection is made, changes can propagate in either direction as needed no
matter how “Post Connect Action” is specified.

The forwarder option creates a Smalltalk object that responds to any message
it receives by forwarding the message to the corresponding GemStone object.
The client forwarder option creates a GemStone object that responds to any
message it receives by forwarding the message to the corresponding client
Smalltalk object.

Step 11. Open a workspace, if one is not already open. Type the following
Smalltalk expression, select it, and execute with Do it.

Smalltalk at: #STRainbow put: (Array new: 7).

Step 12. Now execute with Do it:

STRainbow at: 1 put: 'red'; at: 3 put: 'green'; at: 6: put: 'indigo';
yourself
2-4 GemStone Systems, Inc. March 2005

Persistence Connectors
Step 13. From the top pane of the Connector Browser, execute the operate button
menu item update to ensure that your workspace changes are reflected in the
Connector Browser. Then select the new connector in the middle pane and
execute the operator button menu item inspect ST. A Smalltalk inspector
appears.

Step 14. Return to the Connector Browser and click on the Connected button in
the bottom pane to connect the connector you just made.

Step 15. Select GSRainbow and execute the middle button menu item inspect
GS. A GemStone inspector appears.

Step 16. In the client Smalltalk array inspector, select the elements tab to assure
yourself that the values you have placed there are indeed there.

Step 17. In the GemStone array inspector, select the instance variables to see that
they have the same values as in STRainbow. The act of inspecting the object
has flushed the Smalltalk objects and their values into GemStone.

Step 18. Now type the following in the workspace and execute Do it:

STRainbow at: 2 put: 'orange'; at: 3 put: 'yellow'; yourself.
STRainbow markDirty

Step 19. In the left pane of the GemStone inspector, execute update. You can see
that the values of the GemStone object have changed correspondingly.

Step 20. Now let’s see GemStone’s automatic updating in action. In the
workspace, type the following; select it and execute GS-Do it:

GSRainbow at: 4 put: 'green'; at: 5 put: 'blue'; at: 7 put: 'violet'

Step 21. Return to the Smalltalk inspector and inspect its instance variables. As
you can see, they have the correct values already—the mark dirty mechanism
is automatically invoked on the GemStone side.

Step 22. Close both inspectors.

Step 23. In the Session Browser, select the current session if it is not already
selected, and click on Commit... to commit the current transaction. Answer
yes to the confirmer.
March 2005 GemStone Systems, Inc. 2-5

Summary GemBuilder for Smalltalk Tutorial
Step 24. Then click on Logout... to log out from the repository and end the
session. Answer no to the confirmer.

Step 25. In the Connector Browser, select the connector you just made, if
necessary, and change the postconnect action to update ST.

Step 26. In the workspace, type the following and execute it with Do it:

Smalltalk at: #STRainbow put: nil

Step 27. In the Connector Browser, execute inspect ST again, and click on the
instance variable in the resulting Smalltalk inspector to assure yourself that the
object is indeed nil. Close the inspector.

Step 28. Log back into the repository.

Step 29. Execute inspect ST on STRainbow again. This time, it is the old Array
object and has all its former values. That’s because the login operation
connected STRainbow and GSRainbow and, having clicked update ST as the
postconnect action, the Smalltalk side was updated by the GemStone object
that you committed. Close the inspector.

Step 30. In the Connector Browser, click Disconnected to disconnect the two
objects.

Step 31. Now click forwarder.

Step 32. Click Connected again to reconnect them.

Step 33. Still in the Connector Browser, execute inspect ST once more. This time,
a GemStone inspector appears on GSRainbow, because the message inspect
received by the Smalltalk object was simply relayed to the corresponding
GemStone object, which in this case was GSRainbow.

Step 34. Close the inspectors and the Connector Browser.

2.3 Summary
This lesson should give you a feeling for the way in which you can manage the
problem of updating corresponding objects virtually simultaneously in both the
Smalltalk world of your application and the GemStone repository world. You will
2-6 GemStone Systems, Inc. March 2005

Persistence Summary
no doubt grow more sophisticated in your use of connectors as you gain more
experience.

In the next lesson, we will set up the example application in both client Smalltalk
and in GemStone/S, and we will create the application’s users.
March 2005 GemStone Systems, Inc. 2-7

Summary GemBuilder for Smalltalk Tutorial
2-8 GemStone Systems, Inc. March 2005

Chapter

3 User Profiles and
Symbol Lists
In this lesson, we will set up and explore the example application—the Personal
Information Manager described in the Introduction—and we will add user profiles
for two users, making sure each can access the required symbol dictionary.

Each GemStone user has a symbol list—a list of dictionaries—which together
define a separate name space, and hence define the objects that you can refer to in
your applications.

Each object you wish to use in your application has a name—a symbol by which
you can refer to it. You can define such an object as a temporary variable in a
method, for example, but then it is accessible only to that method, and only while
that method is executing. If you wish objects to be more generally accessible, you
must take steps to make them so.

If you wish other GemStone users also to be able to access an object, then:

● its symbol must be included in a symbol dictionary, and

● all the users who wish to access the object must include that symbol dictionary
in their symbol lists.

When you add a symbol to a symbol dictionary shared by other users, the object
named by the symbol is accessible to them all.
March 2005 GemStone Systems, Inc. 3-1

Objectives GemBuilder for Smalltalk Tutorial
In practice, of course, most symbol dictionaries include more than one symbol. A
symbol dictionary is, in fact, a handy way to collect all the objects defined for a
specific application. Used in this way, including a specific symbol dictionary in
your symbol list means that you are developing or using the application whose
objects are named in that dictionary.

In addition to symbol dictionaries that you create, GemStone users start out with
three other symbol dictionaries by default. The dictionary Globals includes
references to all the kernel classes and other global objects, thereby allowing all
GemStone users to create instances of the kernel classes and perform other
standard GemStone operations. The dictionary UserGlobals is available for you to
refer to objects that you create for your own purposes. The dictionary Published is
for those objects you may wish to make accessible to groups.

In addition, as you saw in a previous lesson, when you define new classes, they
appear by default in a newly created symbol dictionary called UserClasses.

3.1 Objectives
When you have finished this lesson, you will:

● understand the general structure of the example application, and how to set
up its schema in GemStone/S;

● understand the purpose and components of a user profile;

● know how and why to put symbols into symbol lists; and

● understand the concept of an application’s root object.

3.2 Set Up and Explore the Tutorial Application
In this exercise, we parcel in the tutorial application and perform some operations
to set up the schema classes properly in GemStone.

Step 1. Log into your private copy of the database as DataCurator, if you are not
already so logged in.

Step 2. Open a Parcel Browser on the tutorial directory.

Step 3. Load the parcel GsPim.pcl into the tutorial image. The Personal
Information Manager window opens automatically, as shown in Figure 3.1:
3-2 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Set Up and Explore the Tutorial Application
FIGURE 3.1 Personal Information Manager Initial Window

Step 4. Save your image.

Step 5. If you accidentally close this window and need to reopen it, execute the
client Smalltalk expression:

PimManagerUI open

Step 6. Take a few moments to explore the tutorial application. Notice the two
menus—Session and Help. Look at them if you wish, but don’t execute any
of the Session menu items until you’re instructed to do so, or the rest of this
tutorial will not work as expected.

NOTE
To ensure that this tutorial works as described, don’t execute any of
the Session menu items until instructed.
March 2005 GemStone Systems, Inc. 3-3

Set Up and Explore the Tutorial Application GemBuilder for Smalltalk Tutorial
Step 7. The top left pane, labeled View, starts out with an asterisk in it. Use the
drop-down menu to access the Calendar.

Step 8. The calendar is initially empty, of course. Click the button labeled New at
the bottom left.

Step 9. In the entry pane above, select the resulting object, whose text reads:
< Entry is empty >.

Step 10. Now, in the right side of the window, add a description of your calendar
item.

Step 11. In the date and time entry fields, enter the date of the event, its start and
end times.

NOTE
The date, start, and end times are not instances of Smalltalk Date or
TimeStamp, but simply strings. You can use any format you like to
enter this information.

Step 12. If there’s anything else you need to remember about this calendar item,
enter it in the Note: field.

Step 13. When you’re done, click Apply. The updated item appears in the list at
left.

When you’re done, your window appears similar to that shown in Figure 3.2.
Enter more calendar items, if you wish.
3-4 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Set Up and Explore the Tutorial Application
FIGURE 3.2 Calendar Item Added

Step 14. Return to the View field and use the drop-down menu to access the To
Do List.

Step 15. The To Do List is also empty at first. Click the button labeled New at the
bottom left.

Step 16. In the entry pane above, select the resulting object, the string which
reads: < Entry is empty >.

Step 17. Now, in the right side of the window, add a description of your to-do
item.

Step 18. In the due date field, enter the date by which the item must be
accomplished.
March 2005 GemStone Systems, Inc. 3-5

Set Up and Explore the Tutorial Application GemBuilder for Smalltalk Tutorial
NOTE
This date is not an instance of Smalltalk Date, but simply a string.
You can use any format you like to enter this information.

Step 19. If there’s anything else you need to remember about this calendar item,
enter it in the Note: field.

Step 20. When you’re done, click Apply. The updated item appears in the list at
left.

Enter more to-do items, if you wish.

Step 21. Return to the View field and use the drop-down menu to access the
Contacts list.

Step 22. The Contacts list is also empty at first. Click the button labeled New at
the bottom left.

Step 23. In the entry pane above, select the resulting object, whose string reads:
< Entry is empty >.

Step 24. Now, in the right side of the window, add the appropriate contact
information.

Step 25. When you’re done, click Apply. The new item appears in the list at left.

Enter more contacts, if you wish.

Step 26. When you’ve finished exploring the application, browse the classes that
define the model to become somewhat familiar with the code. From the client
Smalltalk launcher, execute Browse > System.

Step 27. In the Parcel pane of the resulting browser, scroll down till you come to
the parcel “GsPim”. Select this parcel; you will see a list of the PIM classes.

The classes can be divided into two categories—those that define the
application model, and those that define the user interface. The user interface
classes are not destined to become persistent—the GemStone/S repository has
no graphical user interface, relying instead on a specific interface language and
environment (in this case, GemBuilder for Smalltalk) to define and manage an
application’s user interface. Only the model classes represent the database
3-6 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Exploring User Profiles
schema; therefore, only the model classes will be created and compiled in
Gemstone/S.

Step 28. We’re going to persist the model classes in GemStone, so take a minute
to explore them now and familiarize yourself with the code. They are:

PimModel PimItem
PimUserProfile PimScheduleItem
PimToDoItem PimContactItem

When you’re done, you can close the image (save it only if you wish to save
your Personal Information Manager items), or continue on to the next task.

3.3 Exploring User Profiles
GemStone represents its users by means of objects called user profiles (instances of
the class UserProfile). Each GemStone user has a user profile that sets up his or her
username, password, and various other parameters. As DataCurator, you are
privileged to create new user profiles (ordinary users are not). We will therefore
now create the first user of the Personal Information Manager application—its
administrator.

Step 1. Start your tutorial image, if necessary, and log into GemStone as
DataCurator.

Step 2. From the GemStone menu, execute Admin > Users. The User List
appears, as shown in Figure 3.3:
March 2005 GemStone Systems, Inc. 3-7

Exploring User Profiles GemBuilder for Smalltalk Tutorial
FIGURE 3.3 GemStone User List

Step 3. Click the bottom button labeled Create User.

Step 4. The GemStone User window appears. In the User ID field, enter
PimAdmin. This is the Personal Information Manager user who will serve as
the root object for the entire application.

Step 5. Tab to the Password field and enter password. As the root of the
application, this username and password combination is embedded in the
code; you’ll have more leeway later.

Step 6. Tab to the next field. You’ll be prompted for the new password again.
Retype the password and click OK. The window now appears as shown in
Figure 3.4:
3-8 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Exploring User Profiles
FIGURE 3.4 Creating PimAdmin

Step 7. In the bottom half of the window, click the button Add To New Group....

Step 8. When prompted, enter the group name PimUsers and click OK.

Step 9. Click Apply to create the new user.

Step 10. Respond yes to the confirmation, and OK to the message that changes
were saved.

Step 11. Commit the transaction. You can do this from the Session Browser.

Step 12. Back in the GemStone User tool, click Show Segments. This invokes the
GemStone Segment Tool (which you can also access using the GemStone
menu).

A segment is a logical entity that allows us to associate authorizations with
objects. When an object belongs to a certain segment, then the only users
authorized to read or modify it are those that can read or modify the segment
it belongs to. Therefore, a segment allows us to gather objects that certain users
need to be able to manipulate in similar ways. (See Chapter 7, “Object Security
March 2005 GemStone Systems, Inc. 3-9

Exploring User Profiles GemBuilder for Smalltalk Tutorial
and Authorization,” in the GemStone Programming Guide for further
information.)

The segment tool shows us all the segments in the system, their owners
(instances of GemStone users), and the types of authorizations—read or
write—that their owners and other users have to the objects assigned to that
segment.

The reason that PimAdmin is the application’s administrator is that it is this
user’s default segment that will hold all the application objects—calendar
items, to-do list items, and contacts. When other users add items to their
calendars, for example, the new instances will be created in PimAdmin’s
default segment.

We’ll create a group called PimUsers; all users of the Personal Information
Manager will belong to this group, and any user in this group will have read
and write access to PimAdmin’s default segment. In this way, users can freely
create and share information with each other without authorization errors, but
the application will remain invisible to nonusers.

Step 13. Scroll through the list of segments until you see the one owned by
PimAdmin.

Step 14. Select PimAdmin in the owner column, and use the drop-down menu to
change the segment’s owner to DataCurator, as shown in Figure 3.5:
3-10 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Exploring User Profiles
FIGURE 3.5 Segment Tool

All subsequent users of the Personal Information Manager will also use this
segment; if DataCurator owns it and they all have write permission,
authorization errors will not occur.

Step 15. In the Groups pane at the bottom left, execute the operate popup menu
item add....

Step 16. Add a new group named PimUsers and click OK.

Step 17. Use the drop-down menu to make group access write, as shown in
Figure 3.6:
March 2005 GemStone Systems, Inc. 3-11

Exploring User Profiles GemBuilder for Smalltalk Tutorial
FIGURE 3.6 Giving Write Access to the Group

The above two steps allow any user belonging to group PimUsers write access
to this segment, which DataCurator now owns.

Step 18. Commit the transaction, close the Segment Tool and the User windows.

Step 19. Log out the Data Curator.

Step 20. In the Session Browser, add a new session. Click Add....

Step 21. In the form that pops up, fill in the name of your private Stone process
for the name of the GemStone database. Fill in PimAdmin’s user name and
password as created above, click on Remember (to avoid providing the
password each time you log in as this user), and accept the session parameters.

Step 22. Save your image.

Step 23. Select PimAdmin’s session parameters in the Session Browser, and log
in as PimAdmin, as shown in Figure 3.7:
3-12 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Exploring User Profiles
FIGURE 3.7 PimAdmin’s Session Parameters

Step 24. In a workspace, type AllUsers userWithId: #PimAdmin. Select it
and execute GS-inspect. An inspector appears on the user profile associated
with the GemStone user named PimAdmin that you created above.

FIGURE 3.8 Inspector on a UserProfile

The first thing you may notice is that user profiles have a lot of instance variables.
Select them each to view their values. Select userId, for example, to confirm that
you are inspecting the user profile for PimAdmin.
March 2005 GemStone Systems, Inc. 3-13

Exploring User Profiles GemBuilder for Smalltalk Tutorial
● The defaultSegment is the segment into which any objects that PimAdmin
creates will be placed, by default. It has associated permissions, as you’ve
already seen.

● The user profile also has instance variables for privileges, which in
PimAdmin’s case are none, and membership in the group PimUsers.

● The compilerLanguage instance variable allows you to define a language
environment in which literal characters or strings in your source code can be
compiled into classes other than the default. Such classes can be defined to
allow non-European characters or strings.

● The symbolList is a list of symbol dictionaries. Inspect it and you will see
that it has three elements. Because we have not made any symbol dictionaries
accessible to PimAdmin, that account can access only the default three:
Globals, UserGlobals, and Published. To see these names, type the following
expression into the right pane of the symbol list inspector and evaluate it with
GS-Inspect it:

self collect: [:each | each name]

Step 25. Select the instance variables in the resulting inspector to see their values;
close the inspector when you are done.

Step 26. When you are finished, close the SymbolList inspector, discarding the
text you typed.

Step 27. Now inspect the DataCurator’s user profile using the same means.

Three features of the user profile are important to notice:

● By default, each user has a different default segment. However, we have
changed this behavior for the Personal Information Manager application, and
will assign each user to PimAdmin’s default segment.

● No users have special privileges except the DataCurator.

● Each user’s symbol list includes the number of elements representing the
symbol dictionaries they can access.

Remain logged into the repository as PimAdmin for the next task.
3-14 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Making the Schema Persistent
3.4 Making the Schema Persistent
Now we will create and compile the model classes in GemStone.

Step 1. From the GemStone menu, execute Tools > Settings. This invokes a
browser on GemBuilder’s configuration parameters, allowing you to view
them and change their values, if necessary.

FIGURE 3.9 Settings Browser

The left-hand pane lists all the configuration categories. Select a category, and
the parameters in that category are displayed on the right side. Use the Help
button to open a dialog with the explanation of the parameters. The
parameters are displayed and entered in several ways; check boxes, drop
down menus of choices, or entry fields.

Step 2. On the right, click on the category labeled Class Generation.

Step 3. Verify that the check box labeled generateGSClasses is checked, meaning
it is set to true (the default). If it isn’t, check it, and use the OK button to apply
the change.
March 2005 GemStone Systems, Inc. 3-15

Making the Schema Persistent GemBuilder for Smalltalk Tutorial
Step 4. Take this opportunity to read the explanation of this parameter (by using
the Help button), and to explore the other settings as well. When you are
finished exploring, close the Settings tool.

Step 5. From the GemStone menu, execute Browse > All Classes to open a
GemStone Classes Browser for PimAdmin. As Figure 3.10 illustrates, each
browser displays its associated session parameters across its title bar. Because
each user has his or her own unique view of the database, a GemStone browser
must be associated with a specific session. (You will therefore be opening a
new browser for each of your users.)

FIGURE 3.10 GemStone Classes Browser Displays its Associated Session Parameters

Step 6. From the VisualWorks launcher, execute Browse > System to open a
System Browser. Scroll down till you locate the category PIM-Personal
Information Manager, select that, then select the class PimModel.

Make sure the transcript is visible so that you can see the messages
GemBuilder writes to it when performing certain activities having to do with
replicating classes, which we are about to do.

Step 7. With PimModel selected, from the class pane operate popup menu
execute Create in GS. This creates a corresponding replicate class having the
same name in GemStone Smalltalk.

Step 8. From the GemStone menu, execute Browse Connectors.

Step 9. In the resulting Connector Browser, select session connectors for
PimAdmin. As Figure 3.11 shows, one appears—a class connector for
3-16 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Making the Schema Persistent
PimModel, which GemBuilder created automatically as soon as you created
the replicate class in GemStone.

FIGURE 3.11 PimModel Connected

Step 10. Return to the System Browser and, using the same menu, execute
Compile in GS. This compiles all the class’s methods in GemStone Smalltalk.

Step 11. For each of PimModel’s subclasses, repeat the Create in GS and
Compile in GS steps, checking the Connector Browser as you work if you
wish to see each connector as it’s created. (Don’t forget to update the browser
as necessary using the top pane operate popup menu item update. Close the
Connector Browser and Hierarchy Browser when you’re done with it.)

Step 12. Commit the transaction.

Step 13. Return to your GemStone Classes Browser and browse the symbol
dictionary UserClasses to see the classes you just created, and the methods you
just compiled.

NOTE
If you had not created UserClasses in a previous task, it would have
March 2005 GemStone Systems, Inc. 3-17

Making the Schema Persistent GemBuilder for Smalltalk Tutorial
been created for you when you created the first GemStone class.
Newly created classes are always placed in the symbol dictionary
UserClasses, which is created if it doesn’t exist. From there, you can
freely move classes to other symbol dictionaries.

Step 14. When you’ve finished browsing, select the symbol dictionary
UserClasses in the leftmost pane and execute the operate popup menu item
rename as.... In the resulting dialog, rename the dictionary PimGlobals, to
reflect its true function as the symbol dictionary for the Personal Information
Manager’s classes. Your browser now appears as in Figure 3.12:

FIGURE 3.12 PimGlobals Symbol Dictionary

If it disturbs you to include the GemStoneAdministrator class in PimGlobals,
select that class and execute the operate popup menu item move to.... In the
resulting dialog, move it to the dictionary UserGlobals.

Step 15. Commit the transaction. Remain logged into the repository as
PimAdmin for the next task.
3-18 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Initializing the Application
3.5 Initializing the Application
We have now created the user who serves as the application administrator, and
persisted the application’s model classes in GemStone/S. Our next task is to
initialize the application in GemStone/S and create one more user (to stand in for
an imaginary host of other users).

We can initialize the application with a single expression that initializes its root
object. Root objects are important for GemStone/S applications, so let’s take a
minute to explore the concept. In Smalltalk, an object holds references to other
objects—its instance variables and class variables, at least, but often other classes,
such as its model. These objects, in turn, refer to other objects, and so on.

The root object of an application is the object whose references, when traversed
from one to the next all the way through the hierarchy until a dead end is reached,
include all the objects required for a given application. The completed graph of
such a traversal—all the objects referenced directly or indirectly from a given
object—is called a transitive closure.

Connectors are often defined on root objects so that, when the application starts,
the required hierarchy of objects exists in both the client Smalltalk and
GemStone/S.

In the previous lesson, the root object of your “application” was STRainbow, but it
wasn’t a very interesting root—just a collection with a few instance variables.
Nevertheless, when STRainbow was marked dirty, changes occurred to the values
of the appropriate instance variables of GSRainbow.

The root object of the Personal Information Manager is the class PimUserProfile’s
class variable AllUserProfiles: a dictionary whose keys are all the application
usernames, and whose values are each user’s user profile. Within each user’s user
profile are instances of the associated calendar items, to-do list items, and contacts,
which reference all the application model classes.

We will now initialize the application by initializing its root object.

Step 1. Open a workspace, if one is not already open, and enter the text:

PimUserProfile allUserProfiles

Step 2. Select it and execute it with GS-Do it. This initializes the collection of user
profiles for PimUserProfile in GemStone.

Step 3. With the text still selected, execute GS-Inspect it to see the (as yet empty)
collection of user profiles you’ve made.
March 2005 GemStone Systems, Inc. 3-19

Initializing the Application GemBuilder for Smalltalk Tutorial
Step 4. Commit the transaction.

Step 5. Log out.

Step 6. Use the Personal Information Manager window’s Session menu Login...
item to log in as PimAdmin. (Click OK when you are prompted with the
session parameters, and OK again to acknowledge the login.)

Step 7. As PimAdmin (the Personal Information Manager title bar shows the user
name), add several items to the calendar, to do list, or contact list. Create as
many (or as few) items as you wish, but make sure to add at least two items to
the calendar.

Step 8. Commit the transaction.

Step 9. From the Personal Information Manager Session menu, execute Open
another window to get a new Personal Information Manager.

Step 10. From the new Personal Information Manager Session menu, execute
Create new user....

Step 11. In the resulting dialog, enter the username PimUser1 and click OK.

Step 12. A login editor appears, containing DataCurator’s session parameters.
Click OK to allow the DataCurator (one of two predefined superuser accounts
with user creation privileges) to log into GemStone and create the new user.

Step 13. DataCurator now logs in, creates the user, commits the transaction, and
logs out. Click OK to dismiss the dialog confirming that PimUser1 has been
created with the default password of password.

Step 14. If you’d like to see the code that you just executed, open a VisualWorks
System Browser and browse the class PimManagerUI, instance protocol
actions, instance method createNewPimUser: as well as the class
PimSessionManager, class protocol initialize-session, class method
createPimUserNamed: password:.

Step 15. From the second Personal Information Manager Session menu, execute
Login....

Step 16. In the resulting dialog, choose <New session parameters> and click
OK.
3-20 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Initializing the Application
Step 17. In the resulting login editor, fill in the username and password for
PimUser1 and click OK, and OK once more to dismiss the confirmation dialog.

Step 18. In PimUser1’s Personal Information Manager (make sure to check the
title bar), add new calendar items, to-do list items, and contacts as you wish.
Be sure to add at least one of each.

Step 19. From the Personal Information Manager Session menu, execute
Commit... to commit the transaction. Click OK to dismiss the confirmation
dialog.

Step 20. From the Personal Information Manager Session menu, log out
PimUser1 and close the application window.

Step 21. From the first Personal Information Manager Session menu, log out
PimAdmin, but leave the application window open.

Step 22. From the Session Browser, log in as the new user PimUser1.

Step 23. From the GemStone menu, execute Browse > All Classes. Notice that,
as Figure 3.13 shows, because the new user refers to the same segment as
PimAdmin, PimUser1 can also see the PimGlobals symbol dictionary.
March 2005 GemStone Systems, Inc. 3-21

Initializing the Application GemBuilder for Smalltalk Tutorial
FIGURE 3.13 PimUser1 Sees PimGlobals

Step 24. Select the symbol dictionary PimGlobals. Notice that, within it, all the
Personal Information Manager classes are visible to PimUser1.

Step 25. Select the class PimUserProfile.

Step 26. In the class definition, find the class variable AllUserProfiles and select it.

Step 27. Execute the operate popup menu item GS-Inspect it. As Figure 3.14
shows, the resulting inspector includes all the new Personal Information
Manager users you’ve just created.
3-22 GemStone Systems, Inc. March 2005

User Profiles and Symbol Lists Summary
FIGURE 3.14 AllUserProfiles Inspected

Step 28. If you wish, select a user in the inspector and inspect it. Continue
selecting instance variables and opening fresh inspectors on them until you
have reached the items you added to the calendar, to-do list, or list of contacts.

Step 29. When you’re finished, log out (no need to commit the transaction).

3.6 Summary
We have now created GemStone Smalltalk classes and instances of the Personal
Information Manager model classes, so that each user’s calendar, to-do list, and
contacts now reside in the GemStone repository. However, while each user has his
own persistent data, the information is not available to anyone else. In the next
lesson, users will share data.
March 2005 GemStone Systems, Inc. 3-23

Summary GemBuilder for Smalltalk Tutorial
3-24 GemStone Systems, Inc. March 2005

Chapter

4 Sharing and Querying
Data
This lesson explores one of GemStone’s mechanisms for querying the database.
You can retrieve those elements of collections that meet some specified criterion
using ordinary Smalltalk methods for searching collections. However, for
collections with thousands of elements, GemStone Smalltalk provides a
mechanism that can speed up queries considerably: selection blocks.

A selection block is a syntactic variant of an ordinary Smalltalk block designed to
optimize queries on large collections. A selection block is in most respects similar
to blocks in client Smalltalk, but it is delimited by curly braces { } instead of
square brackets [] and appears as an argument to one of the keywords select:,
detect:, or reject:. If you have a collection with more than two thousand
elements, querying it using a selection block is faster than querying it using an
ordinary block. (For collections with fewer elements, ordinary blocks are probably
more efficient.)

(Selection blocks also are usually used on collections that have been indexed and
have constrained instance variables. Indexing can also improve the performance of
queries over large collections; for details about using selection blocks, indexing,
and constraining instance variables, see the chapter entitled “Querying” in the
GemStone Programming Guide.)

So far, the Personal Information Manager is useful to keep track of your personal
schedule, but it cannot help you coordinate appointments with a group. To do that,
March 2005 GemStone Systems, Inc. 4-1

Objectives GemBuilder for Smalltalk Tutorial
you’ll need to be able to share your personal schedule with other users of the
application, and they with you, so that you can see each other’s calendars as well
as your own.

4.1 Objectives
When you have finished this lesson, you will:

● understand how to share data access among several users, and

● be able to query the database using selection blocks.

4.2 Sharing Data
For this lesson, we will log into the database as PimUser1 and make a few changes
to the code in order to share one of the collections—the calendar, or list of schedule
items. To do so, you’ll have to add an instance variable—user—to the class
PimScheduleItem, so that each item knows whose schedule it belongs to; you’ll
also have to make a new class to hold the collection of all users’ calendars.

Step 1. Start your image, if it is not already running.

Step 2. Open a Session Browser and log into your private database as PimAdmin
if you are not already so logged in.

Step 3. Open a GemStone Class Browser and navigate to the class
PimScheduleItem (in the dictionary PimGlobals).

Step 4. Add the instance variable user to the class definition and execute accept.

Step 5. When you are prompted to migrate instances, answer yes. All instances
of the class are now instances of its second version, and include this new
instance variable with its initial value set to nil.

Notice the [2] appears after the class name to indicate that the current version
is the second.

Step 6. With your cursor in the class pane, execute the operate popup menu item
create access—a GemStone convenience that makes simple accessing and
updating methods for instance variables.
4-2 GemStone Systems, Inc. March 2005

Sharing and Querying Data Sharing Data
Step 7. You are prompted with an array of instance variables. Cut the variables
startTime and endTime, because we already have accessing and updating
methods for these. Leave #user in the array and click OK to make the
methods. They appear in two new categories—Accessing and Updating.
browse them and you’ll see they are the simplest possible methods.

A typical calendar application would track each schedule item with instances
of class DateTime; however, we are not constraining the input in any way, and
therefore cannot count on anything meaningful on which to sort. We therefore
will subclass OrderedCollection and not SortedCollection, as a typical
calendar application might.

Step 8. Make a new class PimScheduleItems (with an s for the plural). Specify that
the superclass is OrderedCollection.

Step 9. Cut all instance variables and class instance variables.

Step 10. Add one class variable named SoleInstance to represent the single
instance of the calendar and accept the definition. When you’re finished, the
class definition appears as shown below:

FIGURE 4.1 New Class PimScheduleItems
March 2005 GemStone Systems, Inc. 4-3

Sharing Data GemBuilder for Smalltalk Tutorial
Step 11. Make a new class protocol called accessing, and make a simple accessing
class method for SoleInstance.

soleInstance

^SoleInstance

Execute accept.

Step 12. Make a new class protocol called class initialization, and make a new
method called initialize, as follows:

initialize

SoleInstance := self new

Step 13. Now select the body of the method above and execute it with GS-Do it
to initialize the new class variable.

Step 14. Commit your transaction.

Step 15. Back in the class pane of the browser, select your new class
PimScheduleItems if necessary, and execute the operate popup menu item
create in ST to create a comparable client Smalltalk class.

Step 16. In the method pane for the soleInstance class method—the one that
gets the value—execute the operate popup menu item compile in ST to create
a comparable client Smalltalk method.

NOTE
To ensure that application users cannot accidentally overwrite
entire collections of data, compile only this one method to get the
value of the class variable and not the whole class. Especially, do not
compile the class initialization and class variable setting methods.

Step 17. Open a File List and use GS-File in to file in the file
PimUserProfile-converting.gs. This file contains two new methods to
help the conversion from a personal to a shared calendar.

Step 18. Commit the transaction.
4-4 GemStone Systems, Inc. March 2005

Sharing and Querying Data Sharing Data
Step 19. In a workspace, type:

PimUserProfile replaceIndividualSchedulesWithSharedSchedule

Step 20. Highlight the above text and execute it with GS-Do it.

Step 21. Back in the GemStone Smalltalk Browser, find the class PimUserProfile
and its instance method initialize. It looks like this:

initialize

super initialize.
scheduleItems := OrderedCollection new.
toDoItems := OrderedCollection new.
contactItems := OrderedCollection new.

Step 22. Change the line that initializes the schedule items so that the method
reads:

initialize

super initialize.
scheduleItems := PimScheduleItems soleInstance.
toDoItems := OrderedCollection new.
contactItems := OrderedCollection new.

Execute accept.

Step 23. We’ve now made all the GemStone Smalltalk changes to implement a
shared calendar. Commit your transaction.

Step 24. In a client Smalltalk Browser, access the class definition for PimItemUI
and add a new instance variable called user. This allows the user interface
access to the user attached to each schedule item.

Step 25. Add simple accessing and updating methods for user.

Step 26. Now access the class PimScheduleItemEditUI, and its instance method
flushAspects (in the protocol updating) to add a new final line:

mdl user: self user
March 2005 GemStone Systems, Inc. 4-5

Sharing Data GemBuilder for Smalltalk Tutorial
This line assigns a user to a given schedule item. Be sure to add a statement
separator to the line above, if necessary, and execute Accept.

Step 27. Still in the client Smalltalk Browser, access the class PimManagerUI and
the instance method updateView. We’ll change this method, too, so that the
calendar subcanvas can be assigned a user.

Step 28. Between these two lines:

app model value: self profile.
self mainView: app.

add the line:

app user: self sessionManager username.

and execute Accept. The method now reads (with the new line boldfaced):

updateView
"Update subcanvas itemDetailView with the UI for the

currently sekklected view."

| app viewCls spec subcanvas |
app := (viewCls := self currentViewClass) new.
app model value: self profile.
app user: self sessionManager username.
self mainView: app.
spec := viewCls interfaceSpecFor: #windowSpec.
subcanvas := (self builder componentAt: #mainView) widget.
subcanvas client: app spec: spec.

Step 29. Still in the client Smalltalk Browser, still in the class PimManagerUI,
access the instance method apply and add a new line after the first line, so that
the method now appears as shown below:

apply

(self mainView)
user: self sessionManager username;
flushAspects;
refreshItemList
4-6 GemStone Systems, Inc. March 2005

Sharing and Querying Data Sharing Data
Step 30. Finally, we must enable the new schedule item to display its user when
printed out in the list. Still in the client browser, access the class
PimScheduleItem and give it the new instance variable user as well.

Step 31. Make simple accessing and updating instance methods for user.

Step 32. In the protocol printing, access the instance method displayFields,
and add user to the literal array of fields to be displayed, so that the method
reads:

displayFields

^#(user date startTime endTime description)

(Again, the new text to insert is boldfaced.) Execute accept.

Step 33. We’ve now made all the client code changes to implement a shared
calendar. Save your image.

Step 34. To see the results of your work, open a new Personal Information
Manager. In a workspace, evaluate:

PimManagerUI open

Step 35. Use the Personal Information Manager’s Session menu to log in as
PimUser1.

Step 36. Access the calendar, and notice that the schedule items now specify the
user to whom they belong.

Step 37. Make new items for PimUser1, if you wish. Then use the Personal
Information Manager’s Session menu to log in as PimAdmin and make new
items for PimAdmin as well, if you wish.

Step 38. In a workspace, type the following GemStone Smalltalk code and execute
it using GS-Inspect it:

PimUserProfile allUserProfiles

Open inspectors on each user, their schedule items, and each individual
schedule item. You’ll see that all the users are now viewing the same collection
of calendar items.
March 2005 GemStone Systems, Inc. 4-7

Querying GemBuilder for Smalltalk Tutorial
Step 39. To make sure, again in a workspace, type the following GemStone
Smalltalk code and execute it using GS-Print it:

(PimUserProfile allUserProfiles at: ’PimAdmin’) scheduleItems ==
(PimUserProfile allUserProfiles at: ’PimUser1’) scheduleItems

true

The expression returns true; the collections are identical.

Step 40. Close windows and log off, if you wish—or stay logged in for the last
task.

4.3 Querying
A Personal Information Manager with just a few users might not require a very
large collection of schedule items, but if the application were required to scale to
hundreds of users, the calendar could become very large indeed, and performance
might become unacceptable.

Also, users might sometimes wish to see only their own calendars, not everyone’s.

For these two reasons, we’ll now add a query.

Step 1. Start your image, if it is not already running.

Step 2. Open a Session Browser and log into your private database as PimAdmin
if you are not already so logged in. (We could actually log in as any Personal
Information Manager user, because they all are able to write to the dictionary
PimGlobals. But we’ll continue to do our development work as PimAdmin.)

Step 3. Open a GemStone Smalltalk Browser, if necessary, and access the class
PimScheduleItems.

Step 4. Make a new instance protocol called querying.

Step 5. In the new protocol, make the following new instance method:

scheduleItemsFor: aUser

^self select: {:each | each.user = aUser}

Execute accept.
4-8 GemStone Systems, Inc. March 2005

Sharing and Querying Data Querying
NOTE
The above selection block is inefficient for the tiny collection we are
accessing; however, selection blocks can greatly improve
performance when querying large collections. We are using this one,
therefore, to introduce you to this GemStone-specific mechanism.

Step 6. Commit your transaction.

Step 7. Now open a client Smalltalk browser, if necessary, and access the class
PimScheduleItemEditUI.

Step 8. Make a new instance protocol called private.

Step 9. In the new protocol, make the following new instance method:

modelCollection

^PimScheduleItems soleInstance

Execute Accept.

Step 10. Now select the instance protocol accessing, and the instance method
modelList. Because VisualWorks window widgets require that lists display
local rather than forwarded collections, we have to add the message
asOrderedCollection to the end of the method, so that it appears as
shown below:

modelList

^self model value scheduleItems asOrderedCollection

Execute Accept.
March 2005 GemStone Systems, Inc. 4-9

Querying GemBuilder for Smalltalk Tutorial
Step 11. Subclass PimScheduleItemEditUI—call its new subclass
PimPersonalScheduleItemEditUI. Give it no instance or class variables; the
class definition appears as shown below:

Smalltalk defineClass: #PimPersonalScheduleItemEditUI
superclass: #(PimScheduleItemEditUI)
indexedType: #none
private: false
instancevariableNames: ’’
classInstanceVariableNames: ’’
imports: ’’
category: ’’

Step 12. The subclass PimPersonalScheduleItemEditUI inherits the instance
method modelList from its superclass PimScheduleItemEditUI. Make a new
instance protocol called accessing, and override this method so that the
subclass implements it as follows:

modelList

"modelCollection returns either a forwarder if
connected to GemStone, or nil if unconnected. Because the
list widget needs a collection, return an empty one if
not logged in."

^self modelCollection isNil
ifTrue: [OrderedCollection new]
ifFalse: [self modelCollection scheduleItemsFor: self user]

Execute Accept.

Step 13. The previous version of the Personal Information Manager application
could count on a one-to-one correspondence between the collection of
schedule items held in the GemStone repository, and the collection to be
displayed in the user’s Personal Information Manager calendar subcanvas.
With the addition of the query, however, this one-to-one correspondence is
now broken. We must therefore add two new methods to the class
PimScheduleItemEditUI to add and remove items from the list displayed in
the subcanvas.

To start, therefore, navigate to PimScheduleItemEditUI and make a new
instance protocol called actions.
4-10 GemStone Systems, Inc. March 2005

Sharing and Querying Data Querying
Step 14. In the new protocol, make the following new method:

addNewItem

| newModel |
newModel := self modelClass new.
self modelCollection add: newModel.
self itemList list add: newModel.
self refreshItemList

Execute Accept.

Step 15. In the new protocol, make the following new method:

removeItem

self modelCollection remove: self itemList selection.
self itemList list remove: self itemList selection.
self refreshItemList.

Execute Accept.

Step 16. Finally, add the new menu items, so that users can request either their
personal calendars only, or the shared calendar.
March 2005 GemStone Systems, Inc. 4-11

Querying GemBuilder for Smalltalk Tutorial
Step 17. Access the class PimManagerUI, the class protocol resources, class
method viewMenu. Edit the method until it appears as shown below (new text
is boldfaced):

viewMenu
"MenuEditor new openOnClass: self andSelector:

#viewMenu"

<resource: #menu>
^#(#Menu #(

#(#MenuItem
#rawLabel: ’Personal Calendar’
#nameKey: #PimPersonalScheduleItemEditUI
#value: #PimPersonalScheduleItemEditUI)

#(#MenuItem
#rawLabel: ’Shared Calendar’
#nameKey: #PimScheduleItemEditUI
#value: #PimScheduleItemEditUI)

#(#MenuItem
#rawLabel: ’To Do List’
#nameKey: #PimToDoItemEditUI
#value: #PimToDoItemEditUI)

#(#MenuItem
#rawLabel: ’Contacts’
#nameKey: #PimContactItemEditUI
#value: #PimContactItemEditUI)) #(4) nil)

decodeAsLiteralArray

(Don’t forget to change the 3 to a 4 in the second-to-last line.) Execute Accept.

Step 18. Save your image.

Step 19. Log out of the GemStone Session Browser. (There’s no need to commit
your transaction, as the work you’ve just completed all resides in the image.)

Step 20. Open a new Personal Information Manager and log in from the Session
menu as PimAdmin.

Step 21. Try the new calendar menu items. You’ll see that the Shared Calendar
works, but the Personal Calendar is empty. This is because we haven’t made a
connector for PimScheduleItems’s class variable SoleInstance—the sole
4-12 GemStone Systems, Inc. March 2005

Sharing and Querying Data Querying
instance of the shared calendar. Log out and close the PersonalInformation
Manager window.

Step 22. Log in as PimAdmin from the Session Browser.

Step 23. From the GemStone menu, execute Tools > Browse Connectors.

Step 24. Choose the session connectors for PimAdmin.

Step 25. In the middle pane, execute the operate popup menu item add....

Step 26. When prompted for the connector type, choose Class Variable, because
that’s what SoleInstance is.

Step 27. When prompted for the Smalltalk class name, enter PimScheduleItems.

Step 28. When prompted for the Smalltalk class variable, enter SoleInstance.

Step 29. When prompted for the GemStone class name, enter PimScheduleItems.

Step 30. When prompted for the GemStone class variable, enter SoleInstance.

Step 31. When prompted for the dictionary, enter PimGlobals.

Step 32. In the bottom right part of the window, choose a postconnect action of
type forwarder. This means that messages sent to the Smalltalk class variable
will be automatically forwarded to the connected GemStone class variable.

Step 33. Finally, in the middle of the bottom, click the radio button labeled
Connected.

Step 34. Now logout using the Session Browser, open a new Personal Information
Manager, and log in from its Session menu as PimAdmin again. Try the
Personal and Shared calendars once more. This time you’ll see individual and
shared calendar items behave correctly.

Unfortunately, having established this connector for PimAdmin, we cannot now
log in as the other users without getting a connector conflict—try it and see.
Connectors are part of the image, and GemBuilder expects each user to be using
his or her own image. This is true for most applications, although it causes
awkwardness in tutorials.
March 2005 GemStone Systems, Inc. 4-13

Conclusion GemBuilder for Smalltalk Tutorial
If you’d like to be able to log in as the other user, first log out PimAdmin and
remove this connector from PimAdmin’s session. You are then free to re-create it
for the other user’s session. Remember, connectors are part of the client Smalltalk
image, not part of the repository; they are saved when you save the image and
discarded otherwise; they are not themselves persistent GemStone/S objects.

4.4 Conclusion
Congratulations! You have now completed the introductory GemBuilder for
Smalltalk tutorial. You have learned the rudiments of navigating GemBuilder for
Smalltalk, and you’ve been introduced to a wide variety of basic GemStone/S
concepts:

● persistence by managing the connections between client Smalltalk and
GemStone server objects;

● user profiles as representations of users;

● symbol dictionaries for managing the visibility of objects among users;

● groups, segments, and authorization as security mechanisms; and

● specialized selection blocks to speed querying.

You’ve done a great deal of work and become somewhat familiar with the basic
aspects of the GemStone/S system. You are now reasonably prepared to start work
on your own application. If you’d like to play with the example application a bit
more before starting your own work, we suggest the following possible exercises:

● Allow a user to view a specified user’s schedule by itself, instead of with all the
calendar items belonging to all users.

● Redefine the model to use instances of Date or TimeStamp (connected to
GemStone Smalltalk classes Date and DateTime, respectively) instead of
strings for dates and times. Then redefine PimScheduleItems to subclass from
SortedCollection.

You probably won’t be surprised to discover that you have only skimmed the
surface of these concepts, and that GemStone/S includes many more features as
well. As you tackle your own tasks, you can investigate further questions as they
arise by consulting other GemStone/S documentation.

● The GemStone Programming Guide discusses in greater depth the GemStone
concepts we have dealt with and others, in a fashion that does not depend on
the specific interface to GemStone that you are using. It explains ideas and
provides GemStone Smalltalk examples of those ideas.
4-14 GemStone Systems, Inc. March 2005

Sharing and Querying Data Conclusion
● The GemBuilder for Smalltalk User’s Guide for your client Smalltalk describes the
GBS in detail, explaining both the user interface and the GBS functionality for
accessing the database.

● The GemStone System Administration Guide covers system administration issues
in thorough detail.

● The Topaz GemStone Programming Environment describes Topaz, the command
language interface to GemStone/S.

● The GemBuilder for C describes the C interface to the GemStone/S repository.

● Finally, on-line help and man pages are available for Topaz, man pages are
available for UNIX executables, and the GemStone Smalltalk source code is
fully commented.

Happy exploring!
March 2005 GemStone Systems, Inc. 4-15

Conclusion GemBuilder for Smalltalk Tutorial
4-16 GemStone Systems, Inc. March 2005

Index

March 2005
Index
A
aborting a transaction 1-6
accessing

calendar in example application 3-4
contacts in example application 3-6
instance variables

creating methods for 4-2
objects 3-1
to-do list in example application 3-5

adding
calendar item in example application 3-4
contact in example application 3-6
new users 3-7
session 1-3
to-do list item in example application 3-5
user profile to a group 3-9

Administrator global 1-17
allUserProfiles root object 3-19
application, propagating change to repository

2-2
assigning passwords 3-7

audience 1-iii
authorization, defined 3-9

B
Bag, inspecting in GemStone vs. client

Smalltalk 1-11
breakpoint

clearing 1-20
setting 1-19

Breakpoint Browser 1-20
browsing GemBuilder configuration

parameters 3-15

C
calendar

accessing 3-4
adding to 3-4

change, propagating to repository 2-2
GemStone Systems, Inc. Index-1

GemBuilder for Smalltalk Tutorial
class
connector 2-3
definition of, in GemStone Smalltalk 1-14
moving to a different symbol dictionary

3-18
new version of 4-2
replicating 3-16

class instance variable connector 2-3
class variable

adding connector for 4-13
connector 2-3

client Smalltalk
distinguished from GemStone Smalltalk

1-iv
execution 1-8
launcher, transcript pane in 1-7
references for 1-v
version required 1-iii

collection
forwarded vs. local 4-9
size, performance and 4-1

committing a transaction 1-6
Compile in GS 3-17
compilerLanguage (UserProfile) 3-14
compiling client Smalltalk methods in

GemStone Smalltalk 3-17
configuration parameter GenerateGSClasses

3-15
configuring GemBuilder for Smalltalk 3-15

connector 2-2 to 2-7
adding class variable 4-13
class 2-3
class instance variable 2-3
class variable 2-3
fast 2-3
for root object 3-19
forwarder 2-4
in symbol dictionary 2-4
name 2-3
naming 2-4
postconnect action for 2-4
types of 2-3
updating 2-5

Connector Browser 2-3
contact list

accessing 3-6
adding to 3-6

conventions
typefaces for 1-iv
vocabulary for 1-iv

create access 4-2
Create in GS 3-16
createNewPimUser: 3-20
creating

accessing and updating methods for
instance variables 4-2

class, in GemStone Smalltalk 1-14
GemStoneAdministrator 1-15
global 1-17
group 3-11
new user of example application 3-20
PimScheduleItems 4-3
PimUser1 3-20
user profiles 3-7

D
data, sharing 3-1, 4-1
DataCurator, privilege of 3-7
dates, format of, in example application 3-4
debugging in GemStone 1-17
Index-2 GemStone Systems, Inc. March 2005

defaultSegment (UserProfile) 3-14
defining

class, in GemStone Smalltalk 1-14
GemStoneAdministrator 1-15
global 1-17
group 3-11
PimScheduleItems 4-3

dirty objects 2-2
documentation for GemStone 4-14

E
example application 1-iii to Intro-2

accessing calendar in 3-4
accessing contacts in 3-6
accessing to-do list in 3-5
adding a calendar item 3-4
adding a contact 3-6
adding a to-do list item 3-5
additional exercises for 4-14
creating new user for 3-20
format of dates and times in 3-4
initializing 3-19
model classes 3-7
opening initial window 3-3
root of 3-19
setting up 3-2

executing GemStone Smalltalk, distinguished
from client Smalltalk 1-8

exercises 4-14

F
fast connector 2-3
File List 1-15
files included Intro-1
filing in GemStone code 1-15
format of dates and times in example

application 3-4
forwarder 2-4

G
GemBuilder for Smalltalk

configuring 3-15
documentation for 4-15
explored 1-1 to 1-21
verbose mode for 1-7
version required 1-iii

GemBuilder for Smalltalk Release Notes 1-iv
GemStone

debugging 1-17
documentation for 4-14
kernel classes 1-9, 3-2
session parameters in System Browser

3-16
users, represented 3-7
workspace 1-4

GemStone Release Notes and Installation Guide
1-iii

GemStone Smalltalk
compiling methods in 3-17
distinguished from client Smalltalk 1-iv
execution 1-8
Hierarchy Browser 3-16

GemStoneAdministrator, defining 1-15
GemStoneAdministrator.gs Intro-1
GenerateGSClasses 3-15
global, creating 1-17
Globals 1-9, 3-2
group

adding users to 3-9
creating 3-11

groups (UserProfile) 3-14
GS-do it 1-8
GS-File in 1-16
GS-inspect 1-8
GsPim.pcl Intro-1

parceling in 3-2
GS-print it 1-8
March 2005 GemStone Systems, Inc. Index-3

GemBuilder for Smalltalk Tutorial
H
Hierarchy Browser 3-16

I
initializing example application 3-19
inserting

symbol dictionary, in your user profile
1-4

UserClasses in your user profile 1-4
inspect GS 2-5
inspect ST 2-5
inspecting GemStone Smalltalk, distinguished

from client Smalltalk 1-10
inspector

on bags, GemStone and client Smalltalk
contrasted 1-11

on sets, GemStone and client Smalltalk
contrasted 1-11

instance
migrating 4-2

instance variable
creating accessing and updating methods

for 4-2

L
logging in 1-2

linked 1-4
remotely 1-4

logging out 1-6

M
manuals for GemStone 4-14
markDirty 2-5
migrating instances 4-2
model classes 3-7
moving class to another symbol dictionary

3-18
multiuser access to shared objects, how to 3-1

N
name connector 2-3
name space, defined 3-1
naming objects 3-1

O
object-oriented databases, references for 1-v
object-oriented design, references for 1-v
opening initial window for example

application 3-3
optimizing GemStone applications

selection blocks 4-1
organization of tutorial 1-iv

P
Parcel Browser 3-2
parceling in example application 3-2
password, assigning 3-7
performance, using selection blocks 4-1
persistence, defined 2-1
Personal Information Manager

accessing calendar in 3-4
accessing contacts in 3-6
accessing to-do list in 3-5
adding calendar item 3-4
adding contact 3-6
adding to-do list item 3-5
additional exercises for 4-14
creating new user for 3-20
described 1-iii to Intro-2
format of dates and times in 3-4
initial window 3-3
initializing 3-19
model classes 3-7
opening initial window 3-3
root of 3-19
setup for 3-2

PimAdmin 3-10
PimGlobals 3-22
Index-4 GemStone Systems, Inc. March 2005

PimScheduleItems
defining 4-3

PimUser1, creating 3-20
postconnect action, defined 2-4
privileges (UserProfile) 3-14
Published 1-9, 3-2

Q
query using selection block 4-8
querying 4-8 to 4-15

R
references 1-v
remove breakpoint 1-20
renaming symbol dictionary 3-18
replaceIndividualSchedulesWithSha

redSchedule 4-5
replicating client Smalltalk classes in

GemStone Smalltalk 3-16
requirements, software versions 1-iii
root object

allUserProfiles 3-19
connector for 3-19
defined 3-19

S
security, assigning passwords 3-7
segment

default 3-10
defined 3-9

segment tool 3-10
selection block

defined 4-1
performance of 4-1

session
adding 1-3
parameters, on System Browser 3-16

Session Browser 1-3
set break 1-19

Set, inspecting in GemStone vs. client
Smalltalk 1-11

setting up example application 3-2
Settings 3-15
sharing data 3-1, 4-1
symbol dictionary 1-9

defined 3-1
for connectors 2-4
inserting in user profile 1-4
moving class from one to another 3-18
renaming 3-18
visibility of 3-1, 3-22

symbolList (UserProfile) 3-14

T
text for example application Intro-1
time, format of, in example application 3-4
to-do list

accessing 3-5
adding to 3-5

transaction
aborting 1-6
committing 1-6

transcript pane in client Smalltalk launcher
1-7

transitive closure, defined 3-19
transparency

defined 2-1
tutorial files Intro-1
Tutorial.txt Intro-1

U
update 2-5
updating

connector 2-5
instance variables, creating methods for

4-2
user profile

adding to a group 3-9
symbol dictionaries in 1-4
March 2005 GemStone Systems, Inc. Index-5

GemBuilder for Smalltalk Tutorial
user, creating new, for example application
3-20

UserClasses
inserting in your user profile 1-4

UserGlobals 1-9, 3-2
UserProfile 3-7

creating 3-7
instance variables of 3-13

V
verbose mode for GemBuilder for Smalltalk

1-7
version

of class, new 4-2
required software 1-iii

visibility of symbol dictionary, changing 3-1
VisualWorks version required 1-iii

W
workspace 1-4
Index-6 GemStone Systems, Inc. March 2005

	1 A Tour of GemBuilder for Smalltalk
	1.1 Objectives
	1.2 Logging In and Out, and Managing Transactions
	Logging Into GemStone
	FIGURE 1.1 The GemStone Session Browser
	FIGURE 1.2 Providing Session Parameters

	Committing a Transaction
	FIGURE 1.3 The Workspace Menu

	Aborting a Transaction
	Logging Out of GemStone
	Managing the Transcript

	1.3 GemStone and Smalltalk Execution
	1.4 Inspecting GemStone Objects
	FIGURE 1.4 Smalltalk and GemStone Bag Inspectors
	FIGURE 1.5 Smalltalk and GemStone Set Inspectors

	1.5 Creating and Filing Code In and Out
	FIGURE 1.6 GemStone Class Creation Template

	1.6 Debugging in GemStone
	FIGURE 1.7 GemStone Debugger
	FIGURE 1.8 GemStone Breakpoint Browser

	1.7 Summary

	2 Persistence
	2.1 Objectives
	2.2 Connectors
	FIGURE 2.1 GemStone Connector Browser

	2.3 Summary

	3 User Profiles and Symbol Lists
	3.1 Objectives
	3.2 Set Up and Explore the Tutorial Application
	FIGURE 3.1 Personal Information Manager Initial Window
	FIGURE 3.2 Calendar Item Added

	3.3 Exploring User Profiles
	FIGURE 3.3 GemStone User List
	FIGURE 3.4 Creating PimAdmin
	FIGURE 3.5 Segment Tool
	FIGURE 3.6 Giving Write Access to the Group
	FIGURE 3.7 PimAdmin’s Session Parameters
	FIGURE 3.8 Inspector on a UserProfile

	3.4 Making the Schema Persistent
	FIGURE 3.9 Settings Browser
	FIGURE 3.10 GemStone Classes Browser Displays its Associated Session Parameters
	FIGURE 3.11 PimModel Connected
	FIGURE 3.12 PimGlobals Symbol Dictionary

	3.5 Initializing the Application
	FIGURE 3.13 PimUser1 Sees PimGlobals
	FIGURE 3.14 AllUserProfiles Inspected

	3.6 Summary

	4 Sharing and Querying Data
	4.1 Objectives
	4.2 Sharing Data
	FIGURE 4.1 New Class PimScheduleItems

	4.3 Querying
	4.4 Conclusion

	Index

