
GemStone®

GemBuilder for Smalltalk
User’s Guide

Version 5.4
For use with Instantiations VA Smalltalk

December 2011

GBS 5.4 User’s Guide

2 VMware, Inc. December 2011

INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. VMware, Inc., assumes
no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in
any form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express
written authorization from VMware, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by VMware, Inc. under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of VMware, Inc.
This software is provided by VMware, Inc. and contributors “as is” and any expressed or implied warranties, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall
VMware, Inc. or any contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence
or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2011 VMware, Inc., and GemStone Systems, Inc. All
rights reserved by VMware, Inc.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with
persistent object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”.
GemStone software may also be covered by one or more pending United States patent applications.

TRADEMARKS
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of VMware, Inc.,
previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
HP, HP Integrity, and HP-UX are registered trademarks of Hewlett Packard Company.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows XP, Windows 2003, Windows 7 and Windows Vista are registered trademarks of
Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER5, and POWER6 are trademarks or registered trademarks of International Business Machines Corporation.
Apple, Mac, Mac OS, Macintosh, and Snow Leopard are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. VMware cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
VMware, Inc.
15220 NW Greenbrier Parkway
Suite 150
Beaverton, OR 97006

Preface

December 2011 VMware, Inc. 3

About This Manual
This manual describes GemBuilder for Smalltalk®, an environment for developing
Gemstone applications using VA Smalltalk.

GemBuilder for Smalltalk consists of two parts: a programming interface between
your client Smalltalk application code and the GemStone object repository, and a
GemStone programming environment.

The programming interface provides facilities for managing the relationship
between objects on the GemStone server and in client Smalltalk, allowing objects
to be available on the client and updated on the shared GemStone server.

The GemBuilder programming environment provides a set of integrated tools for
programming in GemStone’s version of Smalltalk.

Many GemBuilder features depend on the GemStone/S 64 Bit server, and details
of server features vary between server products and versions. Please consult the
documentation for the server product and version you are using for specific details
for your server product and version.

GBS 5.4 User’s Guide

4 VMware, Inc. December 2011

Prerequisites
To make use of the information in this manual, you need to be familiar with the
GemStone object server and with GemStone’s Smalltalk programming language as
described in the GemStone/S 64 Bit Programming Guide. That book explains the
basic concepts behind the language and describes the most important GemStone
kernel classes.

In addition, you should be familiar with the VisualAge Smalltalk language and
programming environment as described in the VisualAge Smalltalk product
manuals.

Finally, you should have the GemStone system installed correctly on your host
computer, as described in the GemStone/S 64 Bit Installation Guide for your
platform, and have client Smalltalk and GemBuilder for Smalltalk installed on the
client computer, as described in the GemBuilder for Smalltalk Installation Guide.

How This Manual is Organized
This manual is organized in three parts: basic concepts, the GemStone
programming tools, and appendixes.

Part 1: Concepts and Programmatic Use

Chapter 1, Basic Concepts, describes the overall design of a GemBuilder
application and presents the fundamental concepts required to understand the
interface between client Smalltalk and the GemStone object server.

Chapter 2, Communicating with the GemStone Object Server, explains how to
communicate with the GemStone object server by initiating and managing
GemStone sessions.

Chapter 3, Sharing Objects, describes the various mechanisms GemBuilder can
use to coordinate your application’s local objects with objects in the GemStone
object server, thus making them persistent and sharable.

Chapter 4, Connectors, explains how to connect your application’s local objects to
objects in the GemStone repository in order to implement object sharing and
allow your application to manipulate objects in the server.

Chapter 5, Managing Transactions, discusses the process of committing a
transaction, the kinds of conflicts that can prevent a successful commit, and
how to avoid or resolve such conflicts.

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 5

Chapter 6, Security and Object Access, describes the security mechanisms that are
available in GemBuilder and explains how to control access to objects in a
multiuser environment.

Chapter 7, Error-handling, discusses errors: how to handle them and how to
recover from them

Chapter 8, Schema Modification and Coordination, explains how GemStone
supports schema modification by maintaining versions of classes in class
histories. It also explains how to synchronize schema modifications between
the client and GemStone.

Chapter 9, Performance Tuning, discusses ways that you can tune your
application to optimize performance and minimize maintenance overhead. It
describes the configuration parameters available for tuning a GemBuilder
application, and it explains how to configure GemBuilder for Smalltalk to
optimize your application’s performance.

Chapter 10, GemBuilder Configuration Parameters, describes the GemBuilder
for Smalltalk configuration options and how to set and use them.

Part 2: GemStone Tools

Chapter 11, The GemStone Tools: an Overview, describes several browser tools
that allow you to manage sessions and transactions; log in and out of
GemStone sessions; examine configuration parameters; and access commonly
used GemStone Smalltalk expressions.

Chapter 12, Using the GemStone Programming Tools, explains how to use the
GemStone browsers and tools to examine, modify, and create classes and
methods in GemStone; execute and debug GemStone Smalltalk code; manage
the connectors that establish relationships between client Smalltalk and
GemStone server objects; and perform other tasks.

Chapter 13, Using the GemStone Administration Tools, describes the tools that
let you manage access to objects, examine and modify GemStone SymbolLists
and associated dictionaries, and administer user accounts.

Part 3: Appendixes

Appendix A, Packaging Runtime Applications, provides brief instructions for
packaging runtime applications.

GBS 5.4 User’s Guide

6 VMware, Inc. December 2011

Appendix B, Client Smalltalk and GemStone Smalltalk, outlines a few general
and syntactical differences between the client Smalltalk and GemStone
Smalltalk dialects.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit
and GemStone/S; the GemStone Smalltalk programming language; and may also
be used to refer to the company, previously GemStone Systems, Inc., now a
division of VMware, Inc.

Other GemStone Documentation
You will find it useful to look at documents that describe other GemStone system
components:

 • Programming Guide — a programmer’s guide to GemStone Smalltalk,
GemStone’s object-oriented programming language.

 • Topaz Programming Environment — describes Topaz, a scriptable command-
line interface to GemStone Smalltalk. Topaz is most commonly used for
performing repository maintenance operations.

 • GemBuilder for C — describes GemBuilder for C, a set of C functions that
provide a bridge between your application’s C code and the application’s
database controlled by GemStone.

 • System Administration Guide — describes maintenance and administration of
your GemStone/S system.

In addition, each release of GemBuilder for Smalltalk includes Release Notes,
describing changes in that release, and platform-specific Installation Guides,
providing system requirements and installation and upgrade instructions.

A description of the behavior of each GemStone kernel class is available in the
class comments in the GemStone Smalltalk repository. Method comments include
a description of the behavior of methods.

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 7

Technical Support

GemStone Website
http://support.gemstone.com

GemStone’s Technical Support website provides a variety of resources to help
you use GemStone products:

 • Documentation for released versions of all GemStone products, in PDF
form.

 • Downloads and Patches, including past and current versions of
GemBuilder for Smalltalk.

 • Bugnotes, identifying performance issues or error conditions you should
be aware of.

 • TechTips, providing information and instructions that are not otherwise
included in the documentation.

 • Compatibility matrices, listing supported platforms for GemStone
product versions.

This material is updated regularly; we recommend checking this site on a regular
basis.

Help Requests
You may need to contact Technical Support directly, if your questions are not
answered in the documentation or by other material on the Technical Support
site. Technical Support is available to customers with current support contracts.

Requests for technical support may be submitted online, or by email or by
telephone. We recommend you use telephone contact only for serious requests
that require immediate attention, such as a production system down. The support
website is the preferred way to contact Technical Support.

Website: http://techsupport.gemstone.com
Email: techsupport@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503

If you are reporting an emergency by telephone, select the option to transfer your
call to the Technical Support administrator, who will take down your customer
information and immediately contact an engineer. Please also open a ticket on the
website, and include error and log information. Non-emergency requests

GBS 5.4 User’s Guide

8 VMware, Inc. December 2011

received by telephone will be placed in the normal support queue for evaluation
and response.

When submitting a request, please include the following information:

 • Your name, company name, and GemStone server license number.

 • The versions of all related GemStone products, and of any other related
products, such as client Smalltalk products.

 • The operating system and version you are using.

 • A description of the problem or request.

 • Exact error message(s) received, if any, including log files if appropriate.

GemStone Technical Support is available from 8am to 5pm Pacific Time, Monday
through Friday, excluding VMware/GemStone holidays.

24x7 Emergency Technical Support
GemStone Technical Support offers, at an additional charge, 24x7 emergency
technical support. This support entitles customers to contact us 24 hours a day, 7
days a week, 365 days a year, if they encounter problems that cause their
production application to go down, or that have the potential to bring their
production application down. For more details, contact your GemStone account
manager.

Training and Consulting
Consulting is available to help you succeed with GemStone products. Training for
GemStone software is available at your location, and training courses are offered
periodically at our offices in Beaverton, Oregon. Contact your GemStone account
representative for more details or to obtain consulting services.

Contents

December 2011 VMware, Inc. 9

Chapter 1. Basic Concepts
1.1 The GemStone Object Server . 20
1.2 GemBuilder for Smalltalk . 21

The Programming Interface . 22
Transparent access to GemStone 22

GemStone’s Smalltalk Language . 23
The GemBuilder Tools . 24

1.3 Designing a GemStone Application: an Overview 25
Which objects should be stored and shared? 25
Which objects should be secured? . 26
Which objects should be connected? . 26
How should transactions be handled? 27
How can performance be improved? . 27

1.4 Delivery and Deployment . 27
Public and Private Classes and Methods 28

GBS 5.4 User’s Guide

10 VMware, Inc. December 2011

Chapter 2. Communicating with the GemStone Object Server
2.1 Client Libraries . 30
2.2 GemStone Sessions . 30

RPC and Linked Sessions . 31
2.3 Session Control in GemBuilder . 31

Session Parameters . 32
Defining Session Parameters Programmatically. 33

2.4 Logging In to and Logging Out of GemStone 34
Logging In to GemStone . 34
The Current Session . 35
Logging Out of GemStone . 36

2.5 Session Dependents . 37

Chapter 3. Sharing Objects
3.1 Which Objects to Share? . 42
3.2 Class Mapping . 43

Automatic Class Generation and Mapping 44
Schema Mapping . 45
Behavior Mapping . 45
Mapping and Class Versions . 46

3.3 Forwarders . 46
Sending Messages. 47

Arguments . 48
Results . 48

Defunct Forwarders . 48
3.4 Replicates . 49

Synchronizing State. 50
Faulting. 50
Flushing . 51
Marking Modified Objects Dirty Manually 51

Minimizing Replication Cost . 52
Instance Variable Mapping. 52
Stubbing . 55
Replication Specifications . 59

Customized Flushing and Faulting . 65
Modifying Instance Variables During Faulting 66

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 11

Modifying Instance Variables During Flushing 67
Mapping Classes With Different Formats. 69

Limits on Replication . 70
Replicating Client Smalltalk Blocks 70
Block Callbacks . 73
Replicating Fixed/Scaled Decimals 74

Client Copies. 75
3.5 Precedence of Replication Mechanisms . 76
3.6 Evaluating Smalltalk Code on the GemStone server 77
3.7 Converting Between Forms . 79

Chapter 4. Connectors
4.1 Connecting Root Objects . 84

Scope . 86
Verifying Connections . 87
Initializing . 87

Updating Class Definitions . 88
4.2 Connecting and Disconnecting . 88
4.3 Kinds of Connectors . 89

Connection Order . 90
Lookup . 90

Connecting by Name . 90
Connecting by Identity: Fast Connectors 91

4.4 Making and Managing Connectors . 92
Making Connectors Programmatically 92

Creating Connectors. 93
Setting the Postconnect Action 93
Adding Connectors to a Connector List 94
Session Control. 95

Chapter 5. Managing Transactions
5.1 Transaction Management: an Overview . 100
5.2 Operating Inside a Transaction . 101

Committing a Transaction . 102
Aborting a Transaction . 103
Avoiding or Handling Commit Failures 103

GBS 5.4 User’s Guide

12 VMware, Inc. December 2011

5.3 Operating Outside a Transaction . 104
Being Signaled to Abort . 105

5.4 Transaction Modes . 106
Automatic Transaction Mode . 106
Manual Transaction Mode . 107
Choosing Which Mode to Use . 107
Switching Between Modes . 108

5.5 Managing Concurrent Transactions . 108
Setting Locks . 109
Releasing Locks Upon Aborting or Committing 111

5.6 Reduced-Conflict Classes . 112
5.7 Changed Object Notification . 112
5.8 Gem-to-Gem Notification . 113
5.9 Asynchronous Event Error Handling . 115

Chapter 6. Security and Object Access
6.1 GemStone Security . 117

Login Authorization . 118
The UserProfile . 118

Controlling Visibility of Objects with SymbolLists 118
System Privileges . 119
Protecting Methods . 119
Object-level Security . 119

Object Security Policies . 119

Chapter 7. Error-handling
7.1 Error-handling and Recovery . 121

Stack-based Error-handling . 122
Session-based Error-handling . 122
User-defined Errors. 123

7.2 Detecting GemStone Interrupts . 124

Chapter 8. Schema Modification and Coordination
8.1 Schema Modification . 126

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 13

Instance Migration Within GemStone. 126
Setting the Migration Destination 127
Migrating Objects . 127
Things to Watch Out For . 128
Instance Variable Mapping in Migration 128

8.2 Schema Coordination. 130

Chapter 9. Performance Tuning
9.1 Selecting the Locus of Control . 132

Locus of Execution . 132
Relative Platform Speeds . 132
Cost of Data Management . 133
GemStone Optimization . 133

9.2 Profiling . 133
Profiling Client Smalltalk Execution 133
Watching Stub Activity . 134
Using Verbose Mode . 134

9.3 Replication Tuning . 135
Controlling the Fault Level. 135
Preventing Transient Stubs. 135
Setting the Traversal Buffer Size . 136

9.4 Optimizing Space Management . 136
Explicit Stubbing . 136
Using Forwarders . 138
Not Caching Selected Objects . 138

9.5 Using Primitives . 139
9.6 Multiprocess Applications . 139

Process-safe Transparency Caches . 139
Blocking and Nonblocking Protocol 140
One Process per Session . 140
Multiple Processes per Session . 140

Coordinating Transaction Boundaries. 141
Coordinating Flushing . 141
Coordinating Faulting. 142

GBS 5.4 User’s Guide

14 VMware, Inc. December 2011

Chapter 10. GemBuilder Configuration Parameters
10.1 Setting Configuration Parameters . 143
10.2 GemBuilder Configuration Parameters. 145

assertionChecks . 146
autoMarkDirty. 146
blockingProtocolRpc . 146
blockReplicationEnabled . 147
blockReplicationPolicy . 147
bulkLoad . 147
confirm . 148
connectorNilling. 148
connectVerification . 148
defaultFaultPolicy . 149
eventPollingFrequency . 149
eventPriority . 149
faultLevelRpc . 150
forwarderDebugging . 150
freeSlotsOnStubbing . 150
fullCompression . 151
generateClassConnectors . 151
generateClientClasses. 152
generateServerClasses . 152
InitialCacheSize . 152
InitialDirtyPoolSize . 153
libraryName . 153
removeInvalidConnectors . 153
stubDebugging . 154
traversalBufferSize . 154
verbose . 154

Chapter 11. The GemStone Tools: an Overview
11.1 GemStone Menu. 156
11.2 The GemStone Session Browser . 158

Starting the Session Browser. 158
Opening the Session Parameters Editor 159
Managing Session Parameters . 161

11.3 Logging In to and Logging Out of GemStone 162
Logging In to GemStone . 162

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 15

Setting the Current Session . 163
Logging Out of GemStone . 163

The Settings Browser . 163
Opening the Settings Browser 163
Parameter Notebook . 164
Parameter Categorization. 167

11.4 GemStone Workspaces . 168
11.5 The System Workspace . 168

Chapter 12. Using the GemStone Programming Tools
12.1 Browsing Code. 170

The File Menu . 174
The GemStone Menu . 174
Symbol List Menu . 175
Class Menu. 175
Pop-up Text Pane Menu . 176

12.2 Coding . 177
About GemStone Smalltalk Classes . 178
Defining a New Class . 179

Subclass Creation Methods . 181
Private Instance Variables . 181

Modifying an Existing Class . 181
Defining Methods . 182

Public and Private Methods 182
Reserved and Optimized Selectors 183

Saving Class and Method Definitions in Files 183
Handling Errors While Filing In 185

12.3 The Connector Browser . 185
The Group Pane . 187
The Connector Pane . 187
The Control Panel . 187
Postconnect Action . 188

12.4 The Class Version Browser . 190
Menus in the Class Version Browser 190

12.5 Debugging Overview . 193
12.6 Inspectors. 193

Inspecting UnorderedCollections 195
12.7 Breakpoints. 196

GBS 5.4 User’s Guide

16 VMware, Inc. December 2011

Breakpoints for Primitive Methods . 197
Breakpoints for Optimized Methods 197
The Breakpoint Browser . 198

12.8 Debugger. 199
Disabling the Debugger . 199

12.9 Stack Traces . 200

Chapter 13. Using the GemStone Administration Tools
13.1 The Security Policy Tool . 202

Security Policy Definition Area . 203
Group Definition Area . 205
Security Policy Tool Menus . 205

The File Menu . 206
Security Policy Menu . 206
Group Menu . 207
Member Menu . 207
Reports Menu . 208
Help Menu . 208

Using the Security Policy Tool. 208
Checking Security Policy Authorization 209
Changing Security Policy Authorization 209
Controlling Group Access to a Security Policy. 209

13.2 The Symbol List Browser . 210
The Clipboard . 211
Symbol List Browser Menus . 212

File Menu. 212
Dictionary Menu . 212
Entry Menu . 213
Help Menu . 213

13.3 User Account Management Tools . 213
GemStone User List. 214
GemStone User Dialog . 216
Privileges Dialog . 219

Appendix A. Packaging Runtime Applications
A.1 Prerequisites . 221

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 17

Names . 221
Replicating Blocks . 222
Defunct Stubs and Forwarders . 222
Shared Libraries . 222

A.2 Packaging . 222

Appendix B. Client Smalltalk and GemStone Smalltalk
B.1 Language Differences . 223
B.2 TimeZone handling . 225

GBS 5.4 User’s Guide

18 VMware, Inc. December 2011

Chapter

December 2011 VMware, Inc. 19

1 Basic Concepts

This chapter describes the overall design of a GemBuilder application and presents
the fundamental concepts required to understand the interface between client
Smalltalk and the GemStone object server.

The GemStone Object Server
introduces GemStone and its architecture and explains the part each
component plays in the system.

GemBuilder for Smalltalk
outlines the basic features of GemBuilder that allow you to access GemStone
objects from your Smalltalk application, and describes the basic programming
functions that GemBuilder provides.

Designing a GemStone Application: an Overview
outlines the basic steps involved in producing a client/server application with
GemBuilder.

The GemStone Object Server GBS 5.4 User’s Guide

20 VMware, Inc. December 2011

1.1 The GemStone Object Server
The GemStone object server supports multiple concurrent users of a large
repository of objects. GemStone provides efficient storage and retrieval of large
sets of objects, resiliency to hardware and software failures, protection for object
integrity, and a rich set of security mechanisms.

The GemStone object server consists of three main components: a repository for
storing persistent, shared objects; a monitor process called the Stone, and one or
more user processes, called Gems.

Figure 1.1 shows how the object server supports clients in a Smalltalk application
environment.

Figure 1.1 The GemStone Object Server

 Application B

Gem Process A
GemStone

classes and objects

Object Repository

Client Smalltalk
classes and objects

GemStone
classes and objects

Stone monitor
 process

GemStone Object Server

Relational Data

Gem Process B

 Application A
Client Smalltalk

classes and objects

The object repository is a multiuser, disk-based Smalltalk image containing shared
application objects and GemStone kernel classes. It is composed of files

Chapter 1 - Basic Concepts GemBuilder for Smalltalk

December 2011 VMware, Inc. 21

(known to GemStone as extents) that can reside on a single machine or can be
distributed among several networked hosts. The repository can also include
GemConnect objects representing data stored in third-party relational
databases.

Your Smalltalk application program treats the repository as a single unit,
regardless of where its elements physically reside.

A Gem is an executable process that your application creates when it begins a
GemStone session. A Gem acts as an object server for one session, providing a
single-user view of the multiuser GemStone repository. A Gem reads objects
from the repository, executes GemStone Smalltalk methods, and updates the
repository.

Each Gem represents a single session. An application can create more than one
session, each representing an internally-consistent single view of the
repository. When a Gem commits a transaction, it modifies the shared
repository and updates its own view of the repository.

The Stone monitor process handles locking and controls concurrent access to
objects in the repository, ensuring integrity of the stored objects. Each
repository is monitored by a single Stone.

Despite its central role in coordinating the work of all individual Gems, the
Stone is surprisingly unintrusive. To optimize throughput for all users, most
processing is handled by the Gems, which often interact directly with the
repository. The Stone intervenes only when required to ensure the integrity of
the multiuser repository.

1.2 GemBuilder for Smalltalk
GemBuilder for Smalltalk is a set of classes and primitives that can be installed in
a client Smalltalk image. With the functionality provided by GemBuilder, you can:

 • store your client Smalltalk application objects in the GemStone server;

 • import GemStone objects into client Smalltalk as client Smalltalk objects;

 • allow your application objects to be transparently replicated and maintained
both in the client and in the server, or allow some objects to reside only in the
server but be accessible on the client;

 • arrange for messages sent to client Smalltalk objects to be forwarded and
executed in the GemStone server by corresponding server objects;

GemBuilder for Smalltalk GBS 5.4 User’s Guide

22 VMware, Inc. December 2011

 • use GemStone’s programming tools to develop GemStone server classes and
methods to operate on your application objects; and

 • perform certain system functions, such as committing transactions and
starting or ending GemStone sessions.

The Programming Interface
Your client Smalltalk application creates a GemStone session by using GemBuilder
to log in to GemStone, creating a Gem process to serve your application. Many
Gem processes can actively communicate with a single repository at the same time.

As Figure 1.1 illustrates, several applications can work concurrently with a single
repository, with each application viewing the repository as its own. GemStone
coordinates transactions between each of the applications and the repository.

Transparent access to GemStone

The interface between your client Smalltalk application and GemStone can be
relatively seamless.

Many of the classes in the base client Smalltalk image are mapped to comparable
GemStone server classes, and additional class mappings can be created either
automatically or explicitly. GemBuilder is also able to automatically generate
GemStone server classes from client classes, and vice versa, as necessary. Your
client objects can be replicated in the GemStone server, and GemStone server
objects can be replicated in client Smalltalk.

Only server objects can become persistent in the GemStone object repository. To
make a client Smalltalk object persistent, it must be mapped to a server object. This
mapping is a relationship between a client object and a server object, whereby each
represents the other. Once objects are mapped, GemBuilder maintains the
relationship between the shared GemStone server object and the private client
Smalltalk object, updating values from the repository to your application and vice
versa, as necessary, as well as forwarding messages between the objects. Chapter 3
describes the replication of state and forwarding of messages between client and
server objects.

Your client Smalltalk application updates shared objects in the repository by
sending a commitTransaction message to a session. With a successful commit,
changes to objects in the current session are propagated to the shared object
repository in GemStone. Once you have committed a transaction, your
application objects are updated with the most recently saved state of the
repository, incorporating changes made by other users.

Chapter 1 - Basic Concepts GemBuilder for Smalltalk

December 2011 VMware, Inc. 23

While, for the most part, GemBuilder will automatically manage objects in both the
client Smalltalk and in the GemStone server, you can exert as much control as you
want over how objects are stored and used. GemBuilder provides tools that let
you specify customized policies for translating between your client Smalltalk and
GemStone server objects.

Chapter 4 describes GemBuilder’s mechanisms for making your client Smalltalk
objects persistent, and Chapter 9 explains how to tune the system to minimize
maintenance overhead and optimize performance.

GemStone’s Smalltalk Language
GemStone provides a version of Smalltalk that supports multiple concurrent users
of the shared object repository through such features as session management,
reduced-conflict collection classes, querying, transaction management, and
persistence.

GemStone Smalltalk is like single-user client Smalltalk in both its organization and
syntax. Objects are defined by classes based on common structure and protocol
and classes are organized into an is-a hierarchy, rooted at class Object. The class
hierarchy is extensible; new classes can be added as required to model an
application. The behavior of common classes conforms to the ANSI standard for
Smalltalk. GemStone’s class hierarchy is discussed in the introductory chapter to
the GemStone/S 64 Bit Programming Guide.

The most significant difference between GemStone Smalltalk and client Smalltalk
lies in GemStone’s support for a multiuser environment in which persistent objects
can be shared among many users.

As an object server, GemStone must address the same key issues as conventional
information storage systems that support multiple concurrent users. For this
reason, GemStone’s Smalltalk includes classes for:

 • managing concurrent access to information,

 • protecting information from unauthorized access, and

 • keeping stored information secure and restoring it in the event of a failure.

You should be aware of a few differences between GemStone Smalltalk and client
Smalltalk in syntax and in the behavior of some of the classes. A summary of these
differences can be found in Appendix B.

GemBuilder for Smalltalk GBS 5.4 User’s Guide

24 VMware, Inc. December 2011

The GemBuilder Tools
GemBuilder’s programming environment provides tools for programming in
GemStone Smalltalk. The following tools are described in detail in subsequent
chapters of this manual:

 • A GemStone System Browser lets you examine, modify, and create GemStone
classes and methods.

 • A GemStone System Workspace provides easy access to commonly used
GemStone Smalltalk expressions.

 • GemStone Inspectors let you examine and modify the state of GemStone objects.

 • A GemStone Breakpoint Browser and a Debugger let you examine and
dynamically modify the state of a running GemStone application.

 • A Session Browser allows you to manage sessions and transactions.

 • A Connector Browser allows you to manage the connectors that establish
relationships between client Smalltalk and GemStone server objects.

 • A Class Version Browser can be used for examining a class history, inspecting
instances, migrating instances, deleting versions, and moving versions to
another class history.

 • A Symbol List Browser allows you to examine the GemStone Symbol Lists
associated with UserProfiles, add and delete dictionaries from these lists, and
manipulate the entries in those dictionaries.

 • A Settings Browser allows you to examine and set the configuration parameters
for GemBuilder.

 • A User Account Management Tool allows you to create new user accounts,
change account passwords, and assign group membership.

 • A Security Policy Tool facilitates managing GemStone authorization at the
object level by controlling how objects are governed by security policies.

Chapter 1 - Basic Concepts Designing a GemStone Application: an Overview

December 2011 VMware, Inc. 25

1.3 Designing a GemStone Application: an Overview
Many GemStone users start with an application they have already written in
Smalltalk. Their mission is to transform that application into one that makes
meaningful use of GemStone’s features: persistence, multiuser access, security,
integrity, and the ability to store and manage large quantities of information.

As a GemStone programmer, your application design and porting efforts involve
the following tasks:

 • choosing the objects that should be stored and shared,

 • deciding which objects need to be secured,

 • establishing connections between root objects in the client and the server,

 • deciding when to commit transactions and how to handle concurrency
control, and

 • tuning your application for optimal performance.

This section gives you an overview of these steps and points you to the chapters
that discuss these topics in detail.

Which objects should be stored and shared?
Your application will typically have two kinds of objects: those that must persist
between sessions and be shared among users, and those that represent a transient
state. Your first task is to identify the objects that make up your application and
decide which ones need to be stored and shared. Making objects persistent
unnecessarily can degrade performance and complicate programming.

Use GemStone to store those objects that need to exist between sessions and must
be shared with other users. For example, objects representing information in your
application such as financial statements, employee health records, or library book
cards would certainly require storage in GemStone. Some methods for
manipulating the persistent data can also be usefully coded in GemStone Smalltalk
and stored in GemStone for improved efficiency.

You don’t need to store transient session objects that no one else will ever need on
the server; such objects can remain in the client. For example, suppose you
generate a report from the financial statements stored in GemStone. Once you
view or print the report it has served its purpose; the next time you need a report
you will generate a new one. The report and its component objects can exist
simply as client Smalltalk objects; they don’t need to be stored in GemStone.

Designing a GemStone Application: an Overview GBS 5.4 User’s Guide

26 VMware, Inc. December 2011

However, you might want the classes and methods used to build the report to be
stored in GemStone so that others can use them.

Certain objects can be considered your organization’s business objects. Business
objects contain the data that give your organization its strategic, competitive
advantage; their instance variables contain information about the business process
that they model, and their methods represent actions involved in conducting
business. Keeping your business objects centralized and stored separately from the
applications that access them allows your organization to serve the needs of all
users, while still enforcing consistency and maintaining control of critical
information.

Which objects should be secured?
What security challenges does the application pose? Determine the strategy you
will use to handle those challenges. Does access to certain objects need to be
restricted to only certain authorized users? Many of your business objects may fall
into this category. If so, who should be authorized to access them, and how? Do
your users fall into groups with different access needs? Will anyone need to
execute privileged methods? The earlier you lay the groundwork for your security
needs, the easier they will be to implement. Security is discussed in detail in
Chapter 6.

Which objects should be connected?
Once you’ve decided how to partition your application objects, you will want to
set up connections between the objects that will reside on the client and those that
will reside on the server so that GemBuilder can automatically manage changes to
them and understand how to update them properly. This connection is established
by making sure a connector is defined for those objects.

A connector connects not only the immediate object but also all those objects that
it references, so you don’t need to define a connector for every object in your
application that you want to store in the GemStone server. Instead, you should
begin by identifying the subsystems in your application that define persistent
objects, and then identifying a root object in each subsystem to target with a
connector. You can find further discussion of connectors in Chapter 4.

Chapter 1 - Basic Concepts Delivery and Deployment

December 2011 VMware, Inc. 27

How should transactions be handled?
Another decision you need to make involves transactions: when to commit and
how to handle the occasional failure to commit. Do you want to use locks to
ensure a successful commit? If so, identify the places in your application where
you must acquire the locks. Concurrency control and locking are discussed in
more detail in Chapter 5.

How can performance be improved?
If—after you have built your application—you find that its performance does not
meet your expectations, you have a variety of ways to improve matters.

One of the most powerful single things you can do to improve performance is to
move some of the behavior from the client to the GemStone server and let the
GemStone Smalltalk execution engine do the work. This approach reduces
network traffic, which is a prime cause of slow performance.

Which methods might best be executed on the GemStone server? GemStone
already contains behavior for many of the common Smalltalk kernel classes and,
as mentioned earlier, the syntax and class hierarchy of GemStone’s Smalltalk
language are so similar to those of other Smalltalks that the porting effort is likely
to be relatively simple. Performance issues in general are discussed in Chapter 9.
Moving execution to the GemStone server is discussed in the section entitled
“Locus of Execution” on page 132.

Finally, you can configure the GemStone object server for maximum performance,
given the details of your application and environment. GemStone server
configuration parameters are discussed in detail in the System Administration Guide
for GemStone/S 64 Bit. In addition, the GemStone/S 64 Bit Programming Guide gives a
variety of tips in the chapter entitled “Tuning Performance.”

1.4 Delivery and Deployment
GemBuilder is provided in the form of ENVY applications named GbsRuntime,
GbsTools, and CstMessengerSupport.

 • GbsRuntime and CstMessengerSupport are required for all uses of
GemBuilder.

 • GbsTools contains development and administration tools that are normally
used only during development. It is almost always desirable to have GbsTools

Delivery and Deployment GBS 5.4 User’s Guide

28 VMware, Inc. December 2011

present during development, but GbsTools can be omitted from most
deployed applications.

Public and Private Classes and Methods
GemBuilder adds many classes and methods to your client Smalltalk image. Some
of these we consider public, which means that they are designed to be referenced
directly from your applications. GemStone avoids changing public classes and
methods from release to release. Most GemBuilder classes and methods we
consider private; they are used to implement the internal workings of GemBuilder
and are not designed to be referenced directly from applications. Avoid using
private classes and methods because they may have undocumented side effects,
and because they are subject to change from release to release.

A GemBuilder class is private if its name begins with the prefix Gbx.

A GemBuilder method can be marked private in any of several ways:

 • Any method defined in a private class is private unless the class comment
indicates otherwise.

 • The selectors of private methods in base class extensions begin with the prefix
gbx.

 • Some methods specify they are private in the method comment.

 • Other methods are categorized as private in a method category marked
“private”.

In general, we encourage you to use in your applications only GemBuilder classes
and methods that are documented in this User's Guide. This User's Guide
documents the preferred way to accomplish tasks. Other public classes or methods
may be obsolete but kept for backward compatibility.

Reserved prefix

In your code, do not define methods starting the “gb”. Methods with this prefix are
reserved for GBS.

Chapter

December 2011 VMware, Inc. 29

2 Communicating with
the GemStone Object
Server

When you install GemBuilder, your Smalltalk image becomes “GemStone-
enabled,” meaning that your image is equipped with additional classes and
methods that allow it to work with shared, persistent objects through a multi-user
GemStone object server. Your Smalltalk image remains a single-user application,
however, until you connect to the object server. To do so, your application must
log in to a GemStone object server in much the same way that you log in to a user
account in order to work on a networked computer system.

This chapter explains how to communicate with the GemStone object server by
initiating and managing GemStone sessions.

Client Libraries
explains how to setup to use the correct client shared libraries.

GemStone Sessions
introduces sessions.

Session Control in GemBuilder
explains how to use the classes GbsSession, GbsSessionManager, and
GbsSessionParameters to manage GemBuilder sessions.

Logging In to and Logging Out of GemStone
describes how to log in and out of GemStone sessions programmatically.

Client Libraries GBS 5.4 User’s Guide

30 VMware, Inc. December 2011

Session Dependents
explains how to use the Smalltalk dependency mechanism to coordinate the
effects of session management actions on multiple application components.

2.1 Client Libraries
Before you can log in to a GemStone object server, in addition to having GBS
loaded in your image, you must have the client libraries available for loading into
your image. The client libraries are provided with the GemStone object server
product release. You must use the correct client libraries for the particular version
of the object server you wish to connect to, and for the platform that the client
Smalltalk image is running on. If you update to a new version of GBS, but continue
to use the same version of the GemStone server, the same clientLibraries will be
used. The client libraries must be on the platform-dependent search path.

To set the client library, use the GbsConfiguration setting “libraryName”. You
may also execute:

GbsConfiguration current libraryName: ‘libraryName’

For more information on this setting, see Chapter 10, “GemBuilder Configuration
Parameters.” To determine the correct client library name to use for your
GemStone/S server product and version, see the GemBuilder for Smalltalk
Installation Guide.

2.2 GemStone Sessions
An application connects to the GemStone object server by logging in to the server
and disconnects by logging out. Each logged-in connection is known as a session
and is supported by one Gem process. The Gem reads objects from the repository,
executes GemStone Smalltalk methods, and propagates changes from the
application to the repository.

Each session presents a single-user view of a multiuser GemStone repository. Most
applications use a single session per client; but an application can create multiple
sessions from the same client, one of which is the current session at any given time.
You can manage GemStone sessions either through your application code or
through the Session Browser.

Chapter 2 - Communicating with the GemStone Object Server Session Control in GemBuilder

December 2011 VMware, Inc. 31

RPC and Linked Sessions
With VA Smalltalk, gems run as a separate operating system process and respond
to Remote Procedure Calls (RPCs) from its client. The session that this gem
supports is called an RPC session.

On platforms that host the GemStone object server and its runtime libraries, and in
which 64-bit client Smalltalk environments are available, one Gem can be
integrated with the application into a single operating system process. That Gem
is called a linked session. VA Smalltalk does not support linked sessions.

2.3 Session Control in GemBuilder
Managing GemStone sessions involves many of the same activities required to
manage user sessions on a multi-user computer network. To manage GemStone
sessions, you need to do various operations:

 • Identify the object server to which you wish to connect.

 • Identify the user account to which you wish to connect.

 • Log in and log out.

 • List active sessions.

 • Designate a current session.

 • Send messages to specific sessions.

These operations can be performed using GemBuilder’s Session Browser and
Session Parameters Editor. For more on using GemBuilder’s graphical tools, see
“The GemStone Session Browser” on page 158.

The remainder of this chapter discusses managing sessions programmatically,
using three GemBuilder classes: GbsSession, GbsSessionParameters, and
GbsSessionManager.

GbsSession
An instance of GbsSession represents a GemStone session connection. A
successful login returns a new instance of GbsSession. You can send
messages to an active GbsSession to execute GemStone code, control
GemStone transactions, compile GemStone methods, and access named
server objects.

GbsSessionParameters
Instances of GbsSessionParameters store information needed to log in to

Session Control in GemBuilder GBS 5.4 User’s Guide

32 VMware, Inc. December 2011

GemStone. This information includes the Stone name, your user name,
passwords, and the set of connectors to be connected at login.

GbsSessionManager
There is a single instance of GbsSessionManager, named GBSM. Its job is
to manage all GbsSessions logged in from this client, support the notion of
a current session (explained in the following section), and handle other
miscellaneous GemBuilder matters. Whenever a new GbsSession is
created, it is registered with GBSM. GBSM shuts down any server
connections before the client Smalltalk quits.

Session Parameters
To initiate a GemStone session, you must first identify the object server and user
account to which you wish to connect. This information is stored in an instance of
GbsSessionParameters and added to a list maintained by GBSM. You can provide
the information through window-based tools or programmatically. Both methods
are described in later sections. In either case, you must supply these items:

 • The name of the GemStone repository
For a Stone running on a host other than the Gem host (described below), you
must include the server’s hostname in Network Resource String (NRS) format.
(NRS format is described in an appendix to the System Administration Guide for
GemStone/S 64 Bit) For instance, for a Stone named “gs64stone” on a host
named “pelican”, specify an NRS string of the form:

!@pelican!gs64stone

 • GemStone user name and GemStone password
This user name and password combination must already have been defined in
GemStone by your GemStone data curator or system administrator.
(GemBuilder provides a set of tools for managing user accounts—see “User
Account Management Tools” on page 213.) Because GemStone comes
equipped with a data curator account, we show the DataCurator user name in
many of our examples.

 • Host username and Host password (not required if netldi is run in guest
mode)
This user name and password combination specifies a valid login on the Gem’s
host machine (the network node specified in the Gem service name, described
below). Do not confuse these values with your GemStone username and
password. You do not need to supply a host name and password if the netldi
is running in guest mode.

Chapter 2 - Communicating with the GemStone Object Server Session Control in GemBuilder

December 2011 VMware, Inc. 33

 • Gem service
The name of the Gem service on the host computer (that is, the Gem process to
which your GemBuilder session will be connected). For most installations, the
Gem service name is gemnetobject.

You can specify that the gem is to run on a remote host by using an NRS for
the Gem service name For example:

!@pelican!gemnetobject

Once defined, an instance of GbsSessionParameters can be used for more than one
session.

Defining Session Parameters Programmatically
The instance creation method for a full set of RPC parameters is:

GbsSessionParameters newWithGemStoneName: aGemStoneName
 username: aUsername
 password: aPassword
 hostUsername: aHostUsername
 hostPassword: aHostPassword
 gemService: aGemServiceName

Storing Session Parameters for Later Use

If you want the GemBuilder session manager to retain a copy of your newly-
created session description for future use, you must register it with GBSM:

GBSM addParameters: aGbsSessionParameters

Once registered with GBSM and saved with the image, the parameters are
available for use in future invocations of the image. In addition, the Session
Browser and other login prompters make use of GBSM’s list of session parameters.

Executing the expression GBSM knownParameters returns an array of all
GbsSessionParameters instances registered with GBSM.

To delete a registered session parameters object, send removeParameters: to
GBSM:

GBSM removeParameters: aGbsSessionParameters

Password Security

You can control the degree of security that GemBuilder applies to the passwords
in a session parameters object. For example, when you create the parameters

Logging In to and Logging Out of GemStone GBS 5.4 User’s Guide

34 VMware, Inc. December 2011

object, you can specify the passwords as empty strings. When the parameters
object is subsequently used in a login message, GemBuilder will prompt the user
for the passwords.

For example:

mySessionParameters := GbsSessionParameters
newWithGemStoneName: '!@pelican!gs64stone'
username: 'DataCurator'
password: ''
hostUsername: 'lisam'
hostPassword: ''
gemService: '!@pelican!gemnetobject'

If convenience is more important than security, you can fill in the passwords and
then instruct the parameters object to retain the password information for future
use:

mySessionParameters rememberPassword: true;
 rememberHostPassword: true

The default “remember” setting for both passwords is false, which causes the
stored passwords to be erased after login.

2.4 Logging In to and Logging Out of GemStone
Before you can start a GemStone session, you need to have a Stone process and, for
an RPC session, a NetLDI (network long distance information) process running.

Depending on the terms of your GemStone license, you can have many sessions
logged in at once from the same GemBuilder client. These sessions can all be
attached to the same GemStone repository, or they can be attached to different
repositories.

Logging In to GemStone
The protocol for logging in is understood both by GBSM and by instances of
GbsSessionParameters. To log in using a specific session parameters object, send a
login message to the parameters object itself:

mySession := aGbsSessionParameters login

To start multiple sessions with the same parameters, simply repeat these login
messages.

Chapter 2 - Communicating with the GemStone Object Server Logging In to and Logging Out of GemStone

December 2011 VMware, Inc. 35

An application can also send a generic login message to GBSM:

mySession := GBSM login

This message invokes an interactive utility that allows you to select among known
GbsSessionParameters or to create a new session parameters object using the
Session Parameters Editor.

A successful login returns a unique instance of GbsSession. (An unsuccessful login
attempt returns nil.) Each instance of GbsSession maintains a reference to that
session’s parameters, which you can retrieve by sending:

myGbsSessionParameters := aGbsSession parameters

GBSM maintains a collection of currently logged in GbsSessions. You can
determine if any sessions are logged in with GBSM isLoggedIn and you can
execute GBSM loggedInSessions to return an array of currently logged in
GbsSessions.

The Current Session
When a new GbsSession is created, it is registered with GBSM, which maintains a
variable that represents the current session. When a session logs in, it becomes the
current session. If you execute code in a GemStone tool, the code is evaluated in
the current session, or in the session that was current when you opened that
tool. If you send a message to GBSM that is intended for a session, the message is
forwarded to the current session.

You can send a message directly to any logged-in GbsSession, even when it is not
the current session. If you send a specific session a message that executes code,
that code is evaluated in the receiving session, regardless of whether it is the
current session.

Most applications have only one session logged in at a time. In this case, that
session will always be the current session, and it is safe to send messages to GBSM
for forwarding to the session.

However, if your application concurrently logs in more than one session, your
application should send messages directly to each session. If your application
client uses multiple Smalltalk processes it is very difficult to accurately coordinate
the changing of the current session.

Sending the message GBSM currentSession returns the current
GbsSession. You can change the current session in a workspace by executing an
expression of the following form:

GBSM currentSession: aGbsSession.

Logging In to and Logging Out of GemStone GBS 5.4 User’s Guide

36 VMware, Inc. December 2011

Your application can make another session the current session by executing code
like that shown in Example 2.1:

Example 2.1

|s1 s2|
 s1 := GBSM login.
 s2 := GBSM login.
GBSM currentSession: s1. "Make s1 current"
 .
 . "Do some work"
 .
GBSM currentSession: s2. "Make s2 current"

Each GemStone browser, inspector, debugger, and breakpoint browser is attached
to the instance of GbsSession that was the current session when it opened. For
example, you can have two browsers open in two different sessions, such that
operations performed in each browser are applied only to the session to which that
browser is attached.

Workspaces, however, are not session-specific. Executing a GS-execute in a
workspace will execute in the current session.

Logging Out of GemStone
To instruct a session to log itself out, send logout to the session object:

aGbsSession logout

Or, you can execute the more generic instruction:

GBSM logout

This message prompts you with a list of currently logged-in sessions from which
to choose.

Before logging out, GemBuilder prompts you to commit your changes, if the
GbsConfiguration setting confirm is true (it is true by default). If you log out after
performing work and do not commit it to the permanent repository, the
uncommitted work you have done will be lost.

If you have been working in several sessions, be sure to commit only those sessions
whose changes you wish to save.

Chapter 2 - Communicating with the GemStone Object Server Session Dependents

December 2011 VMware, Inc. 37

2.5 Session Dependents
An application can create several related components during a single GemBuilder
session. When one of the components commits, aborts, or logs out, the other
components can be affected and so may need to coordinate their responses with
each other. In the GemBuilder development environment, for example, you can
commit by clicking on a button in the Session Browser. But before the commit takes
place, all other session-dependent components are notified that a commit is about
to occur. So a related application component, such as an open browser containing
modified text, prompts you for permission to discard its changes before allowing
the commit to proceed.

Through the Smalltalk dependency mechanism, any object can be registered as a
dependent of a session. In practice, a session dependent is often a user-visible
application component, such as a browser or a workspace. When one application
component asks to abort, commit, or log out, the session asks all of its registered
dependents to approve before it performs the operation. If any registered
dependent vetos the operation, the operation is not performed and the method
(commitTransaction, abortTransaction, etc.) returns nil.

To make an object a dependent of a GbsSession, send:

mySession addDependent: myObj

To remove an object from the list of dependents, send the following message:

mySession removeDependent: myObj

So, for example, a browser object might include code similar to Example 2.2 in its
initialization method:

Example 2.2

| mySession |
mySession := self session.
"Add this browser to the sessions dependents list"
(session dependents includes: self)

ifFalse: [session addDependent: self]
...

When a session receives a commit, abort, or logout request, it sends an
updateRequest: message to each of its dependents, with an argument
describing the nature of the request. Each registered object should be prepared to

Session Dependents GBS 5.4 User’s Guide

38 VMware, Inc. December 2011

receive the updateRequest: message with any one of the following aspect
symbols as its argument:

#queryCommit
The session with which this object is registered has received a request to
commit. Return true to allow the commit to take place or false to prevent it.

#queryAbort
The session with which this object is registered has received a request to abort.
Return true to allow the abort to take place or false to prevent it.

#queryEndSession
The session with which this object is registered has received a request to
terminate the session. Return true to allow the logout to take place or false to
prevent it.

Example 2.3 shows how a session dependent might implement an
updateRequest: method.

Example 2.3

updateRequest: aspect

"The session I am attached to wants to do something.
 Return a boolean granting or denying the request."

^(#(queryAbort queryCommit queryEndSession)
 includes: aspect)
 ifTrue: ["My session wants to commit or abort.
 OK unless user doesn’t want to."
 self askUserForPermission]
 ifFalse: ["Let any other action occur."
 true]

After the action is performed, the session sends self changed: with a parameter
indicating the type of action performed. This causes the session to send an
update: message to each of the registered dependents with one of the following
aspect symbols:

#committed
All registered objects have approved the request to commit, and the
transaction has been successfully committed.

Chapter 2 - Communicating with the GemStone Object Server Session Dependents

December 2011 VMware, Inc. 39

#aborted
All registered objects have approved the request to abort, and the transaction
has been aborted.

#sessionTerminated
The request to log out has been approved and the session has logged out.

Each registered dependent should be prepared to receive an update: message
with one of the above aspect symbols as its argument. Example 2.4 shows how a
session dependent might implement an update: method.

Example 2.4

update: aSymbol
"The session I am attached to just did something.
 I might need to respond."

(aSymbol = #sessionTerminated) ifTrue: [
"The session this tool is attached to has logged out
 - close ourself."
self builder notNil ifTrue:

[self closeWindow]]

Figure 2.1 summarizes the sequence of events that occurs when a session queries
a dependent before committing. In the figure, the Session Browser sends a commit
request (commitTransaction) to a session (1). The session sends
updateRequest: #queryCommit to each of its dependents (2). If every
dependent approves (returns true), the commit proceeds (4). Following a
successful commit, the session notifies its dependents that the action has occurred
by sending update: #committed to each (5).

Session Dependents GBS 5.4 User’s Guide

40 VMware, Inc. December 2011

Figure 2.1 Committing with Approval From a Session Dependent

Session
Session Browser

Class Browser

GemStone
Repository

(1) Commit Request

(2) Update Request (3) Request

(4) Commit

Approved

(5) Update

(Dependent of Session)

Chapter

December 2011 VMware, Inc. 41

3 Sharing Objects

This chapter describes how GemBuilder shares objects with the GemStone object
repository.

Which Objects to Share?
is an overview of the process of determining how to make good use of
GemBuilder’s resources, and introducing forwarders, replicates, and stubs.

Class Mapping
explains how classes are defined and how forwarders, stubs, and replicates
depend on them.

Forwarders
explains how to use forwarders to store all an object’s state and behavior in one
object space.

Replicates
explains replicating GemStone server objects in client Smalltalk, or vice-versa;
describes the processes of propagating changes to keep objects synchronized;
presents various mechanisms to minimize performance costs; presents further
details.

Precedence of Replication Mechanisms
discusses the various ways replication mechanisms interact, and describes

Which Objects to Share? GBS 5.4 User’s Guide

42 VMware, Inc. December 2011

how to determine whether an application object becomes a forwarder, stub, or
replicate.

Converting Between Forms
lists protocol for converting from and to delegates, forwarders, stubs,
replicates, and unshared client objects.

3.1 Which Objects to Share?
Working with your client Smalltalk, you had one execution engine—the virtual
machine—acting on one object space—your image. Now that you’ve installed
GemBuilder, you have two execution engines and two object spaces, one of which
is a full-fledged object repository for multiuser concurrent access, with transaction
control, security protections, backups and logging.

What’s the best way to make use of these new resources?

Objects represent both state and behavior. Therefore, you have two basic
decisions:

 • Which state should reside on the client, which on the server, and which in both
object spaces?

 • Which behavior should reside on the client, which on the server, and which in
both object spaces?

Ultimately, the answer is dictated by the unique logic of your specific problem and
solution, but these common patterns emerge:

Client presents user interface only; state (domain objects) and application
logic reside on server; server executes all but user interface code. A web-
based application that uses the client merely to manage the browser needs
little functionality on the client, and what it does need is cleanly delimited.

State resides on both client and server; client manages most execution;
server is used mainly as a database. A Department of Motor Vehicles could
use a repository of driver and vehicle information, properly defined, for a bevy
of fairly straightforward client applications to manage driver’s licenses,
parking permits, commercial licenses, hauling permits, taxation, and fines.

Execution occurs, and therefore state resides, on both client and server. At
specified intervals, clients of a nationwide ticket-booking network download
the current state of specific theaters on specific dates. Clients book seats and
update their local copies of theaters until they next connect to the repository.
To resolve conflicts, server and client engage in a complex negotiation.

Chapter 3 - Sharing Objects Class Mapping

December 2011 VMware, Inc. 43

For these and other solutions, GemBuilder provides several kinds of client- and
server-side objects, and a mechanism—a connector—for describing the association
between pairs of root objects across the two object spaces.

Three kinds of objects help a GemBuilder client and a GemStone server repository
share state and execution: forwarders, stubs, and replicates.

Forwarder — is a proxy: a simple object that knows only which object in the
other space it is associated with. It responds to a message by
passing it to its associated master object in the other object space,
where state is stored and execution occurs remotely. Forwarders
can be on the client, for server master objects, or on the server for
client master objects.

Replicate — is a object associated with a particular object in the other object
space. The replicate copies some or all of the other object’s state,
which it synchronizes at appropriate times. It implements all
messages it expects to receive. By default, it executes locally.

Stub — is a proxy that responds to a message by becoming a replicate of
its counterpart object, then executing the message locally.
Stubbing is a way to minimize memory use and network traffic by
bringing only what is needed when it is needed.

A connector is the mechanism by which an object in one object space refers to
another in the other object space:

Connector — associates a root client object with a root server object, typically
resolving objects by name, although there are other ways. When
connected, they synchronize data or pass messages in either
direction or take no action at all, as specified.

Whatever combination of these elements your application requires, subsystems of
objects will probably reside on both the client and the server. Some subset of these
subsystems will need state or behavior on both sides: some objects will be shared.

3.2 Class Mapping
Before GemBuilder can replicate an object, it must know the respective structures
of client and repository object and the mapping between them. Although not
strictly necessary for forwarders, this knowledge improves forwarding
performance, saving GemBuilder an extra network round-trip.

Class Mapping GBS 5.4 User’s Guide

44 VMware, Inc. December 2011

GemBuilder uses class definitions to determine object structure. To replicate an
object:

 • both client and server must define the class, and

 • the two classes must be mapped by name or by using a class connector.

GemBuilder uses this mapping for all replication, whether at login or later.

Unlike connectors for replicates or forwarders, class connectors by default to dot
update at connect time. If class definitions differ on the client and the server, it is
usually for a good reason; you probably don’t want to update GemStone with the
client Smalltalk class definition, or vice-versa.

GemBuilder predefines special connectors, called fast connectors, for the GemStone
kernel classes. For more information about fast connectors, see “Connecting by
Identity: Fast Connectors” on page 91.

If there is no connector for a class, and a mapping for that class is required,
GemBuilder will attempt to map the client and server classes with the same name.
By default, it will also create a connector for those classes. If the configuration
parameter generateClassConnectors is false, GemBuilder will still map the
classes by name, but will not create a connector. The difference is that without a
connector, the mapping only lasts until the session logs out, and any other sessions
logged in will not have that mapping. If a connector is created, it is associated with
the session parameters object, and any session logged in using that session
parameters object will have that class mapping created at login time.

Automatic Class Generation and Mapping
You can configure GemBuilder to generate class definitions and connectors
automatically. When so configured, if GemBuilder requires the GemStone server
to replicate an instance of a client class that is not already defined on the server,
then at the first access, GemBuilder generates a server class having the same
schema and position in the hierarchy, and a class connector connecting it to the
appropriate client class. Conversely, if the client must replicate an instance of a
GemStone class that is not already defined in client Smalltalk, GemBuilder
generates the client Smalltalk class and the appropriate class connector. If
superclasses are also undefined, GemBuilder generates the complete superclass
hierarchy, as necessary.

You can control automatic class generation with the configuration parameters
generateServerClasses and generateClientClasses (described starting
on page 152). These settings are global to your image.

Chapter 3 - Sharing Objects Class Mapping

December 2011 VMware, Inc. 45

 • If you have disabled automatic generation of GemStone classes by setting
generateServerClasses to false (the default), situations that would
otherwise generate a server class instead raise the exception
GbsClassGenerationError.

 • If you have disabled automatic generation of client Smalltalk classes by setting
generateClientClasses to false (the default), situations that would
otherwise generate a client Smalltalk class instead raise the exception
GbsClassGenerationError.

 • You can disable class connector generation by setting
generateClassConnectors to false. When classes are generated or
mapped by name, no connector is generated.

GemBuilder deposits automatically generated GemStone server classes in the
GemStone symbol dictionary UserClasses, which it creates if necessary.
Automatically generated client Smalltalk classes are deposited in an application
named UserClasses.

Automatic class generation is primarily useful as a development-time
convenience. In an application runtime environment, we recommend having all
necessary classes predefined in both object spaces, and having a connector defined
for each class before logging in. This can improve performance by avoiding
unnecessary work when the class is first accessed.

Schema Mapping
By default, when you map a client class with a GemStone server class, GemBuilder
automatically maps all instance variables whose names match, regardless of the
order in which they are stored. (You can change this default mapping to
accommodate nonstandard situations.)

If you later change either of the mapped class definitions, GemBuilder
automatically remaps identically named instance variables.

Behavior Mapping
When GemBuilder generates classes automatically, it only copies the definition of
the class, not the methods of the class.

Replicated instances depend on methods implemented in the object space in which
they execute. During development, it may be simplest to use GemBuilder’s
programming tools to implement the same behavior in both spaces. For reliability
and ease of maintenance, however, some decide to remove unnecessary

Forwarders GBS 5.4 User’s Guide

46 VMware, Inc. December 2011

duplication from production systems and to define behavior only where it
executes.

Mapping and Class Versions
Unlike the client Smalltalk language, GemStone Smalltalk defines class versions:
when you change a class definition, you make a new version of the class, which is
added to an associated class history. (For details, see the chapter entitled “Class
Versions and Instance Migration” in the GemStone/S 64 Bit Programming Guide.)

If you change a class definition on the client or server, and decide to update one
class definition with the other, the result depends on the direction of the update:

 • Updating a client Smalltalk class from a GemStone server class regenerates the
client class and recompiles its methods.

 • Updating a GemStone server class from a client Smalltalk class creates a new
version of the class.

NOTE
A class connector connects to a specific GemStone class version, the
version that was in effect when the connector was connected. Instances
of a given class version are not affected by a connector connected to
another class version.

3.3 Forwarders
The simplest way to share objects is with forwarders, simple objects that know just
one thing: to whom to forward a message. A forwarder is a proxy that responds to
messages by forwarding them to its counterpart in the other object space.

Forwarders are particularly useful for large collections, generally resident on the
GemStone server, whose size makes them expensive to replicate and cumbersome
to handle in a client image.

Forwarders are of two kinds:

 • The most common kind of forwarder is a forwarder to the server: a client
Smalltalk object that knows only which GemStone server object it represents.
It responds to all messages by passing them to the appropriate server object,
where data resides and behavior is implemented. (For historical reasons, this
is the kind of forwarder usually meant when a discussion merely says
“forwarder.” This kind of forwarder is also called a server forwarder.)

Chapter 3 - Sharing Objects Forwarders

December 2011 VMware, Inc. 47

 • A forwarder to the client is a GemStone server object that knows only which
client Smalltalk object it represents. It responds to all messages by passing
them to the appropriate client Smalltalk object, where data resides and
behavior is implemented.

You can create forwarders in several ways:

 • Declare a connector as a forwarder upon login. For example, connect the
GemStone global variable BigDictionary as a forwarder to the server so that it
isn’t replicated in the client.

 • Specify that a given instance variable must always appear in the other object
space as a forwarder to the server (using a replication specification, discussed
starting on page 59). For example, a reference application might implement a
specification that declares the class variable Atlas as a forwarder to the server.

 • Prefix fw to a method name to return a forwarder from any message-send to
GemStone. For example, to return a forwarder from a GemStone name lookup,
send the GbsSession method fwat: or fwat:ifAbsent: instead of at: or
at:ifAbsent:.

 • Create a forwarder to the server explicitly using the message #asForwarder
to any instance of GbsObject. For example:

(GBSM execute: ‘someCode’) asForwarder

 • Override all these by implementing a class method
instancesAreForwarders to return true, and all instances of a given class
are forwarders to the server. Subclasses of GbsServerClass already respond
true to this message; GbsServerClass is an abstract class, and all instances
that inherit from it become forwarders to the server. When sent to a class that
inherits from GbsServerClass, the instance creation methods new and new:
create a new instance of the class in GemStone and return a forwarder to that
instance.

Sending Messages
When a forwarder to the server receives a message, it sends the message to its
associated delegate, which in turn sends it to the GemStone counterpart whose
object identifier it holds—presumably an instance that can respond meaningfully.
The target object’s response is then returned to the delegate, and through the
delegate to the forwarder, which then returns the result.

When a forwarder to the client receives a message, it forwards the message to the
full-fledged client object to which it is connected, returning the result to the client
forwarder, which stores it in GemStone.

Forwarders GBS 5.4 User’s Guide

48 VMware, Inc. December 2011

Arguments

Before a message is forwarded to GemStone, arguments are translated to
GemStone server objects. As a message is forwarded to the client, arguments are
translated to client Smalltalk objects.

When an argument is a block of executable code, special care is required: for
details, see “Replicating Client Smalltalk Blocks” on page 70.

Results

The result of a message to a client forwarder is a GemStone Smalltalk object stored
in the GemStone repository.

The result of a message to a server forwarder is the client Smalltalk object
connected to the GemStone server object returned by GemStone—usually a
replicate, although a forwarder might be desirable under certain circumstances.

To enforce a forwarder result, prefixing the message to the forwarder with the
characters fw. For example:

 • aForwarder at: 1 returns a replicate of the object at index 1.

 • aForwarder fwat: 1 returns a forwarder to the object at index 1.

Defunct Forwarders
A forwarder contains no state or behavior in one object space, relying on the
existence of a valid instance in the other. When a session logs out of the server,
communication between the two spaces is interrupted. Forwarders that relied on
objects in that session can no longer function properly. If they receive a message,
GemBuilder raises an error complaining of either an invalid session identifier or a
defunct forwarder.

You cannot proceed from either of these errors; an operation that encounters one
must restart (presumably after determining the cause and resolving the problem).

GemBuilder cannot safely assume that a given object will retain the same object
identifier (OOP) from one session to the next. Therefore, you can’t fix a defunct
forwarder error simply by logging back in.

(If a connector has been defined for that object or for its root, then logging back in
will indeed fix the error, because logging back in will connect the variables. But in
that case, it’s the connector, not the forwarder, that repairs damaged
communications.)

Consider the following forwarder for the global BigDictionary:

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 49

Example 3.1

conn := GbsNameConnector
stName: #BigDictionary
gsName: #BigDictionary.

conn beForwarderOnConnect.
GBSM addGlobalConnector: conn

When a GemBuilder session logs into GemStone, BigDictionary becomes a valid
forwarder to the current GemStone BigDictionary. But when no session is logged
into GemStone, sending a message to BigDictionary results in a defunct forwarder
error.

GemBuilder’s configuration parameter connectorNilling, when true, assigns each
connector’s variables to nil on logout. This usually prevents defunct stub and
forwarder errors, replacing them with nil doesNotUnderstand errors.

3.4 Replicates
Sometimes it’s undesirable to dispatch a message to the other object space for
execution—sometimes local execution is desirable, even necessary, for example, to
reduce network traffic. When local state and behavior is required, share objects
using replicates instead of forwarders. Replicates are particularly useful for small
objects, objects having visual representations, and objects that are accessed often
or in computationally intensive ways.

Like a forwarder, a replicate is a client Smalltalk object associated with a delegate
that knows which GemStone server object the replicate represents. Unlike a
forwarder, replicates also hold (some) state and implement (some) behavior.
Replicates have available a variety of mechanisms for synchronizing their state
with their associated server object.

For example, replicates must declare one of two default update directions: either
the client image is presumed valid and updates the GemStone server object, or
GemStone is presumed valid and updates the client object. While connected,
GemBuilder automatically updates the specified object at transaction boundaries
when its replicate has changed.

To do so, GemBuilder must know about the structure of the two objects and the
mapping between those structures. GemBuilder manages this mapping on a class
basis: replicates must be instances of classes whose definitions are connected, by
means of a class connector, to definitions of the corresponding class in the other

Replicates GBS 5.4 User’s Guide

50 VMware, Inc. December 2011

object space. GemBuilder handles many obvious cases automatically, but
nonstandard mappings require you to override certain instance and class methods
from class Object’s GemStone support protocol. Nonstandard mappings are
discussed starting on page 52.

Synchronizing State
After a relationship has been established between a client object and a GemStone
server object, GemBuilder keeps their states synchronized by propagating changes
as necessary.

When an object changes in the server, GemBuilder automatically updates the
corresponding client Smalltalk replicate. By default, GemBuilder also detects
changes to client Smalltalk replicates and automatically updates the
corresponding server object.

The stages and terminology of this synchronization are as follows:

 • When an object is modified in the client, leaving its server counterpart out of
date, the client object is now referred to as dirty.

 • When the state of dirty client objects is transferred to their corresponding
server objects, this is called flushing.

 • When a server object is modified in the server, leaving its client counterpart
out of date, the server object is now dirty. This can occur during execution of
server Smalltalk, or at a transaction boundary when changes committed by
other sessions become visible to your session.

 • When the state of dirty server objects is transferred to their corresponding
client objects, this is called faulting.

Together, GemBuilder and the GemStone server manage the timing of faulting and
flushing.

Faulting

GemBuilder faults objects automatically when required. Faulting is required when
a stub receives a message, requesting it to turn itself into a replicate. (see stubbing
on page 55)

Faulting may also be required when:

 • Connectors connect; this typically occurs at login, the beginning of a
GemStone session, but you can connect and disconnect connectors explicitly
during the course of a session using either code or the Connector Browser.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 51

Faulting may or may not occur upon connection, depending on the post-
connect action specified for the connector.

 • A server object that has been replicated to the client is modified on the server.
This can happen in two cases:

1. GemStone Smalltalk execution in your session modifies the state of the
object. GemStone Smalltalk execution occurs when a forwarder receives a
message, or in response to any variant of GbsSession >> evaluate:.

2. Your session starts, commits, aborts, or continues a transaction—passes a
transaction boundary—which refreshes your session's private view of the
repository. If the server object has been changed by some other concurrent
session, and that change was committed, the object's new state will be
visible when your session refreshes its view.

In both of these cases, the replicate's state is now out of date, and cannot be used
until updated by faulting. Depending on the replicate's faultPolicy (see page 57)
the new state will either be faulted immediately, or the replicate becomes a stub,
and will be faulted the next time it receives a message.

Flushing

GemBuilder flushes dirty client objects to the GemStone server at transaction
boundaries, immediately before any GemStone Smalltalk execution, or before
faulting a stub.

Flushing is not the same as committing. When GemBuilder flushes an object, the
change becomes visible to the session’s private view of the GemStone repository,
but it doesn’t become part of the shared repository until your session
commits—only then are your changes accessible to other users.

GemBuilder automatically detects modifications to connected client objects. You
can disable this feature, however, if you wish to mark objects dirty explicitly in
your code.

To disable automatic dirty-marking, execute:

GBSM autoMarkDirty: false

Marking Modified Objects Dirty Manually

Generally, we recommend you use the automatic mechanisms. You can instead, if
you wish, mark objects dirty explicitly in your code. The automatic mechanism
faster and much more reliable—if you miss even one place where a shared object
is modified, your application will misbehave.

Replicates GBS 5.4 User’s Guide

52 VMware, Inc. December 2011

To manually mark a replicate dirty, send markDirty to the replicate immediately
after each time your application modifies it. If a replicate is modified on the client
but not marked dirty, the modification will be lost eventually. The object could be
overwritten with its GemStone server state after the application has executed code
on the server, or at the next transaction boundary. Even if the client object is never
overwritten, the modification will never be sent to the server.

Minimizing Replication Cost
Replicating the full state of a large and complex collection can demand too much
memory or network bandwidth. Optimize your application by controlling the
degree and timing of replication; GemBuilder provides three ways to help:

Instance Variable Mapping — Modify the default class map to specify how widely
through each object to replicate—which instance variables to
connect and which to prune as never being of interest to an
application. You can also specify the details of an association
between two classes whose structures do not match.

Stubbing — Specify how deeply through the network to replicate, how many
layers of references to follow when faulting occurs.

Replication Specifications — Another way to specify how widely or deeply
through each object to replicate—of a class’s mapped instance
variables, which to replicate and which to stub.

Instance Variable Mapping

As discussed in “Class Mapping” on page 43, before GemBuilder can replicate
objects, it must know their respective structures and the mapping between them.
By default GemBuilder maps instance variables by name. You can override this
default either by suppressing certain instance variables, thereby rendering them
invisible to an application, or by explicitly specifying a mapping between
nonmatching names.

Suppressing Instance Variables

Some client Smalltalk objects, however, must define instance variables that are
relevant only in the client environment—for example, a reference to a window
object. Such data is transient and doesn’t need to be stored in GemStone. Situations
can also arise in which the GemStone class defines instance variables that a given
application will never need; many applications can share repository objects
without necessarily sharing the same concerns. Mapping allows your application
to prune parts of an object.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 53

Suppress the replication of an individual instance variable simply by omitting its
name from its counterpart’s class definition:

 • If a client object contains a named instance variable that does not exist in its
GemStone counterpart, the value of that variable is not replicated in
GemStone. When the rest of the object is stored in the repository, its value is
omitted; when GemBuilder faults the GemStone server object into the client,
the client’s suppressed instance variable remains unchanged.

 • Likewise, if a GemStone server object contains a named instance variable that
does not exist in its client counterpart, the value of that variable is not
replicated in the client. When the application replicates the GemStone server
object to the client, its value is not transferred; when the application flushes the
object into the repository, the server object’s suppressed instance variable
remains unchanged.

You can also suppress instance variable mappings by implementing the client class
method instVarMap. Example 3.2 shows a simple implementation:

Example 3.2

TestObject class>>instVarMap
^super instVarMap ,

#((nil gsName)
 (stName nil))

The first component of the return value, a call to super instVarMap, ensures
that all instance variable mappings established in superclasses remain in effect.

Appended to the inherited instance variable map, an array contains the pairs of
instance variable names to map. The first pair (nil gsName) specifies that the
GemStone instance variable gsName will never be replicated in the client. The
second pair (stName nil) specifies that the client instance variable stName will
never be replicated in GemStone.

Nonmatching Names

You can also specify an explicit instance variable mapping between GemStone and
the client:

 • to map two instance variables whose names don’t match, or

 • to prevent the mapping of two instance variables whose names do match.

In this way your application can accommodate differing schemas.

Replicates GBS 5.4 User’s Guide

54 VMware, Inc. December 2011

To specify nonstandard instance variable mappings, use the same class method
instVarMap, as in Example 3.3:

Example 3.3

TestObject class>>instVarMap
^super instVarMap ,

#((stName gsName))

Appended to the inherited instance variable map, a single pair declares that the
instance variable stName in the client maps to the instance variable gsName in
GemStone.

One implementation can both prune irrelevancy and accommodate differing
schemas, as the instance variable mapping for the class Book shows in
Example 3.4:

Example 3.4

Book class>>instVarMap
^super instVarMap ,

#((title title)
 (author author)
 (nil pages)
 (publisher nil)
 (copyright publicationDate))

The first two pairs of instance variables change nothing: they explicitly state what
would happen without this method, but are included for completeness.

(nil pages) specifies that the client application does not need to know a books
page count and therefore this repository-side instance variable is not replicated in
the client.

(publisher nil) specifies that the client application needs (and presumably
assigns) the instance variable publisher, which is never stored in the repository.

(copyright publicationDate) maps the client class Book’s instance variable
copyright to the GemStone class Book’s instance variable publicationDate.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 55

Stubbing

Often an application has need of certain instance variables, but not all at once. For
example, it’s impractical to replicate the entire hierarchy of BigDictionary at login:
users will experience unacceptable network delays, and the client Smalltalk image
can’t handle data sets as large as the GemStone server can. Furthermore, it’s
unnecessary: only a small number of objects will be needed for the current task. To
help prevent this kind of over-replication, GemBuilder provides stubs.

A stub, like a forwarder, is also a proxy associated with a server object. Unlike a
forwarder, however, when a stub receives a message, it does not send the message
across to the other object space. Instead, it faults is server counterpart into the
client image. The client Smalltalk replicate then responds to the message.

When GemBuilder faults automatically, it replicates the object hierarchy to a
certain level, then creates stubs for objects on the next level deeper than that. The
number of levels that are replicated each time is the fault level.

A fault level of 1 follows an object’s immediate references and faults those in. A
fault level of 2 follows one more layer of references and replicates those objects,
too. Figure 3.1 illustrates an application with a fault level of 2.

Faulting at Login

At login, the connectors connect, and objects a, b, and c are replicated; objects d
and e are stubbed; objects f and g are ignored.

Figure 3.1 Two-level Fault of an Object

Rep

Rep
Rep

StubStub

a

ed

c
b

a

c

d

b

f g

e

GemStoneClient Smalltalk

Replicates GBS 5.4 User’s Guide

56 VMware, Inc. December 2011

Faulting in Response to a Message

When object e, a stub, receives a message, it faults in a replicate of its counterpart
GemStone object.

A stub faults in a replicate in response to a message. Therefore, direct references to
instance variables can cause problems. Direct access is not a message-send; the
stub will not fault in its replicate, because it receives no message; neither can it
supply the requested value. To avoid this problem, use accessor methods to get or
set instance variables.

The following sequence demonstrates the problem. The object starts as a replicate
in client Smalltalk:

demonstrateProblem

| firstTemp secondTemp |

firstTemp := size. "Size is an inst var of the receiver.
firstTemp now has a valid value."

self stubYourself. "self is now a stub, and has no
instance variable values"

secondTemp := size. "Since this access is not a message
send, it does not unstub self.
SecondTemp now contains an invalid
value, most likely nil."

^Array with: firstTemp with: secondTemp.

Using an accessor method, on the other hand, causes the stub to be faulted in and
yields the correct result:

secondTemp := self size. "This is a message, and faults
the stub."

e is now a replicate, as shown in Figure 3.2. The new replicate responds to the
message.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 57

Figure 3.2 A Stub Responds to a Message

Rep

Rep
Rep

Stub

a

d

c
b

a

c

d

b

f g

e

GemStoneClient Smalltalk

f g

e
Rep

Rep Rep

Again, two levels are replicated, object e and its immediate instance variable: a
fault level is a global parameter.

Now, suppose another session commits a change to b?

Faulting in Changes From Other Sessions

Each session maintains its own view of the GemStone object server’s shared object
repository. The session’s private view can be changed by the Smalltalk application
when it adds, removes, or modifies objects—that is, you can see your own changes
to the repository—or the Gem can change your view at transaction boundaries or
after a session has executed GemStone Smalltalk.

A Gem maintains a list of repository objects that have changed and notifies
GemBuilder of any changes to objects it has replicated. If it finds any changed
counterparts, it updates the client object with the new GemStone value.

Replicates and stubs respond to the message faultPolicy. The default
implementation returns the value of GemBuilder’s configuration parameter
defaultFaultPolicy: either #lazy or #immediate.

 • A lazy fault policy means that, when GemBuilder detects a change in a
repository object, it turns the client counterpart from a replicate into a stub.
The object will remain a stub until it next receives a message.

Replicates GBS 5.4 User’s Guide

58 VMware, Inc. December 2011

 • An immediate fault policy means that, when GemBuilder detects a change in a
repository object, it updates the replicate immediately.

If another session commits a change to b, and b’s fault policy is lazy, b becomes a
stub. If b’s fault policy is immediate, b is updated.

The default fault policy is lazy, to minimize network traffic. For more information,
see the description of defaultFaultPolicy in the Settings Browser. For
examples, browse implementors of faultPolicy in the GemBuilder image.

Overriding Defaults

GemBuilder has a default fault level of 4, specified by the configuration parameter
faultLevelRpc.

 • You can override the default for specific instance variables of specific
replicates.

 • You can also stub or replicate certain objects explicitly.

To specify fault levels for all instance variables, implement a class method
replicationSpec for the client class. Replication specifications are versatile
mechanisms described starting on page 59.

To cause a replicate to become a stub, send it the message stubYourself. This
can be useful for controlling the amount of memory required by the client
Smalltalk image. Explicit control of stubs is discussed in “Optimizing Space
Management” on page 136.

Sometimes stubbing is not desirable, either for performance reasons or for
correctness. For example, primitives cannot accept stubs as parameters if the
primitive accesses the value of the parameter. If your application uses an object as
an argument to a primitive, you must either prevent that object from ever
becoming a stub, or ensure that it’s replicated before the primitive is executed.

To cause a stub to become a replicate, send it the message fault. Stubs respond
to this message by replicating; replicates return self. The message
faultToLevel: allows you to fault in several levels at once, as specified.

To prevent a replicate from ever being a stub, configure it as a replicate at login and
set its faultPolicy to #immediate.

Defunct Stubs

Faulting in a stub relies on the existence of a valid GemStone object to replicate or
forward to. If an object is stubbed, then the session logs out, a message to that stub
raises an error complaining that it is defunct. For example, suppose MyGlobal is

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 59

modified on the server, thereby stubbing it in your client session. If the session logs
out before MyGlobal is faulted back in, the client Smalltalk dictionary contains a
defunct stub.

Because GemBuilder cannot safely assume that a given object will retain the same
object identifier from one session to the next, it cannot simply fix the problem at
next login. That’s the job of a connector: to reestablish at login the stub’s
relationship to GemStone. A connector can do so either directly, by connecting the
stub itself, or transitively, by connecting some object that refers to the stub.

If you’ve defined a connector for MyGlobal, logging back into GemStone
reconnects it.

Now, suppose an instance variable of MyGlobal becomes a stub shortly before a
session logs out. Sending a message to this variable will produce a defunct stub
error. At next login, MyGlobal’s connector will fault in the variable. You can then
retry the message, but only by means of a message sent to MyGlobal (or another
connected object). If the application is maintaining a direct reference to the
previous defunct stub, the error will persist.

NOTE
You cannot proceed from a defunct stub error. After you’ve encountered
this error, determined the cause, and corrected the problem, you must
restart the Smalltalk operation that encountered the defunct stub.

Replication Specifications

By default, when GemBuilder replicates an instance of a connected class, it
replicates all that class’s instance variables as well to the session’s specified fault
level. You can further refine faulting by class, however, with specific instructions
for individual instance variables.

Each class replicates according to a replication specification (hereafter referred to
as a replication spec). The replication spec allows you to fault in specified instance
variables as forwarders, stubs, or replicates that will in turn replicate their instance
variables to a specified level.

By default, a class inherits its replication spec from its superclass. If you haven’t
changed any of the replication specs in an inheritance chain, then the inherited
behavior is to replicate all instance variables as specified by the session’s
configuration parameter faultLevelRpc.

To modify a class’s replication behavior in precise ways, implement the class
method replicationSpec. For example, suppose you want class Employee’s
address instance variable always to fault in as a forwarder:

Replicates GBS 5.4 User’s Guide

60 VMware, Inc. December 2011

Example 3.5

Employee >> replicationSpec
^ super replicationSpec ,
#((address forwarder)).

To ensure that replication specs established in superclasses remain in effect,
Example 3.5 appends its implementation to the result of:

super replicationSpec

Appended to the inherited replication spec are nested arrays, each of which pairs
an instance variable with an expression specifying its treatment at faulting:

(instVar whenFaulted)

instVar can be either:

 • the client-side name of an instance variable, or

 • the reserved identifier indexable_part, specifying an object’s unnamed
indexable instance variables, such as the elements of a collection.

whenFaulted is one of:

stub — faults in the instance variable as a stub.

forwarder — faults in the instance variable as a forwarder to the server.

min n — faults in the instance variable and its referents as replicates to a
minimum of n levels. min 0 = replicate.

max m — faults in the instance variable and its referents as replicates to a
maximum of m levels. max 0 = stub.

replicate — faults in the instance variable as a replicate whose behavior will be
subject to the configuration parameter faultlevelRpc, relative
to the root object being faulted.

By default, an instance variable’s behavior is replicate; your application
needn’t specify replicates unless to restore behavior overridden in a superclass.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 61

Example 3.6

TestObject class>>replicationSpec
^super replicationSpec ,

#((instVar1 stub)
(instVar2 forwarder)
(instVar3 max 0)
(instVar4 min 0)
(instVar5 max 2)
(instVar6 min 2)
(instVar7 replicate)
(indexble_part min 1))

NOTE
To ensure that your replication spec is respected, do not rely on
automatic class generation to replicate instances of classes for which you
have defined replication specs. Instead, make sure these classes are
connected before your application tries to access the corresponding server
objects. Automatic class generation ignores replication specifications.

Replication Specifications and Class Versions

As explained in “Mapping and Class Versions” on page 46, client Smalltalk classes
connect not simply to GemStone Smalltalk classes, but to specific GemStone class
versions. A class connector connects to at most one GemStone version.

A replication spec, therefore, affects only client instances connected to instances of
the correct GemStone class version.

Suppose, for example, that you define and redefine class X in GemStone until its
class history lists three versions. Your client Smalltalk class is connected to
Version 2. Class X’s replication spec will affect GemStone instances of Class X,
Version 2. If the repository contains instances of Class X, Versions 1 or 3, the
replication spec will not affect them.

Multiple Replication Specifications

It’s not always possible to define one replication spec that works well for all
operations in an application. Some queries or windows may require a different
object profile than others in the same application and session; a replication spec
crafted to optimize one set of operations can make others inefficient.

By default, the message replicationSpec returns the default replication spec.
Change this by sending the message replicationSpecSet:

Replicates GBS 5.4 User’s Guide

62 VMware, Inc. December 2011

#someRepSpecSelector to an instance of GbsSession. With this message, you can
specify multiple replication specs, selecting one dynamically according to
circumstances. The following procedure shows how:

Step 1. Decide on a new name, such as replicationSpec2.

Step 2. Implement Object class >> replicationSpec2 to return self
replicationSpec.

Step 3. Reimplement replicationSpec2 as appropriate in those application
classes that need it.

Step 4. Immediately before your application performs the query or screen fetch
or other operation that requires the second replication spec, send
replicationSpecSet: #replicationSpec2 to the current GbsSession
instance.

Step 5. Immediately after the operation completes, send
replicationSpecSet: #replicationSpec to the GbsSession to restore
replication. If the session could be addressed from more than one client
Smalltalk process, your application should use a semaphore to control access
to the session.

For example, suppose your application has a class Employee, with instance
variables firstName, lastName, and address. address contains an instance of
class Address. The application has one screen that displays the names from a list
of employees, and another screen that displays the zip codes from a list of
employee addresses. Here’s how to replicate only what’s needed:

Step 1. Define a new replication spec with the selector empNamesRepSpec.

Step 2. Implement Object class >> empNamesRepSpec as:

^self replicationSpec.

Step 3. Implement Employee class >> empNamesRepSpec as:

^#((firstName min 1) (lastName min 1) (address stub))

Step 4. Define another replication spec with the selector empZipcodeRepSpec.

Step 5. Implement Object class >> empZipcodeRepSpec as:

^self replicationSpec

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 63

Step 6. Define Employee class >> empZipcodeRepSpec as:

^#((firstName stub) (lastName stub) (address min 2))

and Address class >> empZipcodeRepSpec as:

^#((city stub) (state stub) (zip min 1))

Step 7. Before opening the employee names screen, send:

myGbsSession replicationSpecSet: #empNamesRepSpec

Restore it to #replicationSpec after opening the window.

Step 8. Before opening the zip code window, send:

myGbsSession replicationSpecSet: #empZipcodeRepSpec

Restore it to #replicationSpec after opening the window.

For each window, the procedure above reduces the number of objects retrieved to
the minimum required. Other objects fault in as stubs; if subsequent input requires
them, they are retrieved transparently.

Managing Interobject Dependencies

Replication specs are ordinarily an optimization mechanism. Some applications,
however, require a replication spec to function correctly. If the structural
initialization of an object depends on other objects, you must implement
replication specs to ensure that, when GemStone traverses an object, it also
traverses those objects it depends on.

Hashed collection classes that wish to replicate instances between client and server
should answer true to the message #gbsMustDeferElements. This is the
recommended approach.

When an object whose class answers true to #gbsMustDeferElements is faulted
to the client, the elements are not added to the collection until the replication of
those elements is complete. This ensures that all of the information necessary to
compute the hash of the element is present before adding it to the collection; if
added earlier, its hash might change as its replication continued, corrupting the
collection.

There is one exception to this requirement. Hashed collections that compute hash
purely on the identity hash of their elements may answer false to

Replicates GBS 5.4 User’s Guide

64 VMware, Inc. December 2011

#gbsMustDeferElements, since their hash values are computed strictly on the
identity of the elements themselves, which is always present.

NOTE
If you do not use #gbsMustDeferElements (the recommended
approach), you must independently address the issues described in the
following paragraphs.

For example, in order to create a Dictionary when replicating it from the server, we
need to be able to send hash to each key to determine its location in the hash table
(hash values aren’t necessarily the same in the server as they are in the client). So,
if GemStone replicates a Dictionary, it must also replicate the association, and the
key in the association. The default implementation for Dictionary class >>
replicationSpec therefore contains #(indexable_part min 1), and
Association class >> replicationSpec contains #(key min 1).

This works for Dictionaries with simple keys such as strings, symbols or integers.
If an application has dictionaries with complex keys, though, additional
replication specs can be required. For example, if you are storing Employees as
keys in a dictionary, and you’ve implemented = and hash in Employee to
consider the firstName and lastName, then you must ensure that when a
dictionary containing Employees is traversed, so are the associations, the
employees, and the firstName and lastName.

You could ensure this by implementing Employee class >>
replicationSpec to include #(firstName min 1) and #(lastName min
1). Or, if you had a special Dictionary class for Employees, you could include
#(indexable_part min 3) in that dictionary class’s replication spec.
However, this could cause the entire Employee to be replicated whenever one of
these dictionaries is replicated, rather than just the firstName and lastName.

We recommend that you use the default replication spec #replicationSpec as
the base replication spec for all classes to reflect interobject dependencies. When
defining other replication specs, make sure the default implementation in Object
is:

^self replicationSpec

Ensure that subclass implementations of the new replicationSpec method do
not stray from the default, so as not to break interobject dependencies.

Precedence of Multiple Replication Specs

It’s possible to implement replication specs that appear to contradict each other.
Such apparent conflicts are resolved deterministically according to the order in

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 65

which instance variables appear in a replication spec and the order in which
objects are traversed. If a superclass specifies one way of handling an instance
variable, and a subclass reimplements replicationSpec to handle the same
variable in a different way, the last occurrence takes precedence.

For example, suppose the value returned from sending replicationSpec to the
subclass is:

#((name min 1) (name max 2))

The last occurrence of the instance variable is max 2, and therefore takes
precedence.

If subclass implementations of replicationSpec always append their results to
super replicationSpec, the subclass will reliably override the superclass
handling of a given instance variable. The recommended approach is:

^super replicationSpec, #((name max 2))

not:

^#((name max 2)), super replicationSpec.

Another apparent contradiction can arise between parent and child objects. For
example, suppose Employee refers to an Address, which refers to a complex object
County. The Employee replicationSpec includes #(address min 5),
specifying that several levels of the County object are to be replicated. But if
Address includes #(county max 1), it modifies Employee’s handling of
address.

Employee specifies, “Get at least 5 levels of address.” Address specifies,
“Whatever you do, don’t get more than one level of county.” The apparent
contradiction is resolved by the order in which these specifications are
encountered: because Address is encountered after Employee, Address takes
precedence.

If your object network includes cycles, different replication specs could take effect
at different times, depending on which object is the replication root at any given
time. Given a specific root object, however, it’s always possible to determine the
exact effect of a set of replication specs.

Customized Flushing and Faulting
You can customize both flushing and faulting to change object structure
arbitrarily, if your application requires it. You can even create a class in GemStone
that maps to a client Smalltalk class with a different format—for example, a format
of bytes on the client but pointers in the repository.

Replicates GBS 5.4 User’s Guide

66 VMware, Inc. December 2011

Modifying Instance Variables During Faulting

Customize object retrieval with buffers for the client counterparts of GemStone
objects as they are faulted in. You can then process the contents of these buffers in
any manner required.

To provide these buffers, reimplement the class methods:

namedValuesBuffer
indexableValuesBuffer

To unpack these buffers correctly, reimplement the class methods:

namedValues:
indexableValues:
namedValues:indexableValues:

By default, namedValuesBuffer returns self: new client objects are faulted
directly into the named instance variable slots. Override this to supply either a
different object of the same type, or an instance of GbsBuffer (a subclass of Array)
of the required size.

By default, indexableValuesBuffer returns self. Override this to return an
indexable buffer of the appropriate size.

The buffers you define in these methods are used during faulting. They are
subsequently unpacked by the faulted object according to its implementation of
the unpacking methods listed above.

Implement the unpacking methods to obtain the desired client representation by
performing arbitrary computation on the buffer contents. Use the message
namedValues:indexableValues: for cases in which computation must
operate on indexable and named values together.

NOTE
The methods namedValuesBuffer and namedValues: are a pair;
so are indexableValuesBuffer and indexableValues:. To
avoid replication errors, if you override one, you must also override the
other.

You can also override the messages indexableValueAt:put: and
namedValueAt:put: to process the values of the indexable and named slots of
the object. For example, class Set might implement the former as:

Set >> indexableValueAt: index put: aValue
self add: aValue

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 67

The method simply adds the element to the Set rather than assigning it to a specific
slot.

NOTE
To avoid generating a “previous flush did not complete” error, if you
override namedValues: or indexableValues:, make sure you do
not send messages to any stubs that would require a remote object to be
faulted. Doing so causes an error as faulting is attempted while flushing.
Adjust the replicationSpec and faultPolicy of the object to
ensure that stubs won’t exist for special flush operations.

You can override two other messages to control faulting initialization and
postprocessing: preFault and postFault.

Implement preFault to initialize a newly created object prior to faulting its
named and indexable values.

For example:

OrderedCollection >> preFault
 "Initialize <firstIndex> and <lastIndex> prior to
 adding elements."

self setIndices

The method indexableValueAt:put: for OrderedCollection has an
implementation similar to Set to add the indexable objects. As another example, a
specialized type of SortedCollection could use preFault to assign the sortBlock
so that additions to the collection would be sorted properly during faulting.

Implement postFault to do any necessary postprocessing. For example, if the
methods used to add to an OrderedCollection also marked the object dirty, the
postprocessing could remove dirty-marking: by definition, faulting never results
in a dirty object (assuming that GemStone’s is the valid state):

OrderedCollection >> postFault
 "Additions to the OrderedCollection are due to the faulting
 mechanisms and should not result in a dirty object."
 self markNotDirty

Modifying Instance Variables During Flushing

To provide an arbitrary mapping of objects from the client to GemStone you can
implement two class methods called namedValues and indexableValues.

namedValues
Implement this to return a copy of the object being stored or an instance of

Replicates GBS 5.4 User’s Guide

68 VMware, Inc. December 2011

GbsBuffer sized to match the number of named instance variables in the client
object. The store operations then access this buffer for storing in GemStone.

indexableValues
Implement this to return a list of the indexable instance variables in the client
object. The store operations then access this list for storing in GemStone.

Implementations of namedValues must return an object with the appropriate
number of named instance variable slots. In Example 3.7, a clone of the
positionable stream is returned that increments the position instance variable by
1 as needed when mapped into GemStone:

Example 3.7

PositionableStream>>namedValues
| aClone |
aClone := self copy.
aClone instVarAt: 1 put: self contents.
aClone instVarAt: 2 put: position + 1.
^aClone

An alternative might return an instance of GbsBuffer (a subclass of Array) of the
appropriate size. (A special buffer class is necessary to distinguish between trying
to store an array and trying to store the named values of an object residing in a
buffer.)

The default implementation of namedValues is to return self. In this case, the
instance variables are processed directly from the object being stored, eliminating
the need for a temporary array.

Implementations of indexableValues must return an indexable collection
containing a sequential list of the elements in the collection. In Example 3.8, for
class Set, an Array is returned, because the indexable fields of a Smalltalk set are a
sparse list of the actual elements.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 69

Example 3.8

Set>>indexableValues
| values index |
values := Array new: self size.
index := 1.
self elementsDo: [:each |

values at: index put: each.
index := index + 1].

^values

The default implementation of indexableValues is to return self. In this case,
the indexable slots are processed directly from the object being stored, eliminating
the need for a temporary array.

You can also override the messages indexableValueAt: and namedValueAt:
to return processed values rather than the actual values in the indexable and
named slots of the object. For example, OrderedCollection might implement
indexableValueAt: as:

OrderedCollection>indexableValueAt: index
^self at: index

This lets OrderedCollection control for the fact that its underlying indexable slots
are being managed by the firstIndex and lastIndex instance variables—that
is, the first actual indexable slot of the object may not necessarily be the first logical
element.

In conjunction with these two methods, you might need to reimplement the
messages indexableSize and namedSize as well. For example, to match the
implementation of indexableValueAt:above, OrderedCollection would have
to implement indexableSize as shown below; otherwise, the object storage
mechanisms would try to iterate over the entire list of indexable slots rather than
those controlled by firstIndex and lastIndex:

indexableSize
^self size

Mapping Classes With Different Formats

You can create a class in GemStone that maps to a client Smalltalk class with a
different format—for example, a format of bytes on the client but pointers in the
repository. To do so, reimplement the class method gsObjImpl in the client
Smalltalk to return a value specifying the GemStone implementation.

Replicates GBS 5.4 User’s Guide

70 VMware, Inc. December 2011

A gsObjImpl method must return a SmallInteger representing the GemStone
class format. The following formats are valid:

Return Format

0 pointers

1 bytes

2 NSC or nonsequenceable collection

Symbolic names for these values are stored in the pool dictionary
SpecialGemStoneObjects.

Limits on Replication
Replicating blocks, and scaled decimals, and collections with instance variables
can present special problems, discussed below.

Replicating Client Smalltalk Blocks

Forwarders are especially well-suited for managing large collections that reside in
the object server. Collections are commonly sent messages that have blocks as
arguments. When the collection is represented in client Smalltalk by a forwarder,
these argument blocks are replicated in GemStone and executed in the server.

When a GemStone replicate for a client Smalltalk block is needed, GemBuilder
sends the block to GemStone Smalltalk for recompilation and execution. If a block
is used more than once, GemBuilder saves a reference to the replicated block to
avoid redundant compilations.

For example, consider the use of select: to retrieve elements from a collection of
Employees:

| fredEmps |
fredEmps := myEmployees select:

[:anEmployee | (anEmployee name) = 'Fred'].

If myEmployees is a forwarder to a collection residing in the object server, then
GemBuilder sends the parameter block’s source code:

[:anEmployee | (anEmployee name) = 'Fred'].

to GemStone to be compiled and executed.

Replication of client Smalltalk blocks to GemStone Smalltalk is subject to certain
limitations. When block replication violates one of these limitations, GemBuilder
issues an error indicating that the attempted block replication has failed.

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 71

To avoid these limitations, consider using block callbacks instead. Block callbacks
are discussed starting on page 73.

You can disable block replication completely using GemBuilder’s configuration
parameter blockReplicationEnabled. Block replication is enabled by default. Set
this parameter to false to disable it, and GemBuilder raises an exception when
block replication is attempted. This can be useful for determining if your
application depends on block replication.

Image-stripping Limitations

Block replication relies on the client Smalltalk compiler and decompiler; if they’ve
been removed from a deployed runtime environment, blocks cannot be replicated.

In a deployed image from which the compiler and decompiler have been removed,
do not use block replication. Usually this requires implementing a cover method
for the block in a GemStone method, and sending that message instead. For
instance:

aForwarder select: [:name | name = #Fred]

—is instead coded:

aForwarder selectNameEquals: #Fred

...and in the GemStone server, selectNameEquals: is implemented as:

selectNameEquals: aName
 ^self select: [:name | name = aName]

When the block is encoded entirely on the GemStone server in this way, you can
further optimize its operation by taking advantage of indexes and use an
optimized selection block, as described in the GemStone/S 64 Bit Programming
Guide.

Temporary Variable Reference Restrictions

A block is replicated in the form of its source code, without its surrounding
context. Therefore, values drawn from outside the block’s own scope cannot be
relied upon to exist in both the client Smalltalk and in the GemStone server.
Replication is not supported for blocks that reference instance variables, class
variables, method arguments, or temporary variables declared external to the
block’s scope.

An exception is allowed in the case of global references, such as class names:

 • Global variable references from inside a block must have the same name in
both object spaces.

Replicates GBS 5.4 User’s Guide

72 VMware, Inc. December 2011

In the case of global variables containing data, it is the programmer’s responsibility
to ensure that the global identifier represents compatible values in both contexts.

Temporary variable reference restrictions disallow the following, because
“tempName” is declared outside the block’s scope:

| namedEmps tempName |
tempName := 'Fred'.
namedEmps := myEmployees select:

[:anEmployee | (anEmployee name) = tempName].

As a workaround, implement a new Employees method in GemStone Smalltalk
named select:with: that evaluates a two-argument block, in which the extra
block argument is passed in as the with: parameter. For example:

select: aBlock with: extraArg
|result|

result := self speciesForSelect new.
self keysAndValuesDo: [:aKey :aValue |
 (aBlock value: aValue value: extraArg) "two-value block"
 ifTrue: [result at: aKey put: aValue]
].

^ result.

You can then rewrite the application code to pass its temporary as the argument to
the with: parameter without violating the scope of the block:

| namedEmps tempName |
tempName := 'Fred'.
namedEmps := myEmployees select:

[:anEmployee :extraArg |
(anEmployee name) = extraArg

] with: tempName.

Restriction on References to self or super

References to self and super are also context-sensitive and, therefore,
disallowed:

 • A replicated block cannot contain references to self or super.

For example, the following code cannot be forwarded to GemStone because the
parameter block contains a reference to self:

myDict at:#key ifAbsent:[self]

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 73

References to self or super in forwarded code must occur outside the scope of
the replicated block, where you can be sure of the context within which they occur.
For example, you can rewrite the above code to return a result code, which can
then be evaluated in the calling context, outside the scope of the replicated block:

result := myDict at:#key ifAbsent:[#absent].
result = #absent ifTrue: [self]

Explicit Return Restriction

Because a block is replicated without its surrounding context, a return statement
has no surrounding context to which to return. Therefore:

 • A replicated block cannot contain an explicit return.

For example:

result := myDict at:#key ifAbsent:[^nil]

is disallowed. The statement can be recoded to perform its return within the calling
context:

result := myDict at:#key ifAbsent:[#absent].
result = #absent ifTrue: [^nil]

Replicating GemStone Blocks in Client Smalltalk

Also supported, though less commonly used, is the replication of GemStone blocks
in client Smalltalk. Similar restrictions apply with regard to external references and
the need for compiler/decompiler support. Blocks most frequently passed from
the server to the client are the sort blocks that accompany instances of
SortedCollection and its subclasses. Sort blocks rarely have occasion to violate
replicated block restrictions.

If restrictions hamper you, consider using block callbacks instead.

Block Callbacks

Block callbacks provide an alternate mechanism for representing a client block in
GemStone that avoids the limitations of block replication by calling back into the
client Smalltalk to evaluate the block.

Block callbacks have the following advantages over block replication:

 • Block callbacks don’t require a compiler or decompiler.

 • Block callbacks don’t suffer the context limitations of block replication. The
block can reference self, super, instance variables, and non-local temporaries;

Replicates GBS 5.4 User’s Guide

74 VMware, Inc. December 2011

it can also perform explicit returns. For example, the following expression
works correctly as a block callback, but fails if you try to replicate the block:

aForwarder at: aKey ifAbsent: [^nil] asBlockCallback

Block callbacks have the following disadvantages:

 • A block that is evaluated many times in GemStone will perform poorly as a
block callback. For example, the following expression sends a message to the
client forwarder for each element of the collection represented by aForwarder:

aForwarder select: [:e | e isNil] asBlockCallback

You can determine whether, by default, blocks are replicated or call back to the
client using GemBuilder’s configuration parameter blockReplicationPolicy. Legal
values #replicate and #callback. A value of #replicate causes a client
block to be stored in GemStone as a GemStone block. A value of #callback
causes a client block to be stored in GemStone as a client forwarder, so that sending
value to the block in GemStone causes value to be forwarded to the client block;
the result of that block evaluation is then passed back to the GemStone context that
invoked the block.

To ensure a specific replication policy for a given block, use the methods
asBlockCallback or asBlockReplicate. Send asBlockCallback to
ensures= that the block always executes in the client, regardless of the default
block replication policy set by the configuration parameter. Likewise, send
asBlockReplicate to ensure that the block is executed local to the context that
invokes it (either in GemStone or in the client).For example:

dictionaryForwarder
 at: #X
 ifAbsent: [^nil] asBlockCallback

collectionForwarder do: [:e | e check] asBlockReplicate

Replicating Fixed/Scaled Decimals

The representation in VisualAge for ScaledDecimal and FixedDecimal is different
from the one used in GemStone Smalltalk; therefore, arithmetic operations can
return different results in VisualAge than in GemStone Smalltalk.

In GemStone Smalltalk, a ScaledDecimal is represented as a numerator and a
denominator (to preserve complete accuracy of any rational number), along with
a scale value used to determine the number of decimal digits to print.

In VisualAge, a ScaledDecimal is represented as a 31-digit number, with a field
width and a scale indicating how many of the digits are to the right of the decimal

Chapter 3 - Sharing Objects Replicates

December 2011 VMware, Inc. 75

point. When creating a VisualAge ScaledDecimal from a GemStone instance, any
further digits in the fractional component are truncated.

The following examples demonstrate the difference that can result. In GemStone,
Example 3.9 returns 1.00, because x is represented as 1/3, which preserves full
accuracy:

Example 3.9

| x |
x := ScaledDecimal numerator: 1 denominator: 3 scale: 2.
^ x + x + x

In VisualAge, however, Example 3.10 returns 0.99d3.2, because x is represented
as 0.33, thereby truncating the result:

Example 3.10

| x |
x := ScaledDecimal gbsNumerator: 1 denominator: 3 scale: 2.
^ x + x + x

Client Copies
It’s fast and simple to make a client copy of a GemStone object that maintains no
reference to the repository. Because they have no knowledge of the GemStone
object they were made from, such copies are not real replicates.

These copies are deep copies: they replicate a complete transitive closure of the
GemStone object. Nothing is stubbed.

NOTE
Be careful not to replicate a GemStone object large enough to overflow
the client image.

To make an unassociated copy of a GemStone object in the client object space, send:

aGbsObject asLocalObjectCopy

Because it is unrelated to the GemStone original, values are neither flushed nor
faulted, nor is state synchronized; it is safe to assume the copy will be out of date,
if not soon, then eventually.

Precedence of Replication Mechanisms GBS 5.4 User’s Guide

76 VMware, Inc. December 2011

Such copies are suitable for read-once applications that are pressed for resources.

To make a similar unassociated copy of a client object in GemStone, send:

aClientObject asGSObjectCopy

While replicates are almost always easier to use, it may sometimes be faster and
simpler to copy the data, manipulate it, and then replicate it back in
GemStone. This might be true, for example, if the ratio of execution to data set size
is large.

To do this reliably:

 • There must be just one root for the GemStone data, because the identity of
internal objects will be lost with this technique.

 • The data set must be small enough to fit in the client Smalltalk memory.

NOTE
Each server copy created with asGSObjectCopy gets a new object
identifier, even if the client object you’re copying already has a server
counterpart with its own object identifier. Therefore, copying client
objects in this way can double your use of object identifiers.

3.5 Precedence of Replication Mechanisms
Certain replication mechanisms can appear to contradict each other. The rules of
precedence are:

 • If the class methods instVarMap (for replicates) or
instancesAreForwarders (for forwarders) are implemented, they take
precedence over all others and are always respected.

 • Otherwise, if the class method replicationSpec is implemented, or if an
application calls or replicationSpecSet: to switch among several
replication specs, those replication specs take precedence.

In other words, if a class implements a replication spec, but it also implements
instancesAreForwarders to return true, then instances of that class will
be forwarders and the replication spec will be ignored.

Or, if a class implements both instVarMap and replicationSpec, the
instVarMap determines which instance variables will be visible to the
replication spec.

 • In the absence of a replication spec, the instance method faultToLevel:, if
called, is respected for replicates. Forwarders, of course, do not fault.

Chapter 3 - Sharing Objects Evaluating Smalltalk Code on the GemStone server

December 2011 VMware, Inc. 77

 • For classes that use no other mechanism, the configuration parameter
faultLevelRpc is respected.

3.6 Evaluating Smalltalk Code on the GemStone server
In addition to sending messages to forwarders, GemBuilder provides mechanisms
to execute ad-hoc Smalltalk code on the server.

Using the development environment Workspace, you can type in and select
Smalltalk code and use the menu option GS-Execute, GS-Display or GS-Inspect
to execute the selected text on the GemStone server, and return a replicate of the
results.

You can also do this on the client by sending the string to a session for execution.
The expression:

aGbsSession evaluate: aString

when executed on the client, tells GemBuilder to have the server compile and
execute the GemStone Smalltalk code contained in aString, and answer a client
replicate of the result of that execution. If, rather than a replicate, you would like
the result as a forwarder, use the expression

aGbsSession fwevaluate: aString

The code in aString may be any arbitrary GemStone Smalltalk code that would be
a valid method body (see Appendix A of the GemStone/S 64 Bit Programming Guide
for GemStone Smalltalk syntax), with the exceptions that the code:

 • cannot take any arguments

 • must not refer to the variables self or super

 • must not refer to any instance variable of any class

Example 3.11 shows how to use evaluate: to execute code.

Evaluating Smalltalk Code on the GemStone server GBS 5.4 User’s Guide

78 VMware, Inc. December 2011

Example 3.11

 resultReplicate := GBSM currentSession
 evaluate: '
 | result |
 result := Array new: 3.
 result
 at: 1 put: ''Pear'';
 at: 2 put: #unripe;
 at: 3 put: 42.
 ^ result'

You can avoid some of these restrictions by passing in a context object using:

aGbsSession evaluate: aString context: aServerObject

or

aGbsSession fwevaluate: aString context: aServerObject

The context argument, aServerObject, can be any replicate of or forwarder to a
GemStone server object. If the code in aString refers to the variables self or super,
these will be bound to the context object. The code in aString can also refer to any
instance variables of the context object.

Example 3.12

aGbsSession

 evaluate: 'self at: 2 put: #ripe'

 context: resultReplicate.

The advantage of the evaluate: family of messages is that they allow you to
execute arbitrary ad-hoc code on the server without previously defining a method.

However, this isn't always the best way to execute server code. The evaluate:
messages invoke the GemStone Smalltalk compiler upon each execution, and so
have extra overhead. Also, the inability to pass arguments rules out the evaluate:
messages for some uses.

Chapter 3 - Sharing Objects Converting Between Forms

December 2011 VMware, Inc. 79

Message sends through forwarders are the most common means of initiating
execution of GemStone Smalltalk code on the server. However, a message passed
through a forwarder will fail if the server object that receives the message does not
understand that message. Forwarder sends require previous definition of an
appropriate GemStone method on the server.

The two forms of execution complement each other. The evaluate: messages do
not require prior method definition, but cannot take arguments. Forwarder sends
require prior method definition, but can take arguments.

3.7 Converting Between Forms
A variety of messages exist to convert between delegates, forwarders, replicates,
stubs, and unconnected client objects. Table 3.1–Table 3.5 list the results of sending
any of several conversion messages to these objects.

Table 3.1 Delegate Conversion Protocol

Message Return Value
copy shallow copy of delegate
asLocalObject replicate
asGSObject (not
recommended for
customer applications)

self

asForwarder undefined
beReplicate undefined
fault undefined
stubYourself undefined

NOTE
To avoid unpredictable consequences and possible errors, do not use the
expressions listed as producing undefined results.

Table 3.2 Forwarder (to the Server) Conversion Protocol

Message Return Value
copy copies associated server object and returns replicate of

copy
asLocalObject undefined

Converting Between Forms GBS 5.4 User’s Guide

80 VMware, Inc. December 2011

asGSObject (not
recommended for
customer applications)

associated delegate

asForwarder self
beReplicate self, which has become a replicate
fault self (use beReplicate to make a replicate)
stubYourself self

Table 3.3 Replicate Conversion Protocol

Message Return Value
copy shallow copy of delegate not associated with any server

object
asLocalObject undefined
asGSObject (not
recommended for
customer applications)

associated delegate

asForwarder self, which has become a forwarder
beReplicate self
fault self, whose instance variables are now also replicates

to the configured fault level
stubYourself self, which has become a stub

Table 3.4 Stub Conversion Protocol

Message Return Value
copy shallow copy; receiver becomes a replicate
asLocalObject undefined
asGSObject (not
recommended for
customer applications)

associated delegate

asForwarder self, which has become a forwarder
beReplicate self (use fault to become a replicate)
fault self
stubYourself self

Table 3.2 Forwarder (to the Server) Conversion Protocol

Message Return Value

Table 3.5 Conversion Protocol for Unshared Client Objects

Message Return Value
copy shallow copy
asLocalObject undefined
asLocalObjectCopy undefined
asGSObject (not
recommended for
customer applications)

new delegate; creates new associated server object

asForwarder self, which has become a forwarder; creates new
associated server object

beReplicate self
fault self
stubYourself self

Chapter 3 - Sharing Objects Converting Between Forms

December 2011 VMware, Inc. 81

Converting Between Forms GBS 5.4 User’s Guide

82 VMware, Inc. December 2011

Chapter

December 2011 VMware, Inc. 83

4 Connectors

This chapter describes connectors, which allow an application developer to
explicitly declare an association between a root client object and a root server
object.

 • Connectors connect at login. After that, you must explicitly disconnect and
reconnect them to effect any changes.

 • There are different kinds of connectors for different types of objects.

 • At connect time, connectors may update either connected object, depending
on how they are set up.

 • Connectors exist either in a given set of session parameters, or globally—in
every session your image defines.

Connecting Root Objects
explains which objects to associate using connectors.

Connecting and Disconnecting
describes what connectors do and when they do it.

Kinds of Connectors
describes the available kinds of connectors and the differences between them.

Connecting Root Objects GBS 5.4 User’s Guide

84 VMware, Inc. December 2011

4.1 Connecting Root Objects
Every replicate and forwarder in the client is connected to an object in the server.
You do not, however, need a connector for every replicate or forwarder. A typical
application only needs connectors for a small number of root objects.

A connector connects more than the specified client object to the specified server
object. Through transitive reference, a connector connects whole networks of
objects. Most objects (except atomic objects—characters, booleans, small integers,
nil) refer to others through their instance variables. And their instance variables
refer to their instance variables, and so on, branch and twig, until you reach the
leaves of a large network of objects with a treelike structure.

You can take advantage of this hierarchical structure to minimize application
overhead. Identify the object at the root of each subsystem of shared objects, and
then connect only these root objects. Depending on how you’ve defined
configuration parameters and related matters, you can synchronize entire
subsystems in GemStone/S this way. After you’ve connected the application’s
roots, GemBuilder automatically manages all the objects referenced from these
roots.

Root objects are often:

 • global variables,

 • class or shared variables, or

 • class instance variables.

Figure 4.1 shows an application in which several connected objects are accessed
through global or shared variables in client Smalltalk. One system represents an
employee database. Another system represents a data entry application for
creating and modifying objects. A third system represents a report writer for these
objects. Dotted lines in the figure group the logically related subsystems.

Chapter 4 - Connectors Connecting Root Objects

December 2011 VMware, Inc. 85

Figure 4.1

Report Writer

Employee Database
Data Entry Application

Smalltalk
Namespace

Connecting Application Roots

The data entry application and the report writer reside in the client Smalltalk
image; however, the employee database is stored on the GemStone server, as it
defines a large amount of persistent data that other users may need to share, data
that benefits from GemStone/S’s capacity, stability, robustness, and fast searches.

Figure 4.2 shows the state of the employee data when stored on the server:

Connecting Root Objects GBS 5.4 User’s Guide

86 VMware, Inc. December 2011

Figure 4.2 Root Objects

employee data
Smalltalk Namespace

a
b

GemStone

In Figure 4.2, objects a and b are root objects: those objects from which all others
can be reached by transitive closure: by direct reference, or by indirect reference
through any number of layers.

The above discussion has focused on shared instances from your applications, but
in order to share instances in any way, GemBuilder and GemStone must first share
definitions for each class of shared instance.

Scope
Some connectors connect their objects whenever any session logs in. Some do so
only when logging in using a specific session parameters object:

 • Global connectors allow you to maintain a standard set of connectors common
to all applications in your GemBuilder image.

 • Session connectors allow individual applications to customize connectors: you
define unique session parameters for each application, and different sessions
can connect different objects. When sessions of one kind log in, other sessions’
connectors are defined but not connected.

When a session logs in, the connectors of its session parameters and all global
connectors connect automatically. When a session logs out, its connectors
disconnect.

Chapter 4 - Connectors Connecting Root Objects

December 2011 VMware, Inc. 87

Verifying Connections
Connectors are saved in client Smalltalk sets, separate ones for global connectors
and each session parameters object. Two connectors are considered equal if they
resolve to the same client object. Client Smalltalk sets eliminate duplicates based
on equality. Therefore:

NOTE
Adding a global or session connector that points to the same object as an
existing connector will remove the existing connector.

Duplicate session connectors are not removed if they are stored in different session
parameters.

GemBuilder provides a configuration parameter, connectVerification, that,
when true, causes connectors to verify at login that they are not redefining a
connector that already exists. In addition, class connectors verify that the two
classes they are connecting have compatible structures.

If a connector fails verification, GemBuilder issues a notifier if verbose is also
true, or raises an exception otherwise. You can set connectVerification in
the Connector Browser or in the Settings Browser.

Initializing
At login, a connector associates an object in a single-user image with an object in a
multiuser repository. The value of either could have changed since last login.
Which value is valid?

Connectors can initialize either object by performing a specified postconnect action:

Update Smalltalk
default for all but class connectors, initializes the client object with the current
state of the GemStone server object.

Update GemStone
initializes the GemStone server object with the current state of the client object.

Forward to the server or client
makes one object a forwarder to the other. Forwarders are discussed starting
on page 46.

No initialization
leaves the client object and GemStone server object unmodified after
connection—default for class connectors.

Connecting and Disconnecting GBS 5.4 User’s Guide

88 VMware, Inc. December 2011

As the name implies, postconnect actions execute only at initial connection. After
that, changes propagate according to mark dirty specifications, as described in
“Synchronizing State” on page 50, or they do not propagate at all, as is normally
the case with class connectors, as described in “Class Mapping” on page 43.

Updating Class Definitions

By default, after login and initialization, class connectors do not propagate
changes. If you’ve defined classes differently on the client and the server, you
probably had good reason to do so; you probably don’t want one object space to
update the other with its own class definition. Therefore, to avoid updating class
definitions, class connectors generally specify a postconnect action of none.

For similar reasons, class connectors cannot specify that the client class is a
forwarder—the forwarder and clientForwarder postconnect action are unavailable
for class connectors.

If you change either a client or GemStone class definition during a session, you
must propagate the change yourself by disconnecting and reconnecting the
connector. The Connector Browser, described starting on page 185, provides
convenient buttons for the purpose.

NOTE
Remember to restore a postconnect action of none after you complete the
desired update.

4.2 Connecting and Disconnecting
At login, connectors connect objects according to their specifications; thereafter,
they are inactive. Changes to instances that occur during the course of a session are
replicated either because those instances are synchronized replicates that mark
changes dirty, or because one is a forwarder to the other. Changes to class
definitions or other unsynchronized changes must be propagated manually. To do
so, use the Disconnect and Connect buttons in the Connector Browser to
disconnect and reconnect the appropriate connector.

Connectors with a post-connect action of #clientForwarder cannot be
explicitly disconnected. These connectors only disconnect at logout.

At logout, GemBuilder sets the instance variables of connectors to nil, if the
GemBuilder configuration parameter connectorNilling is set to true (the default).
This reduces the risk of defunct stub or forwarder errors, replacing them with nil
doesNotUnderstand errors.

Chapter 4 - Connectors Kinds of Connectors

December 2011 VMware, Inc. 89

Only connectors whose values are set from the server on login are cleared when
connectorNilling is true. Session-based name, class variable, or class instance
variable connectors that have a postconnect action of #updateST or #forwarder
are cleared. Fast connectors, class connectors, or connectors whose postconnect
action is #updateGS or #none do not have instance variables set to nil.

connectorNilling can be set for individual sessions, if desired. See “Setting
Configuration Parameters” on page 143 for details on setting session-specific
configuration parameters. The detailed description for this configuration
parameter is on page 148.

4.3 Kinds of Connectors
Five kinds of connectors use different ways of finding the two objects to connect.
You have already encountered one kind:

Class connector — connects a client Smalltalk and GemStone class. As discussed
in “Class Mapping” on page 43, to replicate an object, both client
and repository must define the class, and the two classes must be
connected using a class connector.

For replicating instances, however, we need ways to connect root objects:

Name connector — connects client and server objects identified by name.
Figure 4.3 illustrates how a name connector connects a client
object to a server object.

Class variable connector — first resolves the named objects representing the
classes, then looks for a class variable in the GemStone class, and
a Class or Shared Variable in the client Smalltalk class with the
specified name and connects those objects.

Class instance variable connector — first resolves the named objects representing
the classes, then looks for a class instance variable in each class
with the specified name and connects those objects.

Fast connector — connects the GemStone kernel classes to their client Smalltalk
counterparts. Fast connectors are predefined. The kernel classes to
which they point will not change identity during the course of a
session. The GemStone kernel class connectors are predefined,
and GemBuilder relies on them. Applications should not define
fast connectors.

Kinds of Connectors GBS 5.4 User’s Guide

90 VMware, Inc. December 2011

Connection Order
At login, GemBuilder connects connectors in the following order:

1. First, predefined fast connectors for kernel classes;

2. next, class connectors whose postconnect action is anything other than
updateGS; and finally

3. all other connectors, in no particular order.

You can control the order in which connectors connect by connecting them
explicitly in your code, instead of relying on GemBuilder’s automatic mechanism
to connect them for you at login.

Lookup

Connecting by Name

Except for fast connectors (discussed in the following section), all kinds of
connectors find the objects to connect through a name lookup. Names must be
found in namespaces. GemBuilder looks in the namespace “Smalltalk”; a fully-
qualified name can also be used.

In the client, GemStone implements namespaces with symbol dictionaries. If the
symbol list of the session user includes the symbol dictionary defining object A,
then object A is visible to that user.

Lookup occurs when the connector connects, usually when the session first logs in.

Chapter 4 - Connectors Kinds of Connectors

December 2011 VMware, Inc. 91

Figure 4.3 Connecting a Name Connector

name1

name1
name2

name2

GemStoneClient Smalltalk
 GemStone user’s symbol listSmalltalk Namespace

GbsNameConnector

looked up in GemStone symbol list

looked up
 in Smalltalk

Client Object

Server Object

Connecting by Identity: Fast Connectors

You can bypass name lookup by using a fast connector, which saves direct
references to the client Smalltalk objects and the object IDs of the GemStone server
objects that are connected.

NOTE
The name “fast connector” is historic. These connectors are not
necessarily faster than other connectors.

Using fast connectors can be risky. If the GemStone server object is renamed or
redefined, a fast connector will continue to point to the old object: the one with the
same object identifier. When the identity of an object changes (for example, if it is
a variable that you assign to a new object), a fast connector becomes incorrect. An
out-of-date fast connector may cause an “object does not exist” error, or it may
silently continue to pass messages to an old object.

Because using object identity is not always an appropriate way to resolve an object,
we recommend that you do not use fast connectors.

Making and Managing Connectors GBS 5.4 User’s Guide

92 VMware, Inc. December 2011

4.4 Making and Managing Connectors
To make and manage connectors interactively, see “The Connector Browser” on
page 185. The next section describes making and managing connectors in code.

Making Connectors Programmatically
GbsConnector is the abstract superclass for the connector class hierarchy. These
classes implement connection methods and define instance variables to refer to the
associated GemStone and client objects. Figure 4.4 shows the hierarchy.

Figure 4.4 Connector Class Hierarchy

Object

GbsConnector

GbsFastConnectorGbsNameConnector

GbsClassConnector GbsClassVarConnector

GbsClassInstVarConnector

To create a connector programmatically:

1. Create the connector.

2. Set its postconnect action, if other than the default.

3. Add it to the global connector list, or a connector list for session parameters.

Create the required GemStone session parameters and connectors in an
initialization method.(Creation methods for session parameters are described in
“Session Parameters” on page 32.)

Chapter 4 - Connectors Making and Managing Connectors

December 2011 VMware, Inc. 93

Creating Connectors

One simple creation method for a name connector requires only the names of the
two objects to be connected:

GbsNameConnector stName: stName
 gsName: gsName

You can create a class connector this way too:

GbsClassConnector stName: stName
 gsName: gsName

The above methods require that the server object already exist. If GemBuilder must
create the object, choose an instance creation method that specifies the GemStone
server dictionary in which to place it:

GbsNameConnector stName: stName
gsName: gsName
dictionaryName: gsDictionary

To create a class variable connector:

GbsClassVarConnector
stName: #ClassName
gsName: #ClassName
cvarName: #ClassVarName

Similarly, a class instance variable connector:

GbsClassInstVarConnector
stName: #ClassName
gsName: #ClassName
cvarName: #ClassInstVarName

For more, browse instance creation methods for each connector class.

Setting the Postconnect Action

The symbolic names for postconnect actions are #updateST, #updateGS,
#forwarder, #clientForwarder, and #none. All connectors default to using
#updateST except class connectors, which default to #none.

To cause a GemStone server object to take its initial values at login from its
Smalltalk counterpart, send postConnectAction: #updateGS to the
connector. This is occasionally useful for loading data into GemStone from the
client image.

Making and Managing Connectors GBS 5.4 User’s Guide

94 VMware, Inc. December 2011

Adding Connectors to a Connector List

When you create a connector, you must decide whether it is to be managed by an
individual session parameters object or globally. Leaving it unmanaged can have
several adverse effects: it will not be connected and disconnected when required,
and object retrieval may slow.

A connector is managed by adding it to the appropriate list of connectors.

If you want a connector in effect whenever any session logs in, put it in the global
connectors collection:

GBSM addGlobalConnector: aConnector

A new global connector first takes effect the next time any session logs in.

Each session parameters object maintains its own list of session connectors. If you
want a connector in effect whenever a session logs in using specific parameters,
add a connector to the session parameters object:

ThisApplicationParameters addConnector: aConnector

A new session connector first takes effect the next time a session logs in using those
parameters.

To initialize a system with two roots, the global BigDictionary, and a class
variable in MyClass called MyClassVar, your application might execute code
such as that shown in Example 4.1:

Example 4.1

GBSM addGlobalConnector: (GbsNameConnector
stName: #MyGlobal
gsName: #MyGlobal);

addGlobalConnector: (GbsClassVarConnector
stName: #MyClass
gsName: #MyClass
cvarName: #MyClassVar)

Initialization code such as that in Example 4.1 needs to execute only once. From
then on, every time you log into GemStone, MyGlobal and MyClassVar (and all
the objects they reference) connect; after that, replication and updating occur as
specified.

Chapter 4 - Connectors Making and Managing Connectors

December 2011 VMware, Inc. 95

Session Control

The following examples illustrate one approach to managing GemBuilder sessions
and connectors: a session control class that defines these methods for, in this
example, a help request system.

An instance of the session control class could be stored in the application object as
a class variable, in which case the session information would be the same for all
instances of the application, or it could be stored in the application as an instance
variable, in which case each instance of the application would get its own copy to
change as needed. In either case, methods to create the session parameters object
and its connectors might follow these patterns:

Example 4.2 shows the method session, which returns the application’s logged-
in session. If the session is not logged in, the method requests an RPC login and
returns the resulting session. If login fails, the method returns nil.

Example 4.2

session
"self session"
(session isNil or: [session isLoggedIn not]) ifTrue: [

session := self sessionParameters loginRpc.
session isNil ifTrue: [^nil]].

^session

Example 4.3 shows a method that initializes a set of session parameters. (For
security, you may choose to prompt for passwords instead.)

Making and Managing Connectors GBS 5.4 User’s Guide

96 VMware, Inc. December 2011

Example 4.3

sessionParameters
| params |
sessionParameters isNil ifTrue: [

params := GbsSessionParameters new.
params gemStoneName: 'gs64stone'.
params username: 'DataCurator'.
params password: 'swordfish'.
params gemService: 'gemnetobject'.
params rememberPassword: true.
params rememberHostPassword: true.
self addConnectorsTo: params.
sessionParameters := params.
GBSM addParameters: params].

^sessionParameters

Example 4.4 adds connectors to the session parameters object:

Example 4.4

addConnectorsTo: aParams
self addClassConnectorsTo: aParams.
self addClassVarConnectorsTo: aParams

Example 4.5 shows a method that creates class connectors and adds them to the
session parameters connector list:

Example 4.5

addClassConnectorsTo: aParams
aParams addConnector:

(GbsClassConnector
stName: #GST_Customer
gsName: #GST_Customer).

aParams addConnector:
(GbsClassConnector

stName: #GST_Engineer
gsName: #GST_Engineer).

Chapter 4 - Connectors Making and Managing Connectors

December 2011 VMware, Inc. 97

Example 4.6 shows a method that creates class variable connectors and adds them
to the session parameters connector list:

Example 4.6

addClassVarConnectorsTo: aParams
| aConnector |
aParams addConnector:

(aConnector := GbsClassVarConnector
stName: #GST_HelpRequest
gsName: #GST_HelpRequest
cvarName: #AllRequests).

aConnector postConnectAction: #forwarder.
aParams addConnector:

(GbsClassVarConnector
stName: #GST_Company
gsName: #GST_Company
cvarName: #AllCompanies)

You can create methods similar to those shown in examples 4.5 and 4.6 to create
name connectors and global connectors for your application, as well.

NOTE
If more than one session is logged into GemStone using the same session
parameters object, and you add a connector to one of those sessions,
GemBuilder will try to connect that connector for all sessions sharing the
same parameters. If any fail to reference the GemStone server object
represented by the connector, you’ll receive an error message stating that
the connector failed to connect.

Making and Managing Connectors GBS 5.4 User’s Guide

98 VMware, Inc. December 2011

Chapter

December 2011 VMware, Inc. 99

5 Managing
Transactions

The GemStone object server’s fundamental mechanism for maintaining the
integrity of shared objects in a multiuser environment is the transaction. This
chapter describes transactions and how to use them. For further information, see
the chapter in the GemStone/S 64 Bit Programming Guide entitled “Transactions and
Concurrency Control.”

Transaction Management: an Overview
introduces the concepts to be explained later in the chapter.

Operating Inside a Transaction
explains the transaction model, committing, and aborting.

Operating Outside a Transaction
discusses a lower-overhead alternative for read-only views of the shared
repository.

Transaction Modes
explains the difference between automatic and manual transaction modes.

Managing Concurrent Transactions
discusses concurrency conflicts and ways to minimize them, such as locks.

Transaction Management: an Overview GBS 5.4 User’s Guide

100 VMware, Inc. December 2011

Reduced-Conflict Classes
describes specialized GemStone collections that minimize conflicts without
locking.

Changed Object Notification
explains a mechanism for coordinating the activities of multiple sessions.

5.1 Transaction Management: an Overview
The GemStone object server provides an environment in which many users can
share the same persistent objects. The object server maintains a central repository
of shared objects. When a GemBuilder application needs to view or modify shared
objects, it logs in to the GemStone object server, starting a session as described in
Chapter 2.

A GemBuilder session creates a private view of the GemStone repository
containing views of shared objects for the application’s use. The application can
perform computations, retrieve objects, and modify objects, as though it were a
single-user Smalltalk image working with private objects. When appropriate, the
application propagates its changes to the shared repository so those changes
become visible to other users.

In order to maintain consistency in the repository, GemBuilder encapsulates a
session’s operations (computations, fetches, and modifications) in units called
transactions. Any work done while operating in a transaction can be submitted to
the object server for incorporation into the shared object repository. This is called
committing the transaction.

During the course of a logged-in session an application can submit many
transactions to the GemStone object server. In a multiuser environment,
concurrency conflicts can arise and cause some commit attempts to fail. Aborting
the transaction discards any changes to persistent objects and refreshes the
session’s view of the repository in preparation for further work.

In order to reduce its operating overhead, a session can run outside a transaction, but
to do so the session must temporarily relinquish its ability to commit. A session
running outside a transaction operates in manual transaction mode, in contrast to the
system default automatic transaction mode.

Another potential mode is transactionless mode. However, this mode is not usable
from within GemBuilder.

GemBuilder provides ways of avoiding the concurrency conflicts that can cause a
commit to fail. Optimistic concurrency control risks higher rates of commit failure in

Chapter 5 - Managing Transactions Operating Inside a Transaction

December 2011 VMware, Inc. 101

exchange for reduced transaction overhead, while pessimistic concurrency control
uses locks of various kinds to improve a transaction’s chances of successfully
committing. GemStone also offers reduced-conflict classes that are similar to familiar
Smalltalk collections, but are especially designed for the demands of multiuser
applications.

This chapter explains each of the topics mentioned here: transactions, committing
and aborting, running outside a transaction, automatic and manual transaction
modes, optimistic and pessimistic concurrency control, and reduced conflict
classes. Be sure to refer to the related topics in the GemStone/S 64 Bit Programming
Guide for a full understanding of these transaction management concepts.

5.2 Operating Inside a Transaction
While a session is logged in to the GemStone object server, that session maintains
a private view of the shared object repository. To prevent conflicts that can arise
from operations occurring simultaneously in different sessions in the multiuser
environment, Each session’s operations are encapsulated in a transaction. Only
when the session commits its transaction does GemStone try to merge the
modified objects in that session’s view with the main, shared repository.

Figure 5.1 shows a client image and its repository, along with a common sequence
of operations: (1) faulting in an object from the shared repository to Smalltalk, (2)
flushing an object to the private GemStone view, and (3) committing the object’s
changes to the shared repository.

Figure 5.1 GemBuilder Application Workspace

Client Smalltalk Gem with Private
Repository
GemStone

Repository ViewImage

(1) Fault

(2) Flush (3) Commit

(1) Fault

GemBuilder Application

Operating Inside a Transaction GBS 5.4 User’s Guide

102 VMware, Inc. December 2011

The private GemStone view starts each transaction as a snapshot of the current
state of the repository. As the application creates and modifies shared objects,
GemBuilder updates the private GemStone view to reflect the application’s
changes. When your application commits a transaction, the repository is updated
with the changes held in your application’s private GemStone view.

For efficiency, GemBuilder does not replicate the entire contents of the repository.
It contains only those objects that have been replicated from the repository or
created by your application for sharing with the object server. Replicated objects
are updated only when modified. This minimizes the amount of data that moves
across the boundary from the Gem to the client Smalltalk application.

Committing a Transaction
When an application submits a transaction to the object server for inclusion in the
shared repository, it is said to commit the transaction. To commit a transaction from
the client, send the message:

aGbsSession commitTransaction (to commit a specific session)

or:

GBSM commitTransaction (to commit the current session)

or, in the Session Browser, select the session and click on the Commit... button; or
in the Class Browser, use the pop up menu on the SymbolDictionary pane to select
commit.

When the commit succeeds, the method returns true. Successfully committing a
transaction has two effects:

 • It copies the application’s new and changed objects to the shared object
repository, where they are visible to other users.

 • It refreshes the application’s private GemStone view to match the current state
of the repository, making visible any new or modified objects that have been
committed by other users.

A commit request can be unsuccessful in two ways:

 • A commit fails if the object server detects a concurrency conflict with the work
of other users. When the commit fails the commitTransaction method
returns false.

 • A commit is not attempted if a related application component is not ready to
commit. When the commit is not attempted, the commitTransaction
method returns nil. (See “Session Dependents” on page 37.)

Chapter 5 - Managing Transactions Operating Inside a Transaction

December 2011 VMware, Inc. 103

In order to commit, the session must be operating within a transaction. An attempt
to commit while outside a transaction raises an exception.

Aborting a Transaction
When a session aborts its transaction, it discards any uncommitted changes to
persistent objects and refreshes its view of the shared object repository. Despite the
terminology, a session need not be operating inside a transaction in order to abort.
To abort, send the message:

aGbsSession abortTransaction (to abort a specific session)

or:

GBSM abortTransaction (to abort the current session)

or, in the Session Browser, select a logged-in session and click on the Abort...
button; or in the Class Browser, use the pop up menu on the SymbolDictionary
pane to select abort.

Aborting has these effects:

 • Any changes to persistent objects are discarded.

 • The transaction (if any) ends. If the session’s transaction mode is automatic,
GemBuilder starts a new transaction. If the session’s transaction mode is
manual, the session is left outside of a transaction.

 • Temporary Smalltalk objects remain unchanged.

 • The session’s private view of the GemStone shared object repository is
updated to match the current state of the repository.

Avoiding or Handling Commit Failures
You can use the GemBuilder method GbsSession >> hasConflicts to determine
if any concurrency conflicts exist that would cause a subsequent commit operation
to fail. It returns false if it finds no conflicts with other concurrent transactions,
true otherwise. You can then determine how best to proceed.

If an attempt to commit fails because of a concurrency conflict, the
commitTransaction method returns false.

Following a commit failure, the client’s view of persistent objects may differ from
their precommit state:

 • The current transaction is still in effect. However, you must end the transaction
and start a new one before you can successfully commit.

Operating Outside a Transaction GBS 5.4 User’s Guide

104 VMware, Inc. December 2011

 • Temporary Smalltalk objects remain unchanged.

 • Modified GemStone server objects remain unchanged.

 • Unmodified GemStone server objects are updated with new values from the
shared repository.

Following a commit failure, your session must refresh its view of the repository by
aborting the current transaction. The uncommitted transaction remains in effect so
you can save some of its contents, if necessary, before aborting.

A common strategy for handling such a failure is to abort, then reinvoke the
method in which the commit occurred. Depending on your application, you may
simply choose to discard the transaction and move on, or you may choose to
remedy the specific transaction conflict that caused the failure, then initiate a new
transaction and commit.

If you want to know why a transaction failed to commit, you can send the message:

aGbsSession transactionConflicts

This expression returns a symbol dictionary whose keys indicate the kind of
conflict detected and whose values identify the objects that incurred each kind of
conflict. (See “Managing Concurrent Transactions” on page 108 for more
discussion of the kinds of conflicts that can arise.)

5.3 Operating Outside a Transaction
A session must be inside a transaction in order to commit. While operating within a
transaction, every change the session makes and every new object it creates can be
a candidate for propagation to the shared repository. GemBuilder monitors the
operations that occur within the transaction, gathering all the necessary
information required to prepare the transaction to be committed.

For efficiency, an application may configure a session to operate outside a
transaction. When operating outside a transaction, a session can view the
repository, browse the objects it contains, and even make computations based
upon their values, but it cannot commit any new or changed GemStone server
objects. When a session is operating outside a transaction, the Stone may request
that the session abort. A session operating outside a transaction can, at any time,
begin a transaction.

No session is overhead-free: even a session operating outside a transaction uses
GemStone resources to manage its objects and its view of the repository. For best

Chapter 5 - Managing Transactions Operating Outside a Transaction

December 2011 VMware, Inc. 105

system performance, all sessions, even those running outside a transaction, must
periodically refresh their views of the repository by committing or aborting.

Table 5.1 shows GbsSession methods that support running outside of a GemStone
transaction:

Table 5.1 GbsSession Methods for Running Outside of a Transaction

beginTransaction Aborts and begins a transaction.
transactionMode Returns #autoBegin or #manualBegin
transactionMode:newMode Sets #autoBegin or #manualBegin
inTransaction Returns true if the session is currently in a

transaction.
signaledAbortAction:
 aBlock

Executes aBlock when a signal to abort is
received (see below).

To begin a transaction, send the message:

aGbsSession beginTransaction
(to begin a transaction for a specific session)

or:

GBSM beginTransaction
(to begin a transaction for the current session)

or, in the Session Browser, select a logged-in session and click on the Begin...
button.

This message discards any local modifications, gives you a fresh view of the
repository, and starts a transaction. When you abort or successfully commit this
new transaction, you will again be outside of a transaction until you either
explicitly begin a new one or change transaction modes.

If you are not currently in a transaction, but still want a fresh view of the
repository, you can send the message aGbsSession abortTransaction. This
discards modifications to your current view of the repository and gives you a fresh
view, but does not start a new transaction.

Being Signaled to Abort
When you are in a transaction, GemStone waits until you commit or abort to
reclaim storage for objects that have been made obsolete by your changes. When
you are running outside of a transaction, however, you are implicitly giving
GemStone permission to send your Gem session a signal requesting that you abort

Transaction Modes GBS 5.4 User’s Guide

106 VMware, Inc. December 2011

your current view so that GemStone can reclaim storage when necessary. When
this happens, you must respond within the time period specified in the
STN_GEM_ABORT_TIMEOUT parameter in the Stone’s configuration file. If you
do not, GemStone either terminates the Gem or forces an abort, depending on the
value of the related configuration parameter STN_GEM_LOSTOT_TIMEOUT. The
Stone forces an abort by sending your session an abortErrLostOtRoot signal,
which means that your view of the repository was lost, and any objects that your
application had been holding may no longer be valid. When your application
receives abortErrLostOtRoot, the application must log out of GemStone and
log back in, thus rereading all of its data in order to resynchronize its snapshot of
the current state of the GemStone repository.

You can avoid abortErrLostOtRoot and control what happens when you
receive a signal to abort with the signaledAbortAction: aBlock message. For
example:

aGbsSession signaledAbortAction:
[aGbsSession abortTransaction].

This causes your GemBuilder session to abort when it receives a signal to abort.

An application modal dialog or a suspended user interface process prevents
GemBuilder from handling the abortErrLostOtRoot signal until the dialog box
is dismissed, or until the process resumes.

5.4 Transaction Modes
A GemBuilder session always initiates a transaction when it logs in. After login,
the session can operate in either of two transaction modes: automatic or manual.

Automatic Transaction Mode
In automatic transaction mode, committing or aborting a transaction automatically
starts a new transaction. This is GemBuilder’s default transaction mode: in this
mode, the session operates within a transaction the entire time it is logged into
GemStone.

However, being in a transaction incurs certain costs related to maintaining a
consistent view of the repository at all times for all sessions. Objects that the
repository contained when you started the transaction are preserved in your view,
even if you are not using them and other users' actions have rendered them
meaningless or obsolete.

Chapter 5 - Managing Transactions Transaction Modes

December 2011 VMware, Inc. 107

Depending upon the characteristics of your particular installation (such as the
number of users, the frequency of transactions, and the extent of object sharing),
this burden can be trivial or significant. If it is significant at your site, you may
want to reduce overhead by using sessions that run outside transactions, so that
the Stone can signal transactions to abort when necessary. To run outside a
transaction, a session must switch to manual transaction mode.

Manual Transaction Mode
In manual transaction mode, the session remains outside a transaction until you
begin a transaction. When you change the transaction mode from automatic (its
initial setting) to manual, the current transaction is aborted and the session is left
outside a transaction. In manual transaction mode, a transaction begins only as a
result of an explicit request. When you abort or commit successfully, the session
remains outside a transaction until a new transaction is initiated.

To begin a transaction, send the message

aGbsSession beginTransaction

or select the Begin... button on the Session Browser.

A new transaction always begins with an abort to refresh the session’s private view
of the repository. Local objects that customarily survive an abort operation, such
as temporary results you have computed while outside a transaction, can be
carried into the new transaction where they can be committed, subject to the usual
constraints of conflict-checking. If you begin a new transaction while already
inside a transaction, the effect is the same as an abort.

In manual transaction mode, as in automatic mode, an unsuccessful commit leaves
the session in the current transaction until you take steps to end the transaction by
aborting.

Choosing Which Mode to Use
You should use automatic transaction mode if the work you are doing requires
committing to the repository frequently, because you can make permanent
changes to the repository only when you are in a transaction.

Use manual transaction mode if the work you are doing requires looking at objects
in the repository, but only seldom requires committing changes to the
repository. You will have to start a transaction manually before you can commit
your changes to the repository, but the system will be able to run with less
overhead.

Managing Concurrent Transactions GBS 5.4 User’s Guide

108 VMware, Inc. December 2011

Switching Between Modes
To find out if you are currently in a transaction, execute aGbsSession
inTransaction. This returns true if you are in a transaction and false if you
are not.

To change from manual to automatic transaction mode, execute the expression:

aGbsSession transactionMode: #autoBegin

This message automatically aborts the transaction, if any, changes the transaction
mode, and starts a new transaction.

To change from automatic to manual transaction mode, execute the expression:

aGbsSession transactionMode: #manualBegin

This message automatically aborts the current transaction and changes the
transaction mode to manual. It does not start a new transaction, but it does
provide a fresh view of the repository.

5.5 Managing Concurrent Transactions
When you tell GemStone to commit your transaction, it checks to see if doing so
presents a conflict with the activities of any other users.

1. It checks to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have also modified
during your transaction. If they have, then the resulting modified objects can
be inconsistent with each other.

2. It may check to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have read during your
transaction, while at the same time you have modified an object that the other
session has read.

3. It checks for locks set by other sessions that indicate the intention to modify
objects that you have read or to read or write objects you have modified in
your view.

If it finds no such conflicts, GemStone commits the transaction, and your work
becomes part of the permanent, shared repository. Your view of the repository is
refreshed and any new or modified objects that other users have recently
committed become visible in any dictionaries that you share with them.

Chapter 5 - Managing Transactions Managing Concurrent Transactions

December 2011 VMware, Inc. 109

For details about read and write operations, optimistic and pessimistic
concurrency control, and other general information about GemStone transactions,
refer to the “Transactions and Concurrency Control” chapter of the GemStone/S 64
Bit Programming Guide.

Setting Locks
GemBuilder provides locking protocol that allows application developers to write
client Smalltalk code to lock objects and specify client Smalltalk code to be
executed if locking fails.

A GbsSession is the receiver of all lock requests. Locks can be requested on a
single object or on a collection of objects. Single lock requests are made with the
following statements:

aGbsSession readLock:anObject.
aGbsSession writeLock:anObject.

The above messages request a particular type of lock on anObject. If the lock is
granted, the method returns the receiver. (Lock types are described in the
GemStone/S 64 Bit Programming Guide). If you don’t have the proper authorization,
or if another session already has a conflicting lock, an error will be generated.

When you request a lock, an error will be generated if another session has
committed a change to anObject since the beginning of the current transaction. In
this case, the lock is granted despite the error, but it is seen as “dirty.” A session
holding a dirty lock cannot commit its transaction, but must abort to obtain an up-
to-date value for anObject. The lock will remain, however, after the transaction is
aborted.

Another version of the lock request allows these possible error conditions to be
detected and acted on.

aGbsSession readLock:anObject ifDenied:block1 ifChanged:block2
aGbsSession writeLock:anObject ifDenied:block1 ifChanged:block2

If another session has committed a change to anObject since the beginning of the
current transaction, the lock is granted but dirty, and the method returns the value
of the zero-argument block block2.

The following statements request locks on each element in the three different
collections.

aGbsSession readLockAll:aCollection.
aGbsSession writeLockAll:aCollection.

Managing Concurrent Transactions GBS 5.4 User’s Guide

110 VMware, Inc. December 2011

The following statements request locks on a collection, acquiring locks on as many
objects in aCollection as possible. If you do not have the proper authorization for
any object in the collection, an error is generated and no locks are granted.

aGbsSession readLockAll: aCollection ifIncomplete: block1
aGbsSession writeLockAll: aCollection ifIncomplete: block1

Example 5.1 shows how error handling might be implemented for the collection
locking methods:

Example 5.1

getWriteLocksOn:aCollection
 "This method attempts to set write locks on the elements
 of a Collection."
aGbsSession
 writeLockAll: aCollection
 ifIncomplete: [:result |

 (result at: 1)isEmpty ifFalse:
[self handleDenialOn: denied].

 (result at: 2)isEmpty ifFalse:
[aGbsSession abortTransaction].

 (result at: 3)isEmpty ifFalse:
[aGbsSession abortTransaction].

].

Once you lock an object, it normally remains locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through
aborts and commits. In general, you should remove a lock on an object when you
have used the object, committed the resulting values to the repository, and no
longer anticipate a need to maintain control of the object.

The following methods are used to remove specific locks.

aGbsSession removeLock: anObject.
aGbsSession removeLockAll: aCollection.
aGbsSession removeLocksForSession.

The following methods answer various lock inquiries:

aGbsSession sessionLocks.
aGbsSession systemLocks.
aGbsSession lockOwners: anObject.
aGbsSession lockKind: anObject.

Chapter 5 - Managing Transactions Managing Concurrent Transactions

December 2011 VMware, Inc. 111

Releasing Locks Upon Aborting or Committing
The following statements add a locked object or the locked elements of a collection
to the set of objects whose locks are to be released upon the next commit or abort:

 aGbsSession addToCommitReleaseLocksSet: aLockedObject
 aGbsSession addToCommitOrAbortReleaseLocksSet: aLockedObject
 aGbsSession addAllToCommitReleaseLocksSet: aLockedCollection
 aGbsSession addAllToCommitOrAbortReleaseLocksSet: aLockedCollection

If you add an object to one of these sets and then request a fresh lock on it, the
object is removed from the set.

You can remove objects from these sets without removing the lock on the
object. The following statements show how to do this:

 aGbsSession removeFromCommitReleaseLocksSet: aLockedObject
 aGbsSession removeFromCommitOrAbortReleaseLocksSet: aLockedObject
 aGbsSession removeAllFromCommitReleaseLocksSet: aLockedCollection
 aGbsSession removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

The following GemStone Smalltalk statements remove all objects from the set of
objects whose locks are to be released upon the next commit or abort. These
methods are executed using GS-execute:

System clearCommitReleaseLocksSet
System clearCommitOrAbortReleaseLocksSet

The statement aGbsSession commitAndReleaseLocks attempts to commit the
current transaction, and clears all locks for the session if the transaction was
successfully committed.

Reduced-Conflict Classes GBS 5.4 User’s Guide

112 VMware, Inc. December 2011

5.6 Reduced-Conflict Classes
At times GemStone will perceive a conflict when two users are accessing the same
object, when what the users are doing actually presents no problem. For example,
GemStone may perceive a write/write conflict when two users are simultaneously
trying to add an object to a Bag that they both have access to because this is seen
as modifying the Bag.

GemStone provides some reduced-conflict classes that can be used instead of their
regular counterparts in applications that might otherwise experience too many
unnecessary conflicts. For details, refer to the “Transactions and Concurrency
Control” chapter of the GemStone/S 64 Bit Programming Guide.

5.7 Changed Object Notification
A notifier is an optional signal that is activated when an object’s committed state
changes. Notifiers allow sessions to monitor the status of designated shared
application objects. A program that monitors stock prices, for example, could use
notifiers to detect changes in the prices of certain stocks.

In order to be notified that an object has changed, a session must register that object
with the system by adding it to the session’s notify set.

Notify sets persist through transactions, living as long as the GemStone session in
which they were created. When the session ends, the notify set is no longer in
effect. If you need it for your next session, you must recreate it. However, you
need not recreate it from one transaction to the next.

Class GbsSession provides the following two methods for adding objects to
notifySets:

 addToNotifySet:
adds one object to the notify set

 addAllToNotifySet:
adds the contents of a collection to the notify set

When an object in the notify set appears in the write set of any committing
transaction, the system evaluates a client Smalltalk block, sending a collection of
the changed objects as an argument to the block. By examining the argument, the
session can determine exactly which objects triggered the signal. (The block must
have been previously defined by sending notificationAction: to the session,
with the block as the argument.)

Chapter 5 - Managing Transactions Gem-to-Gem Notification

December 2011 VMware, Inc. 113

Because these events are not initiated by your session but cause code to run within
your session, this code is run asynchronously in a separate Smalltalk
process. Depending on what else is occurring in your application at that time,
using this feature might introduce multi-threading into your application,
requiring you to take some additional precautions. (See “Multiprocess
Applications” on page 139.)

Example 5.2 demonstrates notification in GemBuilder.

Example 5.2

"First, set up notifying objects and notification action"
| notifier |
GBSM currentSession abortTransaction; clearNotifySet.
notifier := Array new: 1.
GBSM currentSession at: #Notifier put: notifier.
GBSM currentSession commitTransaction.
GBSM currentSession addToNotifySet: notifier.
GBSM currentSession notificationAction: [:objs |

Transcript cr; show: 'Notification received']

"Now, from any session logged into the same stone with
visibility to the object 'notifier' - to initiate
notification"
GBSM currentSession abortTransaction;

evaluate: 'Notifier at: 1 put: Object new';
commitTransaction

5.8 Gem-to-Gem Notification
Sessions can send general purpose signals to other GemStone sessions, allowing
the transmission of the sender’s session, a numerical signal value, and an
associated message string.

One Gem can handle a signal from another using the method GbsSession >>
sessionSignalAction: aBlock, where aBlock is a one-argument block that will
be passed a forwarder to the instance of GsInterSessionSignal that was received.
From the GsInterSessionSignal instance, you can extract the session, signal value,
and string.

Gem-to-Gem Notification GBS 5.4 User’s Guide

114 VMware, Inc. December 2011

One GemStone session sends a signal to another with:

aGbsSession sendSignal: aSignal to: aSessionId withMessage: aString

For example:

Example 5.3

"First, set up the signal-receiving action"
GBSM currentSession sessionSignalAction: [:giss |

nil gbsMessenger
comment: 'Signal %1 received from session %2: %3.'
with: giss signal
with: giss session
with: giss message.

].

"Now, from any session logged into the same Stone, send a
signal.(This example uses the same session)"
GBSM currentSession

sendSignal: 15
to: (GBSM evaluate: 'GsCurrentSession currentSession serialNumber')
withMessage: 'This is the signal'.

If the signal is received during GemStone execution, the signal is processed and
execution continues. If aBlock is nil, any previously installed signal action is
deinstalled.

NOTE
The method sessionSignalAction: and the mechanism described
above supersede the old mechanism that used the method
gemSignalAction:. Do not use both this method and
gemSignalAction: during the same session; only the last defined
signal handler will remain in effect.

See the chapter entitled “Error-handling” in your GemStone/S 64 Bit Programming
Guide for details on using the error mechanism for change notification.

Chapter 5 - Managing Transactions Asynchronous Event Error Handling

December 2011 VMware, Inc. 115

5.9 Asynchronous Event Error Handling
For each session, there is a background thread that detects events from the server
such as sigAbort, lostOTroot, gem to gem signals, and changed object notifications,
and other events that are handled internally. If a non-fatal error occurs in
processing these events, by default a walkback is opened.

To avoid an end-user experiencing a walkback, you may set a handler block for an
unexpected error in this event detection.

GbsSession >> eventDetectorErrorHandler: aOneArgBlock

If the eventDetectorErrorHandler is set, and if the exception is not already handled
by another handler that is set up for the application, this handler block will be
executed for the exception caught by the event detection thread.

Asynchronous Event Error Handling GBS 5.4 User’s Guide

116 VMware, Inc. December 2011

Chapter

December 2011 VMware, Inc. 117

6 Security and Object
Access

Once objects have been successfully committed to GemStone, they can be
damaged or destroyed only by mishaps that damage or erase the disk files
containing your repository. GemStone provides several mechanisms for
safeguarding the objects in your GemStone repository. These mechanisms are
discussed in the chapter on creating and restoring backups in the System
Administration Guide for GemStone/S 64 Bit.

This chapter discusses security and access at the object level.

GemStone Security
highlights the mechanisms GemStone provides for keeping your stored
objects secure.

6.1 GemStone Security
GemStone provides for blocking access to certain objects as well as sharing
them. Applications can take advantage of several security mechanisms to prevent
unauthorized access to, or modification of, sensitive code and data. These
mechanisms are listed below, and you can choose to use any or all of them.

GemStone Security GBS 5.4 User’s Guide

118 VMware, Inc. December 2011

GemStone provides security at several levels:

 • Login authorization keeps unauthorized users from gaining access to the
repository;

 • Privileges limit ability to execute special methods affecting the basic
functioning of the system; and

 • Object level security allows specific groups of users access to individual
objects in the repository.

Complete details on GemStone security mechanisms are found in the System
Administration Guide for GemStone/S 64 Bit for your GemStone server product and
version. A brief overview is included here.

Login Authorization
GemStone’s first line of protection is to control login authorization. When
someone tries to log in to GemStone, GemStone requires a user name and
password. If the user name and password match the user name and password of
someone authorized to use the system, GemStone allows interaction to proceed; if
not, the connection is severed.

The GemStone system administrator controls login authorization by establishing
user names and passwords when he or she creates UserProfiles.

The UserProfile

Each instance of UserProfile is created by the system administrator. The
UserProfile contains information about you as an individual user, such the UserId
and password, your SymbolList, any groups you belong to, and your privileges.
This information is used to provide system and object level security, including
object visibility.

Controlling Visibility of Objects with SymbolLists
One way to control access is to hide certain objects from users. Each GemStone
user has a SymbolList, containing a collection of SymbolDictionaries to which they
have been given access. Objects—such as Classes—that are not found in a search
of the user’s SymbolLists are not accessible. Because it is difficult for users to refer
to objects that are not defined somewhere in their symbol lists, simply omitting off-
limits objects from a user’s symbol list provides a small measure of security. It is

Chapter 6 - Security and Object Access GemStone Security

December 2011 VMware, Inc. 119

possible, however, for users to find ways to circumvent this, since it’s difficult to
ensure that all indirect paths to an object are eliminated.

NOTE
For performance reasons, GbsSession uses transient copies of your
symbol lists. If you change this transient copy programmatically, the
changes are not immediately reflected in the permanent GemStone
object. Also, changes to the permanent GemStone symbol list are not
reflected in the GbsSession’s transient symbol list until a transaction
boundary. If you must be absolutely certain that the two copies are
synchronized, log out and log back in again.

System Privileges
A few GemStone Smalltalk methods can be executed only by those who have
explicitly been given the necessary privileges. The privilege mechanism is entirely
independent of the authorization mechanism. This mechanism allows the system
administrator to control who can send certain powerful messages, such as those
that halt the system or change passwords. Privileges are associated with only
certain methods and cannot be extended to others.

Specific privileges and the privileged messages are described in the image, and
their use is discussed in the GemStone System Administration Guide.

Protecting Methods
Another choice is to implement procedural protection. If your program accesses
its objects only through methods, you can control the use of those objects by
including user identity checks in the accessing methods.

Object-level Security

Object Security Policies

Instances of GemStone’s GSObjectSecurityPolicy Class provide read and write
authorization control to individual objects. When someone tries to read or write an
object that is governed by an object security policy for which he or she lacks the
proper authorization, GemStone raises an authorization error and does not permit
the requested operation.

In GemStone/S 64 Bit, objects may be associated with an object security policy or
not. If not, no object authorization is done and any user can read and write the

GemStone Security GBS 5.4 User’s Guide

120 VMware, Inc. December 2011

objects. In the 32-bit GemStone/S server product, every server object is associated
with an object security policy that controls access to that object.

NOTE
In the 32-bit GemStone/S server product, and in GemStone/S 64 Bit 2.x,
object security policies are known as Segments.

All objects associated with a particular object security policy have exactly the same
protection; that is, if you can read or write one object with that security policy, you
can read or write them all. Each security policy is owned by a specific single user,
and may have authorizations for owner, groups, or world for read-only, read-
write, or no access.

Groups provide a way to allow a number of GemStone users to share the same
level of access to set of objects in the repository.

Object security policies are not meant to organize objects for retrieval; GemStone
uses Symbol Lists for that. Moreover, security policies don’t have any relationship
to the physical location of objects on disk; they merely provide access security.

For a complete discussion of object level security, symbol resolution, and object
sharing, see the relevant chapters of the GemStone/S 64 Bit Programming Guide.

Chapter

December 2011 VMware, Inc. 121

7 Error-handling

This chapter discusses errors: how to handle them and how to recover from them.

Error-handling and Recovery
explains how GbsError objects are created and used.

User-defined Errors
explains how to define and signal your own errors.

7.1 Error-handling and Recovery
An instance of GbsError is created when GemBuilder encounters a GemStone
error. Each GbsError can represent itself as an exception. Your application can use
these exceptions to perform client Smalltalk exception-handling. When an error is
detected, GemBuilder creates an instance of GbsError and raises its signal.

Error-handlers in your application are typically stack-based, but you may wish to
install a session-based error-handler instead of, or in addition to, stack-based error
handlers. Finally, if no handler is defined, the default handler opens a debugger.

Error-handling and Recovery GBS 5.4 User’s Guide

122 VMware, Inc. December 2011

Stack-based Error-handling
You can use the on:do: method to install error handlers to anticipate specific
GemStone errors, as shown in Example 7.1.

Example 7.1

[GBSM execute: '#(1 2 3) at: 4']
 on: (GbsError signalFor: #objErrBadOffsetIncomplete)
 do: [:sig |
 sig halt: 'proceed to inspect bad offset error.'.
 sig originator inspect]

You can also create a handler to check for any GemStone error that falls in one of
the following categories:

#compilerErrorSignal
#abortingErrorSignal
#interpreterErrorSignal
#fatalErrorSignal
#eventErrorSignal

For instance, this will handle any GemStone Smalltalk compiler error:

[. . .]
 on: (GbsError signalFor: #compilerErrorSignal)
 do: [:ex|. . .]

You can also create a handler to check for multiple errors:

[. . .]
on: (GbsError signalFor:#interpreterErrorSignal),
 (GbsError signalFor: #rtErrAbortTrans)

do: [:ex| . . .]

Session-based Error-handling
You can define an error-handler that is global to your entire session instead of
being installed in an active context. For example:

Chapter 7 - Error-handling Error-handling and Recovery

December 2011 VMware, Inc. 123

Example 7.2

GBSM currentSession
onEventSignal: (GbsError signalFor: #objErrBadOffsetIncomplete)
handle: [:sig |

 sig halt: 'proceed to inspect bad offset error.'.
 sig originator inspect]

raiseException: true

User-defined Errors
You can define and signal your own errors in GemStone. For more information on
how to do this, see the GemStone/S 64 Bit Programming Guide.

In a GemBuilder application, you define a generic GemStone error-handler by
defining a standard client Smalltalk signal handler on the signal GbsError
errorSignal. This handles any GemStone error, including user-defined errors.

If you want to define a client Smalltalk exception handler for a specific user-
defined error, you will need to register an exception, GemStone error number, and
a symbol representing that error with GbsError. To do this, send
GbsError class>>defineErrorNumber:name:signal:.

For example, suppose you have created a GemStone user-defined error as follows:

Example 7.3

"In GemStone"
| myErrors |
myErrors := LanguageDictionary new.
UserGlobals at: #MyErrors put: myErrors.
myErrors at: #English put: (Array new: 10).
(myErrors at: #English)

at: 10
put: #('My new error with argument ' 1).

In Smalltalk, the following code would signal your newly created error:

GBSM execute: 'System signal: 10
args: #[46] signalDictionary: MyErrors'

Detecting GemStone Interrupts GBS 5.4 User’s Guide

124 VMware, Inc. December 2011

A generic signal-handler for all GemStone errors would trap this signal:

^[GBSM execute: 'System signal: 10
args: #[46]
signalDictionary: MyErrors']

on: GbsError errorSignal
do: [:ex | ex return: #handled].

To explicitly handle your new error in client Smalltalk, you first need to define a
name and signal for it. The new signal should inherit from GbsError errorSignal.

GbsError
defineErrorNumber: 10
name: #myNewError
signal: GbsError errorSignal newChild.

So now, to explicitly handle your new error from client Smalltalk:

Example 7.4

^[GBSM execute: 'System signal: 10 args: #[46]
signalDictionary: MyErrors']

on: (GbsError signalFor: #myNewError)
do: [:ex | ex return: #handled]

For information on how to create GemStone error dictionaries and how to handle
GemStone errors (predefined and user-defined) within the GemStone
environment, see the chapter entitled “Handling Errors” in the GemStone/S 64 Bit
Programming Guide.

For more information about defining error handlers in the client Smalltalk, refer to
your client Smalltalk documentation on exception-handling.

7.2 Detecting GemStone Interrupts
Interrupt detection allows a soft break after one hard-break character (formerly
Control-c), and a hard break after three. GemBuilder uses the native client
Smalltalk handler for such interrupts, which can be detected only in nonblocking
mode.

Chapter

December 2011 VMware, Inc. 125

8 Schema Modification
and Coordination

No matter how elegantly your schema was designed, sooner or later changes in
your application requirements or even changes in the world around your
application will probably make it necessary to make changes to classes that are
already instantiated and in use. When this happens, you will want the process of
propagating your changes to be smooth and to impact your work as little as
possible.

This chapter discusses the mechanisms GemStone and GemBuilder provide to
help you accomplish this.

Schema Modification
explains how GemStone supports schema modification by maintaining
versions of classes in class history objects. It shows you how to migrate some
or all instances from one version of a class to another while retaining the data
that these instances hold.

Schema Coordination
explains how to synchronize schema modifications between GemStone and
the client Smalltalk.

Schema Modification GBS 5.4 User’s Guide

126 VMware, Inc. December 2011

8.1 Schema Modification
Client Smalltalk and GemStone Smalltalk both have schema modification
support. Client Smalltalk supports only a single instance of a class; when a class is
modified, instance migration occurs immediately. Because GemStone stores
persistent objects, schema modification is a more complex issue.

GemStone Smalltalk supports schema modification and protects the integrity of
your stored data by allowing you to define different versions of classes. It keeps
track of these versions in a class history object.

Every class in GemStone Smalltalk has a class history instance variable. A class
history is an object that maintains a list of all versions of the class. Every GemStone
class is listed in exactly one class history. You can define any number of different
versions of a class and declare that the different versions belong to the same class
history. You can also migrate some or all instances of one version of a class to
another version when you need to. By default, migration of an object from one
class version to another will preserve the values of unnamed instance variables
and instance variables that have the same name in both classes.

It is not necessary for different versions of a class to have a similar structure or a
similar implementation. The classes don’t even need to have the same name,
although it is probably less confusing if they do or if you establish and adhere to
some naming convention.

The section entitled “Modifying an Existing Class” on page 181 explains how to
create different versions of a class in GemBuilder.

Instance Migration Within GemStone
The migration operation in GemStone is flexible and configurable.

 • Instances of any class can migrate to any other, as long as they share a class
history. The two classes need not be similarly named or have anything else in
common.

 • Migration can occur whenever you want it to.

 • You don’t have to migrate all instances of a class at once; you can migrate only
certain instances as needed.

 • You can choose which values of the old instance variables are used to initialize
values of the new instance variables. overriding the default mapping
mechanism as necessary.

Chapter 8 - Schema Modification and Coordination Schema Modification

December 2011 VMware, Inc. 127

Setting the Migration Destination

You can use the message migrateTo: to set a migration destination in the class
that you need to migrate from as follows:

OldClass migrateTo: NewClass

This message merely lets the class know its migration destination; it does not cause
migration to occur. Migration takes place only when the class receives one of the
migrateInstances messages described in the section “Migrating Objects.”

It is not necessary to set a migration destination ahead of time; you can specify the
destination class when you decide to migrate instances. It is also possible to set a
migration destination and then migrate the instances of the old class to a
completely different class by specifying a different migration destination as part of
the message that performs the migration.

You can erase the migration destination for a class by sending it the message
cancelMigration, and you can query the migration destination by sending
migrationDestination to the class.

Migrating Objects

A number of mechanisms are available to allow you to migrate one instance or a
specified set of instances to a previously specified migration destination or to
another explicitly specified destination.

You can execute the following expression to identify instances that may need to be
migrated:

SystemRepository listInstances: anArrayOfClasses.

The listInstances: message takes as its argument an array of classes and
returns an array of sets. The contents of each set consists of all instances whose
class is equal to the corresponding element in the argument
anArrayOfClasses. Instances to which you lack read authorization are omitted
without notification.

The simplest way to migrate an instance of an older class is to send the message
migrate to the instance. If the object is an instance of a class for which a
migration destination has already been defined, the object becomes an instance of
the specified version of the class. If no destination has been defined, no change
occurs.

You can bypass the migration destination or migrate instances of classes for which
no migration destination has been specified by specifying the destination directly
in the message that performs the migration.

Schema Modification GBS 5.4 User’s Guide

128 VMware, Inc. December 2011

The following messages (defined in class Class) specify a one-time-only operation
that ignores any preset migration destination class.

migrateInstances:aCollectionOfInstances to:DestinationClass

migrateInstancesTo:DestinationClass

The migrateInstances:to: message migrates specified instances to a class;
the migrateInstancesTo: migrates all instances of the receiver to a class.

Things to Watch Out For

There are a few things that you should be aware of when migrating objects.

 • You cannot send a migrate message to self. Attempting to do so generates
an error that reports “The object you are trying to migrate was already on the
stack.”

 • You cannot migrate instances that you are not authorized to read or write.

 • You need to be aware that the instance variable map used in migrating
instances from one GemStone class to another is not the same as the instance
variable map described in Chapter 3, whose purpose is to map instance
variables from GemStone to Smalltalk.

Instance Variable Mapping in Migration

GemStone supports instance migration between two classes that belong to the
same class history. For simple migrations, such as the addition or removal of an
instance variable, GemStone provides a default migration mechanism that copies
data from each instance variable of the old object to the instance variable of the
same name in the new object (if one exists). You can write methods to customize
this migration on a class-by-class basis.

When an object is migrated, it refers to the class and class instance variables that
have been defined for the new version of the class. These variables have whatever
values have been assigned to them in the class object.

The simplest way to retain the data held in instance variables is to use instance
variables having the same names. If two versions of a class have instance variables
with the same name, the values of those variables are automatically retained when
the instances migrate from one class to the other.

However, the structure of the two classes may be different, and a one-to-one
mapping may not be possible. For example, if the new class has an instance
variable for which no corresponding variable exists in the old class, that instance
variable is initialized to nil upon migration. Similarly, if the old class has an

Chapter 8 - Schema Modification and Coordination Schema Modification

December 2011 VMware, Inc. 129

instance variable for which no corresponding variable exists in the new class, the
value of the old variable is dropped and the data it represents is no longer
accessible from that object.

You may encounter situations in which you want to initialize a variable having one
name with the value of a variable having a different name. This requires
providing an explicit mapping from the instance variable names of the older class
to the instance variable names of the migration destination. To do this you will
need to override the default mapping strategy by reimplementing a class method
named instVarMappingTo: in your destination class. This method is defined in
Class to return an instance variable mapping from the receiver’s named instance
variables to those in the other class, but it can be customized in the new class to
explicitly map the two different names.

There also may be times when you need to perform a specific operation on the
value of a given variable before initializing the corresponding variable in the class
to which the object is migrating.

For example, suppose that you have a class named Point, which defines two
instance variables: x and y. These instance variables define the position of the
point in Cartesian two-dimensional coordinate space. Now suppose that you
define a class named NewPoint to use polar coordinates. The class has two
instance variables named radius and angle. The default mapping strategy would
cause Point objects to completely lose their position because the old and new
classes have no instance variables in common.

This can be handled, however, by overriding a migration method in NewPoint by
defining it to include an operation that transforms the values of x and y into values
that can properly be assigned to radius and angle. In this case, the appropriate
method to override is migrateFrom:instVarMap:. Then, when you migrate
an instance of Point to an instance of NewPoint, the migration code that calls
migrateFrom:instVarMap: executes the method in NewPoint instead of the
one in Object that defines the default behavior. (This example is explained in detail
in the GemStone/S 64 Bit Programming Guide.)

Schema Coordination GBS 5.4 User’s Guide

130 VMware, Inc. December 2011

8.2 Schema Coordination
GemBuilder’s goal in supporting schema migration is to provide an interaction
between the client Smalltalk and GemStone that provides as much of GemStone’s
capabilities as possible, while minimizing the impact on the client Smalltalk
system.

GemBuilder preserves the behavior of having only a single version of a given class
in client Smalltalk at one time. That client Smalltalk class will be mapped to a
specific version of a GemStone class, resolved at login time by its name. If, while
faulting an object into the client Smalltalk, GemBuilder discovers that the object is
an instance of a class that is a different version of the class that is in client Smalltalk,
it will be faulted in in the format of the class in client Smalltalk and flagged so that
if it is modified and written back to GemStone, it can be written out in the
appropriate format.

For example, suppose you have a class named C in GemStone, and there are two
versions of it: C1 and C2. Suppose that client Smalltalk has a representation of C2.
Instances of C2 are replicated back and forth between client Smalltalk and
GemStone, as usual.

If it attempts to replicate an instance of C1, however, GemBuilder will discover that
there is no class mapping for C1. GemBuilder will then do the following:

1. It will fetch the name of the GemStone class and discover that there is a client
Smalltalk class by the same name that is already mapped to a GemStone class.

2. It will verify that the two GemStone classes are in the same class history.

3. It will then ask GemStone to make a migrated copy of the object in C2 format
and to replicate that migrated copy into client Smalltalk. The proxy associated
with that client Smalltalk object will be flagged to indicate that the client
Smalltalk object is a migrated representation of the GemStone object. If that
object is later modified in client Smalltalk and subsequently needs to be
written to GemStone, GemBuilder will first flush the object from client
Smalltalk to GemStone as an instance of C2, then have GemStone migrate the
object back to an instance of C1.

This process is fairly expensive. If you are running GemBuilder in verbose mode,
the discovery of an client Smalltalk class that is mapped to an old version of a
GemStone class (a version that is not the migration destination) will be logged to
the transcript. If you see this happening frequently, you should consider
migrating your instances to the GemStone class version corresponding to your
client Smalltalk class.

Chapter

December 2011 VMware, Inc. 131

9 Performance Tuning

This chapter discusses ways that you can tune your GemBuilder application to
optimize performance and minimize maintenance overhead.

Selecting the Locus of Control
provides some rules of thumb for deciding when to have methods execute on
the client and when to have them execute on the server.

Profiling
explains ways you can examine your program’s execution.

Replication Tuning
explains the replication mechanism and how you can control the level of
replication to optimize performance

Optimizing Space Management
explains how you can reclaim space from unneeded replicates.

Using Primitives
introduces the use of methods written in lower-level languages such as C.

Multiprocess Applications
shows how to change the initial cache size.

Multiprocess Applications
discusses nonblocking protocol and process-safe transparency caches.

Selecting the Locus of Control GBS 5.4 User’s Guide

132 VMware, Inc. December 2011

For further information, see the GemStone/S 64 Bit Programming Guide for a
discussion on how to optimize GemStone Smalltalk code for faster
performance. That manual explains how to cluster objects for fast retrieval, how
to profile your code to determine where to optimize, and discusses optimal cache
sizes to improve performance.

9.1 Selecting the Locus of Control
By default, GemBuilder executes code in the client Smalltalk. Objects are stored in
GemStone for persistence and sharing but are replicated in the client Smalltalk for
manipulation. In general, this policy works well. There are times, however, when
it is preferable or required to execute in GemStone.

One motivation for preferring execution in GemStone is to improve
performance. Certain functions can be performed much more efficiently in
GemStone. The following section discusses the trade-offs between client Smalltalk
and server Smalltalk execution and how to choose one space over the other.

Beyond optimization, some functions can be performed only in
GemStone. GemStone’s System class, for example, cannot be replicated in the
client Smalltalk; messages to System have to be sent in GemStone.

Locus of Execution
This section centers on controlling the locus of execution—in other words,
determining whether certain parts of an application should execute in the client
Smalltalk or in GemStone. Subsequent sections discuss other ways of tuning to
increase execution speed.

Client Smalltalk and GemStone Smalltalk are very similar languages. Using
GemBuilder, it is easy to define behavior in either client Smalltalk or GemStone to
accomplish the same task. There are, however, performance implications in the
placement of the execution. This section discusses several factors to weigh when
choosing the space in which to execute methods.

Relative Platform Speeds

One consideration when choosing the execution platform is the relative speed of
the client Smalltalk and the server Smalltalk execution environments. Your client
Smalltalk will often run faster than GemStone on the same machine. GemStone’s
database management functions and its ability to handle very large data sets add
some overhead that the client Smalltalk environment doesn’t have.

Chapter 9 - Performance Tuning Profiling

December 2011 VMware, Inc. 133

Cost of Data Management

Execution cannot complete until all objects required have been brought into the
object space. When executing in the client Smalltalk, this means that all GemStone
objects required by the message must be faulted from GemStone. When executing
in GemStone, this means that dirty replicates must be flushed from the client
Smalltalk. In general, it is impossible to tell exactly which objects will be required
by a message send, so GemBuilder flushes all dirty replicates before a GemStone
message send and faults all dirty GemStone objects after the send.

Clearly, data movement can be expensive. Although the client Smalltalk
environment might be more efficient for some messages, faulting the object into
the client Smalltalk might overwhelm the savings. If the objects are all already
there, however, or if the objects will be reused for other messages, then the
movement may be justified.

For example, consider searching a set of employees for a specific employee, giving
her a raise, and then moving on to another unrelated operation. Although a brute
force search may be faster in your client Smalltalk, the cost of moving the data to
the client may exceed the savings. The search should probably be done in
GemStone.

However, if additional operations are going to be done on the employee set, the
cost of moving data is amortized and, as the number of operations increases,
becomes less than the potential savings.

GemStone Optimization

Some optimizations are possible only using GemStone execution. In particular,
repository searching and sorting can be done much more quickly in GemStone
than in your client Smalltalk as data sets become large.

If you will be doing frequent searches of data sets such as the employee set in the
previous example, using an index on the server Smalltalk set will speed execution.

The GemStone/S 64 Bit Programming Guide provides a complete discussion of
indexes and optimized queries.

9.2 Profiling

Profiling Client Smalltalk Execution
A good starting point for optimizing the performance of an application is to find
out where most of the execution time is being spent. There are tools available for

Profiling GBS 5.4 User’s Guide

134 VMware, Inc. December 2011

profiling client Smalltalk code. GemStone also has a profiling tool in the class
ProfMonitor. This class allows you to sample the methods that are executed in a
given block of code and to estimate the percentage of total execution time
represented by each method. See the chapter on performance in the GemStone/S 64
Bit Programming Guide for details.

Watching Stub Activity
A switch in the stub class, GbxObjectStub, allows you to see stubs in a debugger
and logs faulting activity involving stubs.

GbxObjectStub stubDebugging: aBoolean

This method turns stub debugging support on (stubDebugging: true) or off
(stubDebugging: false). When stub debugging is true, this class’s
superclass is GbsDebugStub, providing basic instance methods that allow the
client Smalltalk debugger to operate among stubs without causing them to fault in
the GemStone object.

Another effect of setting stubDebugging: true is that operations involving
stubs are recorded in the System Transcript. Turning on stub debugging and
watching the faulting activity can help you evaluate your tuning parameters.

Notice that applications that rely on these methods might get incorrect results
when stub debugging is turned on. For example, sending #class to a
GbxObjectStub normally causes a fault, returning the class of the replicated object,
but when stubDebugging is on, the result of sending #class is GbxObjectStub.

Using Verbose Mode
GbsSession has a class variable, Verbose (a Boolean), which, if true, causes sessions
to write messages to the system transcript when special events occur (such as
logout, login, commit, and abort).

If your application sends Block>>valueUninterruptably, you may need to
disable the GbsSession’s logging of events to the transcript by sending GBSM
verbose: false.Verbose mode uses Transcript show:, which eventually
calls Block>>valueUninterruptably. If unstubbing occurs during
execution of your application’s Block>>valueUninterruptably,and the
unstubbing activity triggers activity that is logged to the transcript, the client
Smalltalk will fail.

Chapter 9 - Performance Tuning Replication Tuning

December 2011 VMware, Inc. 135

9.3 Replication Tuning
The faulting of GemStone objects into the client Smalltalk is described in
Chapter 3. As described there, a GemStone object has a replicate in the client
Smalltalk created for itself, and, recursively, for objects it contains to a certain level,
at which point stubs instead of replicates are created.

Faulting objects to the proper number of levels can noticeably improve
performance. Clearly, there is a cost for faulting objects into the client
Smalltalk. This is made up of communication cost with GemStone, object
accessing in GemStone, object creation and initialization in the client Smalltalk,
and increased virtual machine requirements in the client Smalltalk as the number
of objects grows. For this reason, you should try to minimize faulting and fault in
to the client only those objects that will actually be used in the client.

On the other hand, inadequate faulting also has its penalties. Communication
overhead is important. When fetching an employee object, it is wasteful to stub
the name and then immediately fetch the name from GemStone.

Controlling the Fault Level
By default, four levels of objects are faulted. It is possible to tune the levels of
stubbing to a more optimal level with a knowledge of the application being
programmed. You can set the configuration parameter faultLevelRpc to a
SmallInteger indicating the number of levels to replicate when updating an object
from GemStone to the client Smalltalk. A level of 2 means to replicate the object
and each object it references, stubbing objects beyond that level. A level of 0
indicates no limit; that is, entering 0 prevents any stubs from being created. To
examine or change this parameter, choose GemStone > Browse > Settings and
select the Replication tab in the resulting Settings Browser.

NOTE
Take care when using a level of 0 to control replication. GemStone can
store more objects than can be replicated in a client Smalltalk object
space.

Preventing Transient Stubs
If only the defaultGStoSTLevel mechanism is used to control fault levels, it is
possible to create large numbers of stubs that are immediately unstubbed.

To prevent stubbing on a class basis, reimplement the replicationSpec class
method for that class. For details, see “Replication Specifications” on page 59.

Optimizing Space Management GBS 5.4 User’s Guide

136 VMware, Inc. December 2011

Setting the Traversal Buffer Size
The traversal buffer is an internal buffer that GemBuilder uses when retrieving
objects from GemStone. The larger the traversal buffer size, the more information
GemBuilder is able to transfer in a single network call to GemStone. To change its
value, send the message

GBSM traversalBufferSize: aSmallInteger.

You can also change this value by using the Settings Browser: choose GemStone
> Browse > Settings and select the Replication tab in the resulting Settings
Browser.

9.4 Optimizing Space Management
In normal use of GemBuilder, objects are faulted from GemStone to the client
Smalltalk on demand. In many ways, however, this is a one-way street, and the
client Smalltalk object space can only grow. Advantages can be gained if client
Smalltalk replicates can be discarded when they are no longer needed. A reduced
number of objects on the client reduces the load on the virtual machine, garbage
collection, and various other functions.

Measures you can take to control the size of the client Smalltalk object cache
include explicit stubbing, using forwarders, and not caching certain objects.

Explicit Stubbing
If the application knows that a replicate is not going to be used for a period of time,
the space taken by that object can be reclaimed by sending it the message
stubYourself. More importantly, any objects it references become candidates
for garbage collection in your client Smalltalk.

Consider having replicated a set of employees. After faulting in the set and the
objects transitively referenced from that set, the objects in the client Smalltalk look
something like this.

Chapter 9 - Performance Tuning Optimizing Space Management

December 2011 VMware, Inc. 137

Figure 9.1

currentEmp

emp1

name1 address1

emp2

firstName

empn

setOfEmployees

Employee Set Faulted into the Client Smalltalk

Clearly, there can be a large number of objects referenced transitively from the
employee set. If the application’s focus of interest changes from the set to, say, a
specific employee, it may make sense to free the object space used by the employee
set.

In this example, one solution is to send stubYourself to the
setOfEmployees. All employees, except those referenced separately from the
set, become candidates for garbage collection.

Of course, if the application will be referencing the setOfEmployees again in the
near future, the advantage gained by stubbing could be offset by the increased cost
of faulting later on.

Also, be aware of the difference between two ways of modifying the value of an
instance variable: by using an access method and by direct assignment. For
example, consider an object with an instance variable named instVarX. You can
assign the value 5 to instVarX in two ways:

insVarX := 5 (direct assignment)
self instVarX: 5 (access method)

When the object is replicated in your Smalltalk workspace, each of these
assignments yields the same result. When the object is represented in the Smalltalk
workspace by a stub, however, the stub must be faulted in as a replicate
(“unstubbed”) before the assignment can occur. The access method causes the stub

Optimizing Space Management GBS 5.4 User’s Guide

138 VMware, Inc. December 2011

to be faulted in and yields the correct result. Direct assignment, however, does not
cause the stub to be faulted in and can cause errors:

self stubYourself.
self instVarX: 5. (reliable)

self stubYourself.
instVarX := 5. (unreliable)

Using Forwarders
Another solution is to declare the setOfEmployees as a forwarder. See
“Forwarders” on page 46.

Not Caching Selected Objects
Finally, it is possible to specify classes whose instances should not be added to the
transparency caches. You can reimplement the instance method
shouldBeCached to cause GemBuilder to not add instances of that class to the
transparency caches.

This can help control the size of the caches, but it would do so at the expense of
giving up two-space referential integrity for those objects, and this might not be an
acceptable side effect in certain applications.

For example, classes whose instances are modifiable should probably not return
false to this message, because any modifications to the object could not be
propagated back to the original GemStone object, as GemBuilder would have no
way of knowing which object in the repository it came from. Nor should classes
whose instances rely on their identity in any way return false to this message.

An example of a class that could be considered a candidate for returning false is
Float. If floats are omitted from the transparency caches, consider the following
subtle implications: If a float F is referenced by two other objects, A and B, then
after replicating A and B into the client Smalltalk, there will be two distinct (but
equal) copies of the object F in the client Smalltalk. If one or both of A and B are
modified in Smalltalk and flushed back to GemStone, there will now be two
distinct (but equal) copies of F in GemStone. Typically, referential integrity for
floats isn’t crucial, because comparison between floats is usually by equality rather
than identity.

Chapter 9 - Performance Tuning Using Primitives

December 2011 VMware, Inc. 139

9.5 Using Primitives
Sometimes there is an advantage to dropping out of Smalltalk programming and
writing methods in a lower-level language such as C. Such methods are called
primitives in Smalltalk; GemStone refers to them as user actions. There are serious
concerns when doing this. In general, such applications will be less portable and
less maintainable. However, when used judiciously, there can be significant
performance benefits.

In general, profile your code and find those methods that are heavily used to be
candidates for primitives or user actions. The trick to proper use of primitives or
user actions is to create as few as possible. Excess primitives or user actions make
the system more difficult to understand and place a heavy burden on the
maintainer.

For a description about adding primitives to your client Smalltalk, see the vendor’s
documentation. For adding user actions to GemStone, see the GemBuilder for C
user manual.

To load the user action in client Smalltalk, execute:

GBSM loadUserActionLibrary: userAction

9.6 Multiprocess Applications
Some applications support multiple Smalltalk processes running concurrently in a
single image. In addition, some applications enter into a multiprocess state
occasionally when they make use of signalling and notification. Multiprocess
GemBuilder applications must exercise some precautions in order to preserve
expected behavior and data integrity among their concurrent processes.

Process-safe Transparency Caches
By default, GemBuilder uses transparency cache dictionaries that are not process-
safe. To use transparency cache dictionaries that are protected for use with
multiprocess client Smalltalk applications, you must set the GemBuilder
configuration parameter processSafeCaches to true by changing its setting in the
Settings Browser or by sending the message:

aGbsSession processSafeCaches: true

When processSafeCaches is true, subsequent logins use transparency cache
dictionaries that are protected. However, some operations take a bit longer when
using protected dictionaries.

Multiprocess Applications GBS 5.4 User’s Guide

140 VMware, Inc. December 2011

Blocking and Nonblocking Protocol
GemStone operations may execute synchronously or asynchronously. If executing
synchronously, the application must wait for a GemStone operation to complete
before proceeding with the execution process that called it. Synchronous operation
is known in GemBuilder as blocking protocol.

GemBuilder session also support asynchronous operation: nonblocking protocol.
When the configuration parameter blockingProtocolRpc is false (the default),
client Smalltalk processes can proceed with execution during GemStone
operations. A session, however, is permitted only one outstanding GemStone
operation at a time.

When blockingProtocolRpc is true, behavior is synchronous: the execution
process must wait for a GemStone call to return before proceeding.

One Process per Session
Applications that limit themselves to one process per GemStone session are
relatively easy to design because each process has its own view of the repository.
Each process can rely on GemStone to coordinate its modifications to shared
objects with modifications performed by other processes, each of which has its
own session and own view of the repository. For such applications, setting
processSafeCaches to true is the only additional precaution required. If at all
possible, try to limit your application to one process per GemStone session.

Multiple Processes per Session
Applications that have multiple processes running against a single GemStone
session must take additional precautions.

You may not have designed your application to run multiple processes under a
single GemStone session. However, if your application uses signals and notifiers,
chances are it is occasionally running two processes against a single GemStone
session. Methods that create concurrent processes include:

GbsSession
>>notificationAction:
>>gemSignalAction:
>>signaledAbortAction:

When the specified event occurs, the block you supply to these methods runs in a
separate process. Unless your main execution process is idle when these events

Chapter 9 - Performance Tuning Multiprocess Applications

December 2011 VMware, Inc. 141

occur, you need to take the same precautions as any other application running
multiple processes against a single session.

Applications that have multiple processes running against a single GemStone
session should take these additional precautions:

 • coordinate transaction boundaries

 • coordinate flushing

 • coordinate faulting

GemBuilder provides a method, GbsSession>>critical: aBlock, that
evaluates the supplied block under the protection of a semaphore that is unique to
that session. The best approach to creating an application that must support more
than one process interacting with a single GemStone session is to organize its
logical transactions into short operations that can be performed entirely within the
protection of GbsSession>>critical:. All of that session’s commits, aborts,
executes, forwarder sends, flushes and faults should be performed within
GbsSession>>critical: blocks.

For example, a block that implements a writing transaction will typically start with
an abort, make object modifications, and then finish with a commit. A block that
implements a reading transaction might start with an abort, perhaps perform a
GemStone query, and then maybe display the result in the user interface.

Coordinating Transaction Boundaries

Multiple processes need to be in agreement before a commit or abort occurs. For
example, suppose two processes share a single GemStone session. If one process is
in the process of modifying a set of persistent objects and a second process
performs a commit, the committed state of the repository will contain a logically
inconsistent state of that set of objects.

The application must coordinate transaction boundaries. One way to do this is to
make one process the transaction controller for a session, and require that all other
processes sharing that session request that process for a transaction state change.
The controller process can then be blocked from performing that change until all
other processes using that session have relinquished control by means of some
semaphore protocol.

Coordinating Flushing

GemBuilder’s transparency mechanism flushes dirty objects to GemStone
whenever a commit, abort, GemStone execution or forwarder send occurs.
Whenever a process modifies persistent objects, it must protect against other

Multiprocess Applications GBS 5.4 User’s Guide

142 VMware, Inc. December 2011

processes performing operations that trigger flushing of dirty objects to GemStone.
The risks are that a flush may catch a logically inconsistent state of a single object,
or might cause GemBuilder to mark an object “not dirty” without really flushing it.

To control when flushing occurs, perform update operations within a block passed
to GbsSession>>critical:.

Coordinating Faulting

If two processes send a message to a stub at roughly the same time, one of the
processes can receive an incomplete view of the contents of the object. This results
in doesNotUnderstand errors which cannot be explained by looking at them under
a debugger, because by the time it is visible in the debugger, the object has been
completely initialized. Unstubbing conflicts can be avoided by encapsulating
potential unstubbing operations within the protection of a
GbsSession>>critical: block.

Chapter

December 2011 VMware, Inc. 143

10 GemBuilder
Configuration
Parameters

GemBuilder provides configuration settings that allow GemBuilder to operate
differently for development or debugging, control details of the user interface, and
tune your program for performance.

This chapter describes the GemBuilder configuration parameters, their default and
legal values, and their significance.

10.1 Setting Configuration Parameters
Some configuration parameters control fundamental features of GemBuilder, and
must remain the same while the image is running. Other parameters can be
modified while GemBuilder is running, and may take effect immediately or at a
later point, or can be set individually for a session to override the global behavior.
The configuration parameter descriptions starting on page page 145 provide
specific details for each parameter.

Global settings
When sessions log in, they obtain an initial set of configuration parameters based
on the configuration settings in the current global GbsConfiguration.

Setting Configuration Parameters GBS 5.4 User’s Guide

144 VMware, Inc. December 2011

To determine the current global setting of a parameter, send the parameter name
as a message to the global instance of GbsConfiguration, GbsConfiguration
current. For example, the following expression returns the setting of the
connectVerification parameter:

GbsConfiguration current connectVerification
false

To globally set a parameter, append a colon to the parameter name and send it as
a message to the GbsConfiguration instance, with the desired value as the
argument. For example, to set the connectVerification parameter, send:

GbsConfiguration current connectVerification: true

You may also use the Settings Browser to view and change the settings of these
parameters. (See “The Settings Browser” on page 164.)

Session-specific settings
While many configuration parameters apply to the image as a whole, other
parameters may be modified for specific sessions.

For these parameters, the value in GbsConfiguration current is used at login.
Subsequently, you may send the GbsConfiguration messages to the session's
configuration (acquired by sending #configuration to the session) to determine or
modify the value for that session only.

For example, if the current session requires a larger traversal buffer, an expression
such as the following will increase the size for this session, while leaving the
global setting for new sessions unchanged.

GBSM currentSession configuration traversalBufferSize:
500000.

Chapter 10 - GemBuilder Configuration Parameters GemBuilder Configuration Parameters

December 2011 VMware, Inc. 145

10.2 GemBuilder Configuration Parameters
The following table summarizes GemBuilder configuration parameters. Each
parameter is described in detail following the table.

Table 10.1 Configuration Parameters for GemBuilder

Parameter Legal values Default Scope

assertionChecks true/false false Global
autoMarkDirty true/false true Global
blockingProtocolRpc true/false false Global
blockReplicationEnabled true/false true Global
blockReplicationPolicy #replicate/

#callback
#replicate Global

bulkLoad true/false false Global
confirm true/false true Global
connectorNilling true/false true Session-

specific
connectVerification true/false false Global
defaultFaultPolicy #immediate/#lazy #lazy Global
eventPollingFrequency any integer 5000
eventPriority any integer 3 Session-

specific
faultLevelRpc any integer 4 Session-

specific
forwarderDebugging true/false false Global
freeSlotsOnStubbing true/false true Global
fullCompression true/false false Global
generateClassConnectors true/false true Session-

specific
generateClientClasses true/false true Session-

specific
generateServerClasses true/false true Session-

specific
initialCacheSize any integer 5003

GemBuilder Configuration Parameters GBS 5.4 User’s Guide

146 VMware, Inc. December 2011

assertionChecks

This parameter is for the use of GemStone customer support.

Legal values: true/false
Default: false
Settings Tool tab: Debugging
Scope: Global

autoMarkDirty

Defines whether modifications to client objects are automatically detected. When
false, the application must explicitly send markDirty to a client object after it has
been modified, so GemBuilder will know to update the object in GemStone. Do not
change this setting while sessions are logged in from this client process.

Legal values: true/false
Default: true
Settings Tool tab: Replication
Scope: Global

blockingProtocolRpc

Determines whether to use blocking or nonblocking protocol. When false,
nonblocking protocol is used, enabling other threads to execute in the image while
one or more threads are waiting for a GemStone call to complete. When true,

InitialDirtyPoolSize any integer 100 Session-
specific

libraryName any string empty
string

Global

removeInvalidConnectors true/false false Global
stubDebugging true/false false Global
traversalBufferSize any integer 250000 Session-

specific
verbose true/false true Global

Table 10.1 Configuration Parameters for GemBuilder (Continued)

Parameter Legal values Default Scope

Chapter 10 - GemBuilder Configuration Parameters GemBuilder Configuration Parameters

December 2011 VMware, Inc. 147

GemBuilder must wait for a GemStone call to complete before proceeding with the
thread that called it. Should not be changed for sessions that are already logged in.

Legal values: true/false
Default: false
Settings Tool tab: Server Communication
Scope: Session-specific

blockReplicationEnabled

When false, GemBuilder raises an exception when block replication is
attempted—useful in determining if your application depends on block
replication.

Legal values: true/false
Default: true
Settings Tool tab: Replication
Scope: Global

blockReplicationPolicy

Block replication requires decompiling and compiling the source code for blocks
at runtime. Since it is usually not possible to include the Smalltalk compiler in a
runtime image, block replication may cause problems in runtime applications.
Block callbacks use client forwarders to evaluate the block in the client. Block
callbacks escape the documented limitations of block replication, but do not
perform well for blocks invoked repeatedly from GemStone.

Legal values: #replicate or #callback
Default: #replicate
Settings Tool tab: Replication
Scope: Global

bulkLoad

This parameter has no effect when logged into a GemStone/S 64 Bit server.

GemBuilder Configuration Parameters GBS 5.4 User’s Guide

148 VMware, Inc. December 2011

confirm

When true, you are prompted to confirm various GemBuilder actions. Leave set
to true during application development; deployed applications may set to
false.

Legal values: true/false
Default: true
Settings Tool tab: User Interface
Scope: Global

connectorNilling

When true, GemBuilder nils the Smalltalk object for certain session-based
connectors after logout: all name, class variable, or class instance variable
connectors whose postconnect action is #updateST or #forwarder. When the last
session logs out, the Smalltalk object references of global connectors are also set to
nil. Fast connectors, class connectors, and connectors whose postconnect action
is #updateGS or #none are not set to nil. Clearing connectors that depend on
being attached to GemStone server objects helps prevent defunct stub and
forwarder errors.

When false, the logout sequence leaves the state of persistent objects in the image
as it was.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#connectorNilling: to the session's configuration to change the value for that
session only. The session's current value will be used at logout.'

Legal values: true/false
Default: true
Settings Tool tab: Connectors
Scope: Session-specific

connectVerification

When true, connectors verify at login that they are not redefining a connector that
already exists, and class connectors verify that the two classes they are connecting
have compatible structures. When false, these things are not checked. Set to
true during development unless logging in becomes too slow, or your connector
definitions are stable. Applications in production should normally set this to false.

Chapter 10 - GemBuilder Configuration Parameters GemBuilder Configuration Parameters

December 2011 VMware, Inc. 149

 See “The Connector Browser” on page 185.

Legal values: true/false
Default: false
Settings Tool tab: Connectors
Scope: Global

defaultFaultPolicy

Specifies GemBuilder’s default approach to updating client Smalltalk objects
whose GemStone counterparts have changed. When #lazy, GemBuilder
responds to a change in a GemStone server object by turning its client Smalltalk
replicate into a stub. The new GemStone value is faulted in the next time the stub
is sent a message. When #immediate, GemBuilder responds to a change in a
GemStone server object by updating the client Smalltalk replicate immediately.
The defaultFaultPolicy is implemented by Object >> faultPolicy. Subclasses
can override this method for specific cases.

Legal values: #immediate/#lazy
Default: #lazy
Settings Tool tab: Replication
Scope: Global

eventPollingFrequency

How often, in milliseconds, that GemBuilder polls for GemStone events such as
changed object notification or Gem-to-Gem signaling.

Legal values: any Positive Integer
Default: 300
Settings Tool tab: Signals And Events
Scope: Global

eventPriority

The priority of the Smalltalk process that responds to GemStone events—that is,
the priority at which the block will execute that was supplied as an argument to
the keyword gemSignalAction:, notificationAction:, or
signaledAbortAction:. These keywords occur in messages used by Gem-to-
Gem signaling, changed object notification, or when GemStone signals you to
abort so that it can reclaim storage, respectively.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#eventPriority: to the session's configuration to change the value for that session

GemBuilder Configuration Parameters GBS 5.4 User’s Guide

150 VMware, Inc. December 2011

only. The priority will not change immediately, but the new value will be used the
next time an action block is set and the event detection process is restarted.

Legal values: an Integer between 1and 99, inclusive
Default: 50
Settings Tool tab: Signals And Events
Scope: Session-specific

faultLevelRpc

The default number of levels to replicate an object from GemStone to client
Smalltalk in a remote session.

The value in GbsConfiguration current is used at login. Subsequently, you may
send #faultLevelRpc: to the session's configuration to change the value for that
session only.

Legal values: any Integer
Default: 4
Settings Tool tab: Replication
Scope: Session-specific

forwarderDebugging

When true, forwarders support debugging by responding to some basic
messages locally, such as printOn:, instVarAt:, and class, which returns
GbsForwarder. When false, these messages are forwarded to the GemStone
server object.

Legal values: true/false
Default: false
Settings Tool tab: Debugging
Scope: Global

freeSlotsOnStubbing

When true, stubbing an existing replicate causes all persistent named instance
variables (that is, those that will be faulted in when the stub is unstubbed) and all
indexable instance variables to be set to nil, allowing stubs and their potentially
outdated instance variables to be garbage collected if they become eligible. When
false, GemBuilder does not alter instance variable values. To override this behavior

Chapter 10 - GemBuilder Configuration Parameters GemBuilder Configuration Parameters

December 2011 VMware, Inc. 151

on a class-by-class basis, reimplement #freeSlotsOnStubbing (inherited from
Object).

Legal values: true/false
Default: true
Settings Tool tab: Replication
Scope: Global

fullCompression

When true, GemStone compresses all communication between the client and the
server, reducing the amount of data sent across a network connection to an RPC
gem. For network connections with low throughput, compression may improve
overall performance. For fast enough network connections, compression may
decrease overall performance due to the CPU time required to do compression and
decompression.

This setting only takes effect at the time that a library is loaded (see libraryName
below). If a library is loaded you will need to save your image, quit, and restart for
a new fullCompression value to take effect.

Legal values: true/false
Default: false
Settings Tool tab: Server Communication
Scope: Global

generateClassConnectors

When true, a session connector is automatically created to connect two classes,
one of which has been automatically generated in response to the presence of the
other by the mechanisms described in the discussion of parameters
generateClientClasses and generateServerClasses. When false,
session connectors are not automatically created.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#generateClassConnectors: to the session's configuration to change the value for
that session only.

 See “Class Mapping” on page 43.

Legal values: true/false
Default: true
Settings Tool tab: Class Generation
Scope: Session-specific

GemBuilder Configuration Parameters GBS 5.4 User’s Guide

152 VMware, Inc. December 2011

generateClientClasses

When true, if a GemStone server object is fetched into the client Smalltalk image
and the client Smalltalk image does not currently define the class of which it is an
instance, a corresponding class is defined in the image. When false, behavior is
defined by the client Smalltalk image.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#generateClientClasses: to the session's configuration to change the value for that
session only.

See “Class Mapping” on page 43.

Legal values: true/false
Default: true
Settings Tool tab: Class Generation
Scope: Session-specific

generateServerClasses

When true, if a client Smalltalk object is stored into GemStone and GemStone
does not currently define the class of which it is an instance, a corresponding class
is defined in GemStone Smalltalk. When false, GemBuilder raises an error.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#generateServerClasses: to the session's configuration to change the value for that
session only.

See “Class Mapping” on page 43.

Legal values: true/false
Default: true
Settings Tool tab: Class Generation
Scope: Session-specific

InitialCacheSize

The size in bytes of the initial cache for each GemStone session. For best
performance, make this a prime number.

Legal values: any positive Integer, but a prime number is recommended.
Default: 5003
Settings Tool tab: Cache Tuning
Scope: Session-specific

Chapter 10 - GemBuilder Configuration Parameters GemBuilder Configuration Parameters

December 2011 VMware, Inc. 153

InitialDirtyPoolSize

Initial size of the GbsSession dirtyPool identity set. For bulk loading, increasing
this value reduces the number of times the set needs to grow. For applications that
flush a small number of objects, decreasing this value (while keeping it larger than
the number of objects being flushed) improves flushing performance.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#initialDirtyPoolSize: to the session's configuration to change the value for that
session only. The new value will take effect after the next server operation.

Legal values: any positive Integer. GBS will select a prime size greater than this
value.

Default: 100
Settings Tool tab: Cache Tuning
Scope: Session-specific

libraryName

The name of the DLL or shared library to use to contact the server. If this is set to
an empty string, GBS loads the first found library with a default name. If a
libraryName is specified, that exact library name is loaded. If the library is not
found, an error is reported. On Unix or Linux, the library name may be specified
as an absolute file path to the library file, or as a simple name (e.g. libgcirpc.so). On
Windows, use a simple name. If a simple name is used, the library is found in the
(platform-specific) standard directories for libraries. This setting does not affect
any library that is already loaded. If a library is already loaded you will need to
save your image, quit, and restart for a new libraryName to take effect.

Legal values: any String
Default: empty String
Settings Tool tab: Server Communication
Scope: Global

removeInvalidConnectors

When true and confirm is false, if a connector fails to resolve at login, it is
removed from the connector collections so that the issue does not arise again at
next login.

When true and confirm is true, you are prompted to remove invalid connectors
during login.

When false, invalid connectors are ignored.

GemBuilder Configuration Parameters GBS 5.4 User’s Guide

154 VMware, Inc. December 2011

See “The Connector Browser” on page 185.

Legal values: true/false
Default: false
Settings Tool tab: Connectors
Scope: Global

stubDebugging

When true, stubs support debugging by responding to some basic messages
locally, such as printOn:, instVarAt:, and class, which returns
GbxObjectStub. When false, these messages cause the stub to fault into the client
image from GemStone.

Legal values: true/false
Default: false
Settings Tool tab: Debugging
Scope: Global

traversalBufferSize

Sets the size, in bytes, of the buffer used in traversal replication.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#traversalBufferSize: to the session's configuration to change the value for that
session only. An increase in size will take effect immediately, but a decrease may
not.

Legal values: any positive Integer. The actual setting must be a multiple of 8,
larger than 2048. If an illegal number is entered, it will be replaced with the
nearest legal number.

Default: 250000
Settings Tool tab: Server Communication
Scope: Session-specific

verbose

When true, GemBuilder prints messages to the Transcript when certain events
occur, such as logging a session in or out, or committing or aborting a transaction.
When false, these messages are not printed.

Legal values: true/false
Default: true
Settings Tool tab: User Interface
Scope: Global

Chapter

December 2011 VMware, Inc. 155

11 The GemStone Tools:
an Overview

This part of the manual introduces you to the GemBuilder visual programming
environment. We begin this chapter with an overview of the GemStone menu, then
describe several tools that allow you to manage sessions and transactions; log in
and out of GemStone sessions; examine configuration parameters; and access
commonly used GemStone Smalltalk expressions.

GemStone Menu
introduces the tools and options available from the GemStone menu.

The GemStone Session Browser
describes the GemStone Session Browser and Session Parameters Editor.

Logging In to and Logging Out of GemStone
describes how to log in and out of GemStone sessions.

The Settings Browser
describes how to examine and set GemBuilder configuration parameters with
the Settings Browser.

GemStone Workspaces
describes GemStone workspaces.

The System Workspace
describes the System Workspace.

GemStone Menu GBS 5.4 User’s Guide

156 VMware, Inc. December 2011

Subsequent chapters describe the GemStone programming and administration
tools:

 • Chapter 12, “Using the GemStone Programming Tools,” describes the menus
and commands that allow you to execute GemStone Smalltalk code, access
GemBuilder programming tools, and make use of GemStone Smalltalk
debugging facilities.

 • Chapter 13, “Using the GemStone Administration Tools,” describes the
Security Policy Tool, Symbol List Browser, and GemStone user account
management tools. Taken together, these tools enable you to easily manage the
object sharing and protection issues discussed throughout this manual.

11.1 GemStone Menu
The GemStone menu (in the VisualWorks Launcher) gives you access to the
GemStone Smalltalk compiler and the GemBuilder programming tools. Many of
these functions are also available from pop-up menus in the browsers and tools.

As shown in Table 11.1, the GemStone menu provides commands for executing
GemStone Smalltalk code and accessing the GemStone programming tools.

Table 11.1 The GemStone Menu

Sessions Opens a GemStone Session Browser, allowing you to log into or out
of the GemStone server and manage transactions. The Session
Browser is described on page 158.

Connectors Opens a GemStone Connector Browser, allowing you to manage the
connections between GemStone server and Smalltalk client
objects. The Connector Browser is described on page 185.

Browse Produces a submenu with the following options:

All Classes Opens a GemStone Browser, comparable to the
client Smalltalk System or Classes
Browser. The GemStone Browser is described
in “The GemStone Session Browser” on
page 158.

Namespace... Prompts for the name of a symbol dictionary,
then opens a browser focused on that
dictionary.

Chapter 11 - The GemStone Tools: an Overview GemStone Menu

December 2011 VMware, Inc. 157

Class... Prompts for the name of a class, then opens a
browser focused on that class.

Senders of... Prompts for the name of a message selector,
then opens a method browser showing senders
of that message.

Implementors of... Prompts for the name of a message selector,
then opens a method browser showing
implementors of that message.

References to... Prompts for the name of a variable, then opens
a method browser showing all methods that
refer to that variable.

Methods with
substring...

Prompts for a string, then opens a method
browser showing all methods whose source
contains that string.

Admin Produces a submenu with the following options:

Users Opens the GemStone User Account
Management Tools, allowing you to create
new users, assign attributes to them, and
manage user accounts, provided you have the
privileges to do so. The User Account
Management Tools are described on page 213.

Namespaces Opens a Symbol List Browser, allowing you to
examine and modify symbol dictionaries and
their entries. The Symbol List Browser is
described on page 210.

Security Policies Opens a Security Policy Tool, allowing you to
control authorization at the object level by
assigning objects to security policies. The
Security Policy Tool is described on page 202.

Tools Produces a submenu with the following options:

New GS
Workspace

Opens a GemStone Workspace.

Table 11.1 The GemStone Menu(Continued)

The GemStone Session Browser GBS 5.4 User’s Guide

158 VMware, Inc. December 2011

11.2 The GemStone Session Browser
The GemStone Session Browser streamlines logging in and logging out of
GemStone and managing sessions and transactions. This section explains how to
invoke the Session Browser, and how to use it to define session parameters and to
log in and out of GemStone.

Starting the Session Browser
1. Start your GemBuilder for Smalltalk image.

2. Select Sessions from the GemStone menu to open a Session Browser.

Figure 11.1 shows the Session Browser.

Open GS
Workspace...

Prompts for a file name, then opens the
selected saved workspace file in a GemStone
workspace.

GS File in... Files the selected GemStone Smalltalk code
into GemStone.

Settings Opens a Settings Browser in which you can
examine, change, and store parameters for
configuring GemBuilder. The Settings
Browser is described on page 164.

Breakpoints Opens a Breakpoint Browser, allowing you to
set and clear breakpoints in GemStone
Smalltalk code. The Breakpoint Browser is
described on page 198.

System
Workspace

Opens the GemStone System Workspace, a
workspace containing a variety of useful
GemStone Smalltalk and client Smalltalk
expressions.

About GemBuilder Opens a window providing the GemBuilder version and copyright
information.

Table 11.1 The GemStone Menu(Continued)

Chapter 11 - The GemStone Tools: an Overview The GemStone Session Browser

December 2011 VMware, Inc. 159

Figure 11.1 The GemStone Session Browser

Opening the Session Parameters Editor
Select the Add button to define a set of session parameters. A Session Parameters
Editor appears, as shown in Figure 11.2.

The first time this is done in a new image, the server-specific client libraries are
loaded. Any problems in the client library configuration will show up now.

The GemStone Session Browser GBS 5.4 User’s Guide

160 VMware, Inc. December 2011

Figure 11.2 The Session Parameters Editor

Use the Tab key or the mouse to move through the fields in the login dialog, and
the Return key to accept input or changes in the login dialog.

In the Session Parameters Editor, specify the following session parameters:

 • GemStone repository
For a Stone running on a host other than the Gem host (described below), you
must include the server’s hostname in Network Resource String (NRS) format,
as shown in Figure 11.2. (NRS format is described in an appendix to the System
Administration Guide for GemStone/S 64 Bit.)

 • GemStone user name and GemStone password
This user name and password combination must already have been defined in
GemStone by your GemStone data curator or system administrator. Because
GemStone comes equipped with a data curator account, we show the
DataCurator user name in many of our examples.

 • Host username and Host password (not required if netldi is run in guest
mode)
This user name and password combination specifies a valid login on the Gem’s
host machine (the network node specified in the Gem service name, described
below). Do not confuse these values with your GemStone username and

Chapter 11 - The GemStone Tools: an Overview The GemStone Session Browser

December 2011 VMware, Inc. 161

password. You do not need to supply a host user name and host password if
netldi is run in guest mode.

 • Gem service
The name of the Gem service on the host computer (that is, the Gem process to
which your GemBuilder session will be connected). For most installations, the
Gem service name is gemnetobject.

You can specify that the gem is to run on a remote host by using an NRS for
the Gem service name. For example:

!@pelican!gemnetobject

For maximum password security, leave the Password and Host Password fields
empty, and the Remember boxes unselected.

When you click on OK, GemBuilder creates an instance of GbsSessionParameters
and registers it with GBSM. The new session description is added to the Session
Browser.

To change a session parameters object, select the name of the parameters object in
the upper left pane of the Session Browser and use the browser’s Edit button to
open a Session Parameters Editor. Use the Session Parameters Editor to change
existing session parameters; clicking on OK causes your changes to take effect.

Managing Session Parameters
Using the Session Browser buttons, you can manage your set of session
parameters.

The Session Browser supports the following operations:

Table 11.2 Functions in the Session Browser

Add Open an empty Session Parameters Editor.
Copy Make a copy of the selected session parameters, and add it to the

list.
Edit Open a Session Parameters Editor on the selected session

parameters.
Login RPC Log in using the selected session parameters.
Remove... Remove the selected session parameters

Logging In to and Logging Out of GemStone GBS 5.4 User’s Guide

162 VMware, Inc. December 2011

11.3 Logging In to and Logging Out of GemStone
Before you can start a GemStone session, you need to have a Stone process and, for
an RPC session, a NetLDI (network long distance information) process running.

Depending on the terms of your GemStone license, you can have many sessions
logged in at once from the same GemBuilder client. These sessions can all be
attached to the same GemStone repository, or they can be attached to different
repositories.

You can use the Session Browser to perform the same session management tasks
that you can perform programmatically: log in to the GemStone server, view
current sessions, set the current session, and log out of the GemStone server.

Logging In to GemStone

To log into the GemStone server with the Session Browser, select the name of the
session parameters object in the upper left pane, and click on Login Rpc.

When you are logged in, the Session Browser displays the session description in its
lower pane.

Figure 11.3 The GemStone Session Browser

If your login is not successful, make sure you entered the correct parameters and
that the necessary server processes are running.

Chapter 11 - The GemStone Tools: an Overview Logging In to and Logging Out of GemStone

December 2011 VMware, Inc. 163

Setting the Current Session

The Session Browser’s upper pane shows all of the known parameters that are
registered with GBSM. The lower pane shows all sessions currently logged in.

To change the current session, select a logged-in session in the lower pane and click
the Current button.

Logging Out of GemStone

To log out of GemStone from the Session Browser, select the session in the
browser’s lower pane and click on Logout in the row of buttons at the bottom of
the browser.

Before logging out, GemBuilder prompts you to commit your changes, if the
GbsConfiguration setting confirm is true (it is true by default). If you log out after
performing work and do not commit it to the permanent repository, the
uncommitted work you have done will be lost.

If you have been working in several sessions, be sure to commit only those sessions
whose changes you wish to save.

The Settings Browser
The Settings Browser allows you to examine and set the configuration parameters
for GemBuilder.

Opening the Settings Browser

To open the Settings Browser, select Tools > Settings from the GemStone menu.

You can programmatically open a new Settings Browser by executing GBSM
ConfigurationTool new in the client Smalltalk. The new tool will contain a
copy of the values of the current configuration by default. To open the tool on its
default configuration or on some other configuration use one of the following
messages:

open opens the tool on its current configuration

openOn: aGbsConfiguration
opens the tool on a copy of the given configuration

openOnDefaults opens the tool on a copy of the default configuration

openOnCurrent opens the tools on a copy of the currently-installed
GemBuilder Configuration

The Settings Browser is shown in Figure 11.4.

Logging In to and Logging Out of GemStone GBS 5.4 User’s Guide

164 VMware, Inc. December 2011

Figure 11.4

scroll for
more
categories

The Settings Browser

Parameter Notebook

The Settings Browser uses a notebook metaphor to organize the various
configuration parameters. Tabs on the bottom provide access to the categories of
configurations, and tabs on the right side are for parameters within the selected
category.

Chapter 11 - The GemStone Tools: an Overview Logging In to and Logging Out of GemStone

December 2011 VMware, Inc. 165

Menu items on the File menu allow you to load and save the settings contained in
the notebook and to specify the parameter to be displayed.

Table 11.3 The File Menu

Load...
Provides a menu for selecting a source configuration.
Menu options are:
Load From
Current

Uses configuration values currently
installed in GemBuilder.

Load From
Default

Uses the default configuration values.

Load From
Saved...

Brings up a dialog so you can enter the
name of a saved configuration to use.

Save To Current Installs the specified configuration’s values in GemBuilder.

Save...
Brings up a dialog in which you can select an existing named
configuration or enter a new name.

Configurations
Brings up a window that displays all named configurations
and has buttons that allow you to delete or rename a setting
and to open a Configuration Browser on a named setting.

Find
Parameter...

Provides a menu with the following choices:
By Name... Shows a selection list of all parameters.

Changed
from
Current...

Shows all parameters whose values differ
from the configuration currently installed in
GemBuilder.

Changed
from Default...

Shows all parameters whose values differ
from the default configuration values.

Close Close this dialog

Each page of the notebook provides access to a single parameter, using the
following fields:

 • A label containing the name of the parameter.

 • An editable field (a text entry field for Strings or Integers) or list of choices
(when legal values have finite choices, e.g., true or false) that displays the
current value of the parameter

 • A text field containing a description of the parameter and its legal values and
defaults

Logging In to and Logging Out of GemStone GBS 5.4 User’s Guide

166 VMware, Inc. December 2011

For each page the menu bar Parameters menu applies. This menu contains the
following options.

Table 11.4 The Parameter Menu

Default Value Copies the default value for that parameter into the entry
field.

Revert Value Copies the notebook’s configuration value for that
parameter into the entry field.

Chapter 11 - The GemStone Tools: an Overview Logging In to and Logging Out of GemStone

December 2011 VMware, Inc. 167

Parameter Categorization

The Settings Browser categories the parameters under tabs along the bottom.
Selecting each heading provides access to individual related configuration
parameters.

Table 11.5 Settings Browser Categorization

Cache Tuning bulkLoad
initialCacheSize
initialDirtyPoolSize

Debugging assertionChecks
forwarderDebugging
stubDebugging

Connectors connectorNilling
connectVerification
removeInvalidConnectors

Class Generation generateClassConnectors
generateServerClasses
generateClientClasses

Server Communication libraryName
blockingProtocolRpc
fullCompression
traversalBufferSize

Signals And Events eventPollingFrequency
eventPriority

User Interface confirm
verbose

Replication autoMarkDirty
blockReplicationEnabled
blockReplicationPolicy
defaultFaultPolicy
faultLevelRpc
freeSlotsOnStubbing

GemStone Workspaces GBS 5.4 User’s Guide

168 VMware, Inc. December 2011

11.4 GemStone Workspaces
To open a GemStone workspace, choose GemStone > Tools > New GS
Workspace. You can also open an existing file as a GemStone workspace using
GemStone > Tools > Open GS Workspace....

In a GemStone workspace, you can execute, display, inspect, or file in GemStone
Smalltalk code using the GemStone menu, as well as perform these functions on
client Smalltalk code using the Edit menu.

11.5 The System Workspace
The GemStone System Workspace is a workspace containing templates for many
useful GemStone Smalltalk and client Smalltalk expressions. Browse it to
familiarize yourself with its contents.

To open a GemStone System Workspace (Figure 11.5), choose GemStone > Tools
> System Workspace from the GemStone menu.

Figure 11.5 GemStone System Workspace

Chapter

December 2011 VMware, Inc. 169

12 Using the GemStone
Programming Tools

After you install GemBuilder, many menus in your Smalltalk image contain
additional commands for executing GemStone Smalltalk code and accessing
GemBuilder programming tools. GemStone also provides GemStone Smalltalk
debugging facilities similar to the debugging aids supplied by the client Smalltalk.

These tools are in many ways similar to those of the client Smalltalk, but with
important differences. This chapter describes those differences.

Browsing Code
describes the GemStone Classes Browser and other code browsers.

Coding
explains how to use the GemBuilder tools to create classes and methods in
GemStone Smalltalk for execution and storage on the server.

The Connector Browser
explains how to use connectors in code or using the Connector Browser.

The Class Version Browser
describes a specialized Class Browser that can be used for examining a class
history, inspecting instances, migrating instances, deleting versions, and
moving versions to another class history.

Browsing Code GBS 5.4 User’s Guide

170 VMware, Inc. December 2011

Inspectors
describes how to view and modify the instance variables of server objects

Breakpoints
describes breakpoints, setting breakpoints, and using the Breakpoint Browser

Debugger
describes GemBuilder’s enhanced debugger

Stack Traces
describes GbsStackDumper, GemBuilder’s enhanced stack dumping facility

12.1 Browsing Code
After logging in to GemStone, open a GemStone Classes Browser by choosing
GemStone > Browse > All Classes.

The GemStone Classes Browser allows you access source and other information
about each of the kernel classes and methods; you can also create GemStone
Smalltalk classes and methods in the GemStone repository.

Chapter 12 - Using the GemStone Programming Tools Browsing Code

December 2011 VMware, Inc. 171

Figure 12.1

Method categories
Classes Method selectors

Symbol dictionaries

Source code pane

GemStone Classes Browser

The GemStone Classes Browser is similar to the client Smalltalk System or Classes
Browser, but a few differences exist: for example, the upper left pane contains a list
of symbol dictionaries, GemStone’s mechanism for implementing
namespaces. This facilitates finding and sharing objects efficiently. The symbol
dictionaries that you can access are listed in the GemStone Browser’s symbol list
pane.

When you select a symbol dictionary in the Symbol List pane, all classes defined
in that dictionary appear in the Classes pane to the right. (Symbols other than
classes can be viewed by opening an inspector on the symbol dictionary in
question, or by selecting GemStone > Admin > Namespaces.)

Browsing Code GBS 5.4 User’s Guide

172 VMware, Inc. December 2011

GemStone Smalltalk categorizes methods by function to make them easier to
browse. When you select a class in the Classes pane, a list of its method categories
appears in the Method Categories pane to the right.

When you select a method category, all the message selectors in that category
appear in the rightmost Method Selectors pane.

As in the comparable client Smalltalk browsers, you can switch focus between
instance or class methods using the toggle button provided.

Also as in the comparable client Smalltalk browsers, when you select a method, its
source code is displayed in the lower portion of the browser—the source pane. In
this pane, you can edit and recompile the method, set breakpoints in it, or execute
fragments of GemStone Smalltalk code as in a workspace.

Each pane of the GemStone Browser also has pop-up menus accessible with the
operate mouse button. The pop-up menus in the Symbol List, Class, Categories, and
Methods panes are similar to the Symbols, Classes, Categories, and Methods
menus available from the menu bar, except that the file-out options are not present
in the pop-up menus.

Figure 12.2 shows all the menus available from the GemStone Browser’s menu bar.

Chapter 12 - Using the GemStone Programming Tools Browsing Code

December 2011 VMware, Inc. 173

Figure 12.2 Menus in

Cut
Copy
Paste

Execute
Display
Inspect
File In

Select All
Search/Replace...

Execute
Display
Inspect
File In

Set Break

Save

Revert

Commit...
Abort...

Update

File Out Methods Only
File Out

Browse
Inspect

Add...
Rename
Remove

File Out Methods Only
File Out
Find Class...

Browse Class
Browse Versions
Browse Hierarchy
Browse References

Hierarchy
Definition

Move Classes...
Remove...

Create Access

Create in ST
Compile in ST

Find Method...
File Out...
Select Categories

Browse Senders
Browse Implementors
Browse Messages

New Method Template
Delete Methods
Move Methods...
Copy Methods...

Set Breakpoint

Compile In ST

Name Each...
One Name...
Use Defaults

Name Each...
One Name...
Use Defaults

File Out...
Select All By Default

Add Category...
Rename Categories...
Remove Categories...

Compile in ST

To This Version of the Class
To Any Version of the Class Implementors

Senders

the GemStone Browser

The following sections describe GemStone-specific commands in the drop-down
menus.

Browsing Code GBS 5.4 User’s Guide

174 VMware, Inc. December 2011

The File Menu
The following GemStone-specific commands are available from the File menu.

Table 12.1 File Menu in the GemStone Browser

Commit Attempts to save to the GemStone repository all modifications
that occurred during the current GemStone transaction.

Abort... Undoes all changes that you have made in the GemStone

Update Update the view of the browser to the current state in the image.

The GemStone Menu
The following commands are available from the GemStone menu.

Table 12.2 GemStone menu in the GemStone Browser

Execute Compiles and executes the selected GemStone Smalltalk code.

Display Compiles and executes the selected GemStone Smalltalk code,
and displays a textual representation of the result.

Inspect Compiles and executes the selected GemStone Smalltalk code,
then opens a GemStone inspector on the result.

File In Files the selected code into GemStone.

Set Break Sets a message breakpoint on the selected method, causing
the virtual machine to halt when that selector is sent to an
instance of the current class or a subclass. You can then open
a GemStone debugger to examine the current execution
context.

Chapter 12 - Using the GemStone Programming Tools Browsing Code

December 2011 VMware, Inc. 175

Symbol List Menu
The following commands are available from the Symbols menu

Table 12.3 GemStone Browser’s Symbol List Menu

File Out Methods
Only

Prompts you for a file name under which to save all the
methods in all the classes in the selected
SymbolDictionary.

File Out Prompts you for a file name under which to save all
classes and methods definitions for all the classes in the
selected SymbolDictionary.

Browse Spawns a Dictionary Browser on the selected
SymbolDictionary.

Inspect Open an inspector on the selected SymbolDictionary.

Add... Add a new Symbol Dictionary

Rename... Rename the selected SymbolDictionary.

Remove... Remove the selected SymbolDictionary. WARNING:
Do not remove Globals.

Class Menu
The following commands are available from the Classes menu. A later section
discusses the procedure required to add the definition of a new GemStone class to
the currently selected symbol dictionary.

Table 12.4 Class Menu in GemStone Browser

File Out Methods
Only...

Prompts you for a file name under which to save all
methods of the selected class or classes.

File Out Prompts you for a file name under which to save all
classes and methods definitions for the selected class or
classes.

Find Class... Navigate to a specific class by name. The search string is
case sensitive, and can include wild cards.

browse class Open a Class Browser on the selected class.

Browsing Code GBS 5.4 User’s Guide

176 VMware, Inc. December 2011

Pop-up Text Pane Menu
A pop-up menu appears in any text pane when you press the operate mouse button.
This menu provides the same commands as the corresponding menu in the client
Smalltalk browser’s text pane. In addition, it contains menus for displaying,
executing, inspecting, and filing in GemStone Smalltalk code and for using
breakpoints in GemStone Smalltalk code.

Browse Class Open a class browser on the selected class.

Browse Versions Open a class version browser on the selected class.

Browse References Open a method list on all references to the current version
of the class, or all versions of the class.

Browse Hierarchy Open a hierarchy browser on the selected class.

Hierarchy Display the class hierarchy in the text pane.

Definition Display the class definition in the text pane (the default)

Comment Display the class comment in the text pane.

Move Classes... Prompt for another SymbolDictionary to which to move
the selected class.

Remove... Remove the selected class.

Create Access Creates methods for accessing and updating the instance
variables of the selected class.

Create in ST Creates a client Smalltalk class having the same name and
structure as the selected GemStone Smalltalk class, if one
doesn’t already exist. If it does exist, executing this menu
item has no effect.

Compile in ST Creates a client Smalltalk class having the same name and
structure as the selected GemStone Smalltalk class, and
compiles all currently defined methods for the class. If
necessary, a notifier lists any methods that cannot be
compiled in client Smalltalk.

Table 12.4 Class Menu in GemStone Browser(Continued)

Chapter 12 - Using the GemStone Programming Tools Coding

December 2011 VMware, Inc. 177

The GemStone-specific commands available from a text area pane are shown in
Table 12.5.

Table 12.5 Pop-up Menu in GemStone Browser’s Text Pane

GS-execute Executes the code in GemStone.

GS-display Executes the code in GemStone and displays the result in the
text area.

GS-inspect Executes the code in GemStone and opens an inspector on the
result.

GS-file In Files the selected text into GemStone.

Set Break Sets a breakpoint at the step point nearest the cursor location.
If the cursor is not exactly at a step point, scans the method
from the current cursor location on and sets a breakpoint at
the next step point. See page 196 for a full discussion of using
breakpoints.

GemBuilder also adds the following items to the appropriate menus in the client
Smalltalk browsers:

Table 12.6 Additional GemStone Menu Items

Create in GS Creates a GemStone Smalltalk class having the same name
and structure as the selected client Smalltalk class, if one
doesn’t already exist. If it does exist but you’ve changed its
structure, executing this menu item creates a new version of
the class.

Compile in GS Creates a GemStone Smalltalk class having the same name
and structure as the selected client Smalltalk class, and
compiles all currently defined methods for the class in
GemStone. If necessary, a notifier lists any methods that
cannot be compiled.

12.2 Coding
This section explains how to define new GemStone classes and methods, and
describes aspects of coding unique to GemStone Smalltalk.

Coding GBS 5.4 User’s Guide

178 VMware, Inc. December 2011

About GemStone Smalltalk Classes
The process of creating classes in GemStone Smalltalk differs somewhat between
GemStone server products and versions. For information specific to your server
version, refer to the GemStone/S 64 Bit Programming Guide and to the subclass
creation methods in the GemStone image.

Invariance

Instances can be invariant. A class definition can specify that all instances are
invariant, meaning that after an instance is creation, it can be modified only during
the transaction in which it was created. After the transaction is committed, you
can no longer modify its instance variables, nor the size or class of the object.

You can include the symbol #instancesInvariant in the Array passed to the
options: keyword, or use subclass creation protocol with the
instancesInvariant: keyword.

Classes themselves may also be invariant or not. Classes that are variant can be
modified, e.g. you may add and remove instance variables; but you cannot create
instances of a variant class. By default, class creation results in invariant classes.

You can include the symbol #modifiable in the Array passed to the options:
keyword, or use subclass creation protocol with the isModifiable: keyword, to
create modifiable classes. Sending immediateInvariant makes the class
invariant and allows instance creation.

Non-persistent

In GemStone/S 64 Bit, you may also specify on a per-class bases that instances of
the class are not persistent, meaning they cannot be committed to the repository;
of that instances are dbTransient, in which the instances may be committed, but
any data stored in instance variables of the instance is not persistent. Refer to the
GemStone/S 64 Bit Programming Guide for details on #instancesNonPersistent
and #dbTransient.

Versions

GemStone Smalltalk classes have a classHistory, which provides versioning for
classes. Defining a class with the same name as an existing class and in the same
symbol dictionary automatically creates a version of the existing class. When
multiple versions of a class exist, only the latest is displayed in the browsers, and
the display includes the sequence number of the class within the class history, in
brackets; for example, Employee[2].

Chapter 12 - Using the GemStone Programming Tools Coding

December 2011 VMware, Inc. 179

Class creation can explicitly create or not create class versions using subclass
creation protocol that uses the newVersionOf: keyword. For more details on
class versions, see the chapter entitled “Class Creation, Versions, and Instance
Migration” in the GemStone/S 64 Bit Programming Guide.

Defining a New Class
To define a new GemStone class:

Step 1. Open a GemStone Browser if one is not already open.

Step 2. In the Symbol List pane, select the dictionary in which you wish to refer
to the new class. Make sure no class is selected in the class list.

The browser displays the class definition template:

NameOfSuperclass subclass: 'NameOfClass'
instVarNames: #() "example: 'instVar1' 'instVar2' "
classVars: #() "example: 'ClassVar1' 'ClassVar2' "
classInstVars: #() "example: 'classIvar1' 'classIvar2' "
poolDictionaries: {}
inDictionary: SelectedSymbolList
options: #()

This is the basic form of the subclass creation message in GemStone/S 64 Bit
version 3.0 and later.

Step 3. Replace NameOfSuperclass with the name of your new class’s immediate
superclass.

Step 4. Replace NameOfClass with the name of the new class. By convention, the
first letter of each GemStone class name is capitalized.

Step 5. In the parentheses following the instVarNames: keyword, supply the
names of any instance variables. A class can define up to 255 named instance
variables.

Step 6. In the parentheses following the classVars: keyword, supply the
names of any class variables.

Step 7. In the parentheses following the classInstVars: keyword, supply the
names of any class instance variables.

Step 8. Fill in the brackets after the poolDictionaries: keyword with any
pool dictionaries that you want the class to access. Pool dictionaries are
special-purpose storage structures that enable any arbitrary group of classes

Coding GBS 5.4 User’s Guide

180 VMware, Inc. December 2011

and their instances to share information. When classes share a pool dictionary,
methods defined in those classes can refer to the variables defined in the pool
dictionary. Note that the curly braces syntax for Arrays is not understood in
32-Bit GemStone/S.

Step 9. After the inDictionary: keyword, the name of the selected symbol
dictionary is inserted in the template. This is the symbol dictionary that will
allow you to refer to your class by name. Unless you replace the inserted text
with the name of another symbol dictionary to which you have access, your
new class is defined in the selected symbol dictionary.

Step 10. In the parentheses following the options: keyword, you can specify a
collection of symbols to define specific features of the new subclass.
options: is available only in GemStone/S 64 Bit 3.0 and later. These options
are special purpose and not commonly used; for details, see the “Class
Creation” chapter of the GemStone/S 64 Bit Programming Guide.

Step 11. Accept or save your changes and commit your transaction to make the
class part of the repository.

NOTE
You cannot subclass certain GemStone kernel classes. To determine
which ones, execute the method Object class >>
subclassesDisallowed against the class. The method returns
true for any class that you cannot subclass.

For example, consider the following definition of a class named Employee. This
creates a class with the given instance and class variables, and put the class in the
UserGlobals symbol dictionary.

Example 12.1

Object subclass: 'Employee'
instVarNames: #('name' 'employeeNum' 'jobTitle' 'department'

 'address')
classVars: #('AllDepartments')
classInstVars #()
poolDictionaries: {}
inDictionary: UserGlobals
options: #()

Chapter 12 - Using the GemStone Programming Tools Coding

December 2011 VMware, Inc. 181

Subclass Creation Methods

There are a variety of subclass creation messages, depending on the type of class
you want to create. Subclass creation methods that begin with the keyword
byteSubclass: or indexableSubclass: create classes that store data in
indexed slots, rather than limited to instance variables.

Storage format is inherited, so if the superclass is already byte or indexable format,
however, subclass creation methods that begin with the keyword subclass:
create a subclass of the same storage format.

For a full list of available subclass creation methods for your server product and
version, refer to the GemStone Smalltalk image.

For complete descriptions of the different kinds of classes, see the GemStone/S 64
Bit Programming Guide chapter on Class Creation.

Private Instance Variables

Some GemStone kernel classes have private instance variables. For example, the
superclass of GemStone Bag class defines four, used by the object manager and
primitives to implement features of nonsequenceable collections, such as adding
indexing structures for efficient querying. Private instance variable names begin
with an underscore (_).

Modifying an Existing Class
If you select an existing GemStone Smalltalk class, then modify and save the class
definition, you create a new version of that class and all of its subclasses. The
browser attempts to recompile all methods from the previous version into the new
version. Methods that fail to recompile are presented in a method list browser,
from which you can correct the errors. If the class has subclasses, they are also
versioned and their methods recompiled.

When you modify an existing class, the tools will ask if you wish to commit the
transaction and migrate all instance to the new version of the class. If you choose
not to do this, you can migrate some or all instances of one version of a class to
another version explicitly.

For more information on migrating instances, see the chapter entitled “Class
Versions and Instance Migration” in the GemStone/S 64 Bit Programming Guide.

NOTE
You can only modify classes for which you have write authorization

Coding GBS 5.4 User’s Guide

182 VMware, Inc. December 2011

To create a new version of a class:

Step 1. Select the class in the browser to bring up its definition in the source pane.

Step 2. Edit the definition as required.

Step 3. Select Save or accept from the pop-up menu.

Whenever you create a class with the same name as a class that already exists in
the same symbol dictionary, the new class is automatically created as the latest
version of the existing class and it automatically shares the same class
history. Instances created after the redefinition have the new class’s structure and
access the new class’s methods. Instances that were created earlier have the old
class’s structure and access the old class’s methods, but they can be migrated to the
new class.

Let’s assume that you have a class named Employee with instance variables for
name, employeeNum, jobTitle, department, and address, and that the class
is defined as shown in Figure 12.1. Suppose that you decide that the class needs
an additional instance variable named salary to represent the Employee’s
salary.

To do this, you can define a new version of the class Employee to include the new
instance variable. Keeping the same name as the old class ensures that it shares the
same class history as the previous version.

After you compile the class definition, the new class is named Employee, and all
of the original instance and class methods are copied to the new class. Any
existing instances will still belong to the original class and may have to be
migrated to the new class.

Defining Methods
You can modify only methods for which you have write authorization— for
example, methods that you have written for your own classes. You cannot modify
any GemStone kernel class method—that is, any method that is defined for one of
the predefined classes supplied with the GemStone system.

Public and Private Methods

GemStone has both public and private methods. Public GemStone methods are
supported. Private GemStone methods are those implemented to support the
public protocol—they are not supported and are subject to change.

Private GemStone methods are those whose selector is prefixed with an
underscore (_), or that explicitly say they are private within the method comment.

Chapter 12 - Using the GemStone Programming Tools Coding

December 2011 VMware, Inc. 183

They appear in the browsers along with the public methods, and you can display
the source for them.

CAUTION
Private methods are subject to change. Do not depend on the presence or
specific implementation of any private method when creating your own
classes and methods.

Reserved and Optimized Selectors

The GemStone Smalltalk compiler optimizes certain frequently-used selectors.
These selectors cannot be overridden in subclasses; the optimized code ignores any
redefinitions. Some examples are ==, ifTrue:, and to:do:.

The specific list of selectors will vary by GemStone server product and version,
and can be found in the GemStone/S 64 Bit Programming Guide for that version,
Appendix A.

Saving Class and Method Definitions in Files
It’s often useful to store the GemStone Smalltalk source code in text files. Such files
make it easy to:

 • transport your code to other GemStone systems,

 • perform global edits and recompilations,

 • produce paper copies of your work, and

 • recover code that would otherwise be lost if you are unable to commit.

To save GemStone code in a file, use any of the GemStone browser’s file out menu
items. To read and compile a saved file, use any of the Gs-File in or GS-File it in
menu items (in your client Smalltalk browser).

Saved GemStone files are written as sequences of Topaz commands. Example 12.2
shows a class definition in Topaz format:

Example 12.2

doit
Object subclass: 'Address'
 instVarNames: #(street zip)
 classVars: #()
 classInstVars: #()
 poolDictionaries: {}
 inDictionary: UserGlobals

Coding GBS 5.4 User’s Guide

184 VMware, Inc. December 2011

%

! Remove existing behavior from Address
doit
Address removeAllMethods.
Address class removeAllMethods.
%
! ------------------- Class methods for Address
! ------------------- Instance methods for Address
category: 'Accessing'
method: Address
street
 "Return the value of the instance variable 'street'."
 ^street
%
category: 'Updating'
method: Address
street: newValue
 "Modify the value of the instance variable 'street'."
 street := newValue
%
category: 'Accessing'
method: Address
zip
 "Return the value of the instance variable 'zip'."
 ^zip
%
category: 'Updating'
method: Address
zip: newValue
 "Modify the value of the instance variable 'zip'."
 zip := newValue
%

GemStone’s filing out and filing in facilities are intended mainly for saving and
restoring classes and methods without manual intervention. If this is all you want
to do, then you don’t need to understand the Topaz commands
involved. However, it is also possible to create custom files that include
commands to commit transactions and to create and manipulate objects other than
classes and methods. If you want to perform such tasks, refer to the Topaz
Programming Environment.

Chapter 12 - Using the GemStone Programming Tools The Connector Browser

December 2011 VMware, Inc. 185

The file-in mechanism cannot execute the full set of Topaz commands. File-in is
limited to the following subset:

 category: method
 classmethod method:
 classmethod: printit
 commit removeAllMethods
 doit removeAllClassMethods

The GemStone file-in mechanism acknowledges the presence of the following
commands by adding notes to the System Transcript, but it does not execute them:

 display omit
 expectvalue output
 level remark
 limit status
 list time

If GemBuilder encounters any other Topaz commands it stops reading the file and
displays an error notifier.

The file-in mechanism does not display execution results, either. Instead, it
appends information to the System Transcript about the files it reads and the
classes and categories for which it compiles methods.

Handling Errors While Filing In

If one of the modules (run commands or method definitions) that you’re filing in
contains a GemStone Smalltalk syntax error, GemStone displays a compilation
error notifier that contains the erroneous module in a text editor. If you correct the
error and then choose Save, GemStone recompiles the module and then processes
the rest of the file.

In the case of authorization problems, commands that the file-in mechanism
doesn’t recognize, or other errors, GemStone displays a simple error notifier
without an editor and stops processing the file.

12.3 The Connector Browser
Chapter 4 describes connectors, which allow an application developer to explicitly
declare an association between a root client object and a root server object. This
section explains how to use GemBuilder’s Connector Browser to make and
manage connectors interactively.

The Connector Browser GBS 5.4 User’s Guide

186 VMware, Inc. December 2011

To open a Connector Browser, select Browse Connectors from the GemStone
menu. With this browser, you can:

 • examine, create, and remove global or session-based connectors;

 • inspect the client or server object to which a connector resolves;

 • determine whether a specified connection is currently connected;

 • connect or disconnect a connector; and

 • examine or modify the postconnect action associated with a connector.

Figure 12.3 shows the Connector Browser.

Figure 12.3 The Connector Browser

Chapter 12 - Using the GemStone Programming Tools The Connector Browser

December 2011 VMware, Inc. 187

The Group Pane

The top pane is the Group pane; it allows you to select either global connectors or
those associated with an individual session. Global connectors are predefined to
connect the GemStone server kernel classes with their client Smalltalk
counterparts. When you select an item in this pane, the connectors defined for the
selected item appear in the middle pane.

The File and Group Menu Bar menus, and the Group pane popup menu, provide
the following items:

Table 12.7 Group Menu in the Connector Browser

update Refreshes the views and updates the browser; useful if you
have made changes in other windows and need to
synchronize the browser with them.

initialize (available only when Global Connectors are selected)
Allows you to remove all connectors except those that
connect kernel classes.

The Connector Pane

The middle pane is the Connector pane; it lists the connectors, their types, and
descriptions in both the client and GemStone server Smalltalks.

The Menu Bar Connector Menu, and the Connector pane popup menu, offer the
following items:

Table 12.8 Connector Menu in the Connector Browser

Inspect Client Resolves and inspects the client Smalltalk object for the
selected connector.

Inspect Server Resolves and inspects the GemStone server object for the
selected connector.

Add... Adds a new connector, prompting for required
information.

Remove... Removes a connector, after confirmation.

The Control Panel

The bottom pane is a control panel that allows you to change the
#connectVerification and #removeInvalidConnectors configuration

The Connector Browser GBS 5.4 User’s Guide

188 VMware, Inc. December 2011

parameters, connect or disconnect objects, and set a connector’s postconnect
action.

Table 12.9 Options in the Control Panel

Verification When enabled, connectors (other than class
connectors) verify that they are not redefining
an object connection before connecting.
Class connectors, upon connection, verify that
the structures of the two connected classes are
of the same storage type.

Remove Invalid When enabled, connectors that fail to resolve at
login are automatically removed from the
connector collections.

Connected / Disconnected Connects or disconnects the GemStone and
client Smalltalk objects described by the
connector. Applies to the selected session, or to
the current session if global connectors are
selected.

Enabling connector verification can slow login; we recommend that you turn on
verification during development and turn it off for production systems.

Postconnect Action

The postconnect action determines how GemBuilder sets the initial state of
connected objects. Options are:

Table 12.10 Postconnect Action Options in the Connector Browser

updateST Initializes the client object using the current state of the
GemStone object.

updateGS Initializes the GemStone object using the current state of the
client object.

forwarder Makes the client object a forwarder to the GemStone object.

clientForwarder Makes the GemStone server object a forwarder to the client
object.

none Leaves the client object and the GemStone object
unchanged after their initial connection.

Chapter 12 - Using the GemStone Programming Tools The Connector Browser

December 2011 VMware, Inc. 189

To create a new connector:

1. Select the session in the Group pane.

2. Place the cursor in the Connector pane.

3. Select add from the menu.

4. When prompted, specify the type of connector.

5. When prompted, specify the names of the client and server objects.

6. When prompted, specify the name of the dictionary for the server object.

7. Specify the postconnect action.

To create a forwarder:

1. Create a connector as described above.

2. Select forwarder as the desired postconnect action.

To change the postconnect action:

1. Disconnect the objects by clicking on the Disconnected button.

2. Change the postconnect action as required.

3. Reconnect the objects by clicking on the Connected button.

If your application initially stores its data in the client, and you intend to store the
data on the GemStone server but have not done so yet:

1. Create a connector or connectors for the root object(s) in the data set.

2. Select updateGS as the postconnect action for these connectors.

3. Log into the GemStone server so that GemBuilder can create the GemStone
server replicates for the client Smalltalk data.

4. Inspect the GemStone server objects to be sure they have the intended values.

5. Commit the transaction and log out.

6. Select the connectors and change their postconnect actions to updateST so that
future sessions will begin by using the stored GemStone server data.

The Class Version Browser GBS 5.4 User’s Guide

190 VMware, Inc. December 2011

12.4 The Class Version Browser
The Class Version Browser is a specialized Class Browser that can be used for
examining a class history, inspecting instances, migrating instances, deleting
versions, and moving versions to another class history.

To open a Class Version Browser, select a class in a browser and choose Browse
Versions from the Classes menu. If more than one version of a class has been
created, the class list in the spawned browser displays the version number next to
the class name.

A Class Version Browser is shown in Figure 12.4.

Figure 12.4 The Class Version Browser

Menus in the Class Version Browser
For the most part, the Class Version Browser’s menus are the same as the menus
in the Class Browser. However, the Class Version Browser’s Classes menu
contains the additional items Inspect Instances and Migrate Instances.... Also,
note that the Classes menu items Move Class... and Remove... behave differently
in this browser.

Chapter 12 - Using the GemStone Programming Tools The Class Version Browser

December 2011 VMware, Inc. 191

The layout of the browser is similar to the Class Browser. The Method Category
and Message menus are the same as in a spawned Class Browser. The Classes
menu, however, has additional functionality.

You can simultaneously inspect multiple class versions by holding down the shift
key as you make your selections. Similarly, you can make a multiple selection to
migrate the instances of several class versions to another version. Whenever more
than one version is selected, only two menu items are accessible in the class pane:
Inspect Instances and Migrate Instances....

The commands available in the Class Version Browser are shown in Table 12.11:

Table 12.11 Class Menu in Class Version Browser

File Out Methods
Only

Writes GemStone Smalltalk code defining the selected
class version or versions’ methods to be written to fa
file or files in Topaz format. This menu item has three
submenus controlling the name of the destination file:
Name Each.... prompts for a name for each file, One
Name... prompts for a single file name, and Use
Defaults uses a default name based on the class name.

File Out Writes GemStone Smalltalk code defining the selected
class version or versions’ class definitions and all of its
methods to be written to a file in Topaz format. This
menu item has three submenus controlling the name
of the destination file:
Name Each.... prompts for a name for each file, One
Name... prompts for a single file name, and Use
Defaults uses a default name based on the class name.

Browse Class Opens a Class Browser that includes only the selected
class version.

Browse Versions Opens another Class Version Browser on this class
history.

Browse
 Hierarchy

Opens a Class hierarchy Browser that includes
superclasses and subclasses of the selected class
version.

The Class Version Browser GBS 5.4 User’s Guide

192 VMware, Inc. December 2011

Browse References This menu item has two submenus: to this version of
this class and to any version of this class. Opens a
method list browser containing all methods whose
compiled code contains a reference to this version of
the class, or to any version of the class in this class
history.

Hierarchy Lists the superclasses and subclasses of the current
class. Any instance variable names declared in a class
appear in the hierarchy list in parentheses.

Definition Displays the definition (that is, the subclass creation
message) of the currently selected GemStone class
version. This is shown by default.

Comment Displays the class comment.
Move Classes... Moves the selected class version to another class

history. Prompt for a target class, adds the selected
version to the target class’s class history, and updates
the browser. The class name of the selected version is
changed to that of the target class.

Remove... Remove the selected class version from the class
history. Upon confirmation to proceed, asks if the
user wants to migrate instances. If yes, prompts for
the migration target, migrates the instances and
updates the browser.

Create Access Creates methods for accessing and updating the
instance variables of the currently selected class
version.

Create in ST Generate the selected class in client Smalltalk, if a
mapping doesn’t already exist. If it does exist,
executing this menu item has no effect.

Compile in ST Attempts to compile all methods (instance and class)
of selected class version in corresponding client
Smalltalk class.

Inspect Instances Open an inspector on instances on the selected
version.

Table 12.11 Class Menu in Class Version Browser(Continued)

Chapter 12 - Using the GemStone Programming Tools Debugging Overview

December 2011 VMware, Inc. 193

12.5 Debugging Overview
GemBuilder’s debugging tools assist you in examining and modifying application
objects during execution. These facilities enable you to perform the following
operations:

 • You can view and alter the instance variables of server objects.

 • You can step through execution of a method, examining the values of
arguments, temporaries, and instance variables after each step.

 • You can set, clear, and examine GemStone Smalltalk breakpoints. When a
breakpoint is encountered during normal execution, a notifier appears and
you can open a debugger with which you can interactively explore the
contexts in the stack at the time execution halted.

 • You can inspect or change the values of arguments, temporaries, and receivers
in any context (stack frame) on the virtual machine call stack, then continue
execution from the top of the stack. This means that you can find out what the
system was doing at the time a breakpoint, or an error interrupted execution.

 • You can execute a message expression within the scope of a given context.

12.6 Inspectors
To allow you to examine the values of GemStone server objects and modify them
when appropriate, GemBuilder provides inspectors that are similar to the client
Smalltalk inspectors. When you select a GemStone Smalltalk expression and
execute GS-Inspect, a GemStone inspector opens. The GemStone inspector

Migrate Instances... Migrate all instances of the selected versions. Prompts
you to select which version to migrate to. The user
can only migrate to another version of the same class
history, so if all versions are selected there is no
migration destination and the item should be grayed
out. Otherwise, prompt for the version to migrate to
by popping up a list of versions not selected. Allow
the user to cancel the operation by clicking a cancel
button.

Table 12.11 Class Menu in Class Version Browser(Continued)

Inspectors GBS 5.4 User’s Guide

194 VMware, Inc. December 2011

(Figure 12.5) is similar to a client Smalltalk inspector; it has comparable panes and
functionality.

Figure 12.5 GemStone inspector

. The inspector contain the following GemStone-specific command:

Table 12.12 Commands in GemStone Inspector

Basic
Inspect

Opens an inspector on the delegate object, an instance of GbsObject
(see Figure 12.6).

Chapter 12 - Using the GemStone Programming Tools Inspectors

December 2011 VMware, Inc. 195

Figure 12.6 GemStone Inspector Basic Inspect

Inspecting UnorderedCollections

When you’re inspecting an instance of any nonsequenceable collection, which
includes any subclasses of the GemStone server class UnorderedCollection, the
following additional menu items are available.

Table 12.13 Commands for Inspecting NSCs

Add Prompts you for the name of the object to add to the nonsequenceable
collection. To a Dictionary, an Association with the given key and a
value of nil is added.

Remove If you’ve selected an index variable, removes the corresponding
element from the collection. If you’ve selected a key, removes the
corresponding association from the dictionary.

Breakpoints GBS 5.4 User’s Guide

196 VMware, Inc. December 2011

12.7 Breakpoints
For the purpose of determining exactly where a step will go during debugging, a
GemStone Smalltalk method is composed of step points. You can set breakpoints
at any step point.

Generally, step points correspond to the message selector and, within the method,
message-sends, assignments, and returns of nonatomic objects. However,
compiler optimizations may occasionally result in a different, nonintuitive step
point, particularly in a loop.

More detail on step points within GemStone Smalltalk methods is provided in the
Topaz Programming Environment, Chapter 2.

Example 12.3 indicates step points with numbered carets.

Example 12.3

includesValue: value
^1

"Return true if the receiver contains an object of the same
value as the argument. Return false otherwise."

| found index size|

found := false.
 ^2
index := 0.
 ^3
size := self size.
 ^5 ^4
[found not & (index < size)] whileTrue: [
 ^6 ^8 ^7 ^9

index := index + 1.
 ^11 ^10

found := value = (self at: index)
^14 ^13 ^12

].
^found
^15

Chapter 12 - Using the GemStone Programming Tools Breakpoints

December 2011 VMware, Inc. 197

If you use the GemStone debugger (described starting on page 199) to step through
this method, the first step takes you to the point where includesValue: is about
to be sent. Stepping again sends that message and halts the virtual machine at the
point where found is assigned. Another step sends that message and halts the
virtual machine just before the result is assigned to index, and so on.

When the GemStone Smalltalk virtual machine encounters an enabled breakpoint
during normal execution, GemStone displays a notifier, in which selecting Debug
in the notifier opens a GemStone Debugger. In the Debugger, you can
interactively explore the context in which execution halted.

Special considerations apply in setting breakpoints for primitive and special
methods.

Breakpoints for Primitive Methods
If you set a breakpoint in a primitive method, the break is encountered only if the
primitive fails. Consider the method below:

= aString

<primitive: 160>
self _primitiveFailed: #=

When this method is invoked, GemStone first executes the machine code in
primitive 160. If that code executes successfully, the primitive is said to succeed,
and the method returns a value. Because no GemStone Smalltalk code has yet
been encountered, the virtual machine has not yet reached the first step
point. Only if the primitive fails will the virtual machine execute the message-
send at the bottom of the method and thus encounter the breakpoint.

Breakpoints for Optimized Methods
Very simple methods are optimized by the GemStone Smalltalk compiler in such
a way that they contain no step points. Naturally, you cannot set a method
breakpoint if there are no step points. Methods that just returns true, false,
nil, self, that set or assign to an instance variable, or that return a class or pool
variable or a variable defined in a symbol dictionary, are optimized in this way,
and have no step points.

Also, certain selectors, such as ==, ifTrue:, and to:do:, are optimized by the
compiler, and cannot take step points. Optimized selectors vary by server product
and version, and are listed in the GemStone/S 64 Bit Programming Guide, Appendix
A.

Breakpoints GBS 5.4 User’s Guide

198 VMware, Inc. December 2011

The Breakpoint Browser
You can set breakpoints in the source code pane of any browser, using the Set
Break menu item described in Table 12.5 on page 177. You can also use the
breakpoint browser, which lets you set, clear, and examine breakpoints for all
classes and methods.

After you’ve set a breakpoint, you can use the menu items to disable or re-enable
all breakpoints, or just selected ones.

A breakpoint browser has two panes: the list of break points on top, and the source
code associated with the selected breakpoint on the bottom. Figure 12.7 shows an
example:

Figure 12.7 GemStone Breakpoint Browser with a Breakpoint

The Break Pane

The break pane displays a scrollable list of the active breakpoints. The items in the
list look like this:

1: WriteStream >> nextPutAll: @ 8

In this example, a method break is set at step point 8 within the method
nextPutAll: defined by class WriteStream.

Chapter 12 - Using the GemStone Programming Tools Debugger

December 2011 VMware, Inc. 199

The Source Pane

If you have selected a breakpoint in the break pane, the text area displays the
source code for that method. This pane is similar to the GemStone Browser text
area, but you cannot recompile an edited method by executing Save.

12.8 Debugger
The GemStone Debugger is integrated with the client Smalltalk debugger,
allowing you to:

 • view GemStone Smalltalk and client Smalltalk contexts together in one stack,

 • select a context from among those active on the virtual machine stack,

 • examine and modify objects and code within that context, and

 • continue execution either normally or in single steps.

When GemStone Smalltalk execution is interrupted, it either directly opens the
Debugger, or a notifier that includes a Debug button. Selecting the Debug button
opens the Debugger.

The Debugger’s stack pane displays the active call stack and allows you to choose
some context (stack frame) from that stack for manipulation in the window’s other
panes. Both GemStone server and client contacts are listed. GemStone server
contexts begin with “GS”.

If you select a GemStone Smalltalk context in the stack pane, the popup menu
contains the item show glue. This lets you reveal additional GemBuilder stack that
is normally of no interest. If this stack is already revealed, the menu item becomes
hide glue.

Like other GemBuilder text areas, the debugger source code pane provides
commands to execute GemStone Smalltalk.

Disabling the Debugger
In some cases, you may want to disable the GBS debugger. You can disable and
enable the debugger using the following expressions:

GBSM enableGbsDebugger

GBSM disableGbsDebugger

Disabling the GBS debugger restores the base Smalltalk client debugger.

Stack Traces GBS 5.4 User’s Guide

200 VMware, Inc. December 2011

12.9 Stack Traces
In some situations it is easier to extract complete stack traces for later analysis,
rather than debugging interactively. In addition, you may need a stack trace to
provide to GemStone Technical Support. GemBuilder includes facilities to dump
the complete stack, with more information than provided in the standard stack,
including information on GemStone server contexts and “glue” contexts.

To extract a complete stack, execute

GbsConfiguration dumpAllProcessStacks

In response, all processes in the image write their complete contexts to a file named
stacksAtx.txt in the current working directory, where x is a 10-digit number
derived from a time stamp.

Chapter

December 2011 VMware, Inc. 201

13 Using the GemStone
Administration Tools

This chapter describes the GemStone tools that are provided to allow you to easily
manage the object sharing and protection issues discussed elsewhere in this
manual.

The Security Policy Tool
describes a tool for examining and changing GemStone user authorization.
Security policies (in earlier versions, Segments) provide the means for
managing GemStone authorization at the object level by assigning objects to
security policies that have appropriate authorization characteristics.

The Symbol List Browser
describes a tool that you can use for examining the GemStone SymbolLists
associated with UserProfiles. You can use it to add and delete dictionaries
from these lists, as well as to add, delete and inspect the entries in those
dictionaries.

User Account Management Tools
describes the User List, the User Dialog, and the Privileges Dialog, a set of
tools that allow you to create new user accounts, change account passwords,
and assign group memberships.

The Security Policy Tool GBS 5.4 User’s Guide

202 VMware, Inc. December 2011

13.1 The Security Policy Tool
The Security Policy Tool allows you to inspect and change the authorization that
GemStone users have at the object level. As explained in the section entitled
“Object-level Security” beginning on page 119, each object in GemStone may be
associated with an object security policy. The only users authorized to read or
modify an object are those who are granted read or write authorization for the
security policy with which the object is associated. The Security Policy Tool also
allows you to examine and change group membership.

NOTE
In the 32-bit GemStone/S server product, and in GemStone/S 64 Bit 2.x,
object security policies are known as Segments.

Some of the operations supported by the Security Policy Tool involve privileged
methods. If your user account does not have the needed privileges, ask your
system administrator to set up your security policies for you.

To open a Security Policy Tool, select Admin > Security Policies from the
GemStone menu or through the User Dialog’s Object Security Policies
button. Figure 13.1 shows a Security Policy Tool.

Chapter 13 - Using the GemStone Administration Tools The Security Policy Tool

December 2011 VMware, Inc. 203

Figure 13.1 The Security Policy Tool

The Security Policy Tool is divided into two main sections. The upper section
displays security policies. The lower section displays groups and their members.

Security Policy Definition Area
The security policy definition area at the top of the dialog displays the security
policies in the SystemRepository for which the current user has read authorization.

You will notice that some security policies are named and some are
unnamed. Named security policies are security policies that are referenced in a
dictionary or symbol list. Unnamed security policies are those that are not
referenced in any dictionary or symbol list.

In addition to the security policies displayed in the Security Policy Tool, all users
also have read and write authorization to

The Security Policy Tool GBS 5.4 User’s Guide

204 VMware, Inc. December 2011

GsIndexingObjectSecurityPolicy. Because authorization changes should not be
made to that security policy, however, it is not included in the tool.

NOTE
Changes made to cells in the tables are accepted automatically as soon as
you either press Return, make a selection in a combo box associated with
the cell, or simply move the focus to another cell or field by moving the
mouse. Entering an invalid value in a cell results in a warning, and the
cell reverts to the original value.

In the security policy definition area (the upper portion), you can change the
following:

Current — You can set the security policy to be your current security policy. When
you create an object, GemStone assigns it to your current security policy.

Default — You can set the security policy to be your default security policy. This
is the home security policy that is your current security policy when you log
into GemStone.

Owner Name — You can enter any valid user name that already exists in the
system. To change an owner name, type a valid owner name into the cell.

Owner Access and World Access — To change owner and world access, type one
of the following values into their cells:

 • read means that a user can read any of the security policy’s objects, but
can’t modify (write) them or add new ones

 • write means that a user can read and modify any of the security policy’s
objects and create new objects associated with the security policy

 • none means that a user can neither read nor write any of the security
policy’s objects

NOTE
Be careful when changing the authorizations on any security policy that
a user may be using as a current security policy or a default security
policy. If the account does not have write authorization in its default
security policy, the account cannot log in.

Security Policy Id — The Id number of each security policy is displayed. This
information cannot be modified.

Chapter 13 - Using the GemStone Administration Tools The Security Policy Tool

December 2011 VMware, Inc. 205

Group Definition Area
The bottom of the dialog is the group definition area. In this area you can assign
authorizations to groups of users instead of individuals. Groups are typically
organized as categories of users who have common interests or needs.

When you select a security policy at the top of the dialog, the group definition area
displays the groups that have access to the security policy. When you select one of
the groups, its members appear.

In the group definition area you can change the following:

Group Name — You can change the group name, but you should be aware that
when you edit a group name, you are not just renaming the group; you are
actually replacing the group with a new one. The old group’s members are
not copied to the new one, so you need to add them again. If the name of the
group entered is a group that does not exist, you will be asked if you want to
create it.

Group Access — Group access can be changed in the same way as owner and
world access. To change group access, type either read or write into the cell,
as outlined for owner and world access on page 204.

NOTE
Be careful when changing the authorizations on any security policy
that a user may be using as a current security policy or a default security
policy.

If you want to add group access to a security policy, select add... from the pop-up
menu in a Group Name cell. Similarly, to remove group access from a security
policy, select remove... from the pop-up menu.

In addition, you can select groups and users here to be the receiver of actions on
the menus.

Security Policy Tool Menus
The following sections describe the menus that are available in the Security Policy
Tool.

The Security Policy Tool GBS 5.4 User’s Guide

206 VMware, Inc. December 2011

The File Menu

Use the File menu to commit work done in the Security Policy Tool, to abort the
transaction, or to update the tool’s view of security policies, groups, and users in
the current session.

Table 13.1 File Menu in the Security Policy Tool

Commit Commits all the work executed in GemStone during the current
transaction. After you commit, you are given a new, updated
view of the repository, and you can continue your work.

Abort... Cancels all changes that you have made anywhere in GemStone
since your last commit. After you abort the transaction, you are
given a new, updated view of the repository, and you can continue
your work.

Update Updates the information in the Security Policy Tool and gives you
a new, updated view of security policies, groups, and users that
reflects the most recent version of the repository, and you can
continue your work.

Security Policy Menu

Use the Security Policy menu to create new security policies and to manipulate
existing security policies.

Table 13.2 Security Policy Menu in the Security Policy Tool

Create... Creates a new security policy. You must have the Security
Policy Creation privilege to use this option. In the Create
Security Policy dialog, enter a name for the security policy
and a symbol dictionary to store it in. Private security
policies are typically kept in UserGlobals. Security policies
for large groups of users are typically kept in Globals.

Chapter 13 - Using the GemStone Administration Tools The Security Policy Tool

December 2011 VMware, Inc. 207

Group Menu

Use the Group menu to add and remove groups.

Table 13.3 Group Menu in the Security Policy Tool

Add... Adds a new group. In the Add Group dialog, enter a name for
the group and choose OK or Apply.

Remove...

Removes authorization for the selected group. This does not
delete the group from GemStone. It only means that the current
security policy no longer stores access information for that
group. Users may still be able to access other objects because of
their membership in the group, but they will not have access to
the objects assigned to this security policy unless it has been
provided by the security policy’s owner or world access.

Member Menu

Use the Member menu to add users to and remove users from groups.

Table 13.4 Member Menu in the Security Policy Tool

Add... Adds a user to the group. Enter any valid user name in the Add
Member dialog and choose OK or Apply. The user must already
exist in the system. You can use the User List to create new
users.

Remove...

Removes the selected user from the group. (This does not delete
the user from GemStone.)

Grab Grabs a reference to the selected security policy and places it
on the clipboard. This can be used to add a reference to a
user’s symbol list or for changing the default security policy
of a user in the User Dialog.

Make Current Makes the selected security policy your current security
policy. When you create an object, GemStone assigns it to
your current security policy.

Make Default Makes the selected security policy your default security
policy. This is the home security policy that is your current
security policy when you log into GemStone.

Table 13.2 Security Policy Menu in the Security Policy Tool(Continued)

The Security Policy Tool GBS 5.4 User’s Guide

208 VMware, Inc. December 2011

Reports Menu

Use the Reports menu to bring up a window displaying information about the
security policies, users, and groups in your view of the repository.

Table 13.5 Report Menu in the Security Policy Tool

Group Report Produces a list of all groups in GemStone and the users in
each group.

Security Policy
Report

Produces a list of security policies the user has read
authorization for and displays information about each
one as to
• its owner,
• the groups for which it contains access information, and
• the access it grants to the owner, groups, and world.
This report includes the GsIndexingObjectSecurityPolicy,
for which all users have read and write authorization.

User Report Produces a list of all GemStone users and shows each
user’s group memberships.

Security policies that appear as Unnamed are not in your symbol list. Thus, their
names and dictionaries are unknown.

Help Menu

The Help menu contains one item, Session Info, which provides information
about the session for the Security Policy Tool window and about the current
session.

Using the Security Policy Tool
If you are a security policy’s owner, you can determine who has access to objects
assigned to that security policy. For more information, see the chapter on
administering user accounts and security policies in the System Administration
Guide for GemStone/S 64 Bit.

Chapter 13 - Using the GemStone Administration Tools The Security Policy Tool

December 2011 VMware, Inc. 209

Checking Security Policy Authorization

Anyone who has read authorization for a security policy can use the Security
Policy Tool to find out who is authorized to read or write that security policy by
doing the following:

1. Bring up the Security Policy Tool by selecting GemStone > Admin > Security
Policies or by choosing Object Security Policies in a GemStone User
Dialog.

2. In the Security Policy Tool, choose Reports > Security Policy Report. The
resulting list contains all security policies.

3. To view the members of each group, choose Reports > Group Report. To
view the groups to which each user belongs, choose Reports > User Report.

Changing Security Policy Authorization

Assuming that you either have Security Policy Protection privileges or are the
security policy’s owner, you can use the Security Policy Tool to change the
authorization of a security policy.

The top half of the Security Policy Tool shows the owner, the owner’s access, and
world access for each security policy in the repository. To change owner or world
access for a security policy, click in the corresponding box, then use the pull-down
menu to select the new permission (“read”, “write”, or “none”).

The new authorization will take effect when you commit the current transaction.

CAUTION
Be careful to check whether a user is logged in before you remove write
authorization. A user will be unable to commit changes if write
authorization is removed from the current security policy, and if it is the
user’s default security policy, the user’s session will be terminated and
the user will be unable to log in again.

Controlling Group Access to a Security Policy

If you are authorized to set up or change group access to a security policy, you can
add or remove groups to that security policy’s authorization list.

 • Make sure the security policy is selected in the top half of the tool.

 • To add a group to the authorization list for the selected security policy, choose
Add... from the Group menu. Enter the group name in the dialog box that
appears. If the group does not exist in the repository, you will be asked
whether to create it.

The Symbol List Browser GBS 5.4 User’s Guide

210 VMware, Inc. December 2011

 • To remove a group from the authorization list, first select the group by clicking
in the first column of the groups list. Then choose Remove... from the Group
menu. You will be asked to confirm the action.

 • To change the type of access for a particular group, first select that group in the
groups list and select the existing permission. Then enter the new permission
(“read” or “write”).

 • To add a member to a group that has access to this security policy, first select
that group in the groups list. Then choose Add... from the Member
menu. Enter the UserId and choose OK. (A UserProfile with that UserId must
already exist in the repository.)

 • To remove a member from a group that has access to this security policy, select
the UserId in the member list and choose Remove... from the Member
menu. You will be asked to confirm the action.

Remember to commit your transaction before logging out. A convenient way to
do that is by choosing Commit from this tool’s File menu.

13.2 The Symbol List Browser
The Symbol List Browser is a tool for examining the GemStone SymbolLists
associated with UserProfiles, adding and deleting dictionaries from these lists,
examining the entries in those dictionaries and adding, deleting and inspecting the
entries. References to dictionaries and dictionary entries can be copied between
GemStone user accounts, subject to authorization and security policy restrictions,
to allow users to share application objects and name spaces developed by other
users, and to publish them to other users.

To open a Symbol List Browser, select Admin > Namespaces from the
Gemstone menu, or click on the Symbol List button on a GemStone User Dialog.

Like the other GemStone tools, the Symbol List Browser opens on a particular login
session. When a Symbol List Browser instance is created, it is attached to the
current GemStone session and remains attached to that session until the browser
is closed.

Figure 13.2 shows the Symbol List Browser.

Chapter 13 - Using the GemStone Administration Tools The Symbol List Browser

December 2011 VMware, Inc. 211

Figure 13.2 The Symbol List Browser

The field labeled Symbol List for contains a list of all the GemStone users that are
visible to the session to which the browser is attached. When you select a
GemStone user name, a list of the dictionaries in that user’s SymbolList is
displayed in the Dictionaries pane. GemStone permissions are observed; any
dictionaries in that SymbolList that are not normally accessible to the browser’s
session will not be visible in the list.

When a dictionary is selected, the keys of the entries in the dictionary are displayed
in the Entries pane on the right.

Whenever a dictionary or an entry is selected, information about that object is
displayed at the bottom of the browser.

The Clipboard
Within the Symbol List Browser you can delete, move, and copy objects to and
from SymbolLists and the Dictionaries in those SymbolLists. For each session to
which a Symbol List Browser is attached, there is a “clipboard” onto which
GemStone server objects can be cut and copied and from which objects can be
pasted into another Symbol List Browser that is also attached to that session.

The Symbol List Browser GBS 5.4 User’s Guide

212 VMware, Inc. December 2011

Symbol List Browser Menus
The menus in the symbol list browser allow you to examine, add, and delete
SymbolLists, dictionaries, and dictionary entries. You can use this browser to
copy references to dictionaries and dictionary entries among user accounts so
application objects can be shared by other users.

File Menu

The File menu contains items for operating on the window itself and for
committing and aborting transactions from the Symbol List Browser.

Dictionary Menu

The Dictionary menu allows you to rearrange dictionaries by cutting, copying, or
pasting.

Table 13.7 Dictionary Menu in the Symbol List Browser

Cut Removes the selected dictionary from the user’s symbol list and
places it in the session’s clipboard.

Copy Copies a reference to the selected dictionary into the session’s
clipboard.

Paste Causes the reference to the dictionary object in the clipboard to be
added to the SymbolList in the pane, with the name it had when it
was put in the clipboard.
If the name of the dictionary in the clipboard is already in use in
the destination list, a Confirmer will pop up to allow replacing the
old item, or to abort the paste operation.

Add... Prompts for name of a new Dictionary to be added to the symbol
list.

Inspect Opens a GemStone inspector on the selected Dictionary.

Table 13.6 File Menu in the Symbol List Browser

Commit Makes all changes in the current transaction permanent.
Abort Aborts the current transactions.
Update Updates the browser’s view of the GemStone server objects it

shows. The browser is automatically updated if the attached
session aborts a transaction.

Chapter 13 - Using the GemStone Administration Tools User Account Management Tools

December 2011 VMware, Inc. 213

Entry Menu

The Entry Menu allows you edit dictionary entries by cutting, copying, or pasting.

Table 13.8 Entry Menu in the Symbol List Browser

Cut Removes the selected entry from its dictionary and places
it in the session’s clipboard.

Copy Copies a reference to the selected entry into the session’s
clipboard.

Paste Causes the reference to the entry in the clipboard to be
added to the selected dictionary, with the name it had
when it was put in the clipboard.
If the clipboard entry’s name is already in use in the
destination list, a Confirmer will pop up to allow replacing
the old item, or to abort the paste operation.

Add... Prompts for name of a new entry to be added to the
selected Dictionary.

Inspect Opens a GemStone inspector on the selected entry.
Browse Class If the selected entry is a class, opens a GemStone class

browser on that entry.

.

Help Menu

The Help menu contains one item, Session Info, which provides information
about the session for the Symbol List Browser and about the current session.

13.3 User Account Management Tools
GemBuilder provides three User Account Management tools that allow the
GemStone System Administrator to create and modify user accounts, change
account passwords, and assign group membership. This section describes these
three tools: the GemStone User List, the GemStone User Dialog, and the Privileges
Dialog.

NOTE
To perform most of the system administration functions described in this
section, you must either be DataCurator or have certain privileges.

If you are responsible for GemStone system administration, refer the chapter on
administering user accounts and security policies in the System Administration

User Account Management Tools GBS 5.4 User’s Guide

214 VMware, Inc. December 2011

Guide for GemStone/S 64 Bit for specific information on user account
management. That chapter discusses the privileges you need to manage user
accounts and explains how to add and remove users, set up user environments,
change passwords and user privileges, and how to add and remove users from
groups.

GemStone User List
The GemStone User List window contains a list of all user accounts known to the
current repository. The administrator can use this window to delete users and as
a starting point to add new users and to change the attributes of GemStone users.

 • To bring up the GemStone User List from the GemStone menu, select
Admin > Users.

Figure 13.3 GemStone User List

The GemStone Users List window has three menus: File, Users, and Help.

Chapter 13 - Using the GemStone Administration Tools User Account Management Tools

December 2011 VMware, Inc. 215

The File menu contains the following items:

Table 13.10 shows operations available in this dialog.

Table 13.10 GemStone User List: Users Menu

Create User Brings up a GemStone User dialog in which you can
define a new user.

Show User Info Brings up a GemStone User dialog displaying privilege
and group membership information for the selected user.

Delete User Allows you to remove the selected user.

The Help menu contains one item, Session Info, which provides information
about the session for the GemStone User List and about the current session.

Table 13.9 GemStone User List: File Menu

Commit Makes all changes in the current transaction permanent.
Abort Aborts the current transaction.
Update Causes the browser to update its view of the GemStone users it

shows. The browser will automatically be updated if the attached
session aborts a transaction.

User Account Management Tools GBS 5.4 User’s Guide

216 VMware, Inc. December 2011

GemStone User Dialog
The GemStone User Dialog displays the attributes of a particular GemStone
user. The GemStone administrator can examine and change the user’s privileges
or default security policy and can control the user’s group membership. The
administrator can also change the name available in the user’s symbol list.

The GemStone User Dialog is shown in Figure 13.4.

Figure 13.4 GemStone User Dialog

Chapter 13 - Using the GemStone Administration Tools User Account Management Tools

December 2011 VMware, Inc. 217

Table 13.11 shows the operations that are available in this dialog.

Table 13.11 Buttons in the GemStone User Dialog

Privileges... Brings up a Privileges Dialog (page 219), in which you
can select privileges for this user.

Symbol List... Brings up a Symbol List Browser (page 210) for the
designated user.

Object Security
Policies...

Brings up a Security Policy Tool (page 202).

Authentication
Method

Click the button to indicate the method for performing
authentication for the selected user: GemStone userId
and GemStone password, UNIX user ID and
password, or LDAP server.
Authentication other than GemStone is only available
in GemStone/S 64 Bit v3.0 and later. For details on
configuring authentication, see the chapter on “User
Accounts and Security” in the System Administration
Guide for GemStone/S 64 Bit.

Create In the New Group area Name entry box, enter the
name of the new group that you wish to create, then
click this button. The user is added to the new group.

OK Makes all changes in the current transaction
permanent, and close the dialog.

Commit and Apply Makes all changes in the current transaction
permanent.

Close Close the dialog. Changes are retained in the image,
but not committed to the repository.

 • To add a user to a group, select the group in the Available list and use the <<
button to move it to the Is Member Of list.

 • To remove a user from a group, select the group in the Is Member Of list and
use the >> button to move it back to the Available list.

User Account Management Tools GBS 5.4 User’s Guide

218 VMware, Inc. December 2011

The User Dialog has three menus: File, User, and Help. The File menu contains the
following items.

The User menu contains one item, Rename.... This requests a new name for this
user. You may not rename the DataCurator, GcUser, or SystemUser accounts.

The Help menu contains one item, Session Info, which provides information
about the session for the GemStone User List and about the current session.

Table 13.12 GemStone User Dialog: File Menu

Commit Makes all changes in the current transaction permanent.
Abort Aborts the current transaction.
Update Causes the dialog to update its view of the GemStone user it

shows. The dialog will automatically be updated if the attached
session aborts a transaction.

Chapter 13 - Using the GemStone Administration Tools User Account Management Tools

December 2011 VMware, Inc. 219

Privileges Dialog
Certain system functions are customarily performed by the DataCurator; for
example, many of the messages to System require explicit privilege to use. The
privileges dialog displays the privileges an individual user possesses. You can use
this dialog to examine a user’s privileges, and—if you have the authority to do
so—to select privileges for a user.

The Privileges Dialog is shown in Figure 13.5.

Figure 13.5 Privileges Dialog in GemStone User Window

The specific list of privileges and the methods that require these privileges vary
between different server products and versions.

For more information on privileges, see the chapter on “User Accounts and
Security” in the System Administration Guide for GemStone/S 64 Bit. The method
comments in the image provide privilege requirements for executing specific
methods.

User Account Management Tools GBS 5.4 User’s Guide

220 VMware, Inc. December 2011

Chapter

December 2011 VMware, Inc. 221

A Packaging Runtime
Applications

Use the following guidelines when packaging a client Smalltalk application that
uses GemBuilder to access GemStone.

A.1 Prerequisites
In addition to code required by your application, the packaged image must contain
the application or parcel GbsRuntime, which contains the system code modified
for GemBuilder.

In order to ensure that your image initializes correctly, your application must
specify GbsRuntime as a prerequisite.

Do not include the application or parcel GbsTools. These are subclasses of classes
that will be deleted during the packaging process.

Names
Ensure that your image is packaged to include class pool dictionaries and instance
variable names and does not remove them.

Packaging GBS 5.4 User’s Guide

222 VMware, Inc. December 2011

Replicating Blocks
To ensure that your application behaves in the same manner as it did in the
development environment, we recommend that you include the compiler.

Defunct Stubs and Forwarders
Defunct stubs and forwarders cause problems during packaging. To avoid these
problems, start with new client image as shipped from your client Smalltalk
vendor.

Shared Libraries
A deployed runtime application that uses GemBuilder needs to contain the shared
libraries from the GemStone/S 64 Bit /bin directory.

A.2 Packaging
Step 1. Open a new client image as shipped from your client Smalltalk vendor.

Step 2. Ensure that you have satisfied the prerequisites given above.

Step 3. Load your application code.

Step 4. Follow the packaging instructions given by your Smalltalk vendor.

Chapter

December 2011 VMware, Inc. 223

B Client Smalltalk and
GemStone Smalltalk

This appendix outlines the few general and syntactical differences between the
IBM VisualAge Smalltalk and GemStone Smalltalk languages.

B.1 Language Differences
GemStone’s Smalltalk language is very similar to client Smalltalk in both its
organization and its syntax. GemStone Smalltalk extends the Smalltalk language
with classes and primitives to add multiuser features such as transaction support
and persistence. The GemStone class hierarchy is extensible, and new classes can
be added as required to model an application. The GemStone class hierarchy is
described in the GemStone/S 64 Bit Programming Guide.

A quick look at the GemStone class hierarchy shows that it differs from the client
Smalltalk class hierarchy in that classes for file access, communication, screen
manipulation, and the client Smalltalk programming environment don’t exist, and
in that the GemStone Smalltalk hierarchy contains classes for transaction control,
accounting, ownership, authorization, replication, user profiles, and index control.

GemStone Smalltalk also introduces optimized selection blocks.

As a Smalltalk programmer, you will feel quite at home with GemStone Smalltalk,
but you should take note of the differences outlined in this appendix.

Language Differences GBS 5.4 User’s Guide

224 VMware, Inc. December 2011

Selection Blocks
Selection blocks in GemStone Smalltalk and the use of dots for path notation have
no counterparts in client Smalltalk.

myEmployees select: {:i | i.is.permanent}

Array Constructors
Array constructors do not exist in client Smalltalk. In GemStone, array constructor
syntax varies by server product and version. In GemStone/S 64 Bit version 3.0 and
above, array constructors:

 • use curly braces,

 • use periods as separators,

 • have no prefix, and

 • can contain any valid GemStone Smalltalk expression as an element.

{'string one' . #symbolOne . $c . 4 . Object.new }

Block Temporaries
IBM Smalltalk supports block temporaries. It does not, however, permit the
declaration of a temporary variable in an inner block if a temporary variable of the
same name has been declared in an outer scope.

One-way become:
In GemStone’s Smalltalk, become: swaps the identities of the receiver and the
argument.

IBM Smalltalk implements a one-way become:. The following code returns true
in IBM Smalltalk, and false in GemStone:

| a b |
a := Object new.
b := Object new.
a become: b.
a == b

Appendix B - Client Smalltalk and GemStone Smalltalk TimeZone handling

December 2011 VMware, Inc. 225

Exception-handling
In client Smalltalk, exception-handling is implemented with two classes: Signal
and Exception. In GemStone it is implemented with a single class: Exception. An
Exception in GemStone is an object that represents state to be invoked in the event
of an exception.

There are two types of exceptions in GemStone. In order of precedence, they are:
1) context exceptions, and 2) static exceptions. Static exceptions remain from run
to run. Context exceptions are active as long as the context to which the exception
belongs is on your call stack when an exception is signaled.

Client Smalltalk exception handling is analogous to GemStone context exceptions.

All nonfatal errors can be trapped by a GemStone application.

Exception handling in VisualAge is accomplished by sending messages such as
whenExceptionDo:, when:do:, or when:do:when:do:. In VisualAge the
argument to when: is a predefined ExceptionalEvent. From within the handler
block, messages can be sent to the ExceptionalEvent to cause the flow of control to
resume, exit the when:do: block, or restart the block.

B.2 TimeZone handling
The GemStone server, as a multi-user system, may have a number of TimeZones
installed, although only one is the current TimeZone for a particular session. The
instances of TimeZone include the rules governing such things as the start and
end of Daylight Savings Time. GemStone server TimeZones are created based on
the Zoneinfo or Olson TimeZone repository.

GemStone server DateTimes internally store the time in UTC (GMT), but display
themselves based on the local current TimeZone. DateTimes do reference an
instance of TimeZone, but most server operations use the gem’s current
TimeZone.

When server DateTimes are replicated to client DateTimes, the GbxTimeZone is
used to determine the client object’s correct current local time. The GbxTimeZone
is defined at the time the gem logs into the GemStone server.

If the GBS application changes the gem's current TimeZone after a session has
logged in, GBS cannot detect this. In this case, the client application needs to send
the new message

GbsSession >> setClientTimeZoneFromServer

TimeZone handling GBS 5.4 User’s Guide

226 VMware, Inc. December 2011

to re-replicate a copy of the timezone.

To explicitly set a specific time zone for the client, you can create the desired
TimeZone on the server, and replicate it to the client, using the method

GbsSession >> clientTimeZone:

For example:

myGbsSession clientTimeZone:
 (mySession evaluate: 'TimeZone
 fromGemPath:''/foo/bar/America/New_York''').

This would be the case if the gem and client are in different time zones, and you
want the time zone to be different between the gem and client

Index

December 2011 VMware, Inc. 227

Index

A
abort

(GbsSession) 102, 103
(GbsSessionManager) 103, 105

abort request from GemStone 105
abortErrLostOtRoot signal 106
abortTransaction (GbsSession) 106
activation exceptions 122
addDependent: 37
adding connector to session or global list 94
addParameters (GbsSession) 33
addToCommitOrAbortReleaseLocksSet

: (System) 111
addToCommitReleaseLocksSet: (System)

111
application design 25–27, 42–86
argument in message to forwarder 48
array constructors in GemStone Smalltalk 224
asForwarder 47
asGSObjectCopy 76
asLocalObjectCopy 75

assertionChecks configuration parameter 145,
146

assigning a migration destination 127
authorization

and migration 128
autoMarkDirty 51
autoMarkDirty configuration parameter 145,

146
automatic class generation 44–45, 152

disabling 45
interactions with replication

specifications 61
automatic transaction mode 106, 107

defined 106

B
block

callback 73
replicating 70, 147

blockingProtocolRpc configuration parameter
145, 146

GBS 5.4 User’s Guide

228 VMware, Inc. December 2011

blockReplicationEnabled configuration
parameter 71, 145, 147

blockReplicationPolicy configuration
parameter 145, 147

break
hard 124
soft 124

Breakpoint Browser 198–199
breakpoints 193, 198

and primitive methods 197
bulkLoad configuration parameter 145, 147
business objects 26

C
cache

size, changing 139
size, initial 152
space management 136

callback for blocks 73
changed object notification 112, 221
changing

cache size 139
connector initialization 189
initial cache size 139
postconnect action 189
schema 126

class versions and 130
shared data 50, 108

choosing the locus of execution 132
class 43

connector 44, 89, 152
connection order 90

connector, updating 44
creation 179
customizing faulting 59
filing out 183
generating automatically 44–45, 152
mapping 22, 130
mapping to one with a different storage

format 69, 70
migrating instances to a new version 126
nonforwarding 88

structure, matching on client and server
43

updating definitions with connectors 88
versions 178, 182
versions and replication specifications 61
versions of 126

class instance variable connector 89
class variable connector 89
Classes pane

in GemStone Browser 172
clearCommitOrAbortReleaseLocksSet

(System) 111
clearCommitReleaseLocksSet (System)

111
client forwarder 47
Client Libraries 30
code pane

menu for 176
commitAndReleaseLocks (System) 111
committing

a transaction 22
and flushing, compared 51
changes to the repository 102

commitTransaction
(GbsSession) 102

compile in ST 192
compile in ST command

in GemStone Browser’s Class menu 176
compiling

a class definition 179
in a runtime application 222

concurrent transactions, managing 108
configuration parameters 143–154, ??–163

assertionChecks 145, 146
autoMarkDirty 145, 146
blockingProtocolRpc 145, 146
blockReplicationEnabled 71, 145, 147
blockReplicationPolicy 145, 147
bulkLoad 145, 147
confirm 145, 148
connectorNilling 49, 88, 145, 148
connectVerification 145, 148
defaultFaultPolicy 57, 145, 149

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 229

eventPollingFrequency 145, 149
eventPriority 145, 149
faultLevelRpc 145, 150
forwarderDebugging 145, 150
freeSlotsOnStubbing 145, 150
fullCompression 145, 151
GemStone

CONCURRENCY_MODE 117
STN_GEM_ABORT_TIMEOUT 106

generateClassConnectors 45, 145, 151
generateClientClasses 44, 145, 152
generateServerClasses 44, 145, 152
initialCacheSize 145, 152
initialDirtyPoolSize 146, 153
libraryName 30, 146, 153
removeInvalidConnectors 146, 153
setting and examining 143

global 143
session specific 144

stubDebugging 146, 154
traversalBufferSize 136, 146, 154
verbose 146, 154

confirm configuration parameter 145, 148
Connected command in Connector Browser

88, 189
connected objects, synchronizing 188
connector 83–97, 185–189

adding to session or global list 94
class 44, 89, 152

class versions and 46
connection order 90
forwarders and 46
update direction and 46
updating 44

class hierarchy 92
class instance variable 89
class variable 89
connecting object networks 84
connection order 90
controlling 95
creating automatically 151
creating interactively 189
creating programmatically 92

defined 43, 83, 185
fast 91
for kernel classes 89
global 86, 187
initializing 87
list of 94
name 89
nilling 49, 88, 148
postconnect action 47, 87
removing duplicates 87
removing invalid 153
removing unresolved 188
scope 86
session 187
setting postconnect action

programmatically 93
setup for initial storage of data in

GemStone 189
updateGS postconnect action 189
updateST postconnect action 189
updating class definitions and 88
verifying 87, 148, 188

Connector Browser 185–189
updateGS postconnect action 189
updateST postconnect action 189

connectorNilling configuration parameter 49,
88, 145, 148

connectVerification configuration parameter
145, 148

contexts 193
Control-c interrupt-handling 124
controlling the size of the client Smalltalk

object cache 136
converting among forwarders, stubs,

replicates, and delegates 79
copying

client objects 76
GemStone objects 75

create access 192
create access command

in Browser’s Class menu 176
create in ST 192
create in ST command

in Browser’s Class menu 176, 177

GBS 5.4 User’s Guide

230 VMware, Inc. December 2011

creating
connector interactively 189
connector programmatically 92
forwarder 47
forwarder interactively 189
remote session 33
subclasses 179

CstMessengerSupport parcel 27
current session 35

setting 163
tools attached to 36

D
data

cost of managing 133
modifying shared 50, 108
storage in GemStone 189

debug command 199
debugger 193, 199
debugging 193–??

forwarders 150
stubs 154
support in GemBuilder 134

decimals, replicating 74
defaultFaultPolicy configuration parameter

57, 145, 149
defining GemStone errors 123
definition 192
defunct forwarder 48

during packaging 222
defunct stub 58

during packaging 222
delegate

converting 79
dependencies between objects, managing

with replication specififcations 63
dependents, session 37–40

adding 37
committing a transaction 37
removing 37

dictionaries
adding Associations to 195

pool 180
specifying for a new class 180

dirty, defined 50
disableGbsDebugger 199
disabling

automatic class generation 45
block replication 71

Disconnected command in Connector
Browser 88, 189

domain objects 26
dumpAllProcessStacks

(GbsConfiguration) 200

E
enableGbsDebugger 199
error, user-defined 123
error-handling

during file in 185
in client Smalltalk and in GemStone 225
session-based 122
stack-based 122

evaluate: 77
evaluate:context: 78
event, polling for 149
eventPollingFrequency configuration

parameter 145, 149
eventPriority configuration parameter 145,

149
examining the internal structure of a

GemStone object 193
exception-handling 121–??

see error-handling
session-based 122
stack-based 122

execution
in GemStone 132
in the client Smalltalk 132
profiling 133
tuning 132–133

explicit stubbing of objects to reclaim space
136

extents 21

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 231

F
fast connector 91
fault 58
fault control

and replicates 135
and stubs 135

fault level
defined 55
performance and 135
specifying with replication specification

58
fault policy, defined 57
faulting

at login 55
changes from other sessions 57
cost of 135
customized 65–70
customizing a class 59
default policy for 149
dirty GemStone objects 133
immediate 58
inadequate, penalties of 135
lazy 57
minimizing for performance tuning 135
when a stub receives a message 56
while flushing, error caused by 67

faulting, defined 50
faultLevelRpc configuration parameter 145,

150
faultToLevel: 76
file

writing class and method definitions to
183

file in, and error-handling 185
file out 191
filing out classes and methods 183
floats, omitting from transparency caches 138
flushing 51

and committing, compared 51
customized 65–70
improving performance of 153
of dirty replicates 133

when 51
while faulting, error caused by 67

flushing, defined 50
forwarder 46–49

arguments to 48
classes that cannot become 88
converting 79
creating 47
creating interactively 189
debugging 150
declaring in replication specification 47
defined 43
defunct 48
enforcing a return of 48
for optimization 138
return from 48
sending messages to 47
to client 47
to server 46
when to use 46

forwarderDebugging configuration
parameter 145, 150

freeSlotsOnStubbing configuration parameter
145, 150

fullCompression configuration parameter
145, 151

fwat: 48
fwat:ifAbsent: 48
fwevaluate: 77
fwevaluate:context: 78

G
GbsBuffer 66
GbsClassInstVarConnector 92
GbsClassVarConnector 92
GbsConnector 92
GbsError 222
GbsFastConnector 92
GBSM global 33
GBSM, instance of GbsSessionManager 32,

102
GbsNameConnector 92

GBS 5.4 User’s Guide

232 VMware, Inc. December 2011

GbsRuntime 221
GbsRuntime parcel 27
GbsServerClass 47
GbsSession 31

reference to parameters 35
GbsSessionManager 32
GbsSessionParameters 31
GbsSessionParameters class

instance creation 33
GbsTimeZone 225
GbsTools 221
GbsTools parcel 27
Gem

service name 33, 161
signaling another Gem 113
user process 20, 21

GemBuilder
overview 21

GemBuilder tools
Breakpoint Browser 198
Classes Browser 170–177
Connector Browser 185–189
debugger 199
GemStone menu 156
GemStone workspace 168
overview 3, 24
Security Policy Tool 202–??
Session Browser 158–163
Session Parameters Editor 159
Symbol List Browser 210–213
System Workspace 168
User Account Management Tools 213–219

GemStone
security 118–??

GemStone Browser 170, 171
Class List pane 175
Classes pane 172
Method Categories pane 172
pop-up menus 172
Symbol List pane 171

GemStone inspector 193
GemStone Smalltalk

comparing with client Smalltalk 223

debugger 199
features of 23
inspecting objects in 194
interrupting 124

GemStone User List (User Account
Management Tools) 214

Gem-to-Gem notifiers 113
generateClassConnectors configuration

parameter 45, 145, 151
generateClientClasses configuration

parameter 44, 145, 152
generateServerClasses configuration

parameter 44, 145, 152
global configuration parameters 143
global connectors 86
GsInterSessionSignal 113
gsObjImpl 69

H
hard break 124
hierarchy 192

I
immediate fault policy 58
indexableSize 69
indexableValueAt: 69
indexableValueAt:put: method 66
indexableValues 68
indexableValuesBuffer 66
inheritance

replication specification and 59
initialCacheSize configuration parameter 145,

152
initialDirtyPoolSize configuration parameter

146, 153
initializing

connectors 87
connectors programmatically 93

Inspect 174
inspecting

GemStone objects 194
in a debugger 193

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 233

inspector 193
instance migration 126
instance variables

direct access causing stub errors 56, 137
mapping 45, 52

in migration 128
mapping nonmatching names 53
maximum number in a Class 179
modifying while faulting 66
modifying while flushing 67
private 181
suppressing replication of 52

instancesAreForwarders 47
instVarMap 53
interrupt-handling 124
interrupting execution 124

K
kernel class

connecting connectors for 90
connecting instances of 89

L
lazy fault policy 57
libraryName

setting Client Libraries 30
libraryName configuration parameter 146,

153
linked session 31
listInstances: (Repository) 127
locks 108

logging out, effect of 110
on objects 109
releasing 111
removing 110
setting 109

locus of execution 132
logging into GemStone

interactively 162
programmatically 34

logging out of GemStone
effect on locks 110
interactively 163
programmatically 36
to resynchronize application state 106

login
faulting at 55

login message 35
logout message 36
lost OT root 106

M
managing

concurrent transactions 108
connectors 94
space, and cache size 136

manual mark dirty 51
manual transaction mode 107
manual, organization of 4
mapping 43

automatic 45
class 22
class versions and 46
classes 43
classes with different storage formats 69,

70
instance variables 52
nonmatching names 53
schema coordination 130

mark dirty ??–52
marking dirty 51
marking dirty, manually 51
maximum number of instance variables in a

class 179
messages

faulting when a stub receives 56
Method Categories pane in GemStone

Browser 172
methods

breakpoints in 193
filing out 183
primitive, and breakpoints 197

GBS 5.4 User’s Guide

234 VMware, Inc. December 2011

protecting 119
public 182

migration
authorization errors and 128
destination 127

ignoring 127
instance variable mapping 128
methods for

migrate (Object) 127
migrateFrom:instVarMap:

(Object) 129
migrateInstances:to: (Object)

127
migrateTo: (Object) 127

of instances 126
modal dialog, and application responsiveness

106
monitoring GemStone execution 134
move 192
moving data into GemStone 189
multiprocess applications 139

N
name connector 89
name of superclass, specifying 179
namedValueAt: 69
namedValueAt:put: 66
namedValues 67
namedValues:indexableValues: 66
namedValuesBuffer 66
network

node 33, 161
of objects, connecting 84

noFaultDebugging message 134
nonblocking mode 124
notification, Gem-to-Gem 113

O
object

business 26
domain 26

repository, overview 20
optimization

and multiprocess applications 139
and traversal buffer size 136
by explicit stubbing 136
by using forwarders 138
changing the initial cache size 139
choosing execution platform 42
choosing the execution platform 132
controlling cache size 138
controlling replication level and 55
controlling the locus of execution 132
controlling the replication level 135
cost of data management 133
explicit stubbing and 58
minimizing replication cost 52–65
preventing transient stubs 135
using forwarders 46, 138
using GemStone Smalltalk for searching

and sorting large objects 133
using GemStone user actions and client

Smalltalk primitives 139
watching stub activity 134

order in which connectors are connected 90

P
packaging runtime applications 221
parameter in message to forwarder 48
password

GemStone 32, 33, 160
host 32, 160

performance 27
changing the initial cache size and 139
choosing execution platform 42
choosing the execution platform and 132
client Smalltalk primitives and 139
controlling cache size and 138
controlling fault level and 135
controlling replication level and 55
controlling the locus of execution and 132
cost of data management and 133
database searching and sorting 133

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 235

determining bottlenecks 134
enhancing replication 52
explicit stubbing and 58, 136
fault levels and 135
forwarders and 138
GemStone Smalltalk user actions and 139
minimizing faulting of dirty GemStone

objects 135
minimizing replication cost 52–65
multiprocess applications and 139
preventing transient stubs 135
traversal buffer size and 136
using forwarders 46
using GemStone Smalltalk for searching

and sorting large objects 133
watching stub activity 134

pool dictionaries 180
pool variables 180
pop-up menus

in GemStone Browser 172
postconnect action 87

changing 189
setting programmatically 93
updateGS 189

postFault 67
precedence

of multiple replication specifications 64
of replication mechanisms 76

preFault 67
prerequisites 4
preventing transient stubs 135
primitives 139

arguments to 58
breakpoints and 197

private
instance variables 181

Private Classes and Methods 28
Privileges Dialog 219
profiling GemStone Smalltalk execution 133
ProfMonitor class 134
programming interface 22
protecting methods 119
public methods 182

R
read lock messages

readLock: (GbsSession) 109
readLock:ifDenied:ifChanged:

(GbsSession) 109
readLockAll: (GbsSession) 109
readLockAll:ifIncomplete:

(GbsSession) 110
read set 108
read/write transaction conflicts 108
reduced-conflict classes 112
reducing the number of objects in Smalltalk

136
registering a session 33
releasing locks 111
remove 192
removeDependent: 37
removeFromCommitOrAbortReleaseLoc

ksSet: (System) 111
removeFromCommitReleaseLocksSet:

(System) 111
removeInvalidConnectors configuration

parameter 146, 153
removeLock: (GbsSession) 110
removeLockAll: (GbsSession) 110
removeLocksForSession:

(GbsSession) 110
removeParameters (GbsSession) 33
removing

duplicate connectors 87
locks 110
unresolved connectors 153, 188

replicate 49–75
as argument to primitive method 58
converting 79
customized faulting of 59
defined 43
fault control and 135
flushing dirty 51, 133
preventing stubbing 58
update direction 49
when to use 49

GBS 5.4 User’s Guide

236 VMware, Inc. December 2011

replicating
blocks, avoiding 73
client Smalltalk blocks 70, 147
limits of 70–75
minimizing costs of 52
precedence of various mechanisms 76
ScaledDecimals 74
suppressing instance variables 52

replication specification 59–65
class versions and 61
declaring forwarder in 47
inheritance and 59
interactions with automatic class

generation 61
managing dependencies between objects

with 63
precedence 64
root object for 64
specifying fault levels in 58
switching among several 61

replicationSpecSet: 61
repository

modifying 50, 108
overview 20

return value from forwarder 48
root objects 84–86

in replication specifications 64
RPC Gems

using blocking protocol for 146
RT_ERR_SIGNAL_ABORT signal 105
runtime applications 221

S
saving

class and method definitions 183
login information 161

ScaledDecimal replication 74
schema

coordinating 130
matching, and instance variable mapping

45

modification 126
class versions and 130

scope of connectors 86
security 26, 118

protecting methods 119
security policies

changing authorization 209
checking authorization 209
group assignment 205
Security Policy Tool 202

Security Policy Id 204
Security Policy Tool 202, 209

changing authorization 209
displaying security policies 203
examining authorization 209
File menu 206
Group menu 207
Help menu 208
Member menu 207
Report menu 208
Security Policy menu 206

Segment 120, 202
selection blocks in GemStone 224
session 29–40

control
classes for 31

creating remote 33
current 30, 35, 163
dependents 37–40

adding 37
committing a transaction 37
removing 37

linked 31
logging in

interactively 162
programmatically 34

logging out
interactively 163
programmatically 36

managing connectors for 95
multiple 35
persistence of notify set in 112
registering with GBSM 33

GBS 5.4 User’s Guide

December 2011 VMware, Inc. 237

remote 31
RPC 31
seeing others’ changes 57
session-based error-handling 122
signaling between 113
supplying parameters with Session

Parameters Editor 159
tools attached to current 36

Session Browser 158–163
opening 158
starting 158

session parameters 32–34
adding connectors and 97
adding new 159
See also GbsSessionParameters

Session Parameters Editor 159
session-specific configuration parameters 144
setting

Client Library 30
configuration parameters 143
locks 109

shared libraries required for runtime
applications 222

shared variables 180
sharing objects

determining which 25, 42
modifications and 108

shouldBeCached method 138
signaledAbortAction: (GbsSession) 106
signaling one Gem from another 113
Smalltalk

GemStone, features of 23
soft break 124
spawn hierarchy 191
special

methods, and breakpoints 197
special GBSM classes 221
SpecialGemStoneObjects dictionary 70
stack

examining in GemStone 199
stack-based error-handling 122
static exceptions 122
step points 196

stepping 193
STN_GEM_ABORT_TIMEOUT GemStone

configuration parameter 106
Stone

name of 32, 160
repository monitor 20, 21

storing data in GemStone 189
stub 55–59

as argument to primitive method 58
controlling the stub level 135
converting 79
debugging 154
defined 43
defunct 58
explicit control of 136
explicit creation 58
explicit stubbing 136
fault control and 135
faulting upon message receipt 56
instance variable access and 137
observing activity of 134
preventing transient 135
replicating 58
sending messages to 55
setting instance variables to nil 150
watching activity of 134

stubDebugging configuration parameter 146,
154

stubYourself 136, 58
subclassing 179
superclass, specifying name of 179
suspended user interface process 106
symbol dictionaries 211
Symbol List Browser 210–213

copying and pasting objects 211
Dictionaries pane 211
File menu 212

Symbol List pane in GemStone Browser 171
synchronizing

client and GemStone objects 50–52
shared objects 188

SystemRepository, security policies in 203

GBS 5.4 User’s Guide

238 VMware, Inc. December 2011

T
tools

attached to current session 36
overview 24

transaction 99–114
aborting 103
committing 22
committing, and session dependents 37
managing 37, 100, 102
modes 106–108

automatic 106, 107
automatic, defined 106
manual 107
manual, defined 107
switching between 108
transactionless 100

transactionless transaction mode 100
transient object stubs, preventing 135
transitive closure 86
transparency

and access to GemStone 22
avoiding 76
caches, managing size 138

traversalBufferSize (method) 136
traversalBufferSize configuration parameter

136, 146, 154

U
updateRequest: 37
updating

class definitions 44
replicate 49

User Account Management Tools
GemStone User Dialog 216, 217
GemStone User List 214
Privileges Dialog 219

user actions 139
and primitives 139

UserClasses
client Smalltalk Browser category 45

UserClasses symbol dictionary 45

user-defined errors 123
username

GemStone 32, 160
host 32, 160

UserProfile
purpose 118

V
variables

pool 180
shared 180

verbose configuration parameter 146, 154
verifying connectors 188
versions of classes 126, 130

connecting and 46
mapping and 46
replication specifications and 61

W
write lock messages

writeLock: (GbsSession) 109
writeLock:ifDenied:ifChanged:

(GbsSession) 109
writeLockAll: (GbsSession) 109
writeLockAll:ifIncomplete:

(GbsSession) 110
write set 108
write/write transaction conflicts 108

	1 Basic Concepts
	1.1 The GemStone Object Server
	Figure 1.1 The GemStone Object Server

	1.2 GemBuilder for Smalltalk
	The Programming Interface
	Transparent access to GemStone

	GemStone’s Smalltalk Language
	The GemBuilder Tools

	1.3 Designing a GemStone Application: an Overview
	Which objects should be stored and shared?
	Which objects should be secured?
	Which objects should be connected?
	How should transactions be handled?
	How can performance be improved?

	1.4 Delivery and Deployment
	Public and Private Classes and Methods

	2 Communicating with the GemStone Object Server
	2.1 Client Libraries
	2.2 GemStone Sessions
	RPC and Linked Sessions

	2.3 Session Control in GemBuilder
	Session Parameters
	Defining Session Parameters Programmatically

	2.4 Logging In to and Logging Out of GemStone
	Logging In to GemStone
	The Current Session
	Example 2.1

	Logging Out of GemStone

	2.5 Session Dependents
	Example 2.2
	Example 2.3
	Example 2.4
	Figure 2.1 Committing with Approval From a Session Dependent

	3 Sharing Objects
	3.1 Which Objects to Share?
	3.2 Class Mapping
	Automatic Class Generation and Mapping
	Schema Mapping
	Behavior Mapping
	Mapping and Class Versions

	3.3 Forwarders
	Sending Messages
	Arguments
	Results

	Defunct Forwarders
	Example 3.1

	3.4 Replicates
	Synchronizing State
	Faulting
	Flushing
	Marking Modified Objects Dirty Manually

	Minimizing Replication Cost
	Instance Variable Mapping
	Example 3.2
	Example 3.3
	Example 3.4

	Stubbing
	Figure 3.1 Two-level Fault of an Object
	Figure 3.2 A Stub Responds to a Message

	Replication Specifications
	Example 3.5
	Example 3.6

	Customized Flushing and Faulting
	Modifying Instance Variables During Faulting
	Modifying Instance Variables During Flushing
	Example 3.7
	Example 3.8

	Mapping Classes With Different Formats

	Limits on Replication
	Replicating Client Smalltalk Blocks
	Block Callbacks
	Replicating Fixed/Scaled Decimals
	Example 3.9
	Example 3.10

	Client Copies

	3.5 Precedence of Replication Mechanisms
	3.6 Evaluating Smalltalk Code on the GemStone server
	Example 3.11
	Example 3.12

	3.7 Converting Between Forms
	Table 3.1 Delegate Conversion Protocol
	Table 3.2 Forwarder (to the Server) Conversion Protocol
	Table 3.3 Replicate Conversion Protocol
	Table 3.4 Stub Conversion Protocol
	Table 3.5 Conversion Protocol for Unshared Client Objects

	4 Connectors
	4.1 Connecting Root Objects
	Figure 4.1 Connecting Application Roots
	Figure 4.2 Root Objects
	Scope
	Verifying Connections
	Initializing
	Updating Class Definitions

	4.2 Connecting and Disconnecting
	4.3 Kinds of Connectors
	Connection Order
	Lookup
	Connecting by Name
	Figure 4.3 Connecting a Name Connector

	Connecting by Identity: Fast Connectors

	4.4 Making and Managing Connectors
	Making Connectors Programmatically
	Figure 4.4 Connector Class Hierarchy
	Creating Connectors
	Setting the Postconnect Action
	Adding Connectors to a Connector List
	Example 4.1

	Session Control
	Example 4.2
	Example 4.3
	Example 4.4
	Example 4.5
	Example 4.6

	5 Managing Transactions
	5.1 Transaction Management: an Overview
	5.2 Operating Inside a Transaction
	Figure 5.1 GemBuilder Application Workspace
	Committing a Transaction
	Aborting a Transaction
	Avoiding or Handling Commit Failures

	5.3 Operating Outside a Transaction
	Table 5.1 GbsSession Methods for Running Outside of a Transaction
	Being Signaled to Abort

	5.4 Transaction Modes
	Automatic Transaction Mode
	Manual Transaction Mode
	Choosing Which Mode to Use
	Switching Between Modes

	5.5 Managing Concurrent Transactions
	Setting Locks
	Example 5.1

	Releasing Locks Upon Aborting or Committing

	5.6 Reduced-Conflict Classes
	5.7 Changed Object Notification
	Example 5.2

	5.8 Gem-to-Gem Notification
	Example 5.3

	5.9 Asynchronous Event Error Handling

	6 Security and Object Access
	6.1 GemStone Security
	Login Authorization
	The UserProfile

	Controlling Visibility of Objects with SymbolLists
	System Privileges
	Protecting Methods
	Object-level Security
	Object Security Policies

	7 Error-handling
	7.1 Error-handling and Recovery
	Stack-based Error-handling
	Example 7.1

	Session-based Error-handling
	Example 7.2

	User-defined Errors
	Example 7.3
	Example 7.4

	7.2 Detecting GemStone Interrupts

	8 Schema Modification and Coordination
	8.1 Schema Modification
	Instance Migration Within GemStone
	Setting the Migration Destination
	Migrating Objects
	Things to Watch Out For
	Instance Variable Mapping in Migration

	8.2 Schema Coordination

	9 Performance Tuning
	9.1 Selecting the Locus of Control
	Locus of Execution
	Relative Platform Speeds
	Cost of Data Management
	GemStone Optimization

	9.2 Profiling
	Profiling Client Smalltalk Execution
	Watching Stub Activity
	Using Verbose Mode

	9.3 Replication Tuning
	Controlling the Fault Level
	Preventing Transient Stubs
	Setting the Traversal Buffer Size

	9.4 Optimizing Space Management
	Explicit Stubbing
	Figure 9.1 Employee Set Faulted into the Client Smalltalk

	Using Forwarders
	Not Caching Selected Objects

	9.5 Using Primitives
	9.6 Multiprocess Applications
	Process-safe Transparency Caches
	Blocking and Nonblocking Protocol
	One Process per Session
	Multiple Processes per Session
	Coordinating Transaction Boundaries
	Coordinating Flushing
	Coordinating Faulting

	10 GemBuilder Configuration Parameters
	10.1 Setting Configuration Parameters
	10.2 GemBuilder Configuration Parameters
	Table 10.1 Configuration Parameters for GemBuilder
	assertionChecks
	autoMarkDirty
	blockingProtocolRpc
	blockReplicationEnabled
	blockReplicationPolicy
	bulkLoad
	confirm
	connectorNilling
	connectVerification
	defaultFaultPolicy
	eventPollingFrequency
	eventPriority
	faultLevelRpc
	forwarderDebugging
	freeSlotsOnStubbing
	fullCompression
	generateClassConnectors
	generateClientClasses
	generateServerClasses
	InitialCacheSize
	InitialDirtyPoolSize
	libraryName
	removeInvalidConnectors
	stubDebugging
	traversalBufferSize
	verbose

	11 The GemStone Tools: an Overview
	11.1 GemStone Menu
	Table 11.1 The GemStone Menu

	11.2 The GemStone Session Browser
	Starting the Session Browser
	Figure 11.1 The GemStone Session Browser

	Opening the Session Parameters Editor
	Figure 11.2 The Session Parameters Editor

	Managing Session Parameters
	Table 11.2 Functions in the Session Browser

	11.3 Logging In to and Logging Out of GemStone
	Logging In to GemStone
	Figure 11.3 The GemStone Session Browser

	Setting the Current Session
	Logging Out of GemStone
	The Settings Browser
	Opening the Settings Browser
	Figure 11.4 The Settings Browser

	Parameter Notebook
	Table 11.3 The File Menu
	Table 11.4 The Parameter Menu

	Parameter Categorization
	Table 11.5 Settings Browser Categorization

	11.4 GemStone Workspaces
	11.5 The System Workspace
	Figure 11.5 GemStone System Workspace

	12 Using the GemStone Programming Tools
	12.1 Browsing Code
	Figure 12.1 GemStone Classes Browser
	Figure 12.2 Menus in the GemStone Browser
	The File Menu
	Table 12.1 File Menu in the GemStone Browser

	The GemStone Menu
	Table 12.2 GemStone menu in the GemStone Browser

	Symbol List Menu
	Table 12.3 GemStone Browser’s Symbol List Menu

	Class Menu
	Table 12.4 Class Menu in GemStone Browser

	Pop-up Text Pane Menu
	Table 12.5 Pop-up Menu in GemStone Browser’s Text Pane
	Table 12.6 Additional GemStone Menu Items

	12.2 Coding
	About GemStone Smalltalk Classes
	Defining a New Class
	Example 12.1
	Subclass Creation Methods
	Private Instance Variables

	Modifying an Existing Class
	Defining Methods
	Public and Private Methods
	Reserved and Optimized Selectors

	Saving Class and Method Definitions in Files
	Example 12.2
	Handling Errors While Filing In

	12.3 The Connector Browser
	Figure 12.3 The Connector Browser
	The Group Pane
	Table 12.7 Group Menu in the Connector Browser

	The Connector Pane
	Table 12.8 Connector Menu in the Connector Browser

	The Control Panel
	Table 12.9 Options in the Control Panel

	Postconnect Action
	Table 12.10 Postconnect Action Options in the Connector Browser

	12.4 The Class Version Browser
	Figure 12.4 The Class Version Browser
	Menus in the Class Version Browser
	Table 12.11 Class Menu in Class Version Browser

	12.5 Debugging Overview
	12.6 Inspectors
	Figure 12.5 GemStone inspector
	Table 12.12 Commands in GemStone Inspector
	Figure 12.6 GemStone Inspector Basic Inspect
	Inspecting UnorderedCollections
	Table 12.13 Commands for Inspecting NSCs

	12.7 Breakpoints
	Example 12.3
	Breakpoints for Primitive Methods
	Breakpoints for Optimized Methods
	The Breakpoint Browser
	Figure 12.7 GemStone Breakpoint Browser with a Breakpoint

	12.8 Debugger
	Disabling the Debugger

	12.9 Stack Traces

	13 Using the GemStone Administration Tools
	13.1 The Security Policy Tool
	Figure 13.1 The Security Policy Tool
	Security Policy Definition Area
	Group Definition Area
	Security Policy Tool Menus
	The File Menu
	Table 13.1 File Menu in the Security Policy Tool

	Security Policy Menu
	Table 13.2 Security Policy Menu in the Security Policy Tool

	Group Menu
	Table 13.3 Group Menu in the Security Policy Tool

	Member Menu
	Table 13.4 Member Menu in the Security Policy Tool

	Reports Menu
	Table 13.5 Report Menu in the Security Policy Tool

	Help Menu

	Using the Security Policy Tool
	Checking Security Policy Authorization
	Changing Security Policy Authorization
	Controlling Group Access to a Security Policy

	13.2 The Symbol List Browser
	Figure 13.2 The Symbol List Browser
	The Clipboard
	Symbol List Browser Menus
	File Menu
	Table 13.6 File Menu in the Symbol List Browser

	Dictionary Menu
	Table 13.7 Dictionary Menu in the Symbol List Browser

	Entry Menu
	Table 13.8 Entry Menu in the Symbol List Browser

	Help Menu

	13.3 User Account Management Tools
	GemStone User List
	Figure 13.3 GemStone User List
	Table 13.9 GemStone User List: File Menu
	Table 13.10 GemStone User List: Users Menu

	GemStone User Dialog
	Figure 13.4 GemStone User Dialog
	Table 13.11 Buttons in the GemStone User Dialog
	Table 13.12 GemStone User Dialog: File Menu

	Privileges Dialog
	Figure 13.5 Privileges Dialog in GemStone User Window

	A Packaging Runtime Applications
	A.1 Prerequisites
	Names
	Replicating Blocks
	Defunct Stubs and Forwarders
	Shared Libraries

	A.2 Packaging

	B Client Smalltalk and GemStone Smalltalk
	B.1 Language Differences
	B.2 TimeZone handling

	Index

