
GemStone Garbage Collection
in a Production Environment

Norman R. Green
September 29, 1999

Revised April 23, 2022 by Bob Bretl,
to reflect the changes from the 32 bit to the 64 bit architecture

This paper describes the internal behavior of GemStone Garbage Collection, and how to
analyze performance and configure your GemStone system to collect garbage efficiently and
with the least impact on a production system.

This details of the internal workings of GemStone are subject to change in new versions of
GemStone, and the recommendations are based on “typical” configurations. Tuning
inherently involves observing the effect of an adjustment on the behavior, for a specific
application, hardware, and GemStone version.

The information in this document is intended for experienced GemStone64 Database
Administrators, and is written with the assumption of detailed knowledge of GemStone
configuration and administration.

Important Definitions

 Root Set – A reserved set of objects that serve as an anchor for all objects in a GemStone
repository.

 Live Object – an object that is referenced by one or more objects connected to the root set.
 Dead Object – an object that is not referenced by any live object. Other dead objects may

reference a dead object. Since dead objects are not needed, both the space and the identifier
(OOP) used by the object may be reclaimed and reused.

 Possible Dead Object – an object which appears to be a dead object but has not yet been
finalized. A possible dead object is "promoted" to a dead object status after finalization.

 Shadow Object – an old copy of a live object with the same object identifier. The space used
by shadow objects may be reclaimed but the identifier may not.

 Cache Frame – a slot in the shared page cache which may hold a page.
 Free Frame – a cache frame that is not in use and is on the list of free frames maintained for

the shared cache.
 Free Frame Limit – a gem configuration setting which governs how many frames that gems

may consume from the free frame list. When the number of frames remaining on the list is
below this value, gems may no longer remove frames from the list. Instead, gems must scan
the shared cache for a frame. The default value of the free frame limit for all gems except the
GcGem is 10% of the total frames in the shared cache. For the GcGem, the default is 5%.

 OOP – Object Oriented Pointer. Each object is assigned a unique numeric identifier by the
system.

 OOP Number – a sequentially allocated 40 bit number representing a persistent object that
is allocated an entry in the object table

 POM OOP – a Persistent Object Memory OOP. This is a 64 bit value used to represent
persistent objects. The lower 8 bits indicate what kind of object it represents, e.g.
SmallInterger, Double, etc.. Objects that have entries in the object table are represented as
(OOP Number << 8) + 1.

 OOP high water mark – the value of the highest OOP Number ever allocated in the system.
 Object Table (OT)- an internal GemStone structure that maps Oops to a disk location.
 Object Table Page – a disk page which contains object table information.
 Data Page – a disk page contains data objects. Most pages in the repository are data pages.
 markForCollection (MFC) – the GemStone method that invokes the global garbage

collection process. Execution of the markForCollection method does not in itself remove
garbage objects from the repository. It only computes the list objects eligible for removal.

 Write Set – a set of objects that a gem has modified. The write set is used during commit
processing.

 Write Set Union – the union of all write sets from a collection of commits. The stone will
keep track of the write set union while garbage collection is in progress so it can be used
during the finalization stages.

GemStone64 Garbage Collection Overview

The focus of this document is on persistent object garbage collection. There are also garbage
collection operations performed in individual gem processes that clean up unused objects in
the Temporary Object Cache (TOC), but these are not covered in this paper.

There are three basic garbage collection operations performed on the persistent objects in the
Gemstone Repository:

 markForCollection – the primary method for detecting garbage in the repository
 Epoch GC – (garbage collection over a specific time interval)
 Symbol GC – (garbage collection of symbols allocated in the system)

The complete garbage collection cycle has 6 stages:

1. Detection of possible garbage objects (possible dead)
2. Voting
3. AdminGem: Write Set Union Sweep
4. Promotion to dead
5. Reclamation
6. Return Oops and Pages to free pools

The detection of the dead objects occurs in either a markForCollection or epochGc operation.

Execution of the markForCollection method and epochGc are mutually exclusive. The
system enforces this by acquiring a garbage collection lock (gcLock) which only allows one
operation at a time.

The SymbolGc operations is embedded in the markForCollection algorithm and can be
enabled by setting the STN_SYMBOL_GC_ENABLED = TRUE; in the stone configuration
file.

Epoch and SymbolGc are covered in more detail in a later section of this document.

The function of each stage is described below.

Detection of Possible Dead Objects

EpochGc and SymbolGc are variations of the markForCollection operation. This section
describes the basic operation of markForCollection, followed by additional details for
EpochGc and SymbolGc.

MarkForCollection

The markForCollection operation has three phases:

a) Mark/Sweep
b) Determine possibleDead
c) Record Possible Dead

Mark/Sweep

The goal of this phase is find all of the live objects in the repository. Starting at a well-known
set of root objects, these live objects are “marked”. Then newly marked objects are “swept”,
which involves looking up the object in the object table, locating it in the cache and
sweeping it for references to other objects which are also marked. This marking/sweeping
process is repeated until no new marked objects are found. This traversal of the live objects
in the repository is also referred to as the transitive closure.

The Mark/Sweep phase takes most of the time in markForCollection. It is important to note
that markForCollection only reads object table pages into the shared page cache, not data
pages. Data pages are read into a private buffer allocated by the MFC gem. This is done to
avoid causing performance problems by flooding the shared cache with data pages that are of
no use to other gems. More information about the page buffer is included in the tuning
section of this document.

The mark/sweep phase performs a large number of disk reads. For each object swept, the
MFC gem must:

 Look up the OOP in the object table to get the object’s page ID. This may require the
gem to read an OT page into the shared cache.

 Read the data page containing the object into the gem’s mark/sweep buffer.

Executing markForCollection may cause heavy I/O and/or CPU loads on some systems.

The following factors affect the duration of this phase:
 Size of the mark/sweep page buffer.
 Number of live objects in the repository.
 Maximum disk I/O rate.
 Setting of the GEM_IO_LIMIT for the markForCollection gem.
 Size of the shared page cache.
 Size of the object table with respect to the size of the shared page cache.
 Number of other gems on the shared cache.
 The size of the commitRecordBacklogThreshold

The gem running markForCollection runs in a transaction, but aborts whenever the number
of commits in the system since the last abort during the markForCollection is > 4/5 *
commitRecordBacklogThreshold. Having the commitRecordBacklogThreshold set too low
when there is a lot of commit activity can slow down the mark/sweep phase since the gem
must abort more frequently and possibly do more object table lookups to re-synchronize with
the current view of the database.

WsUnionSweep

While the Mark/Sweep phase of the markForCollection is running, the gem collects the write
set union, i.e. a collection of all of the objects that were committed by other sessions while
that phase was running. This phase of the markForCollection computes the possibleDead set
and subtracts any of the object referenced in the write set union from the possibleDead. At
the beginning of this phase it signals stone so that stone will start collecting a write set union
over the commits that occur from this point until all of the gems are done with the voting
phase. By having the gem doing the markForCollection collect and perform the
writeSetUnionSweep at this point it saves the cost of the stone doing that work during the
markSweep phase and makes the later write set union sweep performed by the adminGem
much smaller.

In phase 1, the mark/sweep algorithm identified every live object. The set of possible dead
objects is now computed by subtracting this set from the "universe" of object identifiers. The
universe of object identifiers is defined every possible object identifier from zero up to the
greatest object identifier allocated by the system (known as the "OOP high water mark").
Each object identifier in the universe can have 3 possible states:

 It can refer to a live object
 It can refer to a possibly dead object
 It can refer to no object (i.e., it is a "free OOP")

In the third case, the identifier is on the list of free identifiers and may be assigned to an
object at some future time.

A "differencing" operation subtracts all live object identifiers (including the free ones) from
the universe of objects, giving a resultant set that contains object identifiers that refer to
possible dead objects. This operation is very fast, operating entirely on data structures in
RAM.

The WsUnionSweep phase starts with the writeSetUnion collected during the first phase and
considers them marked. The algorithm for this phase is similar the the Mark/Sweep, the
major difference is that if a marked object is in the possible dead set, it is removed and then
added to the set of objects to be swept. Again this marking/sweeping process continues until
no new marked objects are found.

Since this is limited mark/sweep operation, the factors that affect its performance are similar
to the ones listed for the mark/sweep phase, however the primary factor is the size of the
writeSet union. Since this union is usually a small fraction of the size of the entire repository
this phase is usually quite fast.

Record Possible Dead

This is the last phase of the markForCollection or epochGc operation. The gem sends a
message to the stone process with a list of all possibly dead objects. The stone writes this set
to the root page of the repository and then performs a checkpoint to insure that the work of
detecting the possible dead objects is not lost even if the stone crashes. This phase is very
fast and shouldn't significantly affect system performance (if the possible dead set is very
large it can somewhat impact processing of other messages to stone and the checkpoint at the
end of the operation can cause an increase in disk I/O).

Note that at this point no space has been reclaimed, no objects have been removed from the
database and no objectIds have been recycled.

EpochGc

EpochGc is another technique used in the Gemstone system to determine possible dead
objects. The goal of an epoch is to detect objects that have a short lifespan, i.e., that die
young. An epoch is a period of time over which transactions are analyzed to determine which
objects have been both created and deferenced within the epoch. The epoch is quite efficient
at detecting this kind of garbage objects because it doesn't need to read the entire database to
determine whether a newly created object is possibly dead. However, it is not a substitute for
periodically running the markForCollection since it cannot detect objects that are created in
one epoch and are dereferenced in another. The time for an epoch should be adjusted to
correspond to cover a range in which many short lived objects are created to be most
effective.

 There are two adminGem configuration options which control the length of an epoch:

1. epochGcTimeLimit: Controls the maximum frequency of epochs, in seconds. It is
recommended that this value not be less than 1800 (i.e. 30 minutes). Ideally
epochGcTimeLimit should be several hours. Default is 3600 (1 hour).

2. epochGcTransLimit: Minimum number of commits that must have occurred in order
to start an epoch garbage collection. Default value is 5000.

When the EcpochGc is enabled with either STN_EPOCH_GC_ENABLED or the runtime
StnEpochGcEnabled configuration option, then the stone automatically collects the
epochWriteSetUnion and epcochNewObjsUnion from the commits that occur. When either
the timelimit or the transLimit are reached the AdminGem requests the epochWriteSetUnion
and epochNewObjsUnion from stone. Stone atomically saves that state and starts a new set
of unions for the next epoch.

The algorithm for the epochGc is very similar to the WriteSetUnionSweep, the major
difference is that the possibleDead for the epochGc is the newObjsUnion and the starting set
of marked objects is the epochWriteSetUnion minus the newObjsUnion. The mark/sweep
reads the marked objects and if an object in the newObjsUnion is referenced it is removed.
When the mark/sweep is done, the objects that remain in the newObjsUnion are the young

objects that died young, i.e., they were created during the epoch and by the end of the epoch
any reference to them had been overwritten. This remaining newObjsUnion is then
considered as the possibleDead set and is sent to stone with the same Record Possible Dead
that was described above.

SymbolGc

As mentioned earlier in this document, the detection of possible dead symbols is embedded
in the markForCollection algorithm and can be enabled by setting
STN_SYMBOL_GC_ENABLED = TRUE; in the stone configuration file. Unless your
system creates a large number of garbage symbols, SymbolGc is only needed infrequently.
Enabling SymbolGc adds a couple of additional steps to the markForCollection method and
to the Voting process.

When markForCollection and symbolGc is enabled, the first step is to do a mark/sweep of
just the AllSymbols dictionary. This is done to collect all possible symbols into a set,
allSymbols. In preparation for the normal Mark/Sweep step, the marked and swept sets are
cleared of all of the symbols, leaving the existing internal objects for the AllSymbols
dictionary in these sets. Then the normal roots for the Mark/Sweep are added to the marked
set and the Mark/Sweep is executed.

When the normal Mark/Sweep and wsUnion step have completed, the marked set contains
only the live symbols, i.e., only those symbols that are reachable from objects other than the
AllSymbols dictionary. A difference operation is performed subtract the marked objects from
allSymbols which results in the possibleDeadSymbols.

These possibleDeadSymbols are then sent to stone in the same message as the other
possibleDeadObjects. This completes the detection of the possible dead symbols.

When stone receives the recordPossibleDead command which includes
possibleDeadSymbols, it saves them and signals the SymbolGem that it has
possibleDeadSymbols for it to process. The SymbolGem “hides” the possible dead symbols
by removing them from the AllSymbols dictionary. When all of the possibleDeadSymbols
have been hidden and the new state of AllSymbols has been committed then the normal
voting and wsUnion processing are allowed to proceed. It should be noted that when the
possibleDeadSymbols have been moved out of the AllSymbols dictionary, any gem that
attempts to create a symbol with the same value will cause the SymbolGem to “resurrect” the
symbol, i.e., take the symbol out of the hiddenSymbols dictionary, return it to AllSymbols
and return the original OOP for that symbol.

When the voting and AdminGem wsUnionSweep have completed, the atomic promote step
sends the symbols that have been voted to be kept alive to the SymbolGem, where they are
unhidden, moved back into the AllSymbols dictionary.

Any symbols remaining in the possibleDeadSymbols, i.e., the ones that were not voted to be
kept alive are now dead Symbols, which can be treated like any other dead object for
reclamation by the ReclaimGem.

Voting

Every gem logged into the database must "vote" on all possibly dead objects. The purpose of
the vote is to determine if the gem holds references to any possibly dead objects in any of its
caches. If it does, those objects will be "voted down" and will be removed from the possible
dead set by the stone. Each gem casts its vote at the next commit or abort after the record
possible dead phase completes. All sessions must vote before this stage is completed and the
next phase can be started. Therefore a gem running a long transaction (that is, one which
commits or aborts infrequently) will delay completion of the voting stage.

Gems on the same machine as the stone use a shared copy of the possible dead set in the
shared page cache. Gems on remote machines use a shared copy in the remote cache,
however the first gem to vote incurs the cost of reading the possible dead set across the
network into the cache.

Several factors determine the duration the voting phase:
 Average transaction length.
 Size of the possible dead set.
 Number of gems logged in during the vote.
 Network bandwidth between the machine running the stone process and the

machine(s) running the remote gem(s), if any.

AdminGem Write Set Union Sweep

This stage starts when the last gem completes its vote by doing a commit or abort. During
this phase, the AdminGem votes on objects that were committed since the mark/sweep phase
of the markForCollection finished. If there were no commits during the gem voting interval
then the write set union is empty and this stage is skipped.

This phase is like the wsUnionSweep that is performed by the gem that does the
markForCollection, only for this operation the input set of marked objects is the
writeSetUnion from stone. This operation is performed in a transaction. The adminGem does
not execute an EpochGc operation while the WsUnionSweep is in progress.

This operation is generally fairly fast, but the execution time is dependent upon:
 The number of objects modified in committed transactions during voting.
 Number of possibly dead objects.
 Maximum disk I/O rate.
 Size of the shared page cache.
 Setting of the GEM_IO_LIMIT for the AdminGem.

This is the last finalization phase for the possible dead objects. Objects remaining in the
possible dead set at the completion of this phase are considered to be dead objects.

Promote to Dead

The promote to dead phase "promotes" each dead object to a dead state. This is where the
possible dead objects become dead objects. The promotion to dead is atomic; that is, all
objects are promoted to dead by the stone in a single operation. The promote to dead stage is
performed very quickly and does not require optimization.

Reclamation

The reclamation process involves recycling of the space used for objects that have been
garbage collected or shadowed, i.e., replaced with an updated copy of the object. The dead
objects that are reclaimed also have their Oop recycled.

During normal operation of the system, every commit shadows one or more objects and a
new version of the object is written to a new page. When a transaction commits, the shadow
object is no longer referenced from the new object table, and its space can be reclaimed. To
facilitate knowing which pages have shadowed objects in them, when a new version of an
object is written during a commit the page in which the old version of the object was located
is noted and recorded in the commit record as a scavengable page. If the page contains more
than 3KB then the page is marked as a priority page for reclaiming. This is to optimize the
reclaiming of pages that have more free space. When the commit is processed in stone, the
scavengable pages combined into a bitmaps in the root page and subsequently passed to the
reclaim gem along with the priority pages for processing.

Dead objects detected by either markForCollection or epochgc are also reclaimed by the
ReclaimGem but they must be looked up in the object table to determine which page they are
in. For this reason dead object reclamation is considered a lower priority and the pages
containing dead objects are only looked up when the pages need reclaiming set that it gets
from stone is empty. When a page is reclaimed, all the "live" objects on the page are copied
to a new page and any dead objects found are kept in a bitmap of reclaimedOops which is
recorded in the commit record for the reclaim. To prevent page fragmentation, the new page
is then "topped-up" with other live objects from other pages being reclaimed, but still
honoring any clustering information in the page. The original page now contains only dead
or shadow objects and may be reclaimed. Pages are reclaimed in batches, the sizes of which
are governed by the "reclaimMaxPages" and "reclaimMinPages" settings in the
ReclaimGem. The ReclaimGem runs inside a transaction when performing reclaims and
commits after each batch of pages. The physical space contained in a batch of reclaimed
pages is recovered only when the batch has been committed and the commit record for that
batch has been disposed by the stone.

Page reclamation is an expensive process that may affect system performance. There are a
few reasons for this. The ReclaimGem requires frequent access to a large portion of the
object table to lookup the objects it is reclaiming. Consequently, the percentage of the object
table that is contained in the shared cache will directly affect the performance of this
operation. The amount of object table that is cached is a function of the cache size, size of the

object table, and what pages other gems are needing to access. Since live objects are copied
onto a new page during reclamation, the ReclaimGem must allocate new pages during the
reclaim process and these are allocated in the shared cache. Since they are dirty pages they
tend to live in the cache until the aio page servers can write them to disk and increase the
contention for free cache slots.

Shadow objects (generated by gems commiting modifications to objects) have a higher
priority for reclamation than dead objects. When the ReclaimGem is reclaiming pages, the
maximum number of pages it processes per transaction is defined by the reclaimMaxPages
setting. Dead objects are reclaimed only if the number of pages needing reclaiming is less
than this parameter, or if they happen to reside on the same page as a shadowed object. In the
latter case, shadowed and dead objects have the same reclaim priority and both will be
reclaimed at the same time. For example, let’s suppose the reclaimMaxPages parameter is set
to its default value of 200 pages and there are 150 pages that contain shadowed objects. If
there are pages with dead objects to reclaim, the ReclaimGem will reclaim 50 pages
containing dead objects bringing the total pages reclaimed to 200 for this transaction. Note
that if there had been 200 or more pages available for reclaim which contained shadowed
objects, no dead objects would be reclaimed during this transaction. A GcUser Boolean
parameter called reclaimDeadEnabled allows the reclaim of dead objects to be disabled
entirely.

Dead object reclaim performance is affected by several factors:
 reclaimMaxPages value
 Setting of the GEM_IO_LIMIT for the ReclaimGem.
 Size of the shared page cache
 Percentage of the object table contained in the shared cache.
 Number of shadow objects generated by other sessions’ commit records.
 Number of free frames remaining on the free frame list.
 Size of the commit record backlog.
 GEM_FREE_FRAME_LIMIT parameter used by the ReclaimGem.

Returning OOPs and Pages to Free Pools

When the commit record from the page reclaim operation is disposed by the stone, the
reclaimedOops are put back into the free pool and are available for use for new objects.

Since reclaimed pages were in most cases allocated in an earlier checkpoint, they cannot be
returned to the free pool when the commit record is disposed. The only way pages can be
recycled in the system is if they are no longer referenced.

The main inhibitor to returning OOPs and pages is a commit record backlog. If commit
records are not being disposed in a timely manner, no free space will be gained from the
garbage collection.

Disposing Commit Records

Commit records are linked in a chain from the current to the oldest referenced. When the last
session referencing the oldest commit record aborts or commits, that commit record can be
disposed. In addition to the commit record, the pages that were shadowed by that commit are
also eligible for disposal. The pages that were shadowed by the commit are stored in two
bitmaps referenced from the commit record, the shadowedCheckpointPages and the
shadowedImmediatePages. The shadowed immediate pages can be put in the set of pages to
be disposed immediately. The shadowedCheckpointPages are put into another set, whose
disposal is deferred until after the next checkpoint is completed.

The reason these must be deferred is that they may be required to recover the database if the
system crashed before the next checkpoint is written. When the checkpoint is written, the
pages then become immediately disposable.

Before the stone can recycle the pages, it must make sure that there are no instances of the
page in any of the shared page caches associated with the system. This is required to insure
that a gem is not able to access an old version of the page. Stone does this by sending a list of
pages to remove from the cache to the page manager. The page manager looks up the page in
the cache and if it is present it tries to remove it from the cache. It may not be possible to
remove immediately because it might be locked waiting for I/O to complete. The page
manager then returns a list of the pages that it knows are not in the cache and stone then
updates the allocated pages structures (the fragment pages) and adds them to the pool of free
pages that it manages in memory.

Garbage Collection Monitoring

The progress of the various garbage collection stages may be monitored by collecting and
analyzing database statistics. These statistics are useful in determining the phase of garbage
collection currently running as well as the rate at which it is progressing.

VSD is the graphical tool that displays statistics that are collected using statmonitor. VSD is
distributed with each version of GemStone. VSD is also available for download separately,
which is useful if you wish to view statmonitor on a different platform, such as Windows.

VSD can load statmonitor data files, and if configured, allows live-monitor a running
GemStone system, by starting statmonitor and automatically updating the display as statistics
are collected. See the VSD User’s Guide for many options for setting up monitoring.

Monitoring the Progress of Garbage Collection

There are a number of statistics that are generally useful in monitoring the performance of the
system. These are listed first, then relevant statistics for each garbage collection phase are
listed. The process for which the statistic is collected for is shown in brackets.

General Statistics

 FreeFrameCount (ShrPcMonitor)
The number of unused page frames in the shared page cache. Gives an indication of
cache utilization.

 CommitRecordCount (Stone)
Although page reclaim is the final phase of garbage collection, the space occupied by
reclaimed pages is not returned to the repository until the commit record from the
reclaim is disposed of. Commit record backlogs will therefore delay the return of free
space, which is the ultimate goal of garbage collection.

 FreePages (Stone)
The number of free pages that exist in the repository.

MarkForCollection (markForCollection gem)

 Mark/Sweep
 Progress Count (markForCollection gem)

During this phase, the progress count displays the number of live objects that have been
marked by the mark/sweep algorithm. The final value of progress count is a measure of the
number of live objects found by the mark/sweep algorithm.

 WsUnionSweep
 Progress Count (markForCollection gem)

At the beginning of this phase, the progress count is reset to 0 and the count reflects
the number of live objects removed from the possible dead set.

Record Possible Dead
 PossibleDeadSize (Stone)

This statistic indicates the approximate number possible dead objects.

Voting
 VoteNotDead (each gem)

Shows the number of objects voted down by the gem.

AdminGem Write Set Union Sweep

 GcPossibleDeadSize (Stone)
This is an exact measure of the number of possible dead objects that survived the
voting phase.

 GcSweepCount (Stone)
Number of times the AdminGem has performed the write set union sweep since it
started.

 GcPossibleDeadWsUnionSize (Stone)
The number of objects that must be swept by the AdminGem.

 ProgressCount (GcGem)
Number of objects swept thus far, can be larger than the
GcPossibleDeadWsUnionSize because it includes objects found in the transitive
closure that were in the possible dead.

Promote to Dead
 PossibleDeadObjs (Stone)

These statistics will fall to zero at the completion of this phase.

 DeadNotReclaimedObjs (Stone)
Shows the number of objects that have been promoted to dead but have not yet had
their pages reclaimed by the ReclaimGem.

Reclamation

 PagesNeedReclaimSize (Stone)
The number of pages needing reclaiming.

 DeadNotReclaimedObjs (Stone)
The number of objects that have been determined to be dead but have not yet been
reclaimed. This value will decrease as pages containing dead objects are reclaimed.

 ReclaimCount (Stone)
The number of reclaims performed by the ReclaimGem since the Stone was last
started.

 ReclaimedPagesCount (Stone)
The number of pages reclaimed by the ReclaimGem since the Stone was last started.
The count indicates the number of pages that have been or will soon be put back in
the page free pool.

 ReclaimedSymbols (Stone)
The number of symbols that have been reclaimed since the stone was started.

Tuning Garbage Collection

Along with the scaling changes that went into Gemstone64 that increased the size of the
repository in both physical space and number of objects were changes in the scalability of the
garbage collection algorithms. One of the key changes to garbage collection was to use
multiple threads to increase the amount of CPU and I/O that could be brought to bear on the
problem, with the goal of being able to use more of the machine resources that would be
available at times when the load from user activity was less.

Although there are other factors that impact the performance of the garbage collection
algorithms, the most significant one is the number of threads used to perform the operation.
In addition to allocating the threads, there are also other memory resources associated with
the thread that need to be allocated. To insure that the operation can be performed, the
resources are allocated at the beginning of the operation with a specified maximum number
of threads. If during the operation the system the system resources are needed for another
task, the number of active threads can be decreased, and then later increased back to the
original maximum number of threads. The number of threads currently running an operation
in a gem session can be accessed using the method Repository >> mtMaxThreads: sessionId.
The value can be changed using Repository >> mtThreadsLimit: sessionId setValue:
newVal.

Changing the number of active threads generally impacts both the CPU utilization and the
I/O rate for the gem process. Another alternative to managing the CPU utilization is to
change the setting for the mtPercentCpuActiveLimit using the method Repository >>
mtPercentCpuActiveLimit: sessionId setValue: newVal. The multi-threaded operations
periodically monitor their CPU usage and and automatically adjust the mtThreadsLimit to
keep the utilization below the specified value.

An examination of the system should be performed before any tuning is performed. The goal
of such an examination is to determine the cause and nature of system latency. The following
questions should be answered to aid this analysis:

 What aspect of system performance is being affected? Examples include CPU
availability, I/O bandwidth, disk swapping, and network I/O bandwidth. UNIX tools
such as top, vmstat, iostat, netstat, sar and glance may be used to assist in this
determination.

 What aspects of GemStone performance are being affected? Examples include
commit performance, system login time, etc.

Once system resource limitations are understood and the tuning goals determined, the
various areas of garbage collection can then be addressed to achieve those goals.

The next sections of this document covers tuning details specific to individual operations.

markForCollection

The method Repository >> markForCollection performs the operation in a non-aggressive
manner and uses only 2 threads. The Repository >> fastMarkForCollection method performs
the operation more aggressively in order to complete the operation in as little time as
possible. The default maxThreads for this method is the number of CPU cores in the system
* 2. It is expected that many of the threads would be in I/O wait when scanning large
repositories and will likely consume most or all of the host system resources while it is in
progress. The number of threads used can also be specified explicitly using the method
Repository >> markForCollectionWithMaxThreads: numThreads.

There are a number of memory overheads associated with running the markForCollection
method. The memory space needed is variable and depends on the current
oopHighWaterMark, the number of threads and the pageBufSize specified. The
markForCollection algorithm doesn't use any TemporaryObjectCache space, so configuring
this gem for the smallest TOC space is advantageous.

 The estimated overhead associated with the oopHighWaterMark can be computed as:

 BitArrayBuffersSizeInBytes = (stnOopHighWater + 10M) / 2

The estimated memory cost per thread is 50K + (180K * pageBufSize). The default
pageBufSize is 128 pages.

To give some idea of how this scales, a system that had an oopHighWaterMark of 500M
running 8 sessions with a pageBufSize of 512 would require about 1GBof free memory to
start up.

Caution should be taken when setting the numSessions and pageBufSize to prevent the
memory footprint for this process from being so large that the system starts swapping.

The pageBuffer is used to hold data pages read by the thread. The thread loads the page
buffer with pages it has identified as containing marked objects looking up the objects in the
object table to make sure it is viewing the current state of the object, this phase is very I/O
intensive. It then performs a mark/sweep of the objects in those pages which is CPU bound
since no additional I/O is needed. In general, a larger buffer allows for the possibility of
finding new marked objects already in the buffer, but there are no guarantees that this will
occur, since it is largely dependent upon how the objects were clustered and what pages the
thread happens to get in its buffer. The pageBufSize specified must be a power of 2. Larger
values can improve performance. For example, in a test case where the machine was
dedicated to performing this operation, increasing the pageBufSize from 64 to 512 reduced
the elapsed time by about 20 percent. On the other hand, if the operation is being run on a
live system then smaller values may be better depending on how often the algorithm must
abort (and clear the buffers) to prevent the commit record backlog from growing. The
default pageBufSize is 128 pages.

During the mark/sweep the repository is scanned repeatedly from low pageId to high pageId
within each extent and each thread attempts to select a set of pages from a different extent. If
the extents are on disk drives, performance can be optimized by arranging the extents so that
the scan causes the fewest head movements on each drive since the threads can
simultaneously initiate I/O operations on multiple extents.

For use with a RAID or SAN system, the device should be configured for 16K read
operations from sequentially increasing blocks within an extent. No tuning should be
necessary with SSDs.

The markForCollection requires almost continuous access to the entire object table. Running
on a system that can hold all of the object table in the shared page cache will allow it to
perform optimally. The object table size is approximately stnOopHighWaterMark * 12 bytes.

Epoch GC

Tuning the epochGc can be done by changing the settings of the adminGemConfigs using the
System >> setAdminConfig:toValue: method. The configs that control the epochGc are:

 #epochGcMaxThreads
MaxThreads used for next epochGc
(default:1, min:1, max: 32)

 #epochGcPageBufferSize
Size in pages of buffer used for epoch GC (must be power of 2)
(default: 64, min:8, max 1024)

 #epochGcPercentCpuActiveLimit
Limit active epoch threads when system percentCpuActive is above this limit.
(default: 90, min: 0, max: 100)

 #epochGcTimeLimit
Controls the maximum frequency of epochs, in seconds. It is recommended that this
value not be less than 1800 (i.e. 30 minutes), since the aging of objects faulted into gem
memory uses 5 minute aging for each of 10 subspaces of the pom generation. Ideally
epochGcTimeLimit should be several hours.
(default: 3600, min: 5, max: maxInt32)

 #epochGcTransLimit
Minimum number of commits that must have occurred in order to start an epoch
garbage collection.
(default: 5000, min: 0, max: maxInt32)

The epochGcTimeLimit and epochGcTransLimit determine the span of the epoch and thus
the size of the writeSetUnion that must be processed. To have the epochGc be effective,
these should be set so that the duration of the epoch is at least 2 times the lifetime of the
objects you would like to detect.

The execution time for the epoch processing is most effectively controlled with the
epochGcMaxThreads configuration parameter. Having more threads operating will shorten
the processing time required, but can increase the CPU and I/O load on the system. If the
epoch can be scheduled to run in off load times, for example: during a change of shifts or
overnight, then a higher value can be used.

If the epoch needs to be run during the normal business operations, then increasing the
number of threads may not be possible, but the performance of the fewer threads may be
improved by increasing the epochGcPageBufferSize.

If an epochGc operation is consuming too much CPU or I/O it can be dynamically tuned by
reducing the epochGcPercentCpuActiveLimit.

Symbol GC

There are no specific changes that can be made to tune Symbol garbage collection. The
additional steps that occur during the markForCollecion are controlled by the configuration
for the markForCollection. These phases in the markForCollection are usually much smaller
than the full mark/sweep phase that no additional tuning is required.

The hiding of the possibleDeadSymbols by the symbol gem is probably the most critical
factor, but this is currently a single threaded operation that cannot be tuned.

The best advice is to run the symbol garbage collection in a maintenance window when there
are fewer active gem processes on the system.

Voting

Ordinarily no tuning is required for this phase. Voting will complete faster if gems are
running in short transactions and the STN_CR_BACKLOG_THRESHOLD configuration
parameter is set to a smaller value to initiate sending of SIG_ABORT to idle gems.

A "brute force" method for completing this phase quickly is to stop and restart the stone.

WriteSetUnonSweep

Like epochGc, the writeSetUnionSweep can be tuned by changing the settings of the
adminGemConfigs with the System >> setAdminConfig:toValue: method. The configs that
control the writeSetUnionSweep are:

#sweepWsUnionMaxThreads
MaxThreads used for next wsUnion sweep
(default: 1 min: 1, max: 32)

#sweepWsUnionPageBufferSize
Size in pages of buffer used for wsUnion sweep.
(default: 64, min: 8, max: 1024)

#sweepWsUnionPercentCpuActiveLimit
Limit active wsUnion threads when system percentCpuActive is above this limit.
(default: 90, min: 0, max: 100)

The execution time for the wsUnionSweep processing is most effectively controlled with the
sweepWsUnionMaxThreads configuration parameter. Having more threads operating will
shorten the processing time required, but can increase the CPU and I/O load on the system.

Since it is difficult to time when the wsUnionSweep will be run, increasing the number of
threads may not be desirable, but the performance of fewer threads may be improved by
increasing the sweepWsUnionPageBufferSize.

If the wsUnionSweep operation is consuming too much CPU or I/O it can be dynamically
tuned by reducing the sweepWsUnionPercentCpuActiveLimit.

 PromoteToDead

The promote to dead step is an atomic operation that is executed by the stone process. It
involves copying the possibleDead bitmap to the deadObjects bitmap, which generally is a
very fast operation so no tuning is required.

If symbolGc is enabled, the stone also wakes up the symbol gem to unhide the symbols that
are not dead.

Reclamation

The reclaim processing can be tuned by changing the settings of the reclaimGemConfigs
with the System >> setReclaimConfig:toValue: method. The configs that control the reclaim
process are:

#deadObjsReclaimedCommitThreshold
The maximum number of dead objects to reclaim in a single transaction. Increasing this
value can make the commits more efficient, but may cause the reclaim gem to hold the
commit token for a longer time than desired.
(default:20000, min:32, max: maxInt32)

#deferReclaimCacheDirtyThreshold
Specifies a threshold percentage of dirty pages in the stones shared page cache. If more
than this percentage of pages in the stone shared cache are dirty pages, page reclaims
will be deferred until the dirty percentage drops below the threshold minus 5%. Setting
the value to 100 disables this feature.
(default:75, min:10, max: 100)

#maxTransactionDuration
Controls the approximate maximum length of a reclaim transaction in seconds. If the
Reclaim gem has been in transaction longer than this duration, it will commit even if
the #objsMovedPerCommitThreshold condition has not been satisfied.
(default:300, min:1, max: maxInt32)

#objsMovedPerCommitThreshold
Controls the approximate number of object table updates to be performed per
transaction. Reclaim gems will commit when at least this many live objects have been
moved to new data pages.
(default:20000, min:100, max: maxInt32)

#reclaimDeadEnabled
Controls whether the reclaim will try to clean up dead objects.
(default:true, min:false, max:true)

#reclaimMinFreeSpaceMb
Minimum repository free space, expressed in megabytes, which must be available in
order for reclaims to proceed. Reclaims are temporarily suspended if the repository
free space drops below this threshold. The default value of 0 specifies a varying
reclaimMinFreeSpaceMb that is computed as the current size of the repository divided
by 1000, with a minimum value of 5 mega bytes. The default calculation is the same as
that used by the stone for the STN_FREE_SPACE_THRESHOLD configuration
parameter.
(default:0, min:0, max: 65536)

#reclaimMinPages
The minimum number of pages to process in a single reclaim commit. If there are not
this many pages to reclaim, the reclaim gem sleeps until there are at least this number
available.
(default:40, min:1, max: maxInt32)

The above tuning parameters are useful for tuning the reclaim so that it doesn't interfere with
the normal operation of the system. If there are times when the system is not being heavily
used and there are a lot of pagesNeedReclaiming or deadNotReclaimed, the
SystemRepository >> reclaimAll method can be used to automatically override some of the
settings to optimize the reclamation. When the reclaimAll completes the settings are restored
to their previous state.

Performance Examples

These examples were run with a 3.7.0 alpha version as of May 2022, using a a 48 CPU
machine with Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz, running Ubuntu 18.04. The
system was configured with 100 GB shared page cache and running with 2MB large memory
pages.

The database was generated using large backup test. It was spread across 5 extents. Extents 0
and 1 are on SSDs and limited to 220GB, the remaining extents are on a raid file system. The
allocation mode is set to 100, 100, 20, 20, 20. The extents are pregrown at startup to 220GB,
220GB, 200GB, 200GB, 200GB.

The ReclaimGem was configured to run with 12 threads.

The first operation performed was to grow the database to contain 8 billion objects. This was
done using 8 gem processes and took 5 min 43 seconds to complete. The stone averaged
around 250 commits per second during this time and consumed about 445.6 GB of the
allocated repository space.

Then a backup, compressed using lz4 compression was run using 10 threads and written to 8
backup files on the raid file system. This took 8 minutes to run, writing 8.559 billion objects,
a rate of 17.76 million objects per second. PercentCpuWait averaged around 10% for most of
the backup operation while the PercentCpuActive was about 25%.

Approximately half of the objects were then disconnected and markForCollection was run
using 64 threads. The mfc took 6 minutes, 38 seconds to compete and added 4.266 billion
objects to the possible dead.

Because no other gems were logged into the system the voting was pretty much
instantaneous.

The reclaimGem took 11 minutes 39 seconds to reclaim all of the dead objects and was
committing 1 to 2 times per second.

Finally a restore operation was performed using 10 threads. The restore took 9 minutes 52
seconds to do the restore of all 8 billion objects.

These values are just an example of the possible performance for these operations and as
when comparing automobile mileage, your results will almost certainly vary.

	GemStone Garbage Collection in a Production Environment
	Important Definitions
	GemStone64 Garbage Collection Overview
	Detection of Possible Dead Objects
	Voting
	AdminGem Write Set Union Sweep
	Promote to Dead
	Reclamation
	Returning OOPs and Pages to Free Pools
	Garbage Collection Monitoring
	Tuning Garbage Collection
	Performance Examples

