
GemStone®

GemStone/S

GemBuilder for Smalltalk
For use with IBM VisualAge

Smalltalk Enterprise

December 2001

GemBuilder for Smalltalk Version 5.2

GemBuilder User Manual

ii GemStone Systems, Inc. December 2001

IMPORTANT NOTICE

This manual and the information contained in it are furnished for informational use only
and are subject to change without notice. GemStone Systems, Inc. assumes no
responsibility or liability for any errors or inaccuracies that may appear in this manual or in
the information contained in it. The manual, or any part of it, may not be reproduced,
displayed, photocopied, transmitted or otherwise copied in any form or by any means now
known or later developed, such as electronic, optical or mechanical means, without written
authorization from GemStone Systems, Inc. Any unauthorized copying may be a violation
of law.

The software installed in accordance with this manual is copyrighted and licensed by
GemStone Systems, Inc. under separate license agreement. This software may only be used
pursuant to the terms and conditions of such license agreement. Any other use may be a
violation of law.

Limitations

The software described in this manual is a customer-supported product. Due to the
customer’s ability to change any part of a Smalltalk image, GemStone Systems, Inc. cannot
guarantee that GemBuilder for Smalltalk will function on all Smalltalk images.

 1986–2001 by GemStone Systems, Inc. All rights reserved.

Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Trademarks

GemStone is a registered trademark and GemBuilder is a trademark of GemStone Systems,
Inc.

VisualAge is a trademark of International Business Machines Corporation.

Microsoft, MS-DOS, and Windows are registered trademarks and Windows NT, and
Win32 are trademarks of Microsoft Corporation in the U.S.A. and other countries.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

All other trademarks are the property of their respective owners.

Preface

December 2001 GemStone Systems, Inc. iii

About This Manual
This manual describes GemBuilder, an environment for developing Gemstone
applications using VisualAge for Smalltalk.

GemBuilder consists of two parts: a programming interface between your
Smalltalk application code and the GemStone object repository, and a GemStone
programming environment.

The programming interface provides facilities to:

 • allow objects to be transparently replicated and maintained in both client
Smalltalk and GemStone or allow some objects to reside only in GemStone but
appear as Smalltalk objects;

 • import GemStone objects into Smalltalk; and

 • create and browse connections between GemStone and Smalltalk objects that
optimize data transfer between the environments.

The GemBuilder programming environment provides the following integrated
tools for programming in GemStone’s version of Smalltalk:

 • A GemStone System Browser for examining, creating, and modifying GemStone
classes and methods.

GemBuilder User Manual

iv GemStone Systems, Inc. December 2001

 • A GemStone System Workspace for easy access to commonly used code
operations.

 • GemStone Inspectors for examining and modifying the state of GemStone
objects.

 • A GemStone Breakpoint Browser and a Debugger for examining and dynamically
modifying the state of a running GemStone application.

 • A Session Browser for managing sessions and transactions.

 • A Connector Browser for keeping track of and managing the connectors that
establish relationships between client Smalltalk objects and GemStone objects.

 • A Class Version Browser for examining a class history, inspecting instances,
migrating instances, deleting versions, and moving versions to another class
history.

 • A Symbol List Browser for examining the GemStone Symbol Lists that are used
for sharing objects and protecting access to objects in a multiuser environment.

 • A Settings Browser for examining and setting configuration parameters for
GemBuilder.

 • A User Account Management Tool for creating new user accounts, changing
account passwords, and assigning group membership.

 • A Segment Tool for managing GemStone authorization at the object level.

Prerequisites
To make use of the information in this manual, you need to be familiar with the
GemStone object server and with GemStone’s Smalltalk programming language as
described in the GemStone Programming Guide. That book explains the basic
concepts behind the language and describes the most important GemStone kernel
classes.

In addition, you should be familiar with the VisualAge Smalltalk language and
programming environment as described in the VisualAge Smalltalk product
manuals.

Finally, this manual assumes that the GemStone system has been correctly
installed on your host computer as described in the GemStone System
Administrator’s Guide and that your system meets the requirements listed in your
GemBuilder Installation Guide.

December 2001 GemStone Systems, Inc. v

How This Manual is Organized
Chapter 1, Basic Concepts, describes the overall design of a GemBuilder

application and presents the fundamental concepts required to understand the
interface between client Smalltalk and the GemStone object server.

Chapter 2, Communicating with the GemStone Object Server, explains how to
communicate with the GemStone object server by initiating and managing
GemStone sessions.

Chapter 3, Sharing Objects, describes the various mechanisms GemBuilder can
use to coordinate your application’s local objects with objects in the GemStone
repository, thus making them persistent and sharable.

Chapter 4, Connectors, explains how to connect your application’s local objects to
objects in the GemStone repository in order to implement object-sharing and
allow your application to manipulate objects in the repository.

Chapter 5, Using the GemStone Programming Tools, explains how to use the
GemStone browsers and tools to create classes and methods in GemStone and
to debug GemStone Smalltalk code.

Chapter 6, Managing Transactions, discusses the process of committing a
transaction, the kinds of conflicts that can prevent a successful commit, and
how to avoid or resolve such conflicts.

Chapter 7, Security and Object Access, describes the security mechanisms that are
available in GemBuilder and explains how to control access to objects in a
multiuser environment. It explains how to use the GemBuilder tools to
manage access to objects and administer user accounts.

Chapter 8, Schema Modification and Coordination, explains how GemStone
supports schema modification by maintaining versions of classes in class
histories. It describes the Class Version Browser and explains how to use it. It
also explains how to synchronize schema modifications between the client
image and GemStone.

Chapter 9, Performance Tuning, discusses ways that you can tune your
application to optimize performance and minimize maintenance overhead. It
describes the configuration parameters available for tuning a GemBuilder
application, and it explains how to use the Settings Browser to optimize your
application’s performance.

Chapter 10, Nontransparent Access to GemStone Objects, discusses some low-
level approaches to tuning GemBuilder applications.

GemBuilder User Manual

vi GemStone Systems, Inc. December 2001

Chapter 11, Error-handling, discusses errors: how to handle them and how to
recover from them.

Appendix A, GemBuilder Classes and GbsObjects, lists the GemStone objects
that are predefined as “proxy objects” within your client Smalltalk application.

Appendix B, Packaging Runtime Applications, provides brief instructions for
packaging runtime applications.

Appendix C, Network Resource String Syntax, describes the syntax for network
resource strings, a means for uniquely identifying a GemStone file or process
by specifying its location on the network, its type, and authorization
information.

Appendix D, Client Smalltalk and GemStone Smalltalk, outlines the few
general and syntactical differences between the client Smalltalk and GemStone
Smalltalk languages.

Other Useful Documents
You will find it useful to look at documents that describe other components of the
GemStone data management system:

 • The GemStone Programming Guide describes GemStone Smalltalk and discusses
managing common operations.

 • A description of the behavior of each GemStone kernel class is available in the
class comments in the GemStone Smalltalk image.

 • In addition, if you will be acting as a system administrator, or developing
software for someone else who must play this role, you will need to read the
GemStone System Administration Guide.

December 2001 GemStone Systems, Inc. vii

Technical Support
GemStone/S provides several sources for product information and support.
GemStone/S product manuals provide extensive documentation, and should
always be your first source of information. GemStone/S Technical Support
engineers will refer you to these documents when applicable. However, you may
need to contact Technical Support for the following reasons:

 • Your technical question is not answered in the documentation.

 • You receive an error message that directs you to contact GemStone/S
Technical Support.

 • You want to report a bug.

 • You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone/S account manager.

When contacting GemStone/S Technical Support, please be prepared to provide
the following information:

 • Your name, company name, and GemStone/S license number,

 • the GemStone/S product and version you are using,

 • the hardware platform and operating system you are using,

 • a description of the problem or request,

 • exact error message(s) received, if any.

Your GemStone/S support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, you should contact Technical Support by web form,
email, or facsimile. You will receive confirmation of your request, and a request
assignment number for tracking. Replies will be sent by email whenever possible,
regardless of how they were received.

World Wide Web: http://support.gemstone.com
The preferred method of contact. The Help Request link is at the top right
corner of the home page—please use this to submit help requests. This form
requires a password, which is free of charge but must be requested by
completing the Registration Form, found in the same location. Allow 24 hours
for your registration to be recorded and a password assigned.

GemBuilder User Manual

viii GemStone Systems, Inc. December 2001

Email: support@gemstone.com
Please do not send files larger than 100K (for example, core dumps) to this
address. A special address for large files will be provided on request.

Facsimile: (503) 629-8556
When you send a fax to Technical Support, you should also leave a voicemail
message to make sure your fax will be picked up as soon as possible.

We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production database that is non-
operational.

Telephone: (800) 243-4772 or (503) 533-3503
Emergency requests will be handled by the first available engineer. If you are
reporting an emergency and you receive a recorded message, do not use the
voicemail option. Transfer your call to the operator, who will take a message
and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone/S offers, at an additional charge, 24x7 emergency technical support.
This support entitles customers to contact us 24 hours a day, 7 days a week, 365
days a year, if they encounter problems that cause their production application to
go down, or that have the potential to bring their production application down.
Contact your GemStone/S account manager for more details.

Contents

December 2001 GemStone Systems, Inc. ix

Chapter 1. Basic Concepts

1.1 The GemStone Object Server . 1-2
1.2 GemBuilder for Smalltalk . 1-3

The Programming Interface . 1-4
Transparent Access to GemStone 1-4

GemStone’s Smalltalk Language . 1-5
The GemBuilder Tools . 1-6

1.3 Designing a GemStone Application: an Overview 1-7
Which objects should be stored and shared? 1-7
Which objects should be secured? . 1-8
Which objects should be connected? 1-8
How should transactions be handled? 1-9
How can performance be improved? 1-9

Chapter 2. Communicating with the GemStone Object Server

2.1 GemStone Sessions . 2-2
RPC and Linked Sessions. 2-2

GemBuilder User Manual

x GemStone Systems, Inc. December 2001

2.2 Session Control in GemBuilder . 2-3
Defining Session Parameters. 2-4

Defining Session Parameters Programmatically 2-5
2.3 The GemStone Session Browser. 2-7

Starting the Session Browser. 2-7
Supplying Session Parameters 2-7
Removing Session Parameters 2-8

2.4 Logging In To and Logging Out Of GemStone 2-8
Logging In To GemStone Programmatically. 2-9

The Current Session . 2-9
Logging Out of GemStone Programmatically 2-10
Session Management Using the Session Browser 2-11

Logging In . 2-11
Setting the Current Session. 2-11

Logging Out of a GemStone Session With the Session Browser 2-11
2.5 Session Dependents . 2-12

Chapter 3. Sharing Objects

3.1 Which Objects to Share? . 3-2
Connect Systems at the Root. 3-4

3.2 Class Mapping . 3-6
Automatic Class Generation . 3-7
Schema Mapping . 3-8
Behavior Mapping . 3-8
Mapping and Class Versions . 3-8

3.3 Forwarders . 3-9
Sending Messages. 3-10

Arguments . 3-10
Results . 3-10

Defunct Forwarders . 3-11
3.4 Replicates . 3-12

Synchronizing State. 3-12
Faulting. 3-13
Flushing . 3-14

Minimizing Replication Cost . 3-14
Instance Variable Mapping. 3-14
Stubbing . 3-17
Replication Specifications . 3-21

December 2001 GemStone Systems, Inc. xi

Customized Flushing and Faulting . 3-27
Modifying Instance Variables During Faulting. 3-27
Modifying Instance Variables During Flushing 3-29
Mapping Classes With Different Formats. 3-31

Limits on Replication . 3-31
Replicating Client Smalltalk Blocks 3-32
Block Callbacks . 3-35
Replicating ScaledDecimals 3-36

Client Copies. . 3-37
3.5 Precedence of Replication Mechanisms . 3-38
3.6 Converting Between Forms . 3-39

Chapter 4. Connectors

4.1 Connecting and Disconnecting . 4-2
Scope . 4-2
Verifying Connections . 4-2
Initializing . 4-3

Updating Class Definitions . 4-4
4.2 Kinds of Connectors . 4-4

Connection Order . 4-5
Lookup . 4-5

Connecting by Identity: Fast Connectors 4-6
4.3 Making and Managing Connectors . 4-7

Making Connectors Programmatically 4-7
Creating Connectors. 4-8
Setting the Postconnect Action 4-8
Adding Connectors to a Connector List 4-9
Session Control. . 4-10

The Connector Browser. . 4-13
The Group Pane . 4-14
The Connector Pane . 4-14
The Control Panel . 4-14
Postconnect Action . 4-15

Chapter 5. Using the GemStone Programming Tools

5.1 GemStone Menu . 5-2

GemBuilder User Manual

xii GemStone Systems, Inc. December 2001

5.2 Browsing Code . 5-4
The File Menu . 5-6
The GemStone Menu . 5-7
The Classes Menu. 5-7
Pop-up Text Pane Menu . 5-8

5.3 Other GemStone Tools . 5-9
GemStone Workspaces . 5-10
The System Workspace. 5-10
Inspectors . 5-11

Inspecting Nonsequenceable Collections 5-11
5.4 Coding . 5-12

About GemStone Smalltalk Classes. 5-12
Defining a New Class. 5-13

Subclass Creation Methods. 5-16
Private Instance Variables . 5-17

Modifying an Existing Class . 5-17
Defining Methods. 5-18

Public and Private Methods 5-18
Reserved and Optimized Selectors 5-19

Saving Class and Method Definitions in Files 5-19
Handling Errors While Filing In 5-22

5.5 Debugging. 5-22
Breakpoints . 5-23

Breakpoints for Primitive Methods 5-25
Breakpoints for Optimized Methods 5-25

Tools . 5-26
The Breakpoint Browser . 5-26

The Debugger . 5-27
Getting a Stack Trace Without a Debugger 5-28

Chapter 6. Managing Transactions

6.1 Transaction Management: an Overview . 6-2
6.2 Operating Inside a Transaction . 6-3

Committing a Transaction . 6-4
Aborting a Transaction . 6-5
Avoiding or Handling Commit Failures 6-5

6.3 Operating Outside a Transaction . 6-6

December 2001 GemStone Systems, Inc. xiii

Being Signaled to Abort . 6-7
6.4 Transaction Modes . 6-8

Automatic Transaction Mode . 6-8
Manual Transaction Mode . 6-9
Choosing Which Mode to Use . 6-9
Switching Between Modes . 6-10

6.5 Managing Concurrent Transactions . 6-10
Read and Write Operations . 6-11
Optimistic and Pessimistic Concurrency Control 6-11
Setting the Concurrency Mode. . 6-12
Setting Locks . 6-13
Releasing Locks Upon Aborting or Committing. 6-15

6.6 Reduced-conflict Classes . 6-16
6.7 Changed Object Notification. . 6-17

Gem-to-Gem Notification . 6-18

Chapter 7. Security and Object Access

7.1 Object-Level Security . 7-2
Requiring Login Authorization . 7-2
Controlling Visibility of Objects . 7-2
Protecting Methods . 7-2
Using GemStone’s Authorization Mechanisms 7-2

7.2 Classes for Controlling Access to Objects 7-4
Repository . 7-4
Segment . 7-4
UserProfile . 7-5

7.3 Sharing Access to Objects . 7-6
Group Authorization and Object-sharing 7-7

Using Segments for Authorization. 7-7
Making Objects Accessible Through Symbol Lists 7-9

7.4 GemStone Administration Tools . 7-10
The Segment Tool . 7-10

Segment Definition Area . 7-11
Group Definition Area . 7-13
Segment Tool Menus . 7-14
Using the Segment Tool . 7-17

The Symbol List Browser . 7-20

GemBuilder User Manual

xiv GemStone Systems, Inc. December 2001

The Clipboard . 7-21
Symbol List Browser Menus 7-21

User Account Management Tools. 7-23
GemStone User List . 7-23
GemStone User Dialog . 7-25

Chapter 8. Schema Modification and Coordination

8.1 Schema Modification . 8-2
Instance Migration Within GemStone 8-2

Setting the Migration Destination 8-3
Migrating Objects . 8-3
Things to Watch Out For . 8-4
Instance Variable Mapping in Migration 8-4

8.2 Schema Coordination . 8-6
8.3 The Class Version Browser . 8-7

Menus in the Class Version Browser 8-7

Chapter 9. Performance Tuning

9.1 Selecting the Locus of Control . 9-2
Locus of Execution . 9-2

Relative Platform Speeds . 9-3
Cost of Data Management . 9-3
GemStone Optimization . 9-3

9.2 Profiling . 9-4
Profiling Client Smalltalk Execution 9-4
Watching Stub Activity. 9-4
Using Verbose Mode . 9-4

9.3 Configuring GemBuilder . 9-5
GemBuilder Configuration Parameters 9-5
Using Configuration Parameters to Tune Your Application 9-6
The Settings Browser . 9-11

Opening the Settings Browser 9-11
Parameter Notebook . 9-13

9.4 Replication Tuning . 9-14
Controlling the Fault Level . 9-15
Preventing Transient Stubs . 9-15

December 2001 GemStone Systems, Inc. xv

Setting theTraversal Buffer Size . 9-15
9.5 Optimizing Space Management . 9-16

Explicit Stubbing . 9-16
Using Forwarders . 9-17
Not Caching Selected Objects . 9-17

9.6 Using Primitives . 9-18
9.7 Changing the Initial Cache Size . 9-19
9.8 Multiprocess Applications . 9-19

Process-safe Transparency Caches . 9-19
Blocking and Nonblocking Protocol. 9-19
One Process per Session . 9-20
Multiple Processes per Session. . 9-20

Coordinating Transaction Boundaries. 9-21
Coordinating Flushing . 9-21
Coordinating Faulting. . 9-22

Chapter 10. Nontransparent Access to GemStone Objects

10.1 Nontransparency: General Principles . 10-2
Flushing and Faulting Nontransparent Objects 10-2
Public and Private Classes and Methods 10-4
Specifying a Session . 10-4

10.2 Delegate Objects . 10-5
Sending Messages Through GbsObject Delegates 10-6
Special Treatment of Binary Selectors 10-8
Sending Code to Gemstone for Execution 10-8
Converting GbsObjects to Replicates 10-10

10.3 Structural Access to GemStone Objects 10-11
10.4 Executing GemStone Host File Access Methods 10-13

Chapter 11. Error-handling

11.1 Error-handling and Recovery . 11-1
Stack-based Error-handling . 11-2
Session-based Error-handling . 11-2
User-defined Errors . 11-3

11.2 Detecting GemStone Interrupts . 11-4

GemBuilder User Manual

xvi GemStone Systems, Inc. December 2001

Appendix A. GemBuilder Classes and GbsObjects

A.1 Special GemBuilder Classes . A-1
Class for Raising Errors . A-1
Classes for Connecting Objects . A-1
Class for Forwarding Messages . A-2
Class for Providing Structural Access A-2

A.2 Reserved OOPs. A-3

Appendix B. Packaging Runtime Applications

B.1 Prerequisites . B-1
Names . B-1
Replicating Blocks . B-2
Defunct Stubs and Forwarders . B-2
Shared Libraries . B-2

B.2 Packaging . B-2

Appendix C. Network Resource String Syntax

C.1 Overview . C-1
C.2 Defaults . C-2
C.3 Notation. C-3
C.4 Syntax . C-4

Appendix D. Client Smalltalk and GemStone Smalltalk

Index

List of

December 2001 GemStone Systems, Inc. xvii

Figures

Figure 1.1. The GemStone Object Server. .1-2
Figure 2.1. RPC and Linked Gem Processes . .2-3
Figure 2.2. The GemStone Session Browser . .2-7
Figure 2.3. The Login Editor .2-8
Figure 2.4. Committing with Approval From a Session Dependent 2-15
Figure 3.1. Connecting Application Roots . .3-5
Figure 3.2. Root Objects .3-6
Figure 3.3. Two-level Fault of an Object . 3-18
Figure 3.4. A Stub Responds to a Message . 3-19
Figure 4.1. Connecting a Name Connector .4-6
Figure 4.2. Connector Class Hierarchy. .4-7
Figure 4.3. The Connector Browser. . 4-13
Figure 5.1. GemStone Classes Browser .5-4
Figure 5.2. Menus in the GemStone Browser .5-6
Figure 5.3. GemStone System Workspace . 5-10
Figure 5.4. GemStone Delegate Inspector . 5-11
Figure 5.5. GemStone Breakpoint Browser with a Breakpoint 5-27
Figure 6.1. GemBuilder Application Workspace 6-3

GemBuilder User Manual

xviii GemStone Systems, Inc. December 2001

Figure 7.1. GemStone’s Object-Level Security Mechanism 7-5
Figure 7.2. The Segment Tool . 7-11
Figure 7.3. The Symbol List Browser. . 7-20
Figure 7.4. GemStone User List. . 7-24
Figure 7.5. GemStone User Dialog . 7-25
Figure 7.6. Privileges Dialog in GemStone User Window 7-26
Figure 8.1. The Class Version Browser . 8-7
Figure 9.1. The Settings Browser . 9-12
Figure 9.2. Employee Set Faulted into the Client Smalltalk 9-16
Figure 10.1. Transparent Object . 10-3
Figure 10.2. Nontransparent Objects. . 10-3

List of

December 2001 GemStone Systems, Inc. xix

Tables

Table 3.1. Delegate Conversion Protocol. . 3-39
Table 3.2. Forwarder (to the Server) Conversion Protocol 3-39
Table 3.3. Replicate Conversion Protocol . 3-40
Table 3.4. Stub Conversion Protocol . 3-40
Table 3.5. Conversion Protocol for Unshared Client Objects 3-41
Table 4.1. Group List Menu in the Connector Browser 4-14
Table 4.2. Connectors Menu in the Connector Browser 4-14
Table 4.3. Options in the Control Panel . 4-15
Table 4.4. Postconnect Action Options in the Connector Browser 4-15
Table 5.1. The GemStone Menu. .5-2
Table 5.2. File Menu in the GemStone Browser5-6
Table 5.3. GemStone menu in the GemStone Browser5-7
Table 5.4. GemStone Browser’s Classes Menu 5-8
Table 5.5. Pop-up Menu in GemStone Browser’s Text Pane5-9
Table 5.6. Additional GemStone Menu Items5-9
Table 5.7. Commands in GemStone Inspector 5-11
Table 5.8. Commands for Inspecting NSCs . 5-11
Table 6.1. GbsSession Methods for Running Outside of a Transaction. 6-7

GemBuilder User Manual

xx GemStone Systems, Inc. December 2001

Table 7.1. File Menu in the Segment Tool . 7-14
Table 7.2. Segment Menu in the Segment Tool 7-15
Table 7.3. Group Menu in the Segment Tool 7-16
Table 7.4. Member Menu in the Segment Tool 7-16
Table 7.5. Report Menu in the Segment Tool 7-17
Table 7.6. File Menu in the Symbol List Browser 7-21
Table 7.7. Dictionary Menu in the Symbol List Browser. 7-22
Table 7.8. Entry Menu in the Symbol List Browser. 7-22
Table 7.9. GemStone User List: File Menu. . 7-24
Table 7.10. GemStone User List: Users Menu 7-24
Table 7.11. Buttons in the GemStone User Window 7-25
Table 7.12. Privileges . 7-27
Table 8.1. Classes Menu in Class Version Browser 8-8
Table 9.1. Configuration Parameters for GemBuilder 9-5
Table 9.2. Notebook Control Buttons and Their Combo Box Menus 9-13
Table 9.3. Parameter Page Control Buttons . 9-14

Chapter

December 2001 GemStone Systems, Inc. 1-1

1 Basic Concepts

This chapter describes the overall design of a GemBuilder application and presents
the fundamental concepts required to understand the interface between client
Smalltalk and the GemStone object server.

The GemStone Object Server
introduces GemStone and its architecture and explains the part each
component plays in the system.

GemBuilder for Smalltalk
outlines the basic features of GemBuilder that allow you to access GemStone
objects from your Smalltalk application, and describes the basic programming
functions that GemBuilder provides.

Designing a GemStone Application: an Overview
outlines the basic steps involved in producing a Gembuilder application.

The GemStone Object Server GemBuilder User Manual

1-2 GemStone Systems, Inc. December 2001

1.1 The GemStone Object Server
The GemStone object server supports multiple concurrent users of a large
repository of objects. GemStone provides efficient storage and retrieval of large
sets of objects, resiliency to hardware and software failures, protection for object
integrity, and a rich set of security mechanisms.

The GemStone object server consists of three main components: a repository for
storing persistent, shared objects; a monitor process called the Stone, and one or
more user processes, called Gems.

Figure 1.1 shows how the object server supports clients in a Smalltalk application
environment.

Figure 1.1 The GemStone Object Server

The object repository is a multiuser, disk-based Smalltalk image containing shared
application objects and GemStone kernel classes. It is composed of files

 Application B

Gem Process A
GemStone

classes and objects

Object Repository

Client Smalltalk
classes and objects

GemStone
classes and objects

Stone monitor
 process

GemStone Object Server

Relational Data

Gem Process B

 Application A
Client Smalltalk

classes and objects

Basic Concepts GemBuilder for Smalltalk

December 2001 GemStone Systems, Inc. 1-3

(known to GemStone as extents) that can reside on a single machine or can be
distributed among several networked hosts. The repository can also include
GemConnect objects representing data stored in third-party relational
databases.

Your Smalltalk application program treats the repository as a single unit,
regardless of where its elements physically reside.

A Gem is an executable process that your application creates when it begins a
GemStone session. A Gem acts as an object server for one session, providing
a single-user view of the multiuser GemStone repository. A Gem reads objects
from the repository, executes GemStone Smalltalk methods, and updates the
repository.

Each Gem represents a single session. An application can create more than
one session, each representing an internally-consistent single view of the
repository. When a Gem commits a transaction, it modifies the shared
repository and updates its own view of the repository.

The Stone monitor process handles locking and controls concurrent access to
objects in the repository, ensuring integrity of the stored objects. Each
repository is monitored by a single Stone.

Despite its central role in coordinating the work of all individual Gems, the
Stone is surprisingly unintrusive. To optimize throughput for all users, most
processing is handled by the Gems, which often interact directly with the
repository. The Stone intervenes only when required to ensure the integrity of
the multiuser repository.

1.2 GemBuilder for Smalltalk
GemBuilder for Smalltalk is a set of classes and primitives that can be installed in
a Smalltalk image. With the functionality provided by GemBuilder, you can:

 • store your client Smalltalk application objects in GemStone;

 • import GemStone objects into Smalltalk as Smalltalk objects;

 • allow your application objects to be transparently replicated and maintained
both in Smalltalk and in GemStone, or allow some objects to reside only in
GemStone but appear as Smalltalk objects;

 • arrange for messages sent to client Smalltalk objects to be forwarded and
executed in GemStone by corresponding GemStone objects;

GemBuilder for Smalltalk GemBuilder User Manual

1-4 GemStone Systems, Inc. December 2001

 • use GemStone’s programming tools to develop GemStone classes and
methods to operate on your application objects; and

 • perform certain system functions, such as committing transactions and
starting or ending GemStone sessions.

The Programming Interface
Your client Smalltalk application creates a GemStone session by using GemBuilder
to log in to GemStone, creating a Gem process to serve your application. Many
Gem processes can actively communicate with a single repository at the same time.

As Figure 1.1 illustrates, several applications can work concurrently with a single
repository, with each application viewing the repository as its own. GemStone
coordinates transactions between each of the applications and the repository.

Transparent Access to GemStone

The interface between your client Smalltalk application and GemStone can be
relatively seamless.

Many of the classes in the base Smalltalk image are mapped to comparable
GemStone classes, and additional class mappings can be created either
automatically or explicitly. GemBuilder is also able to automatically generate
GemStone classes from client Smalltalk classes, and vice versa, as necessary. Your
Smalltalk objects can be replicated in GemStone, and GemStone objects can be
replicated in Smalltalk.

The most common way to make a Smalltalk object persistent—that is, to store it in
GemStone—is to define a connector for the object. A connector is an object that
knows how to resolve a client Smalltalk object and a GemStone object and how to
establish a relationship between them when a session logs into GemStone. Once
you’ve defined a connector for the two objects, the GemBuilder interface maintains
the relationship between the shared GemStone object and the private client
Smalltalk object, updating values from the repository to your application and vice
versa, as necessary. The connector ensures that if a shared GemStone object is
modified, the application’s Smalltalk counterpart is updated automatically.

Your client Smalltalk application updates shared objects in the repository by
sending a commit message to a session. With a successful commit, changes to
objects in the current session are propagated to the shared object repository in
GemStone. Once you have committed a transaction, your application objects are
updated with the most recently saved state of the repository, incorporating
changes made by other users.

Basic Concepts GemBuilder for Smalltalk

December 2001 GemStone Systems, Inc. 1-5

While, for the most part, GemBuilder will automatically manage objects in both the
client Smalltalk and in GemStone, you can exert as much control as you want over
how objects are stored and used. GemBuilder provides tools that let you specify
customized policies for translating between your client Smalltalk and GemStone
objects.

Chapter 4 describes GemBuilder’s mechanisms for making your client Smalltalk
objects persistent, and Chapter 9 explains how to tune the system to minimize
maintenance overhead and optimize performance.

GemStone’s Smalltalk Language
GemStone provides a version of Smalltalk that supports multiple concurrent users
of the shared object repository through such features as session management,
reduced-conflict collection classes, querying, transaction management, and
persistence.

GemStone Smalltalk is like single-user client Smalltalk in both its organization and
syntax. Objects are defined by classes based on common structure and protocol
and classes are organized into an is-a hierarchy, rooted at class Object. The class
hierarchy is extensible; new classes can be added as required to model an
application. The behavior of common classes conforms to the ANSI standard for
Smalltalk. GemStone’s class hierarchy is discussed in the introductory chapter to
the GemStone Programming Guide.

The most significant difference between GemStone Smalltalk and Smalltalk lies in
GemStone’s support for a multiuser environment in which persistent objects can
be shared among many users.

As an object server, GemStone must address the same key issues as conventional
information storage systems that support multiple concurrent users. For this
reason, GemStone’s Smalltalk includes classes for:

 • managing concurrent access to information,

 • protecting information from unauthorized access, and

 • keeping stored information secure and restoring it in the event of a failure.

You should be aware of a few differences between GemStone Smalltalk and client
Smalltalk in syntax and in the behavior of some of the classes. A summary of these
differences can be found in Appendix D.

GemBuilder for Smalltalk GemBuilder User Manual

1-6 GemStone Systems, Inc. December 2001

The GemBuilder Tools
GemBuilder’s programming environment provides tools for programming in
GemStone Smalltalk. The following tools are described in detail in subsequent
chapters of this manual:

 • A GemStone System Browser lets you examine, modify, and create GemStone
classes and methods.

 • A GemStone System Workspace provides easy access to commonly used
GemStone Smalltalk expressions.

 • GemStone Inspectors let you examine and modify the state of GemStone objects.

 • A GemStone Breakpoint Browser and a Debugger let you examine and
dynamically modify the state of a running GemStone application.

 • A Session Browser allows you to manage sessions and transactions.

 • A Connector Browser allows you to manage the connectors that establish
relationships between Smalltalk and GemStone objects.

 • A Class Version Browser can be used for examining a class history, inspecting
instances, migrating instances, deleting versions, and moving versions to
another class history.

 • A Symbol List Browser allows you to examine the GemStone Symbol Lists
associated with UserProfiles, add and delete dictionaries from these lists, and
manipulate the entries in those dictionaries.

 • A Settings Browser allows you to examine and set the configuration parameters
for GemBuilder.

 • A User Account Management Tool allows you to create new user accounts,
change account passwords, and assign group membership.

 • A Segment Tool facilitates managing GemStone authorization at the object level
by controlling how objects are assigned to segments.

Basic Concepts Designing a GemStone Application: an Overview

December 2001 GemStone Systems, Inc. 1-7

1.3 Designing a GemStone Application: an Overview
Many GemStone users start with an application they have already written in
Smalltalk. Their mission is to transform that application into one that makes
meaningful use of GemStone’s features: persistence, multiuser access, security,
integrity, and the ability to store and manage large quantities of information.

As a GemStone programmer, your application design and porting efforts involve
the following tasks:

 • choosing the objects that should be stored and shared,

 • deciding which objects need to be secured,

 • establishing connections between root objects in the client and the server,

 • deciding when to commit transactions and how to handle concurrency
control, and

 • tuning your application for optimal performance.

This section gives you an overview of these steps and points you to the chapters
that discuss these topics in detail.

Which objects should be stored and shared?
Your application will typically have two kinds of objects: those that must persist
across images and GemStone sessions and be shared among users, and those that
represent a transient state. Your first task is to identify the objects that make up
your application and decide which ones need to be stored and shared. Making
objects persistent unnecessarily can degrade performance and complicate
programming.

Use GemStone to store those objects that need to exist between sessions and must
be shared with other users. For example, objects representing information in your
application such as financial statements, employee health records, or library book
cards would certainly require storage in GemStone. Some methods for
manipulating the persistent data can also be usefully coded in GemStone Smalltalk
and stored in GemStone for improved efficiency.

You don’t need to store in GemStone transient session objects that no one else will
ever need; such objects can remain in Smalltalk. For example, suppose you
generate a report from the financial statements stored in GemStone. Once you
view or print the report it has served its purpose; the next time you need a report
you will generate a new one. The report and its component objects can exist
simply as Smalltalk objects; they don’t need to be stored in GemStone. However,

Designing a GemStone Application: an Overview GemBuilder User Manual

1-8 GemStone Systems, Inc. December 2001

you might want the classes and methods used to build the report to be stored in
GemStone so that others can use them.

Certain objects can be considered your organization’s business objects. Business
objects contain the data that give your organization its strategic, competitive
advantage; their instance variables contain information about the business process
that they model, and their methods represent actions involved in conducting
business. Keeping your business objects centralized and stored separately from the
applications that access them allows your organization to serve the needs of all
users, while still enforcing consistency and maintaining control of critical
information.

Which objects should be secured?
What security challenges does the application pose? Determine the strategy you
will use to handle those challenges. Does access to certain objects need to be
restricted to only certain authorized users? Many of your business objects may fall
into this category. If so, who should be authorized to access them, and how? Do
your users fall into groups with different access needs? Will anyone need to
execute privileged methods? The earlier you lay the groundwork for your security
needs, the easier they will be to implement. Security is discussed in detail in
Chapter 7.

Which objects should be connected?
Once you’ve decided how to partition your application objects, you will want to
set up connections between the objects that will reside on the client and those that
will reside on the server so that GemBuilder can automatically manage changes to
them and understand how to update them properly. This connection is established
by making sure a connector is defined for those objects.

A connector connects not only the immediate object but also all those objects that
it references, so you don’t need to define a connector for every object in your
application that you want to store in GemStone. Instead, you should begin by
identifying the subsystems in your application that define persistent objects, and
then identifying a root object in each subsystem to target with a connector. You
can find further discussion of connectors in Chapter 4.

Basic Concepts Designing a GemStone Application: an Overview

December 2001 GemStone Systems, Inc. 1-9

How should transactions be handled?
Another decision you need to make involves transactions: when to commit and
how to handle the occasional failure to commit. Do you want to use locks to
ensure a successful commit? If so, identify the places in your application where
you must acquire the locks. Concurrency control and locking are discussed in
more detail in Chapter 6.

How can performance be improved?
If— after you have built your application— you find that its performance does not
meet your expectations, you have a variety of ways to improve matters.

One of the most powerful single things you can do to improve performance is to
move some of the behavior from Smalltalk into GemStone and let the GemStone
execution engine do the work. This approach reduces network traffic, which is a
prime cause of slow performance.

Which methods might best be executed in GemStone? GemStone already contains
behavior for many of the common Smalltalk kernel classes and, as mentioned
earlier, the syntax and class hierarchy of GemStone’s Smalltalk language are so
similar to those of Smalltalk that the porting effort is likely to be relatively simple.
Performance issues in general are discussed in Chapter 9. Moving execution into
GemStone is discussed in the section entitled “Locus of Execution” on page 9-2.

That chapter also discusses the configuration parameters that can be altered to
improve GemBuilder’s performance. GemBuilder’s configuration parameters are
described in the section called “Configuring GemBuilder” on page 9-5. Chapter 9
also explains how to use GemBuilder’s Settings Browser to tune your system for
maximum performance, given the details of your application and environment.

Finally, you can configure the GemStone object server for maximum performance,
given the details of your application and environment. GemStone configuration
parameters are discussed in detail in the GemStone System Administration Guide; in
addition, the GemStone Programming Guide gives a variety of tips in the chapter
entitled “Tuning Performance.”

Designing a GemStone Application: an Overview GemBuilder User Manual

1-10 GemStone Systems, Inc. December 2001

Chapter

December 2001 GemStone Systems, Inc. 2-1

2 Communicating
with the GemStone
Object Server

When you install GemBuilder, your Smalltalk image becomes “GemStone-
enabled,” meaning that your image is equipped with additional classes and
methods that allow it to work with shared, persistent objects through a multi-user
GemStone object server. Your Smalltalk image remains a single-user application,
however, until you connect to the object server. To do so, your application must
log in to a GemStone object server in much the same way that you log in to a user
account in order to work on a networked computer system.

This chapter explains how to communicate with the GemStone object server by
initiating and managing GemStone sessions.

GemStone Sessions
introduces sessions and explains the difference between RPC and linked
sessions.

Session Control in GemBuilder
explains how to use the classes GbsSession, GbsSessionManager, and
GbsSessionParameters to manage GemBuilder sessions.

The GemStone Session Browser
describes the GemStone Session Browser.

GemStone Sessions GemBuilder User Manual

2-2 GemStone Systems, Inc. December 2001

Logging In To and Logging Out Of GemStone
describes how to log in and out of GemStone sessions programmatically and
using the Session Browser.

Session Dependents
explains how to use the Smalltalk dependency mechanism to coordinate the
effects of session management actions on multiple application components.

2.1 GemStone Sessions
An application connects to the GemStone object server by logging in to GemStone
and disconnects by logging out. Each logged-in connection is known as a session
and is supported by one Gem process. The Gem reads objects from the repository,
executes GemStone Smalltalk methods, and propagates changes from the
application to the repository.

Each session presents a single-user view of a multiuser GemStone repository. An
application can create multiple sessions, one of which is the current session at any
given time. You can manage GemStone sessions either through your application
code or through the Session Browser.

RPC and Linked Sessions
A Gem can run as a separate process and respond to Remote Procedure Calls
(RPCs) from its application, in which case the session it supports is called an RPC
session.

On platforms that host the GemStone object server and its runtime libraries, one
Gem can be integrated with the application into a single process. That Gem is
called a linked session. When running linked, an application and its Gem must run
on the same machine and the runtime code requires additional memory.

An RPC session offers more flexibility because the application and its Gem are
separate processes that can run on different hosts in a network. Any GemBuilder
application can create RPC sessions. Where a linked session is supported, an
application can create multiple sessions, but only one can be linked. (To suppress
linked sessions, forcing all Gems to run as RPC processes, you can set the
configuration parameter loginLinkedIfAvailable to false.)

Figure 2.1 shows an application with two logged-in sessions. Gem process A
supports a linked session, while Gem process B supports an RPC session.

Communicating with the GemStone Object Server Session Control in GemBuilder

December 2001 GemStone Systems, Inc. 2-3

Figure 2.1 RPC and Linked Gem Processes

2.2 Session Control in GemBuilder
Managing GemStone sessions involves many of the same activities required to
manage user sessions on a multi-user computer network. To manage GemStone
sessions, you need to do various operations:

 • Identify the object server to which you wish to connect.

 • Identify the user account to which you wish to connect.

 • Log in and log out.

 • List active sessions.

 • Designate a current session.

 • Send messages to specific sessions.

Three GemBuilder classes provide these session control capabilities: GbsSession,
GbsSessionParameters, and GbsSessionManager.

 Application

Gem Process B

Object Repository

Stone monitor
 process

GemStone Object Server

Gem Process A

(RPC session)(linked session)

 Smalltalk

Session Control in GemBuilder GemBuilder User Manual

2-4 GemStone Systems, Inc. December 2001

GbsSession
An instance of GbsSession represents a GemStone session connection. A
successful login returns a new instance of GbsSession. You can send
messages to an active GbsSession to execute GemStone code, control
GemStone transactions, compile GemStone methods, and perform low-
level structured access to groups of objects.

GbsSessionParameters
Instances of GbsSessionParameters store information needed to log in to
GemStone. This information includes the Stone name, your user name,
passwords, and the set of connectors to be connected at login.

GbsSessionManager
There is a single instance of GbsSessionManager, named GBSM. Its job is
to manage all known GbsSessions, support the notion of a current session
(explained in the following section), and handle other miscellaneous
GemBuilder matters. Whenever a new GbsSession is created, it is
registered with GBSM. GBSM shuts down any GemStone connections
before Smalltalk quits.

Defining Session Parameters
To initiate a GemStone session, you must first identify the object server and user
account to which you wish to connect. This information is stored in an instance of
GbsSessionParameters and added to a list maintained by GBSM. You can provide
the information through window-based tools or programmatically. Both methods
are described in later sections. In either case, you must supply these items:

 • The name of the GemStone monitor
For a Stone running on a remote server, be sure to include the server’s
hostname in Network Resource String (NRS) format. For instance, for a Stone
named “gemserver60” on a node named “mozart”, specify an NRS string of
the form:

!@mozart!gemserver60

(Appendix C describes NRS syntax in detail.)

 • GemStone user name and GemStone password
This user name and password combination must already have been defined in
GemStone by your GemStone data curator or system administrator.
(GemBuilder provides a set of tools for managing user accounts—see “User
Account Management Tools” on page 7-23.) Because GemStone comes
equipped with a data curator account, we show the DataCurator user name in
many of our examples.

Communicating with the GemStone Object Server Session Control in GemBuilder

December 2001 GemStone Systems, Inc. 2-5

 • Host username and Host password (not required for a linked session)
This user name and password combination specifies a valid login on the
Gem’s host machine (the network node specified in the Gem service name,
described below). Do not confuse these values with your GemStone username
and password. You do not need to supply a host user name and host
password if you are starting a linked Gem process. However, an application
that must control more than one GemStone session can use a linked interface
for only one session. Other sessions must use the RPC interface.

 • Gem service (not required for a linked session)
The name of the Gem service on the host computer (that is, the Gem process to
which your GemBuilder session will be connected). For most installations, the
Gem service name is gemnetobjcsh (if you use the C shell) or
gemnetobject (if your host login shell is the Bourne shell). Both service
names are accepted on Windows NT installations.

You can specify that the gem is to run on a remote node by using an NRS for
the Gem service name For example:

!@mozart!gemnetobjcsh

You do not need to supply a Gem Service name if you are starting a linked
Gem process.

Once defined, an instance of GbsSessionParameters can be used for more than one
session. Thus, a session description that includes the RPC-required parameters
can be used for both linked and RPC logins.

Defining Session Parameters Programmatically

The instance creation method for a full set of RPC parameters is:

GbsSessionParameters newWithGemStoneName: aGemStoneName
 username: aUsername
 password: aPassword
 hostUsername: aHostUsername
 hostPassword: aHostPassword
 gemService: aGemServiceName

For a shorter set of parameters that supports only linked logins, you can use a
shorter creation method:

GbsSessionParameters newWithGemStoneName: aGemStoneName
 username: aUsername
 password: aPassword

Session Control in GemBuilder GemBuilder User Manual

2-6 GemStone Systems, Inc. December 2001

Storing Session Parameters for Later Use

If you want the GemBuilder session manager to retain a copy of your newly-
created session description for future use, you must register it with GBSM:

GBSM addParameters: aGbsSessionParameters

Once registered with GBSM and saved with the image, the parameters are
available for use in future invocations of the image. In addition, the Session
Browser and other login prompters make use of GBSM’s list of session parameters.

Executing the expression GBSM knownParameters returns an array of all
GbsSessionParameters instances registered with GBSM.

To delete a registered session parameters object, send removeParameters: to
GBSM:

GBSM removeParameters: aGbsSessionParameters

Password Security

You can control the degree of security that GemBuilder applies to the passwords
in a session parameters object. For example, when you create the parameters
object, you can specify the passwords as empty strings. When the parameters
object is subsequently used in a login message, GemBuilder will prompt the user
for the passwords.

For example:

mySessionParameters := GbsSessionParameters
newWithGemStoneName: '!@mozart!gemserver60'
username: 'DataCurator'
password: ''
hostUsername: 'daveb'
hostPassword: ''
gemService: '!@mozart!gemnetobjcsh'

If convenience is more important than security, you can fill in the passwords and
then instruct the parameters object to retain the password information for future
use:

mySessionParameters rememberPassword: true;
 rememberHostPassword: true

The default “remember” setting for both passwords is false, which causes the
stored passwords to be erased after login.

Communicating with the GemStone Object Server The GemStone Session Browser

December 2001 GemStone Systems, Inc. 2-7

2.3 The GemStone Session Browser
The GemStone Session Browser streamlines logging in and logging out of
GemStone and managing sessions and transactions. This section explains how to
invoke the Session Browser, and how to use it to define session parameters and to
log in and out of GemStone.

Starting the Session Browser
1. Start your GemBuilder for Smalltalk image.

2. Select Sessions from the GemStone menu to open a Session Browser.

Figure 2.2 shows the Session Browser.

Figure 2.2 The GemStone Session Browser

Supplying Session Parameters

Select the Add button to define a set of session parameters. A Login Editor
appears, as shown in Figure 2.3.

Logging In To and Logging Out Of GemStone GemBuilder User Manual

2-8 GemStone Systems, Inc. December 2001

Figure 2.3 The Login Editor

Use the Tab key or the mouse to move through the fields in the login dialog, and
the Return key to accept input or changes in the login dialog. Provide the session
parameters described previously (see “Defining Session Parameters” on page 2-4).
For maximum password security, leave the Password and Host Password fields
empty, and the Remember boxes unselected.

When you click on OK, GemBuilder creates an instance of GbsSessionParameters
and registers it with GBSM. The new session description is added to the Session
Browser.

To change a session parameters object, select the name of the parameters object in
the upper left pane of the Session Browser and use the browser’s Edit button to
open a Login Editor. Use the Login Editor to change existing session parameters;
clicking on OK causes your changes to take effect.

Removing Session Parameters

To remove a GemStone session parameters object from the Session Browser, select
the session parameters defining the session in the upper left pane of the Session
Browser and click on Remove.

2.4 Logging In To and Logging Out Of GemStone
Before you can start a GemStone session, you need to have a Stone process and, for
an RPC session, a NetLDI (network long distance interface) process running. See

Communicating with the GemStone Object Server Logging In To and Logging Out Of GemStone

December 2001 GemStone Systems, Inc. 2-9

your System Administrator if the transcript indicates that these processes aren’t
active.

Depending on your version of GemStone and the terms of your GemStone license,
you can have many sessions logged in at once through your GemStone Smalltalk
Interface. These sessions can all be attached to the same GemStone repository, or
they can be attached to different repositories.

Logging In To GemStone Programmatically
The protocol for logging in is understood both by GBSM and by instances of
GbsSessionParameters. To log in using a specific session parameters object, send
a login message to the parameters object itself:

aGbsSessionParameters login

To start multiple sessions with the same parameters, simply repeat these login
messages.

An application can also send a generic login message to GBSM:

GBSM login

This message invokes an interactive utility that allows you to select among known
GbsSessionParameters or to create a new session parameters object using the
Login Editor.

A successful login returns a unique instance of GbsSession. (An unsuccessful login
attempt returns nil.) Each instance of GbsSession maintains a reference to that
session’s parameters, which you can retrieve by sending:

aGbsSession parameters

GBSM maintains a collection of currently logged in GbsSessions. You can
determine if any sessions are logged in with GBSM isLoggedIn and you can
execute GBSM loggedInSessions to return an array of currently logged in
GbsSessions.

The Current Session

When a new GbsSession is created, it is registered with GBSM, which maintains a
variable that represents the current session. When a session logs in, it becomes the
current session. If you execute code in a GemStone tool, the code is evaluated in
the session that was current when you opened that tool. If you send a message to
GBSM that is intended for a session, the message is forwarded to the current
session.

Logging In To and Logging Out Of GemStone GemBuilder User Manual

2-10 GemStone Systems, Inc. December 2001

Sending the message GBSM currentSession returns the current
GbsSession. You can change the current session in a workspace by executing an
expression of the following form:

GBSM currentSession: aGbsSession.

You can also send a message directly to a logged-in GbsSession even when it is not
the current session. If you send a specific session a message executing code, that
code is evaluated in the receiving session, regardless of whether it is the current
session.

Your application can make another session the current session by executing code
like that shown in Example 2.1:

Example 2.1

|s1 s2|
 s1 := GBSM login.
 s2 := GBSM login.
GBSM currentSession: s1. "Make s1 current"
 .
. "Do some work"
 .
GBSM currentSession: s2. "Make s2 current"

Each GemStone browser, inspector, debugger, and breakpoint browser is attached
to the instance of GbsSession that was the current session when it opened. For
example, you can have two browsers open in two different sessions, such that
operations performed in each browser are applied only to the session to which that
browser is attached.

Workspaces, however, are not session-specific. Code executed in a workspace
defaults to the current session, unless another session is specified.

Logging Out of GemStone Programmatically
To instruct a session to log itself out, send logout to the session object:

aGbsSession logout

Or, you can execute the more generic instruction:

GBSM logout

Communicating with the GemStone Object Server Logging In To and Logging Out Of GemStone

December 2001 GemStone Systems, Inc. 2-11

This message prompts you with a list of currently logged-in sessions from which
to choose.

Before logging out, GemBuilder prompts you to commit your changes. If you log
out after performing work and do not commit it to the permanent repository, the
uncommitted work you have done will be lost.

If you have been working in several sessions, be sure to commit only those sessions
whose changes you wish to save.

Session Management Using the Session Browser
You can use the Session Browser to perform the same session management tasks
that you can perform programmatically: log in to GemStone, view current
sessions, set the current session, and log out of GemStone.

Logging In

To log into GemStone with the Session Browser, select the name of the session
parameters object in the upper left pane, and click on either Login Lnk or Login
Rpc.

When you are logged in, the Session Browser displays the session description in its
lower pane.

If your login is not successful, make sure you entered the correct parameters and
that the necessary underlying processes are running.

Setting the Current Session

The Session Browser’s upper pane shows all of the known parameters that are
registered with GBSM. The lower pane shows all sessions currently logged in.

To change the current session, select a logged-in session in the lower pane and
click Current.

Logging Out of a GemStone Session With the Session Browser
To log out of GemStone from the Session Browser, select the session in the
browser’s lower pane and click on Logout in the row of buttons at the bottom of
the browser.

Before logging out, GemBuilder prompts you to commit your changes. If you log
out after performing work and do not commit it to the permanent repository, the
uncommitted work you have done will be lost.

Session Dependents GemBuilder User Manual

2-12 GemStone Systems, Inc. December 2001

If you have been working in several sessions, be sure to commit only those sessions
whose changes you wish to save.

2.5 Session Dependents
An application can create several related components during a single GemBuilder
session. When one of the components commits, aborts, or logs out, the other
components can be affected and so may need to coordinate their responses with
each other. In the GemBuilder environment, for example, you can commit by
selecting a button in the Session Browser. But before the commit takes place, all
other session-dependent components are notified that a commit is about to occur.
So a related application component, such as an open browser containing modified
text, prompts you for permission to discard its changes before allowing the
commit to proceed.

Through the Smalltalk dependency mechanism, any object can be registered as a
dependent of a session. In practice, a session dependent is often a user-visible
application component, such as a browser or a workspace. When one application
component asks to abort, commit, or log out, the session asks all of its registered
dependents to approve before it performs the operation. If any registered
dependent vetos the operation, the operation is not performed and the method
(commitTransaction, abortTransaction, etc.) returns nil.

To make an object a dependent of a GbsSession, send:

mySession addDependent: myObj

To remove an object from the list of dependents, send the following message:

mySession removeDependent: myObj

So, for example, a browser object might include code similar to Example 2.2 in its
initialization method:

Example 2.2

| mySession |
mySession := self session.
"Add this browser to the sessions dependents list"
(session dependents includes: self)

ifFalse: [session addDependent: self]
...

Communicating with the GemStone Object Server Session Dependents

December 2001 GemStone Systems, Inc. 2-13

When a session receives a commit, abort, or logout request, it sends an
updateRequest: message to each of its dependents, with an argument
describing the nature of the request. Each registered object should be prepared to
receive the updateRequest: message with any one of the following aspect
symbols as its argument:

#queryCommit
The session with which this object is registered has received a request to
commit. Return true to allow the commit to take place or false to prevent it.

#queryAbort
The session with which this object is registered has received a request to abort.
Return true to allow the abort to take place or false to prevent it.

#queryEndSession
The session with which this object is registered has received a request to
terminate the session. Return true to allow the logout to take place or false to
prevent it.

Example 2.3 shows how a session dependent might implement an
updateRequest: method.

Example 2.3

updateRequest: aspect

"The session I am attached to wants to do something.
 Return a boolean granting or denying the request."

^(#(queryAbort queryCommit queryEndSession)
 includes: aspect)
 ifTrue: [
 "My session wants to commit or abort.
 OK unless user doesn’t want to."
 self askUserForPermission]
 ifFalse: [
 "Let any other action occur."
 true]

After the action is performed, the session sendsself changed:with a parameter
indicating the type of action performed. This causes the session to send an
update: message to each of the registered dependents with one of the following
aspect symbols:

Session Dependents GemBuilder User Manual

2-14 GemStone Systems, Inc. December 2001

#committed
All registered objects have approved the request to commit, and the
transaction has been successfully committed.

#aborted
All registered objects have approved the request to abort, and the transaction
has been aborted.

#sessionTerminated
The request to log out has been approved and the session has logged out.

Each registered dependent should be prepared to receive an update: message
with one of the above aspect symbols as its argument. Example 2.4 shows how a
session dependent might implement an update: method.

Example 2.4

update: aSymbol
"The session I am attached to just did something.
 I might need to respond."

(aSymbol = #sessionTerminated) ifTrue: [
"The session this tool is attached to has logged out
 - close ourself."
self builder notNil ifTrue:

[self closeWindow]]

Figure 2.4 summarizes the sequence of events that occurs when a session queries
a dependent before committing. In the figure, the Session Browser sends a commit
request (commitTransaction) to a session (1). The session sends
updateRequest: #queryCommit to each of its dependents (2). If every
dependent approves (returns true), the commit proceeds (4). Following a
successful commit, the session notifies its dependents that the action has occurred
by sending update: #commited to each (5).

Communicating with the GemStone Object Server Session Dependents

December 2001 GemStone Systems, Inc. 2-15

Figure 2.4 Committing with Approval From a Session Dependent

Session
Session Browser

Class Browser

GemStone
Repository

(1) Commit Request

(2) Update Request (3) Request

(4) Commit

Approved

(5) Update

(Dependent of Session)

Session Dependents GemBuilder User Manual

2-16 GemStone Systems, Inc. December 2001

Chapter

December 2001 GemStone Systems, Inc. 3-1

3 Sharing Objects

This chapter describes how GemBuilder shares objects with the GemStone/S
object repository.

Which Objects to Share?
is an overview of the process of determining how to make good use of
GemBuilder’s resources, introducing the available mechanisms: forwarders,
replicates, and local copies; and finally describing connectors, GemBuilder’s
way to associate pairs of objects in the two object spaces.

Class Mapping
explains how classes are defined and how forwarders, stubs, and replicates
depend on them.

Forwarders
explains how to use forwarders to store all an object’s state and behavior in one
object space.

Replicates
explains replicating GemStone objects in client Smalltalk, or vice-versa;
describes the processes of propagating changes to keep objects synchronized;
presents various mechanisms to minimize performance costs; presents further
details; last, discusses local copies.

Which Objects to Share? GemBuilder User Manual

3-2 GemStone Systems, Inc. December 2001

Precedence of Replication Mechanisms
discusses the various ways replication mechanisms interact, and describes
how to determine whether an application object becomes a forwarder, stub, or
replicate.

Converting Between Forms
lists protocol for converting from and to delegates, forwarders, stubs,
replicates, and unshared client objects.

3.1 Which Objects to Share?
Working with your client Smalltalk, you had one execution engine—the
compiler—acting on one object space—your image. Now that you’ve installed
GemBuilder, you have two execution engines and two object spaces, one of which
is a full-fledged object repository for multiuser concurrent access, with transaction
control, security protections, backups and logging.

What’s the best way to make use of these new resources?

Objects represent both state and behavior. Therefore, you have two basic
decisions:

 • Which state should reside on the client, which on the server, and which in both
object spaces?

 • Which behavior should reside on the client, which on the server, and which in
both object spaces?

Ultimately, the answer is dictated by the unique logic of your specific problem and
solution, but these common patterns emerge:

Client presents user interface only; state (domain objects) and application
logic reside on server; server executes all but user interface code. A web-
based application that uses the client merely to manage the browser needs
little functionality on the client, and what it does need is cleanly delimited.

State reside on both client and server; client manages most execution; server
is used mainly as a database. A Department of Motor Vehicles could use a
repository of driver and vehicle information, properly defined, for a bevy of
fairly straightforward client applications to manage driver’s licenses, parking
permits, commercial licenses, hauling permits, taxation, and fines.

Execution occurs, and therefore state resides, on both client and server. At
specified intervals, clients of a nationwide ticket-booking network download
the current state of specific theaters on specific dates. Clients book seats and

Sharing Objects Which Objects to Share?

December 2001 GemStone Systems, Inc. 3-3

update their local copies of theaters until they next connect to the repository.
To resolve conflicts, server and client engage in a complex negotiation.

For these and other solutions, GemBuilder provides several kinds of client- and
server-side objects, and a mechanism—a connector—for describing the association
between pairs of objects across the two object spaces.

Four kinds of objects help a GemBuilder client and a GemStoneS repository share
state and execution: forwarders, stubs, replicates, and local copies.

Forwarder — is a proxy: a simple client object that knows only which GemStone
object it is associated with. It responds to a message by passing it
to its associated master object in the other object space, where
state is stored and execution occurs remotely.

Replicate — is a copy associated with a particular object in the other object
space. It copies some or all of the other object’s state, which it
synchronizes at appropriate times; it implements all messages it
expects to receive; it executes locally.

Stub — is a proxy that responds to a message by bringing across a
replicate of its counterpart object. Stubbing is a way to minimize
memory use and network traffic by bringing only what is needed
when it is needed.

Local Copy — is a quickly made copy of a specified object suitable for read-once
access, with no knowledge of the other object space.

To help implement the functionality embodied in forwarders, stubs, and
replicates, GemBuilder uses delegates:

Delegate — An instance of the class GbsObject that holds the object identifier
(OOP) of the server object with which a client object is associated.
Each forwarder is associated with one and only one delegate per
GemBuilder image; each replicate or stub is associated with one
and only one delegate per session. The delegate holds a session
identifier, if necessary, and various flags indicating characteristics
of the associated objects, such as whether one is a forwarder.
Delegates also help keep track of the details required for garbage
collection.

A connector is the mechanism by which an object in one object space refers to
another in the other object space:

Connector — associates a client object with a server object, resolving objects by
name, by class, or other ways. When connected, they synchronize

Which Objects to Share? GemBuilder User Manual

3-4 GemStone Systems, Inc. December 2001

data or pass messages in either direction or take no action at all, as
specified.

Whatever combination of these elements your application requires, subsystems of
objects will probably reside on both the client and the server. Some subset of these
subsystems will need state or behavior on both sides: some objects will be shared.

Connect Systems at the Root
A connector connects more than the specified client object to the specified server
object: through transitive reference, a connector connects whole networks of
objects. Most objects (except atomic objects—characters, booleans, small integers,
nil) refer to others, for example, their instance variables. And their instance
variables refer to their instance variables, and so on, branch and twig, until you
reach the leaves of a large network of objects with a treelike structure.

You can take advantage of this hierarchical structure to minimize application
overhead. Identify the object at the root of each subsystem of shared objects, and
then connect only these root objects. Depending on how you’ve defined
configuration parameters and related matters, you can synchronize entire
subsystems in GemStone/S this way. After you’ve connected the application’s
roots, GemBuilder automatically manages all the objects referenced from these
roots according to particulars you specify when you define the connector.

Root objects are often:

 • global variables,

 • class variables, or

 • class instance variables.

Figure 3.1 shows an application in which several connected objects are accessed
through global variables in the Smalltalk namespace. One system represents an
employee database. Another system represents a data entry application for
creating and modifying objects. A third system represents a report writer for these
objects. Dotted lines in the figure group the logically related subsystems.

Sharing Objects Which Objects to Share?

December 2001 GemStone Systems, Inc. 3-5

Figure 3.1 Connecting Application Roots

The data entry application and the report writer reside in the Smalltalk image;
however, the employee database is stored in GemStone, as it defines a large
amount of persistent data that other users may need to share, data that benefits
from GemStone’s capacity, stability, robustness, and fast searches.

Figure 3.2 shows the state of the employee data when stored in GemStone:

Report Writer

Employee Database
Data Entry Application

Smalltalk
Namespace

Class Mapping GemBuilder User Manual

3-6 GemStone Systems, Inc. December 2001

Figure 3.2 Root Objects

In Figure 3.2, objects a and b are root objects: those objects from which all others
can be reached by transitive closure: by direct reference, or by indirect reference
through any number of layers.

The above discussion has focused on shared instances from your applications, but
in order to share instances in any way, GemBuilder and GemStone must first share
definitions for each class of shared instance.

3.2 Class Mapping
Before GemBuilder can replicate an object, it must know the respective structures
of client and repository object and the mapping between them. Although not
strictly necessary for forwarders, this knowledge improves forwarding
performance, saving GemBuilder an extra network round-trip.

GemBuilder uses class definitions to determine object structure. To replicate an
object:

 • both client and repository must define the class, and

 • the two classes must be connected using a class connector.

GemBuilder uses this mapping for all replication, whether at login or later.

Unlike connectors for replicates or forwarders, class connectors have no default
update direction. If class definitions differ on the client and the server, it is usually

employee data

Smalltalk Namespace

a
b

GemStone

Sharing Objects Class Mapping

December 2001 GemStone Systems, Inc. 3-7

for a good reason; you probably don’t want to update GemStone with the client
Smalltalk class definition, or vice-versa.

GemBuilder predefines special connectors, called fast connectors, for the GemStone
kernel classes. For more information about fast connectors, see “Connecting by
Identity: Fast Connectors” on page 4-6.

Automatic Class Generation
By default, GemBuilder generates class definitions and connectors automatically
as necessary. If GemBuilder requires GemStone to replicate an instance of a
Smalltalk class not already defined in GemStone, then at first access, GemBuilder
generates a GemStone class having the same schema and position in the hierarchy,
and a class connector connecting it to the appropriate client class. Conversely, if
the client must replicate an instance of a GemStone class not already defined in
client Smalltalk, GemBuilder generates the client Smalltalk class and the
appropriate class connector. If superclasses are also undefined, GemBuilder
generates the complete superclass hierarchy, as necessary.

You can control automatic class generation with the configuration parameters
generateGSClasses and generateSTClasses (described on page 9-9). These
settings are global to your image.

 • If you disable automatic generation of GemStone classes by setting
generateGSClasses to false, situations that would otherwise generate a
GemStone class instead raise the signal GbsError
gbsClassGenerationFailed.

 • If you disable automatic generation of client Smalltalk classes by setting
generateSTClasses to false, situations that would otherwise generate a
client Smalltalk class instead raise an exception.

 • You can disable class connector generation by setting
generateClassConnectors tofalse. If you do so, GemBuilder generates
classes, but not their corresponding connectors.

GemBuilder deposits automatically generated GemStone classes in the GemStone
symbol dictionary UserClasses, which it creates if necessary. Automatically
generated client Smalltalk classes are deposited in an application named
UserClasses.

NOTE
To avoid undesirable results, do not rely on automatic class generation
to replicate instances of classes that you have customized with replication
specifications (described on page 3-21). Instead, make sure these classes

Class Mapping GemBuilder User Manual

3-8 GemStone Systems, Inc. December 2001

are connected before your application tries to access the corresponding
server objects, because automatic class generation ignores replication
specifications.

Schema Mapping
By default, when you connect a client class with a GemStone class using a class
connector, GemBuilder automatically maps all instance variables whose names
match, regardless of the order in which they are stored. (You can change this
default mapping to accommodate nonstandard situations.)

If you later change either of the mapped class definitions, GemBuilder
automatically remaps identically named instance variables.

Behavior Mapping
Connected classes define structure, not behavior: replicated instances depend on
methods implemented in the object space in which they execute. During
development, it may be simplest to use GemBuilder’s programming conveniences
to implement behavior in both spaces. For reliability and ease of maintenance,
however, some decide to remove unnecessary duplication from production
systems and to define behavior only where it executes.

Mapping and Class Versions
Unlike the client Smalltalk language, GemStone Smalltalk defines class versions:
when you change a class definition, you make a new version of the class, which is
added to an associated class history. (For details, see the the chapter entitled “Class
Versions and Instance Migration” in the GemStone Programming Guide.)

If you decide to update one class definition with the other, the result depends on
the direction of the update:

 • Updating a client Smalltalk class from a GemStone class regenerates the
Smalltalk class and recompiles its methods.

 • Updating a GemStone class from a client Smalltalk class creates a new
GemStone version of the class.

NOTE
A class connector connects to a specific GemStone class version, the
version that was in effect when the connector was connected. Instances
of a given class version will not receive any messages sent by means of a
connector connected to another class version.

Sharing Objects Forwarders

December 2001 GemStone Systems, Inc. 3-9

3.3 Forwarders
The simplest way to share objects is with forwarders, simple objects that know just
one thing: to whom to forward a message. A forwarder is a proxy that responds to
messages by forwarding them to its counterpart in the other object space.

Forwarders are particularly useful for large collections, frequent GemStone
residents, whose size makes them expensive to replicate and cumbersome to
handle in a client image.

Forwarders are of two kinds:

 • The most common kind of forwarder is a forwarder to the server: a client
Smalltalk object that knows only which GemStone object it represents. It
responds to all messages by passing them to the appropriate GemStone object,
where data resides and behavior is implemented. (For historical reasons, this
is the kind of forwarder usually meant when a discussion merely says
“forwarder.” This kind of forwarder is also called a server forwarder.)

 • A forwarder to the client is a GemStone object that knows only which client
Smalltalk object it represents. It responds to all messages by passing them to
the appropriate client Smalltalk object, where data resides and behavior is
implemented.

 • You can create forwarders in several ways:Declare a connector as a forwarder
upon login. For example, connect the GemStone global variable BigDictionary
as a forwarder to the server so that it isn’t replicated in the client.

 • Specify that a given instance variable must always appear in the other object
space as a forwarder to the server (using a replication specification, discussed
starting on page 3-21). For example, a reference application might implement
a specification that declares the class variable Atlas as a forwarder to the
server.

 • Prefix fw to a method name to return a forwarder from any message-send to
GemStone. For example, to return a forwarder from a GemStone name lookup,
send the GbsSession method fwat: or fwat:ifAbsent: instead of at: or
at:ifAbsent:.

 • Create a forwarder to the server explicitly using the message #asForwarder
to any instance of GbsObject. For example:

(GBSM execute: ‘someCode’) asForwarder

 • Override all these by implementing a class method
instancesAreForwarders to returntrue, and all instances of a given class
are forwarders to the server.Subclasses of GbsServerClass already respond

Forwarders GemBuilder User Manual

3-10 GemStone Systems, Inc. December 2001

true to this message; GbsServerClass is an abstract class, and all instances
that inherit from it become forwarders to the server. When sent to a class that
inherits from GbsServerClass, the instance creation methods new and new:
create a new instance of the class in GemStone and return a forwarder to that
instance.

Sending Messages
When a forwarder to the server receives a message, it sends the message to its
associated delegate, which in turn sends it to the GemStone counterpart whose
object identifier it holds—presumably an instance that can respond meaningfully.
The target object’s response is then returned to the delegate, and through the
delegate to the forwarder, which then returns the result.

When a forwarder to the client receives a message, it forwards the message to the
full-fledged client object to which it is connected, returning the result to the client
forwarder, which stores it in GemStone.

Arguments

Before a message is forwarded to GemStone, arguments are translated to
GemStone objects. As a message is forwarded to the client, arguments are
translated to client Smalltalk objects.

When an argument is a block of executable code, special care is required: for
details, see “Replicating Client Smalltalk Blocks” on page 3-32 .

Results

The result of a message to a client forwarder is a GemStone Smalltalk object stored
in the GemStone repository.

The result of a message to a server forwarder is the client Smalltalk object
connected to the GemStone object returned by GemStone—usually a replicate,
although a forwarder might be desirable under certain circumstances.

To enforce a forwarder result, prefixing the message to the forwarder with the
characters fw. For example:

 • aForwarder at: 1 returns a replicate of the object at index 1.

 • aForwarder fwat: 1 returns a forwarder to the object at index 1.

Sharing Objects Forwarders

December 2001 GemStone Systems, Inc. 3-11

Defunct Forwarders
A forwarder contains no state or behavior in one object space, relying on the
existence of a valid instance in the other. When a session logs out of the server,
communication between the two spaces is interrupted. Forwarders that relied on
objects in that session can no longer function properly. If they receive a message,
GemBuilder raises an error complaining of either an invalid session identifier or a
defunct forwarder.

You cannot proceed from either of these errors; an operation that encounters one
must restart (presumably after determining the cause and resolving the problem).

GemBuilder cannot safely assume that a given object will retain the same object
identifier (OOP) from one session to the next. Therefore, you can’t fix a defunct
forwarder error simply by logging back in.

(If a connector has been defined for that object or for its root, then logging back in
will indeed fix the error, because logging back in will connect the variables. But in
that case, it’s the connector, not the forwarder, that repairs damaged
communications.)

Consider the following forwarder for the global BigDictionary:

Example 3.1

conn := GbsNameConnector
stName: #BigDictionary
gsName: #BigDictionary.

conn beForwarderOnConnect.
GBSM addGlobalConnector: conn

When a GemBuilder session logs into GemStone, BigDictionary becomes a valid
forwarder to the current GemStone BigDictionary. But when no session is logged
into GemStone, sending a message to BigDictionary results in a defunct forwarder
error.

GemBuilder’s configuration parameter connectorNilling, when true, assigns each
connector’s variables to nil on logout. This usually prevents defunct stub and
forwarder errors, replacing them with nil doesNotUnderstand errors.

Replicates GemBuilder User Manual

3-12 GemStone Systems, Inc. December 2001

3.4 Replicates
Sometimes it’s undesirable to dispatch a message to the other object space for
execution—sometimes local execution is desirable, even necessary, for example, to
reduce network traffic. When local state and behavior is required, share objects
using replicates instead of forwarders. Replicates are particularly useful for small
objects, objects having visual representations, and objects that are accessed often
or in computationally intensive ways.

Like a forwarder, a replicate is a client Smalltalk object associated with a delegate
that knows which GemStone object the replicate represents. Unlike a forwarder,
replicates also hold (some) state and implement (some) behavior. Replicates have
available a variety of mechanisms for synchronizing their state with their
associated GemStone object.

For example, replicates must declare one of two default update directions: either
the client image is presumed valid and updates the GemStone object, or GemStone
is presumed valid and updates the client object. While connected, GemBuilder
automatically updates the specified object at transaction boundaries when its
replicate has changed.

To do so, GemBuilder must know about the structure of the two objects and the
mapping between those structures. GemBuilder manages this mapping on a class
basis: replicates must be instances of classes whose definitions are connected, by
means of a class connector, to definitions of the corresponding class in the other
object space. GemBuilder handles many obvious cases automatically, but
nonstandard mappings require you to override certain instance and class methods
from class Object’s GemStone support protocol. Nonstandard mappings are
discussed starting on page 3-14.

Synchronizing State
After a relationship has been established between a client object and a GemStone
object, GemBuilder keeps their states synchronized by propagating changes as
necessary—this is one of the jobs that delegates handle for replicates.

Either of two situations can require synchronization:

 • A client object is modified in the Smalltalk image, leaving its GemStone
repository counterpart out of date. The client object is now referred to as dirty.

 • A GemStone object is modified in the repository, leaving its client counterpart
out of date. The GemStone object is now dirty.

An object is no longer dirty after it updates its counterpart in the other object space.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-13

The former situation is more common if most application behavior occurs in the
client image; the latter is more common if most application behavior occurs in
GemStone, or if other concurrent sessions commit object changes of their own.

The direction in which update occurs is critical to the correctness of an application;
we therefore use two different terms to distinguish the direction of update:

 • Faulting refers to copying modified GemStone objects from the repository into
the client Smalltalk image. Faulting either updates an existing replicate, or, if
necessary, creates a new one.

 • Flushing refers to copying modified client objects from the Smalltalk image
into the GemStone repository.

Together, GemBuilder and GemStone manage the timing of faulting and flushing.

Faulting

GemStone manages faulting automatically. When shared objects change in the
repository, the GemStone object manager marks them as dirty. In the most
common scenario, when your session starts, commits, aborts, or continues a
transaction—at a transaction boundary—GemStone faults in dirty objects.
Committing or aborting thus refreshes your session’s private view of the
repository.

In addition to refreshing a session’s view at transaction boundaries, faulting also
occurs automatically when:

 • Connectors connect: this typically occurs at login, the beginning of a
GemStone session, but you can connect and disconnect connectors explicitly
during the course of a session using either code or the Connector Browser.

 • A stub receives a message.

 • GemStone Smalltalk executes, and the repository modifies the state of a shared
object that GemBuilder has already retrieved into the image.

GemStone Smalltalk execution occurs when:

 • a forwarder receives a message, or

 • in response to any variants of:

GbsSession >> execute:

GbsObject >> remotePerform:

Replicates GemBuilder User Manual

3-14 GemStone Systems, Inc. December 2001

Flushing

GemBuilder flushes objects into GemStone at transaction boundaries, immediately
before any GemStone Smalltalk execution, or before faulting a stub.

Flushing is not the same as committing. When GemBuilder flushes an object, the
change becomes visible to the session’s private view of the GemStone repository,
but it doesn’t become part of the shared repository until your session
commits—only then are your changes accessible to other users.

GemBuilder automatically detects modifications to connected client objects. You
can disable this feature, however, if you wish to mark objects dirty explicitly in
your code.

To disable automatic dirty-marking for performance or debugging, execute:

GBSM autoMarkDirty: false

Minimizing Replication Cost
Replicating the full state of a large and complex collection can demand too much
memory or network bandwidth. Optimize your application by controlling the
degree and timing of replication; GemBuilder provides three ways to help:

Instance Variable Mapping — Modify the default class map to specify how
widely through each object to replicate—which instance variables
to connect and which to prune as never being of interest to an
application. You can also specify the details of an association
between two classes whose structures do not match.

Stubbing — Specify how deeply through the network to replicate, how many
layers of references to follow when faulting occurs.

Replication Specifications — Another way to specify how widely or deeply
through each object to replicate—of a class’s mapped instance
variables, which to replicate and which to stub.

Instance Variable Mapping

As discussed in “Class Mapping” on page 3-6, before GemBuilder can replicate
objects, it must know their respective structures and the mapping between them.
By default GemBuilder maps instance variables by name. You can override this
default either by suppressing certain instance variables, thereby rendering them
invisible to an application, or by explicitly specifying a mapping between
nonmatching names.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-15

Suppressing Instance Variables

Some client Smalltalk objects, however, must define instance variables that are
relevant only in the client environment—for example, a reference to a window
object. Such data is transient and doesn’t need to be stored in GemStone. Situations
can also arise in which the GemStone class defines instance variables that a given
application will never need; many applications can share repository objects
without necessarily sharing the same concerns. Mapping allows your application
to prune parts of an object.

Suppress the replication of an individual instance variable simply by omitting its
name from its counterpart’s class definition:

 • If a client object contains a named instance variable that does not exist in its
GemStone counterpart, the value of that variable is not replicated in
GemStone. When the rest of the object is stored in the repository, its value is
omitted; when GemBuilder faults the GemStone object into the client, the
client’s suppressed instance variable remains unchanged.

 • Likewise, if a GemStone object contains a named instance variable that does
not exist in its client counterpart, the value of that variable is not replicated in
the client. When the application replicates the GemStone object in the client, its
value is not transferred; when the application flushes the object into the
repository, GemStone’s suppressed instance variable remains unchanged.

You can also suppress instance variable mappings by implementing the client class
method instVarMap. Example 3.2 shows a simple implementation:

Example 3.2

TestObject class>>instVarMap
^super instVarMap ,

#((nil gsName)
(stName nil))

The first component of the return value, a call to super instVarMap, ensures
that all instance variable mappings established in superclasses remain in effect.

Appended to the inherited instance variable map, an array contains the pairs of
instance variable names to map. The first pair (nil gsName) specifies that the
GemStone instance variable gsName will never be replicated in the client. The
second pair (stName nil) specifies that the client instance variable stName will
never be replicated in GemStone.

Replicates GemBuilder User Manual

3-16 GemStone Systems, Inc. December 2001

Nonmatching Names

You can also specify an explicit instance variable mapping between GemStone and
the client:

 • to map two instance variables whose names don’t match, or

 • to prevent the mapping of two instance variables whose names do match.

In this way your application can accommodate differing schemas.

To specify nonstandard instance variable mappings, use the same class method
instVarMap, as in Example 3.3:

Example 3.3

TestObject class>>instVarMap
^super instVarMap ,

#((stName gsName))

Appended to the inherited instance variable map, a single pair declares that the
instance variable stName in the client maps to the instance variable gsName in
GemStone.

One implementation can both prune irrelevancy and accommodate differing
schemas, as the instance variable mapping for the class Book shows in
Example 3.4:

Example 3.4

Book class>>instVarMap
^super instVarMap ,

#((title title)
(author author)
(nil pages)
(publisher nil)
(copyright publicationDate))

The first two pairs of instance variables change nothing: they explicitly state what
would happen without this method, but are included for completeness.

(nil pages) specifies that the client application does not need to know a books
page count and therefore this repository-side instance variable is not replicated in
the client.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-17

(publisher nil) specifies that the client application needs (and presumably
assigns) the instance variable publisher, which is never stored in the repository.

(copyright publicationDate)maps the client class Book’s instance variable
copyright to the GemStone class Book’s instance variable publicationDate.

Stubbing

Often, however, an application has need of certain instance variables, but not all at
once. For example, it’s impractical to replicate the entire hierarchy of
BigDictionary at login: users will experience unacceptable network delays, and the
client Smalltalk image can’t handle data sets as large as GemStone’s. Furthermore,
it’s unnecessary: only a small number of objects will be needed for the current task.
To help prevent this kind of over-replication, GemBuilder provides stubs.

A stub, like a forwarder, is also a proxy associated with a delegate (an instance of
GbsObject that knows which server object it’s associated with). Unlike a
forwarder, however, when a stub receives a message, it does not send the message
across to the other object space. Instead, it fetches its delegate, which responds by
faulting the GemStone counterpart into the client image. The client Smalltalk
replicate then responds to the message.

GemBuilder faults automatically:

 • when connectors connect,

 • when a stub receives a message, and

 • sometime after another session commits a change to a shared object.

A stub can respond to any of these events. Each time, GemBuilder replicates the
object hierarchy to a certain level, then creates stubs for objects one level deeper.
The number of levels that are replicated each time is the fault level.

A fault level of 1 follows an object’s immediate references and faults those in. A
fault level of 2 follows one more layer of references and replicates those objects,
too. Figure 3.3 illustrates an application with a fault level of 2.

Faulting at Login

At login, the connectors connect, and objects a, b, and c are replicated; objects d
and e are stubbed; objects f and g are ignored.

Replicates GemBuilder User Manual

3-18 GemStone Systems, Inc. December 2001

Figure 3.3 Two-level Fault of an Object

Faulting in Response to a Message

When object e, a stub, receives a message, it faults in a replicate of its counterpart
GemStone object.

A stub faults in a replicate in response to a message. Therefore, direct references to
instance variables can cause problems. Direct access is not a message-send; the
stub will not fault in its replicate, because it receives no message; neither can it
supply the requested value. To avoid this problem, use accessor methods to get or
set instance variables.

The following sequence demonstrates the problem. The object starts as a replicate
in client Smalltalk:

myVar := ’abc’.

Next, it’s stubbed. There are several ways it could become a stub; for this example,
we’ll assume that it became a stub by locking (locking an object stubs it).

self mySession acquireWriteLockFor: self.

The object, now a stub, has no knowledge of the replicate’s instance variables.
Therefore, executing the code below causes an error:

myVar := ’bcd’

Rep

Rep
Rep

StubStub

a

ed

c
b

a

c

d

b

f g

e

GemStoneClient Smalltalk

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-19

Using an accessor method, on the other hand, causes the stub to be faulted in and
yields the correct result:

self myVar: ’bcd’

e is now a replicate, as shown in Figure 3.4. The new replicate responds to the
message.

Figure 3.4 A Stub Responds to a Message

Again, two levels are replicated, object e and its immediate instance variable: a
fault level is a global parameter.

Linked sessions can often tolerate higher fault levels than remote sessions because
they are less sensitive to bandwidth limitations; you can set their defaults with the
configuration parameters faultLevelLnk and faultLevelRpc.

Now, suppose another session commits a change to b?

Faulting in Changes From Other Sessions

Each session maintains its own view of the GemStone object server’s shared object
repository. The session’s private view can be changed by the Smalltalk application
when it adds, removes, or modifies objects—that is, you can see your own changes
to the repository—or the Gem can change your view at transaction boundaries or
after a session has executed GemStone Smalltalk.

Rep

Rep
Rep

Stub

a

d

c
b

a

c

d

b

f g

e

GemStoneClient Smalltalk

f g

e
Rep

Rep Rep

Replicates GemBuilder User Manual

3-20 GemStone Systems, Inc. December 2001

A Gem maintains a list of repository objects that have changed and notifies
GemBuilder of any changes to objects it has replicated. If it finds any changed
counterparts, it updates the client object with the new GemStone value.

Replicates and stubs respond to the message faultPolicy. The default
implementation returns the value of GemBuilder’s configuration parameter
defaultFaultPolicy: either #lazy or #immediate.

 • A lazy fault policy means that, when GemBuilder detects a change in a
repository object, it turns the client counterpart from a replicate into a stub.
The object will remain a stub until it next receives a message.

 • An immediate fault policy means that, when GemBuilder detects a change in a
repository object, it updates the replicate immediately.

If another session commits a change to b, and b’s fault policy is lazy, b becomes a
stub. If b’s fault policy is immediate, b is updated.

The default fault policy is lazy, to minimize network traffic. For more information,
see the description of defaultFaultPolicy in the Settings Browser. For
examples, browse implementors of faultPolicy in the GemBuilder image.

Overriding Defaults

Because linked sessions are less sensitive to bandwidth limitations, GemBuilder
ships with faultLevelLnk set to 2 and faultLevelRpc set to 4. In this way,
linked sessions replicate less at login, faulting in objects as they are needed.

 • You can override these defaults for specific instance variables of specific
replicates.

 • You can also stub or replicate certain objects explicitly.

To specify fault levels for all instance variables, implement a class method
replicationSpec for the client class. Replication specifications are versatile
mechanisms described starting on page 3-21.

To cause a replicate to become a stub, send it the message stubYourself. This
can be useful for controlling the amount of memory required by the client
Smalltalk image. Explicit control of stubs is discussed in “Optimizing Space
Management” on page 9-16.

Sometimes stubbing is not desirable, either for performance reasons or for
correctness. For example, primitives cannot accept stubs as parameters if the
primitive accesses the value of the parameter. If your application uses an object as
an argument to a primitive, you must either prevent that object from ever
becoming a stub, or ensure that it’s replicated before the primitive is executed.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-21

To cause a stub to become a replicate, send it the message fault. Stubs respond
to this message by replicating; replicates return self. The message
faultToLevel: allows you to fault in several levels at once, as specified.

To prevent a replicate from ever being a stub, configure it as a replicate at login and
set its faultPolicy to #immediate.

Defunct Stubs

Faulting in a stub relies on the existence of a valid GemStone object to replicate or
forward to. If an object is stubbed, then the session logs out, a message to that stub
raises an error complaining that it is defunct. For example, suppose MyGlobal is
modified in GemStone, thereby stubbing it in your client session. If the session logs
out before MyGlobal is faulted back in, the client Smalltalk dictionary contains a
defunct stub.

Because GemBuilder cannot safely assume that a given object will retain the same
object identifier from one session to the next, it cannot simply fix the problem at
next login. That’s the job of a connector: to reestablish at login the stub’s
relationship to GemStone. A connector can do so either directly, by connecting the
stub itself, or transitively, by connecting some object that refers to the stub.

If you’ve defined a connector for MyGlobal, logging back into GemStone
reconnects it.

Now, suppose an instance variable of MyGlobal becomes a stub shortly before a
session logs out. Sending a message to this variable will produce a defunct stub
error. At next login, MyGlobal’s connector will fault in the variable. You can then
retry the message, but only by means of a message sent to MyGlobal (or another
connected object). If the application is maintaining a direct reference to the
previous defunct stub, the error will persist.

NOTE
You cannot proceed from a defunct stub error. After you’ve encountered
this error, determined the cause, and corrected the problem, you must
restart the Smalltalk operation that encountered the defunct stub.

Replication Specifications

By default, when GemBuilder replicates an instance of a connected class, it
replicates all that class’s instance variables as well to the session’s specified fault
level. You can further refine faulting by class, however, with specific instructions
for individual instance variables.

Each class replicates according to a replication specification (hereafter referred to
as a replication spec). The replication spec allows you to fault in specified instance

Replicates GemBuilder User Manual

3-22 GemStone Systems, Inc. December 2001

variables as forwarders, stubs, or replicates that will in turn replicate their instance
variables to a specified level.

By default, a class inherits its replication spec from its superclass. If you haven’t
changed any of the replication specs in an inheritance chain, then the inherited
behavior is to replicate all instance variables as specified by the session’s
configuration parameters faultLevelLnk and faultLevelRpc.

To modify a class’s replication behavior in precise ways, implement the class
method replicationSpec. For example, suppose you want class Employee’s
address instance variable always to fault in as a forwarder:

Example 3.5

Employee >> replicationSpec
^ super replicationSpec ,
#((address forwarder)).

To ensure that replication specs established in superclasses remain in effect,
Example 3.5 appends its implementation to the result of:

super replicationSpec

Appended to the inherited replication spec are nested arrays, each of which pairs
an instance variable with an expression specifying its treatment at faulting:

(instVar whenFaulted)

instVar can be either:

 • the client-side name of an instance variable, or

 • the reserved identifier indexable_part, specifying an object’s unnamed
indexable instance variables, such as the elements of a collection.

whenFaulted is one of:

stub — faults in the instance variable as a stub.

forwarder — faults in the instance variable as a forwarder to the server.

min n — faults in the instance variable and its referents as replicates to a
minimum of n levels. min 0 = replicate.

max m — faults in the instance variable and its referents as replicates to a
maximum of m levels. max 0 = stub.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-23

replicate — faults in the instance variable as a replicate whose behavior will be
subject to the configuration parameters faultlevelRpc and
faultLevelLnk, relative to the root object being faulted.

By default, an instance variable’s behavior is replicate; your application
needn’t specify replicates unless to restore behavior overridden in a superclass.

Example 3.6

TestObject class>>replicationSpec
^super replicationSpec ,

#((instVar1 stub)
(instVar2 forwarder)
(instVar3 max 0)
(instVar4 min 0)
(instVar5 max 2)
(instVar6 min 2)
(instVar7 replicate)
(indexble_part min 1))

NOTE
To ensure that your replication spec is respected, do not rely on
automatic class generation to replicate instances of classes for which you
have defined replication specs. Instead, make sure these classes are
connected before your application tries to access the corresponding server
objects. Automatic class generation ignores replication specifications.

Replication Specifications and Class Versions

As explained in “Mapping and Class Versions” on page 3-8, client Smalltalk
classes connect not simply to GemStone Smalltalk classes, but to specific
GemStone class versions. A class connector connects to at most one GemStone
version.

A replication spec, therefore, affects only client instances connected to instances of
the correct GemStone class version.

Suppose, for example, that you define and redefine class X in GemStone until its
class history lists three versions. Your client Smalltalk class is connected to
Version 2. Class X’s replication spec will affect GemStone instances of Class X,
Version 2. If the repository contains instances of Class X, Versions 1 or 3, the
replication spec will not affect them.

Replicates GemBuilder User Manual

3-24 GemStone Systems, Inc. December 2001

Multiple Replication Specifications

It’s not always possible to define one replication spec that works well for all
operations in an application. Some queries or windows may require a different
object profile than others in the same application and session; a replication spec
crafted to optimize one set of operations can make others inefficient.

By default, the message replicationSpec returns the default replication spec.
Change this by sending the message replicationSpecSet:
#someRepSpecSelector to an instance of GbsSession. With this message, you can
specify multiple replication specs, selecting one dynamically according to
circumstances. The following procedure shows how:

Step 1. Decide on a new name, such as replicationSpec2.

Step 2. Implement Object class >> replicationSpec2 to return self
replicationSpec.

Step 3. Reimplement replicationSpec2 as appropriate in those application
classes that need it.

Step 4. Immediately before your application performs the query or screen fetch
or other operation that requires the second replication spec, send
replicationSpecSet: #replicationSpec2 to the current GbsSession
instance.

For example, suppose your application has a class Employee, with instance
variables firstName, lastName, and address. address contains an instance
of class Address. The application has one screen that displays the names from a list
of employees, and another screen that displays the zip codes from a list of
employee addresses. Here’s how to replicate only what’s needed:

Step 1. Define a new replication spec with the selector empNamesRepSpec.

Step 2. Implement Object class >> empNamesRepSpec as:

^self replicationSpec.

Step 3. Implement Employee class >> empNamesRepSpec as:

^#((firstName min 1) (lastName min 1) (address stub))

Step 4. Define another replication spec with the selector empZipcodeRepSpec.

Step 5. Implement Object class >> empZipcodeRepSpec as:

^self replicationSpec

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-25

Step 6. Define Employee class >> empZipcodeRepSpec as:

^#((firstName stub) (lastName stub) (address min 2))

and Address class >> empZipcodeRepSpec as:

^#((city stub) (state stub) (zip min 1))

Step 7. Before opening the employee names screen, send:

myGbsSession replicationSpecSet: #empNamesRepSpec

Restore it to #replicationSpec after opening the window.

Step 8. Before opening the zip code window, send:

myGbsSession replicationSpecSet: #empZipcodeRepSpec

Restore it to #replicationSpec after opening the window.

For each window, the procedure above reduces the number of objects retrieved to
the minimum required. Other objects fault in as stubs; if subsequent input requires
them, they are retrieved transparently.

Managing Interobject Dependencies

Replication specs are ordinarily an optimization mechanism. Some applications,
however, require a replication spec to function correctly. If the structural
initialization of an object depends on other objects, you must implement
replication specs to ensure that, when GemStone traverses an object, it also
traverses those objects it depends on.

For example, in order to create a Dictionary when replicating it from GemStone,
we need to be able to send hash to each key to determine its location in the hash
table (hash values aren’t necessarily the same in GemStone as they are in the client
Smalltalk image). So, if GemStone traverses a Dictionary, it must also traverse the
association, and the key in the association. The default implementation for
Dictionary class >> replicationSpec therefore contains
#(indexable_part min 1), and Association class >>
replicationSpec contains #(key min 1).

This works for Dictionaries with simple keys such as strings, symbols or integers.
If an application has dictionaries with complex keys, though, additional
replication specs can be required. For example, if you are storing Employees as
keys in a dictionary, and you’ve implemented = and hash in Employee to
consider the firstName and lastName, then you must ensure that when a

Replicates GemBuilder User Manual

3-26 GemStone Systems, Inc. December 2001

dictionary containing Employees is traversed, so are the associations, the
employees, and the firstName and lastName.

You could ensure this by implementing Employee class >>
replicationSpec to include #(firstName min 1) and #(lastName min
1). Or, if you had a special Dictionary class for Employees, you could include
#(indexable_part min 3) in that dictionary class’s replication spec.
However, this could cause the entire Employee to be traversed whenever one of
these dictionaries is traversed, rather than just the firstName and lastName.

We recommend that you use the default replication spec #replicationSpec as
the base replication spec for all classes to reflect interobject dependencies. When
defining other replication specs, make sure the default implementation in Object
is:

^self replicationSpec

Ensure that subclass implementations of the new replicationSpec method do
not stray from the default sonas to break interobject dependencies.

Precedence of Multiple Replication Specs

It’s possible to implement replication specs that appear to contradict each other.
Such apparent conflicts are resolved deterministically according to the order in
which instance variables appear in a replication spec and the order in which
objects are traversed. If a superclass specifies one way of handling an instance
variable, and a subclass reimplements replicationSpec to handle the same
variable in a different way, the last occurrence takes precedence.

For example, suppose the value returned from sending replicationSpec to the
subclass is:

#((name min 1) (name max 2))

The last occurrence of the instance variable is max 2, and therefore takes
precedence.

If subclass implementations of replicationSpec always append their results to
super replicationSpec, the subclass will reliably override the superclass
handling of a given instance variable. The recommended approach is:

^super replicationSpec, #((name max 2))

not:

^#((name max 2)), super replicationSpec.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-27

Another apparent contradiction can arise between parent and child objects. For
example, suppose Employee refers to an Address, which refers to a complex object
County. The Employee replicationSpec includes #(address min 5),
specifying that several levels of the County object are to be replicated. But if
Address includes #(county max 1), it modifies Employee’s handling of
address.

Employee specifies, “Get at least 5 levels of address.” Address specifies,
“Whatever you do, don’t get more than one level of county.” The apparent
contradiction is resolved by the order in which these specifications are enountered:
because Address is encountered after Employee, Address takes precedence.

If your object network includes cycles, different replication specs could take effect
at different times, depending on which object is the replication root at any given
time. Given a specific root object, however, it’s always possible to determine the
exact effect of a set of replication specs.

Customized Flushing and Faulting
You can customize both flushing and faulting to change object structure
arbitrarily, if your application requires it. You can even create a class in GemStone
that maps to a client Smalltalk class with a different format—for example, a format
of bytes on the client but pointers in the repository.

Modifying Instance Variables During Faulting

Customize object retrieval with buffers for the client counterparts of GemStone
objects as they are faulted in. You can then process the contents of these buffers in
any manner required.

To provide these buffers, reimplement the class methods:

namedValuesBuffer
indexableValuesBuffer

To unpack these buffers correctly, reimplement the class methods:

namedValues:
indexableValues:
namedValues:indexableValues:

By default, namedValuesBuffer returns self: new client objects are faulted
directly into the named instance variable slots. Override this to supply either a
different object of the same type, or an instance of GbsBuffer (a subclass of Array)
of the required size.

Replicates GemBuilder User Manual

3-28 GemStone Systems, Inc. December 2001

By default, indexableValuesBuffer returns self. Override this to return an
indexable buffer of the appropriate size.

The buffers you define in these methods are used during faulting. They are
subsequently unpacked by the faulted object according to its implementation of
the unpacking methods listed above.

Implement the unpacking methods to obtain the desired client representation by
performing arbitrary computation on the buffer contents. Use the message
namedValues:indexableValues: for cases in which computation must
operate on indexable and named values together.

NOTE
The methods namedValuesBuffer and namedValues: are a pair;
so are indexableValuesBuffer and indexableValues:. To
avoid replication errors, if you override one, you must also override the
other.

You can also override the messages indexableValueAt:put: and
namedValueAt:put: to process the values of the indexable and named slots of
the object. For example, class Set might implement the former as:

Set >> indexableValueAt: index put: aValue
self add: aValue

The method simply adds the element to the Set rather than assigning it to a specific
slot.

NOTE
To avoid generating a “previous flush did not complete” error, if you
overridenamedValues: orindexableValues:, make sure you do
not send messages to any stubs that would require a remote object to be
faulted. Doing so causes an error as faulting is attempted while flushing.
Adjust the replicationSpec and faultPolicy of the object to
ensure that stubs won’t exist for special flush operations.

You can override two other messages to control faulting initialization and
postprocessing: preFault and postFault.

Implement preFault to initialize a newly created object prior to faulting its
named and indexable values.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-29

For example:

OrderedCollection >> preFault
 "Initialize <firstIndex> and <lastIndex> prior to
 adding elements."

self setIndices

The method indexableValueAt:put: for OrderedCollection has an
implementation similar to Set to add the indexable objects. As another example, a
specialized type of SortedCollection could use preFault to assign the sortBlock
so that additions to the collection would be sorted properly during faulting.

Implement postFault to do any necessary postprocessing. For example, if the
methods used to add to an OrderedCollection also marked the object dirty, the
postprocessing could remove dirty-marking: by definition, faulting never results
in a dirty object (assuming that GemStone’s is the valid state):

OrderedCollection >> postFault
 "Additions to the OrderedCollection are due to the faulting
 mechanisms and should not result in a dirty object."

self markNotDirty

Modifying Instance Variables During Flushing

To provide an arbitrary mapping of objects from the client to GemStone you can
implement two class methods called namedValues and indexableValues.

namedValues
Implement this to return a copy of the object being stored or an instance of
GbsBuffer sized to match the number of named instance variables in the client
object. The store operations then access this buffer for storing in GemStone.

indexableValues
Implement this to return a list of the indexable instance variables in the client
object. The store operations then access this list for storing in GemStone.

Implementations of namedValues must return an object with the appropriate
number of named instance variable slots. In Example 3.7, a clone of the
positionable stream is returned that increments the position instance variable
by 1 as needed when mapped into GemStone:

Replicates GemBuilder User Manual

3-30 GemStone Systems, Inc. December 2001

Example 3.7

PositionableStream>>namedValues
| aClone |
aClone := self copy.
aClone instVarAt: 1 put: self contents.
aClone instVarAt: 2 put: position + 1.
^aClone

An alternative might return an instance of GbsBuffer (a subclass of Array) of the
appropriate size. (A special buffer class is necessary to distinguish between trying
to store an array and trying to store the named values of an object residing in a
buffer.)

The default implementation of namedValues is to return self. In this case, the
instance variables are processed directly from the object being stored, eliminating
the need for a temporary array.

Implementations of indexableValues must return an indexable collection
containing a sequential list of the elements in the collection. In Example 3.8, for
class Set, an Array is returned, because the indexable fields of a Smalltalk set are a
sparse list of the actual elements.

Example 3.8

Set>>indexableValues
| values index |
values := Array new: self size.
index := 1.
self elementsDo: [:each |

values at: index put: each.
index := index + 1].

^values

The default implementation of indexableValues is to return self. In this case,
the indexable slots are processed directly from the object being stored, eliminating
the need for a temporary array.

You can also override the messages indexableValueAt: and namedValueAt:
to return processed values rather than the actual values in the indexable and

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-31

named slots of the object. For example, OrderedCollection might implement
indexableValueAt: as:

OrderedCollection>indexableValueAt: index
^self at: index

This lets OrderedCollection control for the fact that its underlying indexable slots
are being managed by the firstIndex and lastIndex instance variables—that
is, the first actual indexable slot of the object may not necessarily be the first logical
element.

In conjunction with these two methods, you might need to reimplement the
messages indexableSize and namedSize as well. For example, to match the
implementation of indexableValueAt:above, OrderedCollection would have
to implement indexableSize as shown below; otherwise, the object storage
mechanisms would try to iterate over the entire list of indexable slots rather than
those controlled by firstIndex and lastIndex:

indexableSize
^self size

Mapping Classes With Different Formats

You can create a class in GemStone that maps to a client Smalltalk class with a
different format—for example, a format of bytes on the client but pointers in the
repository. To do so, reimplement the class method gsObjImpl in the client
Smalltalk to return a value specifying the GemStone implementation.

A gsObjImpl method must return a SmallInteger representing the GemStone
class format. The following formats are valid:

Return Format

0 pointers

1 bytes

2 nonsequenceable collection

Symbolic names for these values are stored in the pool dictionary
SpecialGemStoneObjects.

Limits on Replication
Replicating blocks and scaled decimals can present special problems, discussed
below.

Replicates GemBuilder User Manual

3-32 GemStone Systems, Inc. December 2001

Replicating Client Smalltalk Blocks

Forwarders are especially well-suited for managing large collections that reside in
the object server. Collections are commonly sent messages that have blocks as
arguments. When the collection is represented in client Smalltalk by a forwarder,
these argument blocks are replicated in GemStone and executed in the server.

When a GemStone replicate for a client Smalltalk block is needed, GemBuilder
sends the block to GemStone Smalltalk for recompilation and execution. If a block
is used more than once, GemBuilder saves a reference to the replicated block to
avoid redundant compilations.

For example, consider the use of select: to retrieve elements from a collection of
Employees:

| fredEmps |
fredEmps := myEmployees select:

[:anEmployee | (anEmployee name) = 'Fred'].

If myEmployees is a forwarder to a collection residing in the object server, then
GemBuilder sends the parameter block’s source code:

[:anEmployee | (anEmployee name) = 'Fred'].

to GemStone to be compiled and executed.

Replication of client Smalltalk blocks to GemStone Smalltalk is subject to certain
limitations. When block replication violates one of these limitations, GemBuilder
issues an error indicating that the attempted block replication has failed.

To avoid these limitations, consider using block callbacks instead. Block callbacks
are discussed starting on page 3-35.

You can disable block replication completely using GemBuilder’s configuration
parameter blockReplicationEnabled. Block replication is enabled by default. Set
this parameter to false to disable it, and GemBuilder raises an exception when
block replication is attempted. This can be useful for determining if your
application depends on block replication.

Image-stripping Limitations

Block replication relies on the client Smalltalk compiler and decompiler; if they’ve
been removed from a deployed runtime environment, blocks cannot be replicated.

In a deployed image from which the compiler and decompiler have been removed,
do not use block replication. Usually this requires implementing a cover method

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-33

for the block in a GemStone method, and sending that message instead. For
instance:

aForwarder select: [:name | name = #Fred]

—is instead coded:

aForwarder selectNameEquals: #Fred

...and in GemStone, selectNameEquals: is implemented as:

selectNameEquals: aName
 ^self select: [:name | name = aName]

When the block is encoded entirely in GemStone in this way, you can further
optimize its operation by taking advantage of indexes and use an optimized
selection block, as described in the GemStone Programming Guide.

Temporary Variable Reference Restrictions

A block is replicated in the form of its source code, without its surrounding
context. Therefore, values drawn from outside the block’s own scope cannot be
relied upon to exist in both the client Smalltalk and in GemStone. Replication is
not supported for blocks that reference instance variables, class variables, method
arguments, or temporary variables declared external to the block’s scope.

An exception is allowed in the case of global references, such as class names:

 • Global variable references from inside a block must have the same name in
both object spaces.

In the case of global variables containing data, it is the programmer’s
responsibility to ensure that the global identifier represents compatible values in
both contexts.

Temporary variable reference restrictions disallow the following, because
“tempName” is declared outside the block’s scope:

| namedEmps tempName |
tempName := 'Fred'.
namedEmps := myEmployees select:

[:anEmployee | (anEmployee name) = tempName].

Replicates GemBuilder User Manual

3-34 GemStone Systems, Inc. December 2001

As a workaround, implement a new Employees method in GemStone Smalltalk
named select:with: that evaluates a two-argument block, in which the extra
block argument is passed in as the with: parameter. For example:

select: aBlock with: extraArg
|result|

result := self speciesForSelect new.
self keysAndValuesDo: [:aKey :aValue |
 (aBlock value: aValue value: extraArg) "two-value block"
 ifTrue: [result at: aKey put: aValue]
].

^ result.

You can then rewrite the application code to pass its temporary as the argument to
the with: parameter without violating the scope of the block:

| namedEmps tempName |
tempName := 'Fred'.
namedEmps := myEmployees select:

[:anEmployee :extraArg |
(anEmployee name) = extraArg

] with: tempName.

Restriction on References to self or super

References to self and super are also context-sensitive and, therefore,
disallowed:

 • A replicated block cannot contain references to self or super.

For example, the following code cannot be forwarded to GemStone because the
parameter block contains a reference to self:

myDict at:#key ifAbsent:[self]

References to self or super in forwarded code must occur outside the scope of
the replicated block, where you can be sure of the context within which they occur.
For example, you can rewrite the above code to return a result code, which can
then be evaluated in the calling context, outside the scope of the replicated block:

result := myDict at:#key ifAbsent:[#absent].
result = #absent ifTrue: [self]

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-35

Explicit Return Restriction

Because a block is replicated without its surrounding context, a return statement
has no surrounding context to which to return. Therefore:

 • A replicated block cannot contain an explicit return.

For example:

result := myDict at:#key ifAbsent:[^nil]

is disallowed. The statement can be recoded to perform its return within the
calling context:

result := myDict at:#key ifAbsent:[#absent].
result = #absent ifTrue: [^nil]

Replicating GemStone Blocks in Client Smalltalk

Also supported, though less commonly used, is the replication of GemStone blocks
in client Smalltalk. Similar restrictions apply with regard to external references
and the need for compiler/decompiler support. Blocks most frequently passed
from the server to the client are the sort blocks that accompany instances of
SortedCollection and its subclasses. Sort blocks rarely have occasion to violate
replicated block restrictions.

If restrictions hamper you, consider using block callbacks instead.

Block Callbacks

Block callbacks provide an alternate mechanism for representing a client block in
GemStone that avoids the limitations of block replication by calling back into the
client Smalltalk to evaluate the block.

Block callbacks have the following advantages over block replication:

 • Block callbacks don’t require a compiler or decompiler.

 • Block callbacks don’t suffer the context limitations of block replication. The
block can reference self, super, instance variables, and non-local temporaries;
it can also perform explicit returns. For example, the following expression
works correctly as a block callback, but fails if you try to replicate the block:

aForwarder at: aKey ifAbsent: [^nil] asBlockCallback

Replicates GemBuilder User Manual

3-36 GemStone Systems, Inc. December 2001

Block callbacks have the following disadvantages:

 • A block that is evaluated many times in GemStone will perform poorly as a
block callback. For example, the following expression sends a message to the
client forwarder for each element of the collection represented by aForwarder:

aForwarder select: [:e | e isNil] asBlockCallback

You can determine whether, by default, blocks are replicated or call back to the
client using GemBuilder’s configuration parameter blockReplicationPolicy.
Legal values #replicate and #callback. A value of #replicate causes a
client block to be stored in GemStone as a GemStone block. A value of #callback
causes a client block to be stored in GemStone as a client forwarder, so that sending
value to the block in GemStone causes value to be forwarded to the client block;
the result of that block evaluation is then passed back to the GemStone context that
invoked the block.

To ensure a specific replication policy for a given block, use the methods
asBlockCallback or asBlockReplicate. Send asBlockCallback to
ensures= that the block always executes in the client, regardless of the default
block replication policy set by the configuration parameter. Likewise, send
asBlockReplicate to ensure that the block is executed local to the context that
invokes it (either in GemStone or in the client).For example:

dictionaryForwarder
 at: #X
 ifAbsent: [^nil] asBlockCallback

collectionForwarder do: [:e | e check] asBlockReplicate

Replicating ScaledDecimals

The ScaledDecimal representation in VisualAge is different from the one used in
GemStone Smalltalk; therefore, arithmetic operations can return different results
in VisualAge than in GemStone Smalltalk.

In GemStone Smalltalk, a ScaledDecimal is represented as a numerator and a
denominator (to preserve complete accuracy of any rational number), along with
a scale value used to determine the number of decimal digits to print.

In VisualAge, a ScaleDecimal is represented as a 31-digit number, with a field
width and a scale indicating how many of the digits are to the right of the decimal
point. When creating a VisualAge ScaledDecimal from a GemStone instance, any
further digits in the fractional component are truncated.

Sharing Objects Replicates

December 2001 GemStone Systems, Inc. 3-37

The following examples demonstrate the difference that can result. In GemStone,
Example 3.9 returns 1.00, because x is represented as 1/3, which preserves full
accuracy:

Example 3.9

| x |
x := ScaledDecimal numerator: 1 denominator: 3 scale: 2.
^ x + x + x

In VisualAge, however, Example 3.10 returns 0.99d3.2, because x is represented
as 0.33, thereby truncating the result:

Example 3.10

| x |
x := ScaledDecimal gbsNumerator: 1 denominator: 3 scale: 2.
^ x + x + x

Client Copies
It’s fast and simple to make a client copy of a GemStone object that maintains no
reference to the repository. Because they have no knowledge of the GemStone
object they were made from, such copies are not real replicates.

These copies are deep copies: they replicate a complete transitive closure of the
GemStone object. Nothing is stubbed.

NOTE
Be careful not to replicate a GemStone object large enough to overflow
the client image.

To make an unassociated copy of a GemStone object in the client object space,
send:

aGbsObject asLocalObjectCopy

Because it is unrelated to the GemStone original, values are neither flushed nor
faulted, nor is state synchronized; it is safe to assume the copy will be out of date,
if not soon, then eventually.

Such copies are suitable for read-once applications that are pressed for resources.

Precedence of Replication Mechanisms GemBuilder User Manual

3-38 GemStone Systems, Inc. December 2001

To make a similar unassociated copy of a client object in GemStone, send:

aClientObject asGSObjectCopy

While replicates are almost always easier to use, it may sometimes be faster and
simpler to copy the data, manipulate it, and then replicate it back in
GemStone. This might be true, for example, if the ratio of execution to data set size
is large.

To do this reliably:

 • There must be just one root for the GemStone data, because the identity of
internal objects will be lost with this technique.

 • The data set must be small enough to fit in the client Smalltalk memory.

NOTE
Each server copy created with asGSObjectCopy gets a new object
identifier, even if the client object you’re copying already has a server
counterpart with its own object identifier. Therefore, copying client
objects in this way can double your use of object identifiers.

3.5 Precedence of Replication Mechanisms
Certain replication mechanisms can appear to contradict each other. The rules of
precedence are:

 • If the class methods instVarMap (for replicates) or
instancesAreForwarders (for forwarders) are implemented, they take
precedence over all others and are always respected.

 • Otherwise, if the class method replicationSpec is implemented, or if an
application calls or replicationSpecSet: to switch among several
replication specs, those replication specs take precedence.

In other words, if a class implements a replication spec, but it also implements
instancesAreForwarders to return true, then instances of that class will
be forwarders and the replication spec will be ignored.

Or, if a class implements both instVarMap and replicationSpec, the
instVarMap determines which instance variables will be visible to the
replication spec.

 • In the absence of a replication spec, the instance method faultToLevel:, if
called, is respected for replicates. Forwarders, of course, do not fault.

Sharing Objects Converting Between Forms

December 2001 GemStone Systems, Inc. 3-39

 • For classes that use no other mechanism, the configuration parameters
faultLevelLnk and faultLevelRpc are respected.

3.6 Converting Between Forms
A variety of messages exist to convert between delegates, forwarders, replicates,
stubs, and unconnected client objects. Table 3.1–Table 3.5 list the results of sending
any of several conversion messages to these objects.

NOTE
To avoid unpredictable consequences and possible errors, do not use the
expressions listed as producing undefined results.

Table 3.1 Delegate Conversion Protocol

Message Return Value

copy shallow copy of delegate
asLocalObject replicate
asLocalObjectCop
y

deep copy of replicate

asGSObject self

asForwarder undefined
beReplicate undefined
fault undefined
stubYourself undefined

Table 3.2 Forwarder (to the Server) Conversion Protocol

Message Return Value

copy copies associated server object and returns replicate of
copy

asLocalObject undefined
asLocalObjectCop
y

undefined

asGSObject associated delegate
asForwarder self

beReplicate self, which has become a replicate
fault self (use beReplicate to make a replicate)

Converting Between Forms GemBuilder User Manual

3-40 GemStone Systems, Inc. December 2001

stubYourself self

Table 3.2 Forwarder (to the Server) Conversion Protocol

Message Return Value

Table 3.3 Replicate Conversion Protocol

Message Return Value

copy shallow copy of delegate not associated with any server
object

asLocalObject undefined
asLocalObjectCop
y

undefined

asGSObject associated delegate
asForwarder self, which has become a forwarder
beReplicate self

fault self, whose instance variables are now also replicates
to the configured fault level

stubYourself self, which has become a stub

Table 3.4 Stub Conversion Protocol

Message Return Value

copy shallow copy; receiver becomes a replicate
asLocalObject undefined
asLocalObjectCop
y

undefined

asGSObject associated delegate
asForwarder self, which has become a forwarder
beReplicate self (use fault to become a replicate)
fault self

stubYourself self

Sharing Objects Converting Between Forms

December 2001 GemStone Systems, Inc. 3-41

Table 3.5 Conversion Protocol for Unshared Client Objects

Message Return Value

copy shallow copy
asLocalObject undefined
asLocalObjectCop
y

undefined

asGSObject new delegate; creates new associated server object
asForwarder self, which has become a forwarder; creates new

associated server object
beReplicate self

fault self

stubYourself self

Converting Between Forms GemBuilder User Manual

3-42 GemStone Systems, Inc. December 2001

Chapter

December 2001 GemStone Systems, Inc. 4-1

4 Connectors

GemBuilder associates a client and GemStone object with a connector.

 • Connectors function at login. After that, you must manually disconnect and
reconnect them to effect any functional changes.

 • Connectors exist either in a given session or globally—in every session your
image defines.

 • Connectors can update either connected object.

 • Different kinds of connectors use different lookup mechanisms.

 • To avoid certain kinds of errors, you can verify connections at login.

 • You create connectors with the Connector Browser or in code.

Connecting and Disconnecting
describes what happens at login and logout, which login and logout, and how
to initialize instances.

Kinds of Connectors
describes how lookup occurs.

Making and Managing Connectors
explains how to make and manage connectors in code or using the Connector
Browser.

Connecting and Disconnecting GemBuilder User Manual

4-2 GemStone Systems, Inc. December 2001

4.1 Connecting and Disconnecting
At login, connectors connect objects according to their specifications; thereafter,
they are inactive. Changes to instances that occur during the course of a session are
replicated either because those instances are synchronized replicates that mark
changes dirty, or because one is a forwarder to the other. Changes to class
definitions or other unsynchronized changes must be propagated manually. To do
so, use the Disconnect and Connect buttons in the Connector Browser to
disconnect and reconnect the appropriate connector.

At logout, to reduce the risk of defunct stub or forwarder errors, GemBuilder sets
connections to nil if, at login, they update the client or create a forwarder.

Scope
Some connectors connect their objects whenever any session logs in; some do so
only when a specific session logs in:

 • Global connectors allow you to maintain a standard set of connectors common
to all applications in your GemBuilder image.

 • Session connectors allow individual applications to customize connectors: you
define unique session parameters for each application, and different sessions
can connect different objects. When sessions of one kind log in, other sessions’
connectors are defined but not connected.

When a session logs in, its session connectors and all global connectors (if not
already connected) connect automatically.

When a session logs out, its session connectors disconnect. If the session is the last
in the application to log out, it disconnects the global connectors.

Verifying Connections
Connectors are saved in client Smalltalk sets, separate ones for global connectors
and each named kind of session (each uniquely defined set of session parameters).
Two connectors are considered equal if they resolve to the same client object.
Client Smalltalk sets eliminate duplicates based on equality. Therefore:

NOTE
Adding a global or session connector that points to the same object as an
existing connector will remove the existing connector.

Duplicate session connectors are not removed if they are stored in different
sessions.

Connectors Connecting and Disconnecting

December 2001 GemStone Systems, Inc. 4-3

GemBuilder provides a configuration parameter, connectVerification, that,
when true, causes connectors to verify at login that they are not redefining a
connector that already exists. In addition, class connectors verify that the two
classes they are connecting have compatible structures.

If a connector fails verification, GemBuilder issues a notifier if verbose is also
true, or raises an exception otherwise. You can set connectVerification in
the Connector Browser or in the Settings Browser.

NOTE
Under certain circumstances, GemBuilder may verify that a connector
still exists in a session after it has been explicitly removed from that
session. This is because the order in which connectors are connected at
login is not deterministic.For more information and a work-around, see
“Connection Order” on page 4-5.

Initializing
At login, a connector associates an object in a single-user image with an object in a
multiuser repository. The value of either could have changed since last login.
Which value is valid?

Connectors can initialize either object by performing a specified postconnect action:

Update Smalltalk
default for all but class connectors, initializes the client object with the current
state of the GemStone object.

Update GemStone
initializes the GemStone object with the current state of the client object.

Forward to the server or client
makes one object a forwarder to the other. Forwarders are discussed starting
on page 3-9.

No initialization
leaves the client object and GemStone object unmodified after
connection—default for class connectors.

As the name implies, postconnect actions execute only at initial connection. After
that, changes propagate according to mark dirty specifications, as described in
“Synchronizing State” on page 3-12, or they do not propagate at all, as is normally
the case with class connectors, as described in “Class Mapping” on page 3-6.

Kinds of Connectors GemBuilder User Manual

4-4 GemStone Systems, Inc. December 2001

Updating Class Definitions

By default, after login and initialization, class connectors do not propagate
changes. If you’ve defined classes differently on the client and the server, you
probably had good reason to do so; you probably don’t want one object space to
update the other with its own class definition. Therefore, to avoid updating class
definitions, class connectors generally specify a postconnect action of none.

For similar reasons, class connectors seldom specify that the client class is a
forwarder—in fact, the forwarder postconnect action is disabled for GemBuilder
classes, GemStone kernel classes, and other critical classes. (To determine the full
list, display the result of executing GbsForwarder nonForwarding.)

If you change either a client or GemStone class definition during a session, you
must propagate the change yourself by disconnecting and reconnecting the
connector. The Connector Browser, described starting on page 4-13, provides
convenient buttons for the purpose.

NOTE
Remember to restore a postconnect action of none after you complete the
desired update.

4.2 Kinds of Connectors
Five kinds of connectors use different ways of finding the two objects to connect.
You have already encountered one kind:

Class connector — connects a client Smalltalk and GemStone class. As discussed
in “Class Mapping” on page 3-6, to replicate an object, both client
and repository must define the class, and the two classes must be
connected using a class connector.

For replicating instances, however, we need ways to connect root objects:

Name connector — connects client and GemStone objects identified by name.
Figure 4.1 illustrates how a name connector connects a client
object to a GemStone object.

Class variable connector — first resolves the named objects representing the
classes, then looks for a class variable in each class with the
specified name and connects those objects.

Connectors Kinds of Connectors

December 2001 GemStone Systems, Inc. 4-5

Class instance variable connector — first resolves the named objects representing
the classes, then looks for a class instance variable in each class
with the specified name and connects those objects.

Fast connector — connects the GemStone kernel classes to their client Smalltalk
counterparts. Fast connectors are predefined, implemented for
speed. The kernel classes to which they point will not change
identity during the course of a session; GemBuilder can take
advantage of that to reduce overhead.

NOTE
Application objects can change identity during the course of a session.
Applications should therefore not define fast connectors.

The GemStone kernel class connectors are predefined, and
GemBuilder relies on them. You cannot convert them to
forwarders.

Connection Order
At login, GemBuilder connects connectors in the following order:

1. First, predefined fast connectors for kernel classes;

2. next, class connectors whose postconnect action is anything other than
updateGS; and finally

3. all other connectors, in no particular order.

You can control the order in which connectors connect by connecting them
explicitly in your code, instead of relying on GemBuilder’s automatic mechanism
to connect them for you at login.

Lookup
Names must be found in namespaces. In the client, objects included in a Smalltalk
namespace can be visible throughout the Smalltalk image. GemStone implements
namespaces with symbol dictionaries: if the symbol list of the session user includes
the symbol dictionary defining object A, then object A is visible to that user.

Lookup occurs when the connection is established—that is, when the session first
logs in.

Kinds of Connectors GemBuilder User Manual

4-6 GemStone Systems, Inc. December 2001

Figure 4.1 Connecting a Name Connector

Connecting by Identity: Fast Connectors

Name lookup in both client Smalltalk and GemStone Smalltalk can be slow if you
are using a lot of connectors. You can bypass the name lookup by using a fast
connector, which saves direct references to the client Smalltalk objects and the
object IDs of the GemStone objects that are connected.

Using fast connectors can be risky, however. If the GemStone object is renamed or
redefined, a fast connector will continue to point to the old object: the one with the
same object identifier. When the identity of an object changes (for example, if it is
a variable that you assign to a new object), a fast connector becomes incorrect. An
out-of-date fast connector may cause an “object does not exist” error, or it may
silently continue to pass messages to an old object.

Because using object identity is not always an appropriate way to resolve an object,
we recommend that you generally use standard connectors instead of fast
connectors, especially during early development stages. You can always use the
Connector Browser to change a connector type later, when you are certain that
your application can rely on named objects to have a constant identity.

name1

name1
name2

name2

GemStoneClient Smalltalk

 GemStone user’s symbol listSmalltalk Namespace

GbsNameConnector

looked up in GemStone symbol list

looked up
 in Smalltalk

Client Object

Server Object

Connectors Making and Managing Connectors

December 2001 GemStone Systems, Inc. 4-7

4.3 Making and Managing Connectors
To make and manage connectors interactively, see “The Connector Browser” on
page 4-13. The next section describes making and managing connectors in code.

Making Connectors Programmatically
GbsConnector is the abstract superclass for the connector class hierarchy. These
classes implement connection methods and define instance variables to refer to the
associated GemStone and client objects. Figure 4.2 shows the hierarchy.

Figure 4.2 Connector Class Hierarchy

To create a connector programmatically:

1. Create the connector.

2. Set its postconnect action, if other than the default.

3. Add it to the global connector list, or a connector list for session parameters.

Create the required GemStone session parameters and connectors in an
initialization method.(Creation methods for session parameters are described in
“Defining Session Parameters” on page 2-4.)

Object

GbsConnector

GbsFastConnectorGbsNameConnector

GbsClassConnector GbsClassVarConnector

GbsClassInstVarConnector

Making and Managing Connectors GemBuilder User Manual

4-8 GemStone Systems, Inc. December 2001

Creating Connectors

One simple creation method for a name connector requires only the names of the
two objects to be connected:

GbsNameConnector stName: stName
 gsName: gsName

You can create a class connector this way too:

GbsClassConnector stName: stName
 gsName: gsName

The above methods require that the GemStone object already exist. If GemBuilder
must create the object, choose an instance creation method that specifies the
GemStone dictionary in which to place it:

GbsNameConnector stName: stName
gsName: gsName
dictionaryName: gsDictionary

To create a class variable connectors:

GbsClassVarConnector
stName: #ClassName
gsName: #ClassName
cvarName: #ClassVarName

Similarly, a class instance variable connector:

GbsClassInstVarConnector
stName: #ClassName
gsName: #ClassName
cvarName: #ClassInstVarName

For more, browse instance creation methods for each connector class.

Setting the Postconnect Action

The symbolic names for postconnect actions are #updateST, #updateGS,
#forwarder, and #none. All connectors default to using #updateST except
class connectors, which default to #none.

To cause a GemStone object to take its initial values at login from its Smalltalk
counterpart, send postConnectAction: #updateGS to the connector. This is
occasionally useful for loading data into GemStone from the client image.

Connectors Making and Managing Connectors

December 2001 GemStone Systems, Inc. 4-9

Adding Connectors to a Connector List

When you create a connector, you must decide whether it is to be managed by an
individual session or globally. Leaving it unmanaged can have several adverse
effects: it will not be connected and disconnected when required, and object
retrieval may slow.

A connector is managed by adding it to the appropriate list of connectors.

If you want a connector in effect whenever any session logs in, put it in the global
connectors collection:

GBSM addGlobalConnector: aConnector

A new global connector first takes effect the next time any session logs in.

Each session parameters object maintains its own list of session connectors. If you
want a connector in effect whenever a session logs in using specific parameters,
add a connector to the session parameters object:

ThisApplicationParameters addConnector: aConnector

A new session connector first takes effect the next time that session logs in.

To initialize a system with two roots, the global BigDictionary, and a class
variable in MyClass called MyClassVar, your application might execute code
such as that shown in Example 4.1:

Example 4.1

GBSM addGlobalConnector: (GbsNameConnector
stName: #MyGlobal
gsName: #MyGlobal);

addGlobalConnector: (GbsClassVarConnector
stName: #MyClass
gsName: #MyClass
cvarName: #MyClassVar)

Initialization code such as that in Example 4.1 needs to execute only once. From
then on, every time you log into GemStone, MyGlobal and MyClassVar (and all
the objects they reference) connect; after that, replication and updating occur as
specified.

Making and Managing Connectors GemBuilder User Manual

4-10 GemStone Systems, Inc. December 2001

Session Control

The following examples illustrate one approach to managing GemBuilder sessions
and connectors: a session control class that defines these methods for, in this
example, a help request system.

An instance of the session control class could be stored in the application object as
a class variable, in which case the session information would be the same for all
instances of the application, or it could be stored in the application as an instance
variable, in which case each instance of the application would get its own copy to
change as needed. In either case, methods to create the session parameters object
and its connectors might follow these patterns:

Example 4.2 shows the method session, which returns the application’s logged-
in session. If the session is not logged in, the method requests an RPC login and
returns the resulting session. If login fails, the method returns nil.

Example 4.2

session
"self session"
(session isNil or: [session isLoggedIn not]) ifTrue: [

session := self sessionParameters loginRpc.
session isNil ifTrue: [^nil]].

^session

Example 4.3 shows a method that initializes a set of session parameters. (For
security, you may choose to prompt for passwords instead.)

Connectors Making and Managing Connectors

December 2001 GemStone Systems, Inc. 4-11

Example 4.3

sessionParameters
| params |
sessionParameters isNil ifTrue: [

params := GbsSessionParameters new.
params gemStoneName: 'gemserver50'.
params username: 'DataCurator'.
params password: 'swordfish'.
params gemService: 'gemnetobject'.
params rememberPassword: true.
params rememberHostPassword: true.
self addConnectorsTo: params.
sessionParameters := params.
GBSM addParameters: params].

^sessionParameters

Example 4.4 adds connectors to the session parameters object by calling lower-
level methods to individual types of connectors:

Example 4.4

addConnectorsTo: aParams
self addClassConnectorsTo: aParams.
self addClassVarConnectorsTo: aParams

Example 4.5 shows a method that creates class connectors and adds them to the
session parameters connector list:

Making and Managing Connectors GemBuilder User Manual

4-12 GemStone Systems, Inc. December 2001

Example 4.5

addClassConnectorsTo: aParams
aParams addConnector:

(GbsClassConnector
stName: #GST_Action
gsName: #GST_Action).

aParams addConnector:
(GbsClassConnector

stName: #GST_Customer
gsName: #GST_Customer).

aParams addConnector:
(GbsClassConnector

stName: #GST_Engineer
gsName: #GST_Engineer).

Example 4.6 shows a method that creates class variable connectors and adds them
to the session parameters connector list:

Example 4.6

addClassVarConnectorsTo: aParams
| aConnector |
aParams addConnector:

(aConnector := GbsClassVarConnector
stName: #GST_HelpRequest
gsName: #GST_HelpRequest
cvarName: #AllRequests).

aConnector postConnectAction: #forwarder.
aParams addConnector:

(GbsClassVarConnector
stName: #GST_Company
gsName: #GST_Company
cvarName: #AllCompanies)

You can create methods similar to those shown in examples 4.5 and 4.6 to create
name connectors and global connectors for your application, as well.

NOTE
If more than one session is logged into GemStone using the same session
parameters object, and you add a connector to one of those sessions,

Connectors Making and Managing Connectors

December 2001 GemStone Systems, Inc. 4-13

GemBuilder will try to connect that connector for all sessions sharing
the same parameters. If any fail to reference the GemStone object
represented by the connector, you’ll receive an error message stating that
the connector failed to connect.

The Connector Browser
You can use GemBuilder’s Connector Browser to make and manage connectors
interactively. To open a Connector Browser, select Connectors from the
GemStone menu. With this browser, you can:

 • examine, create, and remove global or session-based connectors;

 • inspect the client Smalltalk or GemStone object to which a connector resolves;

 • determine whether a specified connection is currently connected;

 • connect or disconnect a connector; and

 • examine or modify the postconnect action associated with a connector.

Figure 4.3 shows the Connector Browser.

Figure 4.3 The Connector Browser

Making and Managing Connectors GemBuilder User Manual

4-14 GemStone Systems, Inc. December 2001

The Group Pane

The top pane is the Group pane; it allows you to select either global connectors or
those associated with an individual session. Global connectors are predefined to
connect the GemStone kernel classes with their client Smalltalk counterparts.
When you select an item in this pane, the connectors defined for the selected item
appear in the middle pane.

In the Group pane, the popup menu provides the following items:

The Connector Pane

The middle pane is the Connector pane; it lists the connectors, their types, and
descriptions in both the client and GemStone Smalltalks. In the Connector pane,
the popup menu offers the following items:

The Control Panel

The bottom pane is a control panel that allows you to change the
connectVerification and removeInvalidConnectors configuration parameters

Table 4.1 Group List Menu in the Connector Browser

update Refreshes the views and updates the browser; useful if you
have made changes in other windows and need to
synchronize the browser with them.

initialize (available only when Global Connectors are selected)
Allows you to remove all connectors except those that
connect kernel classes.

Table 4.2 Connectors Menu in the Connector Browser

inspect ST Resolves and inspects the client Smalltalk object for the
selected connector.

inspect GS Resolves and inspects the GemStone object for the selected
connector.

add... Adds a new connector, prompting for required information.

remove... Removes a connector, after confirmation.

change type... Changes a connector to a different type, prompting you for
the type.

Connectors Making and Managing Connectors

December 2001 GemStone Systems, Inc. 4-15

and connect or disconnect objects. setting a connector’s postconnect action is
described in the section that follows.

Enabling connector verification can slow login: we recommend that you turn on
verification during development and turn it off for production systems.

Postconnect Action

The postconnect action determines how GemBuilder sets the initial state of
connected objects. Options are:

Table 4.3 Options in the Control Panel

Global verification When enabled, connectors (other than class
connectors) verify that they are not redefining
an object connection before connecting.
Class connectors, upon connection, verify that
the structures of the two connected classes are
of the same storage type.

Remove bad connectors When enabled, connectors that fail to resolve at
login are automatically removed from the
connector collections.

Connected / Disconnected Connects or disconnects the GemStone and
client Smalltalk objects described by the
connector. Applies to the selected session, or to
the current session if global connectors are
selected.

Table 4.4 Postconnect Action Options in the Connector Browser

updateST Initializes the client object using the current state of the
GemStone object.

updateGS Initializes the GemStone object using the current state of the
client object.

forwarder Makes the client object a forwarder to the GemStone object.

none Leaves the client object and the GemStone object
unchanged after their initial connection.

Making and Managing Connectors GemBuilder User Manual

4-16 GemStone Systems, Inc. December 2001

To create a new connector:

1. Place the cursor in the Connector pane.

2. Select add from the menu.

3. When prompted, specify the type of connector.

4. When prompted, specify the names of the client and GemStone objects.

5. When prompted, specify the name of the dictionary for the GemStone object.

6. Specify the postconnect action.

To create a forwarder:

1. Create a connector as described above.

2. Select forwarder as the desired postconnect action.

To change the postconnect action:

1. Disconnect the objects by clicking on the Disconnected button.

2. Change the postconnect action as required.

3. Reconnect the objects by clicking on the Connected button.

If your application initially stores its data in the client , and you intend to store the
data in GemStone but have not done so yet:

1. Create a connector or connectors for the root object(s) in the data set.

2. Select updateGS as the postconnect action for these connectors.

3. Log into GemStone so that GemBuilder can create the GemStone replicates for
the client Smalltalk data.

4. Inspect the GemStone objects to be sure they have the intendedvalues.

5. Commit the transaction and log out.

6. Select the connectors and change their postconnect actions to updateST so
that future sessions will begin by using the stored GemStone data.

Chapter

December 2001 GemStone Systems, Inc. 5-1

5 Using the GemStone
Programming Tools

After you install GemBuilder, many menus in your Smalltalk image contain
additional commands for executing GemStone Smalltalk code and accessing
GemBuilder programming tools. These tools are in many ways similar to those of
the client Smalltalk, but with important differences; this chapter describes those
differences.

GemStone Menu
introduces the tools and options available from the GemStone menu.

Browsing Code
describes the GemStone Classes Browser and other code browsers.

Other GemStone Tools
describes GemStone workspaces, including the System Workspace, and
various GemStone inspectors.

Coding
explains how to use the GemBuilder tools to create classes and methods in
GemStone Smalltalk for execution and storage on the server.

Debugging
describes setting breakpoints, using the Breakpoint Browser, and using
GemBuilder’s enhanced debugger.

GemStone Menu GemBuilder User Manual

5-2 GemStone Systems, Inc. December 2001

5.1 GemStone Menu
The GemStone menu accessible from various tools, gives you access to the
GemStone Smalltalk compiler and the GemBuilder programming tools. Many of
these functions are also available from pop-up menus in the browsers and tools.

As shown in Table 5.1, the GemStone menu provides commands for executing
GemStone Smalltalk code and accessing the GemStone programming tools.

Table 5.1 The GemStone Menu

Sessions Opens a GemStone Session Browser, allowing you to log into or out of
GemStone and manage transactions. The Session Browser is described in
Chapter 2.

Connectors Opens a GemStone Connector Browser, allowing you to manage the
connections between GemStone and Smalltalk objects. The Connector
Browser is described in Chapter 4.

Browse Produces a submenu with the following options:

All Classes Opens a GemStone Browser, comparable to the client
Smalltalk System or Classes Browser. The GemStone
Browser is described in “Browsing Code” on page 5-4.

Namespace... Prompts for the name of a symbol dictionary, then opens
a browser focused on that dictionary.

Class... Prompts for the name of a class, then opens a browser
focused on that class.

Senders of... Prompts for the name of a message selector, then opens a
method browser showing senders of that message.

Implementors
of...

Prompts for the name of a message selector, then opens a
method browser showing implementors of that message.

References
to...

Prompts for the name of a variable, then opens a method
browser showing all methods that refer to that variable.

Methods with
substring...

Prompts for a string, then opens a method browser
showing all methods whose source contains that string.

Admin Produces a submenu with the following options:

Using the GemStone Programming Tools GemStone Menu

December 2001 GemStone Systems, Inc. 5-3

Users Opens a GemStone User Account Manager, allowing
you to create new users, assign attributes to them, and
manage user accounts, provided you have the privileges
to do so. The User Account Manager is described in
Chapter 7.

Namespaces Opens a Symbol List Browser, allowing you to examine
and modify symbol dictionaries and their entries. The
Symbol List Browser is described in Chapter 7.

Segments Opens a Segment Tool, allowing you to control
authorization at the object level by assigning objects to
segments. The Segment Tool is described in Chapter 7.

Tools Produces a submenu with the following options:

New GS
Workspace

Opens a GemStone Workspace.

Open GS
Workspace...

Prompts for a file name, then opens the selected saved
workspace file in a GemStone workspace.

GS File in Files the selected GemStone Smalltalk code into
GemStone.

Settings Opens a Settings Browser in which you can examine,
change, and store parameters for configuring
GemBuilder. The Settings Browser is described in
Chapter 9.

Breakpoints Opens a Breakpoint Browser, allowing you to set and
clear breakpoints in GemStone Smalltalk code. The
Breakpoint Browser is described on page 5-26.

System
Workspace

Opens the GemStone System Workspace, a workspace
containing a variety of useful GemStone Smalltalk and
client Smalltalk expressions.

About
GemBuilder

Opens a window providing the GemBuilder version and copyright
information.

Table 5.1 The GemStone Menu (Continued)

Browsing Code GemBuilder User Manual

5-4 GemStone Systems, Inc. December 2001

5.2 Browsing Code
After logging in to GemStone, open a GemStone Classes Browser by choosing
GemStone > Browse > All Classes.

The GemStone Classes Browser allows you access source and other information
about each of the kernel classes and methods; you can also create GemStone
Smalltalk classes and methods in the GemStone repository.

Figure 5.1 GemStone Classes Browser

The GemStone Classes Browser is similar to the client Smalltalk System or Classes
Browser, but a few differences exist: for example, the upper left pane contains a list

Method categories
Classes Method selectors

Symbol dctionaries

Source code pane

Using the GemStone Programming Tools Browsing Code

December 2001 GemStone Systems, Inc. 5-5

of symbol dictionaries, GemStone’s mechanism for implementing
namespaces. This facilitates finding and sharing objects efficiently. The symbol
dictionaries that you can access are listed in the GemStone Browser’s symbol list
pane.

When you select a symbol dictionary in the Symbol List pane, all classes defined
in that dictionary appear in the Classes pane to the right. (Symbols other than
classes can be viewed by opening an inspector on the symbol dictionary in
question.)

GemStone Smalltalk categorizes methods by function to make them easier to
browse. When you select a class in the Classes pane, a list of its method categories
appears in the Method Categories pane to the right.

When you select a method category, all the message selectors in that category
appear in the rightmost Method Selectors pane.

As in the comparable client Smalltalk browsers, you can switch focus between
instance or class methods using the toggle provided.

Also as in the comparable client Smalltalk browsers, when you select a method, its
source code is displayed in the lower portion of the browser—the source pane. In
this pane, you can edit and recompile the method, set breakpoints in it, or execute
fragments of GemStone Smalltalk code as in a workspace.

Each pane of the GemStone Browser also has pop-up menus accessible with the
operate mouse button. The pop-up menus in the Symbol List, Class, Categories,
and Methods panes are identical to the Symbols, Classes,Categories, and Methods
menus available from the menu bar, except that the file-out options are not present
in the pop-up menus. Figure 5.2 shows all the menus available from the GemStone
Browser’s menu bar.

Browsing Code GemBuilder User Manual

5-6 GemStone Systems, Inc. December 2001

Figure 5.2 Menus in the GemStone Browser

The following sections describe gemStone-specific commands in the Symbols,
Classes, Category, and Methods menus.

The File Menu
The following GemStone-specific commands are available from the File menu.

Execute
Display
Inspect
File In

Set Break

Edit menu
is same as
Smalltalk
Edit menu.

Save

Revert

Commit

Abort...
Update

File Out Methods Only
File Out

Browse
Inspect

Add...
Rename
Remove

File Out Methods Only
File Out
Find Class...

Browse Class
Browse Versions
Browse Hierarchy
Browse References

Hierarchy
Definition

Move Classes...
Remove...

Create Access

Create in ST
Compile in ST

Find Method...
File Out...
Select Categories

Browse Senders
Browse Implementors
Browse Messages

New Method Template
Delete Methods
Move Methods...
Copy Methods...

Set Breakpoint

Compile In ST

Name Each...
One Name...
Use Defaults

Name Each...
One Name...
Use Defaults

File Out...
Select All By Default

Add Category...
Rename Categories...
Remove Categories...

Compile in ST

To This Version of the Class
To Any Version of the Class Implementors

Senders

Table 5.2 File Menu in the GemStone Browser

Commit Attempts to save to the GemStone repository all modifications
that occurred during the current GemStone transaction.

Abort... Undoes all changes that you have made in the GemStone

Using the GemStone Programming Tools Browsing Code

December 2001 GemStone Systems, Inc. 5-7

The GemStone Menu
The following commands are available from the GemStone menu.

CAUTION
Do not remove the Globals dictionary; it defines the GemStone kernel
classes.

The Classes Menu
Table 5.4 describes the GemStone-specific commands available from the Classes
menu. A later section, “Defining a New Class” on page 5-13, explains how to
define a new GemStone Smalltalk class to add to the currently selected symbol
dictionary.

CAUTION
To avoid inadvertently removing or modifying a GemStone kernel class,
use the DataCurator account for all system administration functions
except those that require SystemUser privileges, such as upgrading or
restoring the GemStone repository.

Table 5.3 GemStone menu in the GemStone Browser

Execute Compiles and executes the selected GemStone Smalltalk code.

Display Compiles and executes the selected GemStone Smalltalk code,
and displays a textual representation of the result.

Inspect Compiles and executes the selected GemStone Smalltalk code,
then opens a GemStone inspector on the result.

File In Files the selected code into GemStone.

Set Break Sets a message breakpoint on the selected method, causing
the virtual machine to halt when that selector is sent to an
instance of the current class or a subclass. You can then open
a GemStone debugger to examine the current execution
context.

Browsing Code GemBuilder User Manual

5-8 GemStone Systems, Inc. December 2001

Pop-up Text Pane Menu
A pop-up menu appears in any text pane when you press the operate mouse button.
This menu provides the same commands as the corresponding menu in the client
Smalltalk browser’s text pane. In addition, it contains menus for displaying,
executing, inspecting, and filing in GemStone Smalltalk code and for using
breakpoints in GemStone Smalltalk code.

Table 5.4 GemStone Browser’s Classes Menu

File Out Methods Only Allows you to file out only the methods of a given class,
so that you can file them into a client class without
changing the client class’s structure.

Browse Versions Spawns a Class Version Browser that shows how many
versions of the selected class exist, and allows you to
access each.

Create Access... Creates basic methods for accessing and updating the
instance variables of the selected class. A dialog allows
you to specify which variables to include.

Create In ST Creates a client Smalltalk class having the same name
and structure as the selected GemStone Smalltalk class,
if one doesn’t already exist. If it does exist, executing
this menu item has no effect.

Compile In ST Creates a client Smalltalk class having the same name
and structure as the selected GemStone Smalltalk class,
and compiles all currently defined methods for the
class. If necessary, a notifier lists any methods that
cannot be compiled in client Smalltalk.

Using the GemStone Programming Tools Other GemStone Tools

December 2001 GemStone Systems, Inc. 5-9

The GemStone-specific commands available from a text area pane are shown in
Table 5.5.

GemBuilder also adds the following items to the appropriate menus in the client
Smalltalk browser:

5.3 Other GemStone Tools
GemStone workspaces, the GemStone System Workspace, and GemStone
inspectors are described briefly in the following sections.

Table 5.5 Pop-up Menu in GemStone Browser’s Text Pane

GS-execute Executes the code in GemStone.

GS-display Executes the code in GemStone and displays the result in the
text area.

GS-inspect Executes the code in GemStone and opens an inspector on the
result.

GS-file in Files the selected text into GemStone.

Set Break Sets a breakpoint at the step point nearest the cursor location.
If the cursor is not exactly at a step point, scans the method
from the current cursor location on and sets a breakpoint at
the next step point. See “Debugging” on page 5-22 for a full
discussion of using breakpoints.

Table 5.6 Additional GemStone Menu Items

create in GS Creates a GemStone Smalltalk class having the
same name and structure as the selected client
Smalltalk class, if one doesn’t already exist. If it
does exist but you’ve changed its structure,
executing this menu item creates a new version of
the class.

compile in GS Creates a GemStone Smalltalk class having the
same name and structure as the selected client
Smalltalk class, and compiles all currently defined
methods for the class in GemStone. If necessary, a
notifier lists any methods that cannot be compiled.

Other GemStone Tools GemBuilder User Manual

5-10 GemStone Systems, Inc. December 2001

GemStone Workspaces
To open a GemStone workspace, choose GemStone > Tools > New GS
Workspace. In a GemStone workspace, you can execute GemStone Smalltalk as
well as client Smalltalk.

The GemStone workspace menu offers the same GemStone-specific commands
listed in Table 5.5.

The System Workspace
The GemStone System Workspace is a workspace containing templates for many
useful GemStone Smalltalk and client Smalltalk expressions. Browse it to
familiarize yourself with its contents.

To open a GemStone System Workspace (Figure 5.3), choose GemStone > Tools
> System Workspace from the GemStone menu.

Figure 5.3 GemStone System Workspace

Using the GemStone Programming Tools Other GemStone Tools

December 2001 GemStone Systems, Inc. 5-11

Inspectors
GemStone Inspectors, like client Smalltalk inspectors, let you examine the values
of a variety of GemStone objects, and modify them when appropriate. When you
select a GemStone Smalltalk expression and execute GS-inspect, a GemStone
inspector opens instead of a client Smalltalk inspector. The GemStone inspector
(Figure 5.4) is similar to a client Smalltalk inspector; it has comparable panes and
functionality. The inspector contain the following GemStone-specific commands:

Figure 5.4 GemStone Delegate Inspector

Inspecting Nonsequenceable Collections

When you’re inspecting an instance of any nonsequenceable collection, the
following additional menu items are available.

Table 5.7 Commands in GemStone Inspector

Basic
Inspect

Opens an inspector on the delegate object, an instance of GbsObject
(see Figure 5.4).

Table 5.8 Commands for Inspecting NSCs

Add Prompts you for the name of the object to add to the nonsequenceable
collection. To a Dictionary, an Association with the given key and a
value of nil is added.

Remove If you’ve selected an index variable, removes the corresponding
element from the collection. If you’ve selected a key, removes the
corresponding association from the dictionary.

Coding GemBuilder User Manual

5-12 GemStone Systems, Inc. December 2001

5.4 Coding
This section explains how to define new GemStone classes and methods, and
describes aspects of coding unique to GemStone Smalltalk.

About GemStone Smalltalk Classes
The following discussion summarizes the main differences between GemStone
Smalltalk and client Smalltalks. For complete information about programming in
GemStone Smalltalk, refer to the GemStone Programming Guide.

Instance variables can be constrained. To speed GemStone Smalltalk’s indexed
associative access for efficient querying, you can constrain the value of an instance
variable to contain only specified kinds of objects. Constraining a variable means
that its value is always either an instance of the specified class, a subclass thereof,
or nil.

Constraints can be circular: you can constrain an instance variable to be an
instance of its own class, or you can also constrain instance variables of two classes
to each hold instances of the other.

Constraints are inherited: when you define a subclass, its inherited instance
variables by default bear the same constraints as those specified in their superclass.
However, inherited instance variables can be further constrained in a subclass. In
this case, the instance variable’s new constraint must be a subclass of that specified
by the inherited constraint.

To further constrain inherited instance variables, specify the name of the inherited
variable and its new constraint in the argument to the constraints: keyword in
the class definition template. For example, suppose you have defined a class
Employee with instance variables named jobTitle and department that are
constrained to be Strings. You can now create a subclass of Employee named
FormerEmployee and constrain the inherited variables jobTitle and
department to be InvariantStrings. FormerEmployee’s new instance variables
can be constrained or not, as you require, and its other inherited instance variables
retain whatever constraints were set in the superclass that defined them, if any.

Instances can be invariant. A class definition can specify that all instances are
invariant, meaning they can be modified only during the transaction in which it is
created. After the transaction is committed, you can no longer modify its instance
variables, nor the size or class of the object.

Specify invariance for a class by providing the argument true to the
instancesInvariant: keyword in the class definition template.

Using the GemStone Programming Tools Coding

December 2001 GemStone Systems, Inc. 5-13

Class-level invariance is useful for supporting literals in methods and in other
limited situations, but it is generally more cumbersome than object-level
invariance. Any object can be made invariant by sending it the message
immediateInvariant. This mechanism protects objects from being modified
and can be useful for maintaining the integrity of your repository. After
immediateInvariant is sent to an object, you can no longer modify its instance
variables, nor the size or class of the object. The effect of the
immediateInvariant message is not reversible.

The message isInvariant returns true if the receiver is invariant; false
otherwise.

Defining a New Class
To define a new GemStone class:

Step 1. Open a GemStone Browser if one is not already open.

Step 2. In the Symbol List pane, select the dictionary in which you wish to refer
to the new class. Make sure no class is selected in the class list.

The browser displays the class definition template:

NameOfSuperclass subclass: 'NameOfClass'
 instVarNames: #('instVarName1' 'instVarName2')
 classVars: #('ClassVarName1' 'ClassVarName2')
 classInstVars #('ClassInstVarName1' 'ClassInstVarName2')
 poolDictionaries: #[]
 inDictionary: aDictionary
 constraints: #[]
 instancesInvariant: false
 isModifiable:false

This is the basic form of the subclass creation message in GemStone
Smalltalk.

Step 3. Replace NameOfSuperclass with the name of your new class’s immediate
superclass.

Step 4. Replace NameOfClass with the name of the new class. By convention, the
first letter of each GemStone class name is capitalized.

Step 5. Replace instVarName with the names of any instance variables, or delete
all the text within the parentheses if your new class has no instance variables.

A class can define up to 255 named instance variables.

Coding GemBuilder User Manual

5-14 GemStone Systems, Inc. December 2001

Step 6. Replace classVarNames with the names of any class variables, or delete all
the text within the parentheses if your new class has no class variables.

Step 7. Replace classInstVarNames with the names of any class instance variables,
or delete all the text within the parentheses if your new class has no class
instance variables.

Step 8. Fill in the brackets after the poolDictionaries: keyword with any
pool dictionaries that you want the class to access. Pool dictionaries are
special-purpose storage structures that enable any arbitrary group of classes
and their instances to share information. When classes share a pool dictionary,
methods defined in those classes can refer to the variables defined in the pool
dictionary.

Step 9. After the inDictionary: keyword, the name of the selected symbol
dictionary is inserted in the template. This is the symbol dictionary that will
allow you to refer to your class by name. Unless you replace the inserted text
with the name of another symbol dictionary to which you have access, your
new class is defined in the selected symbol dictionary.

Step 10. Fill in the brackets after the constraints: keyword with any
constraints you wish to specify for one or more of the instance variables.

To constrain the elements of a collection, type the name of the constraint class
inside the brackets. For example, to constrain the Bag subclass
BagOfEmployees to contain only instances of the class Employee, type:

constraints: #[Employee]

To constrain a named instance variable, type the name of the variable and the
constraint class as a pair separated by a comma, each within its own set of
square brackets, also separated by commas. Preface the instance variable
name with a #. For example, to constrain the instance variables name and
address of the class Employee to be a String and an instance of the class
Address, respectively, type:

constraints: #[#[#name, String], #[#address, Address]]

Step 11. After the instancesInvariant:keyword, specify whether instances
of the class are modifiable. The default is false—change this to true if you
wish instances to be invariant.

Step 12. After the isModifiable: keyword, specify whether the structure of
the class can be modified. The default value is false—change this to true if
you wish class to be invariant.

Using the GemStone Programming Tools Coding

December 2001 GemStone Systems, Inc. 5-15

Step 13. Save your changes and commit your transaction to make the class part
of the repository.

NOTE
You cannot subclass certain GemStone kernel classes. To determine
which ones, execute the method subclassesDisallowed against
the class Object. The method returns true for any class that you cannot
subclass.

For example, consider the following definition of a class named Employee:

Example 5.1

Object subclass: 'Employee'
instVarNames: #('name' 'employeeNum' 'jobTitle' 'department'

 'address')
classVars: #()
classInstVars #()
poolDictionaries: #[]
inDictionary: UserGlobals

Employee resides in the developer’s UserGlobals
dictionary.

constraints: #[#[#name, String],
 #[#employeeNum, SmallInteger],
 #[#jobTitle, String],
 #[#department, Symbol],
 #[#address, Address]]

For efficient access, constraints have been placed on each
instance variable: name must be an instance of String,
employeeNum must be an instance of SmallInteger,
jobTitle must be an instance of String, department
must be an instance of Symbol, and address must be an
instance of Address.

instancesInvariant: false

When instances of the class are created, their values will be
modifiable even after they’ve been committed to the
repository.

Coding GemBuilder User Manual

5-16 GemStone Systems, Inc. December 2001

isModifiable: true

This class is modifiable; instance variables can still be
added, removed, and constrained, and class or class
instance variables can be added. However, as long as the
class itself remains modifiable, no instances of it can be
created.

Subclass Creation Methods

You can choose from a variety of subclass creation messages, depending on the
type of class you want to create. For example, to create a byte subclass, replace the
initial keyword subclass: with the keyword byteSubclass:. If the
superclass is not a subclass of String, instances of the new class store and return
SmallIntegers in the range 0–255.

Similarly, if you wish to create an indexable subclass, replace the initial keyword
subclass: with the keyword indexableSubclass:. Instances of the new
class are represented as pointer objects.

For complete descriptions of the different kinds of classes, see the discussion of
class storage formats in the chapter entitled “Advanced Class Protocol” in the
GemStone Programming Guide.

If you wish to set the class history of your new class explicitly, you can include the
keyword newVersionOf: in the class definition template or any subclass
creation message, after instancesInvariant: and before isModifiable:. If
the argument to this keyword is a class, this method creates the new class as a new
version of that class, and the two classes share a class history. In this way, you can
make one class a new version of another even if they do not have the same name.

If the argument to the newVersionOf: keyword is nil, the new class is created
with a new class history.

If you do not include the newVersionOf: keyword, the compiler checks to see if
another class having the same name already exists. If it does, the new class is
compiled as a new version of the other class and shares its class history. If it does
not, the new class is created with a new class history.

For more discussion of class versions and histories, see the chapter entitled “Class
Versions and Instance Migration” in the GemStone Programming Guide.

Using the GemStone Programming Tools Coding

December 2001 GemStone Systems, Inc. 5-17

Private Instance Variables

Some GemStone kernel classes have private instance variables. For example, the
GemStone Bag class defines four, used by the object manager and primitives to
implement features of nonsequenceable collections, such as adding indexing
structures for efficient querying. Private instance variable names begin with an
underscore (_). When defining subclasses, private instance variables cannot be
modified or constrained.

Modifying an Existing Class
If you select an existing GemStone Smalltalk class, then modify and save the class
definition, you create a new version of that class and all of its subclasses. The
browser attempts to recompile all methods from the previous version into the new
version. Methods that fail to recompile are presented in a method list browser,
from which you can correct the errors. If the class has subclasses, they are also
versioned and their methods recompiled.

Versioning a class does not migrate its instances; they’re still instances of the old
class. You can migrate some or all instances of one version of a class to another
version explicitly.

For more information on migrating instances, see the chapter entitled “Class
Versions and Instance Migration” in the GemStone Programming Guide.

NOTE
You can modify only classes for which you have write authorization

To create a new version of a class:

Step 1. Select the class in the browser to bring up its definition in the source pane.

Step 2. Edit the definition as required.

Step 3. Select Save from the pop-up menu.

Whenever you create a class with the same name as a class that already exists in
one of your symbol dictionaries, the new class is automatically created as the latest
version of the existing class and it automatically shares the same class
history. Instances created after the redefinition have the new class’s structure and
access the new class’s methods. Instances that were created earlier have the old
class’s structure and access the old class’s methods, but they can be migrated to the
new class.

Coding GemBuilder User Manual

5-18 GemStone Systems, Inc. December 2001

Let’s assume that you have a class named Employee with instance variables for
name, employeeNum, jobTitle, department, and address, and that the class
is defined as shown in Figure 5.1. Two of Employee’s instance variables are
constrained to be instances of class String, and one (employeeNum) is constrained
to be a SmallInteger. Suppose that you decide that the class needs an additional
instance variable named salary to represent the Employee’s salary.

To do this, you can define a new version of the class Employee to include the new
instance variable. Keeping the same name as the old class ensures that it shares the
same class history as the previous version.

After you compile the class definition, the new class is named Employee, and all
of the original instance and class methods are copied to the new class. Any
existing instances will still belong to the original class and may have to be
migrated to the new class. (See “Instance Migration Within GemStone” on
page 8-2.)

Defining Methods
You can modify only methods for which you have write authorization— for
example, methods that you have written for your own classes. You cannot modify
any GemStone kernel class method—that is, any method that is defined for one of
the predefined classes supplied with the GemStone system.

Public and Private Methods

GemStone has both public and private methods. Public GemStone methods are
supported. Private GemStone methods are those implemented to support the
public protocol—they are not supported and are subject to change.

Private GemStone methods are those whose seelctor is prefixed with an
underscore (_). They appear in the browsers along with the public methods, and
you can display the source for them.

CAUTION
Private methods are subject to change at any time. Do not depend on the
presence or specific implementation of any private method when creating
your own classes and methods.

Using the GemStone Programming Tools Coding

December 2001 GemStone Systems, Inc. 5-19

Reserved and Optimized Selectors

The following selectors are reserved for the sole use of the GemStone Smalltalk
kernel classes. Those selectors are:

ifTrue: untilFalse timesRepeat:
ifFalse: untilTrue isNil
ifTrue:ifFalse: whileFalse: notNil
ifFalse:ifTrue: whileTrue: ==
_or: to:do: ~~
_and: to:by:do: _class
isKindOf: _isInteger _isSmallInteger
_isSymbol includesIdentical

Redefining a reserved selector has no effect; the same primitive method is called
and your redefinition is ignored.

In addition, the following methods are optimized in the class SmallInteger:

+ - * >= =

You can redefine the optimized methods above in your application classes, but
redefinitions in the class SmallInteger are ignored.

Saving Class and Method Definitions in Files
It’s often useful to store the GemStone Smalltalk source code in text files. Such
files make it easy to:

 • transport your code to other GemStone systems,

 • perform global edits and recompilations,

 • produce paper copies of your work, and

 • recover code that would otherwise be lost if you are unable to commit.

To save GemStone code in a file, use any of the GemStone browser’s FileOut menu
items. To read and compile a saved file, use any of the Gs-File in or GS-File it in
menu items.

Saved GemStone files are written as sequences of Topaz commands. Example 5.2
shows a class definition in Topaz format:

Coding GemBuilder User Manual

5-20 GemStone Systems, Inc. December 2001

Example 5.2

!
! From GEMSTONE: 5.0, Tue Jun 4 18:36:18 US/Pacific 1996;
!
!
! Class 'Address'
!
run
Object subclass: 'Address'

instVarNames: #('street' 'zip')
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#street, String],

#[#zip, Integer]]
isInvariant: false
%
!
! Instance Category 'Updating'
!
category: 'Updating'
method: Address
street: newValue

"Modify the value of the instance variable 'street'."
 street:= newValue

%
method: Address
zip: newValue

"Modify the value of the instance variable 'zip'."
 zip:= newValue

%

Using the GemStone Programming Tools Coding

December 2001 GemStone Systems, Inc. 5-21

!
! Instance Category 'Accessing'
!
category: 'Accessing'
method: Address
street

"Return the value of the instance variable 'street'."
 ^street

%
method: Address
zip
%

"Return the value of the instance variable 'zip'."
^zip

%

GemStone’s filing out and filing in facilities are intended mainly for saving and
restoring classes and methods without manual intervention. If this is all you want
to do, then you don’t need to understand the Topaz commands
involved. However, it is also possible to create custom files that include
commands to commit transactions and to create and manipulate objects other than
classes and methods. If you want to perform such tasks, refer to the Topaz
Programming Environment.

The file-in mechanism cannot execute the full set of Topaz commands; it’s limited
to the following subset:

 category: method
 classmethod method:
 classmethod: printit
 commit removeAllMethods
 doit removeAllClassMethods

Debugging GemBuilder User Manual

5-22 GemStone Systems, Inc. December 2001

The GemStone file-in mechanism acknowledges the presence of the following
commands by adding notes to the System Transcript, but it does not execute them:

 display omit
 expectvalue output
 level remark
 limit status
 list time

If GemBuilder encounters any other Topaz commands it stops reading the file and
displays an error notifier.

The file-in mechanism does not display execution results, either. Instead, it
appends information to the System Transcript about the files it reads and the
classes and categories for which it compiles methods.

Handling Errors While Filing In

If one of the modules (run commands or method definitions) that you’re filing in
contains a GemStone Smalltalk syntax error, GemStone displays a compilation
error notifier that contains the erroneous module in a text editor. If you correct the
error and then choose Save, GemStone recompiles the module and then processes
the rest of the file.

In the case of authorization problems, commands that the file-in mechanism
doesn’t recognize, or other errors, GemStone displays a simple error notifier
without an editor and stops processing the file.

5.5 Debugging
In addition to the basic code development tools described previously in this
chapter, GemStone also provides GemStone Smalltalk debugging facilities similar
to the debugging aids supplied by the client Smalltalk. These facilities enable you
to perform the following operations:

 • You can step through execution of a method, examining the values of
arguments, temporaries, and instance variables after each step.

 • You can set, clear, and examine GemStone Smalltalk breakpoints. When a
breakpoint is encountered during normal execution, a notifier appears and
you can open a debugger with which you can interactively explore the
contexts in the stack at the time execution halted.

Using the GemStone Programming Tools Debugging

December 2001 GemStone Systems, Inc. 5-23

 • You can inspect or change the values of arguments, temporaries, and receivers
in any context (stack frame) on the virtual machine call stack, then continue
execution from the top of the stack. This means that you can find out what the
system was doing at the time a breakpoint, or an error interrupted execution.

 • You can execute a message expression within the scope of a given context.

Breakpoints
For the purpose of determining exactly where a step will go during debugging, a
GemStone Smalltalk method is composed of step points. You can set breakpoints
at any step point.

Generally, step points correspond to the message selector and, within the method,
message-sends, assignments, and returns of nonatomic objects. However,
compiler optimizations may occasionally result in a different, nonintuitive step
point, particularly in a loop.

Example 5.3 indicates step points with numbered carets.

Debugging GemBuilder User Manual

5-24 GemStone Systems, Inc. December 2001

Example 5.3

includesValue: value
^1

"Return true if the receiver contains an object of the same
value as the argument. Return false otherwise."

| found index size|

found := false.
^2

index := 0.
^3

size := self size.
^5 ^4

[found not & (index < size)] whileTrue: [
^6 ^8 ^7 ^9

index := index + 1.
^11 ^10

found := value = (self at: index)
^14 ^13 ^12

].
^found
^15

If you use the GemStone debugger (described starting on page 5-27) to step
through this method, the first step takes you to the point where
includesValue: is about to be sent. Stepping again sends that message and
halts the virtual machine at the point where found is assigned. Another step
sends that message and halts the virtual machine just before the result is assigned
to index, and so on.

When the GemStone Smalltalk virtual machine encounters an enabled breakpoint
during normal execution, GemStone displays a GemStone Debugger. In this
window, you can interactively explore the context in which execution halted.

Special considerations apply in setting breakpoints for primitive and special
methods.

Using the GemStone Programming Tools Debugging

December 2001 GemStone Systems, Inc. 5-25

Breakpoints for Primitive Methods

If you set a breakpoint in a primitive method, the break is encountered only if the
primitive fails. Consider the method below:

= aString

<primitive: 160>
self _primitiveFailed: #=

When this method is invoked, GemStone first executes the machine code in
primitive 160. If that code executes successfully, the primitive is said to succeed,
and the method returns a value. Because no GemStone Smalltalk code has yet
been encountered, the virtual machine has not yet reached the first step
point. Only if the primitive fails will the virtual machine execute the message-
send at the bottom of the method and thus encounter the breakpoint.

Breakpoints for Optimized Methods

Certain simple methods are optimized by the GemStone Smalltalk compiler in
such a way that they contain no step points. Naturally, you cannot set a method
breakpoint if there are no step points. A method that performs only one of the
following operations has no step points:

 • return true,

 • return false,

 • return nil,

 • return self,

 • return the value of an instance variable,

 • assign to an instance variable, or

 • return a class or pool variable or a variable defined in a symbol dictionary.

A method that performs some computation and then performs one of the actions
listed above contains step points; it is not a simple method for purposes of this
discussion.

Debugging GemBuilder User Manual

5-26 GemStone Systems, Inc. December 2001

In addition to the special methods listed above, a handful of specific kernel class
methods are specially optimized so that they cannot take breakpoints. Those
methods are:

ifTrue: untilFalse timesRepeat:
ifFalse: untilTrue isNil
ifTrue:ifFalse: whileFalse: notNil
ifFalse:ifTrue: whileTrue: ==
_or: to:do: ~~
_and: to:by:do: _class
isKindOf: _isInteger _isSmallInteger
_isSymbol includesIdentical

Tools
To set breakpoints, GemBuilder provides the Breakpoint Browser. To debug the
resulting stack, GemBuilder enhances the client Smalltalk debugger.

The Breakpoint Browser

You can set breakpoints in the source code pane of any browser, using the set
break menu item described in Table 5.5 on page 5-9. You can also use the
breakpoint browser, which lets you set, clear, and examine breakpoints for all
classes and methods.

After you’ve set a breakpoint, for further convenience, you can use the menu items
to disable or re-enable all breakpoints, or just selected ones.

A breakpoint browser has two panes: the list of break points on top, and the source
code associated with the selected breakpoint on the bottom. Figure 5.5 shows an
example:

Using the GemStone Programming Tools Debugging

December 2001 GemStone Systems, Inc. 5-27

Figure 5.5 GemStone Breakpoint Browser with a Breakpoint

The Break Pane

The break pane displays a scrollable list of the active breakpoints. The items in the
list look like this:

1: Employee >> taxOwed @ 5

In this example, a method break is set at step point 5 within the method taxOwed
defined by class Employee.

The Source Pane

If you have selected a breakpoint in the break pane, the text area displays the
source code for that method. This pane is similar to the GemStone Browser text
area, but you cannot recompile an edited method by executing Save.

The Debugger
The GemStone Debugger is integrated with the client Smalltalk debugger,
allowing you to:

 • view GemStone Smalltalk and client Smalltalk contexts together in one stack,

 • set and clear breakpoints without modifying source code,

 • select a context from among those active on the virtual machine stack,

Debugging GemBuilder User Manual

5-28 GemStone Systems, Inc. December 2001

 • examine and modify objects and code within that context, and

 • continue execution either normally or in single steps.

The Debugger’s stack pane displays the active call stack and allows you to choose
some context (stack frame) from that stack for manipulation in the window’s other
panes. The top contexts are GemStone Smalltalk contexts. If you can scroll
downward through the messages on the stack you will come to GS: Executed
Code: this is where the GemStone and client Smalltalk worlds meet. The contexts
below this point are client Smalltalk contexts.

If you select a GemStone Smalltalk context in the stack pane, the popup menu
contains the item show glue. This lets you reveal additional GemBuilder stack that
is normally of no interest. If this stack is already revealed, the menu item becomes
hide glue.

Like other GemBuilder text areas,the debugger source code pane provides
commands to execute GemStone Smalltalk, and it lets you examine step points and
set breakpoints.

Getting a Stack Trace Without a Debugger
In a situation in which you encounter an error but cannot use the Smalltalk
debugger (such as in a runtime application, or when the result is a virtual machine
crash), you can write a stack trace to a text file. To do so, execute:

GbsConfiguration dumpAllProcessStacks

In response, all processes in the image write their contexts to a file named
stacksAtx.txt in the current working directory, where x is a 10-digit number
derived from a time stamp.

Chapter

December 2001 GemStone Systems, Inc. 6-1

6 Managing
Transactions

The GemStone object server’s fundamental mechanism for maintaining the
integrity of shared objects in a multiuser environment is the transaction. This
chapter describes transactions and how to use them. For further information, see
the chapter in the GemStone Programming Guide entitled “Transactions and
Concurrency Control.”

Transaction Management: an Overview
introduces the concepts to be explained later in the chapter.

Operating Inside a Transaction
explains the transaction model, committing, and aborting.

Operating Outside a Transaction
discusses a lower-overhead alternative for read-only views of the shared
repository.

Transaction Modes
explains the difference between automatic and manual transaction modes.

Managing Concurrent Transactions
discusses concurrency conflicts and ways to minimize them, such as locks.

Transaction Management: an Overview GemBuilder User Manual

6-2 GemStone Systems, Inc. December 2001

Reduced-conflict Classes
describes specialized GemStone collections that minimize conflicts without
locking.

Changed Object Notification
explains a mechanism for coordinating the activities of multiple sessions.

6.1 Transaction Management: an Overview
The GemStone object server provides an environment in which many users can
share the same persistent objects. The object server maintains a central repository
of shared objects. When a GemBuilder application needs to view or modify shared
objects, it logs in to the GemStone object server, starting a session as described in
Chapter 2.

A GemBuilder session creates a private view of the GemStone repository
containing views of shared objects for the application’s use. The application can
perform computations, retrieve objects, and modify objects, as though it were a
single-user Smalltalk image working with private objects. When appropriate, the
application propagates its changes to the shared repository so those changes
become visible to other users.

In order to maintain consistency in the repository, GemBuilder encapsulates a
session’s operations (computations, fetches, and modifications) in units called
transactions. Any work done while operating in a transaction can be submitted to
the object server for incorporation into the shared object repository. This is called
committing the transaction.

During the course of a logged-in session an application can submit many
transactions to the GemStone object server. In a multiuser environment,
concurrency conflicts will arise that can cause some commit attempts to fail.
Aborting the transaction refreshes the session’s view of the repository in
preparation for further work.

In order to reduce its operating overhead, a session can run outside a transaction, but
to do so the session must temporarily relinquish its ability to commit. A session
running outside a transaction must operate in manual transaction mode, in contrast
to the system default automatic transaction mode.

GemBuilder provides ways of avoiding the concurrency conflicts that can cause a
commit to fail. Optimistic concurrency control risks higher rates of commit failure in
exchange for reduced transaction overhead, while pessimistic concurrency control
uses locks of various kinds to improve a transaction’s chances of successfully
committing. GemBuilder also offers reduced-conflict classes that are similar to

Managing Transactions Operating Inside a Transaction

December 2001 GemStone Systems, Inc. 6-3

familiar Smalltalk collections, but are especially designed for the demands of
multiuser applications.

This chapter explains each of the topics mentioned here: transactions, committing
and aborting, running outside a transaction, automatic and manual transaction
modes, optimistic and pessimistic concurrency control, and reduced conflict
classes. Be sure to refer to the related topics in the GemStone Programming Guide for
a full understanding of these transaction management concepts.

6.2 Operating Inside a Transaction
While a session is logged in to the GemStone object server, GemBuilder maintains
a private view of the shared object repository for that session. To prevent conflicts
that can arise from operations occurring simultaneously in different sessions in the
multiuser environment, GemBuilder encapsulates each session’s operations in a
transaction. Only when the session commits its transaction does GemStone try to
merge the modified objects in that session’s view with the main, shared repository.

Figure 6.1 shows a client image and its repository, along with a common sequence
of operations: (1) faulting in an object from the shared repository to Smalltalk, (2)
flushing an object to the private GemStone view, and (3) committing the object’s
changes to the shared repository.

Figure 6.1 GemBuilder Application Workspace

The private GemStone view starts each transaction as a snapshot of the current
state of the repository. As the application creates and modifies shared objects,

Client Smalltalk Private
Repository
GemStone

GemStone ViewImage

(1) Fault

(2) Flush (3) Commit

(1) Fault

GemBuilder Application

Operating Inside a Transaction GemBuilder User Manual

6-4 GemStone Systems, Inc. December 2001

GemBuilder updates the private GemStone view to reflect the application’s
changes. When your application commits a transaction, the repository is updated
with the changes held in your application’s private GemStone view.

For efficiency, GemBuilder does not replicate the entire contents of the repository.
It contains only those objects that have been replicated from the repository or
created by your application for sharing with the object server. Objects are
replicated only when modified. This minimizes the amount of data that moves
across the boundary from the repository to the Smalltalk application.

Committing a Transaction
When an application submits a transaction to the object server for inclusion in the
shared repository, it is said to commit the transaction. To commit a transaction,
send the message:

aGbsSession commitTransaction (to commit a specific session)

or:

GBSM commitTransaction (to commit the current session)

or, in the Session Browser, select a logged-in session and click on the Commit...
button.

When the commit succeeds, the method returns true. Successfully committing a
transaction has two effects:

 • It copies the application’s new and changed objects to the shared object
repository, where they are visible to other users.

 • It refreshes the application’s private GemStone view by making visible any
new or modified objects that have been committed by other users.

A commit request can be unsuccessful in two ways:

 • A commit fails if the object server detects a concurrency conflict with the work
of other users. When the commit fails the commitTransaction method
returns false.

 • A commit is not attempted if a related application component is not ready to
commit. When the commit is not attempted, the commitTransaction
method returns nil. (See “Session Dependents” on page 2-12.)

In order to commit, the session must be operating within a transaction. An attempt
to commit while outside a transaction raises an exception.

Managing Transactions Operating Inside a Transaction

December 2001 GemStone Systems, Inc. 6-5

Aborting a Transaction
A session refreshes its view of the shared object repository by aborting its
transaction. Despite the terminology, a session need not be operating inside a
transaction in order to abort. To abort, send the message:

aGbsSession abortTransaction (to abort a specific session)

or:

GBSM abortTransaction (to abort the current session)

or, in the Session Browser, select a logged-in session and click on the Abort...
button.

Aborting has these effects:

 • The transaction (if any) ends. If the session’s transaction mode is automatic,
GemBuilder starts a new transaction. If the session’s transaction mode is
manual, the session is left outside of a transaction.

 • Temporary Smalltalk objects remain unchanged.

 • The session’s private view of the GemStone shared object repository is
updated to match the current state of the repository.

Avoiding or Handling Commit Failures
You can use the GemBuilder method GbsSession >> hasConflicts to determine
if any concurrency conflicts exist that would cause a subsequent commit operation
to fail. It returns false if it finds no conflicts with other concurrent transactions,
true otherwise. You can then determine how best to proceed.

If an attempt to commit fails because of a concurrency conflict, the
commitTransaction method returns false.

Following a commit failure, the client’s view of persistent objects may differ from
their precommit state:

 • The current transaction is still in effect. However, you must end the
transaction and start a new one before you can successfully commit.

 • Temporary Smalltalk objects remain unchanged.

 • Modified GemStone objects remain unchanged.

 • Unmodified GemStone objects are updated with new values from the shared
repository.

Operating Outside a Transaction GemBuilder User Manual

6-6 GemStone Systems, Inc. December 2001

Following a commit failure, your session must refresh its view of the repository by
aborting the current transaction. The uncommitted transaction remains in effect
so you can save some of its contents, if necessary, before aborting.

A common strategy for handling such a failure is to abort, then reinvoke the
method in which the commit occurred. Depending on your application, you may
simply choose to discard the transaction and move on, or you may choose to
remedy the specific transaction conflict that caused the failure, then initiate a new
transaction and commit.

If you want to know why a transaction failed to commit, you can send the message:

aGbsSession transactionConflicts

This expression returns a symbol dictionary whose keys indicate the kind of
conflict detected and whose values identify the objects that incurred each kind of
conflict. (See “Managing Concurrent Transactions” on page 6-10 for more
discussion of the kinds of conflicts that can arise.)

6.3 Operating Outside a Transaction
A session must be inside a transaction in order to commit. While operating within
a transaction, every change the session makes and every new object it creates can
be a candidate for propagation to the shared repository. GemBuilder monitors the
operations that occur within the transaction, gathering all the necessary
information required to prepare the transaction to be committed.

For efficiency, an application may configure a session to operate outside a
transaction. When operating outside a transaction, a session can view the
repository, browse the objects it contains, and even make computations based
upon their values, but it cannot commit any new or changed GemStone objects.
While operating outside a transaction, a session saves some of the overhead of
tracking changes, which may be significant in some applications. A session
operating outside a transaction can, at any time, begin a transaction.

No session is overhead-free: even a session operating outside a transaction uses
GemStone resources to manage its objects and its view of the repository. For best
system performance, all sessions, even those running outside a transaction, must
periodically refresh their views of the repository by committing or aborting.

Managing Transactions Operating Outside a Transaction

December 2001 GemStone Systems, Inc. 6-7

Table 6.1 shows GbsSession methods that support running outside of a GemStone
transaction:

To begin a transaction, send the message:

aGbsSession beginTransaction
(to begin a transaction for a specific session)

or:

GBSM beginTransaction
(to begin a transaction for the current session)

or, in the Session Browser, select a logged-in session and click on the Begin...
button.

This message gives you a fresh view of the repository and starts a
transaction. When you abort or successfully commit this new transaction, you will
again be outside of a transaction until you either explicitly begin a new one or
change transaction modes.

If you are not currently in a transaction, but still want a fresh view of the
repository, you can send the message aGbsSession abortTransaction. This
aborts your current view of the repository and gives you a fresh view, but does not
start a new transaction.

Being Signaled to Abort
When you are in a transaction, GemStone waits until you commit or abort to
reclaim storage for objects that have been made obsolete by your changes. When
you are running outside of a transaction, however, you are implicitly giving
GemStone permission to send your Gem session a signal requesting that you abort
your current view so that GemStone can reclaim storage when necessary. When
this happens, you must respond within the time period specified in the

Table 6.1 GbsSession Methods for Running Outside of a Transaction

beginTransaction Aborts and begins a transaction.

transactionMode Returns #autoBegin or #manualBegin

transactionMode:newMode Sets #autoBegin or #manualBegin

inTransaction Returns true if the session is currently in a
transaction.

signaledAbortAction:
aBlock

Executes aBlock when a signal to abort is
received (see below).

Transaction Modes GemBuilder User Manual

6-8 GemStone Systems, Inc. December 2001

STN_GEM_ABORT_TIMEOUT parameter in your configuration file. If you do
not, GemStone either terminates the Gem or forces an abort, depending on the
value of the related configuration parameter STN_GEM_LOSTOT_TIMEOUT. The
Stone forces an abort by sending your session an abortErrLostOtRoot signal,
which means that your view of the repository was lost, and any objects that your
application had been holding may no longer be valid. When your application
receives abortErrLostOtRoot, the application must log out of GemStone and
log back in, thus rereading all of its data in order to resynchronize its snapshot of
the current state of the GemStone repository.

You can avoid abortErrLostOtRoot and control what happens when you
receive a signal to abort with the signaledAbortAction: aBlock message. For
example:

aGbsSession signaledAbortAction:
[aGbsSession abortTransaction].

This causes your GemBuilder session to abort when it receives a signal to abort.

An application modal dialog or a suspended user interface process prevents
GemBuilder from handling theabortErrLostOtRoot signal until the dialog box
is dismissed, or until the process resumes.

6.4 Transaction Modes
A GemBuilder session always initiates a transaction when it logs in. After login,
the session can operate in either of two transaction modes: automatic or manual.

Automatic Transaction Mode
In automatic transaction mode, committing or aborting a transaction automatically
starts a new transaction. This is GemBuilder’s default transaction mode: in this
mode, the session operates within a transaction the entire time it is logged into
GemStone.

However, being in a transaction incurs certain costs related to maintaining a
consistent view of the repository at all times for all sessions. Objects that the
repository contained when you started the transaction are preserved in your view,
even if you are not using them and other users' actions have rendered them
meaningless or obsolete.

Depending upon the characteristics of your particular installation (such as the
number of users, the frequency of transactions, and the extent of object sharing),
this burden can be trivial or significant. If it is significant at your site, you may

Managing Transactions Transaction Modes

December 2001 GemStone Systems, Inc. 6-9

want to reduce overhead by using sessions that run outside transactions. To run
outside a transaction, a session must switch to manual transaction mode.

Manual Transaction Mode
In manual transaction mode, the session remains outside a transaction until you
begin a transaction. When you change the transaction mode from automatic (its
initial setting) to manual, the current transaction is aborted and the session is left
outside a transaction. In manual transaction mode, a transaction begins only as a
result of an explicit request. When you abort or commit successfully, the session
remains outside a transaction until a new transaction is initiated.

To begin a transaction, send the message

aGbsSession beginTransaction

or select the Begin... button on the Session Browser.

A new transaction always begins with an abort to refresh the session’s private view
of the repository. Local objects that customarily survive an abort operation, such
as temporary results you have computed while outside a transaction, can be
carried into the new transaction where they can be committed, subject to the usual
constraints of conflict-checking. If you begin a new transaction while already
inside a transaction, the effect is the same as an abort.

In manual transaction mode, as in automatic mode, an unsuccessful commit leaves
the session in the current transaction until you take steps to end the transaction by
aborting.

Choosing Which Mode to Use
You should use automatic transaction mode if the work you are doing requires
committing to the repository frequently, because you can make permanent
changes to the repository only when you are in a transaction.

Use manual transaction mode if the work you are doing requires looking at objects
in the repository, but only seldom requires committing changes to the
repository. You will have to start a transaction manually before you can commit
your changes to the repository, but the system will be able to run with less
overhead.

Managing Concurrent Transactions GemBuilder User Manual

6-10 GemStone Systems, Inc. December 2001

Switching Between Modes
To find out if you are currently in a transaction, execute aGbsSession
inTransaction. This returns true if you are in a transaction and false if you
are not.

To change from manual to automatic transaction mode, execute the expression:

aGbsSession transactionMode: #autoBegin

This message automatically aborts the transaction, if any, changes the transaction
mode, and starts a new transaction.

To change from automatic to manual transaction mode, execute the expression:

aGbsSession transactionMode: #manualBegin

This message automatically aborts the current transaction and changes the
transaction mode to manual. It does not start a new transaction, but it does
provide a fresh view of the repository.

6.5 Managing Concurrent Transactions
When you tell GemStone to commit your transaction, it checks to see if doing so
presents a conflict with the activities of any other users.

1. It checks to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have also modified
during your transaction. If they have, then the resulting modified objects can
be inconsistent with each other.

2. It checks to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have read during your
transaction, while at the same time you have modified an object that the other
session has read.

3. It checks for locks set by other sessions that indicate the intention to modify
objects that you have read or to read objects you have modified in your view.

If it finds no such conflicts, GemStone commits the transaction, and your work
becomes part of the permanent, shared repository. Your view of the repository is
refreshed and any new or modified objects that other users have recently
committed become visible in any dictionaries that you share with them.

Managing Transactions Managing Concurrent Transactions

December 2001 GemStone Systems, Inc. 6-11

Read and Write Operations
It is customary to consider the operations that take place within a transaction as
reading or writing objects. Any operation that accesses any instance variable of an
object reads that object, as do operations that fetch an object’s size, class, or other
descriptive information about that object. An object also is read in the process of
being stored into another object.

An operation that stores a value in one of an object’s instance variables writes the
object. While you can read without writing, writing an object always implies
reading it, because GemStone must read the internal state of an object in order to
store a value in it.

In order to detect conflict among concurrent users, GemStone maintains two
logical sets for each session: a set containing objects read during a transaction and
a set containing objects written. These sets are called the read set and the write
set. Because writing implies reading, the read set is always a superset of the write
set.

The following conditions signal a possible concurrency conflict:

 • An object in your write set is also in ananother transaction’s write set (a
write/write conflict).

 • An object in your write set is in another transaction’s read set and an object in
your read set is in that transaction’s write set (a read/write conflict).

Optimistic and Pessimistic Concurrency Control
GemStone provides two approaches to managing concurrent transactions:
optimistic and pessimistic. An application can use either or both approaches, as
needed.

Optimistic concurrency control means that you simply read and write objects as if
you were the only session, letting GemStone detect conflicts with other sessions
only when you try to commit a transaction.

Pessimistic concurrency control means that you act as early as possible to prevent
conflicts by explicitly requesting locks on objects before you modify them. When
an object is locked, other users are unable to lock the object or commit changes to it.

Optimistic concurrency control is easy to implement in an application, but you run
the risk of having to re-do the work you’ve done if conflicts are detected and
you’re unable to commit. When GemStone looks for conflicts only at commit time,
your chances of being in conflict with other users increase with the time between
commits and the size of your read and write sets. Under optimistic concurrency

Managing Concurrent Transactions GemBuilder User Manual

6-12 GemStone Systems, Inc. December 2001

control, GemStone detects conflict by comparing your read and write sets with
those of all other transactions committed since your transaction began.

Running under optimistic concurrency control is the most convenient and efficient
mode of operation when:

 • you are not sharing data with other sessions, or

 • you are reading data but not writing, or

 • you are writing a limited amount of shared data and you can tolerate not being
able to commit your work sometimes.

If you take a pessimistic approach, you act as early as possible to prevent conflicts
by explicitly requesting locks on objects before you modify them. When an object
is locked, other people are unable to lock the object, and they cannot optimistically
commit changes to the object. Also, when you encounter an object that someone
else has locked, you can abort the transaction immediately instead of wasting time
on work that can’t be committed.

Locking improves one user's chances of committing, but at the expense of other
users, so you should use locks sparingly to prevent an overall degradation of
system performance. Still, if there is a lot of competition for shared objects in your
application, or if you can’t tolerate even an occasional inability to commit, then
using locks might be your best choice.

Locks do not prevent read-only access to objects, so read-only query transactions
are not affected by modification transactions.

Setting the Concurrency Mode
Any shared object that is not explicitly locked is treated optimistically. For objects
under optimistic concurrency control, GemStone’s level of checking for
concurrency conflicts is configurable. You can set the level of checking for
concurrency conflicts by specifying one of the following values for the
CONCURRENCY_MODE configuration parameter in your application’s
configuration file. There are two levels:

 • FULL_CHECKS (the default mode), which checks for both write/write and
read/write conflicts. If either type of conflict is detected your transaction
cannot commit.

 • NO_RW_CHECKS, which performs write/write checking only.

Locking methods override the configured optimistic CONCURRENCY_MODE by
stating explicitly the kind of pessimistic control they implement.

Managing Transactions Managing Concurrent Transactions

December 2001 GemStone Systems, Inc. 6-13

Setting Locks
GemBuilder provides locking protocol that allows application developers to write
client Smalltalk code to lock objects and specify client Smalltalk code to be
executed if locking fails.

A GbsSession is the receiver of all lock requests. Locks can be requested on a
single object or on a collection of objects. Single lock requests are made with the
following statements:

aGbsSession readLock:anObject.
aGbsSession writeLock:anObject.
aGbsSession exclusiveLock:anObject.

The above messages request a particular type of lock on anObject. If the lock is
granted, the method returns the receiver. (Lock types are described in the
GemStone Programming Guide.) If you don’t have the proper authorization, or if
another session already has a conflicting lock, an error will be generated.

When you request an exclusive lock, an error will be generated if another session
has committed a change to anObject since the beginning of the current
transaction. In this case, the lock is granted despite the error, but it is seen as
“dirty.” A session holding a dirty lock cannot commit its transaction, but must
abort to obtain an up-to-date value for anObject. The lock will remain, however,
after the transaction is aborted.

Another version of the lock request allows these possible error conditions to be
detected and acted on.

aGbsSession readLock:anObject ifDenied:block1 ifChanged:block2
aGbsSession writeLock:anObject ifDenied:block1 ifChanged:block2
aGbsSession exclusiveLock:anObject ifDenied:block1 ifChanged:block2

If another session has committed a change to anObject since the beginning of the
current transaction, the lock is granted but dirty, and the method returns the value
of the zero-argument block block2.

The following statements request locks on each element in the three different
collections.

aGbsSession readLockAll:aCollection.
aGbsSession writeLockAll:aCollection.
aGbsSession exclusiveLockAll:aCollection.

Managing Concurrent Transactions GemBuilder User Manual

6-14 GemStone Systems, Inc. December 2001

The following statements request locks on a collection, acquiring locks on as many
objects in aCollection as possible. If you do not have the proper authorization for
any object in the collection, an error is generated and no locks are granted.

aGbsSession readLockAll: aCollection ifIncomplete: block1
aGbsSession writeLockAll: aCollection ifIncomplete: block1
aGbsSession exclusiveLockAll: aCollection ifIncomplete: block1

Example 6.1 shows how error handling might be implemented for the collection
locking methods:

Example 6.1

getWriteLocksOn:aCollection
 "This method attempts to set write locks on the elements
 of a Collection."
aGbsSession
 writeLockAll: aCollection
 ifIncomplete: [:result |

(result at: 1)isEmpty ifFalse:
[self handleDenialOn: denied].

(result at: 2)isEmpty ifFalse:
[aGbsSession abortTransaction].

(result at: 3)isEmpty ifFalse:
[aGbsSession abortTransaction].

].

Once you lock an object, it normally remains locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through
aborts and commits. In general, you should remove a lock on an object when you
have used the object, committed the resulting values to the repository, and no
longer anticipate a need to maintain control of the object.

The following methods are used to remove specific locks.

aGbsSession removeLock: anObject.
aGbsSession removeLockAll: aCollection.
aGbsSession removeLocksForSession.

Managing Transactions Managing Concurrent Transactions

December 2001 GemStone Systems, Inc. 6-15

The following methods answer various lock inquiries:

aGbsSession sessionLocks.
aGbsSession systemLocks.
aGbsSession lockOwners: anObject.
aGbsSession lockKind: anObject.
aGbsSession lockStatus: anObject.

Releasing Locks Upon Aborting or Committing
The following statements add a locked object or the locked elements of a collection
to the set of objects whose locks are to be released upon the next commit or abort:

 aGbsSession addToCommitReleaseLocksSet: aLockedObject
 aGbsSession addToCommitOrAbortReleaseLocksSet: aLockedObject
 aGbsSession addAllToCommitReleaseLocksSet: aLockedCollection
 aGbsSession addAllToCommitOrAbortReleaseLocksSet: aLockedCollection

If you add an object to one of these sets and then request a fresh lock on it, the
object is removed from the set.

You can remove objects from these sets without removing the lock on the
object. The following statements show how to do this:

 aGbsSession removeFromCommitReleaseLocksSet: aLockedObject
 aGbsSession removeFromCommitOrAbortReleaseLocksSet: aLockedObject
 aGbsSession removeAllFromCommitReleaseLocksSet: aLockedCollection
 aGbsSession removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

The following statements remove all objects from the set of objects whose locks are
to be released upon the next commit or abort:

System clearCommitReleaseLocksSet
System clearCommitOrAbortReleaseLocksSet

The statement System commitAndReleaseLocks clears all locks for the session
if the transaction was successfully committed.

Reduced-conflict Classes GemBuilder User Manual

6-16 GemStone Systems, Inc. December 2001

6.6 Reduced-conflict Classes
At times GemStone will perceive a conflict when two users are accessing the same
object, when what the users are doing actually presents no problem. For example,
GemStone may perceive a write/write conflict when two users are simultaneously
trying to add an object to a Bag that they both have access to because this is seen
as modifying the Bag.

GemStone provides some reduced-conflict classes that can be used instead of their
regular counterparts in applications that might otherwise experience too many
unnecessary conflicts. These classes are RcCounter, RcIdentityBag,
RcKeyValueDictionary, and RcQueue.

Use of these classes can improve performance by allowing a greater number of
transactions to commit successfully without locks, but they do carry some
overhead.

For one thing, they use more storage than their ordinary counterparts. Also, you
may find that your application takes longer to commit transactions when you use
instances of these classes. Finally, you should be aware that under certain
circumstances, instances of these classes can hide conflicts from you that you
indeed need to know about. Because of the way these classes are implemented,
GemBuilder creates instances of these classes as forwarders, rather than replicates.

Here are brief descriptions of the reduced conflict classes. For details about these
classes and their usage, see the chapter in the GemStone Programming Guide entitled
“Transactions and Concurrency Control.”

RcCounter
RcCounter maintains an integral value that can be incremented or
decremented. A single instance of RcCounter can be shared among multiple
concurrent sessions without conflict.

RcIdentityBag
RcIdentityBag provides the same functionality as IdentityBag, except that no
conflict occurs on instances of RcIdentityBag when a number of users read
objects in the bag or add objects to the bag at the same time. Nor is there a
conflict when one user removes an object from the bag while other users are
adding objects, or when a number of users remove objects from the bag at the
same time, so long as no more than one of them tries to remove the last
occurrence of an object.

RcKeyValueDictionary
This class provides the same functionality as KeyValueDictionary except that
no conflict occurs on instances of RcKeyValueDictionary when users read

Managing Transactions Changed Object Notification

December 2001 GemStone Systems, Inc. 6-17

values in the dictionary or add keys and values to it (unless one tries to add a
key that already exists) or when users remove keys from the dictionary at the
same time (unless more than one user tries to remove the same key at the same
time).

Conflict occurs only when more than one user tries to modify or remove the
same key from the dictionary at the same time.

RcQueue
The class RcQueue represents a first-in-first-out (FIFO) queue. No conflict
occurs on instances of RcQueue when multiple users read objects in or add
objects to the queue at the same time, or when one user removes an object from
the queue while other users are adding objects. However, if more than one
user removes objects from the queue, they are likely to experience a
write/write conflict.

6.7 Changed Object Notification
A notifier is an optional signal that is activated when an object’s committed state
changes. Notifiers allow sessions to monitor the status of designated shared
application objects. A program that monitors stock prices, for example, could use
notifiers to detect changes in the prices of certain stocks.

In order to be notified that an object has changed, a session must register that object
with the system by adding it to the session’s notify set.

Notify sets are virtual but persist through transactions, living as long as the
GemStone session in which they were created. When the session ends, the notify
set is no longer in effect. If you need it for your next session, you must recreate
it. However, you need not recreate it from one transaction to the next.

Class GbsSession provides the following two methods for adding objects to
notifySets:

 addToNotifySet:
adds one object to the notify set

addAllToNotifySet:
adds the contents of a collection to the notify set

When an object in the notify set appears in the write set of any committing
transaction, the system executes a previously defined client Smalltalk block,
sending a collection of the objects signaled as its argument. By examining the
argument, the session can determine exactly which object triggered the signal.

Changed Object Notification GemBuilder User Manual

6-18 GemStone Systems, Inc. December 2001

Because these events are not initiated by your session but cause code to run within
your session, this code is run asynchronously in a separate Smalltalk
process. Depending on what else is occurring in your application at that time,
using this feature might introduce multi-threading into your application,
requiring you to take some additional precautions. (See “Multiprocess
Applications” on page 9-19.)

Example 6.2 demonstrates notification in GemBuilder.

Example 6.2

"First, set up notifying objects and notification action"
| notifier |
GBSM currentSession abortTransaction; clearNotifySet.
notifier := Array new: 1.
GBSM currentSession at: #Notifier put: notifier.
GBSM currentSession commitTransaction.
GBSM currentSession addToNotifySet: notifier.
GBSM currentSession notificationAction: [:objs |

Transcript cr; show: 'Notification received']

"Now, from any session logged into the same stone with
visibility to the object 'notifier' - to initiate
notification"
GBSM currentSession abortTransaction;

execute: 'Notifier at: 1 put: Object new';
commitTransaction

Gem-to-Gem Notification
Sessions can send general purpose signals to other GemStone sessions, allowing
the transmission of the sender’s session, a numerical signal value, and an
associated message.

One Gem can handle a signal from another using the method GbsSession >>
sessionSignalAction: aBlock, where aBlock is a one-argument block that will
be passed a forwarder to the instance of GsInterSessionSignal that was received.
From the GsInterSessionSignal instance, you can extract the session, signal value,
and string.

One GemStone session sends a signal to another with:

aGbsSession sendSignal: aSignal to: aSessionId withMessage: aString

Managing Transactions Changed Object Notification

December 2001 GemStone Systems, Inc. 6-19

For example:

Example 6.3

"First, set up the signal-receiving action"
GBSM currentSession sessionSignalAction: [:giss |

nil gbsMessenger
comment: 'Signal %1 received from session %2: %3.'
with: giss signal
with: giss session
with: giss message.

].

"Now, from any session logged into the same Stone, send a
signal.(This example uses the same session)"
GBSM currentSession

sendSignal: 15
to: (GBSM evaluate: 'System session')
withMessage: 'This is the signal'.

If the signal is received during GemStone execution, the signal is processed and
execution continues. If aBlock is nil, any previously installed signal action is
deinstalled.

NOTE
The method sessionSignalAction: and the mechanism described
above supersede the old mechanism that used the method
gemSignalAction:. Do not use both this method and
gemSignalAction: during the same session; only the last defined
signal handler will remain in effect.

See the chapter entitled “Error-handling” in your GemStone Programming Guide for
details on using the error mechanism for change notification.

Changed Object Notification GemBuilder User Manual

6-20 GemStone Systems, Inc. December 2001

Chapter

December 2001 GemStone Systems, Inc. 7-1

7 Security and Object
Access

Once objects have been successfully committed to GemStone, they can be
damaged or destroyed only by mishaps that damage or erase the disk files
containing your repository. GemStone provides several mechanisms for
safeguarding the objects in your GemStone repository. These mechanisms are
discussed in the chapter on creating and restoring backups in the GemStone System
Administration Guide.

This chapter discusses security and access at the object level.

Object-Level Security
highlights the mechanisms GemStone provides for keeping your stored
objects secure.

Classes for Controlling Access to Objects
describes the three key classes —Repository, Segment, UserProfile—that
provide object-level security.

Sharing Access to Objects
explains how you can use GemStone’s group authorization mechanism and
the individual users’ UserProfiles to ensure that users have appropriate access
to the objects they need.

GemStone Administration Tools
describes the visual tools that you can use to manage access to objects by

Object-Level Security GemBuilder User Manual

7-2 GemStone Systems, Inc. December 2001

multiple users: the Segment Tool, the Symbol List Browser, and the User
Account Manager.

7.1 Object-Level Security
GemStone provides for blocking access to certain objects as well as sharing
them. Applications can take advantage of several security mechanisms to prevent
unauthorized access to, or modification of, sensitive code and data. These
mechanisms are listed below, and you can choose to use any or all of them.

Requiring Login Authorization
GemStone’s first line of protection is to control login authorization. When
someone tries to log in to GemStone, GemStone requires a user name and
password. If the user name and password match the user name and password
of someone authorized to use the system, GemStone allows interaction to
proceed; if not, the connection is severed.

The GemStone system administrator controls login authorization by
establishing user names and passwords when he or she creates UserProfiles.

Controlling Visibility of Objects
You can also control access by hiding certain objects from users. Because it is
difficult, if not impossible, for users to refer to objects that are not defined
somewhere in their symbol lists, simply omitting off-limits objects from a
user’s symbol list provides a certain amount of security. It is possible,
however, for users to find ways to circumvent this, because it’s difficult to
ensure that all indirect paths to an object are eliminated.

Protecting Methods
Another choice is to implement procedural protection. If your program
accesses its objects only through methods, you can control the use of those
objects by including user identity checks in the accessing methods.

Using GemStone’s Authorization Mechanisms
The easiest and most reliable way to secure objects, however, is to use
GemStone’s authorization and privilege mechanisms.

Security and Object Access Object-Level Security

December 2001 GemStone Systems, Inc. 7-3

Segments

GemStone’s authorization mechanism uses a class called Segment to protect
objects from access by users who have not been explicitly given permission to
use them. Every user can use the authorization mechanism to protect both
data and code objects selectively.

Segment objects have an owner, and settings for read and write access for the
owner, groups of users, and everyone else. When someone tries to read or
write an object that references a segment to which he or she lacks the proper
access, GemStone raises an authorization error and does not permit the
requested operation.

Segments are not meant to organize objects for retrieval; GemStone uses
Symbol Lists for that. Moreover, segments don’t have any relationship to the
physical location of objects on disk; they are merely security objects.

Segments are discussed in more detail in subsequent sections: “GemStone
Administration Tools” on page 7-10, and “The Segment Tool” on page 7-10.

Privileges

A few GemStone Smalltalk methods can be executed only by those who have
explicitly been given the necessary privileges. The privilege mechanism is
entirely independent of the authorization mechanism. This mechanism
allows the system administrator to control who can send certain powerful
messages, such as those that halt the system or change passwords. Privileges
are associated with only a few methods and cannot be extended to others.

For more information about security in general and about the above
mechanisms in particular, see the relevant chapter of the GemStone
Programming Guide. For more specific information about privileged methods,
see the chapter of the GemStone System Administration Guide that discusses
common system operations.

Classes for Controlling Access to Objects GemBuilder User Manual

7-4 GemStone Systems, Inc. December 2001

7.2 Classes for Controlling Access to Objects
There are three key classes that cooperate in providing access control at the object
level: Repository, Segment, and UserProfile. This section describes how these
classes interact to maintain control of access to objects in an application.

Repository
All disk space used by GemStone—that is, your entire object store—is represented
as a single instance of class Repository. Committing an object consigns it to that
repository as a member of a segment.

When your system is first delivered, GemStone’s repository maps to a single file
called extent0.dbf, whose name and physical location can be controlled by the
GemStone system administrator, with operating system commands and
configuration files. In GemStone, the name of the initial repository object is
SystemRepository. The repository’s name can be changed by the system
administrator or anyone with equivalent authorization.

Segment
The SystemRepository object initially has three instances of class Segment
associated with it:

 • the SystemSegment (owned by the SystemUser),

 • the DataCuratorSegment (owned by the DataCurator), and

 • the GcUser’s Segment (owned by the GcUser).

A segment has no physical basis; it is not a location. It is merely a logical entity
that serves as a means of controlling ownership of, and access to, objects. New
segments can be added to the SystemRepository when new users are added.

Each segment has a single owner and stores a reference to the owner’s UserProfile.

Figure 7.1 shows the relationship between the classes Repository, Segment, and
UserProfile.

Security and Object Access Classes for Controlling Access to Objects

December 2001 GemStone Systems, Inc. 7-5

Figure 7.1 GemStone’s Object-Level Security Mechanism

Each segment associated with the SystemRepository contains instance variables
that refer to its repository, its owner, the groups that are authorized to read and/or
write objects that are assigned to it, and the level of authorization for the segment’s
owner and for the world. Note that segments do not know which objects are
assigned to them, nor are they meant to organize objects for easy listing and
retrieval; that is the role of symbol lists.

UserProfile
When you become a GemStone user you are assigned a UserProfile object. Your
UserProfile stores information about you as an individual user, such as your name,
your password, and a list of symbol dictionaries that the compiler can consult to
find the objects named in your applications. Your UserProfile also stores a
reference to a segment that serves as your default segment. When you create
objects, GemStone assigns them to your default segment, unless you specify
otherwise. You can be the owner of your default segment, or the system
administrator may have assigned ownership to someone else.

Segment

UserProfile
Repository encryptedPassword

userId
symbolList

defaultSegment
privileges

groupsRead

groupsWrite

ownerAuthorization

worldAuthorization

compilerLanguage

name

dataDictionary

itsRepository

itsOwner

spare1

groups
spare1
spare2
spare3

Segment 1

Segment2

Segment 3

Sharing Access to Objects GemBuilder User Manual

7-6 GemStone Systems, Inc. December 2001

You can use your default segment for all the objects you create, but if you have the
proper privileges, you can exert more control over access to your objects by
creating additional segments. For example, you can create the classes and other
objects for an application in a private segment and then reassign them to segments
that other users can access.

Your current segment is the same as your default segment when you log in, but you
can designate a different segment to be your current segment, so that subsequent
new objects will be assigned to it instead of to your default segment.

As a segment’s owner, you have control over the access that you and others have
to the objects assigned to it, and you can authorize access separately for:

 • owner — You can also alter your own access rights at any time, even
forbidding yourself to read or write objects assigned to the segment.

 • groups — You can authorize groups of users (by name).

 • world — You can provide or restrict access to all GemStone users.

Note that these categories can overlap.

If you lose write authorization to your current segment, your default segment
becomes your current segment as soon as the transaction that changed
authorization is committed. If you lose write authorization to your default
segment, GemStone terminates your session with an error, because GemStone
execution cannot continue without permission to create temporary objects in some
segment.

You can find out information about your default segment by executing
System myUserProfile defaultSegment with a GS-print.
The system will return something like this:

Segment, Number 1 in Repository SystemRepository
Owner SystemUser write
World read

7.3 Sharing Access to Objects
Two conditions must be present for a group of users to share access to an object:

 • The object must be assigned to a segment that authorizes all the users to access
it.

 • The object must also be accessible from each user’s Symbol List.

Security and Object Access Sharing Access to Objects

December 2001 GemStone Systems, Inc. 7-7

Group Authorization and Object-sharing
When you have a group of users working with the same GemStone application,
you need to arrange for everyone in the group to have access to the objects that
need to be shared, such as the application classes. You might also want to limit
access to certain data objects to some specified users.

While an application’s developer may require full read and write access to all its
objects, the end users may need to see them all, but only modify a few. GemStone
users generally fall into three categories:

 • developers, who define classes and methods;

 • updaters, who create and modify instances; and

 • reporters, who read and output information.

GemStone’s segment mechanism allows you to provide the appropriate level of
access for each type of user by organizing users who have common interests or
needs into designated groups. Like segment owners, groups can be given the
authorizations #write, #read, or #none.

When a GemStone user tries to read or write an object assigned to a particular
segment, GemStone compares the group authorizations stored by the segment
with the group memberships stored in that user’s UserProfile. If there is a group
in common, and if the authorization for that group permits what the user is trying
to do, the operation is allowed to continue; if not, barring other relevant
authorizations, the operation is halted.

If your default segment is associated with a group, any user whose UserProfile
also includes that group has the right to read from your default segment. Note
that you cannot always add group authorizations for a segment you own, and you
might need to ask your data curator or system administrator for help in adding
authorization for a new group.

Using Segments for Authorization

As explained in the previous section, segments define authorization attributes for
all the objects assigned to them. All objects assigned to a given segment have the
same protection; if you can read or write one object assigned to a segment, you can
read or write all of them. Each segment is owned by one user, and that user
authorizes read access, write access, or no access at all to objects assigned to that
segment for the owner, a number of named groups of users, and the world—that
is, all users of that GemStone repository.

Sharing Access to Objects GemBuilder User Manual

7-8 GemStone Systems, Inc. December 2001

A segment can be used to provide or restrict access to objects that are associated
with it. Segments are merely authorization objects; they are not storage
locations. Whenever you create an object it is associated with a Segment, and the
characteristics of the segment determine who has access to that object.

Each segment has a single owner who can determine the level of access that the
various groups of GemStone users have to that segment and to the objects
associated with it.

A segment knows who its owner is and which repository it is associated with. A
segment also knows if any groups are associated with it.

However, a segment doesn’t know who the members of these groups are; it knows
only what type of access (read, write, or none) these groups have to the objects that
reference it. A segment also doesn’t know which objects it controls; instead, each
GemStone object knows to which segment it has been assigned

In other words, while segments know their authorization attributes, they do not
store references to the objects that are assigned to them. That information is stored
in the objects.

For example, suppose a segment specifies that only its owner has write access to
objects, and everyone else is limited to read access. When the segment’s owner
creates an object associated with that segment, only the owner will be able to
modify that object; everyone else will have read-only access.

Whenever a program tries to read or write an object, GemStone compares the
authorization characteristics of the segment with the characteristics of the user
who is attempting to do the reading or writing. If those characteristics match, the
operation proceeds. If not, GemStone returns an error notification.

Because each object has separate authorization, each object must be assigned
separately. This per-object authorization is useful during multiuser development,
because there might be some objects that you want to share and other objects you
don’t want to share. For example, you could choose to make a collection shared,
but keep the existing elements private, allowing other developers to add elements,
but not modify the elements you have already created.

GemStone’s use of segments to control authorization is an efficient way to
maintain flexibility and simplicity in managing object access. It allows you to
change authorization by changing the segment, rather than having to make
changes to individual objects.

Security and Object Access Sharing Access to Objects

December 2001 GemStone Systems, Inc. 7-9

Making Objects Accessible Through Symbol Lists
In setting up a UserProfile, the data curator initially includes in each user’s symbol
list the dictionaries that define the names of all the objects he or she believes that
user would need. Initially, each user’s symbol list generally includes at least:

 • a Globals dictionary that defines the GemStone kernel classes and any other
global objects,

 • a Published dictionary for globally-visible shared objects,

 • a private UserGlobals dictionary in which the user can store objects defined for
his or her own use.

Your symbol list tells the GemStone Smalltalk compiler which of many possible
GemStone dictionaries to search through to find an object named in your program
and determines the order in which to search them. Unless a variable is local or is
defined in a method’s class, the GemStone Smalltalk compiler can resolve that
reference only if it is in one of the dictionaries named in your symbol list.

The GemStone Smalltalk compiler searches for names in the following order:

1. It first checks to see if the variable is local—that is, a temporary variable or
argument.

2. If the variable is not local, the compiler checks to see if the variable is defined
by the class that defines the current method or one of its superclasses.

3. If it still cannot resolve the reference, the compiler searches the symbol list in
your UserProfile sequentially—that is, from top to bottom.

This means that if some name— for example, #Supplier— is defined in the
first dictionary and in the last dictionary in your symbol list, the compiler will
find only the first definition.

Because you can use GemStone’s symbol resolution mechanism to arrange to
share—or not to share—any specific object with other GemStone users, it is
necessary for you to be aware of what is in your symbol list and to understand how
to use symbol list dictionaries for sharing objects. You can use GemBuilder’s
Symbol List Browser to do this. (See “The Symbol List Browser” on page 7-20).

All you have to do to set up other users to share access to specified objects is to
name the objects in question in a specific symbol dictionary, then make sure that
all the relevant users include that dictionary in the symbol list of their UserProfiles.

When you examine your symbol list dictionaries you may notice that most, if not
all, of the dictionaries refer to themselves. For example, the dictionary named
UserGlobals contains an Association for which the key is UserGlobals and the

GemStone Administration Tools GemBuilder User Manual

7-10 GemStone Systems, Inc. December 2001

value is the dictionary itself. Symbol list dictionaries define their own names so
that you can refer to them conveniently in your own applications.

You can add the references to existing dictionaries, or you may prefer to create a
special-purpose dictionary for each application, adding the specialized
dictionaries to symbol lists as needed. Your system’s authorization mechanism is
probably set up to prohibit you from doing this yourself, so you will probably need
the cooperation of your GemStone data curator. The GemStone System
Administration Guide provides more information on this subject.

NOTE
For performance reasons, GbsSession uses a transient copies of your
symbol list. If you change this transient copy programmatically, the
changes are not immediately reflected in the permanent GemStone
object. Also, changes to the permanent GemStone symbol list are not
reflected in the GbsSession’s transient symbol list until a transaction
boundary. If you must be absolutely certain that the two copies are
symchronized, log out and log back in again.

For a complete discussion of symbol resolution and object sharing, see the relevant
chapters of the GemStone Programming Guide.

7.4 GemStone Administration Tools
The following sections describe the GemStone tools that are provided to allow you
to easily manage the object sharing and protection issues discussed in the previous
section.

 • The Segment Tool is a tool for examining and changing GemStone user
authorization.

 • The Symbol List Browser is a tool you can use for examining the GemStone
SymbolLists associated with UserProfiles. You can use it to add and delete
dictionaries from these lists, as well as to add, delete and inspect the entries in
the dictionaries.

 • The User Account Manager is a tool that allows you to create new user
accounts, change account passwords, and assign group membership.

The Segment Tool
The Segment Tool allows you to inspect and change the authorization that
GemStone users have at the object level. As explained in the section entitled

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-11

“Group Authorization and Object-sharing” beginning on page 7-7, each object in
GemStone is assigned separately to a segment. The only users authorized to read
or modify an object are those who are granted read or write authorization by the
segment it is assigned to. The Segment Tool also allows you to examine and
change group membership.

Some of the operations supported by the Segment Tool involve privileged
methods. If your account does not have the needed privileges, ask your system
administrator to set up your segments for you.

To open a Segment Tool, select Admin > Segments from the GemStone menu or
through the User Account Manager’s Show Segments button. Figure 7.2 shows
a Segment Tool.

Figure 7.2 The Segment Tool

The Segment Tool is divided into two main sections: one displays segments; the
other displays groups and their members.

Segment Definition Area

The segment definition area at the top of the dialog displays the segments in the
SystemRepository to which the current user has read authorization.

Segments

Groups and
Members of Groups

GemStone Administration Tools GemBuilder User Manual

7-12 GemStone Systems, Inc. December 2001

You will notice that some segments are named, some are unnamed, and some
segment names are preceded by symbols. Named segments are segments that are
referenced in a dictionary or symbol list; unnamed segments are those that are not
referenced in any dictionary or symbol list

When a segment name is prefixed by one of the special characters # and @:

 • # means this is your current segment, the segment to which GemStone will
assign any objects you create now.

 • @ means this is your default segment, the home segment that is your current
segment when you log into GemStone.

When you change a segment name, you can put one or both of these characters at
the beginning of the name to designate that segment to be the current segment, the
default segment, or both.

In addition to the segments displayed in the Segment Tool, all users also have read
and write authorization to GsIndexing segment. Because authorization changes
should not be made to that segment, however, it is not included in the tool.

NOTE
Changes made to cells in the tables are accepted automatically as soon as
you either press Return, make a selection in a combo box associated with
the cell, or simply move the focus to another cell or field by moving the
mouse. If you enter an invalid value in a cell results in a warning, and
the cell reverts to the original value.

In the segment definition area of the Tool you can change the following:

Segment Name — You can edit the names of named segments.

Owner Name — You can enter any valid user name that already exists in the
system. To change an owner name, type a valid owner name into the cell.

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-13

Owner Access and World Access — To change owner and world access, type one
of the following values into their cells:

 • read means that a user can read any of the segment’s objects, but can’t
modify (write) them or add new ones

 • write means that a user can read and modify any of the segment’s objects
and create new objects associated with the segment

 • none means that a user can neither read nor write any of the segment’s
objects

NOTE
Be careful when changing the authorizations on any segment that a user
may be using as a current segment or a default segment.

Group Definition Area

The bottom of the dialog is the group definition area. In this area you can assign
authorizations to groups of users instead of individuals. Groups are typically
organized as categories of users who have common interests or needs.

When you select a segment at the top of the dialog, the group definition area
displays the groups that have access to the segment. When you select one of the
groups, its members appear.

In the group definition area you can change the following:

Group Name — You can change the group name, but you should be aware that
when you edit a group name, you are not just renaming the group; you are
actually replacing the group with a new one. The old group’s members are
not copied to the new one, so you need to add them again. If the name of the
group entered is a group that does not exist, you will be asked if you want to
create it.

Group Access — Group access can be changed in the same way as owner and
world access. To change group access, type either read or write into the cell,
as outlined for owner and world access on page 7-13.

NOTE
Be careful when changing the authorizations on any segment
that a user may be using as a current segment or a default segment.

If you want to add group access to a segment, select add... from the pop-up menu
in a Group Name cell. Similarly, to remove group access from a segment, select
remove... from the pop-up menu.

GemStone Administration Tools GemBuilder User Manual

7-14 GemStone Systems, Inc. December 2001

In addition, you can select groups and users here to be the receiver of actions on
the menus.

Segment Tool Menus

The following sections describe the menus that are available in the Segment Tool.

The File Menu

Use the File menu to commit work done in the Segment Tool, to abort the
transaction, to update the tool’s view of segments, groups, and users in the current
session, and to close the Segment Tool.

Table 7.1 File Menu in the Segment Tool

Commit Commits all the work executed in GemStone during the current
transaction. After you commit, you are given a new, updated
view of the repository, and you can continue your work.

Abort... Cancels all changes that you have made anywhere in GemStone
since your last commit. After you abort the transaction, you are
given a new, updated view of the repository, and you can continue
your work.

Update Updates the information in the Segment Tool and gives you a new,
updated view of segments, groups, and users that reflects the most
recent version of the repository, and you can continue your work.

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-15

Segment Menu

Use the Segment menu to create new segments and to manipulate existing
segments.

Table 7.2 Segment Menu in the Segment Tool

Create... Creates a new segment. You must have the SegmentCreation
privilege to use this option. In the Create Segment dialog,
enter a name for the segment and a symbol dictionary to store
it in. Private segments are typically kept in
UserGlobals. Segments for large groups of users are typically
kept in Globals.

Grab Grabs a reference to the selected segment and places it on the
clipboard. This can be used to add a reference to a user’s
symbol list or for changing the default segment of a user in
the User Account Manager.

Make Current Makes the selected segment your current segment. When
you create an object, GemStone assigns it to your current
segment.

Make Default Makes the selected segment your default segment. This is the
home segment that is your current segment when you log
into GemStone.

GemStone Administration Tools GemBuilder User Manual

7-16 GemStone Systems, Inc. December 2001

Group Menu

Use the Group menu to add and remove groups.

Member Menu

Use the Member menu to add users to and remove users from groups.

Table 7.3 Group Menu in the Segment Tool

Add... Adds a new group. In the Add Group dialog, enter a name for
the group and choose OK or Apply.

Remove... Removes authorization for the selected group. This does not
delete the group from GemStone. It only means that the current
segment no longer stores access information for that
group. Users may still be able to access other objects because of
their membership in the group, but they will not have access to
the objects assigned to this segment unless it has been provided
by the segment’s owner or world access.

Table 7.4 Member Menu in the Segment Tool

Add... Adds a user to the group. Enter any valid user name in the Add
Member dialog and choose OK or Apply. The user must already
exist in the system. You can use the User Account Manager to
create new users.

Remove... Removes the selected user from the group. (This does not delete
the user from GemStone.)

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-17

Reports Menu

Use the Reports menu to bring up a window displaying information about the
segments, users, and groups in your view of the repository. Use the window’s
Print button to print a report, and use the Cancel button to close the window.

Segments that appear as Unnamed are not in your symbol list. Thus, their names
and dictionaries are unknown.

Help Menu

The Help menu contains one item, Session Info, which provides information
about the session for the Segment Tool window and about the current session.

Using the Segment Tool

If you are a segment’s owner, you can determine who has access to objects
assigned to that segment. For more information, see the chapter on administering
user accounts and segments in the GemStone System Administration Guide.

Table 7.5 Report Menu in the Segment Tool

Group Report Produces a list of all groups in GemStone and the users in
each group.

Segment Report Produces a list of segments the user has read
authorization for and displays information about each
one as to
• its owner,
• the groups for which it contains access information, and
• the access it grants to the owner, groups, and world.
This report includes the GsIndexing segment, for which
all users have read and write authorization.

User Report Produces a list of all GemStone users and shows each
user’s group memberships.

GemStone Administration Tools GemBuilder User Manual

7-18 GemStone Systems, Inc. December 2001

Checking Segment Authorization

Anyone who has read authorization for a segment can use the Segment Tool to
find out who is authorized to read or write that segment by doing the following:

1. Bring up the Segment Tool by selecting GemStone >Admin Tools> Browse
Segments or by choosing Show Segments in a GemStone User dialog.

2. In the Segment Tool, choose Reports > Segment Report. The resulting list
contains all segments.

3. To view the members of each group, choose Reports > Group Report. To
view the groups to which each user belongs, choose Reports > User Report.

Changing Segment Authorization

Assuming that you either have SegmentProtection privileges or are the segment’s
owner, you can use the Segment Tool to change the authorization of a segment.

The top half of the Segment Tool shows the owner, the owner’s access, and world
access for each segment in the repository. To change owner or world access, select
the existing permission you want to change. Then enter a new permission (“read”,
“write”, or “none”).

The new authorization will take effect when you commit the current transaction.

CAUTION
Be careful to check whether a user is logged in before you remove write
authorization. A user will be unable to commit changes if write
authorization is removed from the current segment, and if it is the user’s
default segment, the user’s session will be terminated and the user will
be unable to log in again.

Controlling Group Access to a Segment

If you are authorized to set up or change group access to a segment, you can add
or remove groups to that segment’s authorization list.

 • Make sure the segment is selected in the top half of the tool.

 • To add a group to the authorization list for the selected segment, choose
Add... from the Group menu. Enter the group name in the dialog box that
appears. If the group does not exist in the repository, you will be asked
whether to create it.

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-19

 • To remove a group from the authorization list, first select the group by clicking
in the first column of the groups list. Then choose Remove... from the Group
menu. You will be asked to confirm the action.

 • To change the type of access for a particular group, first select that group in the
groups list and select the existing permission. Then enter the new permission
(“read” or “write”).

 • To add a member to a group that has access to this segment, first select that
group in the groups list. Then choose Add... from the Member menu. Enter
the UserId and choose OK. (A UserProfile with that UserId must already exist
in the repository.)

 • To remove a member from a group that has access to this segment, select the
UserId in the member list and choose Remove... from the Member
menu. You will be asked to confirm the action.

Remember to commit your transaction before logging out. A convenient way to
do that is by choosing Commit from this tool’s File menu.

Changing a User’s Default Segment

You must either have DefaultSegment privileges to change your own default
segment, or have write authorization in the DataCurator Segment to change
another user’s default segment.

To change your own default segment, select the desired segment by clicking in its
first column. Then choose Segment > Make Default. (You can also do this by
typing the @ symbol in front of the segment name.)

To change someone else’s default segment, in the GemStone User dialog, choose
Show Segments.

1. In the Segment Tool, select the desired segment by clicking in its first
column. Choose Segment > Grab.

2. In the GemStone User dialog, choose Paste To Default Segment.

3. Choose OK or Apply.

NOTE
Changes to a segment’s authorization do not take effect until the current
transaction is committed. This means that if you change any user’s
default segment (including your own) to a segment for which that user
lacks write authorization, and you subsequently commit the transaction,
the affected user will no longer be able to log in to GemStone.

GemStone Administration Tools GemBuilder User Manual

7-20 GemStone Systems, Inc. December 2001

The Symbol List Browser
The Symbol List Browser is a tool for examining the GemStone SymbolLists
associated with UserProfiles, adding and deleting dictionaries from these lists,
examining the entries in those dictionaries and adding, deleting and inspecting the
entries. References to dictionaries and dictionary entries can be copied between
GemStone user accounts, subject to authorization and segment restrictions, to
allow users to share application objects and name spaces developed by other users,
and to publish them to other users.

To open a Symbol List Browser, select Admin > Namespaces from the
Gemstone menu, or click on the Show Symbol List button on a GemStone User
window.

Like the other GemStone tools, the Symbol List Browser opens on a particular
login session. When a Symbol List Browser instance is created, it is attached to the
current GemStone session and remains attached to that session until the browser
is closed.

Figure 7.3 shows the Symbol List Browser.

Figure 7.3 The Symbol List Browser

The field labeled Symbol List for contains a list of all the GemStone users that are
visible to the session to which the browser is attached. When you select a
GemStone user name, a list of the dictionaries in that user’s SymbolList is
displayed in the Dictionaries pane. GemStone permissions are observed; any

Select a user

Select a dictionary
Select

a dictionary entry

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-21

dictionaries in that SymbolList that are not normally accessible to the browser’s
session will not be visible in the list.

When a dictionary is selected, the keys of the entries in the dictionary are displayed
in the Entries pane on the right.

Whenever a dictionary or an entry is selected, information about that object is
displayed at the bottom of the browser.

The Clipboard

Within the Symbol List Browser you can delete, move, and copy objects to and
from SymbolLists and the Dictionaries in those SymbolLists. For each session to
which a Symbol List Browser is attached, there is a “clipboard” onto which
GemStone objects can be cut and copied and from which objects can be pasted into
another Symbol List Browser that is also attached to that session.

Symbol List Browser Menus

The menus in the symbol list browser allow you to examine, add, and delete
SymbolLists, dictionaries, and dictionary entries. You can use this browser to
copy references to dictionaries and dictionary entries among user accounts so
application objects can be shared by other users.

File Menu

The File menu contains items for operating on the window itself and for
committing and aborting transactions from the Symbol List Browser.

Table 7.6 File Menu in the Symbol List Browser

Commit Makes all changes in the current transaction permanent.

Abort Aborts the current transactions.

Update Updates the browser’s view of the GemStone objects it shows. The
browser is automatically updated if the attached session aborts a
transaction.

GemStone Administration Tools GemBuilder User Manual

7-22 GemStone Systems, Inc. December 2001

Dictionary Menu

The Dictionary menu allows you to rearrange dictionaries by cutting, copying, or
pasting.

Entry Menu

The Entry Menu allows you to edit dictionary entries by cutting, copying, or
pasting.

Table 7.7 Dictionary Menu in the Symbol List Browser

Cut Removes the selected dictionary from the user’s symbol list and
places it in the session’s clipboard.

Copy Copies a reference to the selected dictionary into the session’s
clipboard.

Paste Causes the reference to the dictionary object in the clipboard to be
added to the SymbolList in the pane, with the name it had when it
was put in the clipboard.
If the name of the dictionary in the clipboard is already in use in the
destination list, a Confirmer will pop up to allow replacing the old
item, or to abort the paste operation.

Add... Prompts for name of a new Dictionary to be added to the symbol list.

Inspect Opens a GemStone inspector on the selected Dictionary.

Table 7.8 Entry Menu in the Symbol List Browser

Cut Removes the selected entry from its dictionary and places it
in the session’s clipboard.

Copy Copies a reference to the selected entry into the session’s
clipboard.

Paste Causes the reference to the entry in the clipboard to be
added to the selected dictionary, with the name it had
when it was put in the clipboard.
If the clipboard entry’s name is already in use in the
destination list, a Confirmer will pop up to allow replacing
the old item, or to abort the paste operation.

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-23

Help Menu

The Help menu contains one item, Session Info, which provides information
about the session for the Symbol List Browser and about the current session.

User Account Management Tools
The User Account Management tools are a set of three tools that allow the
GemStone System Administrator to create new user accounts, change account
passwords, and assign group membership.

This section describes the three User Account Management tools: the GemStone
User List, the GemStone User Dialog, and the Privileges Dialog.

Note that you must either be DataCurator or have certain privileges to perform
most of the system administration functions described in this section. If you are
responsible for GemStone system administration, you should refer the chapter on
administering user accounts and segments in the GemStone System Administration
Guide for specific information on user account management. That chapter
discusses the privileges you need to manage user accounts and explains how to
add and remove users, set up user environments, change passwords and user
privileges, and how to add and remove users from groups.

GemStone User List

The GemStone User List window contains a list of all user accounts known to the
current repository. The administrator can use this window to delete users and as
a starting point to add new users and to change the attributes of GemStone users.

To bring up the GemStone User List, from the GemStone menu select Admin
Tools > Browse GemStone Users. Figure 7.4 shows the GemStone User List.

Add... Prompts for name of a new entry to be added to the
selected Dictionary.

Inspect Opens a GemStone inspector on the selected entry.

Browse Class If the selected entry is a class, opens a GemStone class
browser on that entry.

Table 7.8 Entry Menu in the Symbol List Browser (Continued)

GemStone Administration Tools GemBuilder User Manual

7-24 GemStone Systems, Inc. December 2001

Figure 7.4 GemStone User List

The GemStone Users List window has three menus: File, Users, and Help.

The File menu contains the following items.

The Users menu allows you to create a new user, display information about an
individual user, and remove a user name. Its as buttons at the bottom of the
window.

Table 7.9 GemStone User List: File Menu

Commit Makes all changes in the current transaction permanent.

Abort Aborts the current transaction.

Update Causes the browser to update its view of the GemStone users it
shows. The browser will automatically be updated if the attached
session aborts a transaction.

Table 7.10 GemStone User List: Users Menu

Create User... Brings up a GemStone User dialog in which you can
define a new user.

Show User Info... Brings up a GemStone User window displaying privilege
and group membership information on a selected user.

Delete User... Allows you to remove a user name.

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-25

The Help menu contains one item, Session Info, which provides information
about the session for the GemStone User List and about the current session.

GemStone User Dialog

The GemStone User Dialog displays the attributes of a particular GemStone
user. The GemStone administrator can examine and change the user’s privileges
or default segment and can control the user’s group membership. The
administrator can also change the name available in the user’s symbol list.

The GemStone User Dialog is shown in Figure 7.5.

Figure 7.5 GemStone User Dialog

Table 7.11 shows the operations that are available in this dialog.

Table 7.11 Buttons in the GemStone User Window

Privileges... Brings up a Privileges dialog, in which you can select
privileges for this user.

Paste To Default
Segment

Makes the grabbed segment from the Segment Tool
the default segment for this user.

Add to Group Allows you to select a group name from a menu of
known groups and adds this user to that group.

GemStone Administration Tools GemBuilder User Manual

7-26 GemStone Systems, Inc. December 2001

The Privileges Dialog

Certain system functions are customarily performed by the DataCurator; for
example, many of the messages to System require explicit privilege to use. The
privileges dialog displays the privileges an individual user possesses. You can use
this dialog to examine a user’s privileges, and—if you have the authority to do
so—to select privileges for a user. For more information on privileges, see the
chapter on Administering User accounts and Segments in the GemStone System
Administration Guide.

The Privileges Dialog is shown in Figure 7.6.

Figure 7.6 Privileges Dialog in GemStone User Window

Add To New Group Prompts you for a new group name and adds this user
to the group.

Remove From
Group

Removes this user from the selected group.

Show Symbol List Brings up a Symbol List Browser for the designated
user.

Show Segments Brings up a Segment Tool.

Table 7.11 Buttons in the GemStone User Window

Security and Object Access GemStone Administration Tools

December 2001 GemStone Systems, Inc. 7-27

The privileges and the methods that are associated with them are shown in
Table 7.12.

Table 7.12 Privileges

Type of Privilege Privileged Methods In Class

System Control resumeLogins
shutDown
stopOtherSessions
stopSession:
suspendLogins

System

Statistics stoneStatistics System

Session Access concurrencyMode:
currentSessionNames
currentSessions
descriptionOfSession:
stopOtherSessions
userProfileForSession:

System

User Password oldPassword: newPassword: UserProfile

Default Segment defaultSegment: UserProfile

Other Password password: UserProfile

Segment Creation newInRepository: Segment

Segment
Protection

group:authorization:
ownerAuthorization:
worldAuthorization:

Segment

File Control abortRestore
addTransactionLog:replicate:size:
commitRestore
continueFullBackupTo:MBytes:
createExtent:
createExtent: withMaxSize:
createReplicateOf:named:
disposeReplicate:
fullBackupTo:
fullBackupTo:MBytes:
restoreFromBackup:
restoreFromBackups:
restoreFromCurrentLogs
restoreFromLog:
shrinkExtents
startNewLog

Repository

GemStone Administration Tools GemBuilder User Manual

7-28 GemStone Systems, Inc. December 2001

Garbage Collection auditWithLimit:
findDisconnectedObjects
markForCollection
pagesWithPercentFree:
repairWithLimit:
scavengePagesWithPercentFree:

Repository

Table 7.12 Privileges

Type of Privilege Privileged Methods In Class

Chapter

December 2001 GemStone Systems, Inc. 8-1

8 Schema
Modification and
Coordination

No matter how elegantly your schema was designed, sooner or later changes in
your application requirements or even changes in the world around your
application will probably make it necessary to make changes to classes that are
already instantiated and in use. When this happens, you will want the process of
propagating your changes to be smooth and to impact your work as little as
possible.

This chapter discusses the mechanisms GemStone and GemBuilder provide to
help you accomplish this.

Schema Modification
explains how GemStone supports schema modification by maintaining
versions of classes in class history objects. It shows you how to migrate some
or all instances from one version of a class to another while retaining the data
that these instances hold.

Schema Coordination
explains how to synchronize schema modifications between GemStone and
the client Smalltalk.

The Class Version Browser
describes a specialized Class Browser that can be used for examining a class

Schema Modification GemBuilder User Manual

8-2 GemStone Systems, Inc. December 2001

history, inspecting instances, migrating instances, deleting versions, and
moving versions to another class history.

8.1 Schema Modification
Client Smalltalk and GemStone Smalltalk both have schema modification
support. Client Smalltalk supports only a single instance of a class; when a class is
modified, instance migration occurs immediately. Because GemStone stores
persistent objects, schema modification is a more complex issue.

GemStone Smalltalk supports schema modification and protects the integrity of
your stored data by allowing you to define different versions of classes. It keeps
track of these versions in a class history object.

Every class in GemStone Smalltalk has a class history instance variable. A class
history is an object that maintains a list of all versions of the class. Every GemStone
class is listed in exactly one class history. You can define any number of different
versions of a class and declare that the different versions belong to the same class
history. You can also migrate some or all instances of one version of a class to
another version when you need to. By default, migration of an object from one
class version to another will preserve the values of unnamed instance variables
and instance variables that have the same name in both classes.

It is not necessary for different versions of a class to have a similar structure or a
similar implementation. The classes don’t even need to have the same name,
although it is probably less confusing if they do or if you establish and adhere to
some naming convention.

The section entitled “Modifying an Existing Class” on page 5-17 explains how to
create different versions of a class in GemBuilder.

Instance Migration Within GemStone
The migration operation in GemStone is flexible and configurable.

 • Instances of any class can migrate to any other, as long as they share a class
history. The two classes need not be similarly named or have anything else in
common.

 • Migration can occur whenever you want it to.

 • You don’t have to migrate all instances of a class at once; you can migrate only
certain instances as needed.

Schema Modification and Coordination Schema Modification

December 2001 GemStone Systems, Inc. 8-3

 • You can choose which values of the old instance variables are used to initialize
values of the new instance variables. overriding the default mapping
mechanism as necessary.

Setting the Migration Destination

You can use the message migrateTo: to set a migration destination in the class
that you need to migrate from as follows:

OldClass migrateTo: NewClass

This message merely lets the class know its migration destination; it does not cause
migration to occur. Migration takes place only when the class receives one of the
migrateInstances messages described in the section “Migrating Objects.”

It is not necessary to set a migration destination ahead of time; you can specify the
destination class when you decide to migrate instances. It is also possible to set a
migration destination and then migrate the instances of the old class to a
completely different class by specifying a different migration destination as part of
the message that performs the migration.

You can erase the migration destination for a class by sending it the message
cancelMigration, and you can query the migration destination by sending
migrationDestination to the class.

Migrating Objects

A number of mechanisms are available to allow you to migrate one instance or a
specified set of instances to a previously specified migration destination or to
another explicitly specified destination.

You can execute the following expression to identify instances that may need to be
migrated:

SystemRepository listInstances: anArrayOfClasses.

The listInstances: message takes as its argument an array of classes and
returns an array of sets. The contents of each set consists of all instances whose
class is equal to the corresponding element in the argument
anArrayOfClasses. Instances to which you lack read authorization are omitted
without notification.

The simplest way to migrate an instance of an older class is to send the message
migrate to the instance. If the object is an instance of a class for which a
migration destination has already been defined, the object becomes an instance of
the specified version of the class. If no destination has been defined, no change
occurs.

Schema Modification GemBuilder User Manual

8-4 GemStone Systems, Inc. December 2001

You can bypass the migration destination or migrate instances of classes for which
no migration destination has been specified by specifying the destination directly
in the message that performs the migration.

The following messages (defined in class Class) specify a one-time-only operation
that ignores any preset migration destination class.

migrateInstances:aCollectionOfInstances to:DestinationClass

migrateInstancesTo:DestinationClass

The migrateInstances:to: message migrates specified instances to a class;
the migrateInstancesTo: migrates all instances of the receiver to a class.

Things to Watch Out For

There are a few things that you should be aware of when migrating objects.

 • You cannot send a migratemessage to self. Attempting to do so generates
an error that reports “The object you are trying to migrate was already on the
stack.”

 • You cannot migrate instances that you are not authorized to read or write.

 • You need to be aware that the instance variable map used in migrating
instances from one GemStone class to another is not the same as the instance
variable map described in Chapter 3, whose purpose is to map instance
variables from GemStone to Smalltalk.

Instance Variable Mapping in Migration

GemStone supports instance migration between two classes that belong to the
same class history. For simple migrations, such as the addition or removal of an
instance variable, GemStone provides a default migration mechanism that copies
data from each instance variable of the old object to the instance variable of the
same name in the new object (if one exists). You can write methods to customize
this migration on a class-by-class basis.

When an object is migrated, it refers to the class and class instance variables that
have been defined for the new version of the class. These variables have whatever
values have been assigned to them in the class object.

The simplest way to retain the data held in instance variables is to use instance
variables having the same names. If two versions of a class have instance variables
with the same name, the values of those variables are automatically retained when
the instances migrate from one class to the other.

Schema Modification and Coordination Schema Modification

December 2001 GemStone Systems, Inc. 8-5

However, the structure of the two classes may be different, and a one-to-one
mapping may not be possible. For example, if the new class has an instance
variable for which no corresponding variable exists in the old class, that instance
variable is initialized to nil upon migration. Similarly, if the old class has an
instance variable for which no corresponding variable exists in the new class, the
value of the old variable is dropped and the data it represents is no longer
accessible from that object.

You may encounter situations in which you want to initialize a variable having one
name with the value of a variable having a different name. This requires
providing an explicit mapping from the instance variable names of the older class
to the instance variable names of the migration destination. To do this you will
need to override the default mapping strategy by reimplementing a class method
named instVarMappingTo: in your destination class. This method is defined
in Class to return an instance variable mapping from the receiver’s named instance
variables to those in the other class, but it can be customized in the new class to
explicitly map the two different names.

There also may be times when you need to perform a specific operation on the
value of a given variable before initializing the corresponding variable in the class
to which the object is migrating.

For example, suppose that you have a class named Point, which defines two
instance variables: x and y. These instance variables define the position of the
point in Cartesian two-dimensional coordinate space. Now suppose that you
define a class named NewPoint to use polar coordinates. The class has two
instance variables named radius and angle. The default mapping strategy would
cause Point objects to completely lose their position because the old and new
classes have no instance variables in common.

This can be handled, however, by overriding a migration method in NewPoint by
defining it to include an operation that transforms the values of x and y into values
that can properly be assigned to radius and angle. In this case, the appropriate
method to override is migrateFrom:instVarMap:. Then, when you migrate
an instance of Point to an instance of NewPoint, the migration code that calls
migrateFrom:instVarMap: executes the method in NewPoint instead of the
one in Object that defines the default behavior. (This example is explained in detail
in the GemStone Programming Guide.)

Schema Coordination GemBuilder User Manual

8-6 GemStone Systems, Inc. December 2001

8.2 Schema Coordination
GemBuilder’s goal in supporting schema migration is to provide an interaction
between the client Smalltalk and GemStone that provides as much of GemStone’s
capabilities as possible, while minimizing the impact on the client Smalltalk
system.

GemBuilder preserves the behavior of having only a single version of a given class
in client Smalltalk at one time. That client Smalltalk class will be mapped to a
specific version of a GemStone class, resolved at login time by its name. If, while
faulting an object into the client Smalltalk, GemBuilder discovers that the object is
an instance of a class that is a different version of the class that is in client Smalltalk,
it will be faulted in in the format of the class in client Smalltalk and flagged so that
if it is modified and written back to GemStone, it can be written out in the
appropriate format.

For example, suppose you have a class named C in GemStone, and there are two
versions of it: C1 and C2. Suppose that client Smalltalk has a representation of C2.
Instances of C2 are replicated back and forth between client Smalltalk and
GemStone, as usual.

If it attempts to replicate an instance of C1, however, GemBuilder will discover that
there is no class mapping for C1. GemBuilder will then do the following:

1. It will fetch the name of the GemStone class and discover that there is a client
Smalltalk class by the same name that is already mapped to a GemStone class.

2. It will verify that the two GemStone classes are in the same class history.

3. It will then ask GemStone to make a migrated copy of the object in C2 format
and to replicate that migrated copy into client Smalltalk. The proxy associated
with that client Smalltalk object will be flagged to indicate that the client
Smalltalk object is a migrated representation of the GemStone object. If that
object is later modified in client Smalltalk and subsequently needs to be
written to GemStone, GemBuilder will first flush the object from client
Smalltalk to GemStone as an instance of C2, then have GemStone migrate the
object back to an instance of C1.

This process is fairly expensive. If you are running GemBuilder in verbose mode,
the discovery of an client Smalltalk class that is mapped to an old version of a
GemStone class (a version that is not the migration destination) will be logged to
the transcript. If you see this happening frequently, you should consider
migrating your instances to the GemStone class version corresponding to your
client Smalltalk class.

Schema Modification and Coordination The Class Version Browser

December 2001 GemStone Systems, Inc. 8-7

8.3 The Class Version Browser
The Class Version Browser is a specialized Class Browser that can be used for
examining a class history, inspecting instances, migrating instances, deleting
versions, and moving versions to another class history.

To open a Class Version Browser, select a class in a browser and choose Browse
Versions from the Classes menu. If more than one version of a class has been
created, the class list in the spawned browser displays the version number next to
the class name.

A Class Version Browser is shown in Figure 8.1.

Figure 8.1 The Class Version Browser

Menus in the Class Version Browser
For the most part, the Class Version Browser’s menus are the same as the menus
in the Class Browser. However, the Class Version Browser’s Classes menu
contains the additional items Inspect Instances and Migrate Instances. Also,
note that the Classes menu items Move... and Remove... behave differently in this
browser.

The Class Version Browser GemBuilder User Manual

8-8 GemStone Systems, Inc. December 2001

The layout of the browser is similar to the Class Browser. The Method Category
and Message menus are the same as in a spawned Class Browser. The Classes
menu, however, has additional functionality.

You can simultaneously inspect multiple class versions by holding down the shift
key as you make your selections. Similarly, you can make a multiple selection to
migrate the instances of several class versions to another version. Whenever more
than one version is selected, only two menu items are accessible in the class pane:
Inspect Instances and Migrate Instances....

The commands available in the Class Version Browser are shown in Table 8.1.

Table 8.1 Classes Menu in Class Version Browser

File Out
Methods Only

Writes GemStone Smalltalk code defining the selected
class’s versions methods to be written to a file in Topaz
format. See “Saving Class and Method Definitions in
Files” on page 5-19.

Name Each... Prompts for a separate file name for
each class.

One Name... Prompts for a single file name.

Use Defaults Uses a default name based on the class
name.

File Out Writes GemStone Smalltalk code defining the selected
class version and all of its methods to be written to a file
in Topaz format. The class and its methods can later be
read in from the file and recompiled by means of a
command given from the File List Browser. See “Saving
Class and Method Definitions in Files” on page 5-19.

Name Each... Prompts for a separate file name for
each class.

One Name... Prompts for a single file name.

Use Defaults Uses a default name based on the class
name.

Browse Class Opens a Browser on the selected class.

Browse Versions Spawns a Class Version Browser on the selected class.

Browse Hierarchy Spawns a GemStone Browser on the superclass
hierarchy of the selected class.

Schema Modification and Coordination The Class Version Browser

December 2001 GemStone Systems, Inc. 8-9

Hierarchy Lists the superclasses of the current class. For example,
if the current class is WriteStream, the hierarchy list will
appear as follows:
Object
 Stream
 PositionableStream
 ('itsCollection' 'position')
 WriteStream

Any instance variable names declared in a class appear
in the hierarchy list in parentheses. The preceding
example shows PositionableStream to have two instance
variables.

Definition Displays the definition of the selected class in the Text
Area.

Move Classes... Moves the selected class version to another class
history. Prompt for a target class, adds the selected
version to the target class’s class history, and updates the
browser. The class name of the selected version is
changed to that of the target class.

Remove... Removes the selected class version from the class
history. Upon confirmation to proceed, asks if the user
wants to migrate instances. If yes, prompts for the
migration target, migrates the instances and updates the
browser.

Create Access Creates methods for accessing and updating the instance
variables of the currently selected class version.

Create in ST Generates the selected class in client Smalltalk, if a
mapping doesn’t already exist. If it does exist, executing
this menu item has no effect.

Compile in ST Attempts to compile all methods (instance and class) of
selected class version in corresponding client Smalltalk
class.

Inspect Instances Opens an inspector on instances of the selected version.

Migrate Instances Migrate all instances of the selected versions. Prompts
you to select which version to migrate to.

Table 8.1 Classes Menu in Class Version Browser (Continued)

The Class Version Browser GemBuilder User Manual

8-10 GemStone Systems, Inc. December 2001

Chapter

December 2001 GemStone Systems, Inc. 9-1

9 Performance
Tuning

This chapter discusses ways that you can tune your GemBuilder application to
optimize performance and minimize maintenance overhead.

Selecting the Locus of Control
provides some rules of thumb for deciding when to have methods execute on
the client and when to have them execute on the server.

Profiling
explains ways you can examine your program’s execution.

Configuring GemBuilder
describes the Settings Browser and GemBuilder configuration
parameters, their default and legal values, and their significance.

Replication Tuning
explains the replication mechanism and how you can control the level of
replication to optimize performance

Optimizing Space Management
explains how you can reclaim space from unneeded replicates.

Using Primitives
introduces the use of methods written in lower-level languages such as C.

Selecting the Locus of Control GemBuilder User Manual

9-2 GemStone Systems, Inc. December 2001

Changing the Initial Cache Size
shows how to change the initial cache size.

Multiprocess Applications
discusses nonblocking protocol and process-safe transparency caches.

For further information, see the GemStone Programming Guide for a discussion on
how to optimize GemStone Smalltalk code for faster performance. That manual
explains how to cluster objects for fast retrieval, how to profile your code to
determine where to optimize, and discusses optimal cache sizes to improve
performance.

9.1 Selecting the Locus of Control
By default, GemBuilder executes code in the client Smalltalk. Objects are stored in
GemStone for persistence and sharing but are replicated in the client Smalltalk for
manipulation. In general, this policy works well. There are times, however, when
it is preferable or required to execute in GemStone.

One motivation for preferring execution in GemStone is to improve
performance. Certain functions can be performed much more efficiently in
GemStone. The following section discusses the trade-offs between client Smalltalk
and server Smalltalk execution and how to choose one space over the other.

Beyond optimization, some functions can be performed only in
GemStone. GemStone’s System class, for example, cannot be replicated in the
client Smalltalk; messages to System have to be sent in GemStone.

Locus of Execution
This section centers on controlling the locus of execution—in other words,
determining whether certain parts of an application should execute in the client
Smalltalk or in GemStone. Subsequent sections discuss other ways of tuning to
increase execution speed.

Client Smalltalk and GemStone Smalltalk are very similar languages. Using
GemBuilder, it is easy to define behavior in either client Smalltalk or GemStone to
accomplish the same task. There are, however, performance implications in the
placement of the execution. This section discusses several factors to weigh when
choosing the space in which to execute methods.

Performance Tuning Selecting the Locus of Control

December 2001 GemStone Systems, Inc. 9-3

Relative Platform Speeds

One consideration when choosing the execution platform is the relative speed of
the client Smalltalk and the server Smalltalk execution environments. Your client
Smalltalk will often run faster than GemStone on the same machine. GemStone’s
database management functions and its ability to handle very large data sets add
some overhead that the client Smalltalk environment doesn’t have.

Cost of Data Management

Execution cannot complete until all objects required have been brought into the
object space. When executing in the client Smalltalk, this means that all GemStone
objects required by the message must be faulted from GemStone. When executing
in GemStone, this means that dirty replicates must be flushed from the client
Smalltalk. In general, it is impossible to tell exactly which objects will be required
by a message send, so GemBuilder flushes all dirty replicates before a GemStone
message send and faults all dirty GemStone objects after the send.

Clearly, data movement can be expensive. Although the client Smalltalk
environment might be more efficient for some messages, faulting the object into
the client Smalltalk might overwhelm the savings. If the objects are all already
there, however, or if the objects will be reused for other messages, then the
movement may be justified.

For example, consider searching a set of employees for a specific employee, giving
her a raise, and then moving on to another unrelated operation. Although a brute
force search may be faster in your client Smalltalk, the cost of moving the data to
the client may exceed the savings. The search should probably be done in
GemStone.

However, if additional operations are going to be done on the employee set, the
cost of moving data is amortized and, as the number of operations increases,
becomes less than the potential savings.

GemStone Optimization

Some optimizations are possible only using GemStone execution. In particular,
repository searching and sorting can be done much more quickly in GemStone
than in your client Smalltalk as data sets become large.

If you will be doing frequent searches of data sets such as the employee set in the
previous example, using an index on the server Smalltalk set will speed execution.

The GemStone Programming Guide provides a complete discussion of indexes and
optimized queries.

Profiling GemBuilder User Manual

9-4 GemStone Systems, Inc. December 2001

9.2 Profiling

Profiling Client Smalltalk Execution
A good starting point for optimizing the performance of an application is to find
out where most of the execution time is being spent. There are tools available for
profiling client Smalltalk code. GemStone also has a profiling tool in the class
ProfMonitor. This class allows you to sample the methods that are executed in a
given block of code and to estimate the percentage of total execution time
represented by each method. See the chapter on performance in the GemStone
Programming Guide for details.

Watching Stub Activity
A switch in the stub class, GbxObjectStub, allows you to see stubs in a debugger
and logs faulting activity involving stubs.

GbxObjectStub stubDebugging: aBoolean

This method turns stub debugging support on (stubDebugging: true) or off
(stubDebugging: false). When stub debugging is true, this class’s
superclass is GbsDebugStub, providing basic instance methods that allow the
client Smalltalk debugger to operate among stubs without causing them to fault in
the GemStone object.

Another effect of setting stubDebugging: true is that operations involving
stubs are recorded in the System Transcript. Turning on stub debugging and
watching the faulting activity can help you evaluate your tuning parameters.

Notice that applications that rely on these methods might get incorrect results
when stub debugging is turned on. For example, sending #class to a
GbxObjectStub normally causes a fault, returning the class of the replicated object,
but when stubDebugging is on, the result of sending #class is GbxObjectStub.

Using Verbose Mode
GbsSession has a class variable, Verbose (a Boolean), which, if true, causes sessions
to write messages to the system transcript when special events occur (such as
logout, login, commit, and abort).

If your application sends Block>>valueUninterruptably, you may need to
disable the GbsSession’s logging of events to the transcript by sending GBSM
verbose: false.Verbose mode uses Transcript show:,which eventually
calls Block>>valueUninterruptably. If unstubbing occurs during

Performance Tuning Configuring GemBuilder

December 2001 GemStone Systems, Inc. 9-5

execution of your application’s Block>>valueUninterruptably,and the
unstubbing activity triggers activity that is logged to the transcript, the client
Smalltalk will fail.

9.3 Configuring GemBuilder
This section describes the Settings Browser and GemBuilder configuration
parameters, their default and legal values, and their significance.

GemBuilder Configuration Parameters
GemBuilder provides configuration switches that make it easy for you tune your
program. These switches are listed in the following table, and are described in
subsequent sections.

Table 9.1 Configuration Parameters for GemBuilder

Parameter Legal values Default

assertionChecks true/false false

autoMarkDirty true/false true

blockingProtocolRpc true/false false

blockReplicationEnable
d

true/false true

blockReplicationPolicy #replicate/#callback #replicate

bulkLoad true/false false

confirm true/false true

connectorNilling true/false true

connectVerification true/false false

defaultFaultPolicy #immediate/#lazy #lazy

eventPollingFrequency any integer 5000

eventPriority any integer 3

faultLevelLnk any integer 2

faultLevelRpc any integer 4

forwarderDebugging true/false false

freeSlotsOnStubbing true/false true

Configuring GemBuilder GemBuilder User Manual

9-6 GemStone Systems, Inc. December 2001

To determine the current setting of a parameter, send the parameter name as a
message to GBSM. For example, the following expression returns the current
setting of the connectVerification parameter:

GBSM connectVerification
false

To set a parameter, append a colon to the parameter name and send it as a message
to GBSM with the desired value as the argument. For example, to set the
connectVerification parameter, send:

GBSM connectVerification: true

You will probably prefer to use the Settings Browser to view and change the
settings of these parameters. (See “The Settings Browser” on page 9-11.)

Using Configuration Parameters to Tune Your Application
This section describes the configuration parameters and how their settings affect
your program.

generateClassConnector
s

true/false true

generateGSClasses true/false true

generateSTClasses true/false true

initialCacheSize any integer 5003

initialDirtyPoolSize any integer 157

loginLinkedIfAvailable true/false true

removeInvalidConnector
s

true/false false

stubDebugging true/false false

processSafeCaches true/false false

traversalBufferSize any integer 250000

traversalCompression true/false false

verbose true/false false

Table 9.1 Configuration Parameters for GemBuilder

Parameter Legal values Default

Performance Tuning Configuring GemBuilder

December 2001 GemStone Systems, Inc. 9-7

assertionChecks
This parameter is for the use of GemStone customer support.

autoMarkDirty
Defines whether modifications to client objects are automatically detected.
When false, the application must explicitly send markDirty to a client
object after it has been modified, so GemBuilder will know to update the object
in GemStone.

blockingProtocolRpc
Determines whether to use blocking or nonblocking protocol for RPC sessions.
When false, nonblocking protocol is used, enabling other processes to
execute in the image while one or more processes are waiting for a GemStone
call to complete. When true, GemBuilder must wait for a GemStone call to
complete before proceeding with the execution process that called it.

blockReplicationEnabled
When false, GemBuilder raises an exception when block replication is
attempted—useful in determining if your application depends on block
replication.

blockReplicationPolicy
Legal values are #replicate or #callback. Block replication requires
decompiling and compiling the source code for blocks at runtime, which
sometimes can cause probblems due to limitations on block replication. Block
callbacks use client forwarders to evaluate the block in the client. Block
callbacks escape the documented limitations of block replication, but do not
perform well for blocks invoked repeatedly from GemStone.

bulkLoad
When true, newly created objects are stored in GemStone as permanent
objects immediately, bypassing a step wherein they are temporary and eligible
for storage reclamation by the GemStone garbage collector unless other objects
refer to them (in which case they become permanent objects, as usual).
Bypassing this step improves performance for bulk data loading. When
false, the temporary object step is not bypassed.

confirm
When true, you are prompted to confirm various GemBuilder actions. Leave
set totrueduring application development; deployed applications may set to
false.

connectorNilling
When true, GemBuilder nils the Smalltalk object for certain session-based
connectors after logout: all name, class variable, or class instance variable

Configuring GemBuilder GemBuilder User Manual

9-8 GemStone Systems, Inc. December 2001

connectors whose postconnect action is #updateST or #forwarder. When the
last session logs out, the Smalltalk object references of global connectors are
also set to nil. Fast connectors, class connectors, and connectors whose
postconnect action is #updateGS or #none are not set to nil. Clearing
connectors that depend on being attached to GemStone objects helps prevent
defunct stub and forwarder errors.

When false, the logout sequence leaves the state of persistent objects in the
image as it was.

connectVerification
When true, connectors verify at login that they are not redefining a connector
that already exists, and class connectors verify that the two classes they are
connecting have compatible structures. When false, these things are not
checked. Set to true during development unless logging in becomes too
slow, or your connector definitions are stable.

 See “The Connector Browser” on page 4-13.

defaultFaultPolicy
Specifies GemBuilder’s default approach to updating client Smalltalk objects
whose GemStone counterparts have changed. When #lazy, GemBuilder
responds to a change in a GemStone object by turning its client Smalltalk
replicate into a stub. The new GemStone value is faulted in the next time the
stub is sent a message. When#immediate, GemBuilder responds to a change
in a GemStone object by updating the client Smalltalk replicate immediately.
The defaultFaultPolicy is implemented by Object >> faultPolicy.
Subclasses can override this method for specific cases.

eventPollingFrequency
How often, in milliseconds, that GemBuilder polls for GemStone events such
as changed object notification or Gem-to-Gem signaling.

eventPriority
The priority of the Smalltalk process that responds to GemStone events—that
is, the priority at which the block will execute that was supplied as an
argument to the keyword gemSignalAction:, notificationAction:,
or signaledAbortAction:. These keywords occur in messages used by
Gem-to-Gem signaling, changed object notification, or when GemStone
signals you to abort so that it can reclaim storage, respectively.

faultLevelLnk
The default number of levels to replicate an object from GemStone to client
Smalltalk in a linked session.

Performance Tuning Configuring GemBuilder

December 2001 GemStone Systems, Inc. 9-9

faultLevelRpc
The default number of levels to replicate an object from GemStone to client
Smalltalk in a remote session.

forwarderDebugging
When true, forwarders support debugging by responding to some basic
messages locally, such as printOn:, instVarAt:, and class, which
returns GbsForwarder. When false, these messages are forwarded to the
GemStone object.

freeSlotsOnStubbing
When true, stubbing an existing replicate causes all persistent named
instance variables (that is, those that will be faulted in when the stub is
unstubbed) and all indexable instance variables to be set to nil, allowing
stubs and their potentially outdates instance variables to be garbage collected
if they become eligible. When false, GemBuilder does not alter instance
variable values. To override this behavior on a class-by-class basis,
reimplement #freeSlotsOnStubbing (inherited from Object).

generateClassConnectors
When true, a session connector is automatically created to connect two
classes, one of which has been automatically generated in response to the
presence of the other by the mechanisms described in the discussion of
parametersgenerateSTClasses andgenerateGSClasses. Whenfalse,
session connectors are not automatically created.

 See “Class Mapping” on page 3-6.

generateGSClasses
When true, if a client Smalltalk object is stored into GemStone and GemStone
does not currently define the class of which it is an instance, a corresponding
class is defined in GemStone Smalltalk. When false, GemBuilder raises an
error.

See “Class Mapping” on page 3-6.

generateSTClasses
When true, if a GemStone object is fetched into the client Smalltalk image and
the client Smalltalk image does not currently define the class of which it is an
instance, a corresponding class is defined in the image. When false, behavior
is defined by the client Smalltalk image.

See “Class Mapping” on page 3-6.

Configuring GemBuilder GemBuilder User Manual

9-10 GemStone Systems, Inc. December 2001

initialCacheSize
The size in bytes of the initial cache for each GemStone session. For best
performance, make this a prime number.

See “Changing the Initial Cache Size” on page 9-19.

initialDirtyPoolSize
Initial size of the GbsSession dirtyPool identity set. For bulk loading,
increasing this value reduces the number of times the set needs to grow. For
applications that flush a small number of objects, decreasing this value (while
keeping it larger than the number of objects being flushed) improves flushing
performance.

loginLinkedIfAvailable
When true, the result of executing GBSM login is a linked GemStone
session, which provides faster repository access, unless GemBuilder cannot
start a linked session (as is the case on some platforms) or another session is
already running linked. When false, the result of executing GBSM login is
always a remote GemStone session.

removeInvalidConnectors
When true and confirm is false, if a connector fails to resolve at login, it is
removed from the connector collections so that the issue does not arise again
at next login.

When true and confirm is true, you are prompted to remove invalid
connectors during login.

When false, invalid connectors are ignored.

See “The Connector Browser” on page 4-13.

stubDebugging
When true, stubs support debugging by responding to some basic messages
locally, such as printOn:, instVarAt:, and class, which returns
GbxObjectStub. When false, these messages cause the stub to fault into the
client image from GemStone.

processSafeCaches
When true, subsequent logins protect GemBuilder caches that map Smalltalk
and GemStone objects so that they can safely be accessed by more than one
process at a time. Performance is slower. Leave this parameter set to false
unless your applications use more than one process. Nonblocking RPC
sessions always use process-safe caches regardless of this parameter setting.

traversalBufferSize
Sets the size, in bytes, of the buffer used in traversal replication.

Performance Tuning Configuring GemBuilder

December 2001 GemStone Systems, Inc. 9-11

traversalCompression
When true, GemStone compresses the traversal buffer contents for
transmission to the client, and the client decompresses the traversal buffer
contents upon receipt, thus reducing the amount of data sent across a network
connection to an RPC Gem. If the network connection between the client and
server transmits less than one million bits per second (slower than a T1 line),
compression will probably improve transmission speeds, assuming that the
client and server machines are equivalent to 75 MHz 486 CPUs or faster.

verbose
When true, GemBuilder prints messages to the Transcript when certain
events occur, such as logging a session in or out, or committing or aborting a
transaction. When false, these messages are not printed.

The Settings Browser
The Settings Browser makes it easy to examine and set the configuration
parameters for GemBuilder.

Opening the Settings Browser

To open the Settings Browser, select Tools > Settings from the GemStone menu.

You can programmatically open a new Settings Browser by executing GBSM
ConfigurationTool new in the client Smalltalk. The new tool will contain a
copy of the values of the current configuration by default. To open the tool on its
default configuration or on some other configuration use one of the following
messages:

open opens the tool on its current configuration

openOn: aGbsConfiguration
opens the tool on a copy of the given configuration

openOnDefaults opens the tool on a copy of the default configuration

openOnCurrent opens the tools on a copy of the currently-installed
GemBuilder Configuration

The Settings Browser is shown in Figure 9.1.

Configuring GemBuilder GemBuilder User Manual

9-12 GemStone Systems, Inc. December 2001

Figure 9.1 The Settings Browser

scroll for
more
parameters

Performance Tuning Configuring GemBuilder

December 2001 GemStone Systems, Inc. 9-13

Parameter Notebook

The Settings Browser uses a notebook metaphor to organize the various
configuration parameters. A set of tabs on the right side of the notebook provides
an index to categories of parameters.

Control buttons allow you to load and save the settings contained in the notebook
and to specify the parameter to be displayed.

Table 9.2 Notebook Control Buttons and Their Combo Box Menus

Load...
Provides a menu for selecting a source configuration.
Menu options are:

From current Uses configuration values currently installed
in GemBuilder.

From defaults Uses the default configuration values.

From saved... Brings up a dialog so you can enter the name
of a saved configuration to use.

Save...
Provides a menu for select the destination of the save.
Menu options are:

To current Installs the specified configuration’s values in
GemBuilder.

To name... Brings up a dialog in which you can select an
existing named configuration or enter a new
name.

Configurations
Brings up a window that displays all named configurations and
has buttons that allow you to delete or rename a setting and to
open a Configuration Browser on a named setting.

Find
Parameter...

Provides a menu with the following choices:

Enter name... Shows a selection list of all parameters.

Changed from
Current...

Shows all parameters whose values differ
from the configuration currently installed in
GemBuilder.

Changed from
Default...

Shows all parameters whose values differ
from the default configuration values.

Replication Tuning GemBuilder User Manual

9-14 GemStone Systems, Inc. December 2001

Each page of the notebook provides access to a single parameter, using the
following fields:

 • A label containing the name of the parameter.

 • An editable field (a text entry field for Strings or Integers) or menu (when legal
values have finite choices, e.g., true or false) that displays the current value of
the parameter a pull-down menu if the legal values are choices from a finite
set of enumerable values, e.g., true and false.

 • A text field containing a description of the parameter and its legal values.

9.4 Replication Tuning
The faulting of GemStone objects into the client Smalltalk is described in
Chapter 3. As described there, a GemStone object has a replicate in the client
Smalltalk created for itself, and, recursively, for objects it contains to a certain level,
at which point stubs instead of replicates are created.

Faulting objects to the proper number of levels can noticeably improve
performance. Clearly, there is a cost for faulting objects into the client
Smalltalk. This is made up of communication cost with GemStone, object
accessing in GemStone, object creation and initialization in the client Smalltalk,
and increased virtual machine requirements in the client Smalltalk as the number
of objects grows. For this reason, you should try to minimize faulting and fault in
to the client only those objects that will actually be used in the client.

On the other hand, inadequate faulting also has its penalties. In the RPC version
of GemBuilder, communication overhead is important. When fetching an
employee object, it is wasteful to stub the name and then immediately fetch the
name from GemStone. Even in the linked version, it is better to avoid creating the
stub and then invoking the fault mechanism when sending it a message.

Table 9.3 Parameter Page Control Buttons

Accept Installs a changed value in the entry field in the notebook’s
configuration.

Default Copies the default value for that parameter into the entry field.

Revert Copies the notebook’s configuration value for that parameter into
the entry field.

Performance Tuning Replication Tuning

December 2001 GemStone Systems, Inc. 9-15

Controlling the Fault Level
By default, two levels of objects are faulted with the linked version of GemBuilder,
and four levels are faulted for the RPC version. This reflects the cost of remote
procedure calls and the judgment that it is better to risk fetching unneeded objects
to avoid extra calls to GemStone.

It is possible to tune the levels of stubbing to a more optimal level with a
knowledge of the application being programmed. You can set the configuration
parameters faultLevelRpc and faultLevelLnk to a SmallInteger indicating
the number of levels to replicate when updating an object from GemStone to the
client Smalltalk. A level of 2 means to replicate the object and each object it
references, stubbing objects beyond that level. A level of 0 indicates no limit; that
is, entering 0 prevents any stubs from being created. The default for the linked
version is 2; the default for the RPC version is 4. To examine or change this
parameter, choose GemStone > Browse > Settings and select the Replication tab
in the resulting Settings Browser.

NOTE
Take care when using a level of 0 to control replication. GemStone can
store more objects than can be replicated in a client Smalltalk object
space.

Preventing Transient Stubs
If only the defaultGStoSTLevel mechanism is used to control fault levels, it is
possible to create large numbers of stubs that are immediately unstubbed.

To prevent stubbing on a class basis, reimplement the replicationSpec class
method for that class. For details, see “Replication Specifications” on page 3-21.

Setting theTraversal Buffer Size
The traversal buffer is an internal buffer that GemBuilder uses when retrieving
objects from GemStone. The larger the traversal buffer size, the more information
GemBuilder is able to transfer in a single network call to GemStone. To change its
value, send the message

 GBSM traversalBufferSize: aSmallInteger.

You can also change this value by using the Settings Browser: choose GemStone
> Browse > Settings and select the Replication tab in the resulting Settings
Browser.

Optimizing Space Management GemBuilder User Manual

9-16 GemStone Systems, Inc. December 2001

9.5 Optimizing Space Management
In normal use of GemBuilder, objects are faulted from GemStone to the client
Smalltalk on demand. In many ways, however, this is a one-way street, and the
client Smalltalk object space can only grow. Advantages can be gained if client
Smalltalk replicates can be discarded when they are no longer needed. A reduced
number of objects on the client reduces the load on the virtual machine, garbage
collection, and various other functions.

Measures you can take to control the size of the client Smalltalk object cache
include explicit stubbing, using forwarders, and not caching certain objects.

Explicit Stubbing
If the application knows that a replicate is not going to be used for a period of time,
the space taken by that object can be reclaimed by sending it the message
stubYourself. More importantly, any objects it references become candidates
for garbage collection in your client Smalltalk.

Consider having replicated a set of employees. After faulting in the set and the
objects transitively referenced from that set, the objects in the client Smalltalk look
something like this.

Figure 9.2 Employee Set Faulted into the Client Smalltalk

currentEmp

emp1

name1 address1

emp2

firstName

empn

setOfEmployees

Performance Tuning Optimizing Space Management

December 2001 GemStone Systems, Inc. 9-17

Clearly, there can be a large number of objects referenced transitively from the
employee set. If the application’s focus of interest changes from the set to, say, a
specific employee, it may make sense to free the object space used by the employee
set.

In this example, one solution is to send stubYourself to the
setOfEmployees. All employees, except those referenced separately from the
set, become candidates for garbage collection.

Of course, if the application will be referencing the setOfEmployees again in the
near future, the advantage gained by stubbing could be offset by the increased cost
of faulting later on.

Also, be aware of the difference between two ways of modifying the value of an
instance variable: by using an access method and by direct assignment. For
example, consider an object with an instance variable named instVarX. You can
assign the value 5 to instVarX in two ways:

insVarX := 5 (direct assignment)
self instVarX: 5 (access method)

When the object is replicated in your Smalltalk workspace, each of these
assigments yields the same result. When the object is represented in the Smalltalk
workspace by a stub, however, the stub must be faulted in as a replicate
(“unstubbed”) before the assignment can occur. The access method causes the
stub to be faulted in and yields the correct result. Direct assignment, however,
does not cause the stub to be faulted in and can cause errors:

self stubYourself.
self instVarX: 5. (reliable)

self stubYourself.
instVarX := 5. (unreliable)

Using Forwarders
Another solution is to declare the setOfEmployees as a forwarder. See
“Forwarders” on page 3-9.

Not Caching Selected Objects
Finally, it is possible to specify classes whose instances should not be added to the
transparency caches. You can reimplement the instance method
shouldBeCached to cause GemBuilder to not add instances of that class to the
transparency caches.

Using Primitives GemBuilder User Manual

9-18 GemStone Systems, Inc. December 2001

This can help control the size of the caches, but it would do so at the expense of
giving up two-space referential integrity for those objects, and this might not be an
acceptable side effect in certain applications.

For example, classes whose instances are modifiable should probably not return
false to this message, because any modifications to the object could not be
propagated back to the original GemStone object, as GemBuilder would have no
way of knowing which object in the repository it came from. Nor should classes
whose instances rely on their identity in any way return false to this message.

An example of a class that could be considered a candidate for returning false is
Float. If floats are omitted from the transparency caches, consider the following
subtle implications: If a float F is referenced by two other objects, A and B, then
after replicating A and B into the client Smalltalk, there will be two distinct (but
equal) copies of the object F in the client Smalltalk. If one or both of A and B are
modified in Smalltalk and flushed back to GemStone, there will now be two
distinct (but equal) copies of F in GemStone. Typically, referential integrity for
floats isn’t crucial, because comparison between floats is usually by equality rather
than identity.

9.6 Using Primitives
Sometimes there is an advantage to dropping out of Smalltalk programming and
writing methods in a lower-level language such as C. Such methods are called
primitives in Smalltalk; GemStone refers to them as user actions. There are serious
concerns when doing this. In general, such applications will be less portable and
less maintainable. However, when used judiciously, there can be significant
performance benefits.

In general, profile your code and find those methods that are heavily used to be
candidates for primitives or user actions. The trick to proper use of primitives or
user actions is to create as few as possible. Excess primitives or user actions make
the system more difficult to understand and place a heavy burden on the
maintainer.

For a description about adding primitives to your client Smalltalk, see the vendor’s
documentation. For adding user actions to GemStone, see the GemBuilder for C
user manual.

To load the user action in client Smalltalk, execute:

GBSM loadUserActionLibrary: userAction

Performance Tuning Changing the Initial Cache Size

December 2001 GemStone Systems, Inc. 9-19

9.7 Changing the Initial Cache Size
GbsSessionManager has a class variable named InitialCacheSize, which is an
integer that represents the pregrown size of the object caches whenever the caches
are initialized. The default is 5003.

For best cache performance, make InitialCacheSize a prime number.

You can change the value of InitialCacheSize by sending

GBSM initialCacheSize: newValue

or by modifying that expression in the GemStone System Workspace.

9.8 Multiprocess Applications
Some applications support multiple Smalltalk processes running concurrently in a
single image. In addition, some applications enter into a multiprocess state
occasionally when they make use of signalling and notification. Multiprocess
GemBuilder applications must exercise some precautions in order to preserve
expected behavior and data integrity among their concurrent processes.

Process-safe Transparency Caches
By default, GemBuilder uses transparency cache dictionaries that are not process-
safe. To use transparency cache dictionaries that are protected for use with
multiprocess client Smalltalk applications, you must set the GemBuilder
configuration parameter processSafeCaches to true by changing its setting in the
Settings Browser or by sending the message:

aGbsSession processSafeCaches: true

When processSafeCaches is true, subsequent logins use transparency cache
dictionaries that are protected. However, some operations take a bit longer when
using protected dictionaries.

Blocking and Nonblocking Protocol
In a linked GemBuilder session, GemStone operations execute synchronously: the
application must wait for a GemStone operation to complete before proceeding
with the execution process that called it. Synchronous operation is known in
GemBuilder as blocking protocol.

Multiprocess Applications GemBuilder User Manual

9-20 GemStone Systems, Inc. December 2001

An RPC GemBuilder session can support asynchronous operation: nonblocking
protocol. When the configuration parameter blockingProtocolRpc is false (the
default setting in RPC sessions), client Smalltalk processes can proceed with
execution during GemStone operations. A session, however, is permitted only
one outstanding GemStone operation at a time.

When blockingProtocolRpc is true, behavior is the same as in a linked session:
the execution process must wait for a GemStone call to return before proceeding.

One Process per Session
Applications that limit themselves to one process per GemStone session are
relatively easy to design because each process has its own view of the repository.
Each process can rely on GemStone to coordinate its modifications to shared
objects with modifications performed by other processes, each of which has its
own session and own view of the repository. For such applications, setting
processSafeCaches to true is the only additional precaution required. If at all
possible, try to limit your application to one process per GemStone session.

Multiple Processes per Session
Applications that have multiple processes running against a single GemStone
session must take additional precautions.

You may not have designed your application to run multiple processes under a
single GemStone session. However, if your application uses signals and notifiers,
chances are it is occasionally running two processes against a single GemStone
session. Methods that create concurrent processes include:

GbsSession
>>notificationAction:
>>gemSignalAction:
>>signaledAbortAction:

When the specified event occurs, the block you supply to these methods runs in a
separate process. Unless your main execution process is idle when these events
occur, you need to take the same precautions as any other application running
multiple processes against a single session.

Performance Tuning Multiprocess Applications

December 2001 GemStone Systems, Inc. 9-21

Applications that have multiple processes running against a single GemStone
session should take these additional precautions:

 • coordinate transaction boundaries

 • coordinate flushing

 • coordinate faulting

GemBuilder provides a method, GbsSession>>critical: aBlock, that
evaluates the supplied block under the protection of a semaphore that is unique to
that session. The best approach to creating an application that must support more
than one process interacting with a single GemStone session is to organize its
logical transactions into short operations that can be performed entirely within the
protection of GbsSession>>critical:. All of that session’s commits, aborts,
executes, forwarder sends, flushes and faults should be performed within
GbsSession>>critical: blocks.

For example, a block that implements a writing transaction will typically start with
an abort, make object modifications, and then finish with a commit. A block that
implements a reading transaction might start with an abort, perhaps perform a
GemStone query, and then maybe display the result in the user interface.

Coordinating Transaction Boundaries

Multiple processes need to be in agreement before a commit or abort occurs. For
example, suppose two processes share a single GemStone session. If one process
is in the process of modifying a set of persistent objects and a second process
performs a commit, the committed state of the repository will contain a logically
inconsistent state of that set of objects.

The application must coordinate transaction boundaries. One way to do this is to
make one process the transaction controller for a session, and require that all other
processes sharing that session request that process for a transaction state change.
The controller process can then be blocked from performing that change until all
other processes using that session have relinquished control by menas of some
semaphore protocol.

Coordinating Flushing

GemBuilder’s transparency mechanism flushes dirty objects to GemStone
whenever a commit, abort, GemStone execution or forwarder send occurs.
Whenever a process modifies persistent objects, it must protect against other
processes performing operations that trigger flushing of dirty objects to
GemStone. The risks are that a flush may catch a logically inconsistent state of a

Multiprocess Applications GemBuilder User Manual

9-22 GemStone Systems, Inc. December 2001

single object, or might cause GemBuilder to mark an object “not dirty” without
really flushing it.

To control when flushing occurs, perform update operations within a block passed
to GbsSession>>critical:.

Coordinating Faulting

If two processes send a message to a stub at roughly the same time, one of the
processes can receive an incomplete view of the contents of the object. This results
in doesNotUnderstand errors which cannot be explained by looking at them under
a debugger, because by the time it is visible in the debugger, the object has been
completely initialized. Unstubbing conflicts can be avoided by encapsulating
potential unstubbing operations within the protection of a
GbsSession>>critical: block.

Chapter

December 2001 GemStone Systems, Inc. 10-1

10 Nontransparent
Access to GemStone
Objects

In this chapter, we discuss some very low-level approaches to tuning GemBuilder
applications. To varying degrees, each of these approaches ignores automatic
GemBuilder transparency and bypasses the encapsulation provided by object-
oriented programming. We do not recommend using these techniques until all
other approaches have been evaluated and found lacking.

Nontransparency: General Principles
presents some concepts that are fundamental to other topics in the chapter,
such as flushing and faulting, and public and private classes.

Delegate Objects
introduces one of GemBuilder’s main mechanisms for controlling
transparency.

Structural Access to GemStone Objects
discusses how to fetch bytes from, or store bytes into, GemStone objects
directly.

Executing GemStone Host File Access Methods
lists certain GemStone Smalltalk methods that can be used to access the host
operating system or the host file system.

Nontransparency: General Principles GemBuilder User Manual

10-2 GemStone Systems, Inc. December 2001

There are several code examples in this chapter. If you want to experiment with
them, we suggest you file the goodies nontrans.gs and nontrans.st into your
image:

 • First, file nontrans.gs into GemStone. This file contains classes and methods
in support of the code examples in this chapter.

 • Then file nontrans.st into your client Smalltalk to open a workspace that
contains the code examples so you can execute and inspect them.

10.1 Nontransparency: General Principles
Under normal operating conditions, GemBuilder makes shared object access as
transparent as possible. That is, shared objects from the object server appear for
most purposes to be local to your application’s Smalltalk image. Changes made to
locally-visible shared objects are propagated automatically to the object server,
and changes made by other users become visible to you with only minor
intervention on your part.

GemBuilder’s transparency features provide both convenience for the developer
and data integrity for the application, but they do incur some overhead. The
optimizations in this chapter can offer some efficiency gains, but you, as the
developer, must give up some convenience and take responsibility for some of the
automatic object integrity features you choose to bypass.

We recommend that you confine such optimizations to a small number of
performance-critical operations, implement them carefully, and comment your
work clearly to avoid potential maintenance and upgrade problems in the future.

Flushing and Faulting Nontransparent Objects
Chapter 4 discussed how a replicate created in client Smalltalk can maintain a link
to a GemStone Smalltalk object so that changes in either the GemStone Smalltalk
or the client Smalltalk object could propagate to the other. Figure 10.1 illustrates
this.

Nontransparent Access to GemStone Objects Nontransparency: General Principles

December 2001 GemStone Systems, Inc. 10-3

Figure 10.1 Transparent Object

When transparency is bypassed, the replication is the same, but the links are gone,
as shown in Figure 10.2.

Figure 10.2 Nontransparent Objects

When you work with nontransparent objects, you will need to take on the
responsibility of triggering flushing and faulting. Before you access a GemStone
object you will want to be sure that any local changes have been flushed. After
accessing the object, you will want to update the local replicate if it changed.

In general, you should be sure to:

 • flush objects before a fetch, and

 • fault objects after a store.

GemStoneclient Smalltalk

GemStoneclient Smalltalk

Nontransparency: General Principles GemBuilder User Manual

10-4 GemStone Systems, Inc. December 2001

To explicitly flush all dirty client objects in a specific session, use:

aGbsSession flushDirtyToGS

This message can also be sent to the session manager, which passes it along to the
current session:

GBSM flushDirtyToGS

To flush an individual object, send it the message putInGS. This message has no
effect if the object is not dirty.

To fault an individual object from GemStone, use one of the following messages:

stubYourself
updateFromGS

The first, stubYourself, unconditionally converts the object to a stub that will
be faulted the next time it receives a message. The second, updateFromGS, will
either create a stub or update the object, based on its fault policy.

Public and Private Classes and Methods
GemBuilder adds many classes and methods to your client Smalltalk image. Most
of these we consider public, which means that you are free to use them directly in
your applications, knowing that GemStone will support them from release to
release. Other classes and methods we consider private; avoid using private
classes and methods because they may have undocumented side effects, and
because they are subject to change from release to release.

A GemBuilder class is private if its name begins with the prefix Gbx. GemBuilder
methods can be marked private in any of several ways:

 • The names of private methods in base class extensions begin with the prefix
gbx.

 • Some methods specify they are private in the method comment.

 • Other methods are categorized as private either in a method category, or an
ENVY category, marked “private.”

Specifying a Session
Many of the methods mentioned in this chapter are sent to instances of GbsSession.
Like the flushDirtyToGS example shown earlier in this chapter, any message

Nontransparent Access to GemStone Objects Delegate Objects

December 2001 GemStone Systems, Inc. 10-5

that can be sent to a specific session can also be sent to the GBSM session manager,
which passes the message to the current session:

aGbsSession flushDirtyToGS receiver is aGbsSession
GBSM flushDirtyToGS receiver is current session

We recommend that you send messages, when possible, to specific sessions, rather
than to the session manager. Sending messages to specific sessions is more reliable
(because the current session can change asynchronously under some
circumstances) and more efficient (because there is one less level of indirection).

The examples in the rest of this chapter use specific sessions as the receivers of
session messages. Most of them can be recoded to send messages to the GBSM
session manager, if necessary.

10.2 Delegate Objects
Instances of GbsObject are a way for your client Smalltalk application to refer to
local objects associated with objects in the GemStone repository. Through these
instances of GbsObject, the client Smalltalk objects can send messages to
GemStone objects, bypassing any local forwarders, stubs, or replicates.

Get a GbsObject by:

 • sending asGSObject to an existing replicate of a GemStone object;

 • using a predefined GbsObject for kernel objects; or

 • searching the GemStone symbol list using the resolveSymbol: protocol.

A client Smalltalk program can gain access to those named GemStone objects
by sending one of the following messages:

aGbsSession resolveSymbol: objectName
aGbsSession resolveSymbol: objectName ifAbsent: exceptionBlock

These messages return instances of class GbsObject to act for the sought-
after GemStone objects. For example, the following expression finds the object
named UserGlobals in the user’s symbol list and return a GbsObject for it:

aDelegateObjectForUserGlobals :=
aGbsSession resolveSymbol: #UserGlobals

Although you can use resolveSymbol: to obtain a local object
corresponding to any named GemStone object, it would be inefficient (not to
mention inconvenient) if you had to make a network call to GemStone each
time you wanted to refer to one of the well-known, unchanging GemStone

Delegate Objects GemBuilder User Manual

10-6 GemStone Systems, Inc. December 2001

kernel objects. Therefore, GemBuilder provides a dictionary called
SpecialGemStoneObjects that contains instances of GbsObject
representing all of the GemStone kernel classes in the GemStone repository, as
well as the GemStone values nil, true, and false, and the GemStone error
dictionaries.

Each local delegate for a kernel object is named in SpecialGemStoneObjects by
the name of the GemStone object it represents, prefixed by the letter “O.” For
example, ODictionary refers to the local delegate for the GemStone
Dictionary class object, Onil refers to the local delegate for GemStone nil,
and Otrue refers to the local delegate for the GemStone value true.

You can use SpecialGemStoneObjects as a pool dictionary in your client
Smalltalk classes to give their methods access by name to the set of basic
GemStone objects. For your convenience during exploration and debugging,
names defined in SpecialGemStoneObjects are also recognized in the
GemStone Workspace. For example, if you had defined a GemStone object
named “MyBoolean,” then you could execute this expression in a GemStone
Workspace:

(aGbsSession resolveSymbol: 'MyBoolean') = Otrue

(Two instances of GbsObject are equal if they represent the same GemStone
object.)

Appendix A of this manual, “GemBuilder Classes and GbsObjects,” lists the
GemStone objects that are defined in SpecialGemStoneObjects.

Sending Messages Through GbsObject Delegates
GemBuilder provides two mechanisms for sending messages to GemStone objects
through their GbsObject delegates: remotePerform: messages and “trap-
door” message-passing.

The remotePerform: message is used like the standard Smalltalk perform:
message. There are four versions of this message:

remotePerform: aSelector
remotePerform: aSelector with: anArg
remotePerform: aSelector with: firstArg with: secondArg
remotePerform: aSelector withArgs: argArray

For example, you could send the GemStone Smalltalk message new to the class
Array as shown in Example 10.1:

Nontransparent Access to GemStone Objects Delegate Objects

December 2001 GemStone Systems, Inc. 10-7

Example 10.1

| myGSArray mySession |
mySession := GBSM currentSession.
myGSArray :=
 (mySession resolveSymbol: 'Array') remotePerform: #new.
myGSArray

Actually, because GemBuilder provides a predefined delegate for each GemStone
kernel object, you can simplify the expression by using the predefined OArray
surrogate, instead of creating a new delegate with the resolveSymbol:message
(Example 10.2).

Example 10.2

myGSArray := OArray remotePerform: #new.

You can also communicate with GemStone objects more naturally by sending
“trap-door” messages. These are ordinary client Smalltalk messages that begin
with the characters gs. When a delegate object does not understand a message, it
checks for the gs prefix. If the delegate finds that prefix, it removes the gs and
passes the message along to its corresponding GemStone object for execution in
GemStone.

Example 10.3 is equivalent to Example 10.1:

Example 10.3

| myGSArray |
myGSArray := OArray gsnew.

The following two expressions are also equivalent:

myGSArray remotePerform: #at:put: with: 1 with: 10
myGSArray gsat: 1 put: 10

In both styles of message passing, the selector (remotePerform: or gsat:put:)
is a local client Smalltalk Symbol object and the arguments can be either instances
of GbsObject or client Smalltalk objects. If arguments are client Smalltalk
objects, they are flushed to the repository before the message is sent. In either case,
the result of the message is a GbsObject.

Delegate Objects GemBuilder User Manual

10-8 GemStone Systems, Inc. December 2001

Special Treatment of Binary Selectors
The client Smalltalk compiler does not allow any of the following binary selector
characters in unary or keyword selectors:

! @ & * - + | \ / < > , ~

This means that you must use remotePerform: to send binary GemStone
Smalltalk messages rather than using trap door messages. For example, given two
delegates representing instances of GemStone Number, the following expression
asks whether one is less than the other:

aGbsInteger1 remotePerform: #< with: aGbsInteger2

The following is not legal in client Smalltalk:

aGbsInteger1 gs< aGbsInteger2

Sending Code to Gemstone for Execution
In addition to forwarding messages to be executed through delegate objects, your
Smalltalk application can also send strings of GemStone Smalltalk code to
GemStone for compilation and execution. The expression

aGbsSession execute: aString

tells GemStone to compile and execute the GemStone Smalltalk code contained in
aString, and to return a GbsObject representing the result of that execution. The
code in aString may be a message expression or a statement. For example, the
following client Smalltalk code installs a new GemStone Set in the dictionary
UserGlobals:

aGbsSession execute: 'UserGlobals at: #MySet put: Set new'.

In comparison with remotePerform:, the execute: method incurs additional
overhead because it invokes the GemStone Smalltalk compiler. Nonetheless, it
sometimes provides an attractive alternative to the remote message-passing
mechanism without noticeably slowing your application.

The execute:message provides a useful way of getting around some limitations
of the remote message-passing mechanism. Suppose, for example, that you
wanted to trigger an indexed search of a GemStone Set. Because there is no client
Smalltalk equivalent of a selection block, you could not simply build a literal
selection block and use it as an argument to gsselect:. You can, however,
create delegates for both the collection and the selection block, then instruct
GemStone to perform the operation and return its results, also as a delegate:

Nontransparent Access to GemStone Objects Delegate Objects

December 2001 GemStone Systems, Inc. 10-9

Example 10.4

| empSetDelegate aSelBlockDelegate selResultDelegate mySession |

mySession := GBSM currentSession.

"Get a delegate for the set of Employees"
empSetDelegate := mySession resolveSymbol: #MyEmps.

"Make a GemStone SelectionBlock and get a delegate for it"
aSelBlockDelegate := mySession execute:

'{:each | each.name.first = ''Joebob''}'.

"Execute the query"
selResultDelegate := empSetDelegate gsselect: aSelBlockDelegate.
selResultDelegate

To perform a selection based on a client Smalltalk String provided by your
application’s user, you might build up the argument to execute: progressively,
as in the method in Example 10.5.

Delegate Objects GemBuilder User Manual

10-10 GemStone Systems, Inc. December 2001

Example 10.5

| empSetDelegate aSelBlockDelegate selResultDelegate nameString
queryString mySession |

mySession := GBSM currentSession.

"Get a delegate for the set of Employees"
empSetDelegate := mySession resolveSymbol: 'MyEmps'.
nameString := 'Joebob'.

"Build up a String representing a selection block, inserting the
nameString passed by our user into the appropriate place in the
predicate"
queryString := '{:each | each.name.first = '''.
queryString := queryString, nameString, '''}'.

"Make a GemStone SelectionBlock and get a delegate for it"
aSelBlockDelegate := mySession execute: queryString.

"Execute the query"
^selResultDelegate := empSetDelegate gsselect: aSelBlockDelegate.

Converting GbsObjects to Replicates
A GbsObject cannot be used as an ordinary replicate object can. It is useful only
with the messages defined earlier in this section. After using a GbsObject to
execute GemStone Smalltalk code in GemStone, the result is returned as a
GbsObject.

To create a replicate from a GbsObject and continue local execution of messages,
you can send asLocalObject to the instance of GbsObject.

Nontransparent Access to GemStone Objects Structural Access to GemStone Objects

December 2001 GemStone Systems, Inc. 10-11

10.3 Structural Access to GemStone Objects
GbsObjectprovides a set of structural access methods. These methods enable you
to examine and modify the internal structures of GemStone objects without
sending GemStone Smalltalk messages, and they allow you to create new instances
of GemStone classes without executing any GemStone instance creation methods.

You may need to use structural access methods if speed is your primary
concern. By calling on GemStone’s internal object manager without invoking the
GemStone Smalltalk interpreter, structural access methods provide the most
efficient possible access to individual GemStone objects. However, use these
methods only if you’ve determined that GemStone message-passing is too slow.

There are four groups of structural access methods. Each group of methods is
specialized for fetching from or storing in different kinds of instance variables with
different storage types (see the GemStone Programming Guide for details about
storage types).

There is, for example, a group of methods you can use for fetching and storing
indexable pointer instance variables. Example 10.6 uses several of those methods:

Example 10.6

| myGSArray mySession |

mySession := GBSM currentSession.

"Make a new GemStone Array"
myGSArray := mySession execute: 'Array new: 30'.

"Fetch the object at position 1"
myGSArray fetchVaryingOOPAt: 1.

"Fetch 2 objects starting at position 1"
myGSArray fetch: 2 idxOOPsAt: 1.

"Store the GemStone object nil at position 30"
myGSArray storeIdxOOP: (ONil) at: 30.

Each of the structural access fetching methods either returns an instance of
GbsObject or an Array of GbsObjects.

Structural Access to GemStone Objects GemBuilder User Manual

10-12 GemStone Systems, Inc. December 2001

There are similar methods for fetching from and storing in named and anonymous
(unordered) pointer instance variables and for accessing byte objects such as
Strings.

Example 10.7

| aGbsString aGbsIDBag mySession |

mySession := GBSM currentSession.

aGbsString := mySession execute: 'String new: 100'.
aGbsIDBag := mySession execute: 'IdentityBag new'.

"Fetch the first 3 characters of a String"
aGbsString fetch: 3 charsAt: 1.

"Store a new String in an existing String,overwriting the
 existing characters starting at position 50"
aGbsString storeChars: 'All''s well that ends in H.G.Wells'
at: 50.

"Since we can't refer to elements of IdentityBags and
 IdentitySets by indexes, we use methods that add or
 remove specific objects by identity"
aGbsIDBag addOOP: Otrue.
aGbsIDBag removeOOP: Otrue.
aGbsIDBag

The method fetch:charsAt: returns a client Smalltalk String representing the
Characters fetched from GemStone. The methodstoreChars:at: translates the
client Smalltalk String given as its argument into an equivalent GemStone String
before doing the storage into the repository.

For a complete listing and descriptions of the structural access methods, use the
Smalltalk browser to browse the GbsObject class.

NOTE
When you add elements to a GemStone UnorderedCollection (a Bag, Set,
or Dictionary) using a GemBuilder for Smalltalk structural access call
such as addOOPs:, the OOPs are not immediately added to the
collection. To get around this problem, after using one or more
GemBuilder for Smalltalk structural access calls such as GbsObject >>

Nontransparent Access to GemStone Objects Executing GemStone Host File Access Methods

December 2001 GemStone Systems, Inc. 10-13

addOOPs: or replaceOOPs: to store into a GemStone
UnorderedCollection, you must send processDeferredUpdates
to the GbsSession to which those objects belong. Before sending
processDeferredUpdates, you must ensure that none of the
objects stored into those collections are forward references—they must be
fully-created, initialized objects.

Changes to UnorderedCollections made using structural access calls are
not visible until after processDeferredUpdates has been called.
If you commit the session without calling
processDeferredUpdates, it is called for you automatically.

You can also make nontransparent copies, as described in “Client Copies” on
page 3-37.

10.4 Executing GemStone Host File Access Methods
If you execute an GemStone host file access method (as listed below) without
supplying an explicit path specification as part of the method argument, the
default directory for the GemStone method depends on the type of Gem that you
are running. With a linked version, the default directory is the directory in which
the client Smalltalk virtual machine was started. With a remote Gem, the default
directory is the $HOME directory of the host user account.

Here is a list of the GemStone methods that are affected:

String | toServerTextFile:
String (C) | fromServerTextFile:
System (C) | contentsOfServerDirectory:
System (C) | deleteServerFile:
System (C) | performOnServer:

Executing GemStone Host File Access Methods GemBuilder User Manual

10-14 GemStone Systems, Inc. December 2001

Chapter

December 2001 GemStone Systems, Inc. 11-1

11 Error-handling

This chapter discusses errors: how to handle them and how to recover from them.

Error-handling and Recovery
explains how GbsError objects are created and used.

User-defined Errors
explains how to define and signal your own errors.

11.1 Error-handling and Recovery
An instance of GbsError is created when GemBuilder encounters a GemStone
error. Each GbsError can represent itself as an exception. Your application can use
these exceptions to perform client Smalltalk exception-handling. When an error is
detected, GemBuilder creates an instance of GbsError and raises its signal.

Error-handlers in your application are typically stack-based, but you may wish to
install a session-based error-handler instead of, or in addition to, stack-based error
handlers. Finally, if no handler is defined, the default handler opens adebugger.

Error-handling and Recovery GemBuilder User Manual

11-2 GemStone Systems, Inc. December 2001

Stack-based Error-handling
You can use the on:do: method to install error handlers to anticipate specific
GemStone errors, as shown in Example 11.1.

Example 11.1

[GBSM execute: '#(1 2 3) at: 4']
 on: (GbsError signalFor: #objErrBadOffsetIncomplete)
 do: [:sig |
 sig halt: 'proceed to inspect bad offset error.'.
 sig originator inspect]

You can also create a handler to check for any GemStone error that falls in one of
the following categories:

#compilerErrorSignal
#abortingErrorSignal
#interpreterErrorSignal
#fatalErrorSignal
#eventErrorSignal

For instance, this will handle any GemStone Smalltalk compiler error:

[. . .]
 on: (GbsError signalFor: #compilerErrorSignal)
 do: [:ex|. . .]

You can also create a handler to check for multiple errors:

[. . .]
on: (GbsError signalFor:#interpreterErrorSignal),
 (GbsError signalFor: #rtErrAbortTrans)

do: [:ex| . . .]

Session-based Error-handling
You can define an error-handler that is global to your entire session instead of
being installed in an active context. For example:

Error-handling Error-handling and Recovery

December 2001 GemStone Systems, Inc. 11-3

Example 11.2

GBSM currentSession
onEventSignal: (GbsError signalFor: #objErrBadOffsetIncomplete)
handle: [:sig |

 sig halt: 'proceed to inspect bad offset error.'.
 sig originator inspect]

raiseException: true

User-defined Errors
You can define and signal your own errors in GemStone. For more information on
how to do this, see the GemStone Programming Guide.

In a GemBuilder application, you define a generic GemStone error-handler by
defining a standard client Smalltalk signal handler on the signal GbsError
errorSignal. This handles any GemStone error, including user-defined errors.

If you want to define a client Smalltalk exception handler for a specific user-
defined error, you will need to register an exception, GemStone error number, and
a symbol representing that error with GbsError. To do this, send
GbsError class>>defineErrorNumber:name:signal:.

For example, suppose you have created a GemStone user-defined error as follows:

Example 11.3

"In GemStone"
| myErrors |
myErrors := LanguageDictionary new.
UserGlobals at: #MyErrors put: myErrors.
myErrors at: #English put: (Array new: 10).
(myErrors at: #English)

at: 10
put: #('My new error with argument ' 1).

In Smalltalk, the following code would signal your newly created error:

GBSM execute: 'System signal: 10
args: #[46] signalDictionary: MyErrors'

Detecting GemStone Interrupts GemBuilder User Manual

11-4 GemStone Systems, Inc. December 2001

A generic signal-handler for all GemStone errors would trap this signal:

^[GBSM execute: 'System signal: 10
args: #[46]
signalDictionary: MyErrors']

on: GbsError errorSignal
do: [:ex | ex return: #handled].

To explicitly handle your new error in client Smalltalk, you first need to define a
name and signal for it. The new signal should inherit from GbsError errorSignal.

GbsError
defineErrorNumber: 10
name: #myNewError
signal: GbsError errorSignal newChild.

So now, to explicitly handle your new error from client Smalltalk:

Example 11.4

^[GBSM execute: 'System signal: 10 args: #[46]
signalDictionary: MyErrors']

on: (GbsError signalFor: #myNewError)
do: [:ex | ex return: #handled]

For information on how to create GemStone error dictionaries and how to handle
GemStone errors (predefined and user-defined) within the GemStone
environment, see the chapter entitled “Handling Errors” in the GemStone
Programming Guide.

For more information about defining error handlers in the client Smalltalk, refer to
your client Smalltalk documentation on exception-handling.

11.2 Detecting GemStone Interrupts
Interrupt detection allows a soft break after one hard-break character (formerly
Control-c), and a hard break after three. GemBuilder uses the native client
Smalltalk handler for such interrupts, which can be detected only in RPC
nonblocking mode.

Appendix

December 2001 GemStone Systems, Inc. A-1

A GemBuilder
Classes and
GbsObjects

A.1 Special GemBuilder Classes
Besides defining classes for the GemStone browsers and tools and managing
sessions, GemBuilder adds a number of classes to the client Smalltalk hierarchy to
allow your Smalltalk application to communicate with a GemStone
repository. These classes are concerned with raising GemStone errors, connecting
corresponding objects in the client Smalltalk and in GemStone, and providing
direct access to the low-level structure of GemStone objects.

Class for Raising Errors
GemBuilder adds a client Smalltalk class named GbsError to raise errors.

An instance of class GbsError represents a GemStone error. Every GbsError is able
to raise itself as a signal in the client Smalltalk. When a GemStone error is
detected, GemBuilder creates an instance of GbsError and raises its signal.

Classes for Connecting Objects
GemBuilder adds a number of classes to the client Smalltalk class hierarchy that
provide functionality for establishing connections between
objects. GbsConnector is an abstract superclass for a hierarchy of classes whose

Special GemBuilder Classes GemBuilder User Manual

A-2 GemStone Systems, Inc. December 2001

instances describe how to connect a GemStone and a client Smalltalk
object. Connectors are described in detail in Chapter 4. The connector hierarchy
is:

GbsConnector
GbsFastConnector
GbsNameConnector

GbsClassConnector
GbsClassVarConnector

GbsClassInstVarConnector

Class for Forwarding Messages
GemBuilder also provides a class that can minimize the overhead of replication by
forwarding messages to be executed in a GemStone object.

GbsForwarder
A forwarder is a client Smalltalk object that responds to most messages by
sending them on to its corresponding GemStone object. Results are returned
to the forwarder, which then can return them as either client Smalltalk objects
or other forwarders.

Class for Providing Structural Access
Instances of GbsObject act as proxies for GemStone objects. These proxies can be
sent messages that perform structural access, traversal, GemStone message sends,
or general inquiries. See Chapter 10 for a complete discussion.

GemBuilder Classes and GbsObjects Reserved OOPs

December 2001 GemStone Systems, Inc. A-3

A.2 Reserved OOPs
In order to allow your client Smalltalk application program to refer to predefined
GemStone objects, GbsSessionManager’s initialize method creates the pool
dictionary SpecialGemStoneObjects, then adds the following objects to that
dictionary:

 • the values Onil, Otrue, and Ofalse (nil, true, and false)

 • OIllegal, a value sometimes used for representing an illegal or
inappropriate attempt to fetch an object.

 • the GemStone kernel classes (Oclassname)

 • the GemStone error dictionary (OGemStoneErrorCategory)

Illegal object — OIllegal

Nil (UndefinedObject) — Onil

Booleans— Ofalse, Otrue

GemStone Kernel Classes—

OAbstractCharacter
OAbstractCollisionBucket
OAbstractDictionary
OAbstractUserProfileSet
OAllClusterBuckets
OArray
OAssociation
OAutoComplete
OBag
OBasicSortNode
OBehavior
OBlockClosure
OBoolean
OByteArray
OCanonicalStringDictionary
OCharacter
OCharacterCollection
OClampSpecification
OClass
OClassHistory
OClassOrganizer

OClassSet
OClientForwarder
OClusterBucket
OClusterBucketArray
OCollection
OComplexBlock
OComplexVCBlock
ODatabaseConversion
ODate
ODateTime
ODecimalFloat
ODictionary
ODoubleByteString
ODoubleByteSymbol
OEUCString
OEUCSymbol
OEmptyInvariantArray
OEmptyInvariantString
OException
OExecutableBlock
Ofalse

Reserved OOPs GemBuilder User Manual

A-4 GemStone Systems, Inc. December 2001

OFloat
OFraction
OGsClassDocumentation
OGsCloneList
OGsCurrentSession
OGsDocText
OGsFile
OGsInterSessionSignal
OGsMethod
OGsMethodDictionary
OGsProcess
OGsRemoteSession
OGsSession
OGsSocket
OGsStackBuffer
OGsTransactionalSession
OISOLatin
OIdentityBag
OIdentityDictionary
OIdentityKeyValueDictionary
OIdentitySet
OIllegal
OInteger
OIntegerKeyValueDictionary
OInterval
OInvariantArray
OInvariantEUCString
OInvariantString
OKeyValueDictionary
OLanguageDictionary
OLargeNegativeInteger
OLargePositiveInteger
OMagnitude
OMetaclass
Onil
ONumber
OObject
OOrderedCollection
OPassiveObject
OPositionableStream
OProfMonitor
ORcCollisionBucket

ORcCounter
ORcIdentityBag
ORcKeyValueDictionary
ORcPipe
ORcPositiveCounter
ORcQueue
OReadStream
ORedoLog
ORepository
OSegment
OSegmentSet
OSelectBlock
OSequenceableCollection
OSet
OSimpleBlock
OSmallFloat
OSmallInteger
OSortNode
OSortedCollection
OStream
OString
OStringKeyValueDictionary
OStringPair
OStringPairSet
OSymbol
OSymbolAssociation
OSymbolDictionary
OSymbolKeyValueDictionary
OSymbolList
OSymbolSet
OSystem
OTime
Otrue
OUndefinedObject
OUnorderedCollection
OUserProfile
OUserProfileSet
OUserSecurityData
OVariableContext
OWriteStream
OEmptySymbol

Appendix

December 2001 GemStone Systems, Inc. B-1

B Packaging
Runtime
Applications

Use the following guidelines when packaging a client Smalltalk application that
uses GemBuilder to access GemStone.

B.1 Prerequisites
In addition to code required by your application, the packaged image must contain
the application or parcel GbsRuntime, which contains the system code modified
for GemBuilder.

In order to ensure that your image initializes correctly, your application must
specify GbsRuntime as a prerequisite.

Do not include the application or parcel GbsTools. These are subclasses of classes
that will be deleted during the packaging process.

Names
Ensure that your image is packaged to include class pool dictionaries and instance
variable names and does not remove them.

Packaging GemBuilder User Manual

B-2 GemStone Systems, Inc. December 2001

Replicating Blocks
To ensure that your application behaves in the same manner as it did in the
development environment, we recommend that you include the compiler.

Defunct Stubs and Forwarders
Defunct stubs and forwarders cause problems during packaging. To avoid these
problems, start with new client image as shipped from your client Smalltalk
vendor.

Shared Libraries
A deployed runtime application that uses GemBuilder needs to contain all the
shared libraries from the GemBuilder /bin directory, as well as englisxx.err
(where xx is the release number).

If you are logging in only remote sessions, set the GemBuilder configuration
parameter loginLinkedIfAvailable to false in your image; you can then omit
the file gcilwxx.dll (Windows-based systems) or gcilwxx.so (Solaris) or
gcilwxx.sl (HP-UX).

B.2 Packaging
Step 1. Open a new client image as shipped from your client Smalltalk vendor.

Step 2. Ensure that you have satisfied the prerequisites given above.

Step 3. Load your application code.

Step 4. Follow the packaging instructions given by your Smalltalk vendor.

Appendix

December 2001 GemStone Systems, Inc. C-1

C Network Resource
String Syntax

This appendix describes the syntax for network resource strings. A network
resource string (NRS) provides a means for uniquely identifying a GemStone file
or process by specifying its location on the network, its type, and authorization
information. GemStone utilities use network resource strings to request services
from a NetLDI.

C.1 Overview
One common application of NRS strings is the specification of login parameters for
a remote process (RPC) GemStone application. An RPC login typically requires
you to specify a GemStone repository monitor and a Gem service on a remote
server, using NRS strings that include the remote server’s hostname. For example,
to log in from Topaz to a Stone process called “gemserver60” running on node
“handel”, you would specify two NRS strings:

topaz> set gemstone !@handel!gemserver60
topaz> set gemnetid !@handel!gemnetobject

Defaults GemBuilder User Manual

C-2 GemStone Systems, Inc. December 2001

Many GemStone processes use network resource strings, so the strings show up in
places where command arguments are recorded, such as the GemStone log file.
Looking at log messages will show you the way an NRS works. For example:

Opening transaction log file for read,
filename = !tcp@oboe#dbf!/user1/gemstone/data/tranlog0.dbf

An NRS can contain spaces and special characters. On heterogeneous network
systems, you need to keep in mind that the various UNIX shells have their own
rules for interpreting these characters. If you have a problem getting a command
to work with an NRS as part of the command line, check the syntax of the NRS
recorded in the log file. It may be that the shell didn’t expand the string as you
expected.

NOTE
Before you begin using network resource strings, make sure you
understand the behavior of the software that will process the command.

See each operating system’s documentation for a full discussion of its own rules.
For example, under the UNIX C shell, you must escape an exclamation point (!)
with a preceding backslash (\) character:

% waitstone \!tcp@oboe\!gemserver60 -1

If there is a space in the NRS, you can replace the space with a colon (:), or you can
enclose the string in quotes (" "). For example, the following network resource
strings are equivalent:

% waitstone !tcp@oboe#auth:user@password!gemserver60

% waitstone "!tcp@oboe#auth user@password!gemserver60"

C.2 Defaults
The following items uniquely identify a network resource:

● communications protocol— such as TCP/IP, DECnet, or SNA

● destination node—the host that has the resource

● authentication of the user—such as a system authorization code

● resource type—such as server, database extent, or task

● environment—such as a NetLDI, a directory, or the name of a log file

● resource name—the name of the specific resource being requested.

Network Resource String Syntax Notation

December 2001 GemStone Systems, Inc. C-3

A network resource string can include some or all of this information. In most
cases, you need not fill in all of the fields in a network resource string. The
information required depends upon the nature of the utility being executed and
the task to be accomplished. Most GemStone utilities provide some context-
sensitive defaults. For example, the Topaz interface prefixes the name of a Stone
process with the #server resource identifier.

When a utility needs a value for which it does not have a built-in default, it relies
on the system-wide defaults described in the syntax productions in “Syntax” on
page C-4. You can supply your own default values for NRS modifiers by defining
an environment variable named GEMSTONE_NRS_ALL in the form of the nrs-
header production described in the Syntax section. If GEMSTONE_NRS_ALL
defines a value for the desired field, that value is used in place of the system
default. (There can be no meaningful default value for “resource name.”)

A GemStone utility picks up the value of GEMSTONE_NRS_ALL as it is defined
when the utility is started. Subsequent changes to the environment variable are not
reflected in the behavior of an already-running utility.

When a client utility submits a request to a NetLDI, the utility uses its own defaults
and those gleaned from its environment to build the NRS. After the NRS is
submitted to it, the NetLDI then applies additional defaults if needed. Values
submitted by the client utility take precedence over those provided by the NetLDI.

C.3 Notation
Terminal symbols are printed in boldface. They appear in a network resource
string as written:

#server

Nonterminal symbols are printed in italics. They are defined in terms of terminal
symbols and other nonterminal symbols:

username ::= nrs-identifier

Items enclosed in square brackets are optional. When they appear, they can appear
only one time:

address-modifier ::= [protocol] [@ node]

Items enclosed in curly braces are also optional. When they appear, they can
appear more than once:

nrs-header ::= ! [address-modifier] {keyword-modifier} !

Syntax GemBuilder User Manual

C-4 GemStone Systems, Inc. December 2001

Parentheses and vertical bars denote multiple options. Any single item on the list
can be chosen:

protocol ::= (tcp | decnet | serial | default)

C.4 Syntax
nrs ::= [nrs-header] nrs-body

where:

nrs-header ::= ! [address-modifier] {keyword-modifier} [resource-modifier]!
All modifiers are optional, and defaults apply if a modifier is omitted. The
value of an environment variable can be placed in an NRS by preceding the
name of the variable with “$”. If the name needs to be followed by
alphanumeric text, then it can be bracketed by “{” and “}”. If an environment
variable named foo exists, then either of the following will cause it to be
expanded: $foo or ${foo}. Environment variables are only expanded in the
nrs-header. The nrs-body is never parsed.

address-modifier ::= [protocol] [@ node]
Specifies where the network resource is.

protocol ::= (tcp | decnet | serial | default)
Supports heterogeneous connections by predicating address on a network
type. If no protocol is specified, GCI_NET_DEFAULT_PROTOCOL is used.
On UNIX hosts, this default is tcp.

node ::= nrs-identifier
If no node is specified, the current machine’s network node name is used. The
identifier may also be an Internet-style numeric address. For example:

!tcp@120.0.0.4#server!cornerstone

nrs-identifier ::= identifier
Identifiers are runs of characters; the special characters !, #, $, @, ^ and white
space (blank, tab, newline) must be preceded by a “^”. Identifiers are words in
the UNIX sense.

keyword-modifier ::= (authorization-modifier | environment-modifier)
Keyword modifiers may be given in any order. If a keyword modifier is
specified more than once, the latter replaces the former. If a keyword modifier
takes an argument, then the keyword may be separated from the argument by
a space or a colon.

Network Resource String Syntax Syntax

December 2001 GemStone Systems, Inc. C-5

authorization-modifier ::= ((#auth | #encrypted) [:] username [@ password] | #krb)
#auth specifies a valid user on the target network. A valid password is needed
only if the resource type requires authentication. #encrypted is used by
GemStone utilities. If no authentication information is specified, the system
will try to get it from the .netrc file. This type of authorization is the default.

#krb specifies that kerberos authentication is to be used instead of a user name
and password.

username ::= nrs-identifier
If no user name is specified, the default is the current user.
(See the earlier discussion of nrs-identifier.)

password ::= nrs-identifier
If no password is specified, the system will try to obtain it from the user’s
.netrc file. (See the earlier discussion of nrs-identifier.)

environment-modifier ::= (#netldi | #dir | #log) [:] nrs-identifier
#netldi causes the named NetLDI to be used to service the request. If no
NetLDI is specified, the default is netldi60. (See the earlier discussion of
nrs-identifier.)

#dir sets the default directory of the network resource. It has no effect if the
resource already exists. If a directory is not set, the pattern “%H” (defined
below) is used. (See the earlier discussion of nrs-identifier.)

#log sets the name of the log file of the network resource. It has no effect if the
resource already exists. If the log name is a relative path, it is relative to the
working directory. If a log name is not set, the pattern “%N%P%M.log”
(defined below) is used. (See the earlier discussion of nrs-identifier.)

The argument to #dir or #log can contain patterns that are expanded in the
context of the created resource. The following patterns are supported:
%H home directory
%M machine’s network node name
%N executable’s base name
%P process pid
%U user name
%% %

Syntax GemBuilder User Manual

C-6 GemStone Systems, Inc. December 2001

resource-modifier ::= (#server | #spawn | #task | #dbf | #monitor | #file)
Identifies the intended purpose of the string in the nrs-body. An NRS can
contain only one resource modifier. The default resource modifier is context
sensitive. For instance, if the system expects an NRS for a database file, then
the default is #dbf.

#server directs the NetLDI to search for the network address of a server, such
as a Stone or another NetLDI. If successful, it returns the address. The nrs-body
is a network server name. A successful lookup means only that the service has
been defined; it does not indicate whether the service is currently running. A
new process will not be started. (Authorization is needed only if the NetLDI is
on a remote node and is running in secure mode.)

#task starts a new Gem. The nrs-body is a NetLDI service name (such as
“gemnetobject”), followed by arguments to the command line. The NetLDI
creates the named service by looking first for an entry in
$GEMSTONE/bin/services.dat, and then in the user’s home directory for
an executable having that name. The NetLDI returns the network address of
the service. (Authorization is needed to create a new process unless the
NetLDI is in guest mode.) The #task resource modifier is also used internally
to create page servers.

#dbf is used to access a database file. The nrs-body is the file spec of a
GemStone database file. The NetLDI creates a page server on the given node
to access the database and returns the network address of the page server.
(Authorization is needed unless the NetLDI is in guest mode).

#spawn is used internally to start the garbage-collection Gem process.

#monitor is used internally to start up a shared page cache monitor.

#file means the nrs-body is the file spec of a file on the given host (not currently
implemented).

nrs-body ::= unformatted text, to end of string
The nrs-body is interpreted according to the context established by the resource-
modifier. No extended identifier expansion is done in the nrs-body, and no
special escapes are needed.

Appendix

December 2001 GemStone Systems, Inc. D-1

D Client Smalltalk and
GemStone Smalltalk

This appendix outlines the few general and syntactical differences between the
IBM VisualAge Smalltalk and GemStone Smalltalk languages.

GemStone Smalltalk and Client Smalltalk
GemStone’s Smalltalk language is very similar to client Smalltalk in both its
organization and its syntax. GemStone Smalltalk extends the Smalltalk language
with classes and primitives to add multiuser features such as transaction support
and persistence. The GemStone class hierarchy is extensible, and new classes can
be added as required to model an application. The GemStone class hierarchy is
described in the GemStone Programming Guide.

A quick look at the GemStone class hierarchy shows that it differs from the client
Smalltalk class hierarchy in that classes for file access, communication, screen
manipulation, and the client Smalltalk programming environment don’t exist, and
in that the GemStone Smalltalk hierarchy contains classes for transaction control,
accounting, ownership, authorization, replication, user profiles, and index control.

GemStone Smalltalk also introduces constraints and optimized selection blocks.

As a Smalltalk programmer, you will feel quite at home with GemStone Smalltalk,
but you should take note of the differences outlined in this appendix.

GemBuilder User Manual

D-2 GemStone Systems, Inc. December 2001

Selection Blocks
Selection blocks in GemStone Smalltalk and the use of dots for path notation have
no counterparts in client Smalltalk.

myEmployees select: {:i | i.is.permanent}

Array Constructors
Array constructors do not exist in client Smalltalk. In GemStone, array
constructors:

 • use square brackets,

 • use commas as separators, and

 • can contain any valid GemStone Smalltalk expression as an element.

#['string one', #symbolOne, $c, 4, Object new]

Block Temporaries
IBM Smalltalk supports block temporaries. It does not, however, permit the
declaration of a temporary variable in an inner block if a temporary variable of the
same name has been declared in an outer scope.

One-way become:
In GemStone’s Smalltalk, become: swaps the identities of the receiver and the
argument.

IBM Smalltalk implements a one-way become:. The following code returns true
in IBM Smalltalk, and false in GemStone:

 | a b |
 a := Object new.
 b := Object new.
 a become: b.
 a == b

Client Smalltalk and GemStone Smalltalk

December 2001 GemStone Systems, Inc. D-3

Exception-handling
In client Smalltalk, exception-handling is implemented with two classes: Signal
and Exception. In GemStone it is implemented with a single class: Exception. An
Exception in GemStone is an object that represents state to be invoked in the event
of an exception.

There are two types of exceptions in GemStone. In order of precedence, they are:
1) context exceptions, and 2) static exceptions. Static exceptions remain from run
to run. Context exceptions are active as long as the context to which the exception
belongs is on your call stack when an exception is signaled.

Client Smalltalk exception handling is analogous to GemStone context exceptions.

All nonfatal errors can be trapped by a GemStone application.

Exception handling in VisualAge is accomplished by sending messages such as
whenExceptionDo:, when:do:, or when:do:when:do:. In VisualAge the
argument to when: is a predefined ExceptionalEvent. From within the handler
block, messages can be sent to the ExceptionalEvent to cause the flow of control to
resume, exit the when:do: block, or restart the block.

GemBuilder User Manual

D-4 GemStone Systems, Inc. December 2001

Index

December 2001 GemStone Systems, Inc. Index-1

Index

A
abort

(GbsSession) 6-4, 6-5
(GbsSessionManager) 6-5, 6-7

abort request from GemStone 6-7
abortErrLostOtRoot signal 6-8
abortTransaction (GbsSession) 6-8
accessing files on host 10-13
activation exceptions 11-2
addDependent: 2-12
adding connector to session or global list 4-9
addParameters (GbsSession) 2-6
addToCommitOrAbortReleaseLocksSet

: (System) 6-15
addToCommitReleaseLocksSet:(System)

6-15
application design 1-7–1-9, 3-2–3-6
argument in message to forwarder 3-10
array constructors in GemStone Smalltalk D-2
asForwarder 3-9
asGSObject 10-5

asGSObjectCopy 3-38
asLocalObjectCopy 3-37
assertionChecks configuration parameter 9-5,

9-7
assigning a migration destination 8-3
authorization 7-6, 7-7

and migration 8-4

autoMarkDirty configuration parameter 9-5,
9-7

automatic class generation 3-7–3-8, 9-9
disabling 3-7
interactions with replication

specifications 3-7, 3-23

automatic transaction mode 6-8, 6-9
defined 6-8

B
behavior, replicating 3-8
binary selectors, special treatment of 10-8

GemBuilder User Manual

Index-2 GemStone Systems, Inc. December 2001

block
callback 3-35
replicating 3-32, 9-7

blockingProtocolRpc configuration parameter
9-5, 9-7

blockReplicationEnabled configuration
parameter 3-32, 9-5, 9-7

blockReplicationPolicy configuration
parameter 9-5, 9-7

break
hard 11-4
soft 11-4

breakpoints 5-22, 5-26
and primitive methods 5-25
and special methods 5-25
methods that cannot have 5-25

bulkLoad configuration parameter 9-5, 9-7
business objects 1-8

C
cache

making process-safe 9-10
size, changing 9-19
size, initial 9-10
space management 9-16

callback for blocks 3-35
changed object notification 6-17, A-1, B-1
changing

cache size 9-19
connector initialization 4-16
initial cache size 9-19
internal structure of GemStone objects,

with methods 10-11
postconnect action 4-16
schema 8-2

class versions and 8-6
shared data 3-12, 6-10

choosing the locus of execution 9-3
circular constraints 5-12

class 3-6
connector 3-6, 4-4, 9-9

connection order 4-5
connector, updating 3-6
customizing faulting 3-21
filing out 5-19
generating automatically 3-7–3-8, 9-9
mapping 1-4, 8-6
mapping to one with a different storage

format 3-31
migrating instances to a new version 8-2
nonforwarding 4-4
private 10-4
reduced-conflict 6-16
structure, matching on client and server

3-6
updating definitions with connectors 4-4
versions and replication specifications

3-23
versions of 8-2

class instance variable connector 4-5
class variable connector 4-4
Classes menu

in GemStone Browser 5-7

Classes pane
in GemStone Browser 5-5

clearCommitOrAbortReleaseLocksSet
(System) 6-15

clearCommitReleaseLocksSet (System)
6-15

client forwarder 3-9
code pane

breakpoint browser 5-27
menu for 5-8

commit
(GbsSession) 6-4

commitAndReleaseLocks (System) 6-15
committing

a transaction 1-4
performance 6-16

and flushing, compared 3-14
changes to the repository 6-4

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-3

compile in ST command
in Browser’s Class menu 8-9

compiling
a class definition 5-13
GemStone Smalltalk 10-8
in a runtime application B-2
special treatment of binary selectors in

client Smalltalk 10-8

compressing traversal data for transmission
9-11

concurrency
modes, setting 6-12
optimistic control 6-11
pessimistic control 6-11, 6-12

concurrent transactions, managing 6-10

configuration parameters 9-5–9-11
assertionChecks 9-5, 9-7
autoMarkDirty 9-5, 9-7
blockingProtocolRpc 9-5, 9-7
blockReplicationEnabled 3-32, 9-7
blockReplicationPolicy 9-5, 9-7
blockRepliucationEnabled 9-5
bulkLoad 9-5, 9-7
confirm 9-5, 9-7
connectorNilling 3-11, 9-5, 9-7
connectVerification 9-5, 9-8
defaultFaultPolicy 3-20, 9-5, 9-8
eventPollingFrequency 9-5, 9-8
eventPriority 9-5, 9-8
faultLevelLnk 3-19, 9-5, 9-8
faultLevelRpc 9-5, 9-9
faultLeveRpc 3-19
forwarderDebugging 9-5, 9-9
freeSlotsOnStubbing 9-5, 9-9
GemStone

CONCURRENCY_MODE 6-12, 7-1
STN_GEM_ABORT_TIMEOUT 6-8

generateClassConnectors 3-7, 9-6, 9-9
generateGSClasses 3-7, 9-6, 9-9
generateSTClasses 3-7, 9-6, 9-9
initialCacheSize 9-6, 9-10
initialDirtyPoolSize 9-6, 9-10
loginLinkedIfAvailable 2-2, 9-6, 9-10
processSafeCaches 9-6
removeInvalidConnectors 9-6, 9-10
setting and examining 9-6
stubDebugging 9-6, 9-10
traversalBufferSize 9-6, 9-10, 9-15
traversalCompression 9-6, 9-11
verbose 9-6, 9-11

confirm configuration parameter 9-5, 9-7
conflicts in transactions

reducing, and performance 6-16
write/write, and RcQueue 6-17

Connected command in Connector Browser
4-2, 4-16

connected objects, synchronizing 4-15

GemBuilder User Manual

Index-4 GemStone Systems, Inc. December 2001

connector 4-1–4-16
adding to session or global list 4-9
class 3-6, 4-4, 9-9

class versions and 3-8
connection order 4-5
forwarders and 3-8
update direction and 3-8
updating 3-6

class hierarchy 4-7
class instance variable 4-5
class variable 4-4
connecting object networks 3-4
connection order 4-5
controlling 4-10
creating automatically 9-9
creating interactively 4-16
creating programmatically 4-7
defined 3-3, 4-1
fast 4-6
faulting upon connection 3-13
for kernel classes 4-5
global 4-2, 4-14
initializing 4-3
introduction to 1-4
list of 4-9
name 4-4
nilling 3-11, 9-7
postconnect action 3-9, 4-3
removing duplicates 4-2
removing invalid 9-10
removing unresolved 4-15
scope 4-2
session 4-14
setting postconnect action

programmatically 4-8
setup for initial storage of data in

GemStone 4-16
updateGS postconnect action 4-16
updateST postconnect action 4-16
updating class definitions and 4-4
verifying 4-3, 4-15, 9-8

Connector Browser 4-13–4-16
updateGS postconnect action 4-16
updateST postconnect action 4-16

connectorNilling configuration parameter
3-11, 9-5, 9-7

connectVerification configuration parameter
9-5, 9-8

constraints
circular 5-12
on instance variables 5-12

contexts 5-23
Control-c interrupt-handling 11-4
controlling the size of the client Smalltalk

object cache 9-16
converting among forwarders, stubs,

replicates, and delegates 3-39
copying

client objects 3-38
GemStone objects 3-37

create access command
in Browser’s Class menu 8-9

create in ST command
in Browser’s Class menu 5-9, 8-9

creating
connector interactively 4-16
connector programmatically 4-7
forwarder 3-9
forwarder interactively 4-16
linked session 2-5
new instances of GemStone classes 10-11
remote session 2-5
subclasses 5-13

current segment 7-6
current session 2-9

setting 2-11
tools attached to 2-10

D
data

cost of managing 9-3
modifying shared 3-12, 6-10
storage in GemStone 4-16

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-5

Database Users List (User Account Manager)
7-23

debugger 5-22, 5-27
debugging

forwarders 9-9
getting stack trace without debugger 5-28
stubs 9-10
support in GemBuilder 9-4

decimals, replicating 3-36
default directory, and host file access methods

10-13
default segment 7-5
defaultFaultPolicy configuration parameter

3-20, 9-5, 9-8
defining GemStone errors 11-3
defunct forwarder 3-11

during packaging B-2

defunct stub 3-21
during packaging B-2

delegate
converting 3-39
defined 3-3
sending messages through 10-6

delegates 10-5–10-10
sending messages through 10-6

dependencies between objects, managing
with replication specififcations 3-25

dependents, session 2-12–2-15
adding 2-12
committing a transaction 2-12
removing 2-12

dictionaries
adding Associations to 5-11
Globals 7-9, 7-10
pool 5-14
shared 7-9–7-10
specifying for a new class 5-14
UserGlobals 7-9, 7-10

dirty
defined 3-12

disabling
automatic class generation 3-7
block replication 3-32

Disconnected command in Connector
Browser 4-2, 4-16

domain objects 1-8
dumpAllProcessStacks

(GbsConfiguration) 5-28

E
error, user-defined 11-3
error-handling

during file in 5-22
in client Smalltalk and in GemStone D-3
session-based 11-2
stack-based 11-2

event, polling for 9-8
eventPollingFrequency configuration

parameter 9-5, 9-8
eventPriority configuration parameter 9-5, 9-8
examining the internal structure of a

GemStone object 5-11, 10-11
exception-handling 11-1–11-4

see error-handling
session-based 11-2
stack-based 11-2

exclusiveLock: (GbsSession) 6-13
exclusiveLock:ifDenied:ifChanged:

(GbsSession) 6-13
exclusiveLockAll: (GbsSession) 6-13
exclusiveLockAll:ifIncomplete:

(GbsSession) 6-14
execute: (GbsSession) 10-8
execution

in GemStone 9-2
in the client Smalltalk 9-2
of GemStone host file access methods

10-13
profiling 9-4
tuning 9-2–9-3

explicit stubbing of objects to reclaim space
9-16

extents 1-3

GemBuilder User Manual

Index-6 GemStone Systems, Inc. December 2001

F
False (predefined GemStone object) 10-6,

A-3
fast connector 4-6
fault 3-21
fault control

and replicates 9-14
and stubs 9-14

fault level
defined 3-17
for linked vs. remote sessions 3-19
performance and 9-14
specifying with replication specification

3-20

fault policy, defined 3-20
faulting 3-13

at login 3-17
changes from other sessions 3-19
cost of 9-14
customized 3-27–3-31
customizing a class 3-21
default policy for 9-8
defined 3-13
dirty GemStone objects 9-3
immediate 3-20
inadequate, penalties of 9-14
lazy 3-20
minimizing for performance tuning 9-14
when 3-13
when a stub receives a message 3-18
while flushing, error caused by 3-28

faultLevelLnk configuration parameter 3-19,
9-5, 9-8

faultLevelRpc configuration parameter 3-19,
9-5, 9-9

faultToLevel: 3-38
file

host access 10-13
writing class and method definitions to

5-19

file in, and error-handling 5-22

filing out classes and methods 5-19
finding objects in repository 10-5
floats, omitting from transparency caches 9-18
flushing 3-14

and committing, compared 3-14
customized 3-27–3-31
defined 3-13
improving performance of 9-10
of dirty replicates 9-3
when 3-14
while faulting, error caused by 3-28

forwarder 3-9–3-11
arguments to 3-10
classes that cannot become 4-4
converting 3-39
creating 3-9
creating interactively 4-16
debugging 9-9
declaring in replication specification 3-9
defined 3-3
defunct 3-11
enforcing a return of 3-10
for optimization 9-17
return from 3-10
sending messages to 3-10
to client 3-9
to server 3-9
when to use 3-9

forwarderDebugging configuration
parameter 9-5, 9-9

freeSlotsOnStubbing configuration parameter
9-5, 9-9

fwat: 3-10
fwat:ifAbsent: 3-10

G
GbsBuffer 3-27
GbsClassConnector A-2
GbsClassInstVarConnector 4-7
GbsClassVarConnector 4-7
GbsConfiguration 5-28

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-7

GbsConnector 4-7, A-2
GbsError A-1, B-2
GbsFastConnector 4-7, A-2
GbsForwarder A-2
GBSM global 2-6
GBSM, instance of GbsSessionManager 2-4,

6-4
GbsNameConnector 4-7, A-2
GbsObject instances 10-5–10-10
GbsObjectTraversal A-1
GbsRuntime B-1
GbsServerClass 3-10
GbsSession 2-4

reference to parameters 2-9

GbsSessionManager 2-4
GbsSessionParameters 2-4

instance creation 2-5

GbsSessionParameters class
instance creation 2-5

GbsTools B-1
Gem

service name 2-5
signaling another Gem 6-18
user process 1-2, 1-3

GemBuilder
capabilities of iii
classes added to client Smalltalk image

A-1
overview 1-3

GemBuilder tools
breakpoint browser 5-26
Classes Browser 5-4–5-9
Connector Browser 4-13–4-16
debugger 5-27
GemStone inspectors 5-11
GemStone menu 5-2
GemStone workspace 5-10
Login Editor 2-7
overview iii, 1-6
Segment Tool 7-10–7-19
Session Browser 2-7–2-12
Symbol List Browser 7-20–7-23, ??–7-28
System Workspace 5-10
User Account Manager 7-23–??

GemStone
documentation vi
kernel classes 10-6, A-3
SpecialGemStoneObjects 10-6

GemStone Browser 5-4
Classes menu 5-7
Classes pane 5-5
Method Categories pane 5-5
pop-up menus 5-5
Symbol List pane 5-5

GemStone error dictionaries, predefined 10-6
GemStone inspector 5-11
GemStone Smalltalk

comparing with client Smalltalk D-1
debugger 5-27
executing in repository 10-8
faulting upon execution of 3-13
features of 1-5
inspecting objects in 5-11
interrupting 11-4
when execution occurs 3-13

Gem-to-Gem notifiers 6-18
generateClassConnectors configuration

parameter 3-7, 9-6, 9-9
generateGSClasses configuration parameter

3-7, 9-6, 9-9
generateSTClasses configuration parameter

GemBuilder User Manual

Index-8 GemStone Systems, Inc. December 2001

3-7, 9-6, 9-9
global connectors 4-2
Globals dictionary 7-9, 7-10
gs prefix, and trap-door message passing to

GemStone objects 10-6
GsInterSessionSignal 6-18
gsObjImpl 3-31

H
hard break 11-4

I
immediate fault policy 3-20
indexableSize 3-31
indexableValueAt: 3-30
indexableValueAt:put: method 3-28
indexableValues 3-29
indexableValuesBuffer 3-28
inheritance

replication specification and 3-22

initial cache size, changing 9-19
InitialCacheSize class variable 9-19
initialCacheSize configuration parameter 9-6,

9-10
initialDirtyPoolSize configuration parameter

9-6, 9-10
initializing

connectors 4-3
connectors programmatically 4-8

Inspect 5-7
inspecting

GemStone objects 5-11
in a debugger 5-23

inspector 5-11
instance migration 8-2

instance variables
constraining 5-12
direct access causing stub errors 3-18, 9-17
mapping 3-8, 3-14

in migration 8-4
mapping nonmatching names 3-16
maximum number in a Class 5-13
modifying while faulting 3-27
modifying while flushing 3-29
private 5-17
suppressing replication of 3-15

instancesAreForwarders 3-9
instVarMap 3-15
internal structure of GemStone objects

inspecting 5-11
methods to examine and change 10-11

interrupt-handling 11-4
interrupting execution 11-4
invariant objects 5-13

K
kernel class

connecting connectors for 4-5
connecting instances of 4-5
list of A-3
SpecialGemStoneObjects and 10-6

L
lazy fault policy 3-20
linked application 2-2
linked session 2-2, 9-10
listInstances: (Repository) 8-3
locks 6-10

logging out, effect of 6-14
on objects 6-13
releasing 6-15
removing 6-14
setting 6-13
stubbing and 3-18

locus of execution 9-2

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-9

logging into GemStone 2-2
interactively 2-11
programmatically 2-9

logging out of GemStone
effect on locks 6-14
interactively 2-11
programmatically 2-10
to resynchronize application state 6-8

login
authorization 7-2
faulting at 3-17

Login Editor 2-7
login message 2-9
loginLinkedIfAvailable configuration

parameter 2-2, 9-6, 9-10
logout message 2-10
lost OT root 6-8

M
managing

concurrent transactions 6-10
connectors 4-9
space, and cache size 9-16

manual transaction mode 6-9
manual, organization of v
mapping 3-6

automatic 3-8
behavior 3-8
class 1-4
class versions and 3-8
classes 3-6
classes with different storage formats 3-31
instance variables 3-14
nonmatching names 3-16
schema coordination 8-6

markDirty 3-14
marking dirty

automatic vs. explicit, performance costs
of 3-14

automatic vs. explicit, reliability of 3-14
automatically 9-7

maximum number of instance variables in a
class 5-13

messages
faulting when a stub receives 3-18
sent to GemStone objects 10-6

Method Categories pane in GemStone
Browser 5-5

methods
breakpoints in 5-22
filing out 5-19
primitive, and breakpoints 5-25
private 10-4
protecting 7-2
public 5-18
special, and breakpoints 5-25
without step points 5-25

migration
authorization errors and 8-4
destination 8-3

ignoring 8-4
instance variable mapping 8-4
methods for

migrate (Object) 8-3
migrateFrom:instVarMap:

(Object) 8-5
migrateInstances:to: (Object)

8-4
migrateTo: (Object) 8-3

of instances 8-2

modal dialog, and application responsiveness
6-8

modifying the internal structure of a
GemStone object 10-11

monitoring GemStone execution 9-4
move command

in Browser’s Class menu 8-9

moving data into GemStone 4-16
multiprocess applications 9-19

N
name connector 4-4

GemBuilder User Manual

Index-10 GemStone Systems, Inc. December 2001

name of superclass, specifying 5-13
namedValueAt: 3-30
namedValueAt:put: 3-28
namedValues 3-29
namedValues:indexableValues: 3-27
namedValuesBuffer 3-27, 3-28
network

node 2-5
of objects, connecting 3-4
resource string syntax C-1

Nil
(predefined GemStone object) 10-6, A-3

noFaultDebugging message 9-4
nonblocking mode 11-4
notification, Gem-to-Gem 6-18
NRS (network resource string) syntax C-1

O
object

business 1-8
domain 1-8
repository, overview 1-2

object-level invariance 5-13
OFalse (predefined object) A-3
OIllegal

(predefined object) A-3

ONil (predefined object) A-3

optimization
and multiprocess applications 9-19
and traversal buffer size 9-15
by explicit stubbing 9-16
by using forwarders 9-17
changing the initial cache size 9-19
choosing execution platform 3-2
choosing the execution platform 9-3
controlling cache size 9-17
controlling replication level and 3-17
controlling the locus of execution 9-2
controlling the replication level 9-15
cost of data management 9-3
explicit stubbing and 3-20
fault levels and 3-19
minimizing replication cost 3-14–3-27
preventing transient stubs 9-15
reduced-conflict classes and 6-16
using forwarders 3-9, 9-17
using GemStone Smalltalk for searching

and sorting large objects 9-3
using GemStone user actions and client

Smalltalk primitives 9-18
watching stub activity 9-4

order in which connectors are connected 4-5
OTrue (predefined object) A-3

P
packaging runtime applications B-1
parameter in message to forwarder 3-10
password

GemStone 2-4, 2-6
host 2-5

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-11

performance 1-9
automatic vs. explicit dirty-marking 3-14
changing the initial cache size and 9-19
choosing execution platform 3-2
choosing the execution platform and 9-3
client Smalltalk primitives and 9-18
controlling cache size and 9-17
controlling fault level and 9-15
controlling replication level and 3-17
controlling the locus of execution and 9-2
cost of data management and 9-3
database searching and sorting 9-3
determining bottlenecks 9-4
enhancing replication 3-14
explicit stubbing and 3-20, 9-16
fault levels and 3-19, 9-14
forwarders and 9-17
GemStone Smalltalk user actions and 9-18
minimizing faulting of dirty GemStone

objects 9-14
minimizing replication cost 3-14–3-27
multiprocess applications and 9-19
preventing transient stubs 9-15
reduced-conflict classes and 6-16
reducing conflict and 6-16
traversal buffer size and 9-15
using forwarders 3-9
using GemStone Smalltalk for searching

and sorting large objects 9-3
watching stub activity 9-4

pool dictionaries 5-14
pool variables 5-14
pop-up menus

in GemStone Browser 5-5

postconnect action 4-3
changing 4-16
setting programmatically 4-8
updateGS 4-16

postFault 3-28
precedence

of multiple replication specifications 3-26
of replication mechanisms 3-38

predefined GemStone objects A-3
preFault 3-28
prerequisites iv
preventing transient stubs 9-15
primitives 9-18

arguments to 3-20
breakpoints and 5-25

private
GemBuilder classes 10-4
GemBuilder methods 10-4
instance variables 5-17

privileges 7-3
processSafeCaches configuration parameter

9-6
profiling GemStone Smalltalk execution 9-4
ProfMonitor class 9-4
programming interface 1-4
protecting methods 7-2
public methods 5-18

R
RcBag 6-16
RcCounter 6-16
RcKeyValueDictionary 6-16
RcQueue 6-17

write/write conflicts and 6-17

read lock messages
readLock: (GbsSession) 6-13
readLock:ifDenied:ifChanged:

(GbsSession) 6-13
readLockAll: (GbsSession) 6-13
readLockAll:ifIncomplete:

(GbsSession) 6-14

read operations 6-11
read set 6-10
read/write transaction conflicts 6-10–6-16

GemBuilder User Manual

Index-12 GemStone Systems, Inc. December 2001

reduced-conflict classes 6-16–6-17
performance and 6-16
RcBag 6-16
RcCounter 6-16
RcKeyValueDictionary 6-16
RcQueue 6-17
storage and 6-16

reducing the number of objects in Smalltalk
9-16

registering a session 2-6
releasing locks 6-15
reliability of automatic vs. explicit dirty-

marking 3-14
remote perform messages

remotePerform: (GbsObject) 10-6
remotePerform:with: (GbsObject)

10-6
remotePerform:with:with:

(GbsObject) 10-6
remotePerform:withArgs:

(GbsObject) 10-6

remote session 2-2
removeDependent: 2-12
removeFromCommitOrAbortReleaseLoc

ksSet: (System) 6-15
removeFromCommitReleaseLocksSet:

(System) 6-15
removeInvalidConnectors configuration

parameter 9-6, 9-10
removeLock: (GbsSession) 6-14
removeLockAll: (GbsSession) 6-14
removeLocksForSession:

(GbsSession) 6-14
removeParameters (GbsSession) 2-6
removing

duplicate connectors 4-2
locks 6-14
unresolved connectors 4-15, 9-10

replicate 3-12–3-37
as argument to primitive method 3-20
converting 3-39
customized faulting of 3-21
defined 3-3
fault control and 9-14
flushing dirty 3-14, 9-3
locking and stubbing 3-18
preventing stubbing 3-21
update direction 3-12
when to use 3-12

replicating
behavior 3-8
blocks, avoiding 3-35
client Smalltalk blocks 3-32, 9-7
limits of 3-31–3-37
minimizing costs of 3-14
precedence of various mechanisms 3-38
ScaledDecimals 3-36
suppressing instance variables 3-15

replication specification 3-21–3-27
class versions and 3-23
declaring forwarder in 3-9
inheritance and 3-22
interactions with automatic class

generation 3-7, 3-23
managing dependencies between objects

with 3-25
precedence 3-26
root object for 3-26
specifying fault levels in 3-20
switching among several 3-24

replicationSpecSet: 3-24
repository

modifying 3-12, 6-10
overview 1-2

Repository (class) 7-4
reserved OOPs A-3
reserved selectors 5-19
resolveSymbol:,

resolveSymbol:ifAbsent: 10-5
return value from forwarder 3-10

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-13

root objects 3-4–3-6
in replication specifications 3-26

RPC Gems
using blocking protocol for 9-7

RPC session 2-2
RT_ERR_SIGNAL_ABORT signal 6-7
runtime applications B-1

S
saving

class and method definitions 5-19
login information 2-8

ScaledDecimal replication 3-36
schema

coordinating 8-6
matching, and instance variable mapping

3-8
modification 8-2

class versions and 8-6

scope of connectors 4-2
security 1-8

login authorization 7-2
privileges 7-3
protecting methods 7-2

Segment class 7-4
Segment Tool 7-10, 7-18

changing a default segment 7-19
changing authorization 7-18
displaying segments 7-11
examining authorization 7-18
File menu 7-14
Group menu 7-16
Help menu 7-17
Member menu 7-16
Report menu 7-17
Segment menu 7-15

segments
and authorization 7-6, 7-7
changing authorization 7-18
checking authorization 7-18
group assignment 7-13
Segment Tool 7-10

selection blocks in GemStone D-2
selector, reserved 5-19
sending messages to GemStone through

delegates 10-6
session 2-1–2-15

control 2-3
classes for 2-3

creating linked 2-5
creating remote 2-5
current 2-2, 2-9, 2-11
dependents 2-12–2-15

adding 2-12
committing a transaction 2-12
removing 2-12

linked 2-2
fault level 3-19

logging in 2-2
interactively 2-11
programmatically 2-9

logging out
interactively 2-11
programmatically 2-10

managing connectors for 4-10
multiple 2-2, 2-9
persistence of notify set in 6-17
registering with GBSM 2-6
remote 2-2

fault level 3-19
removing 2-8
RPC 2-2
seeing others’ changes 3-19
session-based error-handling 11-2
signaling between 6-18
supplying parameters with Login Editor

2-7
tools attached to current 2-10

GemBuilder User Manual

Index-14 GemStone Systems, Inc. December 2001

Session Browser 2-7–2-12
opening 2-7
starting 2-7

session parameters 2-4–2-6
adding connectors and 4-12
adding new 2-7
See also GbsSessionParameters

setting
configuration parameters 9-6
locks 6-13

shared dictionaries 7-9, 7-10
shared libraries required for runtime

applications B-2
shared variables 5-14
sharing objects

determining which 1-7, 3-2
modifications and 6-10

shouldBeCached method 9-17
signaledAbortAction: (GbsSession) 6-8
signaling one Gem from another 6-18
SmallInteger (predefined object) 10-6
Smalltalk

GemStone, features of 1-5

soft break 11-4
special

methods, and breakpoints 5-25
selectors 5-19

special GBSM classes A-1, B-1
SpecialGemStoneObjects dictionary 3-31,

10-6, A-3
stack

examining in GemStone 5-28
getting trace without debugger 5-28

stack-based error-handling 11-2
static exceptions 11-2
step points 5-23

methods without 5-25

stepping 5-22
STN_GEM_ABORT_TIMEOUT GemStone

configuration parameter 6-8

Stone
name of 2-4
repository monitor 1-2, 1-3

storage, and reduced-conflict classes 6-16
storing data in GemStone 4-16
structural access to GemStone objects 10-11–

10-12
stub 3-17–3-21

as argument to primitive method 3-20
controlling the stub level 9-15
converting 3-39
debugging 9-10
defined 3-3
defunct 3-21
explicit control of 9-16
explicit creation 3-20
explicit stubbing 9-16
fault control and 9-14
faulting upon message receipt 3-13, 3-18
instance variable access and 9-17
observing activity of 9-4
preventing transient 9-15
replicating 3-21
sending messages to 3-17
setting instance variables to nil 9-9
watching activity of 9-4

stubDebugging configuration parameter 9-6,
9-10

stubYourself 3-20, 9-16
subclassing 5-13
superclass, specifying name of 5-13
suspended user interface process 6-8
symbol dictionaries 7-20
Symbol List Browser 7-9, 7-10, 7-20

copying and pasting objects 7-21
Dictionaries pane 7-20
File menu 7-21

Symbol List pane in GemStone Browser 5-5
symbol lists 7-9

GemBuilder User Manual

December 2001 GemStone Systems, Inc. Index-15

synchronizing
client and GemStone objects 3-12–3-14

performance costs 3-14
reliability of automatic vs. explicit

3-14
shared objects 4-15

SystemRepository, segments in 7-11

T
technical support vii
tools

attached to current session 2-10
overview 1-6

transaction 6-1–6-19
aborting 6-5
committing 1-4

and performance 6-16
committing, and session dependents 2-12
faulting at boundaries 3-13
managing 2-12, 6-2, 6-4
modes 6-8–6-10

automatic 6-8, 6-9
automatic, defined 6-8
manual 6-9
manual, defined 6-9
switching between 6-10

transient object stubs, preventing 9-15
transitive closure 3-6
transparency

and access to GemStone 1-4
avoiding 3-38
caches, managing size 9-18

trap-door message passing to GemStone
objects 10-6, 10-7

traversal buffer, compressing for transmission
9-11

traversalBufferSize (method) 9-15
traversalBufferSize configuration parameter

9-6, 9-10, 9-15
traversalCompression configuration

parameter 9-6, 9-11

True (predefined GemStone object) 10-6, A-3

U
updateRequest: 2-13
updating

class definitions 3-6
replicate 3-12

User Account Manager 7-10, 7-23
Database User dialog 7-25
Database Users list 7-23

user actions 9-18
and primitives 9-18

UserClasses
client Smalltalk Browser category 3-7
GemStone Browser symbol dictionary 3-7

user-defined errors 11-3
UserGlobals dictionary 7-9, 7-10
username

GemStone 2-4
host 2-5

UserProfile class 7-5

V
variables

pool 5-14
shared 5-14

verbose configuration parameter 9-6, 9-11
verifying connectors 4-15, 9-8
versions of classes 8-2, 8-6

connecting and 3-8
mapping and 3-8
replication specifications and 3-23

W
write lock messages

writeLock: (GbsSession) 6-13
writeLock:ifDenied:ifChanged:

GemBuilder User Manual

Index-16 GemStone Systems, Inc. December 2001

(GbsSession) 6-13
writeLockAll: (GbsSession) 6-13
writeLockAll:ifIncomplete:

(GbsSession) 6-14

write operations 6-11
write set 6-10
write/write transaction conflicts 6-10–6-16

RcQueue and 6-17

	1 Basic Concepts
	1.1� The GemStone Object Server
	Figure�1.1 The GemStone Object Server

	1.2� GemBuilder for Smalltalk
	The Programming Interface
	Transparent Access to GemStone

	GemStone’s Smalltalk Language
	The GemBuilder Tools

	1.3� Designing a GemStone Application: an Overview
	Which objects should be stored and shared?
	Which objects should be secured?
	Which objects should be connected?
	How should transactions be handled?
	How can performance be improved?

	2 Communicating with the GemStone Object Server
	2.1� GemStone Sessions
	RPC and Linked Sessions
	Figure�2.1 RPC and Linked Gem Processes

	2.2� Session Control in GemBuilder
	Defining Session Parameters
	Defining Session Parameters Programmatically

	2.3� The GemStone Session Browser
	Starting the Session Browser
	Figure�2.2 The GemStone Session Browser
	Supplying Session Parameters
	Figure�2.3 The Login Editor

	Removing Session Parameters

	2.4� Logging In To and Logging Out Of GemStone
	Logging In To GemStone Programmatically
	The Current Session
	Example�2.1

	Logging Out of GemStone Programmatically
	Session Management Using the Session Browser
	Logging In
	Setting the Current Session

	Logging Out of a GemStone Session With the Session Browser

	2.5� Session Dependents
	Example�2.2
	Example�2.3
	Example�2.4
	Figure�2.4 Committing with Approval From a Session Dependent

	3 Sharing Objects
	3.1� Which Objects to Share?
	Connect Systems at the Root
	Figure�3.1 Connecting Application Roots
	Figure�3.2 Root Objects

	3.2� Class Mapping
	Automatic Class Generation
	Schema Mapping
	Behavior Mapping
	Mapping and Class Versions

	3.3� Forwarders
	Sending Messages
	Arguments
	Results

	Defunct Forwarders
	Example�3.1

	3.4� Replicates
	Synchronizing State
	Faulting
	Flushing

	Minimizing Replication Cost
	Instance Variable Mapping
	Example�3.2
	Example�3.3
	Example�3.4

	Stubbing
	Figure�3.3 Two-level Fault of an Object
	Figure�3.4 A Stub Responds to a Message

	Replication Specifications
	Example�3.5
	Example�3.6

	Customized Flushing and Faulting
	Modifying Instance Variables During Faulting
	Modifying Instance Variables During Flushing
	Example�3.7
	Example�3.8

	Mapping Classes With Different Formats

	Limits on Replication
	Replicating Client Smalltalk Blocks
	Block Callbacks
	Replicating ScaledDecimals
	Example�3.9
	Example�3.10

	Client Copies

	3.5� Precedence of Replication Mechanisms
	3.6� Converting Between Forms
	Table�3.1 Delegate Conversion Protocol
	Table�3.2 Forwarder (to the Server) Conversion Protocol
	Table�3.3 Replicate Conversion Protocol
	Table�3.4 Stub Conversion Protocol
	Table�3.5 Conversion Protocol for Unshared Client Objects

	4 Connectors
	4.1� Connecting and Disconnecting
	Scope
	Verifying Connections
	Initializing
	Updating Class Definitions

	4.2� Kinds of Connectors
	Connection Order
	Lookup
	Figure�4.1 Connecting a Name Connector
	Connecting by Identity: Fast Connectors

	4.3� Making and Managing Connectors
	Making Connectors Programmatically
	Figure�4.2 Connector Class Hierarchy
	Creating Connectors
	Setting the Postconnect Action
	Adding Connectors to a Connector List
	Example�4.1

	Session Control
	Example�4.2
	Example�4.3
	Example�4.4
	Example�4.5
	Example�4.6

	The Connector Browser
	Figure�4.3 The Connector Browser
	The Group Pane
	Table�4.1 Group List Menu in the Connector Browser�

	The Connector Pane
	Table�4.2 Connectors Menu in the Connector Browser�

	The Control Panel
	Table�4.3 Options in the Control Panel�

	Postconnect Action
	Table�4.4 Postconnect Action Options in the Connector Browser �

	5 Using the GemStone Programming Tools
	5.1� GemStone Menu
	Table�5.1 The GemStone Menu�

	5.2� Browsing Code
	Figure�5.1 GemStone Classes Browser
	Figure�5.2 Menus in the GemStone Browser
	The File Menu
	Table�5.2 File Menu in the GemStone Browser�

	The GemStone Menu
	Table�5.3 GemStone menu in the GemStone Browser�

	The Classes Menu
	Table�5.4 GemStone Browser’s Classes Menu�

	Pop-up Text Pane Menu
	Table�5.5 Pop-up Menu in GemStone Browser’s Text Pane�
	Table�5.6 Additional GemStone Menu Items

	5.3� Other GemStone Tools
	GemStone Workspaces
	The System Workspace
	Figure�5.3 GemStone System Workspace

	Inspectors
	Table�5.7 Commands�in GemStone Inspector
	Figure�5.4 GemStone Delegate Inspector
	Inspecting Nonsequenceable Collections
	Table�5.8 Commands for Inspecting NSCs�

	5.4� Coding
	About GemStone Smalltalk Classes
	Defining a New Class
	Example�5.1
	Subclass Creation Methods
	Private Instance Variables

	Modifying an Existing Class
	Defining Methods
	Public and Private Methods
	Reserved and Optimized Selectors

	Saving Class and Method Definitions in Files
	Example�5.2
	Handling Errors While Filing In

	5.5� Debugging
	Breakpoints
	Example�5.3
	Breakpoints for Primitive Methods
	Breakpoints for Optimized Methods

	Tools
	The Breakpoint Browser
	Figure�5.5 GemStone Breakpoint Browser with a Breakpoint

	The Debugger
	Getting a Stack Trace Without a Debugger

	6 Managing Transactions
	6.1� Transaction Management: an Overview
	6.2� Operating Inside a Transaction
	Figure�6.1 GemBuilder Application Workspace
	Committing a Transaction
	Aborting a Transaction
	Avoiding or Handling Commit Failures

	6.3� Operating Outside a Transaction
	Table�6.1 GbsSession Methods for Running Outside of a Transaction
	Being Signaled to Abort

	6.4� Transaction Modes
	Automatic Transaction Mode
	Manual Transaction Mode
	Choosing Which Mode to Use
	Switching Between Modes

	6.5� Managing Concurrent Transactions
	Read and Write Operations
	Optimistic and Pessimistic Concurrency Control
	Setting the Concurrency Mode
	Setting Locks
	Example�6.1

	Releasing Locks Upon Aborting or Committing

	6.6� Reduced-conflict Classes
	6.7� Changed Object Notification
	Example�6.2
	Gem-to-Gem Notification
	Example�6.3

	7 Security and Object Access
	7.1� Object-Level Security
	Requiring Login Authorization
	Controlling Visibility of Objects
	Protecting Methods
	Using GemStone’s Authorization Mechanisms

	7.2� Classes for Controlling Access to Objects
	Repository
	Segment
	Figure�7.1 GemStone’s Object-Level Security Mechanism

	UserProfile

	7.3� Sharing Access to Objects
	Group Authorization and Object-sharing
	Using Segments for Authorization

	Making Objects Accessible Through Symbol Lists

	7.4� GemStone Administration Tools
	The Segment Tool
	Figure�7.2 The Segment Tool
	Segment Definition Area
	Group Definition Area
	Segment Tool Menus
	Table�7.1 File Menu in the Segment Tool�
	Table�7.2 Segment Menu in the Segment Tool�
	Table�7.3 Group Menu in the Segment Tool�
	Table�7.4 Member Menu in the Segment Tool�
	Table�7.5 Report Menu in the Segment Tool�

	Using the Segment Tool

	The Symbol List Browser
	Figure�7.3 The Symbol List Browser
	The Clipboard
	Symbol List Browser Menus
	Table�7.6 File Menu in the Symbol List Browser�
	Table�7.7 Dictionary Menu in the Symbol List Browser�
	Table�7.8 Entry Menu in the Symbol List Browser�

	User Account Management Tools
	GemStone User List
	Figure�7.4 GemStone User List
	Table�7.9 GemStone User List: File Menu
	Table�7.10 GemStone User List: Users Menu

	GemStone User Dialog
	Figure�7.5 GemStone User Dialog
	Table�7.11 Buttons in the GemStone User Window
	Figure�7.6 Privileges Dialog in GemStone User Window
	Table�7.12 Privileges

	8 Schema Modification and Coordination
	8.1� Schema Modification
	Instance Migration Within GemStone
	Setting the Migration Destination
	Migrating Objects
	Things to Watch Out For
	Instance Variable Mapping in Migration

	8.2� Schema Coordination
	8.3� The Class Version Browser
	Figure�8.1 The Class Version Browser
	Menus in the Class Version Browser
	Table�8.1 Classes Menu in Class Version Browser�

	9 Performance Tuning
	9.1� Selecting the Locus of Control
	Locus of Execution
	Relative Platform Speeds
	Cost of Data Management
	GemStone Optimization

	9.2� Profiling
	Profiling Client Smalltalk Execution
	Watching Stub Activity
	Using Verbose Mode

	9.3� Configuring GemBuilder
	GemBuilder Configuration Parameters
	Table�9.1 Configuration Parameters for GemBuilder

	Using Configuration Parameters to Tune Your Application
	The Settings Browser
	Opening the Settings Browser
	Figure�9.1 The Settings Browser

	Parameter Notebook
	Table�9.2 Notebook Control Buttons and Their Combo Box Menus�
	Table�9.3 Parameter Page Control Buttons�

	9.4� Replication Tuning
	Controlling the Fault Level
	Preventing Transient Stubs
	Setting theTraversal Buffer Size

	9.5� Optimizing Space Management
	Explicit Stubbing
	Figure�9.2 Employee Set Faulted into the Client Smalltalk

	Using Forwarders
	Not Caching Selected Objects

	9.6� Using Primitives
	9.7� Changing the Initial Cache Size
	9.8� Multiprocess Applications
	Process-safe Transparency Caches
	Blocking and Nonblocking Protocol
	One Process per Session
	Multiple Processes per Session
	Coordinating Transaction Boundaries
	Coordinating Flushing
	Coordinating Faulting

	10 Nontransparent Access to GemStone Objects
	10.1� Nontransparency: General Principles
	Flushing and Faulting Nontransparent Objects
	Figure�10.1 Transparent Object
	Figure�10.2 Nontransparent Objects

	Public and Private Classes and Methods
	Specifying a Session

	10.2� Delegate Objects
	Sending Messages Through GbsObject Delegates
	Example�10.1
	Example�10.2
	Example�10.3

	Special Treatment of Binary Selectors
	Sending Code to Gemstone for Execution
	Example�10.4
	Example�10.5

	Converting GbsObjects to Replicates

	10.3� Structural Access to GemStone Objects
	Example�10.6
	Example�10.7

	10.4� Executing GemStone Host File Access Methods

	11 Error-handling
	11.1� Error-handling and Recovery
	Stack-based Error-handling
	Example�11.1

	Session-based Error-handling
	Example�11.2

	User-defined Errors
	Example�11.3
	Example�11.4

	11.2� Detecting GemStone Interrupts

	A GemBuilder Classes and GbsObjects
	A.1� Special GemBuilder Classes
	Class for Raising Errors
	Classes for Connecting Objects
	Class for Forwarding Messages
	Class for Providing Structural Access

	A.2� Reserved OOPs

	B Packaging Runtime Applications
	B.1� Prerequisites
	Names
	Replicating Blocks
	Defunct Stubs and Forwarders
	Shared Libraries

	B.2� Packaging

	C Network Resource String Syntax
	C.1� Overview
	C.2� Defaults
	C.3� Notation
	C.4� Syntax

	D Client�Smalltalk and GemStone�Smalltalk
	Index

