
GemStone®
Topaz Programming

Environment

for GemStone/S 64 Bit
Version 3.2

April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems, LLC,
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in any
form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express written
authorization from GemTalk Systems.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.
This software is provided by GemTalk Systems, LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems, LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2014 GemTalk Systems, LLC. All rights reserved by
GemTalk Systems.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with persistent
object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”. GemStone
software may also be covered by one or more pending United States patent applications.

TRADEMARKS
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of GemTalk Systems,
LLC., or of VMware, Inc., previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
HP, HP Integrity, and HP-UX are registered trademarks of Hewlett Packard Company.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows XP, Windows 2003, Windows 7, Windows Vista and Windows 2008 are registered
trademarks of Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER5, POWER6, and POWER7 are trademarks or registered trademarks of International Business Machines
Corporation.
Apple, Mac, Mac OS, Macintosh, and Snow Leopard are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
GemTalk Systems
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems April 2014

Preface
About This Manual
This manual describes Topaz, the command-driven GemStone programming
environment. You can use Topaz with the other GemStone development tools such as
GemBuilder for C to build comprehensive database applications.

Topaz is especially useful for database administration tasks and batch-mode procedures.
Because it is command driven and generates ASCII output on standard output channels,
Topaz offers access to GemStone without requiring a window manager or additional
language interfaces.

Prerequisites
To make use of the information in this manual, you must be familiar with the
GemStone/S 64 Bit system and the GemStone Smalltalk programming language. In
addition, you should be familiar with your host operating system.

You should have the GemStone system installed correctly on your host computer, as
described in the GemStone/S 64 Bit Installation Guide for your platform.

How This Manual Is Organized
Chapter 1, “Getting Started with Topaz,” introduces you to Topaz. You’ll learn how

to run Topaz, how to log in to the GemStone server, how to create and execute
GemStone Smalltalk code, and how to inspect GemStone objects.

Chapter 2, “Debugging Your GemStone Smalltalk Code,” shows how to use Topaz to
debug your GemStone Smalltalk code.

Chapter 3, “Command Dictionary,” describes the Topaz commands in alphabetical
order.

Appendix A, “Topaz Command-Line Syntax,” lists the Topaz command line syntax.
April 2014 GemTalk Systems 3

GemStone/S 64 Bit 3.2 Topaz Programming Environment
Appendix B, “Network Resource String Syntax,” lists the syntax for specifying the
host machine for a GemStone file or process.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit and
GemStone/S, and the GemStone family of products; the GemStone Smalltalk
programming language; and may also be used to refer to the company, now GemTalk
Systems, previously GemStone Systems, Inc. and a division of VMware, Inc.

Other GemStone Documentation
In addition to the full set of GemStone/S 64 Bit documentation, the following documents
may be particularly useful in working with topaz:

Programming Guide for GemStone/S 64 Bit— a programmer’s guide to GemStone
Smalltalk, GemStone’s object-oriented programming language.

System Administration Guide for GemStone/S 64 Bit — describes maintenance and
administration of your GemStone/S system.

A description of the behavior of each GemStone kernel class is available in the class
comments in the GemStone Smalltalk repository. Method comments include a description
of the behavior of methods.

Technical Support

Support Website

http://gemtalksystems.com/techsupport

GemTalk’s Technical Support website provides a variety of resources to help you use
GemTalk products:

Documentation for released versions of all GemTalk products, in PDF form.

Downloads, including current and recent versions of GemTalk products.

Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

TechTips, providing information and instructions that are not in the documentation.

Compatibility matrices, listing supported platforms for GemTalk product versions.

This material is updated regularly; we recommend checking this site on a regular basis.

Help Requests
You may need to contact Technical Support directly, if your questions are not answered in
the documentation or by other material on the Technical Support site. Technical Support
is available to customers with current support contracts.

Requests for technical assistance may be submitted online, by email, or by telephone. We
recommend you use telephone contact only for more serious requests that require
4 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: http://techsupport.gemtalksystems.com

Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702

When submitting a request, please include the following information:

Your name and company name.

The version of GemStone/S 64 Bit, and versions of all related GemTalk products and
of any other related products.

The operating system and version you are using.

A description of the problem or request.

Exact error message(s) received, if any, including log files if appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.

24x7 Emergency Technical Support
GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.

Training and Consulting
GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.
April 2014 GemTalk Systems 5

GemStone/S 64 Bit 3.2 Topaz Programming Environment
6 GemTalk Systems April 2014

Contents
Chapter 1. Getting Started with Topaz 13

1.1 Invoking Topaz. 14
1.2 Overview of a GemStone Session . 14
1.3 Remote Versus Linked Versions . 15
1.4 Logging In to GemStone. 16

Host user account alternatives . 19
Setting Up a Login Initialization File .topazini 19

Error handling and output. 20
1.5 The Help Command . 20
1.6 Executing GemStone Smalltalk Expressions . 21
1.7 Invoking Operating System Functionality . 21

Executing shell commands . 21
Escaping to an Editor . 21

1.8 Controlling the Display of Results . 22
Display Level . 22
Setting Limits on Object Displays. 23
Displaying Variable Names, OOPs, and Hex Byte Values 23

Instance Variable Names . 23
Hexadecimal Byte Values . 24
OOP Values . 24

1.9 Creating and Changing Methods. 25
Editing Methods . 26

1.10 Listing Methods and Categories . 27
1.11 Committing and Aborting Transactions . 27
1.12 Capturing Your Topaz Session In a File . 28
1.13 Filing Out Classes and Methods . 29
1.14 Creating a Topaz Script for Batch Processing . 30
1.15 Taking Topaz Input from a File . 31
April 2014 GemTalk Systems 7

Table of Contents GemStone/S 64 Bit 3.2 Topaz Programming Environment
1.16 Interrupting Topaz and GemStone . 31
1.17 Multiple Concurrent GemStone Sessions . 32
1.18 Structural Access To Objects . 33

Examining Instance Variables with Structural Access 33
Specifying Objects . 34

Object Identity Specification Formats . 34
Literal Object Specification Formats . 35

Specifying Method Selectors . 35
1.19 Defining Local Variables . 36

Creating Variables. . 36
Displaying Current Variable Definitions . 36
Clearing Variable Definitions . 37

1.20 Sending Messages . 37
1.21 Logging Out . 38
1.22 Leaving Topaz . 38

Chapter 2. Debugging Your GemStone Smalltalk Code 39

2.1 Step Points and Breakpoints . 39
2.2 Setting, Clearing, and Examining Breakpoints . 40
2.3 Examining the GemStone Smalltalk Call Stack . 42

Proceeding After a Breakpoint . 43
Examining and Modifying Temporaries and Arguments 44
Select a Context for Examination and Debugging 45
Multiple Call Stacks . 46

Chapter 3. Command Dictionary 47

ABORT . 48
BEGIN . 49
BREAK aSubCommand . 50

Method Breakpoints . 50
Disabling and Enabling Breakpoints . 51

CATEGORY: aCategoryName. . 53
CLASSMETHOD[: aClassName] . 54
COMMIT. . 55
CONTINUE [anObjectSpec] . 56
C [anObjectSpec] . 56
DEFINE [aVarName [anObjectSpec [aSelectorOrArg]...]] 57
DISASSEM [aClassParameter] aParamValue . 58
DISPLAY aDisplayFeature. . 59
DOIT . 61
DOWN [anInteger] . 62
DOWNR [anInteger] . 63
DOWNRB [anInteger] . 63
EDIT aSubCommandOrSelector [aSelector] . 64
8 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Table of Contents
Creating or Modifying Blocks of GemStone Smalltalk Code 64
Creating or Modifying GemStone Smalltalk Methods 64

ERRORCOUNT . 66
EXIT [aSmallInt | anObjectSpec] . 67
EXITIFNOERROR . 68
EXPECTBUG bugNumber . 69
EXPECTERROR anErrorCategory anErrorNumCls . 70
EXPECTVALUE anObjectSpec [anInt] . 72
FILEFORMAT fileFormatDesignator . 74
FILEOUT [command] clsOrMethod [TOFILE: filename [FORMAT: fileformat]] 75
FR_CLS [anInteger] . 76
FRAME [anInteger] . 77
GCITRACE aFileName . 78
HELP [aTopicName]. 79
HIERARCHY [aClassName] . 80
HISTORY [anInteger] . 81
IFERR bufferNumber [aTopazCommandLine] . 82
IFERR_CLEAR . 83
IFERR_LIST . 84
IFERROR [aTopazCommandLine] . 85
IMPLEMENTORS selectorSpec. 86
INPUT [aFileName | POP] . 87
INSPECT [anObjectSpec] . 88
INTERP . 89
INTERPENV . 90
LEVEL anIntegerLevel. 91
LIMIT [BYTES | OOPS | LEV1BYTES] anInteger . 92
LIST . 93

Browsing Dictionaries and Classes . 93
Listing Methods . 93
Listing Step Points . 94
Listing Breakpoints. 95

LISTW . 97
L . 97
LOADUA aFileName . 98
LOGIN. 99
LOGOUT .100
LOGOUTIFLOGGEDIN . .101
LOOKUP (METH | METHOD | CMETH | CMETHOD) selectorSpec102
LOOKUP className [CLASS] selectorSpec .102

Finding and Listing Methods . .102
Pasting from stack frames . .103

METHOD[: aClassName] . .104
NBRESULT . .105
NBRUN .106
NBSTEP . .107
OBJ1 anObjectSpec . .108
OBJ2 anObjectSpec . .108
OBJ1Z anObjectSpec . .109
OBJ2Z anObjectSpec . .109
April 2014 GemTalk Systems 9

Table of Contents GemStone/S 64 Bit 3.2 Topaz Programming Environment
OBJECT anObjectSpec [AT: anIndex [PUT: anObjectSpec]] 110
OMIT aDisplayFeature . 112
OUTPUT (PUSH | APPEND | PUSHNEW | POP) aFileName [ONLY]. 113
PAUSEFORDEBUG [errorNumber] . 115
PKGLOOKUP (METH | METHOD | CMETH | CMETHOD) selectorSpec. 116
PKGLOOKUP className [CLASS] selectorSpec . 116
PRINTIT . 117
PROTECTMETHODS . 118
QUIT [aSmallInt | anObjectSpec] . 119
RELEASEALL . 120
REMARK commentText . 121
REMOVEALLCLASSMETHODS [aClassName] . 122
REMOVEALLMETHODS [aClassName]. . 123
RUBYCLASSMETHOD . 124
RUBYHIERARCHY. . 124
RUBYIMPLEMENTORS . 124
RUBYLIST . 124
RUBYLOOKUP . 124
RUBYMETHOD. . 124
RUBYRUN . 124
RUN . 125
RUNENV . 126
SEND anObjectSpec aMessage . 127
SENDENV . 128
SENDERS selectorSpec . 129
SET aTopazParameter [aParamValue] . 130
SHELL [aHostCommand] . 134
SPAWN [aHostCommand] . 135
STACK [aSubCommand] . 136

Display the Active Call Stack . 136
Display or Redefine the Active Context . 137
Save the Active Call Stack During Further Execution 138
Display All Call Stacks . 138
Redefine the Active Call Stack . 138
Remove Call Stacks . 139

STATUS . 140
STEP (OVER | INTO | THRU) . 141
STK [aSubCommand] . 142
STRINGS selectorSpec . 143
STRINGSIC selectorSpec . 144
SUBCLASSES [aClassName] . 145
TEMPORARY [aTempName[/anInt] [anObjectSpec]] 146
THREAD [anInt] [CLEAR]. . 148
THREADS [CLEAR] . 149
TIME . 150
TOPAZPAUSEFORDEBUG [errorNumber] . 151
TOPAZWAITFORDEBUG . 151
STACKWAITFORDEBUG . 151
UNPROTECTMETHODS . 152
UP [anInteger] . 153
10 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Table of Contents
UPR [anInteger] .154
UPRB [anInteger]. .154
WHERE [anInteger | aString] .155
WHRB [anInteger] . .156
WHRUBY [anInteger] .156

Appendix A. Topaz Command-Line Syntax 157

A.1 Command-Line Syntax . .157
A.2 Options . .157

Appendix B. Network Resource String Syntax 159

B.1 Overview . .159
B.2 Defaults . .160
B.3 Notation. .160
B.4 Syntax . .161

Index 165
April 2014 GemTalk Systems 11

Table of Contents GemStone/S 64 Bit 3.2 Topaz Programming Environment
12 GemTalk Systems April 2014

Chapter

1 Getting Started with
Topaz
Topaz is a GemStone programming environment that provides keyboard command access
to the GemStone system. Topaz does not require a windowing system and so is a useful,
interface for batch work and for many system administration functions.

This chapter explains how to run Topaz and how to use some of the most important
Topaz commands. Chapter 3 provides descriptions of all Topaz commands.

To run Topaz, GemStone/S 64 Bit must be installed on your system. You must have an
running repository monitor (Stone) that is the same version of GemStone as Topaz, and in
some cases an accessible network service process (NetLDI). The GemStone/S 64 Bit
Installation Guide explains how to install these components.

Your environment must contain a definition of the $GEMSTONE environment variable and
your execution path must include the GemStone binary directory $GEMSTONE/bin.
Consult your system administrator if you need help with this.

Examples throughout this book were created on a UNIX system. Topaz is also available
with the GemStone/S 64 Bit Windows Client distribution, which allows Topaz to run on
Windows, logging in remotely to a GemStone server running on UNIX. Topaz on
windows cannot login linked, nor with a gem or cache on the local node. Otherwise,
Topaz operates similarly on UNIX and Windows. Differences are noted in the text.

GemStone Smalltalk and Ruby

Topaz is designed to support the GemStone Ruby environment (MAGLEV) as well as
GemStone/S 64 Bit. A number of Topaz commands and options are provided for use with
Ruby but are not used in GemStone Smalltalk installations. These commands are
identified as such in Chapter 3, Command Dictionary.

The environmentId specifies a method lookup environment that is primarily used in Ruby
environments, although it may be available for Smalltalk applications. By default, it is 0 in
Smalltalk applications.
April 2014 GemTalk Systems 13

Invoking Topaz GemStone/S 64 Bit 3.2 Topaz Programming Environment
1.1 Invoking Topaz
To invoke Topaz, simply type topaz on the command line. The program responds by
printing its copyright banner and issuing a prompt, as shown in Figure 1.1.

Figure 1.1 Topaz Banner and Prompt

% topaz
 __
| GemStone/S64 Object-Oriented Data Management System |
| Copyright (C) GemTalk Systems 1986-2014. |
| All rights reserved. |
| Covered by U.S Patents: |
| 6,256,637 Transactional virtual machine architecture |
| 6,360,219 Object queues with concurrent updating |
| 6,567,905 Generational Garbage Collector. |
| 6,681,226 Selective Pessimistic Locking for a Concurrently Updateable Database
+--+
| PROGRAM: topaz, Linear GemStone Interface (Remote Session) |
| VERSION: 3.2.0, Thu Feb 13 12:57:05 US/Pacific 2014 |
| BUILD: 64bit-32625 |
| BUILT FOR: x86-64 (Linux) |
| MODE: 64 bit |
| RUNNING ON: 4-CPU benton x86_64 (Linux 2.6.32-50-generic #112-Ubuntu SMP Tue|
| Jul 9 20:28:23 UTC 2013) 5977MB |
| PROCESS ID: 27630 DATE: 02/17/14 15:41:54 PST |
| USER IDS: REAL=gsuser (531) EFFECTIVE=gsuser (531) |
|__|
neither .topazini nor $HOME/.topazini were found
topaz>

1.2 Overview of a GemStone Session
A GemStone session consists of four parts, as shown in Figure 1.2. These are:

An application, in this case, Topaz.

One repository. An application has one repository to hold its persistent objects.

One repository monitor, or Stone process, to control access to the repository.

At least one GemStone session, or Gem process. All applications, including Topaz,
must communicate with the repository through Gem processes. A Gem provides a
work area within which objects can be used and modified. Several Gem processes can
coexist, communicating with the repository through a single Stone process.
14 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Remote Versus Linked Versions
Figure 1.2 GemStone Object Server Components

Topaz

Stone
Repository Monitor Process

Repository

Disk I/O

Network
Connections

Gem Session
(GemStone Smalltalk + Data Manager)

1.3 Remote Versus Linked Versions
In Figure 1.1, notice that the Topaz startup banner’s PROGRAM line refers to Remote
Session. Two versions of Topaz are available to you: remote procedure call (or RPC) and
linked. Unless you specify otherwise, the topaz command invokes the RPC version. The
RPC version of Topaz allows you to run multiple RPC Topaz sessions. These run
separately from their Gem processes, so you can run Topaz and the Gem processes on
separate nodes.

The topaz -l (for linked) command line invokes the linked version of Topaz. The linked
version allows you to run multiple Topaz sessions, but session number one is always a
linked session, where the Topaz session and a Gem exist as a single process. Any
additional sessions are RPC. Linked sessions do not require a NetLDI to be running.

Under Windows, only the RPC version of Topaz is available, and the Gem sessions must
be run on a server platform.

The examples in this chapter can be executed equally well from either linked or RPC
Topaz. For additional command-line options, see Appendix A.
April 2014 GemTalk Systems 15

Logging In to GemStone GemStone/S 64 Bit 3.2 Topaz Programming Environment
1.4 Logging In to GemStone
The first step in establishing a connection to GemStone and logging in is to give Topaz
some information about the GemStone repository you will be using. To log in to the
repository you must provide a GemStone user name and password. If you are running the
RPC version of Topaz, you also need to provide your operating system user name and
password for the host on which your GemStone session resides.

Here are the parameters to be established to log in to GemStone through Topaz:

GemStone name. This the name of the Stone process to use and, optionally, the name
of the network node on which it resides. The default name is gs64stone. If your
Stone process is named gs64stone and is running on the local node, and the Gem
process will also run on the local node, you don’t have to set the GemStone name.

Otherwise, specify the name of the Stone. If the node where the Stone is running is not
the one where the Gem will run, you also need the name of the Stone host and per-
haps the type of network connection between the Stone and Gem hosts. To specify a
process named gs64stone running on node central, you can use a network
resource string of the form !@central!gs64stone. Appendix B describes the syn-
tax of network resource strings.

This is set using the command set gemstone.

GemStone user name and password. These are defined within the GemStone server.
You can log in using your personal username and password, created by your
GemStone Administrator, or as predefined GemStone system users such as
DataCurator. You may enter the user name and omit the password, in which case you
will be interactively prompted for the password.

This is set using the command set username and password.

host user name and password. The name and password that you use when you log in
to the host operating system. These are needed only for RPC sessions. You may enter
the host user name and omit the host password, in which case you will be
interactively prompted for the host password.

This is set using the command set hostusername and hostpassword.

GemStone service name. For the RPC version the default is gemnetobject. You
may also use gemnetdebug, if you are debugging memory issues, or create a custom
gemnetobject service.

For the linked version of Topaz, do not set the gemnetid, or set the gemnetid to ''. If
you set it to gemnetobject, all your sessions will be RPC, in spite of having invoked
the linked version of topaz.

You can use a network resource string of the form !@central!gemnetobject to
start a Gem process on a remote node.

This is set using the command set gemnetid.

You can abbreviate most Topaz command to uniqueness. Topaz commands (such as set
gemnetid and login) are case-insensitive. The arguments you specify, however, must
meet your operating system’s requirements for capitalization and spelling.

Use the Topaz set command to establish these parameters. For example:
16 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Logging In to GemStone
topaz> set gemstone gs64stone
topaz> set username 'Isaac Newton'

Whenever a Topaz parameter such as “Isaac Newton” contains white space, it must be
enclosed within single quotes.

This is sufficient for the linked logins. If you are logging in RPC, you must also provide
the following information:

topaz> set gemnetid gemnetobject
topaz> set hostusername 'newtoni'
topaz> set hostpassword
Host Password? (Type your host password; it won’t be echoed)

To see your current login settings and other information about your Topaz session, type
status:

topaz> status

Current settings are:
 display level: 0
 byte limit: 0 lev1bytes: 0
 omit bytes
 display instance variable names
 omit oops
 oop limit: 0
 omit automatic result checks
 omit interactive pause on errors
 listwindow: 20
 stackpad: 45
 tab (ctl-H) equals 8 spaces when listing method source
 using line editor
 line editor history: 100
 topaz input is from a tty on stdin
EditorName________ vi

CompilationEnv____ 0
Connection Information:
UserName_________ 'Isaac Newton'
Password ________ (not set)
HostUserName_____ 'newtoni'
HostPassword ____ (set)
GemStone_________ 'gs64stone'
GemStone NRS_____ '!#encrypted:newtoni@password#server!gs64stone'
GemNetId_________ 'gemnetobject'
GemNetId NRS_____ '!#encrypted:newtoni@password!gemnetobject'
CacheName_________(default)

SourceStringClass String
fileformat 8bit

If you are using the linked version of Topaz, certain login parameters (HostUserName
and HostPassword) have no effect. Setting GemNetId will result in an RPC login.
April 2014 GemTalk Systems 17

Logging In to GemStone GemStone/S 64 Bit 3.2 Topaz Programming Environment
If any login settings are incorrect, use the set command to fix them.

You are now ready to issue the login command, connecting your Topaz session to the
GemStone repository:

topaz> login
GemStone password? (type your GemStone password)
[Info]: libssl-3.2.0-64.so: loaded
[03/14/2014 15:02:40.874 PDT]
 gci login: currSession 1 rpc gem processId 1363
successful login
topaz 1>

As this example shows, Topaz displays a session number in its prompt once you have
logged in.

You are also free to supply several of these login parameters on a single command line in
any order, and to abbreviate the parameter names:

topaz> set gemstone gs64stone user 'Isaac Newton'
topaz> set gemnetid gemnetobject hostuser 'newtoni'
topaz> set hostpass <return>
Host Password? (type your host password)
topaz> login
[Info]: libssl-3.2.0-64.so: loaded
[03/14/2014 15:02:40.874 PDT]
 gci login: currSession 1 rpc gem processId 1363
successful login
topaz 1>

Because setting the host user name causes Topaz to discard the current host password,
you must set hostusername before hostpassword.

If you are using the linked version of Topaz, you can login with fewer set commands:

topaz> set gemstone gs64stone user 'Isaac Newton' pass gravity
topaz> login
[Info]: LNK client/gem GCI levels = 860/860
[Info]: libssl-3.2.0-64.so: loaded
[Info]: User ID: 'Isaac Newton'
[Info]: Repository: gs64stone
[Info]: Session ID: 5
[Info]: GCI Client Host: <Linked>
[Info]: Page server PID: -1
[Info]: Login Time: 03/14/2014 15:00:39.542 PDT
[03/14/2014 15:00:39.543 PDT]
 gci login: currSession 1 linked session
successful login
topaz 1>
18 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Logging In to GemStone
Host user account alternatives

You do not always have to enter the hostusername and hostpassword for logins.

For RPC logins, if the netldi that you are using to login is running in guest mode with
captive account, you do not need to specify hostusername or hostpassword. Your gem
will run according the account specified in the netldi.

More information on netldi modes can be found in the System Administration Guide.

Setting Up a Login Initialization File .topazini

You can streamline the login process by creating an initialization file that contains the set
commands needed for logging in. When you invoke Topaz, it automatically executes
those commands for you. If you insert set hostpassword and login commands without
parameters, Topaz automatically prompts you for the necessary values.

You may also explicitly specify a path for a topazini file on the command line where you
started up the Topaz executable. Using this option overrides any topazini files that Topaz
would otherwise use.

% topaz -I /gemstone/utils/mylogin.topazini

If you want to run Topaz non-interactively, you must explicitly specify both the
GemStone and host passwords in this initialization file.

CAUTION:
Entering your passwords in a file can pose a security risk.

The Topaz initialization file shown in Figure 1.3 performs most of the same functions as
the interactive commands shown in the previous discussion.

Figure 1.3 Topaz Initialization File

set gemstone gs64stone
set gemnetid gemnetobject
set username 'Isaac Newton'
set password mypassword
set hostusername 'newtoni'
set hostpassword hostpassword
login

Table 1 Topaz Initialization File Names

Platform
Name of Topaz

Initialization
File

Expected Location

UNIX .topazini Current directory, then user’s home directory

Windows topazini.tpz Current directory, then user’s home directory.
If home directory is undefined, uses home
directory of the account that started Windows,
if any, or \users\default.
April 2014 GemTalk Systems 19

The Help Command GemStone/S 64 Bit 3.2 Topaz Programming Environment
If you have an initialization file, to start Topaz without using the initialization file, use the
-i option. See Appendix A. You may also pass in the initialization file as an argument to
topaz using the -I command.

If you choose not to include your password in an initialization file, Topaz will start up
with the following prompt.

GemStone Password? Type your password. It will not be echoed.
topaz 1>

Error handling and output

Commands that are executed from a login initialization file are not echoed to the display.
However, if an error occurs, the output is reported to the topaz display, so you can
determine the cause of the problem. In this case, the password and host password are
struck out, for security.

1.5 The Help Command
You can type help at the Topaz prompt for information about any Topaz command. For
example:

topaz 1> help exit

EXIT [<status>]

Terminates Topaz, returning to the parent process or operating
system. If you are still logged in to GemStone when you type
EXIT, this will abort your transaction and log out all active
sessions. Although you can abbreviate most other Topaz commands
and parameter names, EXIT must be typed in full.

If this command has a <status> argument and it is an integer,
then the integer is used as the exitStatus. If the status argu-
ment is an object specification that resolves to an integer,
then that value is used as the exitStatus. Only 8 bits of the
integer are returned, exitStatus should be 0..255. If it is not
an integer then an error is returned and the process does not
exit.

If the command does not have a <status> argument, the exitStatus
will be either 1 if there were GCI errors or the topaz error-
count is not zero, or 0 if no errors had occurred.

EXIT has the same function as QUIT.

Topic?(press Return to exit the help utility)
topaz 1>
20 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Executing GemStone Smalltalk Expressions
1.6 Executing GemStone Smalltalk Expressions
By following the examples in the rest of this chapter, you’ll learn how to create and
execute GemStone Smalltalk code, and how to inspect GemStone objects. If you need to
log out of your session before you finish, you can use the commit command to save the
classes and methods you have created. To start where you left off in a new session, you
will have to reset the current class and category, but usually not the default screen display
settings.

Once you’ve logged in to GemStone, you can execute Smalltalk expressions with the
printit command. The following use of printit, for example, creates an instance of
DateTime representing the current Date and Time:

topaz 1> printit
DateTime now
%
a DateTime
 year 2014
 dayOfYear 45
 milliseconds 83048864
 timeZone a TimeZone

All of the lines after the printit command and before the first line in which % is the first
character are sent to GemStone for execution as GemStone Smalltalk code. Topaz then
displays the result and prompts you for a new command.

If there is an error in your code, Topaz displays an error message instead of a legitimate
result. You can then retype the expression with errors corrected, or use the Topaz edit
function to correct and refine the expression.

1.7 Invoking Operating System Functionality

Executing shell commands

From within topaz, you can easily execute operating system commands, or escape to an
operating system shell and execute commands directly on the command line. To do this,
simply invoke the shell command.

Escaping to an Editor

To use the edit function, you must first have established the name of the host editor you
wish to use. Topaz can read the UNIX environment variable EDITOR, if you have it set.
Otherwise, use the Topaz set editorname command, interactively or in your Topaz
initialization file.

topaz 1> set editorname vi

Then, to edit the text of the last printit command, you need only do this:

topaz 1> edit last

Topaz opens your editor, as a subprocess, on the text of the last printit command. When
you exit the editor, Topaz saves the edited text in a temporary file and asks you whether
April 2014 GemTalk Systems 21

Controlling the Display of Results GemStone/S 64 Bit 3.2 Topaz Programming Environment
you’d like to compile and execute the altered code. If you type yes, Topaz effectively
reissues your printit command with the new text.

To use the editor for creating an entirely new block of code for execution, use edit new
text instead of edit last.

See “Editing Methods” on page 26 for more on edit.

1.8 Controlling the Display of Results
Topaz provides several commands that let you control the amount and kind of
information it displays about results.

Display Level

When Topaz displays a result object, it always displays the object itself, but the display of
the name and value of each instance variables is controlled by the level, and the particular
command used to execute the code.

topaz 1> printit
DateTime now
%
a DateTime
 year 2014
 dayOfYear 45
 milliseconds 83048864
 timeZone a TimeZone

This display is one level deep: the instance variables are displayed, but not the instance
variables of any complex objects in the instance variable values.

The printit command always displays results with one level, as shown above. The doit
command displays 0 levels:

topaz 1> doit
DateTime now
%
14/02/2014 15:04:35

You can use the level and run commands to ask for more or less information about
results. The run command executes code and displays the results according to the most
recent level execution. For example, with level 0, the run command produces the same
display as the doit command:

topaz 1> level 0
topaz 1> run
DateTime now
%
14/02/2014 15:05:23

Setting the level to 2 would give this view:

topaz 1> level 2
topaz 1> run
DateTime now
22 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Controlling the Display of Results
%
a DateTime
 year 2014
 dayOfYear 45
 milliseconds 83121913
 timeZone a TimeZone
 transitions an Array
 leapSeconds nil
 stream nil
 types nil
 charcnt nil
 standardPrintString PST
 dstPrintString PDT
 dstStartTimeList an IntegerKeyValueDictionary
 dstEndTimeList an IntegerKeyValueDictionary

As you can see, setting the display level to 2 causes Topaz to display each instance
variable for the objects that are within each of DateTime’s instance variables. The
maximum display level is 32767.

If the display level setting is high enough and the object to be displayed is cyclic (that is, if
it contains itself in an instance variable), Topaz will faithfully follow the circularity,
displaying the object repeatedly.

Setting Limits on Object Displays

The limit bytes command controls how much Topaz displays of a byte object (instance of
String or one of String’s subclasses) that comes back as a result. Similarly, limit oops
controls how much Topaz displays of pointer or NSC objects that come back as a result.

By default, Topaz attempts to display all of a result, no matter how long. The following
example shows how you could use limit bytes to make Topaz limit the display to the first
4 bytes:

topaz 1> limit bytes 4
topaz 1> printit
 'this and that'
%
this

Setting the limit to 0 restores the default condition.

Displaying Variable Names, OOPs, and Hex Byte Values

Two complementary commands, display and omit, control the display of instance
variable names, hexadecimal byte values, and OOPs (the object-oriented pointers that
uniquely identify GemStone objects internally).

Instance Variable Names

As you saw in the display of an instance of DateTime, Topaz normally prints the name of
each named instance variable with its value. If you don’t need this information, you can
speed up the display of results by telling Topaz to omit names, as in the following
example:
April 2014 GemTalk Systems 23

Controlling the Display of Results GemStone/S 64 Bit 3.2 Topaz Programming Environment
topaz 1> omit names
topaz 1> printit
DateTime now
%
a DateTime
 i1 2014
 i2 45
 i3 83171373
 i4 a TimeZone

Entering display names restores Topaz to the default condition.

Hexadecimal Byte Values

Topaz ordinarily displays byte objects such as Strings literally, with no additional
information. If you enter display bytes Topaz includes the hexadecimal value of each
byte. For example:

topaz 1> display bytes
topaz 1> printit
 'this and that'
%
1 'this and that' 74 68 69 73 20 61 6e 64 20 74 68 61 74

Entering omit bytes restores the default byte display mode.

OOP Values

It’s occasionally useful in debugging to examine the numeric object identifiers that
GemStone uses internally. If you tell Topaz to display oops, it prints a bracketed object
header with each object, which looks like this:

[21336065 sz:3 cls: 110849 Symbol]

Each object header contains:

The object’s OOP (a 64-bit unsigned integer)

the object’s size, calculated by summing all of its named, indexed, and unordered
instance variable fields

the OOP of the object’s class and the class name

For example:

topaz 1> display oops
topaz 1> printit
DateTime now
%
[25521409 sz:4 cls: 118785 DateTime] a DateTime
 year [16114 sz:0 cls: 74241 SmallInteger] 2014 == 0x7de
 dayOfYear [362 sz:0 cls: 74241 SmallInteger] 45 == 0x2d
 milliseconds [665595786 sz:0 cls: 74241 SmallInteger] 83199473 == 0x4f585f1
 timeZone [12049153 sz:9 cls: 14631169 TimeZone] a TimeZone

You can turn off the display of OOPs by typing omit oops at the Topaz prompt.
24 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Creating and Changing Methods
1.9 Creating and Changing Methods
Creating a class is done using GemStone Smalltalk class creation protocol. For more on
class creation, refer to the GemStone Programming Guide.

For example,

topaz 1> printit
Object subclass: 'Animal'
 instVarNames: #('name' 'favoriteFood' 'habitat')
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
%
a metaAnimal
 superClass a metaObject
 format 0
 instVarsInfo 1125899906846723
 instVarNames an Array
 constraints an Array
 classVars nil
 methDicts a GsMethodDictionary
 poolDictionaries nil
 categorys a GsMethodDictionary
 primaryCopy nil
 name Animal
 classHistory a ClassHistory
 transientMethDicts an Array
 destClass nil
 timeStamp a DateTime
 userId DataCurator
 extraDict a SymbolDictionary
 classCategory nil
 subclasses nil

Once you have a class, you can create methods for it in topaz. The first step in creating or
editing a method is to tell Topaz the name of the method’s class. Do this with the set class
command:

topaz 1> set class Animal

This establishes a context for your subsequent work so that you don’t need to supply the
class name each time you create or edit a method.

Similarly, you’ll need to supply the name of the method category in which you want to
work:

topaz 1> set category Updating

If the category you name doesn’t exist, Topaz creates it when you first compile a method.

Topaz maintains this information about the current class and category until you explicitly
change it. You can examine your current class and category settings by typing status.
April 2014 GemTalk Systems 25

Creating and Changing Methods GemStone/S 64 Bit 3.2 Topaz Programming Environment
topaz 1> status

Current settings are:
 (display of current settings and connection information appears here)

browsing information:
Class_____________ Animal
Category__________ Updating
Source String Class__ String

Once you’ve established a class and a category, you can begin an instance method
definition by issuing the method: command at the Topaz prompt:

topaz 1> method: ^
habitat: newValue
"Modify the value of the instance variable 'habitat'."
 habitat := newValue
%

The method: command takes a single argument: the name of the class for which the
method will be compiled. As shown here, wherever Topaz expects the name of a class,
you can simply type a caret (^) to tell Topaz to use the current class (in this case, Animal).

A class method definition is similarly initiated by the Topaz command classmethod:. For
example:

topaz 1> classmethod: ^
returnAString
 "Returns an empty String"
 ^String new
%

Like the text of a printit command, the text of a method definition is terminated by the
first line that starts with the % character.

As soon as you enter the %, Topaz sends the method’s text to GemStone for compilation
and inclusion in the selected class and category.

Editing Methods

You can debug and refine methods by using Topaz’s edit function in much the same way
you use that function to create and modify printit commands. For example, to edit the
existing instance method habitat: in the current class, you would enter edit as shown
below:

topaz 1> edit method habitat:

Here is how you would edit an existing class method:

topaz 1> edit classmethod returnAString

To create an entirely new method with the editor, you can enter edit new method or edit
new classmethod.

If you omit the method and classmethod keywords, you must specify an instance method
to be edited; for example, edit habitat:.
26 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Listing Methods and Categories
1.10 Listing Methods and Categories
If you need to see which categories and methods are in the current class, use the Topaz list
command. The command list categoriesIn: causes Topaz to list all of the class and
instance method selectors in the selected class by category.

To list the source code of an instance method, type list method: aMethodName as in the
following example:

topaz 1> list method: habitat:
habitat: newValue
"Modify the value of the instance variable 'habitat'."
habitat := newValue

A parallel command, list classmethod:, lists the source of the given class method. If you
omit the keywords method: and classmethod: from your list command, you must specify
an instance method you wish to list.

Other list options allow you to examine the classes in one or all of your symbol list
dictionaries or to examine the methods in some class other than the current class. For
more information, see the description of list in Chapter 3 of this manual.

1.11 Committing and Aborting Transactions
In GemStone, each session’s operations normally exist in a transaction that maintains a
temporary, private workspace. The commit command ends your current transaction and
stores this information in the repository, for use in later sessions and by other users.

To commit a transaction while using Topaz, you can execute the GemStone Smalltalk
expression System commitTransaction within a printit command, or you can enter
the Topaz commit command:

topaz 1> commit
Successful commit

Similarly, you abort a transaction by executing the GemStone Smalltalk expression
System abortTransaction within a printit command, or by entering abort at the
Topaz command prompt. Entering abort does not reset Topaz system definitions, such as
your current class and category.

Although you can abbreviate most other Topaz commands and parameter names,
commit, abort, logout, and exit (the last two of which implicitly abort your transaction)
must be typed in full.
April 2014 GemTalk Systems 27

Capturing Your Topaz Session In a File GemStone/S 64 Bit 3.2 Topaz Programming Environment
1.12 Capturing Your Topaz Session In a File
It’s often useful to keep a record of your interactions with GemStone during testing and
debugging. You might also want to record a typical series of GemStone operations that
could be used as a training guide or edited into a batch processing file.

You can do this with the Topaz command output push. This command causes Topaz to
write all input and output to a named file as well as to standard input and standard
output (your terminal).

The following example causes all subsequent interactions to be captured in a file called
animaltest.log:

topaz 1> output push animaltest.log

If the file you name doesn’t exist, Topaz creates it. Under UNIX, if you name an existing
file, Topaz overwrites it.

To add output to an existing file without losing its current contents, precede the file name
with an ampersand (&). For example:

topaz 1> output push &animaltest.log

The following example stops output to the current file:

topaz 1> output pop

As the command names push and pop imply, Topaz can maintain a stack of up to 20
output files. If you add the keyword only to the push command lines, current
interactions are captured only in the file on top of the stack. This prevents the results from
showing on your screen, however.

topaz 1> output push animaltest2.log only

Otherwise, the output is duplicated in each file on the stack. For example, the following
sequence would capture one command in the file mathtest.log, and a second
command in mathtest2.log:

topaz 1> remark Capture the next command
topaz 1> remark and result in mathtest.log
topaz 1> output push mathtest.log
topaz 1> printit
5 * 8
%
40
topaz 1> remark Capture the next command
topaz 1> remark and result in mathtest2.log
topaz 1> output push mathtest2.log only
topaz 1> printit
5 * 9
%
topaz 1> remark Close mathtest2.log
topaz 1> remark and resume using mathtest.log
topaz 1> output pop

Notice that the result of the second command, 45, did not appear on the screen. If the
second push command line did not have the only keyword, the entire sequence would
28 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Filing Out Classes and Methods
have been recorded in mathtest.log, and the second command duplicated in
mathtest2.log.

Also notice the use of remark in this example—you can use either remark or an
exclamation point in column 1 to begin a comment. Comments are often useful for
annotating Topaz input files created for batch processing or testing.

1.13 Filing Out Classes and Methods
Sometimes you’ll want to create, edit, or archive a class and some large fraction of its
methods as a monolithic chunk of source code. This makes it possible to:

transport your code to other GemStone systems,

perform global edits and recompilations,

produce paper copies of your work, and

recover code that would otherwise be lost when you are unable to commit.

The Topaz fileout command can create an executable Topaz script defining a class and/or
any or all of the class’s methods. You can process the script using editors or other
operating system utilities and then execute it with the Topaz input command.

By default, the fileout command will output text as 8-bit bytes. If your application code
contains characters outside the ASCII range (with values over 127), you may want to
fileout your code encoded as UTF-8. This settting is required if you will file out text with
any Characters with values over 255.

To configure your system to fileout in UTF-8:

topaz 1> fileformat UFT8

You must use this same mode to file in later; this will be done automatically in the topaz
fileout.

For example, the following command:

topaz 1> fileout class: Animal toFile: animal.gs

would create in the file animal.gs, a Topaz script containing a definition of class
Animal and all of its categories and methods. Here is how animal.gs would look:

fileformat utf8
set sourcestringclass String
run
Object subclass: 'Animal'
 instVarNames: #('name' 'favoriteFood' 'habitat')
 classVars: #()
 classInstVars: #()
 poolDictionaries: {}
 inDictionary: UserGlobals
%
category: 'Updating'
method: Animal
habitat: newValue

April 2014 GemTalk Systems 29

Creating a Topaz Script for Batch Processing GemStone/S 64 Bit 3.2 Topaz Programming Environment
"Modify the value of the instance variable 'habitat'."
 habitat := newValue
%
...

“Filing in” this script with the input command would create a new class Animal exactly
like the original.

In addition to class:, the fileout command has four other subcommands:

fileout category:
Files out all the methods in the named category.

fileout classcategory:
Files out all the class methods in the named category.

fileout classmethod:
Files out the source code of the method identified in the argument by its selector.

fileout method:
Files out the specified instance method. You can omit the method: portion of a fileout
command, unless the instance method’s selector is also the name of one of the other
fileout subcommands. For example, to file out a method named habitat:, you could
simply enter:

topaz 1> fileout habitat:

To file out a method named category:, however, you would need to enter:

topaz 1> fileout method: category:

1.14 Creating a Topaz Script for Batch Processing
Just as the fileout command creates an executable Topaz script defining a class, you can
create your own Topaz script that performs any series of GemStone operations. If you
have complicated queries or a long series of repository updates that you repeat on a
regular basis, this is an easy way to do it. You can type the Topaz commands into a file,
test and edit them until they run with no errors, and then you have a script that will do
automatic batch processing for you. If your procedure changes slightly from day to day,
you can easily edit the script. Because the files duplicate what you would do interactively,
they are also useful training tools.

Another way to produce such a script is to capture a typical Topaz session in a file, using
output push. Edit the output file to remove the prompts and results, leaving only the
Topaz commands and GemStone Smalltalk code. For example, suppose you wanted to
make a script of the mathtest2.log file you created earlier. This is how it looks:

topaz 1> printit
5 * 9
%
45
topaz 1> remark Close mathtest2.log
topaz 1> remark and resume using mathtest.log
topaz 1> output pop
30 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Taking Topaz Input from a File
To make it an executable script, remove the prompts, results, and unnecessary commands,
and make the comments helpful.

remark This multiplies two numbers
printit
5 * 9
%

Do not use the edit command for batch processing. Instead, use the method: and
classmethod: commands to create methods in batch processes, and the printit or doit
commands to execute blocks of code in batch.

1.15 Taking Topaz Input from a File
Although Topaz ordinarily takes its input from standard input, such as your terminal,
you can use the input command to make Topaz take its input from a file. This file may
contain commands to perform work, or code to be filed in; there is no difference.

You can file in text files that are encoded in UTF8, provided the topaz command
fileformat UTF8 has been executed. Terminal input such as pasting into your command
line is always decoded from UTF-8.

For example, the following command, would make Topaz read and execute the
commands in a file called animal.gs in your UNIX $HOME directory:

topaz 1> input $HOME/animal.gs

The UNIX environment variable $HOME is expanded to the full filename before the input
command is carried out.

Batch processing goes very quickly. It is a good idea to use output push to record the
session, so you can check for errors.

1.16 Interrupting Topaz and GemStone
Three kinds of interruption (break) using Ctrl-C are possible when you’re using Topaz:

When Topaz is awaiting input from your terminal, such as when you’re entering a
command, you can enter Ctrl-C to terminate entry of the command and prepare
Topaz for accepting a new command.

When GemStone is compiling or executing some GemStone Smalltalk code sent to it
by Topaz, such as in a printit command, typing Ctrl-C sends a request to GemStone
to interrupt its activities as soon as possible. GemStone stops execution at the
conclusion of the current method, and Topaz displays the message: A soft break
was received.

Typing Ctrl-C three times immediately halts Topaz. Do this only in an emergency. All
GemStone work performed since you last committed is lost.
April 2014 GemTalk Systems 31

Multiple Concurrent GemStone Sessions GemStone/S 64 Bit 3.2 Topaz Programming Environment
1.17 Multiple Concurrent GemStone Sessions
Topaz can keep several independent GemStone sessions alive simultaneously. This allows
you to switch from one session to another, for instance to access more than one GemStone
repository. Both RPC and linked versions of Topaz allow you to run multiple sessions by
using the login and set session commands; however, you can only have one linked
session at a time.

The following example shows how you might create a second session, make the new
session your current session, then return to the original session.

topaz> login
gci login: currSession 1 rpc gem processId 95
successful login
topaz 1> set gemstone !@srv2!gs64stone
topaz 1> set username isaac
Warning: GemStone is clearing previous GemStone password.
GemStone password? <password typed here but not echoed>
topaz 1> login
gci login: currSession 2 rpc gem processId 141
successful login
topaz 2> printit
UserGlobals at: #myVar put: 1
%
1
topaz 2> set session 1
topaz 1>

Notice that the Topaz prompt always shows the number of the current session. To get a
list of current GemStone sessions and the users who own them, you can execute the
GemStone Smalltalk expression System currentSessionNames. For example:

topaz 1> printit
System currentSessionNames
%

session number: 2 UserId: GcUser
session number: 3 UserId: SymbolUser
session number: 4 UserId: DataCurator
session number: 5 UserId: Isaac Newton
session number: 6 UserId: Isaac Newton
session number: 7 UserId: Gottfried Leibniz
topaz 1>

The GcUser session (or sessions) represent the garbage collection processes that usually
(though not always) operate when GemStone is active. The SymbolUser session
represents the process that administers Symbols to ensure canonicality.

Keep in mind that this list includes all sessions that are currently logged into the system,
not only the sessions within Topaz. The session numbers reported here do not correspond
to the sequential session numbers assigned by your Topaz.

If you use the topaz command to invoke Topaz, you get an RPC session. With every
subsequent login command you get another RPC session.
32 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Structural Access To Objects
If you use the topaz -l command to invoke Topaz, your first session is linked. You may
have only one linked session, so you need to enter a gemnetid in order to be able to log in
a second session. All sessions after the first linked session will be RPC.

The messages displayed during login indicate if you have a linked or RPC session. In
particular note the processId of the gem. If the processId is -1, it indicates a linked session.
A positive value is the operating system processId (pid) of the gem.

topaz> set gemnetid gemnetobject
topaz> login
GemStone password? <password typed here but not echoed>
gci login: currSession 2 rpc gem processId 1363
successful login
topaz 2> set gemnetid ''
topaz 2> login
[Info]: LNK client/gem GCI levels = 860/860
[Info]: libssl-3.2.0-64.so: loaded
[Info]: User ID: DataCurator
[Info]: Repository: stone32priv
[Info]: Session ID: 5
[Info]: GCI Client Host: <Linked>
[Info]: Page server PID: -1
[Info]: Login Time: 03/14/2014 15:08:56.220 PDT
Gave this VM preference for OOM killer, Wrote to
/proc/4458/oom_adj value 4
[03/14/2014 15:08:56.222 PDT]
 gci login: currSession 1 linked session
successful login
topaz 1>

1.18 Structural Access To Objects
In your GemStone Smalltalk programs, you should generally access the values stored in
objects only by sending messages. During debugging, however, it’s sometimes useful to
be able to read an instance variable or store a value in it without sending a message. For
example, if an instance variable is normally read only by a message with side effects, it
won’t do to examine its value during debugging by sending that message.

To allow you to “peek” and “poke” at objects without passing messages, Topaz provides
the commands object at: and object at: put:.

Examining Instance Variables with Structural Access

The command object at: returns the value of an instance variable within an object at some
integral offset. Suppose, for example, that you had created an instance of Animal:

topaz 1> printit
UserGlobals at: #MyAnimal put: Animal new.
%
an Animal
 name nil
April 2014 GemTalk Systems 33

Structural Access To Objects GemStone/S 64 Bit 3.2 Topaz Programming Environment
 favoriteFood nil
 habitat nil
topaz 1> printit
MyAnimal habitat: 'water'
%
an Animal
 name nil
 favoriteFood nil
 habitat water

The following example shows how you could use object at: to display the value of
MyAnimal’s third instance variable.

topaz 1> object MyAnimal at: 3
water

You can string together at: parameters after object to descend as far as you like into the
object of interest. The following example retrieves the first instance variable of
MyAnimal’s third instance variable.

topaz 1> object MyAnimal at: 3 at: 1
$w

As far as at: is concerned, named, indexed, and unordered instance variables are all
numbered, with named instance variables appearing first, followed by indexed instance
variables, then unordered instance variables. That is, if an indexed object also had three
named instance variables, the first indexable field would be addressed with object at: 4.
Offsets into the unordered portions of NSCs are not consistent across add: or remove:
commands.

Specifying Objects

As you have seen, objects can be identified within an object command by global
GemStone Smalltalk variable names. This is only one of several kinds of object
specification acceptable in such Topaz commands as object at:. The others include object
identity specification formats and literal object specification formats.

Object Identity Specification Formats

@integer
An unsigned 64-bit decimal OOP value that denotes an object.

integer
A 61-bit literal SmallInteger.

$character
A literal Character.

aVariableName
This can be either a GemStone Smalltalk variable name or a local variable created with
the define command.

** The object that was the result of the last execution.

^ The current class (as defined by the most recent set class, list categoriesIn:, method:,
classmethod:, or fileout command).
34 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Structural Access To Objects
Literal Object Specification Formats

'text'
A literal String.

#text
A literal Symbol (no white space allowed).

#'t e x t'
A quoted literal Symbol.

float
A Float object (C double-precision Float). The syntax for literal floating point numbers
in Topaz commands is:

[sign]digits[.[digits][E[sign]digits]]

The OOP specifications and ** (last result) are especially interesting. For example:

topaz 1> display oops
topaz 1> object Animal
[1337089 sz:19 cls: 150617 Animal class] Animal class
 superClass [72193 sz:19 cls: 206081 Object class] Object class
 format [2 sz:0 cls: 74241 SmallInteger] 0
 instVars [26 sz:0 cls: 74241 SmallInteger] 3
 instVarNames [1335297 sz:3 cls: 66817 Array] an Array

...
topaz 1> ! Look at first element of instVarNames array
topaz 1> object @1335297 at: 1
[1248257 sz:4 cls: 110849 Symbol] name
topaz 1> ! Look at first character of first instvarname
topaz 1> omit oops
topaz 1> object ** at: 1
$n

Note that when you look at the first element of the instVarNames array, you need to use
the OOP returned by your own GemStone system, not @1335297.

Specifying Method Selectors

When specifying a method selector in a Topaz command, you can use any of the
following formats:

text
'text'

A literal String.

#text
A literal Symbol (no white space allowed).

#'t e x t'
A quoted literal Symbol.

The resulting token becomes a String object and is subsequently converted to a Symbol
object if required by the command.
April 2014 GemTalk Systems 35

Defining Local Variables GemStone/S 64 Bit 3.2 Topaz Programming Environment
1.19 Defining Local Variables
As you saw in the last section, Topaz lets you refer to objects via their OOPs. Because long
numerical OOPs are hard to remember, Topaz also provides a facility for defining local
Topaz variables so that you can name those OOPs.

Creating Variables

The following example shows the use of the Topaz define command to create a
reasonable name for an object previously known by its OOP.

topaz 1> display oops
topaz 1> object Animal
[1337089 sz:19 cls: 1337601 Animal class] Animal class
 superClass [72193 sz:19 cls: 206081 Object class] Object class
 format [2 sz:0 cls: 74241 SmallInteger] 0
 instVars [26 sz:0 cls: 74241 SmallInteger] 3
 instVarNames[1335297 sz:3 cls: 66817 Array] an Array
...
topaz 1> define animalVars @1335297
topaz 1> omit oops
topaz 1> object animalVars at: 1
name

A local variable must begin with a letter or an underscore, can be up to 255 characters in
length, and cannot contain white space.

If additional tokens follow define’s second parameter, Topaz will try to interpret them as
a message to the object represented by the second parameter. For example:

topaz 1> define thirdvar animalVars at: 3
topaz 1> object thirdvar
habitat

Note that Topaz does not parse message expressions exactly as the GemStone Smalltalk
compiler does; Topaz requires you to separate tokens with white space.

As the last example shows, local variables can be used in object commands. When used in
this way, the local definition of a symbol always overrides any definition of the symbol in
GemStone. For example, if “thirdvar” were defined in UserGlobals, that definition would
be ignored in object commands.

All Topaz object specification formats (described above in “Specifying Objects”) are legal
in define commands. For example:

topaz 1> define sum 1.0e1 + 500
topaz 1> define mystring 'this and that'
topaz 1> define mycharacter $z

Displaying Current Variable Definitions

To see all current local variable definitions, just type define with no arguments:

topaz 1> define
 Current definitions are:
 mycharacter = 142538
36 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Sending Messages
 mystring = 150133
 sum = 147709
 thirdvar = 114793
 animalVars = 147682

 CurrentMethod = nil
 ErrorCount = 2
 SourceStringClass = 74753
 CurrentCategory = nil
 CurrentClass = nil
 LastResult = nil
 LastText = nil
 myUserProfile = nil

Note that define reports values as OOPs rather than literals.

In this status report the user-defined local variables are listed first. The last items are local
variables that Topaz automatically creates for you. They refer, respectively, to:

the OOP of the current method
the OOP of the number of Topaz and GemStone errors made since you started Topaz
the OOP of the class to which sourcestringclass is set
the OOP of the current category
the OOP of the current class
the OOP of the last execution result
the OOP of the text of the last GemStone Smalltalk expression executed or compiled
the OOP of your UserProfile

You cannot modify the definitions of these predefined variables with define.

Clearing Variable Definitions

To clear a definition, type define aVarName with no second argument.

For example:

topaz 1> define abc 'this string'
topaz 1> object abc
 this string
topaz 1> define abc
topaz 1> object abc
GemStone could not find an object named abc.

1.20 Sending Messages
Usually you’ll send messages only inside methods or within printit commands. If you can
point to an object only via a local Topaz variable or via an OOP, however, this won’t
work.

Therefore, Topaz provides the send command, which lets you send a message to an object
identified by any of the means described in “Specifying Objects” on page 34. For example:
April 2014 GemTalk Systems 37

Logging Out GemStone/S 64 Bit 3.2 Topaz Programming Environment
topaz 1> send @71425 class
a Metaclass
 superClass a Metaclass
 format 1040
 ...
 categories a GsMethodDictionary
 secondarySuperclasses nil
 thisClass UndefinedObject class

The send command’s first argument is an object specification identifying a receiver. That
argument is followed by a message expression built almost as it would be in GemStone
Smalltalk. Here’s another example:

topaz 1> send 2 - 1
1

There are some differences between send syntax and GemStone Smalltalk expression
syntax. Only one message send can be performed at a time with send. Cascaded
messages, parenthetical messages, and the like are not recognized by this command. Also
note that each item must be delimited by one or more spaces or tabs.

1.21 Logging Out
To log out from your current GemStone session, just type logout.

topaz 1> logout
topaz>

As noted above, logging out implicitly aborts your transaction.

1.22 Leaving Topaz
To leave Topaz and return to your host operating system, just type exit:

topaz> exit

If you are still logged in when you type exit, this will implicitly abort all your transactions
and log out all active sessions.

You can use quit, which has the same effect as exit.
38 GemTalk Systems April 2014

Chapter

2 Debugging Your
GemStone Smalltalk
Code
Topaz can maintain up to eight simultaneous GemStone Smalltalk call stacks that provide
information about the GemStone state of execution. Each call stack consists of a linked list
of method or block contexts. Topaz provides debugging commands that enable you to:

Step through execution of a method. After each step, you can examine the values of
arguments, temporaries, and instance variables.

Inspect or change the values of arguments, temporaries, and receivers in any context
on the call stack, then continue execution. This means that you can find out what the
system was doing at the time a soft break, a breakpoint, or an error interrupted
execution.

Set, clear, and examine GemStone Smalltalk breakpoints. When a breakpoint is
encountered during normal execution, you can issue Topaz commands to explore the
contexts on the stack.

This chapter introduces you to the Topaz debugging commands and provides some
examples. For a detailed description of each of these commands, see Chapter 3.

2.1 Step Points and Breakpoints
For the purpose of determining exactly where a step will go during debugging, a
GemStone Smalltalk method can be decomposed into step points. The locations of step
points also determine where breakpoints can be set.

Generally, step points correspond to the message selector and, within the method,
message-sends, assignments, and returns of nonatomic objects. (However, compiler
optimizations may occasionally result in a different, nonintuitive step point, particularly
in a loop.) The Topaz list steps method: command lists the source code of a given instance
method and displays all step points (allowable breakpoints) in that source code.
April 2014 GemTalk Systems 39

Setting, Clearing, and Examining Breakpoints GemStone/S 64 Bit 3.2 Topaz Programming Environment
For example:

topaz 1> set class String
topaz 1> list steps method: includesValue:
 includesValue: aCharacter
 * ^1 *******

 "Returns true if the receiver contains aCharacter, false
 otherwise. The search is case-sensitive."

 <primitive: 94>

 aCharacter _validateClass: AbstractCharacter .
 * ^2 *******
 ^ self includesValue: aCharacter asCharacter .
 * ^5 ^4 ^3 *******

As shown here, the position of each method step point is marked with a caret (^) and a
number.

If you use the Topaz step command (described below) to step through this method, the
first step halts execution at the beginning of the method. The second step takes you to the
point where _validateClass: is about to be sent to aCharacter. Stepping again
would execute that message-send and halt execution at the point where asCharacter is
about to be sent. Another step would cause that message to be sent and then halt
execution just before the message includesValue: is sent to self.

The call stack becomes active, and the debugging commands become accessible, when
you execute GemStone Smalltalk code containing a breakpoint (as well as when you
encounter an error). As explained earlier, you can set a breakpoint at any step point. You
can use the break command (described below) to set method breakpoints that halt
execution at a particular step point within a method. In general, you can choose to set a
method break before a message-send, an assignment, or a method return.

You can set a breakpoint on any method. Some methods, such as Boolean>>ifTrue:
never hit the break points unless you invoke them with perform: or one of the
GciPerform... functions, because sends of special selectors are optimized by the compiler.

2.2 Setting, Clearing, and Examining Breakpoints
You can use the break method and break classmethod commands to establish method
breakpoints within your GemStone Smalltalk code:

break method aClassName aSelector [@ stepNumber]
break classmethod aClassName aSelector [@ stepNumber]

For example:

topaz 1> break classmethod GsFile openRead: @ 2

Establishes a breakpoint at step point 2 of the class method openRead: for GsFile.

topaz 1> set class String
topaz 1> break method ^ < @ 2
40 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Setting, Clearing, and Examining Breakpoints
Establishes a breakpoint at step point 2 of the instance method “<” for the current
class (String).

The Topaz list breaks command allows you to display all method breakpoints currently
set in the active method context. By supplying a selector as an argument to the list breaks
command, you can display all breakpoints set in a given instance or class method for the
current class, as shown in the following example.

topaz 1> list breaks method: <
 < aCharCollection

 "Returns true if the receiver collates before the
 argument. Returns false otherwise.

 The comparison is case-insensitive unless the receiver
 and argument are equal ignoring case, in which case
 upper case letters collate before lower case letters.
 The default behavior for SortedCollections and for
 the sortAscending method in UnorderedCollection is
 consistent with this method, and collates as follows:

 #('c' 'MM' 'Mm' 'mb' 'mM' 'mm' 'x') asSortedCollection

 yields the following sort order:

 'c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x'
 "

 <primitive: 28>
 (aCharCollection _stringCharSize bitAnd: 16r7) ~~ 0 ifTrue:[
 ^ (DoubleByteString withAll: self) < aCharCollection .
].
 aCharCollection _validateClass: CharacterCollection .
 * ^2 *******
 ^ aCharCollection > self

 Alternatively, you can use the break list command to list all currently set method or
message breakpoints:

topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2

In the break list, each breakpoint is identified by a break index. To disable a breakpoint,
supply that break index as the single argument to the break disable command:

topaz 1> break disable 2

A similar command line reenables the break point:

topaz 1> break enable 2
April 2014 GemTalk Systems 41

Examining the GemStone Smalltalk Call Stack GemStone/S 64 Bit 3.2 Topaz Programming Environment
To delete a single breakpoint, supply that break index as the argument to the break delete
command:

topaz 1> break delete 2

To delete all currently set breakpoints, type the following command:

topaz 1> break delete all

2.3 Examining the GemStone Smalltalk Call Stack
When you execute the code on which you have enabled a breakpoint, execution pauses.
For example, if we put a breakpoint on the setter method for Animal’s instance variable
#name:

topaz 1 > break method Animal name: @1

Then run this code:

topaz 1 > run
Animal new name: 'Dog'
%
a Breakpoint occurred (error 6005), Method breakpoint encountered.
1 1 Animal >> name: @1 line 1

You can display all of the contexts in the active call stack by issuing the where, stk or
stack commands with no arguments. The where and stk command display a summary
call stack, with one line for each context. Use the stack command to display method
arguments and temporaries. When using the stack command, the volume of output
displayed is controlled by the current level setting.

This is an example of the where summary:

topaz 1> where
==> 1 Animal >> name: @1 line 1
2 Executed Code @3 line 1
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

With display oops active, the where command provides more detail for each frame:

topaz 1> display oops
topaz 1> where
==> 1 Animal >> name: @1 line 1 [methId 25534209]
2 Executed Code @3 line 1 [methId 25504513]
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1 [methId 4912641]
 [GsProcess 27551489]

Using the stack command provides additional information about the instance and
temporary variable names and values for each context. With level 0 (the default), only the
variable values themselves are displayed. This example is with display oops.

topaz 1> stack
==> 1 Animal >> name: @1 line 1 [methId 25534209]
 receiver [25517313 sz:3 cls: 27556097 Animal] a Animal
42 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Examining the GemStone Smalltalk Call Stack
 name [20 sz:0 cls: 76289 UndefinedObject] nil
 favoriteFood [20 sz:0 cls: 76289 UndefinedObject] nil
 habitat [20 sz:0 cls: 76289 UndefinedObject] nil
 newValue [25481729 sz:3 cls: 74753 String] Dog
2 Executed Code @3 line 1 [methId 25504513]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1 [methId 4912641]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil

With level 1, or higher levels, the variables for each instance variable is included in the
display for stack. For example, with omit oops:

topaz 1> omit oops
topaz 1> level 1
topaz 1> stack
==> 1 Animal >> name: @1 line 1
 receiver a Animal
 name nil
 favoriteFood nil
 habitat nil
 newValue Dog
2 Executed Code @3 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

The display of each context includes:

an indicator of the active context, a preceding ==>

the level number of the context;

the OOP of the GsMethod (if display oops is active)

the class of the method invoked

the selector of the method

the current step point within the method, indicated by @anInteger

line number of the step point within the source code

for the stack command, the receiver, parameters and temporaries for this context
(including method temporaries and OOPs, if display oops is active).

The display is governed by the setting of other Topaz commands such as limit, level, and
display or omit.

Proceeding After a Breakpoint

When GemStone Smalltalk encounters a breakpoint during normal execution, Topaz halts
and waits for your reply. Topaz provides commands for continuing execution, and for
stepping into and over message-sends.

continue
Tells GemStone Smalltalk to continue execution from the context at the top of the stack,
if possible. If execution halts because of an authorization error, for example, then the
April 2014 GemTalk Systems 43

Examining the GemStone Smalltalk Call Stack GemStone/S 64 Bit 3.2 Topaz Programming Environment
virtual machine can’t continue. As an option, the continue command can replace the
value on the top of the stack with another object before it attempts to continue
execution.

c
Same as continue.

step over
Tells GemStone Smalltalk to advance execution to the next step point (message-send,
assignment, etc.) in the active context or its caller, and halt. The active context is
indicated by the ==> in the stack; it is the context specified by the last frame, up, down
or another command. Initially it is the top of the stack (the first context in the list).

step into
Tells GemStone Smalltalk to advance execution to the next step point (message-send,
assignment, etc.) and halt. If the current step point is a message-send, then execution
will halt at the first step point within the method invoked by that message-send.

Notice how this differs from step over; if the next message in the context contains step
points itself, execution halts at the first of those step points. That is, the virtual
machine “steps into” the new method instead of silently executing that method’s
instructions and halting after the method has completed. The next step over com-
mand will then take place within the context of the new method.

Examining and Modifying Temporaries and Arguments

The Topaz temporary command lets you examine or modify the values of temporaries in
the active context. If, for example, the method under inspection had a temporary variable
named count, that currently had a value of 5, you could obtain its value by typing
temporary and the variable name:

topaz 1> temporary count
5

Similarly, you can use the temporary command to assign a new value to a temporary
variable:

topaz 1> temporary count 8

For example, the following code sets a breakpoint, executes code, views and updates the
value of a temporary variable, then continues execution to return the results of the code;
which has been changed during debugging.

topaz 1> break classmethod String withAll:
topaz 1> run
String withAll: 'abc'
%
a Breakpoint occurred (error 6005), Method breakpoint encountered.
1 String class >> withAll: @1 line 1
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString abc
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
44 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Examining the GemStone Smalltalk Call Stack
 receiver nil
topaz 1> temporary
 aString abc
topaz 1> temporary aString 'xyz'
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString xyz
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil
topaz 1> continue
xyz

Select a Context for Examination and Debugging

The Topaz commands frame, up, and down, as well as stack up, stack down, and stack
scope, let you redefine the active context (used by the temporary, stack, and list
commands) within the current call stack. Consider the call stack we examined earlier,
with level 0 and omit oops:

topaz 1> stack
==> 1 Animal >> name: @1 line 1
 receiver anAnimal
 newValue Dog
2 Executed Code @3 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

The active context is indicated by ==>. You can also show the active context by using the
frame command with no arguments:

topaz 1> frame
1 Animal >> name: @1 line 1
 receiver anAnimal
 newValue Dog

The following command selects the caller of this context as the new active context:

topaz 1> frame 2
2 Executed Code @3 line 1
 receiver nil

Now confirm that Topaz redefined the active context:

topaz 1> where
1 Animal >> name: @1 line 1
==> 2 Executed Code @3 line 1
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

You can also use up and down commands to make a different frame the active context.
April 2014 GemTalk Systems 45

Examining the GemStone Smalltalk Call Stack GemStone/S 64 Bit 3.2 Topaz Programming Environment
Multiple Call Stacks

By default, when you continue executing code and encounter another breakpoint, the
original call stack is lost.

The Topaz command stack save lets you retain the previous stack. This needs to be
invoked for each stack you want to save.

The Topaz command stack all lets you display your list of saved call stacks. This display
includes the top context of every call stack:

topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
 1: 1 AbstractException >> _signalWith: @6 line 25
*2: 1 Executed Code @3 line 1

The asterisk (*) indicates the active call stack, if one exists. If there are no saved stacks, a
message to that effect is displayed.

When you type the stack change command, Topaz sets the active call stack to the call
stack indicated by the integer in the stack all command output, and displays the newly
selected call stack:

topaz 1> stack change 1
Stack 1 , GsProcess 27447553
1 AbstractException >> _signalWith: @6 line 25
46 GemTalk Systems April 2014

Chapter

3 Command Dictionary
This chapter provides descriptions of each Topaz command, in alphabetical order.

Command Syntax
Most Topaz commands can be abbreviated to uniqueness. For example, set password: can
be shortened to set pass. Exceptions to this rule are a few commands whose actions can
affect the success or failure of your current transaction and, thus, the integrity of your
data: abort, begin, commit, exit, and so on. Non-abbreviatable commands are described
in the individual command documentation.

If a command abbreviation is ambiguous, it is not executed. Note however that if a
command’s first letters are abbreviated and this matches another command, the other
command is executed; for example, the l form of listw, and the c form of continue.

Topaz commands are case-insensitive. Time, TIME, and time are understood by Topaz as
the same command. However, arguments you supply to Topaz commands may be subject
to case-sensitivity constraints. For example, the commands category: animal and
category: Animal specify two different categories, since GemStone Smalltalk is case-
sensitive. The same is true of UNIX path names, user names, and passwords.

Objects passed as arguments to Topaz commands can usually be specified using the
formats described in “Specifying Objects” on page 34.

Command lines can have as many as 511 characters. You can stop a command at any time
by typing Ctrl-C. Topaz may take a moment or two before responding.
April 2014 GemTalk Systems 47

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
ABORT
Aborts the current GemStone transaction. Your local variables (created with the define
command) may no longer have valid definitions after you abort.

If your session is outside a transaction, use abort to give you a new view of the repository.

This command cannot be abbreviated.
48 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
BEGIN
Begins a GemStone transaction when your session is outside a transaction.

When you have ended your transaction by invoking the GemStone Smalltalk method

System transactionMode: #manualBegin

use begin to start a new transaction. For more information, see the protocol for System
Class.

This command cannot be abbreviated.
April 2014 GemTalk Systems 49

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
BREAK aSubCommand
Establishes (or displays) a method breakpoint within your GemStone Smalltalk code.
Subcommands are method, classmethod, list, enable, disable, and delete. For more
information about breakpoints, see Chapter 2, “Debugging Your GemStone Smalltalk
Code.”

Method Breakpoints

You can set method breakpoints within an instance method at step points: assignments,
message sends, or method returns. Use the list steps command to display all valid step
points for a method.

In each of the following commands, the optional argument anInt specifies the step point
within that method where the break is to occur. If you do not specify anInt, the breakpoint
is established at step 1 of the method.

You may not set method breakpoints in any method whose sole function is to perform any
of the following actions: return self, return nil, return true, return false, return or update
the value of an instance variable, return the value of a literal, or return the value of a literal
variable (that is, a class variable, a pool variable, or a variable defined in your symbol list).

You may supply the class name parameter in these four formats:

@integer
An unsigned 64-bit decimal OOP value that denotes an object.

aVariableName
This can be either a GemStone Smalltalk variable name or a local variable created with
the define command.

**The object that was the result of the last execution.

^The current class (as defined by the most recent set class:, list categoriesin:, method:,
classmethod:, removeallmethods, removeallclassmethods, or fileout class:
command).

break method aClassName selectorSpec [@ anInt]
Establishes a method breakpoint on the given instance method.

break classmethod aClassName selectorSpec [@ anInt]
Establishes a method breakpoint on the given class method.

break method ^ selectorSpec [@ anInt]
Establishes a method breakpoint on the given instance method for the current class.

break classmethod ^ selectorSpec [@ anInt]
Establishes a method breakpoint on the given class method for the current class.

break method @anObjectSpec selectorSpec
Establishes a method breakpoint at step point 1 of the given instance method for the
class with the specified objectId.

break method @anObjectSpec
Establishes a method breakpoint at step point 1 of the GsNMethod with the specified
objectId.
50 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
break @anInt
Establishes a method breakpoint at the specified step point of the method selected by
the previous down, frame, lookup, list, or up command.

Displaying Breakpoints
break list

Lists all currently set breakpoints. In the display, each breakpoint is identified by a
break index for subsequent use in break disable, break enable, and break delete
commands.

Disabling and Enabling Breakpoints

break disable anIndex
Disables the breakpoint identified by anIndex in the break list command.

break disable all
Disables all currently set breakpoints.

break enable anIndex
Reenables the breakpoint identified by anIndex in the break list command.

break enable all
Reenables all disabled breakpoints.

Deleting Breakpoints
break delete anIndex

Deletes the breakpoint identified by anIndex in the break list command.

break delete all
Deletes all currently set breakpoints.

Examples
topaz 1> break method GsFile nextLine

Establishes a breakpoint at step point 1 of the instance method nextLine for GsFile.

topaz 1> break classmethod GsFile openRead: @ 2

Establishes a breakpoint at step point 2 of the class method openRead: for GsFile.

topaz 1> set class String
topaz 1> break method ^ < @ 2

Establishes a breakpoint at step point 2 of the instance method “<” for the current
class (String).

topaz 1> break list
1: GsFile >> nextLine @ 1
April 2014 GemTalk Systems 51

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
2: GsFile class >> openRead: @ 2
3: String >> < @ 2

topaz 1> break disable 2

topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2 (disabled)
3: String >> < @ 2

topaz 1> break enable 2

topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2

topaz 1> break delete 1

topaz 1> break list
2: GsFile class >> openRead: @ 2
3: String >> < @ 2

topaz 1> break delete all

topaz 1> break list
No breaks set
52 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
CATEGORY: aCategoryName
Sets the current category, the category for subsequent method compilations. If you try to
compile a method without first selecting a category, the new method is inserted in the
default category “as yet unspecified.” This command has the same effect as the set
category: command.

If the category you name doesn’t already exist, Topaz creates it when you first compile a
method. If you wish to include spaces in the category name you specify, enclose the
category name in single quotes.

Specifying a new class with set class does not change your category. However, when you
edit or fileout a method, that method’s category becomes the current category.

The current category is cleared by the logout, login, and set session commands.

topaz 1> category: Accessing
topaz 1> category: 'Public Methods'
April 2014 GemTalk Systems 53

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
CLASSMETHOD[: aClassName]
Compiles a class method for the class whose name is given as a parameter. The class of the
method you compile is automatically selected as the current class. If you don’t supply a
class name, the method is compiled for the current class (as defined by the most recent set
class:, list categoriesin:, method:, classmethod:, removeAllMethods,
removeAllClassMethods, or fileout class: command).

Text of the method should follow this command on subsequent lines. The method text is
terminated by the first line that contains a % character in column 1. For example:

topaz 1> classmethod: Animal
returnAString
 ^String new
%

Topaz sends the method’s text to GemStone for compilation and inclusion in the current
category of the specified class. If you haven’t yet selected a current category, the new
method is inserted in the default category “as yet unspecified.”
54 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
COMMIT
Ends the current GemStone transaction and stores your changes in the repository.

This command cannot be abbreviated.
April 2014 GemTalk Systems 55

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
CONTINUE [anObjectSpec]
C [anObjectSpec]

Attempts to continue GemStone Smalltalk execution on the active call stack after
encountering a breakpoint, a pause message, or a user-defined error. The call stack
becomes active, and the continue command becomes accessible, when you execute
GemStone Smalltalk code containing a breakpoint.

continue
Attempts to continue execution.

continue anObjectSpec
Replaces the value on the top of the stack with anObjectSpec and attempts to continue
execution.

The argument anObjectSpec can be specified using any of the formats described in
“Specifying Objects” on page 34.

For more information about breakpoints, see the discussion of the break command on
page 50, or see Chapter 2, “Debugging Your GemStone Smalltalk Code”.

For information about replacing the value on the top of the stack, see the
GciContinueWith function in the GemBuilder for C manual.

For information about Object’s pause method, see the method comments for
Object>>pause.

For information about user-defined errors, see the discussion of error-handling in the
GemStone/S 64 Bit Programming Guide. User manuals for the GemStone interfaces, such as
GemBuilder for Smalltalk, also contain discussions of error-handling.
56 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
DEFINE [aVarName [anObjectSpec [aSelectorOrArg]...]]
Defines local Topaz variables that allow you to refer to objects in commands such as send
and object.

All Topaz object specification formats (as described in “Specifying Objects” on page 34)
are legal in define commands.

define
Lists all current local variable definitions.

define aVarName
Deletes the definition of the variable aVarName.

define aVarName anObjectSpec aSelectorOrArg ...
Sends a message to the object specified by anObjectSpec, and saves the result as a local
variable with the name aVarName. The variable name aVarName must begin with a
letter (a..z) or an underscore, can be up to 255 characters in length, and cannot contain
white space.

topaz 1> define CurrentSessions System currentSessionNames
topaz 1> define UserId myUserProfile userId

Topaz tries to interpret all command line tokens following anObjectSpec as a message to
the specified object.
April 2014 GemTalk Systems 57

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
DISASSEM [aClassParameter] aParamValue
The disassem command allows you to disassemble the specified GsNMethod, displaying
the assembly code instructions.

The disassem command is intended for use in a linked (topaz -l) session only. If the
session is remote, the output goes to stdout of the remote Gem, which is the gem log.

disassem @anOop
Disassemble the method or code object with the specified oop.

disassem method: aSelectorSpec
Disassemble the specified instance method for the class previous set by the set class
command.

disassem classmethod: aSelectorSpec
Disassemble the specified class method for the class previous set by the set class
command.
58 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
DISPLAY aDisplayFeature
The display and omit commands control the display of instance variable names,
hexadecimal byte values, and OOPs (object-oriented pointers). The display command
turns on these display attributes, and the omit command turns them off.

display oops
For each object, displays a header containing the object’s OOP (a 64-bit unsigned
integer), the object’s size (the sum of its named, indexed, and unordered instance
variable fields), and the OOP of the object’s class.

display bytes
When displaying string objects, includes the hexadecimal value of each byte.

display errorcheck
Allows Topaz programs to automatically record the results of error checking. Using
this command creates the ./topazerrors.log file or opens the file to append to it,
if it already exists.

As long as display errorcheck is set, every time ErrorCount is incremented, a
summary of the error is added to topazerrors.log. The summary includes the
line number in the Topaz output file, if possible. If the only output file open is stdout,
then line numbers are not available. To close the topazerrors.log file, use the
omit errorcheck command. Subsequent results are not recorded.

display names
For each of an object’s named instance variables, displays the instance variable name
along with its value. (This is the default condition.) To turn off this display, use the
omit names command.

When instance variable name display is off, named instance variables appear as i1, i2,
i3, and so on.

display resultCheck
Allows Topaz programs to check input values and record the results. This command
creates the ./topazerrors.log file or opens the file to append to it, if it already
exists. Specifying display resultCheck is equivalent to setting expectvalue
true, except that it affects the behavior of all run and printit commands, not only the
next one.

As long as display resultCheck is set, every time ErrorCount is incremented, a sum-
mary of the error is added to topazerrors.log. This includes the line number in
the Topaz output file, if possible. If the only output file open is stdout, then line num-
bers are not available. To close the file, use the omit resultCheck command. Then
the results of a successful run or printit command will no longer be checked, unless
an expectvalue command precedes the printit command.

display pauseonerror
When an error occurs, if Topaz is receiving input from a terminal, displays the
message:

Execution has been suspended by a "pause" message.

Topaz pausing after error, type <return> to continue, ctl-C to
quit ?
April 2014 GemTalk Systems 59

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
and waits for the user to press the Return key to continue execution. Pressing Ctrl-C
ends the pause and stops the processing of input files altogether.

If display resultCheck is also set, then Topaz only pauses when the result or error is
contrary to the current resultCheck, expectvalue, and expecterror settings.

When display pauseonerror is set, the status command output includes:

display interactive pause on errors

Use omit pauseonerror to cancel this mode.

display classoops
If display oops is set, enables the display of OOPs of classes along with class names in
object display. Also causes the OOPs of classes to be printed by stack display and
method lookup commands, and enables the printing of evaluation temporary objects
in stack frame printouts from the frame command.

display lineeditor
Enables the use of the Topaz line editor, using the open source linenoise library. (This
is the default condition.) To disable use of the line editor, use the omit lineeditor
command. Not available on Windows.

display pushonly
Enables the effect of the only keyword in an object push command. To disable this
effect, use the omit pushonly command.

display zerobased
Shows offsets of instance variables as zero-based when displaying objects. (By default,
offsets are one-based.) To show offsets as one-based, use the omit zerobased
command.

display stacktemps
enables the display of stack frames to include un-named evaluation temps which have
been allocated by bytecodes within the method.
60 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
DOIT
Sends the text following the doit command to the object server for execution and displays
the OOP of the resulting object. If there is an error in your code, Topaz displays an error
message instead of a legitimate result. GemStone Smalltalk text is terminated by the first
line that contains a % in column 1. For example:

topaz 1> doit
2 + 1
%
result oop is 26

The text executed between the doit and the terminating % can be any legal GemStone
Smalltalk code, and follows all the behavior documented in the
GemStone/S 64 Bit.Programming Guide.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if
any breakpoints are set, execution defaults to interpreted mode. Otherwise, execution
defaults to using native mode.

For details about GemStone configuration parameters, see the System Administration
Guide for GemStone/S 64 Bit.

Note that doit always displays results at level 0, regardless of the current display level
setting (page 91). The doit command does not alter the current level setting.
April 2014 GemTalk Systems 61

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
DOWN [anInteger]
Moves the active frame down within the current stack, and displays the frame selected as
a result. The optional argument anInteger specifies how many frames to move down. If no
argument is supplied, the scope will go down one frame. See also stack down on
page 137.

The frame displayed includes parameters and temporaries for the frame, unlike the
results displayed by stack down.

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
==> 4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> down
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
 receiver 1

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
==> 3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
62 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
DOWNR [anInteger]
DOWNRB [anInteger]

These commands are used with Ruby applications, but not with Smalltalk applications.
April 2014 GemTalk Systems 63

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
EDIT aSubCommandOrSelector [aSelector]
Allows you to edit GemStone Smalltalk source code. You can create or modify methods or
blocks of code to be executed. You can also edit the text of the last run, printit, doit,
method:, or classmethod: command.

Before you can use this command, you must first establish the name of the host operating
system editor you wish to use. You can do this by setting the host environment variable
EDITOR or by invoking the Topaz set editorname command interactively or in your
Topaz initialization file.

Do not use the edit command for batch processing. Instead, use the method: and
classmethod: commands to create methods in batch processes, and the run, printit or doit
commands to execute blocks of code in batch.

If you supply any parameter to edit, other than one of its subcommands, Topaz assumes
that you are naming an existing instance method to be edited.

Creating or Modifying Blocks of GemStone Smalltalk Code

edit last
Allows you to edit the text of the last run, printit, doit, method:, or classmethod:
command. (You can inspect that text before you edit by issuing the Topaz command
object LastText.) Topaz opens, as a subprocess, the editor that you’ve selected. When
you exit the editor, Topaz saves the edited text in its temporary file and asks you
whether you’d like to compile and execute the altered code. If you tell Topaz to execute
the code, it effectively reissues your run or printit command with the new text.

edit new text
Allows you to create a new block of GemStone Smalltalk code for compilation and
execution. This is similar to edit last, but with a new text object.

Creating or Modifying GemStone Smalltalk Methods

edit new
If you type edit new with no additional keywords, Topaz assumes that you want to
create a new instance method for the current class.

edit new method
Allows you to create a new instance method for the current class and category. Before
you can use this command, you must first use set class to select the current class. If you
haven’t yet selected a current category, the new method is inserted in the default
category, “as yet unspecified.”

edit new classmethod
Allows you to create a new class method for the current class and category. Before you
can use this command, you must first use set class to select the current class. If you
haven’t yet selected a current category, the new method is inserted in the default
category, “as yet unspecified.”

edit selectorSpec

edit method: selectorSpec
Allows you to edit the source code of an existing instance method. Before you can use
64 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
this command, you must first use set class to select the current class. The category of
the method you edit is automatically selected as the current category. For example:

topaz 1> set class Animal
topaz 1> edit habitat

edits the instance method in class Animal whose selector is habitat.

edit classmethod: selectorSpec
Allows you to edit the source code of an existing class method. Before you can use this
command, you must first use set class to select the current class. The category of the
method you edit is automatically selected as the current category.
April 2014 GemTalk Systems 65

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
ERRORCOUNT
Displays the Topaz errorCount variable, which stores the number of errors made in all
sessions since you started Topaz. This includes GemStone Smalltalk errors generated by
compiling or a run or printit command, as well as errors in Topaz command processing.

If expecterror is specified immediately before a compile or execute command (run,
printit, doit, method:, classmethod:, send, or commit) and the expected error occurs
during the compile or execute, the ErrorCount is not incremented. The ErrorCount is not
reset by login, commit, abort, or logout.

You can use the errorCount command at the topaz> prompt before you log in, as well as
after login.

topaz> errorcount
0

It is equivalent to

topaz 1> object ErrorCount

except that errorCount does not require a valid session.

This command cannot be abbreviated.
66 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
EXIT [aSmallInt | anObjectSpec]
Leaves Topaz, returning to the parent process or operating system. If you are still logged
in to GemStone when you type exit, this aborts your transactions and logs out all active
sessions.

You can include an argument (a SmallInteger, or an object specification that resolves to a
SmallInteger) to specify an explicit exitStatus for the Topaz process. If you do not specify
an argument, the exitStatus will be either 0 (no errors occurred during Topaz execution)
or 1 (there was a GCI error or the Topaz errorCount was nonzero).

This command cannot be abbreviated.
April 2014 GemTalk Systems 67

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
EXITIFNOERROR
If there have been no errors — either GemStone Smalltalk errors or Topaz command
processing errors — in any session since you started Topaz, this command has the same
effect as exit 0 (see page 67). Otherwise, this command has no effect.

This command cannot be abbreviated.
68 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
EXPECTBUG bugNumber
value resultSpec [integer] |
error errCategory errNumCls [resultSpec [resultSpec]..]

Specifies that the result of the following execution results in the specified answer (either a
value or an error). If the expected result occurs, Topaz prints a confirmation message and
increments the error count.

The expectbug command is intended for use in self-checking scripts to verify the
existence of a known error. Only one expectbug command (at most) can be in effect
during a given execution. Topaz honors the last expectbug command issued before the
execution occurs. Expectbug can be used in conjunction with the expecterror and
expectvalue commands—an expectbug command does not count against the maximum
of five such expecterror and expectvalue commands permitted.

bugNumber is a parameter identifying the bug or behavior you expect to see. In most cases
this would be a number, but it can equally well be a character string. (If it contains
white space, enclose the string in single quotes.) The parameter is included in the
confirmation message.

resultSpec is specified as in the expectvalue command (page 72).

errorCategory and errNumCls
are specified as in the expecterror command (page 70).

For example, suppose you know that the ‘*’ operator has been reimplemented in a way
that returns the erroneous answer ‘5’ for the expression ‘2 * 3’. You can use the expectbug
command in a script to verify that the bug is present:

topaz 1> expectbug 123 value 5
topaz 1> printit
2 * 3
%
5
BUG EXPECTED: BUG NUMBER 123
topaz 1>

If the expected bug does not occur, Topaz checks for an expecterror or expectvalue
command that matches the answer received. If it finds a match, Topaz displays a “FIXED
BUG” message. If not, the error is reported in the same way the expecterror or
expectvalue command would report it (“ERROR: WRONG VALUE” for example). If no
expecterror or expectvalue commands are in effect, execution proceeds without comment.
April 2014 GemTalk Systems 69

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
EXPECTERROR anErrorCategory anErrorNumCls

[anErrorArg [anErrorArg] ...]
Indicates that the next compilation or execution is expected to result in the specified error.
If the expected result occurs, Topaz reports the error in the conventional manner but does
not increment its error count and allows execution to proceed without further action or
comment.

If the execution returns a result other than the expected error (including unexpected
success), Topaz increments the error count and invokes any iferror actions that have been
established.

Up to five expecterror or expectvalue commands may precede an execution command. If
the result of the execution satisfies any one of them, the error count variable is not
incremented. This mechanism allows you to build self-checking scripts to check for errors
that can’t be caught with GemStone Smalltalk exception handlers.

Expecterror must be reset for each command; it is only checked against a single return
value. Expecterror is normally used before the commands run, printit, doit, method:,
classmethod:, commit, and send.You must also use it before executing continue after a
breakpoint.

anErrorCategory must be a Topaz object specification that evaluates to the object identifier
of an error category; normally, GemStoneError.

anErrorNumCls must be a Topaz object specification that evaluates either to a SmallInteger
legacy error number, or to the object identifier of a subclass of Abstract Exception.

All Topaz object specification formats (as described in “Specifying Objects” on page 34)
are legal in expecterror commands.

The following example shows an expecterror command followed by the expected error.
Note that although the error is reported, the error count is not incremented.

topaz 1> errorcount
0
topaz 1> expecterror GemStoneError MessageNotUnderstood
topaz 1> printit
1 x
%

ERROR 2010 , a MessageNotUnderstood occurred (error 2010), a
SmallInteger does not understand #'x' (MessageNotUnderstood)

topaz 1> errorcount
0
topaz 1>

If execution returns unanticipated results, Topaz prints a message (in this example,
“ERROR: WRONG CLASS of Exception”), then invokes the actions established by the
iferror command (in this example, a stack dump) and bumps the error count:

topaz 1> errorcount
0
topaz 1> iferror where
topaz 1> expecterror GemStoneError MessageNotUnderstood
70 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
topaz 1> printit
1 / 0
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
(ZeroDivide)
ERROR: WRONG CLASS of Exception, does not match expected class
topaz > exec iferr 1 : where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> errorcount
1

Further arguments to EXPECTERROR

In addition to the error category and class, you may optionally specify additional
arguments. The expecterror argument values are tested against the argument values
returned with the error. If one or more of the argument values do not match, errorcount is
incremented. .

In additional to standard object specification formats, you may use additional formats to
specify instances of classes as error arguments:

%className An instance of the class className.

/className An instance of the class className or an instance of any of its subclasses. (In
other words, an instance of a ‘kind of’ className.)

If anErrorArg is a literal object specification (page 35), Topaz regards it as matching the
result if the two are equal (=).

If anErrorArg is an object identity specification (page 34), Topaz regards it as matching the
result if the two are identical (==).

You may omit arguments, which will not count as an error. If you specify more
expecterror arguments than the actual error returns, then errorcount will be incremented.
To match any error argument, use /Object.

For example:

topaz 1> errorcount
2

topaz 1> expecterror GemStoneError OffsetError %Array 3 6
topaz 1> run
 (Array new: 3) at: 6
%
ERROR 2003 , a OffsetError occurred (error 2003),
reason:objErrBadOffsetIncomplete, max:3 actual:6 (OffsetError)

topaz 1> errorcount
2

April 2014 GemTalk Systems 71

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
EXPECTVALUE anObjectSpec [anInt]
Indicates that the result of the following compilation or execution is expected to be a
specified value, denoted by anObjectSpec. If it is not, the error count is incremented. Up to
five expectvalue or expecterror commands may precede an execution command. If the
result of the execution satisfies any one of them, the error count variable is not
incremented.

Expectvalue must be reset for each command; it is only checked against a single return
value. Expectvalue is normally used before the commands run, printit, doit, method:,
classmethod:, commit, and send. You must also use it before executing continue after a
breakpoint.

All Topaz object specification formats (as described in “Specifying Objects” on page 34)
are legal in expectvalue commands. In addition, this command takes further formats that
allow you to specify instances of classes:

%className
An instance of the class className.

%@OOPOfClass
An instance of the class that has the OOP OOPOfClass.

/className
An instance of the class className or an instance of any of its subclasses. (In other
words, an instance of a ‘kind of’ className.)

/@OOPOfClass
An instance of the class that has the OOP OOPOfClass, or an instance of any of its
subclasses.

If the argument is a literal object specification (literalObjectSpec), Topaz regards it as
matching the result if the two are equal (=).

If the argument is an object specification (ObjectSpec), Topaz regards it as matching the
result if the two are identical (==).

If the anInt argument is present, the result of sending the method size to the result of the
following execution must be the integer anInt.

The commit command has an internal result of true for success and false for failure. All
other Topaz commands have an internal result of true for success and @0 for failure.

The following example uses expectvalue to test that the result of the printit
command is a SmallInteger. The expected result is returned, so execution proceeds
without comment:

topaz 1> expectvalue %SmallInteger
topaz 1> printit
2 * 5
%
10
topaz 1>
72 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
If execution returns unanticipated results, Topaz prints a message (in this example,
“ERROR: WRONG VALUE”), then invokes the actions established by the iferror
command (in this example, a stack dump) and bumps the error count:

topaz 1> errorcount
0

topaz 1> iferror stack
topaz 1> expectvalue %SmallInteger
topaz 1> printit
2 * 5.5
%
1.1000000000000000E+01
ERROR: WRONG VALUE
Now executing the following command saved from "iferror":
 stack
Stack is not active
topaz 1> errorcount
1
topaz 1>
April 2014 GemTalk Systems 73

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
FILEFORMAT fileFormatDesignator

This command controls the interpretation of Character data for input and fileout, to allow
strings containing Characters with codepoints over 255 to be input and output.

This is meaningful if you are using text that contains any Characters with values over 127.
Characters 127 and below are 7-bit, and the code points are the same as the UTF-8
encoded values, and so are not affected by this setting.

Characters in the range of 128-255 can be read and written with their 8-bit codepoints, or
read and written encoded as UTF-8; these produce different results. So if such text is
written as UTF8, it must be read in with a fileformat of UTF8 in order to get correct
results, and similarly both written and read as 8-bit in order to recreate the same text.

To avoid misinterpretation of fileouts, the fileout command writes a fileformat command
at the start of the fileout. A fileformat command within a file only has effect within that
file and any nested files.

The following options are supported:

fileformat utf8
Sets the fileformat to UTF-8. Code that is filed out using fileout is encoded in UTF-8,
and files read using input are interpreted as being UTF-8 and are decoded accordingly.

fileformat 8bit
Sets the fileformat to 8-bit, for compatibility with older releases. Code that is filed out
using fileout is not encoded. Fileout of code containing Characters with codePoints
over 255 will error.

The default at topaz startup is 8BIT. After login, if the repository’s value for
#StringConfiguration resolves to Unicode16, this will change the fileformat to UTF8.

Input from stdin that is a tty is always interpreted as UTF-8; , changing the the
FILEFORMAT of a tty stdin to 8BIT is not allowed.
74 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
FILEOUT [command] clsOrMethod [TOFILE: filename [FORMAT:
fileformat]]

Writes out class and method information in a format that can be fed back into Topaz with
the input command. Subcommands are used to specify whether to file out the entire class,
or specific method or methods. If none of the defined subcommands follow the fileout,
then the next word is assumed to be a selector for an instance method on the current class.

By default, the fileout command outputs the fileout text to stdout. To direct this to a file,
follow the specification of what to fileout with the tofile: keyword. For example:

topaz 1> fileout class: Object toFile: object.gs

If you specify a host environment name such as $HOME/foo.bar as the output file,
Topaz expands that name to the full filename. If the output file does not include an
explicit path specification, Topaz writes to the named file in the directory where you
started Topaz.

When using the tofile: keyword, you may also optionally specify the format: keyword.
This must be either 8bit or UTF8, and specifies whether the file is written out in bytes, or
encoded in UTF-8. This overrides the current topaz setting for fileformat.

All fileout output generated from the fileout command include commands setting the
fileformat and set sourcestringclass, based on the current settings or the format:
command.

fileout class: [aClassName]
Writes out the class definition and all the method categories and their methods. To
write out the definition of the current class, type:

topaz 1> fileout class: ^

If you omit the class name parameter, the current class is written out.

The class that you file out becomes the current class for subsequent Topaz commands.

fileout category: aCategoryName
Writes out all the methods contained in the named category for the current class.

fileout classcategory: aCategoryName
Writes out all the class methods contained in the named category for the current class.

fileout classmethod: selectorSpec
Writes out the specified class method (as defined for the current class). The category of
that method will automatically be selected as the current category.

fileout method: selectorSpec
Writes out the specified method (as defined for the current class). The category of that
method will automatically be selected as the current category.

fileout selectorSpec
Writes out the specified method (as defined for the current class). You may use this
form of the fileout command (that is, you may omit the method: keyword) only if the
selector that you specify does not conflict with one of the other fileout keywords. For
example, to file out a method named category:, you would need to explicitly include
the method: keyword.
April 2014 GemTalk Systems 75

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
FR_CLS [anInteger]
Similar to the frame command (page 77), but also displays OOPs of classes along with
class names in the specified stack frames.

This command cannot be abbreviated.
76 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
FRAME [anInteger]
Moves the active frame to the frame specified by anInteger, within the current stack, and
displays the frame selected as a result. The display includes parameters and temporaries.

If no argument is supplied, displays the current frame.

See also stack scope on page 137, the up command on page 153 and the down
command on page 62.

For example:

topaz 1> printit
{ 1 . 2} do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, An attempt was made to divide 1 by zero. (ZeroDi-
vide)
topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> frame 4
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
==> 4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> frame 7
7 Executed Code @2 line 1
 receiver nil
April 2014 GemTalk Systems 77

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
GCITRACE aFileName
Turns GCI tracing on. Subsequent GCI calls are logged to the file aFileName. If aFileName is
'' (empty string), then turns GCI tracing off.

This command cannot be abbreviated.
78 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
HELP [aTopicName]
Invokes a hierarchically-organized help facility that can provide information about all
Topaz commands. Enter ? at a help prompt for a list of topics available at that level of the
hierarchy. Help topics can be abbreviated to uniqueness.

To display help text for fileout:

topaz 1> help fileout

To display help text for last:

topaz 1> help edit last

Press Return at a help prompt to go up a level in the hierarchy until you exit the help
facility.
April 2014 GemTalk Systems 79

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
HIERARCHY [aClassName]
Prints the class hierarchy up to Object for the specified class. If you don’t specify a class,
Topaz prints the hierarchy for the current class.
80 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
HISTORY [anInteger]
Displays the specified number of recently executed commands, as listed in the Topaz line
editor history. Has no effect if the line editor is not enabled. (Not available on Windows.)

The set history command (page 130) establishes the maximum number of command lines
to retain in the Topaz line editor history.
April 2014 GemTalk Systems 81

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
IFERR bufferNumber [aTopazCommandLine]
The iferr command works whenever an error is reported and the ErrorCount variable is
incremented.

This command saves aTopazCommandLine in the post-error buffer specified by
bufferNumber as an unparsed Topaz command line. There are 10 buffers; bufferNumber
must be a number between 1 and 10, inclusive.

The post-error buffer commands apply under any of the following conditions:

an error occurs (other than one matching an expecterror command and other than
one during parsing of the iferr command)

a result fails to match an expectvalue command

a result matches an expectbug command

Whenever any of these conditions arise, any non-empty post-error buffers are executed.
Execution starts with buffer 1, and proceeds to buffer 10, executing each non-empty post-
error buffer in order.

If an error occurs while executing one of post-error buffers, execution proceeds to the next
non-empty post-error buffer. Error and result checking implied by display resultcheck,
display errorcheck, expectvalue, etc., are not performed while executing from post-error
buffers.

If a post-error buffer contains a command that would terminate the topaz process, then
later buffers will have no effect. If a post-error buffer contains a command that would
terminate the session, execution later buffers will be attempted but they will not have a
session, unless one of the contains “login”.

To remove the contents of a specific post-error buffer, enter iferr bufferNumber without a
final argument. The command iferr_clear will clear all buffers.

The iferr_list command will display the contents of all post-error buffers.

The following example uses expecterror to test for an error returned by the printit
command. If Topaz finds one, it displays the active call stack for debugging. That
behavior is specified by making the Topaz stack command an argument on the iferr
command line.

topaz 1> iferr 1 stack
topaz 1> expecterror GemStoneError MessageNotUnderstood
topaz 1> printit
...
%

This command cannot be abbreviated.
82 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
IFERR_CLEAR
The iferr_clear command clears all the post-error command buffers.

For details on the post-error command buffers, see the iferr command on page 82.

This command cannot be abbreviated.
April 2014 GemTalk Systems 83

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
IFERR_LIST
The iferr_list command prints all the non-empty post-error command buffers.

For details on the post-error command buffers, see the iferr command on page 82.

This command cannot be abbreviated.
84 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
IFERROR [aTopazCommandLine]
The iferror command saves aTopazCommandLine to the post-error command buffer 1, or
when used without an argument, clearing buffer 1.

The command:

topaz 1> iferror stack

has the same effect as:

topaz 1> iferr 1 stack

For details iferr and the post-error command buffers, see page 82.

This command cannot be abbreviated.
April 2014 GemTalk Systems 85

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
IMPLEMENTORS selectorSpec
Displays a list of all classes that implement the given selectorSpec (either a String or a
Symbol). For example:

topaz 1> implementors asByteArray
Collection >> asByteArray
MultiByteString >> asByteArray
String >> asByteArray

This command is equivalent to the following:

topaz 1> doit
ClassOrganizer new implementorsOfReport: aString
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default. For details about GemStone configuration
parameters, see the System Administration Guide for GemStone/S 64 Bit.
86 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
INPUT [aFileName | POP]
Controls the source from which Topaz reads input. Normally Topaz reads input from
standard input (stdin). This command causes Topaz to take input from a file or device of
your choice.

If you specify a host environment name such as $HOME/foo.bar as the input file, Topaz
expands that name to the full filename.

If you don’t provide an explicit path specification, Topaz looks for the named input file in
the directory where you started Topaz.

input aFileName
Reads input from the specified file. This pushes the current input file onto a stack and
starts Topaz reading from the given file. There is a limit of 20 nested input aFileName
commands. If you exceed the limit, an error is displayed, and execution continues in
the current file.

input pop
Pops the current input file from the stack of input files and resumes reading from the
previous file. If there is no previous file, or the previous file cannot be reopened, Topaz
once again takes its input from standard input.
April 2014 GemTalk Systems 87

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
INSPECT [anObjectSpec]
Sends the message describe to the designated object.

This command is equivalent to the following

topaz 1> send anObjectSpec describe
%

88 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
INTERP
Sends the text following the interp command to GemStone for execution as GemStone
Smalltalk code, and displays the result.

If there is an error in your code, Topaz displays an error message instead of a legitimate
result.

GemStone Smalltalk text is terminated by the first line that contains a % in column 1. For
example:

topaz 1> interp
2 + 2
%
4

The text executed between the interp and the terminating % can be any legal GemStone
Smalltalk code, and follows the behavior documented in the Programming Guide for
GemStone/S 64 Bit.

This command is identical to the run command (page 125), except that the interp
command does not use native code, the Smalltalk code execution is interpreted.

This command cannot be abbreviated.
April 2014 GemTalk Systems 89

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
INTERPENV
This command is used with Ruby applications, but not with Smalltalk applications.
90 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
LEVEL anIntegerLevel
Sets the Topaz display level; that is, this command tells Topaz how much information to
include in the result display. A level of 1 (the default) means that the first level of instance
variables within a result object will be displayed. Similarly, a level of 2 means that the
variables within those variables will be displayed. Setting the level to 0 inhibits the display
of objects (though object headers will still be displayed if you specify display oops). The
maximum display level is 32767.

Note the following:

The run command (page 125) displays results using the current display level, as set
by the level command.

The doit command (page 61) always displays results at level 0, regardless of the
current display level.

The printit command (page 117) always displays results at level 1, regardless of the
current display level.
April 2014 GemTalk Systems 91

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
LIMIT [BYTES | OOPS | LEV1BYTES] anInteger
Tells Topaz how much of any individual object to display in GemStone Smalltalk results.
The display can be limited by OOPs, to control the number of objects displayed (for
example, the number of elements in a collection). It can also be limited by bytes, to control
the number of bytes of byte objects, such as Strings, that are displayed.

For example, limit bytes 100 would tell Topaz to only display 100 bytes of any String (or
other byte object).

A limit of 0 tells Topaz to not limit the size of the output. This is the default.

If the amount that would be displayed is limited by limit bytes setting, the display
indicates missing text using ...(NN more bytes). If the number of objects is limited by a
limit oops seting, then it prints ... NN more instVars.

limit anInteger
limit bytes anInteger

Tells Topaz how much of any byte object (instance of String or one of String’s
subclasses) to display in GemStone Smalltalk results.

If anInteger is non-zero, then when displaying frame temporaries, or when displaying
an object with a display level of 1 or greater, any byte-valued instance variable with a
byte object value will be limited to one line (about 80 characters) of output. To display
the full contents of that byte object (up to the limit set by anInteger), use the object
command.

For debugging source code, we suggest limit bytes 5000.

limit oops anInteger
Tells Topaz how much of any pointer or nonsequenceable collection to display in
GemStone Smalltalk results.

limit lev1bytes anInteger
When the topaz level is set to 1 or greater, this limit controls how many bytes to display
of instVar values and frame temporaries. If lev1bytes is set to zero, then the value of
"limit bytes" is used for instVar values and frame temporaries.
92 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
LIST
The list command is used in conjunction with the set and edit commands to browse
through dictionaries, classes, and methods in the repository. The list command is also
useful in debugging.

When no arguments are included on the command line, the list command lists the source
code for the currently selected stack frame, as selected by the most recent up, down, or
frame command.

Browsing Dictionaries and Classes

list dictionaries
Lists the SymbolDictionaries in your GemStone symbol list. This executes the
GemStone Smalltalk method UserProfile>>dictionaryNames.

list classesIn: aDictionary
Lists the classes in aDictionary. For example,

topaz 1> list classesIn: UserGlobals

lists all of the classes in your UserGlobals dictionary.

list classes
Lists all of the classes in all of the dictionaries in your symbol list.

list categoriesin: [aClass]
Lists all of the instance and class method selectors for class aClass, by category, and
establishes aClass as the current class for further browsing.

If you omit the class name parameter, method selectors are listed by category for the
current class.

list icategories [className]
Lists all of the instance method selectors for the named class, by category. If you specify
a class name, that class becomes the current class for subsequent Topaz commands. If
you omit the class name parameter, lists the categories of the current class.

list ccategories: [className]
Lists all of the class method selectors for the named class, by category. If you specify a
class name, that class becomes the current class for subsequent Topaz commands. If
you omit the class name parameter, lists the categories of the current class.

list selectors
Lists selectors of all instance methods. May be abbreviated as list sel.

list cselectors
Lists selectors of all class methods. May be abbreviated as list csel.

Listing Methods

list selectorSpec

list method: selectorSpec
Lists the category and source code of the specified instance method selector for the
current class. You can also enter this command as list imethod:.
April 2014 GemTalk Systems 93

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
For any method whose selector is the same as, or is some subset of, one of the list sub-
commands (for example, a method with the selector steps) you must explicitly
include the method: keyword. For example:

topaz 1> list method: steps(not list steps)

list method: @anObjectSpec
Lists the category and source of the method with the given objectId. You can also enter
this command as list imethod:.

list classmethod: selectorSpec
Lists the category and source of the given class method selector for the current class.
You can also enter this command as list cmethod:.

list classmethod: @anObjectSpec
Lists the category and source of the method with the given objectId. You can also enter
this command as list cmethod:.

list
Lists the source code of the active method context. See Chapter 2, “Debugging Your
GemStone Smalltalk Code.

list @anObjectSpec
Lists the source code of the GsNMethod or ExecBlock with the specified objectId. That
method, or the block’s home method, becomes the default method for subsequent
list or disassem commands.

Listing Step Points

list step
Lists the source code of the current frame, and display only the step point
corresponding to the step point of the current frame.

list steps
Lists the source code of the current frame, and displays step points in that source code.

list steps method: selectorSpec
Lists the source code of the specified instance method for the current class, and
displays all step points (allowable breakpoints) in that method. For example:

topaz 1> set class String
topaz 1> list steps method: includesValue:
 includesValue: aCharacter
 * ^1 *******

 "Returns true if the receiver contains aCharacter, false
 otherwise. The search is case-sensitive."

 <primitive: 94>
 aCharacter _validateClass: AbstractCharacter .
 * ^2 *******
 ^ self includesValue: aCharacter asCharacter .
 * ^5 ^4 ^3 *******

You can use the break command to set method breakpoints before assignments, mes-
sage sends, or method returns. As shown here, the position of each method step point
94 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
is marked with a caret and a number. Each line of step point information is indicated
by asterisks (*).

For more information about method step points, see Chapter 2, “Debugging Your
GemStone Smalltalk Code.

list steps classmethod: selectorSpec
Lists the source code of the specified class method for the current class, and displays
all step points in that method.

Listing Breakpoints

You can use the break list command to list all currently set breakpoints. For more
information about using breakpoints, see Chapter 2, “Debugging Your GemStone
Smalltalk Code”.

list breaks
Lists the source code of the current frame, and displays the step points for the method
breakpoints currently set in that method. Disabled breakpoints are displayed with
negative step point numbers.

list breaks method: selectorSpec
Lists the source code of the specified instance method for the current class, and
displays the method breakpoints currently set in that method. For example:

topaz 1> list breaks method: <
 < aCharCollection

 "Returns true if the receiver collates before the
 argument. Returns false otherwise.

 The comparison is case-insensitive unless the receiver
 and argument are equal ignoring case, in which case
 upper case letters collate before lower case letters.
 The default behavior for SortedCollections and for
 the sortAscending method in UnorderedCollection is
 consistent with this method, and collates as follows:

 #('c' 'MM' 'Mm' 'mb' 'mM' 'mm' 'x') asSortedCollection

 yields the following sort order:

 'c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x'
 "

 <primitive: 28>
 (aCharCollection _stringCharSize bitAnd: 16r7) ~~ 0 ifTrue:[
 ^ (DoubleByteString withAll: self) < aCharCollection .
].
 aCharCollection _validateClass: CharacterCollection .
 * ^2 *******
 ^ aCharCollection > self
April 2014 GemTalk Systems 95

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
list breaks classmethod: selectorSpec
Lists the source code of the specified class method for the current class, and displays
the method breakpoints currently set in that method.
96 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
LISTW
L

For the method implied by the current stack frame, limit the list to the number of source
lines defined by the set listwindow command. The list is centered around the current
insertion point for the frame.

For example:

topaz 1> stk
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> frame 4
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0

topaz 1> listw
 / aNumber

 "Returns the result of dividing the receiver by aNumber."

 <primitive: 10>
 (aNumber _isInteger) ifTrue:[
 (aNumber == 0) ifTrue: [^ self _errorDivideByZero].
 * ^6

 ^ Fraction numerator: self denominator: aNumber
].
 ^ super / aNumber

The listw command cannot be abbreviated, other than by l.
April 2014 GemTalk Systems 97

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
LOADUA aFileName
Loads the application user action library specified by aFileName. This command must be
used before login.

This command cannot be abbreviated.

User action libraries contained user-defined C functions to be called from GemStone
Smalltalk. See the GemBuilder for C manual for information about dynamically loading
user action libraries.
98 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
LOGIN
Lets you log in to a GemStone repository. Before you attempt to log in to GemStone, you’ll
need to use the set command—either interactively or in your Topaz initialization file—to
establish certain required login parameters. The required parameters for network
communications are:

set gemnetid:
name of the GemStone service on the host computer (defaults to gemnetobject for
the RPC version (topaz command) or gcilnkobj for the linked version (topaz -l
command)

set gemstone:
name of the Stone (repository monitor) process, including node and protocol
information in the form of a network resource string, if necessary. Appendix B
describes network resource string syntax.

set username:
your GemStone user ID.

set password:
your GemStone password. If you do not specify a password (for security reasons, for
example), Topaz prompts you for it.

set hostusername:
your user account on the host computer. Required for the RPC version of Topaz or for
RPC sessions spawned by the linked version.

set hostpassword:
your password on the host computer. Required for the RPC version of Topaz or for
RPC sessions spawned by the linked version of Topaz. If you enter this command
without a password, Topaz prompts you for it.

Topaz allows you to run your Gem (GemStone session), Stone (repository monitor), and
Topaz processes on separate network nodes. For more information about this, see the
discussion of set gemnetid and set gemstone.

If you are using linked Topaz (topaz -l), also note the following:

If the gemnetid is set to anything other than '' (null) or gcilinkobj, Topaz starts an
RPC session instead of a linked one.

Topaz can only be linked with a single GemStone session process. If you issue the
login command to create multiple sessions, the new sessions are RPC rather than
linked.

You cannot use the set command to run Gem and Topaz on separate nodes for the
linked session (obviously). However, you may still run the Stone process on a
separate node. For any RPC sessions started from the linked version, you may run the
Gems on separate nodes from Topaz.

For more information about logging in to GemStone, see the description of set on
page 130. Also see the section of Chapter 1 entitled “Logging In to GemStone.”
April 2014 GemTalk Systems 99

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
LOGOUT
Logs out the current GemStone session. This command aborts your current transaction.
Your local variables (created with the define command) will no longer have valid
definitions when you log in again.

This command cannot be abbreviated.
100 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
LOGOUTIFLOGGEDIN
If logged in, logs out the current GemStone session. If there is no current session, does not
increment the Topaz error count.

As with logout (page 100), this command aborts your current transaction. Your local
variables (created with the define command) will no longer have valid definitions when
you log in again.

This command cannot be abbreviated.
April 2014 GemTalk Systems 101

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
LOOKUP (METH | METHOD | CMETH | CMETHOD)
selectorSpec
LOOKUP className [CLASS] selectorSpec

The lookup command is used in conjunction with the set command to search upwards
through the hierarchy of superclasses to locate the implementation of a given method.
Related commands include senders and implementors.

The lookup command also accepts the text generated in stack frame, so you can copy and
paste from a stack frame to lookup a method.

Finding and Listing Methods

lookup classmethod selectorSpec
Lists the source code of the specified class method for the current class, or searching
the superclasses, the first superclass that implements this method. (May be abbreviated
as lookup cmeth.)

lookup method selectorSpec
Lists the source code of the specified instance method for the current class, or searching
the superclasses, the first superclass that implements this method. (May be abbreviated
as lookup meth.)

topaz 1> set class Symbol
topaz 1> lookup meth match:

category: 'Comparing'
method: CharacterCollection
match: prefix

"Returns true if the argument prefix is a prefix of the
 receiver, and false if not. The comparison is
 case-sensitive."

self size == 0 ifTrue: [^ prefix size == 0].
^ self at: 1 equals: prefix
% [GsMethod objId 2198273]

lookup className selectorSpec
Lists the source code of the specified instance method for the given class, or searching
the superclasses, the first superclass that implements this method. (The className
argument may not be meth, method, cmeth, or classmethod.)

lookup className class selectorSpec
Lists the source code of the specified class method for the given class, or searching the
superclasses, the first superclass that implements this method. (The className
argument may not be meth, method, cmeth, or classmethod.)
102 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
Pasting from stack frames

When you are stepping through code or examining the call stack for an error, topaz
displays stack frames containing the individual message sends. You can cut and paste the
printed methods into the lookup command, to lookup the source code that was executed.

For example:

topaz 1> run
1 / 0
%
ERROR 2026 , a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, attempt to divide 1 by zero (ZeroDivide)

topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

select the section of the line after the frame number and before the step point, and use that
as an argument to lookup:

topaz 1> lookup SmallInteger (Number) >> _errorDivideByZero
 category: 'Error Handling'
method: Number
_errorDivideByZero

"Generates a divide by 0 error."

^ ZeroDivide new _number: 2026 ; reason: 'numErrIntDivisionByZ-
ero';
 dividend: self ;
 signal
%

April 2014 GemTalk Systems 103

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
METHOD[: aClassName]
Compiles an instance method for the class whose name is given as a parameter. The class
of the method you compile will automatically be selected as the current class. If you don’t
supply a class name, the method is compiled for the current class, as defined by the most
recent set class:, list categoriesin:, method:, classmethod:, removeAllMethods,
removeAllClassMethods, or fileout class: command.

Text of the method should follow this command on subsequent lines. The method text is
terminated by the first line that contains a % character in column 1. For example:

topaz 1> method: Animal
habitat
 ^habitat
%

Topaz sends the method’s text to GemStone for compilation and inclusion in the current
category of the specified class. If you haven’t yet selected a current category, the new
method is inserted in the default category, “as yet unspecified.”
104 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
NBRESULT
Wait for and display the result of a previous nbrun call. This call may be preceded by a set
session to switch to the session of an outstanding nbrun; otherwise, the current Topaz
session is used.

May be immediately preceded by expectvalue or expectbug, provided that the expect
commands contain only Integers or numerically coded OOPS (i.e. @NNN), so that no
GemStone code is executed before the nbresult.

If the nbrun has compilation errors, those will be displayed by the nbresult. If there is no
outstanding nbrun for the session the result is:

 [276 sz:0 cls: 76289 UndefinedObject] remoteNil

Note that nonblocking operations do block in linked sessions, and in a linked session the
result with no outstanding nbrun is nil, not remoteNil.

This command is the equivalent of calling the GemBuilder for C function GciNbEnd.
April 2014 GemTalk Systems 105

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
NBRUN
Similar to run, but execution is nonblocking, so the application can proceed with non-
GemStone tasks while the expression is executed. To get the results of the execution, use
nbresult.

In a linked session, nbrun is blocking (necessarily). In this case a warning message is
displayed. For example:

topaz 1> nbrun
Time now
%
Current session not remote, nbrun executing synchronously

topaz 1> nbresult
09:48:17

nbrun should not be immediately preceded by expect commands, since this command
has no result. May be followed by a set session and another nbrun to start an execution in
another session.

The text of this command is not accessible from edit last.

This command is the equivalent of calling the GemBuilder for C function GciNbExecute.
106 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
NBSTEP
Similar to step, but execution is nonblocking. To get the results of the execution, use
nbresult.

In a linked session, nbstep is blocking (necessarily). In this case a warning message is
displayed.

Should not be immediately preceded by expect commands, since this command has no
result. May be followed by a set session and another nbrun or nbstep to start an
execution in another session.

This command is the equivalent of calling the GemBuilder for C function GciNbStep.
April 2014 GemTalk Systems 107

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
OBJ1 anObjectSpec
OBJ2 anObjectSpec

Equivalent to the object command, but with the following difference: results are
displayed at level 1 (if obj1) or level 2 (if obj2), with offsets of instance variables shown
as one-based. After execution, previous settings for level and omit|display
zerobased are restored.

These commands cannot be abbreviated.
108 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
OBJ1Z anObjectSpec
OBJ2Z anObjectSpec

Equivalent to the object command, but with the following difference: results are
displayed at level 1 (if obj1) or level 2 (if obj2), with offsets of instance variables shown
as zero-based. After execution, previous settings for level and omit|display
zerobased are restored.

These commands cannot be abbreviated.
April 2014 GemTalk Systems 109

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
OBJECT anObjectSpec [AT: anIndex [PUT: anObjectSpec]]
Provides structural access to GemStone objects, allowing you to peek and poke at objects
without sending messages. The first anObjectSpec argument is an object specification in
one of the Topaz object specification formats. All formats described in “Specifying
Objects” on page 34 are legal in object commands.

You can use local variables (created with the define command) in object commands. The
local definition of a symbol always overrides any definition of the symbol in GemStone.
For example, if you defined the local variable thirdvar, and your UserGlobals
dictionary also defined a GemStone symbol named thirdvar, the definition of that
GemStone symbol would be ignored in object commands.

object anObjectSpec at:anIndex
Returns the value of an instance variable within the designated object at the specified
integer offset. You can string together at: parameters after object to descend as far as
you like into the object of interest.

As far as object at: is concerned, named and indexed instance variables are both num-
bered, and indexed instance variables follow named instance variables when an object
has both. That is, if an indexable object also had three named instance variables, the
first indexed field would be addressed with object theIdxObj at:4.

Nonsequenceable collections are also considered indexable via object at:.

object anObjectSpec at: anIndex put: anotherObjectSpec
Lets you store values into instance variables. This command stores the second
anObjectSpec object into the first anObjectSpec object at the specified integer offset.

You cannot store into an NSC with object at: put:, although you can scrutinize its ele-
ments with object at:.

CAUTION
Because object at: put: bypasses all the protections built into the GemStone
Smalltalk kernel class protocol, you risk corrupting your repository whenever you
permanently modify objects with this command.

The following example shows how you could use object at: put: to store a new String in
MyAnimal’s habitat instance variable:

topaz 1> object MyAnimal at: 3 put: 'pond'
an Animal
 name nil
 favoriteFood nil
 habitat pond

Like object at:, the object at: put: command can take a long sequence of parameters. For
example:

topaz 1> object MyAnimal at: 3 at: 1 put: $l
liver

This example stores the character “l” into the first instance variable of MyAnimal’s third
instance variable.
110 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
With this command you can store Characters or SmallIntegers in the range from 0—255
(inclusive) into a byte object. You can also store other byte objects such as Strings. For
example:

topaz 1> object 'this' at: 5 put: ' and that'
this and that

The object at: put: command behaves differently for objects with byte-array and pointer-
array implementations. You may store the following kinds of objects into byte-array type
objects:

Character. This stores the character ‘9’:

topaz 1> object '123' at: 1 put: $9

SmallInteger. This stores a byte with the value 48:

topaz 1> object '123' at: 1 put: 48

Byte arrays. This stores ’b’ and ’c’ at offsets 2 and 3:

topaz 1> object '1234' at: 2 put: 'bc'
April 2014 GemTalk Systems 111

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
OMIT aDisplayFeature
The display and omit commands control the display of instance variable names,
hexadecimal byte values, and OOPs (object-oriented pointers). The omit command turns
off these display attributes, and the display command turns them on.

omit oops
Do not display OOP values with displayed results. (This is the default condition.)

omit bytes
When displaying string objects, do not include the hexadecimal value of each byte.
(This is the default condition.)

omit errorcheck
Disables automatic result recording, stopping the effect of display errorcheck.
Closes the ./topazerrors.log file.

omit names
For each of an object’s named instance variables, do not display the instance variable’s
name along with its value. When you have issued omit names, named instance
variables appear as i1, i2, i3, etc.

omit resultCheck
Disables automatic result checking, stopping the effect of display resultCheck.
Closes the ./topazerrors.log file and stops checking the results of successful run,
printit, etc. commands. You can still check the result of an individual run command
by entering an expectvalue command just before it.

omit pauseonerror
Disables pauses in Topaz execution after errors, stopping the effect of display
pauseonerror. When pause-on-error mode is turned off, the status command output
includes:

omit interactive pause on errors

omit classoops
Disables the display of OOPs of classes along with class names in object display,
stopping the effect of display classoops.

omit lineeditor
Disables the use of the Topaz line editor, stopping the effect of display
lineeditor. (Not available on Windows.)

omit pushonly
Disables the effect of the only keyword in an object push command, stopping the
effect of display pushonly.

omit zerobased
Shows offsets of instance variables as one-based when displaying objects. (This is the
default condition.) To show offsets as zero-based, use the display zerobased
command.

omit stacktemps
Disables effect of display stacktemps.
112 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
OUTPUT (PUSH | APPEND | PUSHNEW | POP) aFileName
[ONLY]

Controls where Topaz output is sent. Normally Topaz sends output to standard output
(stdout): normally the topaz console. This command redirects all Topaz output to a file (or
device) of your choice.

If you specify a host environment name such as $HOME/foo.bar as the output file,
Topaz expands that name to the full filename. If you don’t provide an explicit path
specification, Topaz output is sent to the named file in the directory where you started
Topaz.

As the command names push and pop imply, Topaz can maintain a stack of up to 20
output files, with current interactions captured in the file on top of the stack.

output aFileName

output push aFileName
Sends output to the specified file, as well as echoing to stdout. If the file you name
doesn’t yet exist, Topaz will create it. If you name an existing file, Topaz overwrites it.

To append output to an existing file, precede the file name with an ampersand (&).

The command push must be typed in full, it cannot be abbreviated.

output append aFileName
Sends output to the specified file. If the file you name doesn’t yet exist, Topaz will
create it. If you name an existing file, Topaz will append to it. This behavior is the same
as output push &aFileName.

Although you can abbreviate most other Topaz commands and parameter names,
append must be typed in full.

output pushnew aFileName
Sends output to the specified file. If the file you name doesn’t exist, Topaz will create
it. If you name an existing file, Topaz will create a new file. For a filenames of the form
foo.out, the new filename will be foo_N.out, where where N is some integer
between 1 and 100 (inclusive), and where foo_N.out did not previously exist. If more
than 100 versions of the file exist, the oldest version will be overwritten.

The command push must be typed in full, it cannot be abbreviated.

The aboce output commands will send output to both stdout and the designated file.
Using the only command turns off the echo to stdout.

output aFileName only

output push aFileName only

output append aFileName only

output pushnew aFileName only
Sends output to the specified file, but does not echo that output to stdout.

output pop
Stops output to the current output file (that is, the file most recently named in an
output push command). The file is closed, and output is again sent to the previously
April 2014 GemTalk Systems 113

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
named output file. If there is no previous output file, an error message is issued and
the I/O stacks are reset.

The command push must be typed in full, it cannot be abbreviated.
114 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
PAUSEFORDEBUG [errorNumber]
Provided to assist internal debugging of a session.

With no argument, this command has no effect.

This command cannot be abbreviated.
April 2014 GemTalk Systems 115

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
PKGLOOKUP (METH | METHOD | CMETH | CMETHOD)
selectorSpec
PKGLOOKUP className [CLASS] selectorSpec

Similar to the lookup command, but with one key exception: pkglookup looks first in
GsPackagePolicy state, then in the persistent method dictionaries for each class up the
hierarchy. The pkglookup command does not look at transient (session method)
dictionaries.

For details, see the description of the lookup command on page 102.
116 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
PRINTIT
Sends the text following the printit command to GemStone for execution as GemStone
Smalltalk code, and displays the result. If there is an error in your code, Topaz displays an
error message instead of a legitimate result. GemStone Smalltalk text is terminated by the
first line that contains a % in column 1. For example:

topaz 1> printit
2 + 2
%
4

The text executed between the printit and the terminating % can be any legal GemStone
Smalltalk code, and follows all the behavior documented in the GemStone/S Programming
Guide.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if
any breakpoints are set, execution defaults to interpreted mode. Otherwise, execution
defaults to using native mode.

For details about GemStone configuration parameters, see the System Administration
Guide for GemStone/S 64 Bit.

Note that printit always displays results at level 1, regardless of the current display level
setting (page 91). The printit command does not alter the current level setting. The run
command (page 125) displays according to the current level setting, and the doit
command (page 61) displays results at level 0.
April 2014 GemTalk Systems 117

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
PROTECTMETHODS
After this command, all subsequent method compilations during the current session must
contain either a <protected> or <unprotected> directive.

Used for consistency checking in filein scripts.

This command cannot be abbreviated.
118 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
QUIT [aSmallInt | anObjectSpec]
Leaves Topaz, returning to the operating system. If you are still logged in to GemStone
when you type quit, this aborts your transaction and logs out all active sessions.

You can include an argument (a SmallInteger, or an object specification that resolves to a
SmallInteger) to specify an explicit exitStatus for the Topaz process. If you do not specify
this argument, the exitStatus will be either 0 (no errors occurred during Topaz execution)
or 1 (there was a GCI error or the Topaz errorCount was nonzero).

This command cannot be abbreviated.
April 2014 GemTalk Systems 119

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
RELEASEALL
Empty Topaz's internal buffer of object identifiers (the export set). Objects are placed in
the export set as a result of object creation and certain other object operations. releaseall is
performed automatically prior to each run, doit, printit, or send.

For more information, see the GemStone/S 64 Bit GemBuilder for C manual. This is
equivalent to the GemBuilder for C call GciReleaseOops.
120 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
REMARK commentText
Begins a remark (comment) line. Topaz ignores all succeeding characters on the line. You
can also use an exclamation point (!) in column 1 of a line to signal the beginning of a
comment. Comments are often useful in annotating Topaz batch processing files, such as
test scripts.
April 2014 GemTalk Systems 121

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
REMOVEALLCLASSMETHODS [aClassName]
Removes all class methods from the class whose name you give as a parameter. The
specified class automatically becomes the current class.

If you don’t supply a class name, the methods are removed from the current class, as
defined by the most recent set class:, list categoriesin:, method:, or classmethod:
command.

This command cannot be abbreviated.
122 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
REMOVEALLMETHODS [aClassName]
Removes all instance methods from the class whose name you give as a parameter. The
specified class automatically becomes the current class.

If you don’t supply a class name, the methods are removed from the current class, as
defined by the most recent set class:, list categoriesin:, method:, or fileout class:
command.

This command cannot be abbreviated.
April 2014 GemTalk Systems 123

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
RUBYCLASSMETHOD
RUBYHIERARCHY
RUBYIMPLEMENTORS
RUBYLIST
RUBYLOOKUP
RUBYMETHOD
RUBYRUN

These commands are used with Ruby applications, but not with Smalltalk applications.
124 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
RUN
Sends the text following the run command to GemStone for execution as GemStone
Smalltalk code, and displays the result.

If there is an error in your code, Topaz displays an error message instead of a legitimate
result.

GemStone Smalltalk text is terminated by the first line that contains a % in column 1. For
example:

topaz 1> run
2 + 2
%
4

The text executed between the run and the terminating % can be any legal GemStone
Smalltalk code, and follows all the behavior documented in the GemStone/S Programming
Guide.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if
any breakpoints are set, execution defaults to interpreted mode. Otherwise, execution
defaults to using native mode. For details about GemStone configuration parameters, see
the System Administration Guide for GemStone/S 64 Bit.

The run command is similar to printit, with one significant difference. The run command
uses the current display level setting (page 91), whereas printit always displays the result
as if level 1 were the most recent level command.
April 2014 GemTalk Systems 125

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
RUNENV
This command is used with Ruby applications, but not with Smalltalk applications.
126 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
SEND anObjectSpec aMessage
Sends a message to an object.

The send command’s first argument is an object specification identifying a receiver. The
object specification is followed by a message expression built almost as it would be in
GemStone Smalltalk, by mixing the keywords and arguments. For example:

topaz 1> level 0
topaz 1> send System myUserProfile
a UserProfile
topaz 1> send 1 + 2
3
topaz 1> send @10443 deleteEntry: @33234

There are some differences between send syntax and GemStone Smalltalk expression
syntax. Only one message send can be performed at a time with send. Cascaded messages
and parenthetical messages are not recognized by this command. Also, each item must be
delimited by one or more spaces or tabs.

All Topaz object specification formats (as described in “Specifying Objects” on page 34)
are legal in send commands.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if
any breakpoints are set, execution defaults to interpreted mode. Otherwise, execution
defaults to using native mode.

For details about GemStone configuration parameters, see the System Administration
Guide for GemStone/S 64 Bit.
April 2014 GemTalk Systems 127

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
SENDENV
This command is used with Ruby applications, but not with Smalltalk applications.
128 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
SENDERS selectorSpec
Displays a list of all classes that are senders of the given selectorSpec (either a String or a
Symbol). For example:

topaz 1> senders asByteArray
ByteArray >> copyReplaceAll:with:
ByteArray >> copyReplaceFrom:to:with:

This command is equivalent to the following

topaz 1> doit
ClassOrganizer new sendersOfReport: aString
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default. For details about GemStone configuration
parameters, see the System Administration Guide for GemStone/S 64 Bit.
April 2014 GemTalk Systems 129

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
SET aTopazParameter [aParamValue]
The set command allows you to set session-specific values for your topaz sesssion. This
includes the GemStone login parameters, and settings that affect your topaz user
interface.

You can combine two or more set items on one command line, and you can abbreviate
token names to uniqueness. For example:

topaz 1> set gemstone gs64stone user DataCurator

set cachename: aString
This option is valid for linked sessions only, not for RPC sessions. The colon is not
required.

Sets the name that will be used for this session in cache statistics collected by statmon-
itor. Setting the name prior to login allows statistics to be collected and displayed
under a single meaningful name, rather than being split between the initial default
name and a later meaningful name assigned using System class >> cache-
Name:.

set category: aCategory
Sets the current category, the category for subsequent method compilations. You must
be logged in to use this command. If you try to compile a method without first selecting
a category, the new method is inserted in the default category “as yet
unspecified.” The set category: command has the same effect as the category:
command.

If the category you name doesn’t already exist, Topaz will create it when you first
compile a method.

Specifying a new class with set class does not change your category. However, when
you edit or fileout a method, that method’s category becomes the current category.

The current category is cleared by the logout, login, and set session commands.

set class: aClassName
Sets the current class. You must be logged in to use this command. After setting the
current class, you can list its categories and methods with the list categories command.
You can select a category to work with through either the set category: or category:
command.

The current class may also be redefined by the list categoriesin:, method:, class-
method:, removeAllMethods, removeAllClassMethods, and fileout class: com-
mands.

The current class is cleared by the logout, login, and set session commands.

To display the name of the current class, issue the set class command without a class
name.

set compile_env: anInteger
Not normally used in Smalltalk. Sets the compilation environmentId used for method
complications and run, printit, etc. anInteger must be between 0 and 255 and is 0 by
default.
130 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
set editorname: aHostEditorName
Sets the name of the editor you want to use in conjunction with the edit command. For
example:

topaz 1> set editorname: vi

The default is set from your $EDITOR environment variable, if it is defined.

set gemnetid: aServiceName
aServiceName is a network resource string specifying the name of the GemStone service
(that is, the host process to which your Topaz session will be connected) and its host
computer.

For the RPC version of Topaz the default gemnetid parameter is gemnetobject,
which is the GemStone service name in most GemStone installations. You may also
use gemnetdebug or your own custom gem service. RPC versions of Topaz cannot
start linked sessions.

For linked Topaz (started with topaz -l), the default gemnetid is gcilnkobj. Use the
status command to verify that this parameter is gcilnkobj or ''. This makes the first
session to log in a linked session. It is only possible to have one linked session per
topaz process. If gemnetid is set to a gem service such as gemnetobject, topaz -l
starts RPC sessions. In this case, the lowest number for the prompt is topaz 2>,
because topaz 1> is reserved for a linked session. After you start the RPC session
you can still start a linked session by resetting the gemnetid to an empty string:

set gemnetid: ''

You can run your GemStone session (Gem), repository monitor (Stone) process, and
your Topaz processes on separate nodes in your network. The one exception is the
linked Topaz session, when Topaz and the Gem run as a single process. Network
resource strings allow you to designate the nodes on which the Gem and Stone pro-
cesses run. For example, a Gem process called gemnetobject on node lichen could be
described in network resource string syntax as:

!@lichen!gemnetobject

To specify a Gem running on the current node, omit the node portion of the string, and
specify only the Gem name: gemnetobject. Appendix B describes network resource
string syntax.

set gemstone: aGemStoneName
Specifies the name of the GemStone you want to log in to. The standard name is
gs64stone.

You can run your GemStone session (Gem), repository monitor (Stone) process, and
your Topaz processes on separate nodes in your network. The one exception is the
linked Topaz session, when Topaz and the Gem run as a single process. Network
resource strings allow you to designate the nodes on which the Gem and Stone pro-
cesses run. For example, a Stone process called gs64stone on node lichen could be
described in network resource string syntax as:

!@lichen!gs64stone

To specify a Stone running on the same node as the Gem, omit the node portion of the
string, and specify only the Stone name: gs64stone. Appendix B describes network
resource string syntax.
April 2014 GemTalk Systems 131

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
set history: anInt
Sets the history size of the Topaz line editor. The argument anInt may be between 0 and
1000, inclusive. (Not available on Windows.)

set hostpassword: aPassword
Sets the host password to be used when you next log in. If you don’t include the host
password on the command line, Topaz prompts you for it. Prompted input taken from
the terminal is not echoed. This lets you put a set hostpassword: command in your
Topaz initialization file so that Topaz automatically prompts you for your password.
Note, however, that this command must follow the set hostusername: command.

For a linked Topaz session, set hostpassword has no effect, because no separate Gem
process is created on the host computer. The password is required, however, if you
spawn new sessions while you are running linked Topaz, because the additional ses-
sions are always RPC Topaz.

set hostusername: aUsername
Sets the account name you use when you log in to the host computer. When you run
Topaz, a Gem (GemStone session) process is started on the host computer specified by
the set gemnetid: command. The set hostusername: command tells Topaz which
account you want that process to run under.

To clear the hostusername field, enter:

topaz 1> set hostusername *

For a linked Topaz session, set hostusername has no effect, since no separate Gem
process is created on the host computer.)

set listwindow: anInt
Defines the maximum number of source lines to be listed by the listw command
(page 97).

set nrsdefaults: aNRSheader
Sets the default components to be used in network resource string specifications. The
parameter aNRSheader is a network resource string header that may specify any NRS
modifiers’ default values. The initial value of nrsdefaults is the value of the
GEMSTONE_NRS_ALL environment variable. The Topaz status command shows the
value of nrsdefaults unless it is the empty string.

set password: aGemStonePassword
Sets the GemStone password to be used when you next log in. If you don’t include the
password on the command line, Topaz prompts you for it. Prompted input is taken
from the terminal and not echoed. This lets you put a set password: command in your
Topaz initialization file so that Topaz will automatically prompt you for your
password. Note, however, that this command must follow the set username: command.

set session: aSessionNumber
Connects Topaz to the session whose ID is aSessionNumber. When you log in to
GemStone, Topaz displays the session ID number for that connection. This command
allows you to switch among multiple sessions. (The Topaz prompt always shows the
number of the current session.)
If you specify an invalid session number, an error message is displayed, and the cur-
rent session is retained.
132 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
This command clears the current class and category. After you switch sessions with
set session, your local variables (created with the define command) no longer have
valid definitions.

set sourcestringclass: ClassRangeSpecifier
Sets the class of strings used to instantiate Smalltalk source strings generated by the
run, printit, doit, edit, method, and classmethod commands. This includes any literal
strings in the evaluated code.

This command expects one argument, which must be String orUnicode16. The
options are:

set sourcestringclass String
New instances of literal strings are created as instances of String,
DoubleByteString, or QuadByteString.

set sourcestringclass Unicode16
New instances of literal strings are created as instances of Unicode7, Unicode16, or
Unicode32.

The Topaz status command shows the current setting.

On topaz startup, sourcestringclass is set to String. On login, the setting will be
updated from the setting for #StringConfiguration in the GemStone Globals Symbol-
Dictionary. If #StringConfiguration resolves to Unicode16, then sourcestringclass
will be set to Unicode16.

To avoid misinterpretation of fileouts, the fileout command writes a set sourcestring-
class command at the start of the fileout. A set sourcestringclass command command
within a file only has effect within that file and any nested files.

set stackpad: anInt
Defines the minimum size used when formatting lines in a stack display. The
argument anInt may be between 0 and 256, inclusive. (Default: 45.)

set tab: anInt
Defines the number of spaces to insert when translating a tab (CTRL-I) character when
printing method source strings. The argument anInt may be between 1 and 16,
inclusive. (Default: 8.)

set username: aGemStoneUsername
Establishes a GemStone user ID for the next login attempt.

set limit: anInt
Sets the limit on the number of bytes to display. The equivalent of limit bytes anInt
April 2014 GemTalk Systems 133

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
SHELL [aHostCommand]
When issued with no parameters, this command creates a child process in the host
operating system, leaving you at the operating system prompt. To get back into Topaz,
exit the command shell by typing Control-D (from the UNIX Bourne or Korn shells),
typing logout (from the UNIX C shell), or typing exit (from a DOS shell).

For example, on Windows:

topaz 2> shell
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\GS64\32> dir *.txt
 Volume in drive C is Windows7_OS
 Volume Serial Number is 9ECC-468B

 Directory of C:\GS64\32

02/11/2014 04:38 PM 54,298 open_source_licenses.txt
02/11/2014 04:38 PM 3,209 PACKING.txt
02/11/2014 04:38 PM 104 version.txt
 3 File(s) 57,611 bytes
 0 Dir(s) 135,272,591,360 bytes free

C:\GS64\32>exit

topaz 2>

On UNIX systems, a shell command issued without parameters creates a shell of
whatever type is customary for the user account (C, Bourne, or Korn).

If you supply parameters on the shell command line, they pass to a subprocess as a
command for execution, and the output of the command is shown.

For example:

topaz 1> shell startnetldi -v
startnetldi 3.2.0 BUILD: 64bit-32623

When issued with parameters, shell always creates a shell of the system default type
(either Bourne or Korn).
134 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
SPAWN [aHostCommand]
Included for compatibility with previous versions. See the shell command on page 134.
April 2014 GemTalk Systems 135

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
STACK [aSubCommand]
Topaz can maintain up to 500 simultaneous GemStone Smalltalk process call stacks that
provide information about the GemStone state of execution. Each call stack consists of a
linked list of contexts.

The call stack becomes active, and the stack command becomes accessible, when you
execute GemStone Smalltalk code containing a breakpoint. The stack command allows
you to examine and manipulate the contexts in the active call stack.

Debugging usually proceeds on the active call stack, but you may also save the active call
stack before executing other code, and return to it later.

This command cannot be abbreviated.

Display the Active Call Stack

stack
Displays all of the contexts in the active call stack, starting with the active context. For
each context in the stack display, the following items are displayed:

 the level number

 the class of the GsMethod

 selector of the method

 the environmentId (not used by Smalltalk)

 the current step point (that is, assignment, message send, or method return) within
the method

 the line number of the current step point within the source code of the method

 the receiver and parameters for this context.

 the method temporaries (if display oops is active)

 the OOP of the GsNMethod (if display oops is active)

The resulting display is governed by the setting of other Topaz commands such as
limit, level, and display or omit.

Any further commands that execute GemStone Smalltalk code: run, printit, send,
doit, step, edit last, or edit new text, discards the active call stack unless stack save is
executed.

Here is an example of the stack display:

topaz 1> run
{ 1 . 2 } do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, attempt to divide 1 by zero (ZeroDivide)

topaz 1> stack
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
 receiver a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, attempt to divide 1 by zero
 handleInCextensionBool nil
 res nil
136 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
(skipped 1 evaluationTemps)
2 ZeroDivide (AbstractException) >> signal @2 line 47
 receiver a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, attempt to divide 1 by zero
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
 receiver 1
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0
5 [] in Executed Code @2 line 1
 self nil
 receiver anExecBlock1
 x 1
6 Array (Collection) >> do: @5 line 10
 receiver anArray
 aBlock anExecBlock1
 i 1
(skipped 4 evaluationTemps)
7 Executed Code @2 line 1
 receiver nil
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

stack anInt
Displays contexts in the active call stack, starting with the active context. The argument
anInt indicates how much of the stack to display. For example, if anInt is 1, this
command shows only the active context. If anInt is 2, this command also shows the
caller of the active context, etc.

Display or Redefine the Active Context

stack scope
Displays the current context (Scope is an alternate older name for context or frame). For
example:

topaz 1> stack scope
1 AbstractException >> _signalWith: @6 line 25

stack scope anInt
Redefines the active context within the active call stack and displays the new context.
The integer 1 represents the current context, while the integer 2 represents the caller of
the active context.

stack up
Moves the current context up one level toward the top of the stack and displays the
new context.

stack down
Moves the current context down one level away from the top of the stack and displays
the new context.

stack trim
Trims the stack so that the current context becomes the new top of the stack. Execution
April 2014 GemTalk Systems 137

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
resumes at the first instruction in the method at the new top of the stack. If that method
has been recompiled, stack trim installs the new version of the method. The new top
of the stack must not represent the context of an ExecutableBlock.

For more about this, see the method comments for
GsProcess>>_trimStackToLevel: and
GsProcess>>_localTrimStackToLevel:.

If the stack is trimmed, any resumption of execution will take place in interpreted
mode.

Save the Active Call Stack During Further Execution

When you have an active call stack, and execute any of the commands run, printit, send,
doit, edit last, or edit new text, it results in the current call stack being discarded.

stack save
Save the active call stack before executing any of the commands that normally clear the
stack:.

stack nosave
Cancel the previous stack save.

Display All Call Stacks

stack all
Displays your list of saved call stacks. The list includes the top context of every call
stack (stack 1). For example:

topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
 1: 1 AbstractException >> _signalWith: @6 line 25
*2: 1 Executed Code @3 line 1

The * indicates the active call stack, if one exists. If there are no saved stacks, a mes-
sage to that effect is displayed.

Equivalent to threads (page 149)

Redefine the Active Call Stack

stack change anInt
Sets the active call stack to the call stack indicated by anInt in the stack all command
output, and displays the top context of the newly selected call stack.

Equivalent to thread anInt (page 148).
138 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
For example:

topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
 1: 1 AbstractException >> _signalWith: @6 line 25
*2: 1 Executed Code @3 line 1

topaz 1> stack change 1
Stack 1 , GsProcess 27447553
1 AbstractException >> _signalWith: @6 line 25

topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
*1: 1 AbstractException >> _signalWith: @6 line 25
 2: 1 Executed Code @3 line 1

Remove Call Stacks

stack delete aStackInt
Removes the call stack indicated by aStackInt in the stack all command output.

Topaz maintains up to eight simultaneous call stacks. If all eight call stacks are in use,
you must use this command to delete a call stack before issuing any of the following
commands: run, printit, send, doit, edit last, or edit new text.

Equivalent to thread anInt clear (page 148)

stack delete all
Removes all call stacks.
April 2014 GemTalk Systems 139

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
STATUS
Displays your current login settings and other information about your Topaz session.

For example:

topaz 1> status

 display level: 0
 byte limit: 0
 omit bytes
 display instance variable names
 display oops
 oop limit: 0
 omit automatic result checks
 omit interactive pause on errors
 listwindow: 20
 stackpad: 45
 tab (ctl-H) equals 8 spaces when listing method source
 using line editor
 line editor history: 100
 topaz input is from a tty on stdin
EditorName________ vi

CompilationEnv____ 0
Connection Information:
UserName___________ 'Isaac Newton'
Password __________ (set)
HostUserName_______ 'newtoni'
HostPassword_______ (set)
NRSdefaults________ '#netldi:nldi30'
GemStone___________ 'gs64stone'
GemNetId___________ 'gemnetobject'
GemStone NRS__________'!#netldi:gs64ldi#server!gs64stone'

browsing information:
Class_____________
Category__________ (as yet unclassified)
Source String Class__ String

These settings are set to default values when Topaz starts, and may be modified using the
set command. See page 130 for details on set and the specific settings.
140 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
STEP (OVER | INTO | THRU)
Advances execution to the next step point (assignment, message send, or method return)
and halts. You can use the step command to continue execution of your GemStone
Smalltalk code after an error or breakpoint has been encountered. For examples and other
useful information, see Chapter 2, “Debugging Your GemStone Smalltalk Code.”

step
Equivalent to step over.

step over
Advances execution to the next step point in the current frame or its caller. The current
frame is the top of the stack or the frame specified by the last frame, up, down, stack
scope, stack up, or stack down command.

step into
Advances execution to the next step point in your GemStone Smalltalk code.

step thru
Advances execution to the next step point in the current frame, or its caller, or the next
step point in a block for which current frame's method is the home method.
April 2014 GemTalk Systems 141

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
STK [aSubCommand]
Similar to stack, but does not display parameters and temporaries for each frame. All
frames for the active call stack are displayed, with the current active frame indicated by an
arrow.

For more information on s, see the stack command on page 136.

This command cannot be abbreviated.

topaz 1> printit
{ 1 . 2} do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, An attempt was made to divide 1 by zero. (ZeroDi-
vide)
topaz 1> stk
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
142 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
STRINGS selectorSpec
Displays a list of all methods that contain the given selectorSpec (either a String or a
Symbol) in their source string. Search is case-sensitive; for a case-insensitive search, see
stringsic. This command cannot be abbreviated.

For example:

topaz 1> strings ChangeUserId
UserProfile >> privileges
UserProfile >> userId:password:
UserProfile >> _privileges
UserProfileSet >> _oldUserId:newUserId:for:

The strings command is equivalent to the following:

topaz 1> doit
ClassOrganizer new strings: aString
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default.For details about GemStone configuration
parameters, see the System Administration Guide for GemStone/S 64 Bit.
April 2014 GemTalk Systems 143

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
STRINGSIC selectorSpec
Displays a list of all methods that contain the given selectorSpec (either a String or a
Symbol) in their source string. Search is case-insenstive; for a case-sensitive search, see the
strings command. This command cannot be abbreviated.

The stringsic command is equivalent to the following:

topaz 1> doit
ClassOrganizer new stringsIc: aString
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default. For details about GemStone configuration
parameters, see the System Administration Guide for GemStone/S 64 Bit.
144 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
SUBCLASSES [aClassName]
Prints immediate subclasses of the specified class. If you don’t specify a class name, prints
subclasses of the current class.

topaz 1> subclasses MultiByteString
DoubleByteString
QuadByteString

topaz 1> set class DoubleByteString
topaz 1> subclasses
DoubleByteSymbol
Unicode16
April 2014 GemTalk Systems 145

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
TEMPORARY [aTempName[/anInt] [anObjectSpec]]
Displays or redefines the value of one or more temporary variables in the current frame
of the current stack. For examples and other useful information, see Chapter 2,
“Debugging Your GemStone Smalltalk Code.”

All Topaz object specification formats (as described in “Specifying Objects” on page 34)
are legal in temporary commands.

temporary
Displays the names and values of all temporary objects in the current frame.

temporary aTempName
Displays the value of the first temporary object with the specified name in the current
frame.

topaz 1> temporary preferences
preferences an Array

temporary aTempName anObjectSpec
Redefines the specified temporary in the current frame to have the value anObjectSpec.

temporary anInt
Displays the value of the temporary at offset n in the current frame. Use this form of
the command to access a temporary with a duplicate name, because temporary
aTempName always displays the first temporary with the specified name.

temporary anInt anObjectSpec
Redefines the temporary at offset n in the current frame to have the value anObjectSpec.

For example, to view the temporary variable values:

topaz 1> break classmethod String withAll:
topaz 1> run
String withAll: 'abc'
%
a Breakpoint occurred (error 6005), Method breakpoint encountered.
1 String class >> withAll: @1 line 1
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString abc
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

and to modify the value of the temporary:

topaz 1> temporary aString 'xyz'
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString xyz
2 Executed Code @2 line 1
 receiver nil
146 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

the method will return the modified value:

topaz 1> continue
xyz

When the Topaz command display oops has been set, temporaries displayed as .tN are
un-named temporaries private to the virtual machine. The example below displays the
temporaries used in evaluation of the optimized to:do:, both as shown by the frame
command and by the temporary command.

topaz 1> run
| a |
1 to: 25 do: [:j | a := j. a pause]
%
...
topaz 1> display oops
topaz 1> frame 5
5 Executed Code @4 line 2 [methId 25464833]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil
 a [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 j [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t1 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t2 [202 sz:0 cls: 74241 SmallInteger] 25 == 0x19
 .t3 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t4 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
topaz 1> temporary
 a [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 j [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t1 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t2 [202 sz:0 cls: 74241 SmallInteger] 25 == 0x19
 .t3 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t4 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
April 2014 GemTalk Systems 147

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
THREAD [anInt] [CLEAR]
thread

Displays the currently selected GemStone process from among the stack saved from
the last error, or from those retrieved by the most recent threads command.

topaz 1> thread
Stack 0 , GsProcess 27462401
1 Animal >> habitat @1 line 1

thread anInt
Changes the currently selected GemStone process. You can specify an integer value
from among those shown in the most recent threads command.

topaz 1> thread 1
Stack 1 , GsProcess 27447553
1 AbstractException >> _signalWith: @6 line 25

thread anInt clear
Clears the selected GsProcess from the Topaz stack cache.
148 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
THREADS [CLEAR]
threads

Forces any dirty instances of GsProcess cached in VM stack memory to be flushed to
object memory. Then executes a message send of

ProcessorScheduler>>topazAllProcesses

and retrieves and displays the list of processes.

topaz 1> threads
0: 27462401 debug

=> 1: 27447553 debug (topaz current)
2: 27444225 debug

threads clear
Clears the Topaz cache of all instances of GsProcess.
April 2014 GemTalk Systems 149

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
TIME
The first execution of time during the life of a topaz process displays current date and
time from the operating system clock, total CPU time used by the topaz process.

Subsequent execution of time will display in addition elapsed time since the previous
time command, CPU time used by the topaz process since the previous time command.

The time command can be executed when not logged in as well as after login.

topaz 1> time
02/14/2014 12:12:37.612 PST
CPU time: 0.050 seconds

topaz 1> run
Array allInstances size
%
23515

topaz 1> time
02/14/2014 12:12:57.082 PST
CPU time: 0.100 seconds
Elapsed Real time: 19.470 seconds
Elapsed CPU time: 0.050 seconds
150 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
TOPAZPAUSEFORDEBUG [errorNumber]
TOPAZWAITFORDEBUG
STACKWAITFORDEBUG

These functions are provided to assist in internal debugging of sessions, and are not
designed for customer use.
April 2014 GemTalk Systems 151

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
UNPROTECTMETHODS
Cancels the effect of protectmethods, which is used for consistency checking in filein
scripts.

This command cannot be abbreviated.
152 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
UP [anInteger]
In the current stack, change the current frame to be the caller of the current frame, and
display the new selected frame. The optional argument anInteger specifies how many
frames to move up. If no argument is supplied, the scope will go up one frame.

The behavior is similar to stack up, except that stack up does not accept an argument, and
the frame display for stack up does not includes parameters and temporaries for the
frame. stack up is described on page 137.

topaz 1> run
{ 1 . 2 } do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, attempt to divide 1 by zero (ZeroDivide)
topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> up 4
5 [] in Executed Code @2 line 1
 self nil
 receiver anExecBlock1
 x 1

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
==> 5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
April 2014 GemTalk Systems 153

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
UPR [anInteger]
UPRB [anInteger]

These commands are used with Ruby applications, but not with Smalltalk applications.
154 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Command Syntax
WHERE [anInteger | aString]
Displays the current call stack, with one line per frame.

where
Displays all lines of the current call stack. Equivalent to the stk command.

topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

where anInteger
Displays the specified number of frames of the stack, starting with the current frame.

topaz 1> where 3
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7

where aString
Searches all frames in the current stack, and displays only those for which the output
of where for that frame matches a case-sensitive search for aString anywhere in that
frame's output (not including the frame number or ==> marker at the start of the
frame's line). The current frame is set to the first frame matched by the search.

The string must not begin with a decimal digit, whitespace, or any of the three charac-
ters (' + -), and must not contain whitespace. To specify a string that contains digits or
whitespace characters, enclose it in single-quotes. For example:

topaz 1> where error
==> 3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
April 2014 GemTalk Systems 155

Command Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
WHRB [anInteger]
WHRUBY [anInteger]

These commands are used with Ruby applications, but not with Smalltalk applications.
156 GemTalk Systems April 2014

Appendix

A Topaz Command-Line
Syntax
When Topaz is invoked with the -l option, it initiates the program with a linked, as
opposed to a remote (RPC) session. Other command-line options give additional control.
This section presents the formal command syntax followed by a complete list of command-
line options.

A.1 Command-Line Syntax
By default the topaz command invokes an RPC executable. This is the same as specifying
the -r option on the topaz command line:

topaz [-r] [-n netLdiName] [-q] [-I topazini] [-i]
[-u useName] [-h] [-v]

When invoked with the -l option, Topaz runs in linked mode. The command line accepts
additional options that apply only when starting linked version:

topaz -l [-n netLdiName] [-e exeConfig] [-z systemConfig] [-T
tocSizeKB] [-q] [-I topazini] [-i] [-u useName]
 [-h] [-v]

A.2 Options
Arguments are optional. Other than the -l option to specify linked topaz, these arguments
may not be needed for a standard GemStone configuration.

-e exeConfig
Executable-specific configuration file. If this argument is not present, the Topaz
command uses the customary GEMSTONE_EXE_CONF search sequence described in
the “Configuration Files” chapter of your GemStone/S 64 Bit System Administration
Guide. Only applies to linked sessions, and not available on Windows.

-h Print a usage line. Do not start topaz.

-i Ignore the topaz startup file .topazini (or on Windows, topazini.tpz).
April 2014 GemTalk Systems 157

Options GemStone/S 64 Bit 3.2 Topaz Programming Environment
-I topazini
Specify a complete path and file to a topazini initialization files, and use this rather
then any .topazini (or on windows, topazini.tpz) in the default location.

-l Invoke the linked version of Topaz. In this version, Topaz and Gem (the GemStone
session) exist as a single process. The linked version can run only one linked session;
additional sessions are initiated as RPC sessions.

If subsequent login parameters set gemnetid to a version of gemnetobject, topaz will
login RPC rather than linked, regardless of the -l option.

Not available on Windows.

-n netLdiName
The name of the NetLDI to use when connecting to the server. If you don’t explicitly
specify this parameter, Topaz will look for a NetLDI process with the name specified
by the GEMSTONE_NRS_ALL environment variable, with the name ‘gs64ldi’.

-q Start Topaz in quiet mode, suppressing printout of the banner and other information.

-r Invoke the remote procedure call version of Topaz. In this version, Gems exist as
separate processes; linked sessions are not allowed. If you intend to run multiple
GemStone sessions simultaneously, or if you will be running Topaz and your
GemStone session on separate nodes, then you must use this version. This is the only
type of login supported on Windows. If you don’t specify -l or -r, Topaz defaults to the
remote procedure call version.

-T tocSizeKB
Sets the GEM_TEMPOBJ_CACHE_SIZE that will be used. This overrides any settings
provided in configuration files passed as arguments with the -e or -z options. Only
applies to linked sessions, and not available on Windows.

-u descriptiveString
Pass a string to the topaz executable, which is not used by the executable itself, but may
be useful in identifying processes in OS utilities such as top or ps.

-v Print topaz version, do not start topaz.

-z systemConfig
System configuration file. If this argument is not present, the topaz command uses the
customary GEMSTONE_SYS_CONF search sequence described in the “Configuration
Files” chapter of your GemStone/S 64 Bit System Administration Guide. Only applies to
linked sessions, and not available on Windows.
158 GemTalk Systems April 2014

Appendix

B Network Resource
String Syntax
This appendix describes the syntax for network resource strings. A network resource string
(NRS) provides a means for uniquely identifying a GemStone file or process by specifying
its location on the network, its type, and authorization information. GemStone utilities use
network resource strings to request services from a NetLDI.

B.1 Overview
One common application of NRS strings is the specification of login parameters for a
remote process (RPC) GemStone application. An RPC login typically requires you to
specify a GemStone repository monitor and a Gem service on a remote server, using NRS
strings that include the remote server’s hostname. For example, to log in from Topaz to a
Stone process called “gs64stone” running on node “handel”, you would specify two NRS
strings:

topaz> set gemstone !@handel!gs64stone
topaz> set gemnetid !@handel!gemnetobject

Many GemStone processes use network resource strings, so the strings show up in places
where command arguments are recorded, such as the GemStone log file. Looking at log
messages will show you the way an NRS works. For example:

Opening transaction log file for read,
filename = !@oboe#dbf!/user1/gemstone/data/tranlog0.dbf

An NRS can contain spaces and special characters. On heterogeneous network systems,
you need to keep in mind that the various UNIX shells have their own rules for interpreting
these characters. If you have a problem getting a command to work with an NRS as part of
the command line, check the syntax of the NRS recorded in the log file. It may be that the
shell didn’t expand the string as you expected.

NOTE
Before you begin using network resource strings, make sure you understand the
behavior of the software that will process the command.
April 2014 GemTalk Systems 159

Defaults GemStone/S 64 Bit 3.2 Topaz Programming Environment
See each operating system’s documentation for a full discussion of its own rules about
escaping certain characters in NRS strings that are entered at a command prompt.

If there is a space in the NRS, you can replace the space with a colon (:), or you can enclose
the string in quotes (" "). For example, the following network resource strings are
equivalent:

% waitstone !@oboe#auth:user@password!gs64stone
% waitstone "!@oboe#auth user@password!gs64stone"

B.2 Defaults
The following items uniquely identify a network resource:

 • communications protocol— such as TCP/IP

 • destination node—the host that has the resource

 • authentication of the user—such as a system authorization code

 • resource type—such as server, database extent, or task

 • environment—such as a NetLDI, a directory, or the name of a log file

 • resource name—the name of the specific resource being requested.

A network resource string can include some or all of this information. In most cases, you
need not fill in all of the fields in a network resource string. The information required
depends upon the nature of the utility being executed and the task to be accomplished.
Most GemStone utilities provide some context-sensitive defaults. For example, the Topaz
interface prefixes the name of a Stone process with the #server resource identifier.

When a utility needs a value for which it does not have a built-in default, it relies on the
system-wide defaults described in the syntax productions in “Syntax” on page 161. You
can supply your own default values for NRS modifiers by defining an environment
variable named GEMSTONE_NRS_ALL in the form of the nrs-header production described
in the Syntax section. If GEMSTONE_NRS_ALL defines a value for the desired field, that
value is used in place of the system default. (There can be no meaningful default value for
“resource name.”)

A GemStone utility picks up the value of GEMSTONE_NRS_ALL as it is defined when the
utility is started. Subsequent changes to the environment variable are not reflected in the
behavior of an already-running utility.

When a client utility submits a request to a NetLDI, the utility uses its own defaults and
those gleaned from its environment to build the NRS. After the NRS is submitted to it, the
NetLDI then applies additional defaults if needed. Values submitted by the client utility
take precedence over those provided by the NetLDI.

B.3 Notation
Terminal symbols are printed in boldface. They appear in a network resource string as
written:

#server
160 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Syntax
Nonterminal symbols are printed in italics. They are defined in terms of terminal symbols
and other nonterminal symbols:

username ::= nrs-identifier

Items enclosed in square brackets are optional. When they appear, they can appear only
one time:

address-modifier ::= [protocol] [@ node]

Items enclosed in curly braces are also optional. When they appear, they can appear more
than once:

nrs-header ::= ! [address-modifier] {keyword-modifier} !

Parentheses and vertical bars denote multiple options. Any single item on the list can be
chosen:

protocol ::= (tcp | serial | default)

B.4 Syntax
nrs ::= [nrs-header] nrs-body

where:

nrs-header ::= ! [address-modifier] {keyword-modifier} [resource-modifier]!
All modifiers are optional, and defaults apply if a modifier is omitted. The value of an
environment variable can be placed in an NRS by preceding the name of the variable
with “$”. If the name needs to be followed by alphanumeric text, then it can be
bracketed by “{” and “}”. If an environment variable named foo exists, then either of
the following will cause it to be expanded: $foo or ${foo}. Environment variables are
only expanded in the nrs-header. The nrs-body is never parsed.

address-modifier ::= [protocol] [@ node]
Specifies where the network resource is.

protocol ::= (tcp | serial | default)
Supports heterogeneous connections by predicating address on a network type. If no
protocol is specified, GCI_NET_DEFAULT_PROTOCOL is used. On UNIX hosts, this
default is tcp.

node ::= nrs-identifier
If no node is specified, the current machine’s network node name is used. The
identifier may also be an Internet-style numeric address. For example:

!@120.0.0.4#server!cornerstone

nrs-identifier ::= identifier
Identifiers are runs of characters; the special characters !, #, $, @, ^ and white space
(blank, tab, newline) must be preceded by a “^”. Identifiers are words in the UNIX
sense.

keyword-modifier ::= (authorization-modifier | environment-modifier)
Keyword modifiers may be given in any order. If a keyword modifier is specified more
than once, the latter replaces the former. If a keyword modifier takes an argument, then
the keyword may be separated from the argument by a space or a colon.
April 2014 GemTalk Systems 161

Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
authorization-modifier ::= ((#auth | #encrypted) [:] username [@ password])
#auth specifies a valid user on the target network. A valid password is needed only if
the resource type requires authentication. #encrypted is used by GemStone utilities. If
no authentication information is specified, the system will try to get it from the .netrc
file. This type of authorization is the default.

username ::= nrs-identifier
If no user name is specified, the default is the current user.
(See the earlier discussion of nrs-identifier.)

password ::= nrs-identifier
If no password is specified, the system will try to obtain it from the user’s .netrc file.
(See the earlier discussion of nrs-identifier.)

environment-modifier ::= (#netldi | #dir | #log) [:] nrs-identifier
#netldi causes the named NetLDI to be used to service the request. If no NetLDI is
specified, the default is gs64ldi. When you specify the #netldi option, the nrs-
identifier is either the name of a NetLDI service or the port number at which a NetLDI
is running.

#dir sets the default directory of the network resource. It has no effect if the resource
already exists. If a directory is not set, the pattern “%H” (defined below) is used. (See
the earlier discussion of nrs-identifier.)

#log sets the name of the log file of the network resource. It has no effect if the resource
already exists. If the log name is a relative path, it is relative to the working directory.
If a log name is not set, the pattern “%N%P%M.log” (defined below) is used. (See the
earlier discussion of nrs-identifier.)

The argument to #dir or #log can contain patterns that are expanded in the context of the
created resource. The following patterns are supported:

%H home directory
%M machine’s network node name
%N executable’s base name
%P process pid
%U user name
%% %

resource-modifier ::= (#server | #spawn | #task | #dbf | #monitor | #file)
Identifies the intended purpose of the string in the nrs-body. An NRS can contain only
one resource modifier. The default resource modifier is context sensitive. For instance,
if the system expects an NRS for a database file, then the default is #dbf.

#server directs the NetLDI to search for the network address of a server, such as a Stone or
another NetLDI. If successful, it returns the address. The nrs-body is a network server
name. A successful lookup means only that the service has been defined; it does not
indicate whether the service is currently running. A new process will not be started.
(Authorization is needed only if the NetLDI is on a remote node and is running in
secure mode.)

#task starts a new Gem. The nrs-body is a NetLDI service name (such as “gemnetobject”),
followed by arguments to the command line. The NetLDI creates the named service by
looking first for an entry in $GEMSTONE/sys/services.dat, and then in the user’s
home directory for an executable having that name. The NetLDI returns the network
address of the service. (Authorization is needed to create a new process unless the
162 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Syntax
NetLDI is in guest mode.) The #task resource modifier is also used internally to create
page servers.

#dbf is used to access a database file. The nrs-body is the file spec of a GemStone database
file. The NetLDI creates a page server on the given node to access the database and
returns the network address of the page server. (Authorization is needed unless the
NetLDI is in guest mode).

#spawn is used internally to start the garbage collection and other service Gem processes.

#monitor is used internally to start up a shared page cache monitor.

#file means the nrs-body is the file spec of a file on the given host (not currently
implemented).

nrs-body ::= unformatted text, to end of string
The nrs-body is interpreted according to the context established by the resource-modifier.
No extended identifier expansion is done in the nrs-body, and no special escapes are
needed.
April 2014 GemTalk Systems 163

Syntax GemStone/S 64 Bit 3.2 Topaz Programming Environment
164 GemTalk Systems April 2014

Index
Symbols
^ (current class) 34, 50
! (remark) 121
** (last result) 34, 50
! (in NRS) 161
@ (for OOP literal) 34, 50
@ (for step point indexl) 43
@ (in NRS) 161
(in NRS) 161
#StringConfiguration 133
==> (indicating active context) 43
$ (for character literal) 34

A
abort command 27, 48
aborting transactions 27
automatic batch processing 30

B
batch processing from an input file 30
begin command 49
break command 50

classmethod 50
clear 42, 51
clear all 42
delete 51
delete all 51
disable all 51
display 41, 51
enable 51
enable all 51
message 40
method 40, 50

breakpoints 39, 50
and special methods 50
clearing 42, 51

continuing GemStone Smalltalk execution
after 56

deleting 42
listing 41, 51, 95
method 40, 50
methods that cannot have 50
setting 40, 50

byte objects
limiting display of 23, 92
storing into with structural access 110
structural access 111

byte values, displaying 23, 59, 112

C
c command 56
cacheName

 System method 130
CacheName (status output) 130
cachename (option to set) 130
call stack

displaying contents of active 136
examining 42, 136
redefining 138
removing 139

category
current 25
listing 27
setting the current 130

category (option to set) 130
category command 53
characters, Topaz syntax for 34
class

creating with set class command 130
current 25
filing out 29
modifying with set class command 130
setting the current 130

class (option to set) 130
April 2014 GemTalk Systems 165

Index GemStone/S 64 Bit 3.2 Topaz Programming Environment
class instances
Topaz syntax for 71, 72

class methods
changing 26
compiling 54
creating 26, 64
editing 26
modifying 65

classmethod command 26, 54
command-line syntax 157
commands

abbreviation of 47
abort 27, 48
begin 49
break 50
c 56
case-sensitivity of 47
category 53
classmethod 54
commit 27, 55
continue 44, 56
define 36, 57
disassem 58
display 23, 59, 112
doit 61
down 62
downr 63
downrb 63
edit 64
errorcount 66
exit 38, 67, 119
exitifnoerror 68
expectbug 69
expecterror 70
expectvalue 72
fileformat 29, 74
fileout 29, 75
fr_cls 76
frame 45, 77
gcitrace 78
help 79
hierarchy 80
history 81
iferr 82
iferr_clear 83
iferr_list 84
iferror 85
implementors 86
input 87
inspect 88
interp 89

interpenv 90
l 97
level 22, 91
limit 23, 92
list 93
listw 97
login 99
logout 38, 100
logoutifloggedin 101
lookup 102
method 26, 104
nbresult 105
nbrun 106
nbstep 107
obj1 108
obj1z 109
obj2 108
obj2z 109
object 110
omit 23, 59, 112
output 113
pausefordebug 115
pkglookup 116
printit 21, 117
protectmethods 118
quit 119
releaseall 120
remark 121
removeallclassmethods 122
removeallmethods 123
rubyclassmethod 124
rubyhierarchy 124
rubyimplementors 124
rubylist 124
rubylookup 124
rubymethod 124
rubyrun 124
run 125
runenv 126
send 37, 127
sendenv 128
senders 129
set 16, 130
shell 134
spawn 135
stack 42, 45, 136
stackwaitfordebug 151
status 20, 25, 140
step 40, 141
stk 42, 142
strings 143
166 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Index
stringsic 144
subclasses 145
syntax of 47
temporary 44, 146
thread 148
threads 149
time 150
topazpausefordebug 151
topazwaitfordebug 151
unprotectmethods 152
up 153
upr 154
uprb 154
where 42, 155
whrb 156
whruby 156

comments 121
commit command 27, 55
committing transactions 27
compile_env (option to set) 130
compile_env: 130
context

displaying the active 137
listing method breakpoints 41, 95
listing step points in 94
redefining the active 45, 137
selecting 45

continue command 44, 56
Control-C handling 31
current category, setting 53, 130
current class

and classmethod command 54
and method command 104
setting 130

D
debugging 39–42, 141, 142, 146

and execution context 45
define command 36, 57
disassem command 58
display command 23, 59, 112

oops and stack display 136
display level 22–23

maximum 91
display of results, controlling 22
doit command 61
down command 62
downr command 63
downrb command 63

E
edit command 64

and set editorname: command 131
classmethod 26, 65
last 21, 64
method 26, 65
new classmethod 26, 64
new method 26, 64
new text 21

editing GemStone Smalltalk expressions 21
editorname (option to set) 131
environmentId 13, 130, 136
error status 67, 119
errorcount command 66
errors, continuing GemStone Smalltalk execution

after 56
examining the call stack 42
execution, stepping through 39, 94
exit command 38, 67, 119
exitifnoerror command 68
expectbug command 69
expecterror command 70
expectvalue command 72

F
file

appending to 28
input 30, 31
output 28, 31
redirection 28

fileformat command 29, 74
fileout command 29, 75
finding method in hierarchy 102
Floats, Topaz syntax for 35
fr_cls command 76
frame command 45, 77
ftplogin. 19

G
gcitrace command 78
gemnetid (option to set) 131
gemnetobject 131
GemStone

aborting a transaction 48
committing a transaction 55
examining the call stack 136
interrupting 31
logging in 16
April 2014 GemTalk Systems 167

Index GemStone/S 64 Bit 3.2 Topaz Programming Environment
logging out 38
multiple sessions 32, 132
service, setting 131

gemstone (option to set) 131
GemStone name 16, 131

setting 99
GemStone password

setting 99, 132
GemStone service name, setting 99
GemStone Smalltalk

breakpoints 50, 95
continuing execution 44, 56
debugging 39–42, 141, 142, 146
editing expressions 21
editing source code 64, 131
executing expressions 21, 61, 89, 117, 125
sending messages 127

GemStone username 16
setting 99, 133

H
help command 20, 79
hexadecimal values, displaying 23, 59, 112
hierarchy command 80
history (option to set) 132
history command 81
history, setting size using set history

 132
host password 132

setting 99
host username 132
hostpassword (option to set) 132
hostusername (option to set) 132

I
iferr command 82
iferr_clear command 83
iferr_list command 84
iferror command 85
implementors command 86
initialization file

and set host password command 132
and set password command 132
used to set login parameters 99

input command 31, 87
pop 87

inspect command 88
instance methods

compiling 104

creating 64
modifying 65

instance variables
displaying 22, 23, 59, 91, 112
returning the values of 110

instances of a class, Topaz syntax for 71, 72
integers, Topaz syntax for 34
interp command 89
interpenv command 90
interrupting execution 31

L
l command 97
level command 22, 91
limit command 23, 92

bytes 92
oops 92

list command 93
breaks 41, 95
breaks classmethod 96
breaks method 95
classmethod 27
method 27
steps 94
steps classmethod 95
steps method 40, 94

listw command 97
listwindow

 132
listwindow (argument to set) 132
logging a session 31
logging in to GemStone 16, 99
login command 99
login initialization file 19
login parameters 16–20

and set command 130
displaying the value of 140

logout command 38, 100
logoutifloggedin command 101
lookup command 102

M
message breakpoints

listing 41, 51
setting 40

method breakpoints 40, 50
listing 41, 51, 95
setting 40, 50

method command 26, 104
168 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Index
method compilations and set category command
130

methods
compilation 104
compilation and current category 53
creating 25, 64
editing 26
examining and modifying arguments 44
filing out 29
finding in hierarchy 102
listing 27, 102
modifying 25
stepping through execution 94, 141

multiple sessions 32, 132

N
nbresult command 105
nbrun command 106
nbstep command 107
.netrc 19
network

resource string syntax 159
network communications and login parameters 99
network initialization file 19
network resource string (NRS) 99
network server process, establishing the name of

131
nonsequenceable collections (NSCs)

structural access 110
NRS (network resource string)

syntax 159
nrsdefaults 132
nrsdefaults (argument to set) 132

O
obj1 command 108
obj1z command 109
obj2 command 108
obj2z command 109
object command 110

at: 33, 110
at:put: 110

object headers 24
objects, syntax for specifying 34
omit command 23, 59, 112

oops, and stack display 136
OOPs

displaying 23, 59, 112
limiting display of 92

Topaz syntax for 34, 50
operating system error status 67, 119
output command 113

and host environment names 113
pop 113
push 28, 113

output to a file 28

P
padding for stack display, using set stackpad

 133
password

GemStone 132
host 132

password (option to set) 132
pause message, continuing GemStone Smalltalk

execution after 56
pausefordebug command 115
pkglookup command 116
prerequisites 3
printit command 21, 117

editing the text of 64
protectmethods command 118

Q
quit command 119
quitting Topaz 38

R
recording a session 31
releaseall command 120
remark command 121
removeallclassmethods command 122
removeallmethods command 123
Ruby

and GemStone Smalltalk 13
rubyclassmethod command 124
rubyhierarchy command 124
rubyimplementors command 124
rubylist command 124
rubylookup command 124
rubymethod command 124
rubyrun command 124
run command 125
runenv command 126
April 2014 GemTalk Systems 169

Index GemStone/S 64 Bit 3.2 Topaz Programming Environment
S
send command 37, 127
sendenv command 128
senders command 129
service name, GemStone 131
session (option to set) 132
session numbers 32, 132
sessions, multiple 32, 132
set command 16, 130

cachename
 130

category 130
class 25, 130

and edit classmethod command 65
and edit method command 65
and edit new classmethod command 64
and edit new method command 64

compile_env: 130
editorname 21, 64
editorname: 131
establishing login parameters 99, 130
gemnetid 131
gemstone 131
hostpassword 132
hostusername 132
listwindow

 132
nrsdefaults

 132
password 132
session 32, 132

and local variables 57
sourcestringclass 133
stackpad

 133
username 133

setcommand
history

 132
shell command 134
SourceStringClass 74
sourcestringclass (option to set) 133
spawn command 135
special methods

and breakpoints 50
stack command 42, 136

all 46, 138
change 46, 138
delete 139
nosave 138

save 138
scope 45, 137

stack, redefining the active 46
stackpad 133
stackpad (option to set) 133
stackwaitfordebug command 151
standard input, redirecting 31
standard output, redirecting 28
status command 20, 25, 140
stdin 28
stdout 28
step command 40, 141

into 44, 141
over 44, 141

step points 39
examining 39, 94
methods that have no 50

stk command 42, 142
stopping execution 31
Strings

limiting display of 23, 92
Topaz syntax for 35

strings command 143
stringsic command 144
structural access 33–110

and object command 110
subclasses command 145
Symbols, Topaz syntax for 35

T
tab (option to set) 133
temporaries, examining and modifying 44, 146
temporary command 44, 146
thread command 148
threads command 149
time command 150
Topaz

command-line syntax 157
exiting 38
initialization file 19
interrupting 31
invoking 14
linked version 15
redirecting input 87
redirecting output 113
RPC version 15
syntax for characters 34
syntax for commands 47
syntax for Floats 35
syntax for instances of a class 71, 72
170 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Topaz Programming Environment Index
syntax for integers 34
syntax for literals 34
syntax for OOPs 34, 50
syntax for Strings 35
syntax for Symbols 35
syntax for variable names 34, 50

Topaz initialization file
and set host password command 132
and set password command 132

Topaz variables
and define command 57
and object command 110

topaz.ini 19
topazini.tpz 19
topazpausefordebug command 151
topazwaitfordebug command 151
transactions, aborting 27, 48
transactions, committing 27

U
Unicode16 74, 133
Unicode32 133
Unicode7 133
unprotectmethods command 152
up command 153
upr command 154
uprb command 154
username

GemStone 16, 133
host 132

username (option to set) 133
UTF-8 29, 74

V
variable names, Topaz syntax for 34, 50
variables, local 36

and define command 57
and object command 110
clearing definition of 37

variables, predefined
LastText 64

W
where command 42, 155
whrb command 156
whruby command 156
writing to a file 75
April 2014 GemTalk Systems 171

Index GemStone/S 64 Bit 3.2 Topaz Programming Environment
172 GemTalk Systems April 2014

	1 Getting Started with Topaz
	1.1 Invoking Topaz
	1.2 Overview of a GemStone Session
	1.3 Remote Versus Linked Versions
	1.4 Logging In to GemStone
	Host user account alternatives
	Setting Up a Login Initialization File .topazini
	Error handling and output

	1.5 The Help Command
	1.6 Executing GemStone Smalltalk Expressions
	1.7 Invoking Operating System Functionality
	Executing shell commands
	Escaping to an Editor

	1.8 Controlling the Display of Results
	Display Level
	Setting Limits on Object Displays
	Displaying Variable Names, OOPs, and Hex Byte Values
	Instance Variable Names
	Hexadecimal Byte Values
	OOP Values

	1.9 Creating and Changing Methods
	Editing Methods

	1.10 Listing Methods and Categories
	1.11 Committing and Aborting Transactions
	1.12 Capturing Your Topaz Session In a File
	1.13 Filing Out Classes and Methods
	1.14 Creating a Topaz Script for Batch Processing
	1.15 Taking Topaz Input from a File
	1.16 Interrupting Topaz and GemStone
	1.17 Multiple Concurrent GemStone Sessions
	1.18 Structural Access To Objects
	Examining Instance Variables with Structural Access
	Specifying Objects
	Object Identity Specification Formats
	Literal Object Specification Formats

	Specifying Method Selectors

	1.19 Defining Local Variables
	Creating Variables
	Displaying Current Variable Definitions
	Clearing Variable Definitions

	1.20 Sending Messages
	1.21 Logging Out
	1.22 Leaving Topaz

	2 Debugging Your GemStone Smalltalk Code
	2.1 Step Points and Breakpoints
	2.2 Setting, Clearing, and Examining Breakpoints
	2.3 Examining the GemStone Smalltalk Call Stack
	Proceeding After a Breakpoint
	Examining and Modifying Temporaries and Arguments
	Select a Context for Examination and Debugging
	Multiple Call Stacks

	3 Command Dictionary
	Command Syntax
	ABORT
	BEGIN
	BREAK aSubCommand
	Method Breakpoints
	Disabling and Enabling Breakpoints

	CATEGORY: aCategoryName
	CLASSMETHOD[: aClassName]
	COMMIT
	CONTINUE [anObjectSpec]
	C [anObjectSpec]
	DEFINE [aVarName [anObjectSpec [aSelectorOrArg]...]]
	DISASSEM [aClassParameter] aParamValue
	DISPLAY aDisplayFeature
	DOIT
	DOWN [anInteger]
	DOWNR [anInteger]
	DOWNRB [anInteger]
	EDIT aSubCommandOrSelector [aSelector]
	Creating or Modifying Blocks of GemStone Smalltalk Code
	Creating or Modifying GemStone Smalltalk Methods

	ERRORCOUNT
	EXIT [aSmallInt | anObjectSpec]
	EXITIFNOERROR
	EXPECTBUG bugNumber
	EXPECTERROR anErrorCategory anErrorNumCls
	EXPECTVALUE anObjectSpec [anInt]
	FILEFORMAT fileFormatDesignator
	FILEOUT [command] clsOrMethod [TOFILE: filename [FORMAT: fileformat]]
	FR_CLS [anInteger]
	FRAME [anInteger]
	GCITRACE aFileName
	HELP [aTopicName]
	HIERARCHY [aClassName]
	HISTORY [anInteger]
	IFERR bufferNumber [aTopazCommandLine]
	IFERR_CLEAR
	IFERR_LIST
	IFERROR [aTopazCommandLine]
	IMPLEMENTORS selectorSpec
	INPUT [aFileName | POP]
	INSPECT [anObjectSpec]
	INTERP
	INTERPENV
	LEVEL anIntegerLevel
	LIMIT [BYTES | OOPS | LEV1BYTES] anInteger
	LIST
	Browsing Dictionaries and Classes
	Listing Methods
	Listing Step Points
	Listing Breakpoints

	LISTW
	L
	LOADUA aFileName
	LOGIN
	LOGOUT
	LOGOUTIFLOGGEDIN
	LOOKUP (METH | METHOD | CMETH | CMETHOD) selectorSpec
	LOOKUP className [CLASS] selectorSpec
	Finding and Listing Methods
	Pasting from stack frames

	METHOD[: aClassName]
	NBRESULT
	NBRUN
	NBSTEP
	OBJ1 anObjectSpec
	OBJ2 anObjectSpec
	OBJ1Z anObjectSpec
	OBJ2Z anObjectSpec
	OBJECT anObjectSpec [AT: anIndex [PUT: anObjectSpec]]
	OMIT aDisplayFeature
	OUTPUT (PUSH | APPEND | PUSHNEW | POP) aFileName [ONLY]
	PAUSEFORDEBUG [errorNumber]
	PKGLOOKUP (METH | METHOD | CMETH | CMETHOD) selectorSpec
	PKGLOOKUP className [CLASS] selectorSpec
	PRINTIT
	PROTECTMETHODS
	QUIT [aSmallInt | anObjectSpec]
	RELEASEALL
	REMARK commentText
	REMOVEALLCLASSMETHODS [aClassName]
	REMOVEALLMETHODS [aClassName]
	RUBYCLASSMETHOD
	RUBYHIERARCHY
	RUBYIMPLEMENTORS
	RUBYLIST
	RUBYLOOKUP
	RUBYMETHOD
	RUBYRUN
	RUN
	RUNENV
	SEND anObjectSpec aMessage
	SENDENV
	SENDERS selectorSpec
	SET aTopazParameter [aParamValue]
	SHELL [aHostCommand]
	SPAWN [aHostCommand]
	STACK [aSubCommand]
	Display the Active Call Stack
	Display or Redefine the Active Context
	Save the Active Call Stack During Further Execution
	Display All Call Stacks
	Redefine the Active Call Stack
	Remove Call Stacks

	STATUS
	STEP (OVER | INTO | THRU)
	STK [aSubCommand]
	STRINGS selectorSpec
	STRINGSIC selectorSpec
	SUBCLASSES [aClassName]
	TEMPORARY [aTempName[/anInt] [anObjectSpec]]
	THREAD [anInt] [CLEAR]
	THREADS [CLEAR]
	TIME
	TOPAZPAUSEFORDEBUG [errorNumber]
	TOPAZWAITFORDEBUG
	STACKWAITFORDEBUG
	UNPROTECTMETHODS
	UP [anInteger]
	UPR [anInteger]
	UPRB [anInteger]
	WHERE [anInteger | aString]
	WHRB [anInteger]
	WHRUBY [anInteger]

	A Topaz Command-Line Syntax
	A.1 Command-Line Syntax
	A.2 Options

	B Network Resource String Syntax
	B.1 Overview
	B.2 Defaults
	B.3 Notation
	B.4 Syntax

