
GemStone®

GemConnect

Version 2.0

January 2007

GemConnect Programming Guide

ii GemStone Systems, Inc. January 2007

INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemStone
Systems, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise
copied in any form or by any means now known or later developed, such as electronic, optical, or mechanical means,
without express written authorization from GemStone Systems, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties.
Any unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in
severe civil and criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemStone Systems, Inc.
under separate license agreement. This software may only be used pursuant to the terms and conditions of such
license agreement. Any other use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software -
Restricted Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the
government agency shall not have the right to disclose this software to support service contractors or their
subcontractors without the prior written consent of GemStone Systems, Inc.
This software is provided by GemStone Systems, Inc. and contributors “as is” and any expressed or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose are disclaimed. In no event shall GemStone Systems, Inc. or any contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory
of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2007 GemStone Systems, Inc. All rights
reserved by GemStone Systems, Inc.

PATENTS
GemStone is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, and Patent Number 6,567,905 “Generational Garbage
Collector”. GemStone may also be covered by one or more pending United States patent applications.

TRADEMARKS
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of
GemStone Systems, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, Solaris, and SunOS are trademarks or registered trademarks of Sun Microsystems, Inc. All
SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
SPARCstation is licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
HP and HP-UX are registered trademarks of Hewlett Packard Company.
Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation in
the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the
United States and other countries.
AIX and POWER4 are trademarks or registered trademarks of International Business Machines Corporation.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective
owners. Trademark specifications are subject to change without notice. All terms mentioned in this documentation
that are known to be trademarks or service marks have been appropriately capitalized to the best of our knowledge;
however, GemStone cannot attest to the accuracy of all trademark information. Use of a term in this documentation
should not be regarded as affecting the validity of any trademark or service mark.
GemStone Systems, Inc.
1260 NW Waterhouse Avenue, Suite 200
Beaverton, OR 97006

Preface
About This Manual
GemConnect provides a way for GemStone Smalltalk programmers to load and
update relational data Oracle databases into GemStone.

This manual tells you how GemConnect works and how applications can use it to
access relational data. The manual provides reference information on GemConnect
classes and sample code demonstrating GemConnect functions.

Assumptions

To make use of the information in this manual, you must be familiar with the
operation of the GemStone system, as well as the relational database system you
are using GemConnect to access. You should also be an experienced GemStone
Smalltalk programmer. (See the GemStone Programming Guide for information
about GemStone Smalltalk.)
January 2007 GemStone Systems, Inc. iii

Preface GemConnect Programming Guide
How This Manual is Organized

● Chapter 1 provides an overview of GemConnect.

● Chapter 2 discusses how GemConnect works in the context of GemStone and
a three-tier client/server architecture.

● Chapter 3 discusses how to set up your connection to the Oracle database.

● Chapter 4 discusses how to use GemConnect to read from and update your
Oracle database.

● Appendix A explains how to use the C language source module included with
the product to customize GemConnect for your system.

● Appendix B lists and discusses GemConnect errors you may encounter.

Installing GemConnect

This manual assumes that you have a correctly installed GemConnect product, as
well as a fully configured and operational GemStone object server, GemBuilder,
and an Oracle relational database.

For information on installing the software, see the GemConnect Installation Guide for
your operating system platform.

Typographical Conventions

This document uses the following typographical conventions:

● Command lines you type in are shown in bold type. For example:

% env | grep GEM

● UNIX commands and Topaz commands are also shown in bold type. For
example:

copyextent

● Smalltalk methods and instance variables, UNIX file names and paths, and
screen dialogue examples are shown in monospace type. For example:

markForCollection

● Placeholders that are meant to be replaced with real values are shown in italic
type. For example:

StoneName.conf
iv GemStone Systems, Inc. January 2007

GemConnect Programming Guide Preface
Technical Support
GemStone provides several sources for product information and support. The
product-specific manuals and online help provide extensive documentation, and
should always be your first source of information. GemStone Technical Support
engineers will refer you to these documents when applicable.

GemStone Web Site: http://support.gemstone.com

GemStone’s Technical Support website provides a variety of resources to help you
use GemStone products. Use of this site requires an account, but registration is free
of charge. To get an account, just complete the Registration Form, found in the
same location. You’ll be able to access the site as soon as you submit the web form.

The following types of information are provided at this web site:

Help Request allows designated support contacts to submit new requests for
technical assistance and to review or update previous requests.

Documentation for GemConnect is provided in PDF format. This is the same
documentation that is included with your GemConnect product.

Release Notes and Install Guides for your product software are provided in PDF
format in the Documentation section.

Downloads and Patches provide code fixes and enhancements that have been
developed after product release. Most code fixes and enhancements listed on the
GemStone Web site are available for direct downloading.

Bugnotes, in the Learning Center section, identify performance issues or error
conditions that you may encounter when using a GemStone product. A bugnote
describes the cause of the condition, and, when possible, provides an alternative
means of accomplishing the task. In addition, bugnotes identify whether or not a
fix is available, either by upgrading to another version of the product, or by
applying a patch. Bugnotes are updated regularly.

TechTips, also in the Learning Center section, provide information and
instructions for topics that usually relate to more effective or efficient use of
GemStone products. Some Tips may contain code that can be downloaded for use
at your site.

Community Links provide customer forums for discussion of GemStone product
issues.

Technical information on the GemStone Web site is reviewed and updated
regularly. We recommend that you check this site on a regular basis to obtain the
January 2007 GemStone Systems, Inc. v

Preface GemConnect Programming Guide
latest technical information for GemStone products. We also welcome suggestions
and ideas for improving and expanding our site to better serve you.

You may need to contact Technical Support directly for the following reasons:

 • Your technical question is not answered in the documentation.

 • You receive an error message that directs you to contact GemStone Technical
Support.

 • You want to report a bug.

 • You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

 • Your name, company name, and GemStone/S license number

 • The GemStone product and version you are using

 • The hardware platform and operating system you are using

 • A description of the problem or request

 • Exact error message(s) received, if any

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, the support website is the preferred way to contact
Technical Support. Only designated support contacts may submit help requests
via the support website. If you are a designated support contact for your company,
or the designated contacts have changed, please contact us to update the
appropriate user accounts.

Email: support@gemstone.com

Telephone: (800) 243-4772 or (503) 533-3503

Requests for technical assistance may also be submitted by email or by telephone.
We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production system that is non-
operational. In these cases, please also submit your request via the web or email,
including pertinent details such error messages and relevant log files.
vi GemStone Systems, Inc. January 2007

GemConnect Programming Guide Preface
If you are reporting an emergency by telephone, select the option to transfer your
call to the technical support administrator, who will take down your customer
information and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone/S offers, at an additional charge, 24x7 emergency technical support.
This support entitles customers to contact us 24 hours a day, 7 days a week, 365
days a year, if they encounter problems that cause their production application to
go down, or that have the potential to bring their production application down.
Contact your GemStone/S account manager for more details.
January 2007 GemStone Systems, Inc. vii

Preface GemConnect Programming Guide
viii GemStone Systems, Inc. January 2007

Contents
Chapter 1. Product Overview

1.1 What Can GemConnect Do for You? . 1-2
What GemConnect Won’t Do . 1-2

1.2 GemConnect in Context . 1-2
The Two-Tier Approach . 1-3
The Three-Tier Approach. 1-3

GemConnect and the Three-Tier Approach 1-3

Chapter 2. GemConnect in the Three-Tier Architecture

2.1 Using Tuple Objects to Read and Change Data 2-2
2.2 Client Applications and GemBuilder . 2-3
2.3 GemStone Object Server . 2-3
2.4 GemConnect . 2-3
2.5 Relational Database . 2-4
2.6 How the Architecture Works . 2-4

Reading Data. 2-4
Writing Changes. 2-5
January 2007 GemStone Systems, Inc. 1

Contents GemConnect Programming Guide
Chapter 3. Connecting to Oracle

3.1 Setup . 3-1
3.2 Connecting to the Relational Database. 3-2

Using Parameters Objects . 3-2
Using Connection Objects . 3-3

Accessing UTF8/UTF16 data in Oracle 3-4
Connection Cache . 3-4

Managing Connections . 3-5
3.3 Disconnecting from the Relational Database 3-6
3.4 Checking the status of a connection . 3-6

Chapter 4. Oracle Database Operations

4.1 Executing SQL Statements in Oracle . 4-1
4.2 Reading Information from the Relational Database 4-2

Creating an OrderedCollection . 4-2
Creating a Tuple Class During a GemConnect Session. 4-3

Instance Variable Names . 4-3
rdbPostLoad . 4-4
Converting Relational Data Types to Classes 4-4

Creating a Tuple Class Outside a GemConnect Session 4-5
Relational Data Structure in Tuple Classes. 4-6
Managing Read Streams . 4-6

4.3 Writing to the Relational Database . 4-7
Generating the SQL Update Strings 4-7

Tracking the Relational Data 4-7
Change Notification . 4-8

Tracking How an Object Has Changed 4-9
Change Notification Sequence 4-10

Writing Changes . 4-11
Immediate Write-Through . 4-11
Queueing Updates . 4-12
Queueing Update Messages 4-12
Queueing Changed Objects 4-13

4.4 Using WriteStreams for Batch Operations 4-16
Creating a Write Stream . 4-16
2 GemStone Systems, Inc. January 2007

GemConnect Programming Guide Contents
Column Mapping . 4-16
Primary Key Mapping . 4-17

Performing INSERT Operations . 4-17
Performing DELETE Operations . 4-18
Performing UPDATE Operations . 4-19
Buffering Behavior . 4-20

Dependency Lists . 4-21
Batch Size . 4-21

Managing Write Streams . 4-22
4.5 Committing Changes . 4-23

Oracle Transaction Control. . 4-23
Synchronizing GemStone and Relational Database Transactions . . . 4-23

Commit List . 4-23
Commit Sequence . 4-24
Checking Results. . 4-25

Oracle Names . 4-25
GemConnect and Oracle Column Names. 4-26

4.6 Multi-Session Operation . 4-27
Making Queues Persistent . 4-27
Making Tuple Classes Persistent . 4-27
Making Parameters Objects Persistent 4-27

Appendix A. Using the C Source Module

A.1 Using the Public C Source Module . A-1
Edit Source File . A-2
Changing Data Type Conversions. A-3
Tailoring the Relational Database Login Process A-3

A.2 Rebuilding the GemConnect Library . A-4
Environment Variables . A-4

Run Make . A-5
Compiler Notes for Solaris . A-6

Install Into GemStone ualib Directory A-6
A.3 Adding a User Action . A-7

Declaring the User Action . A-7
Implementing the User Action. A-9
Calling the User Action . A-10
January 2007 GemStone Systems, Inc. 3

Contents GemConnect Programming Guide
Appendix B. GemConnect Errors

B.1 Troubleshooting . B-1
Failure to Start. B-1

B.2 GemConnect Error Messages . B-2
GsOracleConnection Class >> messages B-6

Index
4 GemStone Systems, Inc. January 2007

Chapter

1 Product Overview
GemConnect is a set of GemStone Smalltalk classes, methods, and primitives that
provides an interface between GemStone and Oracle. With GemConnect, a
programmer can load data from the Oracle relational database into objects on the
GemStone server, making the relational data available as objects to Smalltalk client
applications. In addition, changes to these objects can be written back to the
relational database.

Centralizing the mapping between relational data and objects in a shared object
server reduces the complexity and increases the performance of your overall
system in the following ways:

 • Client applications interact with server objects, without having to perform
object-to-relational data mapping.

 • Client applications need only communicate with the object server, without
individual connections to one or more relational databases.

 • Objects containing relational data can be cached, eliminating the need to
convert the relational data repeatedly.
January 2007 GemStone Systems, Inc. 1-1

What Can GemConnect Do for You? GemConnect Programming Guide
1.1 What Can GemConnect Do for You?
GemConnect is most useful to you in either of the following situations:

 • You support GemStone Smalltalk applications (or you are developing new
ones) that need to read and/or update data from a relational database.

 • You wish to partition your existing client/server applications and use
GemStone to create middle-tier services that read and/or update data in a
relational database. This three-tier client-server model is described briefly in
this chapter and in more detail in Chapter 2.

GemConnect allows you to connect to a relational database, submit queries and
updates to the data, read data from a query into GemStone object form, be notified
of changes to the data in GemStone, and flush those changes back to the relational
database.

GemConnect also allows you to collect updates to data from multiple concurrent
GemStone sessions and post them to the relational database in a batch.

What GemConnect Won’t Do
Each Smalltalk vendor has a different interface that it uses to access relational
databases. Because GemConnect cannot reasonably include all the possible
Smalltalk interfaces, it does not facilitate transparent porting of client-side
Smalltalk programs to GemStone Smalltalk.

GemConnect also does not convert foreign key references from the relational
database into direct object references in GemStone.

1.2 GemConnect in Context
GemStone and GemConnect are most useful in the development of a three-tier
client/server architecture for business applications. For a more complete
discussion of the three-tier architecture and GemStone’s place in it, see the white
paper Integrating Business Objects Systems with Relational Databases, published by
GemStone Systems, Inc.

The following paragraphs briefly describe the two- and three-tier architectures for
client/server operations.
1-2 GemStone Systems, Inc. January 2007

Product Overview GemConnect in Context
The Two-Tier Approach
In the two-tier approach to client/server applications, the client is responsible for
user interface and business application processing, and the server stores and
manages data. This model becomes more inefficient as applications grow larger
and become more complex.

The Three-Tier Approach
In the three-tier approach, the client handles user interface processing, but the
application logic of the system is partitioned between the client and an object server
like GemStone. The object server provides tools for building reusable business
objects that bundle data and processing. These business objects can be shared by
many users. The object server also manages access to the existing relational
databases that store the business’s data.

GemConnect and the Three-Tier Approach

GemStone’s object application server and GemConnect together make it possible
to access the relational data currently stored in your Oracle database and make it
available to these reusable business objects. You will be able to run larger and more
complex applications far more efficiently than on a typical two-tier client/server
system.

The three-tier approach is discussed in more detail in the next chapter, with
emphasis on GemConnect’s place in the architecture.
January 2007 GemStone Systems, Inc. 1-3

GemConnect in Context GemConnect Programming Guide
1-4 GemStone Systems, Inc. January 2007

Chapter

2 GemConnect in the
Three-Tier Architecture
The GemStone three-tier client/server architecture includes client applications
and relational database servers, with the GemStone object server providing a layer
between the applications and the relational databases that organizes and manages
data in business objects.

 • GemBuilder provides the interface between a client Smalltalk, C, or C++
application and the GemStone object server.

 • GemConnect provides an interface between data stored in the relational
database and data in the business objects stored in the GemStone object server.

This chapter places GemConnect in the context of the three-tier architecture.
Figure 2.1 shows a block diagram of the layers in the three-tier architecture and the
interfaces between them.
January 2007 GemStone Systems, Inc. 2-1

Using Tuple Objects to Read and Change Data GemConnect Programming Guide
Figure 2.1 The GemStone Three-Tier Architecture

2.1 Using Tuple Objects to Read and Change Data
Before we get into the details of how GemConnect works with applications, you
need to understand a key concept, the tuple object. The tuple object is the form in
which relational data is carried and manipulated by GemConnect. A tuple object
is an instance of a tuple class. A tuple class is instantiated in GemConnect to
represent one row of data from a database table.

GemStone creates tuple objects to hold and manipulate the data that comes out of
the relational database. Client applications that access relational data through
GemStone use these tuple objects, which are passed from GemStone to the
application by GemBuilder replication mechanisms. Often, this means that a client
application has class definitions that correspond to the tuple objects.

Client Application

GemStone

Relational

Object

Database

Server

GemBuilder

GemConnect

Other Applications
2-2 GemStone Systems, Inc. January 2007

GemConnect in the Three-Tier Architecture Client Applications and GemBuilder
Your application can implement an automatic update mechanism by sending a
message to a tuple object (or a collection of them) and allowing GemConnect to
propagate changes back to the relational database, using the tuple object’s ability
to generate SQL statements.

2.2 Client Applications and GemBuilder
As shown in Figure 2.1, GemBuilder is the interface between a client Smalltalk, C,
or Java application and the GemStone object server. GemBuilder classes establish
relationships between client objects and GemStone objects, mapping transparently
between the client and GemStone.

GemBuilder also includes forwarders, which are client Smalltalk objects whose data
and behavior actually reside in GemStone. Forwarders are useful for objects that,
for performance reasons, may be too large or complex to replicate on both the
client and the GemStone object server. You can use forwarders with GemConnect
to process tuple objects on the GemStone server and return other results.

2.3 GemStone Object Server
Business objects contain data and processing rules specific to your enterprise’s
business situations. The GemStone object server provides an environment in
which object-oriented client applications can interact with business objects that
persist and can be shared. GemStone provides interfaces for the client applications,
manages these business objects, and executes their processing logic.

2.4 GemConnect
GemConnect provides an interface between the relational database and the
GemStone object server. GemConnect’s functionality includes:

 • User actions, classes, and methods to manage connecting to and interacting
with the relational database.

 • Mapping of relational results into objects. Default or customized column-to-
instance-variable mappings are possible, as is automatic data type mapping
from relational data to and from GemStone objects.

 • Notification of changes to tuple objects.

 • Generation of SQL statements to act on relational data.
January 2007 GemStone Systems, Inc. 2-3

Relational Database GemConnect Programming Guide
 • Support for updating the relational database immediately or in batch mode.

 • A C language source module that allows you to extend GemConnect’s user-
action library.

2.5 Relational Database
For businesses with large amounts of data stored in relational form, the great
advantage of the three-tier architecture is that the relational database is still
accessed and updated as before. Applications can read data directly from it and
write data to it directly, while other applications which have been partitioned to
use GemStone business objects can read and write relational data through
GemBuilder and GemConnect.

2.6 How the Architecture Works
GemConnect and the three-tier architecture function together in the following
ways.

Reading Data
When a client application obtains data from the relational database, the following
steps take place:

1. The client Smalltalk application requests data from a GemStone business
object via GemBuilder.

2. Through GemConnect, GemStone creates a connection to the relational
database and executes an SQL query.

3. The relational database produces a result set.

4. Through GemConnect, GemStone maps the relational data to an object model,
creating tuple objects. The instance variables of the tuple objects contain data
from the rows in the result set.

5. GemStone passes the tuple objects back to the application.
2-4 GemStone Systems, Inc. January 2007

GemConnect in the Three-Tier Architecture How the Architecture Works
Writing Changes
Once an application makes modifications to the tuple object, changes are written
back to the relational database and GemStone in the following sequence:

1. The client application sends the modified tuple objects to GemStone and
makes a request to commit the changed data.

2. GemStone, through GemConnect, creates, then executes (either immediately
or later, in a batch) the SQL statements to write the changed data to the
relational database.

3. GemConnect registers connections to be committed to the relational database.

4. GemStone commits its transaction, then the relational database commits its
transactions.

Once all registered connections have committed, a message is returned to
GemStone that the commit process has succeeded.
January 2007 GemStone Systems, Inc. 2-5

How the Architecture Works GemConnect Programming Guide
2-6 GemStone Systems, Inc. January 2007

Chapter

3 Connecting to Oracle
Before you can read and write to your relational database, you must establish a
connection to that database. This chapter discusses how to set up your connection
to the Oracle database.

3.1 Setup
Correct operation of GemConnect assumes that, in addition to your client
application program, the following system components are available to you:

 • A fully configured and operational GemStone object server, with the
GemConnect product installed in it.

 • An Oracle relational database.

Note that Oracle requires certain environment variables to be set correctly before
the language interfaces will operate. If the variables are not set correctly, the
interface will not be able to connect to the relational server, resulting in
GemConnect connection failures.

 • For linked GemBuilder sessions, the client application process must be
configured correctly to run Oracle applications.
January 2007 GemStone Systems, Inc. 3-1

Connecting to the Relational Database GemConnect Programming Guide
 • For RPC sessions, the account under which the Gem process is run must
perform this setup in the appropriate startup file.

For example, if you were running the Gem process on a UNIX computer and
connecting to Oracle, the .profile file on the UNIX system might contain the
following:

ORACLE=/pub/oracle
export ORACLE
LD_LIBRARY_PATH=$ORACLE/lib
export LD_LIBRARY_PATH

If you intend to access an Oracle database that include strings stored in UTF8 or
UTF16 format, you may also need commands similar to the following:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

See the Oracle documentation for further details about setting necessary paths and
environment variables.

3.2 Connecting to the Relational Database
To connect to a relational database, you use a parameters object and a connection
object.

● The parameters object sets the characteristics of the connection.

● The connection object makes the actual connection to the relational database. It
is also used to send update, query, and commit requests to the relational
database.

Using Parameters Objects
The parameters object configures the connection object. Keeping the connection
configuration information in a parameters object, rather than in the connection
object itself, allows the information to be collected at the GemBuilder level and
transported down to GemStone.

You can create a parameters object as you need one, or create and store parameters
objects as persistent objects in GemStone, either for private or shared use.
Persistent parameters objects allow you to store connection information in
GemStone and reuse it.
3-2 GemStone Systems, Inc. January 2007

Connecting to Oracle Connecting to the Relational Database
Parameters objects contain a dictionary for parameters not included in the default
GemConnect classes. You can add additional connection configuration
information to this dictionary. The GsRdbParameters class provides messages to
access and update the information (otherAt: and otherAt:put:).

The default parameters include:

 • server — the name of the Oracle database server.

 • userName — the Oracle username to use for this connection.

 • password — the password for the designated Oracle username.

 • textLimit — The maximum amount of information fetched in Oracle LONG
and LONGRAW columns. The default limit is the maximum, 65532 bytes.
Values larger than this will be ignored, and the default used.

 • autoCommit — a Boolean indicating if the connection should use Oracle's
autoCommit mode (a commit is performed automatically after each write
operation).

To create and configure the parameters object, use the GsOracleParameters
subclass. Example 3.1 is a code fragment that shows how to create a Oracle
parameters object.

Example 3.1

params := GsOracleParameters new.
params server: ’server-name’;

userName: ’user-name’ ;
password: ’password’.

Using Connection Objects
The connection object controls the interaction with the database, usually by means
of SQL commands. When the connection object is sent the connect message, it
connects to the database, using the information contained in the parameters object.
The connection object is an instance of a GsOracleConnection.

In Example 3.2, a connection is established using the parameters object created
earlier. The connection object is then sent the connect message to open the
connection to the relational database.
January 2007 GemStone Systems, Inc. 3-3

Connecting to the Relational Database GemConnect Programming Guide
Example 3.2

conn := GsOracleConnection newWithParameters: params.
conn connect.

Although a connection object can exist without being connected to the relational
database, connection objects are meant to be created and used during one
GemStone session, then discarded, rather than stored as persistent objects.
Connections are specific to a GemStone session. For example, you cannot open a
connection in one GemStone session and then attempt to read/write to it from
another GemStone session. You cannot use a connection from multiple GemStone
sessions.

Accessing UTF8/UTF16 data in Oracle

Instances of GsOracleConnection may automatically convert Oracle data stored in
UTF8 or UTF16 format into standard GemStone Strings and DoubleByteStrings.
This conversion is controlled by the instance variable charConversion.
Example 3.3 shows an example of setting the connection to convert data from
#UTF8. For this to work correctly, both the Oracle database and the environment
must be set up to use the UTF8 character set.

Example 3.3

conn charConversion: #UTF8

Valid inputs to the charConversion: method are: nil, #UTF8, or #UTLF16. If the
data cannot be converted, the error #typeConversionError is raised.

Note
The environment variable $NLS_LANG must be set to an appropriate
UTF character set (for example, AMERICAN_AMERICA.UTF8) in
order to use this feature.

Connection Cache

GemConnect maintains a cache in which to name and store connection objects
during a GemStone session. When you establish a new connection to the relational
database and name that connection, GemConnect places the connection into the
connection cache under that name. Example 3.4 shows how to name a connection
and store it in the connection cache.
3-4 GemStone Systems, Inc. January 2007

Connecting to Oracle Connecting to the Relational Database
Example 3.4

conn cacheWithName: #NamedConnection

You can access a named connection stored in the connection cache with the
connection class method connectionWithName:.

Example 3.5

GsOracleConnection connectionWithName: #NamedConnection

If you try to use an existing name for a new connection, GemConnect returns an
error.

You can remove a connection from the connection cache by using the connection
method removeFromCache:

Example 3.6

conn removeFromCache

When the GemStone session ends, the connection cache is emptied.

Managing Connections
Within a GemStone session, you can use the class method lastConnection to
access the last instance of GsOracleConnection that was successfully connected
to the relational database (whether or not it was stored in the connection cache).
Using lastConnection, GemStone can use the same interface throughout the
session to interact with the database, without having to store the connection as a
global variable or in the connection cache. This is useful if you’re only establishing
one connection at a time.

You could get the same effect by naming the connection and placing it in the cache,
but that would require you to check the cache each time before being able to use
the connection.

You can gather all the connection instances for a particular session with the
GsOracleConnection >> allConnections method:
January 2007 GemStone Systems, Inc. 3-5

Disconnecting from the Relational Database GemConnect Programming Guide
Example 3.7

GsOracleConnection allConnections.

3.3 Disconnecting from the Relational Database
Connections to a relational database consume system resources. GemStone does
not free connection resources automatically until you log out of the GemStone
session. When you’re finished with a connection object, send a disconnect
message to the object. This message disconnects the object from the relational
database and frees the resources allocated to the connection. Example 3.8
disconnects the connection we established earlier.

Example 3.8

conn disconnect.

To disconnect all the connection objects at once, use the GsOracleConnection
>> allConnections method and send disconnect to each of the connections
returned. This provides a simple way to disconnect all sessions at once.

Once a connection is freed, any instance of read stream (GsRdbReadStream) or
write stream (GsRdbWriteStream) associated with it is invalid. For more about
read streams, see Chapter 4, “Oracle Database Operations“.

3.4 Checking the status of a connection
You can check if a connection is connected to an Oracle repository or not by using
the method connected. For example:

Example 3.9

conn connected ifFalse: [conn connect].
3-6 GemStone Systems, Inc. January 2007

Chapter

4 Oracle Database
Operations
Once you have an open connection to the relational database, the connection
instance can read, write, and perform other operations on the Oracle database.
This chapter discusses how to use GemConnect to read data from and update your
Oracle database, and includes the following topics:

Before you attempt to use GemConnect, we suggest that you become familiar with
the information in this chapter.

4.1 Executing SQL Statements in Oracle
Reading data from Oracle into GemStone objects, or writing changes to GemStone
objects out to corresponding Oracle tables, requires information on the mapping

 • Executing SQL Statements in Oracle page 4-1

 • Reading Information from the Relational Database page 4-2

 • Writing to the Relational Database page 4-7

 • Using WriteStreams for Batch Operations page 4-16

 • Committing Changes page 4-23

 • Multi-Session Operation page 4-27
January 2007 GemStone Systems, Inc. 4-1

Reading Information from the Relational Database GemConnect Programming Guide
between objects and table rows. Other types of Oracle operations that can be done
in SQL statements can be executed by statements such as this:

Example 4.1

conn executeNoResults: <sql statement>

For INSERT, DELETE, and UPDATE SQL statements, you can get back the number
of rows modified by the SQL statement by using:

Example 4.2

numRowsModified := conn executeReturnRowsAffected: <sql statement>

You should not use these methods to execute SELECT statements, or to perform
COMMIT or ROLLBACK operations.

4.2 Reading Information from the Relational Database
To read information from the relational database, the connection instance can
execute SQL statements to generate a result set. You use a read stream to read the
data from the result set into GemConnect tuple objects (see page 2-2).

A read stream is an instance of the GsRdbReadStream class, which is a non-
positionable stream over the result of an SQL query to the relational database.
Read streams are created as a result of executing a SELECT query. Methods that
return read streams are the GsOracleConnection >> openCursorOn:* and
execute:* methods.

This section describes several ways to use read streams to get data from a relational
database into a form that your applications can use.

Creating an OrderedCollection
When the result set of an SQL query is returned through the read stream,
GemConnect’s default behavior is to create an OrderedCollection object that
contains the column values for each row of the result set.

Example 4.3 shows how to create an OrderedCollection object that contains all
the results of an SQL select statement.
4-2 GemStone Systems, Inc. January 2007

Oracle Database Operations Reading Information from the Relational Database
Example 4.3

resultStream := conn openCursorOn: 'select * from Books'.
anOrderedCollection := resultStream upToEnd.

Creating a Tuple Class During a GemConnect Session
You may find it more useful to create tuple objects to hold the relational data
returned by the SQL query in instance variables. The most common way to
generate tuple objects from the result set is through the GsRdbReadStream>>
createTupleClassNamed:inDictionary: method. This method creates a
tuple class with the name you supply, installs it in the current read stream, places
it in the symbol dictionary you specify, then returns it. See Example 4.4.

Example 4.4

resultStream createTupleClassNamed:#aName
inDictionary:symbolDict

Alternatively, you can create a tuple class through the GsOracleConnection
class, with the execute:tupleClassName:inDictionary: message.

Instance Variable Names

The new tuple class’s instance variable names are translations of the current result
set’s column names, if the database returned them. (If no names were returned, the
instance variables are called iv1, iv2, iv3, etc.)

The following rules apply when column names are translated to GemStone
instance variable names.

1. A column name that begins with a character that is not a letter or an
underscore is translated to an instance variable name beginning with a
lowercase letter “g.” (1Name becomes g1Name.)

2. A column name containing characters other than letters, numbers, or
underscore is translated to an instance variable name with underscores
substituted for those characters. (id# becomes id_.)

Rule 1 is applied before Rule 2. That is, a column name that begins with a
character that is not a letter, number, or underscore has a “g” inserted before
the character is translated to an underscore. ($price becomes g_price.)
January 2007 GemStone Systems, Inc. 4-3

Reading Information from the Relational Database GemConnect Programming Guide
You can change this translation between column names and instance variables in
the public C source module, using the GsPublicIVsAndConstraints function.

rdbPostLoad

Each tuple object is also sent a message named rdbPostLoad after it is loaded
with data from the relational database. By default, the rdbPostLoad message
does nothing. You can reimplement rdbPostLoad to perform such functions as
notifying a tuple object of its changes or time-stamping the object.

Converting Relational Data Types to Classes
The data types in each row retrieved from the relational database are mapped to
GemStone fundamental data type classes. The new tuple class uses these
mappings to convert relational data types to classes, as specified in Table 4.1. (If
you have altered the public C source module to change the data type mapping, the
new tuple class uses those mappings instead.)

Types not listed in Table 4.1 are converted to instances of Object.

Table 4.1 Type Conversion from Oracle to GemStone Classes

Oracle Type Mapped to GemStone Class

float Number

float(p) Number

number Number
(Value returned is an Integer if it contains no decimal part.
Otherwise, it is a Float.)

number(p) SmallInteger or Integer
(SmallInteger if precision ≤ 8.)

number(p, s) SmallInteger, Integer, or ScaledDecimal
(If scale ≤ 0 and precision ≤ 8, SmallInteger, with scale
subtracted from precision.
If scale ≤ 0 and precision > 8, Integer, with scale subtracted
from precision.
Otherwise, ScaledDecimal.)

date DateTime

rowid String (Oracle rowid to string conversion is used)

long String (Size limited by GsRdbParameters textlimit)
4-4 GemStone Systems, Inc. January 2007

Oracle Database Operations Reading Information from the Relational Database
NOTE
Dates returned from Oracle data that are out of range in GemStone (i.e.,
dates before January 1, 1901 or after December 31, 1000000) will be
converted to nil inside a GemConnect tuple object.

Creating a Tuple Class Outside a GemConnect Session
You can create a tuple class before starting a GemConnect session, using
GemStone and GemBuilder, then use the tuple class from within GemConnect to
map the relational data. See Example 4.5.

Example 4.5

Object subclass: #Book
 instVarNames: # ('id' 'pub' 'date' 'title')
 classVars: # ()
 classInstVars: # ()
 poolDictionaries: # []
 inDictionary: UserGlobals
 constraints: #[]
 instancesInvariant: false
 isModifiable: false

Example 4.6 shows how to execute an SQL statement and use the tuple class to
map the relational data.

char String

varchar2 String

raw ByteArray

longraw ByteArray
(Size limited by GsRdbParameters textlimit)
(Oracle limitations currently make it impossible to fetch
this type of column from GemConnect.)

Table 4.1 Type Conversion from Oracle to GemStone Classes

Oracle Type Mapped to GemStone Class
January 2007 GemStone Systems, Inc. 4-5

Reading Information from the Relational Database GemConnect Programming Guide
Example 4.6

resultStream :=
conn openCursorOn: 'select * from Book'

tupleClass: Book

Relational Data Structure in Tuple Classes
By default, GemConnect places data returned from the first result column into the
first instance variable of the tuple object, the second result column into the second
instance variable, and so on. However, you might wish to use a different mapping
than the default between the column names and the instance variables.

If you reimplement the class method rdbColumnMapping in a tuple object’s class,
GemConnect sends messages to tuple objects to load instance variables with
relational column information according to the mapping that you specify. The
rdbColumnMapping method returns a collection of the correspondences between
the name of each column in the relational data and the methods available to access
and update the data in that column.

Example 4.7 specifies the mapping between column names and instance variables.
Each entry contains (in order) the column name, instance variable name, accessing
message, and updating message.

Example 4.7

rdbColumnMapping
^#(#(#id #id #id #id:)
 #(#pub #pub #pub #pub:)
 #(#date #date #date #date:)
 #(#title #title #titleCode #settitleFromCode:)
)

If the accessor and the updater have the same name as the instance variable, you
need not put them in the column map.

Managing Read Streams
Read streams allocate large memory blocks to hold data being retrieved from
Oracle. When you are finished using a read stream, send it the message free to
4-6 GemStone Systems, Inc. January 2007

Oracle Database Operations Writing to the Relational Database
release these memory blocks. If your session continues to create new read streams
without freeing them, you may run out of memory.

A way to free all streams opened on a connection is to iterate over the results of
sending the message GsOracleConnection >> allStreams to your
connection. This returns both read and write streams.

4.3 Writing to the Relational Database
You can use GemConnect to generate SQL statements with which to access or
update data. SQL strings are not generated automatically. You must explicitly call
the SQL generation messages in the GemConnect classes with the appropriate
parameters.

Generating the SQL Update Strings
GemConnect provides three SQL generation messages.

To generate a SQL insert string for a tuple object being inserted into a collection,
send this message to the tuple object:

generateSQLInsert: theConnection

To generate a SQL delete string for a tuple object being deleted from a collection,
send this message to the tuple object:

generateSQLDelete: theConnection

To generate a SQL update string for a particular change, send this message to the
tuple object:

generateSQLUpdate: theConnection instVarName: theChangedInstVar
newValue: theNewValue

GemConnect provides a single method to post updates to the relational database,
regardless of how you generated the updates. The GsOracleConnection class
message executeNoResults: accepts the SQL string generated from the change
notification message and sends it to the relational database for execution. The
message returns only a Boolean result, since there is generally no need for the data
to be processed further by GemStone after the update is made.

Tracking the Relational Data

In order to ensure that the correct data in the relational database is updated, the
relational data mapped into GemConnect must have three types of information
January 2007 GemStone Systems, Inc. 4-7

Writing to the Relational Database GemConnect Programming Guide
associated with it: column mapping, the name of the relational database table from
which the data came, and primary key information.

Using this information, GemConnect can be sure that when it generates SQL
update strings, they will operate on the correct data. There are two ways to
associate this identifying information with the relational data.

1. You can use class methods to associate the information that identifies the
relational data with the tuple object. In this approach, the tuple object must
reimplement three methods with which to retrieve the necessary information:

 • rdbTableName — Returns the name of the relational table into which the
changed data in the tuple object will be loaded.

 • rdbColumnMapping — Returns an array of column name-to-instance
variable pairs. Each element in the array corresponds to a column to be
updated in the table.

 • rdbPrimaryKeyMaps — Returns the column mapping entries that
correspond to the primary key for each instance. This mapping identifies
the row to update in the relational database table.

The SQL generation methods use this information to identify where the
changed data belongs in the relational database.

2. Alternatively, you can specify the identifying information to the lower-level
versions of the SQL generation methods.

 • generateSQLInsert:table:columns:

 • generateSQLDelete:table:keys:

 • generateSQLUpdate:instVarName:newValue:table:
columns:keys:

Change Notification
Since GemStone or your application may alter the data read from the relational
database, you need to know which tuple objects are about to be modified so that
you can update the relational database.

By default, GemConnect does not notify you when tuple objects are changed, since
change notification can have a negative impact on system performance.

You can, however, implement the rdbPostLoad message for each tuple class that
holds the relational data so that GemConnect will notify you when an instance
variable in a tuple object is about to change. To get notification of changes, use the
message notifyChange: true. See Example 4.8.
4-8 GemStone Systems, Inc. January 2007

Oracle Database Operations Writing to the Relational Database
Example 4.8

rdbPostLoad
self notifyChange: true.

NOTE
Some GemStone server product versions do not support Change
Notification. When using those GemStone versions, any attempt to use
Change Notification will return an error.

To stop notification of changes, use the message notifyChange: false.

To determine whether a tuple object is having its changes tracked, send it the
message notifyChange.

NOTE
If an object held by one of the instance variables in a tuple object changes,
the tuple object is not notified.

In addition to being notified of changes to tuple objects, you can also be notified of
insertions and deletions that affect UnorderedCollection and
SequenceableCollection objects. To enable this notification, use the
notifyChange: message.

Tracking How an Object Has Changed

Each time an instance variable of a tuple object is about to be modified, detailed
information about the change is passed to the object by the message
aboutToChange:newValue:. You can use this information to write the changes
out to the relational database.

Similarly, detailed change information is sent to nonsequenceable (unordered)
collection objects by the aboutToAdd: and aboutToRemove: messages.

Detailed change information is sent to sequenceable collection objects by the
aboutToInsert:index: and aboutToDelete:index: messages.

For operations such as at:put: or copyFrom:to:into:startingAt: on
sequenceable collection objects, when change notification is enabled, the message
aboutToChange:newValue: is sent for each element of the collection affected
by the change. In this case, the first argument is the offset into the collection (or
unnamed instance variable) where the change will take place. The second
argument is the new value that will be stored at that offset.

The following classes will notify you only if instance variables change:
January 2007 GemStone Systems, Inc. 4-9

Writing to the Relational Database GemConnect Programming Guide
 • AbstractDictionary (and all its subclasses)

 • RcCounter

 • RcQueue

Invariant, special, and byte-indexable classes cannot be configured to notify you of
changes.

Change Notification Sequence

Change notification takes place in the following sequence:

1. The client application makes changes to data originally loaded from the
relational database. At some point, these changes are flushed to the GemStone
tuple object.

2. If change notification is turned on for the tuple object, the GemStone object
manager sends an aboutToChange:newValue: message before the instance
variable in the tuple object changes. The application must reimplement the
method that handles this message.

3. Since the change notification includes information describing how the tuple
object is about to be changed, the application may use the change notification
to generate SQL statements with which to update the relational database.

 • For a discussion of the generateSQL* messages, see “Generating the
SQL Update Strings” on page 4-7.

4. The changes may be written directly to the relational database, either in the
aboutToChange:newValue: message or immediately after it returns, or
they may be queued for later updates. (If the changes are written through
immediately, the data in the relational database is changed before the changes
take effect in GemStone.)

 • For a discussion of these two approaches — immediate write-through and
queued updates, see “Writing Changes” on page 4-11.

Example 4.9 writes a change through to the relational database.
4-10 GemStone Systems, Inc. January 2007

Oracle Database Operations Writing to the Relational Database
Example 4.9

aboutToChange: offset newValue: newInstVar
| conn |
conn := GsOracleConnection connectionWithName:
 #OracleConnection.
conn executeNoResults:
 (self generateSQLUpdate: conn
 instVarName: (self class allInstVarNames at: offset)
 newValue: newInstVar).

In Example 4.10, the change is written to a queue for later update.

Example 4.10

aboutToChange: offset newValue: newInstVar
| conn |
conn := GsOracleConnection connectionWithName:
 #OracleConnection.
conn queue: RcQueue new.
conn queue add:
 (self generateSQLUpdate: conn
 instVarName: (self class allInstVarNames at: offset)
 newValue: newInstVar).

Writing Changes
Whenever data is changed, and change notification is turned on (page 4-8), you’re
notified of changes made to tuple objects. At that point, you have several options
in terms of handling the changes and sending them to the relational database. You
can write changes immediately or queue updates and make them all at once. Once
you’ve updated the database, you can commit those changes.

Immediate Write-Through

You can write the changed data through to the relational database immediately. As
discussed earlier (beginning on page 4-9), the aboutToChange:newValue:
message returns information about how instance variables in the tuple objects
were changed. GemConnect uses this information to generate SQL statements
through the connection object to update the relational database. (The process for
January 2007 GemStone Systems, Inc. 4-11

Writing to the Relational Database GemConnect Programming Guide
updating from collections is similar, except that GemConnect uses information
from the aboutToAdd:, aboutToRemove:, aboutToInsert:index and
aboutToDelete:index messages.)

Queueing Updates

If you were to update the relational database immediately every time a tuple object
was modified, performance would be very slow. GemConnect allows you to
collect updates from a single GemStone session or even from multiple concurrent
sessions and post all the updates to the database in one batch. There are several
ways of accomplishing this.

The GemConnect connection objects provide an instance variable for holding a
queue object. If you want to write the updates made in one session out to the
relational database, do the following:

1. Create an RcQueue or RcIdentityBag (or other collection) instance when
you create the connection object.

2. Collect the updated information and add it to the queue.

3. Before you close the connection, send all the accumulated updates to the
relational database.

The information in the queue can take many forms.

 • The objects in the queue might be the actual SQL update strings generated by
the aboutToChange:newValue: method.

 • Alternatively, the queue objects might be tuple objects loaded from the
database that contain instance variable information.

To accumulate update information for multiple concurrent sessions, you can
create a persistent instance of RcQueue or RcIdentityBag. See “Making Queues
Persistent” on page 4-27.

Queueing Update Messages

One approach to queueing is to generate the SQL statements from the change
notification information and queue them for later execution. (For information
about writing changes to a queue, see Example 4.10 on page 4-11.)

Example 4.11 shows how to flush queued messages.
4-12 GemStone Systems, Inc. January 2007

Oracle Database Operations Writing to the Relational Database
Example 4.11

conn queue do: [:sqlString |
 conn executeNoResults: sqlString
].

Queueing Changed Objects

The preferred way to write changed data to the relational database is to queue the
change information needed to generate the SQL updates. There are two variations
of this process.

1. For cases in which the objects are very large or do not change much, we
recommend that you queue the object with its change information. When the
update queue is flushed, GemConnect generates the SQL statements necessary
to update the relational database.

Example 4.12 shows how to queue the entire changed object, along with the
information about what has changed.

Example 4.12

aboutToChange: offset newValue: newInstVar
| chgivs conn |
conn := GsOracleConnection connectionWithName:

#GsOracleConnection
chgivs := conn queue at:self ifAbsent:[nil].
(chgivs isNil) ifTrue: [
 chgivs:= conn queue at:self put:(IdentitySet new)
]
chgivs add:(self class allInstVarNames at: offset).

NOTE
In this approach, if you change a primary key name in the object, you
must be certain to include that information with the queued object.
Otherwise, GemConnect will not be able to locate the appropriate
location in the relational table to update.

Example 4.13 shows how to flush the queue of changed objects.
January 2007 GemStone Systems, Inc. 4-13

Writing to the Relational Database GemConnect Programming Guide
Example 4.13

conn queue doKeysAndValues: [:tuple :chgs |
colsNvals := tuple getNamesAndValuesFor: (tuple

rdbColumnMapping) scope: chgs.
keysNvals := tuple getNamesAndValuesFor: (tuple

rdbPrimaryKeyMaps).
sql := conn class generateSQLUpdateForTable: (tuple

rdbTableName)
columns:colsNvals
keys: keysNvals.

 conn executeNoResults: sql].

2. Another approach to queueing changed objects is to set up rdbPostLoad to
copy the entire tuple object when it is made available to the application,
making sure that change notification is turned on for the object. When you
receive notification that the object is about to be changed, you queue the
changed object for a later update. At update time, you compare the original
with the changed version of the tuple object, and then generate the SQL
statements to update the relational database.

Examples 4.14 through 4.17 demonstrate this approach.

Example 4.14

"Preserving state of object"
rdbPostLoad
 self notifyChange: true.
 self tagAt: 1 put: self copy.

Example 4.15

"Add object to queue when changed"
aboutToChange: offset newValue: newValue
 |conn|
conn := GsOracleConnection connectionWithName:
 #OracleConnection.
conn queue add: self
4-14 GemStone Systems, Inc. January 2007

Oracle Database Operations Writing to the Relational Database
Example 4.16

"Flush the queue"
conn queue do: [:obj |
 conn executeNoResults: (obj generateSQLUpdate: conn)
].

Example 4.17

"Generate the SQL statements"
generateSQLUpdate: conn
|sql original ivs scope|

original := self tagAt: 1.
original isNil ifTrue: [
"If no original values, this is a new object. Generate
insert."
 sql := self generateSQLInsert: conn
]
ifFalse: [
"If there are original values, generate update"
 scope := OrderedCollection new.
 ivs := self class allInstVarNames.
 1 to: (ivs size) do: [:i |
 (original instVarAt: i) = (self instVarAt: i)

ifFalse: [scope add: (ivs at: i)].
].
 sql := self generateSQLUpdate: conn scope: scope.
].
^sql

Both of these approaches show the clear advantage of queueing update objects
(rather than update messages). If you were to queue update messages, you would
queue (and later execute) one SQL statement for each change made to each tuple
object. By queueing objects, you generate all the updates for a single object with
one SQL statement.
January 2007 GemStone Systems, Inc. 4-15

Using WriteStreams for Batch Operations GemConnect Programming Guide
4.4 Using WriteStreams for Batch Operations

If your application generates a number of similar SQL statements, such as a group
of SQL inserts to the same table, or a group of updates changing the same column,
you can improve performance by using a write stream.

In GemConnect, a write stream is an instance of GsRdbWriteStream that allows
you to add a tuple (or a collection of tuples) containing changes to be written to the
relational database. Using write streams, you can perform SQL updates, inserts,
and deletes without having to worry about constructing SQL statements.

GsRdbWriteStream is a subclass of GsRdbReadStream.

Creating a Write Stream
Methods on class GsOracleConnection allow you to create instances of
GsRdbWriteStream that perform either Oracle INSERT, DELETE, or UPDATE
operations. A given write stream can only perform one type of operation, and only
for a single tuple class.

As described earlier, GemConnect uses three types of information to ensure that
the correct data in the Oracle database is updated: column mapping, the name of
the relational database table from which the data came, and primary key
information. This information allows GemConnect to determine the mapping
between GemStone tuple classes and the associated Oracle database tables.

You can use GsOracleConnection methods to override the default table name,
column mapping, or primary key mapping when useful.

Column Mapping

As discussed earlier in this chapter (page 4-6), column mapping establishes the
correspondences between the name of each column in the relational data and the
methods available to access and update the data in that column. Each entry in the
column map contains (in order) the column name, instance variable name,
accessing message, and updating message.

When you use write streams to perform SQL INSERT and UPDATE operations,
the entries in the column maps must be ordered in the same sequence in which
they appear in the Oracle table.

For example, if you have an Oracle table with rows in this order:

('ID', 'LAST_NAME', 'FIRST_NAME', 'ADDRESS')

then your column map information must order them as shown in Example 4.18.
4-16 GemStone Systems, Inc. January 2007

Oracle Database Operations Using WriteStreams for Batch Operations
Example 4.18

#((ID id id id:)
(LAST_NAME lastName lastName lastName:)
(FIRST_NAME firstName firstName firstName:)
(ADDRESS address address address:))

You can also supply a tuple class of Array, in which case you only supply
abbreviated column map information with two elements:

Example 4.19

#((ID id)
(LAST_NAME lastName)
(FIRST_NAME firstName)
(ADDRESS address))

When you pass an Array to nextPut:, the elements in the array are mapped first-
to-last as specified by the column mapping.

Primary Key Mapping

Primary key mapping is used to associate column mapping entries with the
primary key for each instance. Key mapping identifies the row to update in the
relational database table.

For SQL DELETE and UPDATE operations, the entries in the key maps must be
ordered in the same sequence in which they appear in the Oracle table. In addition,
for UPDATE operations, all entries in the key map must also be present in the
column map.

Performing INSERT Operations
Inserting data into the Oracle database is a two-part process:

1. First, you create the write stream by sending the message
openInsertCursorOn: (or one of its variants) to the connection object.

2. Once you have created the write stream, you can add tuple objects to it. To add
a single entry, send the message nextPut: to the write stream, with the tuple
object as the argument.
January 2007 GemStone Systems, Inc. 4-17

Using WriteStreams for Batch Operations GemConnect Programming Guide
To add a collection of tuple objects iteratively to the stream, use the message
nextPutAll: instead. See Example 4.20.

Example 4.20

writeStream := conn openInsertCursorOn: TupleClass.
writeStream nextPutAll: TupleInstanceCollection.
conn commitTransaction. "This also makes sure that
writeStream is flushed"

If you need to override the default column mapping or database table name, you
include the columnMapping: and tableName: keywords:

openInsertCursorOn: theTupleClass columnMapping: columnMap

or

openInsertCursorOn: theTupleClass columnMapping: columnMap
tableName: theTableName

Performing DELETE Operations
Example 4.21 uses the openDeleteCursorOn: method to delete the contents of
TupleInstanceCollection.

Example 4.21

writeStream := conn openDeleteCursorOn: TupleClass.
writeStream nextPutAll: TupleInstanceCollection.
conn commitTransaction.

You can also delete data using arrays. Example 4.22 uses the keyMapping:
keyword to override the default key mapping "ID" for ID = 1001, 1002, 1003.
4-18 GemStone Systems, Inc. January 2007

Oracle Database Operations Using WriteStreams for Batch Operations
Example 4.22

writeStream := conn openDeleteCursorOn: Array keyMapping:
#((ID id)).
writestream nextPut: #(1001).
writestream nextPut: #(1002).
writestream nextPut: #(1003).
conn commitTransaction.

Alternatively, you could use nextPutAll: to perform the same operation:

Example 4.23

writeStream := conn openDeleteCursorOn: Array keyMapping:
#((ID id)).
writestream nextPutAll: #((1001)(1002)(1003)).
conn commitTransaction.

If you need to override the database table name, you can send this message:

openDeleteCursorOn: theTupleClass keyMapping: keyMap tableName:
theTableName

Performing UPDATE Operations
Example 4.24 uses the openUpdateCursorOn: message to update the column
“ADDRESS”, using “ID” as the key, for the specified collection of tuple objects.

Example 4.24

writeStream := conn
 openUpdateCursorOn: TupleClass
 columnMapping: #((ID id id id:)(ADDRESS address address address:))
 keyMapping: #((ID id id id:)).
writeStream nextPutAll: TupleInstanceCollection.
conn commitTransaction.

Example 4.25 is a variation that uses Arrays in lieu of TupleClass. (Because you
don’t need to specify accessor and updater messages for Array, the column map
information is simplified.)
January 2007 GemStone Systems, Inc. 4-19

Using WriteStreams for Batch Operations GemConnect Programming Guide
Example 4.25

writeStream := conn
 openUpdateCursorOn: Array
 columnMapping: #((ID id)(ADDRESS address))
 keyMapping: #((ID id id id:)).
writeStream nextPut: #(101 '123 West 12th Ave').
writeStream nextPut: #(102 '707 North Elm St').
conn commitTransaction.

As with INSERT and DELETE, you can include the tableName: keyword to
override the database table name:

openUpdateCursorOn: theTupleClass columnMapping: columnMap
keyMapping: keyMap tableName: theTableName

Note that for openUpdateCursorOn: messages, the columns specified in the
keyMap must also be included in the columnMap.

Buffering Behavior
Each GsRdbWriteStream includes a buffer for holding entries waiting to be
written to the Oracle database, sized according to the connection’s batch size at the
time the stream is created. (See “Batch Size” on page 4-21.)

When you commit a transaction (by sending the message commitTransaction
to the GsOracleConnection), GemConnect automatically flushes the contents of
the write stream buffer to the Oracle database. Flushes also happen automatically
when the buffer is filled.

Similarly, when you roll back a transaction (by sending the message
rollbackTransaction to the GsOracleConnection), GemConnect clears the
contents of the write stream buffer without writing them to the Oracle database.

If you manually perform an Oracle commit or rollback, GemConnect does not
automatically flush or clear the write stream buffer. Instead, you must perform
these operations explicitly, so as to avoid either losing data, or writing data to
Oracle that you did not intend. See Example 4.26 and Example 4.27, respectively.
4-20 GemStone Systems, Inc. January 2007

Oracle Database Operations Using WriteStreams for Batch Operations
Example 4.26

writestream flush.
conn executeNoResults: 'commit'.

Example 4.27

writestream clear.
conn executeNoResults: 'rollback'.

Dependency Lists

During a commit, instances of GsRdbWriteStream are flushed in the reverse
order of when they were created — newest streams are flushed first. You can
override this order by using the stream's dependencyList. Any streams listed in
the dependencyList will be flushed prior to the flush of the primary stream.

 To add a stream to the stream’s dependency list:

Example 4.28

wrStream addDependency: anotherWriteStream.

Similarly, to remove a stream from the stream’s dependency list:

Example 4.29

wrStream removeDependency: anotherWriteStream.

Batch Size

By default, the write stream processes a maximum of 20 rows at a time. You can
send the message GsOracleConnection >> batchSize: to define a different
batch size. Once you have specified a batch size, this value is used for all
subsequently generated read streams and write streams.
January 2007 GemStone Systems, Inc. 4-21

Using WriteStreams for Batch Operations GemConnect Programming Guide
Example 4.30

conn batchSize "Retrieve the current setting of
batchSize"

conn batchSize: 20 "Set the batchSize to 20"

As a result of buffering, when GemConnect finally does the write to Oracle, there
may be multiple errors generated for different objects. Recovering from these
multiple errors may require your application to maintain internal information
about these past operations so that they can be replayed in case of a flush error. In
some cases, you might choose to forego the performance improvement that
buffering provides and to override buffering altogether, so that the Oracle write
occurs immediately after each object is put into the writeStream via a nextPut:
or nextPutAll: call.

To override buffering, set the batchSize to 1. For example:

Example 4.31

conn batchSize: 1 "Override buffering"

Managing Write Streams
Write streams allocate large memory blocks to hold data being buffered to write to
Oracle. When you are finished using a write stream, send it the message free to
release these memory blocks. If your session continues to create new write streams
without freeing them, you may run out of memory.

Because free also performs a flush (page 4-20), you should clear the buffer
first if you don’t want the contents flushed to the Oracle database.

A way to free all streams opened on a connection is to iterate over the results of
sending the message GsOracleConnection >> allStreams to your
connection. This returns both read and write streams.
4-22 GemStone Systems, Inc. January 2007

Oracle Database Operations Committing Changes
4.5 Committing Changes
Once you’ve written changes to the relational database, you must commit them for
the changes to persist. In order to maintain consistency in your data, you must
commit changes to both the relational database and the GemStone objects.

Oracle Transaction Control
You use instances of GsOracleConnection to commit or roll back transactions
in the relational database. GsOracleConnection includes the following
methods for controlling transactions in the relational database manually:

 • commitTransaction — Commits the current transaction to the
relational database.

 • rollbackTransaction — Rolls back the current transaction in the
relational database (similar to Gemstone’s ABORT operation).

Synchronizing GemStone and Relational Database
Transactions

GemConnect also provides a level of synchronization between a GemStone
transaction and relational database transactions.

While this level of synchronization does not provide a true two-phase
synchronized commit mechanism, it does enforce consistency in the way
GemStone and relational database transactions are committed, as well as create a
structure that will subsequently accommodate a true two-phase commit process.

Commit List

The synchronized commit process provided by GemConnect begins with the
commit list. Connection instances are registered to allow their transactions to be
associated with and committed as part of the local GemStone Session.

To register a connection, use the GsOracleConnection >> addToCommitList
method, which adds a given connection to the commit list. (To unregister a
connection, use GsOracleConnection >> removeFromCommitList.)

You synchronize transactions by executing the following GemStone methods:

 • System >> commitTransaction

 • System >> abortTransaction
January 2007 GemStone Systems, Inc. 4-23

Committing Changes GemConnect Programming Guide
(The System Class >> beginTransaction method does not support
synchronizing transactions.)

NOTE
The commitTransaction mechanism uses the GemStone System
Class >> continueTransaction method to provide voting for
GemStone sessions. This method has side effects that may affect your
data’s consistency temporarily. For details, see the class and method
comments in the GemStone image.

Commit Sequence

When a commit is requested, the following sequence of events takes place:

1. The commit list in the local GemStone session is checked for any registered
connections.

2. If there are none, the local GemStone transaction is committed normally. If
there are registered connections, the local GemStone session is asked to vote to
commit.

3. If the local GemStone session votes affirmatively, the registered connections
are each asked in turn to vote to commit.

NOTE
GemConnect cannot ask for a true vote to commit from a relational
database connection. Therefore, any vote by a GemConnect connection
registered in the commit list will always return true, as a vote to
commit.

If the GemStone session or any registered connection returns a negative vote
to commit, the System commitTransaction call returns false and the
commit process is aborted. Otherwise, if the GemStone session and all
registered connections vote to commit, the commit process continues.

4. The local GemStone session is committed.

If the GemStone commit is unsuccessful, the System commitTransaction
call returns false and the commit process is aborted.

5. Assuming this commit is successful, each registered connection in the commit
list is committed in turn.

If any registered connection fails to commit, the System
commitTransaction call returns false and the commit process is aborted.

If the GemStone transaction and all registered connections commit
successfully, the System commitTransaction call returns true.
4-24 GemStone Systems, Inc. January 2007

Oracle Database Operations Committing Changes
Note that the window of time between voting and committing makes it possible
for one connection to commit while another does not. At this time, there is no way
to resynchronize connections if such a failure takes place.

Checking Results

To determine which registered connections voted to commit, you can send the
voteResults message to the commit list object System
_commitCoordinator. The voteResults message returns an array containing
a value for each connection committed to the list.

0 — The connection was read-only and voted affirmative.

1 — The connection was read/write and voted affirmative.

2 — The connection voted negative

nil — The connection did not vote because a connection or connections before
it in the commit list voted negative.

To determine the commit results for registered connections, use the
commitResults method. This message returns an array containing either a
Boolean value or nil.

true — The connection committed successfully.

false — The connection failed to commit.

nil — The connection did not commit because a connection or connections
before it in the commit list failed to commit.

Oracle Names
By default, names in Oracle are case-insensitive. This means that “book,” “Book,”
and “BOOK” are all interpreted as the same name. Oracle can force a name to be
treated as case-sensitive by enclosing the name in double quotes. GemConnect
supports this behavior.

GemConnect enforces the relational column naming rules required by Oracle.
Certain column names must be surrounded by double quotes ("6column_name")
to be interpreted correctly, both by Oracle and by GemConnect.

The following types of column names must be double-quoted in Oracle:

 • Any column name that does not begin with a letter.

 • Any column name that includes characters other than letters, numbers,
underscore, number sign (#), or dollar sign ($).
January 2007 GemStone Systems, Inc. 4-25

Committing Changes GemConnect Programming Guide
 • Any column name the Oracle user wants designated as case-sensitive. (All
other column names are treated as case-insensitive and are returned with all
letters capitalized.)

In addition, any column name created in Oracle with double quotes, regardless of
whether it contains any of the characters that must be treated specially, must
always be referred to with the double quotes surrounding it, as it is now
considered to be case-sensitive.

GemConnect and Oracle Column Names

GemConnect treats Oracle column names that must be double-quoted in the
following ways:

 • For queries, column names that are expected to be quoted must be double-
quoted or Oracle will return an error. If the results of a query are stored in a
tuple class with a column map, the map must include double-quoted column
names where necessary. When using column maps, GemConnect matches
double-quoted column names to instance variable names in a case-sensitive
manner and unquoted column names in a case-insensitive manner. The
double quotes are stripped from the column names when this matching takes
place.

For example, the Oracle column name "10_GaLLons" matches a
GemConnect instance variable named g10_GaLLons, but the Oracle column
name GaLLons matches a GemConnect instance variable named GALLONS.

Example 4.32

rdbColumnMapping
^(#(GaLLons,
 GALLONS))

 • For generating SQL statements from GemConnect, any column maps or
primary key maps with column names that require double-quoting must
include double quotes around those names. If the double quotes are not
present where expected, the SQL command is invalid and Oracle will return
an error.
4-26 GemStone Systems, Inc. January 2007

Oracle Database Operations Multi-Session Operation
4.6 Multi-Session Operation
Thus far, all of the discussion in this chapter has focused on how GemConnect
operates in a single session. GemConnect can also operate effectively in a situation
where you have more than one GemConnect session running at a time, sharing
business objects.

To ensure consistency across the GemConnect sessions, you want any queues that
you use to collect updates to the relational database to become persistent objects,
so that multiple users may share them. You may also wish to make some
parameters objects persistent, to make certain connections easier to reproduce.

Making Queues Persistent
To accumulate update information for multiple concurrent sessions, do the
following:

1. Create a persistent instance of RcQueue or RcIdentityBag and name it in a
shared symbol list dictionary.

2. Write the information needed to generate SQL updates or the SQL updates
themselves to the RcQueue or RcIdentityBag in
aboutToChange:newValue: methods or elsewhere.

3. Have the queue processed periodically by a scheduling task like UNIX’s cron.

Making Tuple Classes Persistent
You can make a tuple class persistent by placing it in a global variable in
GemStone. For details, see the GemStone Programming Guide.

Making Parameters Objects Persistent
You can make the parameters objects that you use to set the characteristics for a
connection available to other connections if you make them persistent. To make a
parameters object persistent, you need to place it in a global dictionary. See
Example 4.33.
January 2007 GemStone Systems, Inc. 4-27

Multi-Session Operation GemConnect Programming Guide
Example 4.33

params := GsOracleParameters new
params userName: 'user-name'; password: 'password';

server: 'server-name'.
UserGlobals at:#params put: params.
4-28 GemStone Systems, Inc. January 2007

Appendix

A Using the C Source
Module
GemConnect is not a complete collection of the relational database interfaces that
every Smalltalk applications program might need. Since your program may need
access to functions that GemConnect does not provide, we have provided a means
for you to extend and customize GemConnect for your own purposes.

The C language source module is supplied for Oracle, the relational database
management system that this version of GemConnect supports. The C language
module includes public functions that you can reimplement to provide additional
functionality to GemConnect. You need only have an appropriate C compiler to
recompile the source code after you’re through changing it. See the documentation
for your version of the GemStone/S or GemStone/S 64 Bit server to determine the
correct compiler to use.

A.1 Using the Public C Source Module
The install process places a C source file named gsorapublic.c into the make
directory of the GemConnect tree.

You can use the source module to add new primitives to your GemConnect
system, to change the default data type mappings that GemConnect uses, and to
change the process by which GemConnect logs into the relational database. Each
January 2007 GemStone Systems, Inc. A-1

Using the Public C Source Module GemConnect Programming Guide
source file includes some sample primitives to guide you in developing other
relational database interfaces. You can also extend GemConnect in other ways.

The make directory also includes a makefile to recompile the C module and
rebuild the shared user-action library for your operating system platform. Once
you edit the source file and recompile it, you need to copy the new user action
library to the GemStone user action library directory ($GEMSTONE/ualib) before
the new functionality will be available to GemConnect.

NOTE
You will have to preserve any site-specific changes to the C source
module and remake and rebind the user-action library whenever you
install a new version of GemConnect.

Edit Source File
Each source file includes a set of sample primitives as an aid to developing your
own. You may reimplement them to add functionality to GemConnect. Table A.1
lists these public functions and describes when they are called. For details about
what the functions do by default, see comments in the source file itself.

Table A.1 Public Source File Functions

Function Name When Called

GsPublicInitialize During user-action initialization,
after the relational database API is
configured.

GsPublicShutdown During GciUserActionShutdown
after connections have been
deallocated, but before database
contexts have been freed.

GsPublicConnectAlloc After a connection is allocated, but
before it is opened.

GsPublicConnected After a connection has been opened.

GsPublicDisconnect Before a connection is closed.

GsPublicReadStreamAlloc After a read/write stream is
allocated, but before it is opened.

GsPublicReadStreamInit After a read/write stream has been
initialized and its command
executed.
A-2 GemStone Systems, Inc. January 2007

Using the C Source Module Using the Public C Source Module
Changing Data Type Conversions
You can alter the default data type conversions by editing the appropriate file, then
rebuilding and reinstalling the shared user action library.

To do this, reimplement the GsPublicSetClassAndConversion and
GsPublicConvertToObject methods, use the appropriate makefile to
recompile the shared library, then copy it to the appropriate directory. For details,
see “Run Make” on page A-5 and “Install Into GemStone ualib Directory” on
page A-6.

Tailoring the Relational Database Login Process
To change how GemConnect logs into the relational database, reimplement the C
source module functions GsPublicConnectAlloc and
GsPublicInitialize. (Use the otherAt: parameters from
GsRdbParameters to specify new parameters, if necessary.)

GsPublicReadStreamDrop Before a read/write stream is
deallocated.

GsPublicSetClassAndConversion To fill in column-mapping
conversions.

GsPublicConvertToObject To convert a column datum into an
object.

GsPublicIVsAndConstraints To retrieve instance-variable and
constraint information from a
column map.

Table A.1 Public Source File Functions (Continued)

Function Name When Called
January 2007 GemStone Systems, Inc. A-3

Rebuilding the GemConnect Library GemConnect Programming Guide
A.2 Rebuilding the GemConnect Library
This section describes the steps necessary to rebuild the GemConnect shared
library after you’ve changed the public C source module.

Assuming you have the correct environment variables set and you have an ANSI-
compliant C compiler, rebuilding the shared library is as simple as running the
make process.

Environment Variables

Before you run the make process, be sure that you have the GEMSTONE
environment variable set, as well as the environment variables to point to the
relational database software (ORACLE_HOME).

NOTE
This example shows settings for GemStone and GemConnect running on
a SPARCstation with the Solaris operating system.

Step 1. Set the GEMSTONE environment variable. (In this example, installDir is
the pathname of the directory where GemStone is installed, starting with a
slash.)

C shell:

% setenv GEMSTONE installDir/GemStone6.1.5-sparc.Solaris

Bourne or Korn shell:

$ GEMSTONE=installDir/GemStone6.1.5-sparc.Solaris
$ export GEMSTONE

Step 2. Set the GEMCONNECT environment variable. (This example assumes
that GemConnect is installed in the same top-level directory as GemStone.)

C shell:

% setenv GEMCONNECT installDir/GemConnect2.0+oracle10.0-sparc.Solaris

Bourne or Korn shell:

$ GEMCONNECT=installDir/GemConnect2.0+oracle10.0-sparc.Solaris
$ export GEMCONNECT

Step 3. Set the ORACLE_HOME environment variable to point to the directory
containing the relational software (in this example, /pub/oracle).
A-4 GemStone Systems, Inc. January 2007

Using the C Source Module Rebuilding the GemConnect Library
C shell:

% setenv ORACLE_HOME /pub/oracle

Bourne or Korn shell:

$ ORACLE_HOME=/pub/oracle
$ export ORACLE_HOME

Step 4. Set the library path variables so that GemStone can reach the relational
database software.

IMPORTANT NOTE
If you are running GemStone/S 6.x in an Oracle installation that
supports both 32-bit and 64-bit Oracle, replace $ORACLE_HOME/lib
with $ORACLE_HOME/lib32.

C shell:

% setenv LD_LIBRARY_PATH $ORACLE_HOME/lib

Bourne or Korn shell:

$ LD_LIBRARY_PATH=$ORACLE_HOME/lib
$ export LD_LIBRARY_PATH

NOTE:
There may be additional environment parameters that need to be set for
your platform. See the comment fields in the makefile for details.

Run Make
In the make directory, run the makefile to rebuild your GemConnect shared
library.

Step 5. Change to the make directory.

% cd $GEMCONNECT/make

Step 6. Execute the makefile. The correct makefile to execute depends on the
server version and platform you are using.

For GemStone/S:

% make MakeFile32

For GemStone/S 64 Bit version 1.1.x:
January 2007 GemStone Systems, Inc. A-5

Rebuilding the GemConnect Library GemConnect Programming Guide
% make MakeFile641

For GemStone/S 64 Bit version 2.1.x:

% make MakeFile642

Compiler Notes for Solaris

You must have the ANSI C compiler to rebuild the API. The C compiler is
distributed with Solaris is not ANSI-compliant.

Install Into GemStone ualib Directory
Once you’ve rebuilt the library, you must copy it to the shared user-action library
directory.

Step 7. Copy the new shared user action library to the GemStone ualib shared
library directory.

Windows:

> cp oraapi20-32.dll %GEMSTONE%/ualib

UNIX (GemStone/S 6.x):

% cp liboraapi20-32.so $GEMSTONE/ualib

UNIX (GemStone/S 64 Bit v1.x):

% cp liboraapi20-641.so $GEMSTONE/ualib

UNIX (GemStone/S 64 Bit v2.x):

% cp liboraapi20-642.so $GEMSTONE/ualib
A-6 GemStone Systems, Inc. January 2007

Using the C Source Module Adding a User Action
A.3 Adding a User Action
This example shows you how to implement a new user action.

Declaring the User Action
You must create the new user action, adding it to the gsorapublic.c source file.
Example A.1 demonstrates this. This sample code is included in the
gsorapublic.c source file shipped with GemConnect.

Example A.1

/*==
 * Name - GsColumnInfo
 *
 * Returns an array of arrays, each with the following
 * information about a column in the result set of a
 * particular read stream:
 *
 * 1) column name
 * 2) data type (see cstypes.h for integer values)
 * 3) max-length
 * 4) status (see cstypes.h for bit values)
 * 5) precision
 * 6) scale
 * 7) class of field when translated to an object
 * (actual datum may be a subclass of this class)
 *
 * This user action may be called from Smalltalk by
 * invoking:
 *
 * values := System userAction: #GsOraColumnInfo
 * with: stream connection with: stream.
 *
 *===
 */

OopType GsColumnInfo ARGS2(
 OopType, connectOop,
 OopType, readStreamOop)
{
 int i;
January 2007 GemStone Systems, Inc. A-7

Adding a User Action GemConnect Programming Guide
 GsConnection *conn;
 GsReadStream *stream;
 GsCmap *cmap;
 OopType elements[6];
 OopType element;
 OopType result;
 char *name;

 /* check to see if we have a valid connection object, if
not return nil */
 for (conn=AllConnections; conn != NULL; conn=conn->next)
{
 if (conn->object == connectOop)
 break;
 }
 if (!conn)
 return OOP_NIL;

 /* check to see if we have a valid read stream object,
if not return nil */
 for (stream=conn->readStreams; stream != NULL; stream=
stream->next) {
 if (stream->object == readStreamOop)
 break;
 }
 if (!stream)
 return OOP_NIL;

 /* create the array we will be returning the column
information in */
 result = GciNewOop(OOP_CLASS_ARRAY);

 for (i=0; i<stream->numColumns; i++) {
 cmap = &(stream->columns[i]);
 name = &(cmap->columnName[0]);
 elements[0] = GciNewByteObj(OOP_CLASS_STRING,
(ByteType *)name,
 strlen(name));
 elements[1] = GciLongToOop(cmap->datafmt.datatype);
 elements[2] = GciLongToOop(cmap->datafmt.maxlength);
 elements[3] = GciLongToOop(cmap->datafmt.status);
 elements[4] = GciLongToOop(cmap->datafmt.precision);
A-8 GemStone Systems, Inc. January 2007

Using the C Source Module Adding a User Action
 elements[5] = GciLongToOop(cmap->datafmt.scale);
 elements[6] = cmap->instVarClass;
 element = GciNewOop(OOP_CLASS_ARRAY);
 GciStoreOops(element, 1, elements, 7);
 GciStoreOop(result, i+1, element);
 }

 return result;
}

Implementing the User Action
Now you must register the user action so that GemStone can see it.

Example A.2

static GciUserActionSType allActions[] = {
 { "GsOraColumnInfo", 2, (UA)GsColumnInfo
},
 { "GsOraInstVarsAndConstraints", 2,
(UA)GsPublicIVsAndConstraints },
 };
January 2007 GemStone Systems, Inc. A-9

Adding a User Action GemConnect Programming Guide
Calling the User Action
Implement a GemStone method on GsRdbReadStream.

Example A.3

method: GsRdbReadStream
columnInfo

 ^System userAction: (connection _rscolumnInfo)
 with: connection with: self
%

Then implement a GemStone method on a connection subclass.

Example A.4

method: GsOracleConnection
_rscolumnInfo

 ^#GsOraColumnInfo
%

Once you’ve finished implementing the user action, you need to:

 • Recompile the public source file or files that you’ve edited by running the
make process again (see “Run Make” on page A-5).

 • Copy the new shared library into the $GEMSTONE/ualib directory (see
“Install Into GemStone ualib Directory” on page A-6).

Now your new user action is available through GemConnect.
A-10 GemStone Systems, Inc. January 2007

Appendix

B GemConnect Errors
This appendix contains a summary of GemStone system problems that might
affect GemConnect operation, as well as a list of the GemConnect error messages.

For further information about GemStone restart and diagnostic procedures, see the
GemStone System Administrator’s Guide. If errors appear to originate with Oracle,
you may also need to consult the system documentation for your relational
database management system.

B.1 Troubleshooting
When GemConnect will not operate, it may be difficult to find the reason,
especially if GemStone and your Oracle server are running on different machines.
Problems on other machines may not be visible from your workstation.

Failure to Start
If you cannot log in to GemStone, one of the following situations may have
occurred:

● The limit on the number of simultaneous GemStone sessions has been reached.

● The Stone process is not running.
January 2007 GemStone Systems, Inc. B-1

GemConnect Error Messages GemConnect Programming Guide
● The netldi process is not running.

● A network connection has failed.

● GemStone user account is set up incorrectly.

If you cannot log in to Oracle, one of these situations may have occurred:

● Your GemStone repository has not been upgraded to include the GemConnect
classes.

● The Oracle relational database server is not installed on the machine
GemStone is running on.

● The Oracle relational database server is not running.

● User accounts on the relational database have not been configured correctly.

● The $ORACLE_HOME environment variables have not been set or they point to
the wrong place.

B.2 GemConnect Error Messages
GemConnect may produce any of the error messages listed in Table B.1. Error
messages that do not appear in this list come from another source, either from
GemStone or from your relational database system.

GemConnect errors are returned in the following form:

errorname — errorText arguments

Table B.1 GemConnect Errors

Error Message Arguments Explanation

aggColumnName —
Column names of the form
aggXX are not allowed in
results.

connection identifier,
column name

GemConnect uses the
form aggXX as a default
for instance variable
names (where XX is an
integer identifier), and
thus cannot return a
relational column with a
name of that form.
B-2 GemStone Systems, Inc. January 2007

GemConnect Errors GemConnect Error Messages
badColumnMap —
A column map entry with
too few or non-character
collection elements was
encountered.

column map entry The specified column
mapping scheme does not
contain enough elements.
Each column map entry
must have at least two
values: column name and
instance variable name.
These values must be of
type
CharacterCollection.

badConnCacheName —
There is already a
connection cached with
this name.

connection name A connection with this
name already resides in
the named connection
cache.

columnAllocError —
A buffer could not be
allocated to bind the values
for a column in the result
set.

connection identifier,
column name

A memory allocation
(malloc) failure occurred
when GemConnect tried
to allocate memory for a
binding buffer.

columnBindingError —
Could not bind all columns
in columnMap with
relational table.

connection identifier,
query

failedToInitialize —
The specified relational
database interface could
not be initialized.

none GemConnect could not
initialize the Oracle
database’s client interface.

Table B.1 GemConnect Errors (Continued)

Error Message Arguments Explanation
January 2007 GemStone Systems, Inc. B-3

GemConnect Error Messages GemConnect Programming Guide
flushError —
Problem writing to
relational database during
write stream flush.

connection identifier,
stream, details

One or more Oracle errors
occurred during the flush
of the associated write
stream. Note that because
of buffering, the
#nextPut: or
#nextPutAll: operation
that provided the object
causing this error may
have occurred some time
earlier.

internalError —
GemConnect internal
error.

connection identifier,
stream, details

This is an unexpected
logic error from within
GemConnect. Contact
GemStone Technical
Support with background
information on this error
plus the contents of the
details array, especially the
last entry containing the
diagnostic string.

invalidColumnMap —
A column map was passed
which contained elements
which were not of the
expected class Array.

connection identifier,
column map

The column map was not
an Array or elements of it
were not in an Array.

invalidConnection —
This relational database
connection is not valid.

connection identifier The connection to Oracle
was not established or it
has been disconnected.

invalidSql —
Invalid SQL statement for
cursored execution.

connection identifier,
query

openCursorOn: may not
be used with fully
qualified non-SELECT
SQL statements.

invalidStream —
This relational database
result stream is not valid.

stream identifier The stream to Oracle did
not open successfully or it
has been closed.

Table B.1 GemConnect Errors (Continued)

Error Message Arguments Explanation
B-4 GemStone Systems, Inc. January 2007

GemConnect Errors GemConnect Error Messages
invalidTableName —
The table does not exist in
this relational database.

table name,
connection identifier

No table with the given
name exists in Oracle

invalidTupleInstance
— A tuple was passed to a
write stream that is not the
expected class.

connection identifier,
stream, tuple

noChangeNotification
— Object change
notification is not
supported on this version
of GemStone.

none The server product and
version to which
GemConnect is connected
does not support object
change notification.

noColumnMap —
There is no column map
available to perform the
requested action with this
tuple class.

class name The tuple class did not
specify a column mapping
scheme for the method to
use.

noPrimaryKeyMap —
There is no primary key
map available to perform
the requested action with
this tuple class.

class name The tuple class did not
specify a primary key
mapping scheme for the
method to use.

noTableName —
There is no table name
available to perform the
requested action with this
tuple class.

class name The tuple class did not
specify a table name for
the method to operate on.

oracleError —
An unexpected error was
encountered during Oracle
processing.

connection identifier,
write stream
identifier, details

GemConnect caught an
unspecified error
generated by Oracle. The
details are in the format
described in Table B.2.

Table B.1 GemConnect Errors (Continued)

Error Message Arguments Explanation
January 2007 GemStone Systems, Inc. B-5

GemConnect Error Messages GemConnect Programming Guide
GsOracleConnection Class >> messages

When an error occurs, you can obtain additional information about the related
Oracle error(s) by sending:

 GsOracleConnection messages

queryError —
An error was encountered
while performing a
relational query.

connection identifier,
write stream
identifier, details

GemConnect caught an
error returned from Oracle
while trying to execute a
query. The details are in
the format described in
Table B.2.

readError —
An error was encountered
while reading relational
data.

read stream
identifier

GemConnect caught an
error returned from Oracle
while reading data from a
result set.

streamAtEnd —
End of stream was
encountered while reading
relational data.

read stream
identifier

GemConnect caught an
error returned from Oracle
when the RDBMS reached
the end of a result set
during a read using a
stream.

typeConversionError
— Cannot convert GS
Object for Oracle column.

connection identifier,
stream, details

A GemStone object being
converted for an Oracle
column is incompatible
with the Oracle column
DataType.

unmappedColumnInResu
lt —
A column map was given,
but one or more result
columns were not
represented in it.

column name A tuple class specified a
column map for data
coming into it, but the SQL
query results contained a
column for which a
mapping was not
specified.

Table B.1 GemConnect Errors (Continued)

Error Message Arguments Explanation
B-6 GemStone Systems, Inc. January 2007

GemConnect Errors GemConnect Error Messages
This message returns an array of error fields, as listed in Table B.2.

Table B.2 Oracle error results

1 Oracle Call Interface
(OCI) return code

Usually -1

2 Number of errors Usually 1, unless there are multiple errors on
a writeStream flush

3 Oracle error code

4 Oracle error message

5 GemStone object The object written to a writeStream that
generated this error

6..N When multiple errors are returned simultaneously, the array includes
elements 3–5 (Oracle error code, Oracle error message, GemStone
object) for each subsequent error.

last Internal diagnostic
message

A string containing internal diagnostic
information, for use by GemStone Technical
Support in tracking down unexpected errors.
January 2007 GemStone Systems, Inc. B-7

GemConnect Error Messages GemConnect Programming Guide
B-8 GemStone Systems, Inc. January 2007

Index
A
abortTransaction (System) 4-23
aboutToAdd: 4-9
aboutToChange:newValue: 4-9, 4-10
aboutToDelete:index: 4-9
aboutToInsert:index: 4-9
aboutToRemove: 4-9
adding new primitives

in C source A-1
addToCommitList (GsOracleConnection) 4-23
aggColumnName (GemConnect error) B-2
allConnections (GsOracleConnection) 3-5

B
badColumnMap (GemConnect error) B-3
badConnCacheName (GemConnect error) B-3
batch operations, using WriteStreams 4-16
batch size for WriteStreams 4-21
beginTransaction (System) 4-24
buffering 4-22

business objects 2-3
in three-tier architecture 2-4

C
C source module A-1
cacheWithName (GsOracleConnection) 3-4
change notification 4-8

and rdbPostLoad 4-8
default 4-8
immediate write-through 4-11
queueing updates 4-12
tracking 4-9

changes to data
notification sequence 4-10
notifying about 4-8

changing a tuple object 2-5
charConversion

UTF8 and UTF16 conversion 3-4
client Smalltalk application

in three-tier architecture 2-4
January 2007 GemStone Systems, Inc. Index-1

GemConnect Programming Guide
client/server models
three-tier 1-2, 1-3, 2-1
two-tier 1-3

column map entries
ordering 4-16

column mapping
overriding default 4-18
with Arrays 4-17

columnAllocError (GemConnect error) B-3
columnBindingError (GemConnect error) B-3
commit 4-23

and continueTransaction 4-24
result of connections voting 4-25
sequence 4-24
synchronized 4-23
two-phased 4-23

commit list 4-23, 4-24
_commitCoordinator (System) 4-25
commitResults 4-25
commitTransaction (System) 4-23, 4-24
connect (GsOracleConnection) 3-3
connection

disconnecting 3-6
registering for commit 4-23
status 3-6

connection cache 3-4
connection configuration information 3-3
connection object 3-3

defined 3-2
connection objects

using to queue updates 4-12
connections

managing 3-5
continueTransaction (System) 4-24
converting relational data types 4-4
createTupleClassNamed:inDictionary:

(GsRdbReadStream) 4-3
customizing GemConnect A-1

D
data type conversions

changing defaults A-3
data type mappings

changing defaults A-1
data types

converting Oracle to GemStone 4-4
mapping 4-4

database table name
overriding default 4-18

database transactions
rolling back 4-23

deleting data 4-18
disconnect (GsOracleConnection) 3-6
disconnecting 3-6

E
environment variables

GEMCONNECT A-4
GEMSTONE A-4
LD_LIBRARY_PATH 3-2
NLS_LANG 3-2
ORACLE 3-2
ORACLE_HOME A-4

environment variables, Oracle 3-1
error messages

GemConnect B-2
obtaining additional information B-6

execute: (GsOracleConnection) 4-1, 4-2
executeNoResults: (GsOracleConnection) 4-2,

4-7
executeReturnRowsAffected:

(GsOracleConnection) 4-2
executing SQL statements 4-1
extending GemConnect A-1

F
failedToInitialize (GemConnect error) B-3
flushError (GemConnect error) B-4
Index-2 GemStone Systems, Inc. January 2007

GemConnect Programming Guide
forwarders 2-3

G
GemBuilder

and forwarders 2-3
and tuple objects 2-2
in three-tier architecture 2-1, 2-4

GemConnect
advantages of 1-1
and Oracle column names 4-26
and Oracle environment variables 3-1
customizing in C A-1
defined 1-1
error messages B-2
functionality 2-3
in three-tier architecture 2-1
multi-session operation 4-27
requirements for operation 3-1

GEMCONNECT environment variable
setting A-4

GemConnect library
and C source module A-4

GemConnect problems
troubleshooting B-1

GEMSTONE environment variable
setting A-4

GemStone object server 2-1
and business objects 2-3

generateSQLDelete: 4-7
generateSQLInsert: 4-7
generateSQLUpdate: 4-7
GsOracleConnection class 3-3
GsOracleParameters class 3-3
gsorapublic.c (C source file) A-1
GsPublicConnectAlloc

reimplementing A-3
GsPublicConvertToObject

reimplementing A-3
GsPublicInitialize

reimplementing A-3

GsPublicSetClassAndConversion
reimplementing A-3

GsRdbParameters class 3-3
GsRdbReadStream class 4-1, 4-2
GsRdbWriteStream 4-16

I
immediate write-through 4-11
implementing

user actions A-7
inserting data 4-17
instance variables

mapping from relational data 4-3, 4-6,
4-16

internalError (GemConnect error) B-4
invalidColumnMap (GemConnect error) B-4
invalidConnection (GemConnect error) B-4
invalidSql (GemConnect error) B-4
invalidStream (GemConnect error) B-4
invalidTableName (GemConnect error) B-5
invalidTupleInstance (GemConnect error) B-5

L
last connection

accessing 3-5
LD_LIBRARY_PATH environment variable

3-2
library path variables

setting A-5
linked GemBuilder 3-1
login

modifying process for A-3
login problems, troubleshooting B-1

M
makefile

running A-5
managing connections 3-5
messages (GsOracleConnection) B-6
January 2007 GemStone Systems, Inc. Index-3

GemConnect Programming Guide
modifying a tuple object 2-5
multi-session operation 4-27

N
named connections, caching 3-4
nextPutAll: (GsRdbWriteStream) 4-17
NLS_LANG environment variable

setting 3-2
noChangeNotification (GemConnect error)

B-5
noColumnMap (GemConnect error) B-5
noPrimaryKeyMap (GemConnect error) B-5
noTableName (GemConnect error) B-5
notifyChange: 4-8

O
object server 2-1
openCursorOn: (GsOracleConnection) 4-1,

4-2
openCursorOn:tupleClass:

(GsOracleConnection) 4-5
openDeleteCursorOn:(GsRdbWriteStream)

4-18
openInsertCursorOn:(GsRdbWriteStream)

4-17
openUpdateCursorOn:(GsRdbWriteStream)

4-19
Oracle

column names
double-quoting 4-26

differences
commit 4-24

environment variables 3-1
rules for relational column names 4-25

ORACLE environment variable 3-2
Oracle errors

explained B-7
Oracle login process

changing in C source A-1
oracleError (GemConnect error) B-5

ORACLE_HOME environment variable
setting A-4

P
parameters object

and connection object 3-2
creating and configuring 3-3
defined 3-2
persistent 4-27

password
specifying in parameters object 3-3

primary key mapping 4-17
public functions

in C source file A-2

Q
queryError (GemConnect error) B-6
queueing changed objects 4-13

advantage of 4-15
by comparing 4-14

queueing updates 4-12
queues

making persistent 4-27

R
RcIdentityBag 4-27
RcQueue 4-27
rdbColumnMapping 4-6, 4-8
rdbPostLoad 4-4

and change notification 4-8
rdbPrimaryKeyMaps 4-8
rdbTableName 4-8
read streams 4-2

freeing 4-6, 4-22
managing 4-6

readError (GemConnect error) B-6
reading from Oracle 4-1, 4-2
Index-4 GemStone Systems, Inc. January 2007

GemConnect Programming Guide
relational data
changing 4-8
mapping data types 4-4
mapping to instance variables 4-4, 4-6
notification of changes to 4-8
tracking 4-7
updating

with primary key maps 4-17
updating with SQL statements 4-7

relational database
connecting to 3-2, 3-3
deleting data from 4-18
disconnecting from 3-6
in three-tier architecture 2-4
inserting data into 4-17
reading from 4-4

using read streams 4-2
updates

queueing 4-12
updating contents 4-19
updating with GemConnect 4-7
writing changes

immediately 4-11
writing to

using write streams 4-16
removeFromCommitList

(GsOracleConnection) 4-23

S
server

specifying in parameters object 3-3
shared user action library A-6
SQL queries 4-2

results
as OrderedCollection 4-2
as tuple object 4-3, 4-5

SQL statements
generating 4-7

SQL statments
executing 4-1

SQL update strings 4-8

status of connection 3-6
storing connection objects 3-4
streamAtEnd (GemConnect error) B-6
synchronized commit 4-23

T
textLimit

specifying in parameters object 3-3
three-tier client/server model 1-2, 1-3, 2-1

figure 2-2
tracking change notification 4-9
troubleshooting B-1
tuple objects 2-2, 4-3

defined 2-2
generating 4-3
in three-tier architecture 2-4

tuples
writing to relational database 4-16

two-phased commit 4-23
two-tier client/server model 1-3
typeConversionError (GemConnect error) B-6

U
ualib

shared library directory A-6
unmappedColumnInResult (GemConnect

error) B-6
updates

queueing changed objects 4-13
by comparing 4-14
with change information 4-13

updating data 4-19
upToEnd (GsRdbReadStream) 4-3
user action library

shared A-6
user actions

implementing A-7
userName

specifying in parameters object 3-3
January 2007 GemStone Systems, Inc. Index-5

GemConnect Programming Guide
UTF8/UTF16 format Oracle data
accessing 3-4
setting NLS_LANG environment variable

for 3-2
typeConversionError B-6

V
voteResults 4-25

W
write streams 4-16

creating 4-16
managing 4-22
Index-6 GemStone Systems, Inc. January 2007

	1 Product Overview
	1.1 What Can GemConnect Do for You?
	What GemConnect Won’t Do

	1.2 GemConnect in Context
	The Two-Tier Approach
	The Three-Tier Approach
	GemConnect and the Three-Tier Approach

	2 GemConnect in the Three-Tier Architecture
	2.1 Using Tuple Objects to Read and Change Data
	2.2 Client Applications and GemBuilder
	2.3 GemStone Object Server
	2.4 GemConnect
	2.5 Relational Database
	2.6 How the Architecture Works
	Reading Data
	Writing Changes

	3 Connecting to Oracle
	3.1 Setup
	3.2 Connecting to the Relational Database
	Using Parameters Objects
	Using Connection Objects
	Accessing UTF8/UTF16 data in Oracle
	Connection Cache

	Managing Connections

	3.3 Disconnecting from the Relational Database
	3.4 Checking the status of a connection

	4 Oracle Database Operations
	4.1 Executing SQL Statements in Oracle
	4.2 Reading Information from the Relational Database
	Creating an OrderedCollection
	Creating a Tuple Class During a GemConnect Session
	Instance Variable Names
	rdbPostLoad
	Converting Relational Data Types to Classes

	Creating a Tuple Class Outside a GemConnect Session
	Relational Data Structure in Tuple Classes
	Managing Read Streams

	4.3 Writing to the Relational Database
	Generating the SQL Update Strings
	Tracking the Relational Data

	Change Notification
	Tracking How an Object Has Changed
	Change Notification Sequence

	Writing Changes
	Immediate Write-Through
	Queueing Updates
	Queueing Update Messages
	Queueing Changed Objects

	4.4 Using WriteStreams for Batch Operations
	Creating a Write Stream
	Column Mapping
	Primary Key Mapping

	Performing INSERT Operations
	Performing DELETE Operations
	Performing UPDATE Operations
	Buffering Behavior
	Dependency Lists
	Batch Size

	Managing Write Streams

	4.5 Committing Changes
	Oracle Transaction Control
	Synchronizing GemStone and Relational Database Transactions
	Commit List
	Commit Sequence
	Checking Results

	Oracle Names
	GemConnect and Oracle Column Names

	4.6 Multi-Session Operation
	Making Queues Persistent
	Making Tuple Classes Persistent
	Making Parameters Objects Persistent

	A Using the C Source Module
	A.1 Using the Public C Source Module
	Edit Source File
	Changing Data Type Conversions
	Tailoring the Relational Database Login Process

	A.2 Rebuilding the GemConnect Library
	Environment Variables
	Run Make
	Compiler Notes for Solaris

	Install Into GemStone ualib Directory

	A.3 Adding a User Action
	Declaring the User Action
	Implementing the User Action
	Calling the User Action

	B GemConnect Errors
	B.1 Troubleshooting
	Failure to Start

	B.2 GemConnect Error Messages
	GsOracleConnection Class >> messages

