
GemStone®
GemStone/S 64 Bit
Programming Guide

Version 2.4

September 2009

GemStone Programming Guide
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemStone Systems, Inc.
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in any form
or by any means now known or later developed, such as electronic, optical, or mechanical means, without express written
authorization from GemStone Systems, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and criminal
penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemStone Systems, Inc. under
separate license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any
other use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written consent
of GemStone Systems, Inc.
This software is provided by GemStone Systems, Inc. and contributors “as is” and any expressed or implied warranties, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall
GemStone Systems, Inc. or any contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2009 GemStone Systems, Inc. All rights reserved by
GemStone Systems, Inc.

PATENTS
GemStone is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number 6,360,219
“Object queues with concurrent updating”, and Patent Number 6,567,905 “Generational Garbage Collector”. GemStone may also
be covered by one or more pending United States patent applications.

TRADEMARKS
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of GemStone Systems,
Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, Solaris, and SunOS are trademarks or registered trademarks of Sun Microsystems, Inc. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. SPARCstation is
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.
HP and HP-UX are registered trademarks of Hewlett Packard Company.
Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows 2000, Windows XP, Windows 2003 and Windows Vista are registered trademarks of
Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United States
and other countries.
AIX and POWER4, POWER5 and POWER6 are trademarks or registered trademarks of International Business Machines
Corporation.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. All terms mentioned in this documentation that are known to be
trademarks or service marks have been appropriately capitalized to the best of our knowledge; however, GemStone cannot attest
to the accuracy of all trademark information. Use of a term in this documentation should not be regarded as affecting the validity
of any trademark or service mark.
GemStone Systems, Inc.
1260 NW Waterhouse Avenue, Suite 200
Beaverton, OR 97006
2 GemStone Systems, Inc. September 2009

Preface
About This Manual
This manual describes the GemStone Smalltalk language and programming
environment — a bridge between your application’s Smalltalk code running on a
UNIX workstation and the GemStone database running on the host computer.
Along with one of the interfaces for the programming environment, you can build
comprehensive applications.

Intended Audience
This manual is intended for users familiar with the basic concepts of computer
programming. It explains GemStone Smalltalk in terms of traditional
programming concepts. Therefore, you’ll benefit most from the material presented
here if you have a solid understanding of a conventional language such as C.

It would also be helpful to be familiar with a Smalltalk language and its
programming environment. In addition to your Smalltalk product manuals, we
recommend Smalltalk-80: The Language and its Implementation and Smalltalk-80: The
Interactive Programming Environment (both published by Addison-Wesley).

This manual assumes that the GemStone system has been correctly installed on
your host computer as described in the System Administration Guide for
September 2009 GemStone Systems, Inc. 3

Preface GemStone Programming Guide
GemStone/S 64 Bit, and that your system meets the requirements listed in the
Installation section of the Release Notes.

Documentation Conventions
GemStone Smalltalk code is printed in a monospace font throughout this manual.
It looks like this:

 numericArray add: (myVariable + 1)

When the result of executing an example is shown, it is underlined:

 numericArray at: 1
 12486

Terminology Conventions
This document uses the following terminology:

 • The term “GemStone” is used to refer both to the product, GemStone/S 64 Bit,
or previous GemStone/S server products; and to the company, GemStone
Systems, Inc.

Executing the Examples
This manual includes many examples. Because we cannot be certain which
interface you are using, and because the interface affects the way you execute the
examples, a few words about the mechanics of the situation may be useful here.

There are two simple ways to write and compile a method:

 • If you are using GemBuilder for Smalltalk, you can use the structured editing
and execution facilities provided by a GemStone Browser or workspace. A
browser makes it easier to define classes and methods by presenting templates
for these operations. Once you’ve filled out the templates, a browser internally
builds and executes GemStone Smalltalk expressions to compile the classes
and methods. A browser organizes your work and presents it in a pleasing and
easily understood format.

A workspace makes it easier to compile and execute fragments of GemStone
Smalltalk code interactively, and see the results immediately using the GS-
print it command.

 • You can also enter your GemStone Smalltalk method code through the Topaz
programming environment. Topaz requires a few extra commands to begin
4 GemStone Systems, Inc. September 2009

GemStone Programming Guide Preface
and end an example. To identify code as constituting a method, for instance,
you’ll add a couple of simple non-GemStone Smalltalk directives such as
“method:.” These tell Topaz to treat the indicated text as a method to be
compiled and installed in a class.

This is in some ways less convenient than using the GemStone Browser to
create methods, but it has one important advantage: method definitions in this
format are easily represented and inspected on the printed page.

This manual presents examples in Topaz format, with Topaz commands presented
in boldface type. Those commands probably need little explanation when you see
them in context; however, you may need to turn to the Topaz manual for
instructions about entering and executing the text of the upcoming examples.

If you are using GemBuilder for Smalltalk, you may instead choose to read the
introductions to the browser and workspace, and then use those tools to enter the
examples in this manual. The text of the examples themselves (excluding the
boldface Topaz commands) is the same whichever way you choose to enter it.

Other Useful Documents
You will find it useful to look at documents that describe other GemStone system
components:

 • A complete description of the behavior of each GemStone Smalltalk kernel
class is available online in the GemStone image class and method comments.

 • The GemStone/S 64 Bit Topaz Programming Environment Manual describes
Topaz, a scriptable command-line interface to GemStone Smalltalk. Topaz is
most commonly used for performing repository maintenance operations.

 • The GemBuilder for Smalltalk manual describes GemBuilder for Smalltalk, a
programming interface that provides a rich set of features for building and
running client Smalltalk applications that interact transparently with
GemStone Smalltalk.

 • The GemBuilder for C manual describes GemBuilder for C — a set of C
functions that provide a bridge between your application’s C code and the
application’s database controlled by GemStone.

 • In addition, if you will be acting as a system administrator, or developing
software for someone else who must play those roles, read the System
Administration Guide for GemStone/S 64 Bit.
September 2009 GemStone Systems, Inc. 5

Preface GemStone Programming Guide
Technical Support
GemStone provides several sources for product information and support. The
product-specific manuals provide extensive documentation, and should be your
first source of information.

GemStone Web Site: http://support.gemstone.com

GemStone’s Technical Support website provides a variety of resources to help you
use GemStone products. Use of this site requires an account, but registration is free
of charge. To get an account, just complete the Registration Form, found in the
same location. You’ll be able to access the site as soon as you submit the web form.

The following types of information are provided at this web site:

Documentation for GemStone/S 64 Bit is provided in PDF format. This is the same
documentation that is included with your GemStone/S 64 Bit product.

Release Notes and Install Guides for your product software are provided in PDF
format in the Documentation section.

Downloads and Patches provide code fixes and enhancements that have been
developed after product release, and past and current versions of GemBuilder for
Smalltalk.

Bugnotes, in the Learning Center section, identify performance issues or error
conditions that you may encounter when using a GemStone product. A bugnote
describes the cause of the condition, and, when possible, provides an alternative
means of accomplishing the task. In addition, bugnotes identify whether or not a
fix is available, either by upgrading to another version of the product, or by
applying a patch. Bugnotes are updated regularly.

TechTips, also in the Learning Center section, provide information and
instructions for topics that usually relate to more effective or efficient use of
GemStone products.

Community Links provide customer forums for discussion of GemStone product
issues.

Technical information on the GemStone Web site is reviewed and updated
regularly. We recommend that you check this site on a regular basis to obtain the
latest technical information for GemStone products.

Help Requests
You may need to contact Technical Support directly for the following reasons:
6 GemStone Systems, Inc. September 2009

GemStone Programming Guide Preface
 • Your technical question is not answered in the documentation.

 • You receive an error message that directs you to contact GemStone Technical
Support.

 • You want to report a bug.

 • You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

 • Your name, company name, and GemStone/S license number

 • The GemStone product and version you are using

 • The hardware platform and operating system you are using

 • A description of the problem or request

 • Exact error message(s) received, if any

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, the support website is the preferred way to contact
Technical Support. Only designated support contacts may submit help requests
via the support website. If you are a designated support contact for your company,
or the designated contacts have changed, please contact us to update the
appropriate user accounts.

Website: http://techsupport.gemstone.com
Email: support@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503

Requests for technical assistance may be submitted online, or by email or by
telephone. We recommend you use telephone contact only for more serious
requests that require immediate evaluation, such as a production system that is
non-operational. In these cases, please also submit your request via the web or
email, including pertinent details such error messages and relevant log files.
September 2009 GemStone Systems, Inc. 7

Preface GemStone Programming Guide
If you are reporting an emergency by telephone, select the option to transfer your
call to the technical support administrator, who will take down your customer
information and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact us 24 hours a day, 7 days a week, 365 days a
year, if they encounter problems that cause their production application to go
down, or that have the potential to bring their production application down. For
more details, contact your GemStone account manager.

Training and Consulting
Consulting and training for all GemStone products is available through
GemStone’s Professional Services organization.

 • Customized consulting services can help you make the best use of
GemStone products in your business environment.

Contact your GemStone account representative for more details or to obtain
consulting services.
8 GemStone Systems, Inc. September 2009

Contents
Chapter 1. Introduction to GemStone 21
1.1 Overview of the GemStone System . 22
1.2 Multi-User Object Server . 22
1.3 Programmable Server Object System . 23
1.4 Partitioning of Applications Between Client and Server 23
1.5 Large-Scale Repository . 24
1.6 Queries and Indexes . 24
1.7 Transactions and Concurrency Control . 25
1.8 Connections to Outside Data Sources . 26
1.9 Login Security and Account Management . 27
1.10 Services to Manage the GemStone Repository 28

Chapter 2. Programming With GemStone 29
2.1 The GemStone Programming Model . 30

Server-Based Classes, Methods, and Objects 30
Client and Server Interfaces . 31
GemStone Sessions . 32
September 2009 GemStone Systems, Inc. 9

Contents GemStone Programming Guide
2.2 GemStone Smalltalk . 33
Language Extensions . 33

Query Syntax . 33
Auto-Growing Collections . 34

Class Library Differences . 34
No User Interface . 34
Different File Access . 34
Different C Callouts . 34

Class Library Extensions . 34
More Collection Classes . 35
Reduced-Conflict Classes. 35
User Account and Security Classes 35
System Management Classes. 35
File In and File Out . 36

Interapplication Communications . 36
DbTransience . 36

2.3 Process Architecture . 37
Gem Process . 37
Stone Process . 37
Shared Object Cache . 37
Garbage Collection (GcGem) Processes 38
Extents and Repositories . 38
Transaction Log . 38
NetLDI . 38
Login Dynamics. 39

Chapter 3. Resolving Names and Sharing Objects 41
3.1 Sharing Objects . 42
3.2 UserProfile and Session-Based Symbol Lists 42

What’s In Your Symbol List? . 43
Examining Your Symbol List . 44
Inserting and Removing Dictionaries from Your Symbol List 46
Updating Symbol Lists . 48
Finding Out Which Dictionary Names an Object 50

3.3 Using Your Symbol Dictionaries . 51
The Published Dictionary . 52
10 GemStone Systems, Inc. September 2009

GemStone Programming Guide Contents
Chapter 4. Collection and Stream Classes 53
4.1 An Introduction to Collections . 54

Protocol Common To All Collections . 56
Creating Instances . 56
Adding Elements . 57
Enumerating . 58
Sort ordering and collation . 60
Selecting and Rejecting Elements 60

4.2 Collection Subclasses . 61
AbstractDictionary . 61

AbstractDictionary Protocol . 61
Internal Dictionary Structure . 62
KeyValueDictionary . 62
SymbolDictionary . 62
KeySoftValueDictionary . 63

SequenceableCollection. 64
Accessing and Updating Protocol 65
Adding Objects to SequenceableCollection 66
Removing Objects from a SequenceableCollection 67
Comparing SequenceableCollection 68
Copying SequenceableCollection 68
Enumeration and Searching Protocol 70
Arrays . 70
Strings. 74
Symbols . 80
DoubleByteString and DoubleByteSymbol 80

UnorderedCollection . 80
Bag. 81
IdentityBag . 81
Class IdentitySet . 88
Set . 93

4.3 Stream Classes. 93
Position and ANSI . 94

Stream Protocol . 95
Creating Printable Strings with Streams 97
September 2009 GemStone Systems, Inc. 11

Contents GemStone Programming Guide
Chapter 5. Querying 99
5.1 Relations . 100

What You Need To Know . 101
5.2 Selection Blocks and Selection . 102

Selection Block Predicates and Free Variables 102
Predicate Terms . 103

Predicate Operands . 104
Predicate Operators . 104
Conjunction of Predicate Terms 105

Limits on String Comparisons . 106
Redefined Comparison Messages in Selection Blocks 106

Changing the Ordering of Instances 110
Collections Returned by Selection . 111
Streams Returned by Selection . 112

5.3 Additional Query Protocol . 114
5.4 Indexing For Faster Access . 115

Identity Indexes . 115
Creating Identity Indexes. 115
Creating Indexes on Large Collections 116

Equality Indexes . 116
Creating Equality Indexes . 117
Creating Reduced Conflict Equality Indexes 117
Creating Indexes on Large Collections 118
Automatic Identity Indexing 118
Implicit Indexes . 118

Managing indexes . 118
Indexes and Transactions . 119
Inquiring About Indexes . 119
Removing Indexes . 120

Implicit Index Removal . 121
Duplicating a Collection’s Indexes 122
Removing and Re-Creating Indexes. 122

Indexing and Performance. 123
Indexing Errors . 124

Auditing Indexes . 125
5.5 Sorting and Indexing . 125
12 GemStone Systems, Inc. September 2009

GemStone Programming Guide Contents
Chapter 6. Transactions and Concurrency Control 127
6.1 GemStone’s Conflict Management . 128

Views and Transactions . 128
When Should You Commit a Transaction? 128
Reading and Writing in Transactions 129
Reading and Writing Outside of Transactions 130

6.2 How GemStone Detects Conflict . 130
Concurrency Management . 131
Transaction Modes . 131
Changing Transaction Mode . 132

Beginning a New Transaction in Manual Mode 133
Committing Transactions. 133
Handling Commit Failure In A Transaction 135
Indexes and Concurrency Control. 136
Aborting Transactions . 136

Updating the View Without Committing or Aborting 137
Being Signaled To Abort . 138
Being Signaled to continueTransaction 139

6.3 Controlling Concurrent Access With Locks 140
Locking and Manual Transaction Mode 140
Lock Types . 140

Read Locks . 140
Write Locks . 141

Acquiring Locks . 142
Lock Denial . 142
Dead Locks . 144
Dirty Locks . 144
Locking Collections Of Objects Efficiently 145
Upgrading Locks . 147

Locking and Indexed Collections . 147
Removing or Releasing Locks . 148

Releasing Locks Upon Aborting or Committing 149
Inquiring About Locks . 150
Application Write Locks . 151

6.4 Classes That Reduce the Chance of Conflict 153
RcCounter . 154
RcIdentityBag . 155
September 2009 GemStone Systems, Inc. 13

Contents GemStone Programming Guide
RcQueue . 156
RcKeyValueDictionary . 157

6.5 Special Cases of Persistence . 158
Non-Persistent Classes . 158
DbTransient . 159

Chapter 7. Object Security and Authorization 161
7.1 How GemStone Security Works . 162

Login Authorization . 162
The UserProfile . 162

System Privileges . 163
Object-level Security . 163

Segments . 163
7.2 Assigning Objects to Segments . 165

Default Segment and Current Segment 165
Objects and Segments . 166
Read and Write Authorization and Segments 167

How GemStone Responds to Unauthorized Access. 168
Owner Authorization . 168

Segments in the Repository . 170
Changing the Segment for an Object 172
Revoking Your Own Authorization: a Side Effect 175
Finding Out Which Objects are in a Segment 175

7.3 An Application Example . 176
7.4 A Development Example . 179

Planning Segments for User Access. 180
Protecting the Application Classes 180
CodeModification privilege 181
Planning Authorization for Data Objects 181
Planning Groups . 183
Planning Segments . 185

Developing the Application . 186
Setting Up Segments for Joint Development 186
Making the Application Accessible for Testing 189
Moving the Application into a Production Environment . . . 189

Segment Assignment for User-created Objects 190
7.5 Privileged Protocol for Class Segment . 190
14 GemStone Systems, Inc. September 2009

GemStone Programming Guide Contents
7.6 Segment-related Methods . 192

Chapter 8. Class Versions and Instance Migration 197
8.1 Versions of Classes . 198

Defining a New Version . 198
New Versions and Subclasses . 199
New Versions and References in Methods 199

8.2 ClassHistory . 200
Defining a Class with a Class History. 200
Accessing a Class History . 202
Assigning a Class History . 202

8.3 Migrating Objects . 202
Migration Destinations . 203
Migrating Instances . 203

Finding Instances and References 204
Using the Migration Destination. 206
Bypassing the Migration Destination 207
Migration Errors . 208

Instance Variable Mappings . 209
Default Instance Variable Mappings 210
Customizing Instance Variable Mappings 212

Chapter 9. File I/O and Operating System Access 217
9.1 Accessing Files . 218

Specifying Files . 218
Creating a File . 219
Opening and Closing a File . 220
Writing to a File . 221
Reading From a File . 222

Positioning . 222
Testing Files . 223
Renaming Files . 223
Removing Files . 224
Examining a Directory . 224

9.2 Executing Operating System Commands 225
September 2009 GemStone Systems, Inc. 15

Contents GemStone Programming Guide
9.3 File In, File Out, and PassiveObject. 226
9.4 Creating and Using Sockets . 228

Chapter 10. Signals and Notifiers 231
10.1 Communicating Between Sessions . 232
10.2 Object Change Notification . 232

Setting Up a Notify Set . 233
Adding an Object to a Notify Set 233
Adding a Collection to a Notify Set 235
Listing Your Notify Set . 236
Removing Objects From Your Notify Set 236

Notification of New Objects . 237
Receiving Object Change Notification 238
Reading the Set of Signaled Objects 239

Polling for Changes to Objects. 240
Troubleshooting. 241

Frequently Changing Objects 241
Special Classes . 241

Methods for Object Notification. 243
10.3 Gem-to-Gem Signaling . 243

Sending a Signal. 246
Receiving a Signal . 248

10.4 Other Signal Related Issues . 250
Increasing Speed. 250

Dealing With Signal Overflow . 251
Using Signals and Notifiers with RPC Applications 251
Sending Large Amounts of Data 251

Maintaining Signals and Notification When Users Log Out 252

Chapter 11. Handling Errors 253
11.1 Signaling Errors to the User . 253
11.2 Handling Errors in Your Application . 257

Activation Exceptions . 258
Static Exceptions . 258
Defining Exceptions . 261
16 GemStone Systems, Inc. September 2009

GemStone Programming Guide Contents
Categories and Error Numbers. 261
Handling Exceptions . 266
Raising Exceptions . 268
Flow of Control . 269

Signaling Other Exception Handlers 273
Removing Exception Handlers 275

Recursive Errors . 276
Uncontinuable Errors . 277

Chapter 12. Handling Exceptions the ANSI Way 279
12.1 Signaling Exceptions . 280
12.2 Handling Exceptions . 280

Default Handlers . 281
Activation Handlers. 281
Selecting a Handler . 282
Flow of Control . 284
Resumable and Nonresumable Exceptions. 286

12.3 Legacy Exceptions . 286

Chapter 13. Tuning Performance 289
13.1 Clustering Objects for Faster Retrieval . 290

Will Clustering Solve the Problem? . 290
Cluster Buckets . 291

Cluster Buckets and Extents 291
Using Existing Cluster Buckets. 291
Creating New Cluster Buckets 292
Cluster Buckets and Concurrency 293
Cluster Buckets and Indexing 294

Clustering Objects . 294
The Basic Clustering Message 294
Depth-First Clustering . 297
Assigning Cluster Buckets . 297
Clustering and Transactions 297
Using Several Cluster Buckets 297
Clustering Class Objects . 298
September 2009 GemStone Systems, Inc. 17

Contents GemStone Programming Guide
Maintaining Clusters . 299
Determining an Object’s Location 299
Why Do Objects Move?. 301

13.2 Optimizing for Faster Execution. 301
The Class ProfMonitor . 301
Profiling Your Code . 302
The Profile Report. 304
Other Optimization Hints . 306

13.3 Modifying Cache Sizes for Better Performance 308
GemStone Caches . 308

Temporary Object Space . 309
Gem Private Page Cache . 310
Stone Private Page Cache. 310
Shared Page Cache . 310

Getting Rid of Non-Persistent Objects 311
13.4 Managing VM Memory. 312

Large Working Set . 312
Class Hierarchy . 313
UserAction Considerations. 313
Exported Set . 313

Debugging out of memory errors . 314
Signal on low memory condition . 314
Methods for Computing Temporary Object Space 315
Statistics for monitoring memory use 316

Chapter 14. Advanced Class Protocol 321
14.1 Adding and Removing Methods . 322

Defining Simple Accessing and Updating Methods 322
Removing Selectors . 324
The Basic Compiler Interface . 324

14.2 Examining a Class’s Method Dictionary 326
14.3 Examining, Adding, and Removing Categories 330
14.4 Accessing Variable Names and Pool Dictionaries 333
14.5 Testing a Class’s Storage Format . 336
14.6 Session Methods. 338
18 GemStone Systems, Inc. September 2009

GemStone Programming Guide Contents
Chapter 15. The SUnit Framework 343
15.1 Why SUnit?. 344
15.2 Testing and Tests . 344
15.3 SUnit by Example . 346

Examining the Value of a Tested Expression. 348
Finding Out If an Exception Was Raised 349

15.4 The SUnit Framework. 350
15.5 Understanding the SUnit Implementation 351

Running a Single Test . 352
Running a TestSuite . 353

15.6 For More Information . 355

Appendix A. GemStone Smalltalk Syntax 357
A.1 The Smalltalk Class Hierarchy . 357

How to Create a New Class . 358
Case-Sensitivity . 358
Statements . 359
Comments . 359
Expressions . 359

Kinds of Expressions . 360
Literals . 360
Numeric Literals . 361
Character Literals . 362
String Literals . 362
Symbol Literals. 363
DoubleByteStrings and DoubleByteSymbols 363
Array Literals . 363

Variables and Variable Names. 364
Declaring Temporary Variables 364
Pseudovariables . 365

Assignment . 366
Message Expressions . 366

Messages . 366
Reserved and Optimized Selectors . 367

Messages as Expressions . 367
Combining Message Expressions . 369
September 2009 GemStone Systems, Inc. 19

Contents GemStone Programming Guide
Summary of Precedence Rules 370
Cascaded Messages . 370
Array Constructors . 371
Path Expressions . 373
Returning Values . 374

A.2 Blocks . 375
Blocks with Arguments . 376
Blocks and Conditional Execution . 378

Conditional Selection . 378
Two-Way Conditional Selection 379
Conditional Repetition . 379

Formatting Code . 381
A.3 GemStone Smalltalk BNF . 383

Appendix B. GemStone Error Messages 387
B.1 Compiler Errors . 388
B.2 Error Descriptions . 389

Index 391
20 GemStone Systems, Inc. September 2009

Chapter

1 Introduction to
GemStone
This chapter introduces you to the GemStone system. GemStone provides a
distributed, server-based, multi-user, transactional Smalltalk runtime system,
Smalltalk application partitioning technology, access to relational data, and
production-quality scalability and availability. The GemStone object server allows
you to bring together object-based applications and existing enterprise and
business information in a three-tier, distributed client/server environment.
September 2009 GemStone Systems, Inc. 21

Overview of the GemStone System GemStone Programming Guide
1.1 Overview of the GemStone System
GemStone provides a wide range of services to help you build objects-based
information systems. GemStone:

 • is a multi-user object server
 • is a programmable server object system
 • manages a large-scale repository of objects
 • supports partitioning of applications between client and server
 • supports queries and indexes for large-scale object processing
 • supports transactions and concurrency control in the object repository
 • supports connections to outside data sources
 • provides login security and account management
 • provides services to manage the object repository
 • provides comprehensive statistics and charting for performance tuning

Each of these features is described in greater detail in the following sections.

1.2 Multi-User Object Server
GemStone can support thousands of concurrent users, object repositories of
hundreds of gigabytes, and sustained object transaction rates of hundreds of
transactions per second. Server processes manage the system, while user sessions
support individual user activities. Repository and server processes can be
distributed among multiple machines, and shared memory and SMP can be
leveraged.

Multiple user sessions can be active at the same time, and each user may have
multiple sessions open. A flexible naming scheme allows separate or shared
namespaces for individual users. Coherent groups of objects can be distributed
through replication. Changes that users make to objects are committed in
transactions, with concurrency controls and locks ensuring that multi-user
changes to objects are coordinated. Security is provided at several levels, from
login authorization to method execution privileges.
22 GemStone Systems, Inc. September 2009

Contents Programmable Server Object System
1.3 Programmable Server Object System
GemStone provides data definition, data manipulation, and query facilities in a
single, computationally complete language — GemStone Smalltalk. The
GemStone Smalltalk language offers built-in data types (classes), operators, and
control structures comparable in scope and power to those provided by languages
such as C or Java, in addition to multi-user concurrency and repository
management services. All system-level facilities, such as transaction control, user
authorization, and so on, are accessible from GemStone Smalltalk.

This manual discusses the use of GemStone Smalltalk for system and application
development, particularly those aspects of GemStone Smalltalk that are unique to
running in a multi-user, secure, transactional system. See the System Administration
Guide for GemStone/S 64 Bit for more information about system administration
functions.

1.4 Partitioning of Applications Between Client and
Server

GemStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, or any language that makes C calls. Objects
created from any of these languages are interoperable with objects created from
the other languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk
classes and C functions. These language interfaces, known collectively as
GemBuilder, allow you to move objects between an application program and the
GemStone repository, and to connect client objects to GemStone objects.
GemBuilder also provides remote messaging capabilities, client replicates, and
synchronization of changes.

GemBuilder for Smalltalk is a set of classes installed in a client Smalltalk image that
provides access to objects in the GemStone repository. The client Smalltalk
application can use these classes to gain access to all of GemStone’s production
capabilities. GemBuilder for Smalltalk also supports transparent GemStone access
from a Smalltalk application — client Smalltalk and GemStone objects are related
to each other, and GemBuilder maintains the relationship and propagates changes
between these client Smalltalk and GemStone objects, not the application.

GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone object repository. You can work with
GemStone objects by importing them into the C program using structural access or
September 2009 GemStone Systems, Inc. 23

Large-Scale Repository GemStone Programming Guide
by sending messages to objects in the repository through GemStone Smalltalk. You
can also call C routines from within GemStone Smalltalk methods.

Your GemStone system includes one or more of these interfaces. Separate manuals
available for each of the GemBuilder products provide full documentation of the
functionality and use of these products.

1.5 Large-Scale Repository
Object programming languages such as Smalltalk have proven to be highly
efficient development tools. Smalltalk exploits inheritance and code reuse and
provides the flexibility of modeling real world objects with self-contained software
modules. Most Smalltalk implementations, however, are memory based. Objects
are either not saved between executions, or they are saved in a primitive manner
that does not lend itself to concurrent usage or sharing. Smalltalk programmers
save their work in an “image,” which is a file that stores their development
environment on a workstation. The image holds the application's classes and
instances, the compiled code for all executable methods, and the values of the
variables defined in the product.

GemStone is based on the Smalltalk object model. Like a single-user Smalltalk
image, it consists of classes, methods, instances and meta objects. Persistence is
established by attaching new objects to other persistent objects. All objects are
derived from a named root (AllUsers). Objects that have been attached and
committed to the repository are visible to all other users. However, unlike client
Smalltalks with memory-based images, the GemStone repository is accessed
through disk caches, so it is not limited in size by available memory. A GemStone
repository can contain billions of objects. Because each object in a repository has a
unique object identifier (known as an OOP—object-oriented pointer), GemStone
applications can access any object without having to know its physical location.

1.6 Queries and Indexes
GemStone lets you model information in structures as simple as the data permits,
and no more complex than the data demands. You can represent data objects in
tables, hierarchies, networks, queues, or any other structure that is appropriate.
Each of these objects may also be indexable. Complex data structures can be built
by nesting objects of various formats.

The power and flexibility of GemStone Smalltalk allow you to perform regular and
associative access queries against very large collections. Because you can represent
24 GemStone Systems, Inc. September 2009

Contents Transactions and Concurrency Control
information in forms that mirror the information’s natural structure, the
translation of user requests into executable queries can be much easier in
GemStone. You do not need to translate users’ keystrokes or menu selections into
relational algebra formulas, calculus expressions and procedural statements
before the query can be executed. See Chapter 5, "Querying."

1.7 Transactions and Concurrency Control
Each GemStone session defines and maintains a consistent working environment
for its application program, presenting the user with a consistent view of the object
repository. The user works in an environment in which only his or her changes to
objects are visible. These changes are private to the user until the transaction is
committed. The effects of updates to the object repository by other users are
minimized or invisible during the transaction. GemStone then checks for
consistency with other users’ changes before committing the transaction.

GemStone provides two approaches to managing concurrent transactions:

 • Using the optimistic approach, you read and write objects as if you were the
only user, letting GemStone manage conflicts with other sessions only when
you try to commit a transaction. This approach is easy to implement in an
application, but you run the risk of discarding the work you’ve done if
GemStone detects conflicts and does not permit you to commit your
transaction. When GemStone looks for conflicts only at your commit time,
your chances of being in conflict with other users increase both with the time
between your commits and the number of objects being read and written.

 • Using the pessimistic approach, you prevent conflicts as early as possible by
explicitly requesting locks on objects before you modify them. When an object
is locked, other users are unable to lock that object or to commit any changes
they have made to the object. When you encounter an object that another user
has locked, you can wait, or abort your transaction immediately, instead of
wasting time doing work that can’t be committed. If there is a lot of
competition for shared information in your application, or your application
can’t tolerate even an occasional inability to commit, using locks may be your
best choice.

GemStone is designed to prevent conflicts when two users are modifying the same
object at the same time. However, some concurrent operations that modify an
object, but in consistent ways, should be allowed to proceed. For example, it might
not cause any concern if two users concurrently added objects to the same Bag in
a particular application.
September 2009 GemStone Systems, Inc. 25

Connections to Outside Data Sources GemStone Programming Guide
For such cases, GemStone provides reduced-conflict (Rc) classes that can be used
instead of the regular classes in those applications that might otherwise experience
too many unnecessary conflicts:

 • RcCounter can be used instead of a simple number for keeping track of
amounts when it isn’t crucial that you know the results right away.

 • RcIdentityBag provides the same functionality as IdentityBag, except that no
conflict occurs if a number of users read objects in the bag or add objects to the
bag at the same time.

 • RcQueue provides a first-in, first-out queue in which no conflict occurs when
other users read objects in the queue or add objects to the queue at the same
time.

 • RcKeyValueDictionary provides the same functionality as KeyValueDictionary,
except that no conflict occurs when users read values in the dictionary or add
keys and values to the dictionary at the same time.

See Chapter 6, "Transactions and Concurrency Control."

1.8 Connections to Outside Data Sources
While GemStone methods are all written in Smalltalk (except for a few primitives),
you may often want to call out to other logic written in C. GemStone provides a
way to attach external code, called userActions, to a GemStone session. With
userActions, you can access or generate external information and bring it into
GemStone as objects, which can then be committed and made available to other
users. GemBuilder for C is used to write userActions in C and add them to
GemStone Smalltalk, according to rules described in the GemBuilder for C manual.
The comment for class System in the image describes the messages you can send
to invoke these userActions.

GemStone uses this mechanism to build its GemConnect product, which provides
access to relational database information from GemStone objects. GemConnect is
fully encapsulated and maintained in the GemStone object server. For more
information about GemConnect and its capabilities, refer to the GemConnect
Programming Guide.
26 GemStone Systems, Inc. September 2009

Contents Login Security and Account Management
1.9 Login Security and Account Management
Compared to a single-user Smalltalk system, GemStone requires substantially
more security mechanisms and controls. As a tool for server implementation,
multi-user Smalltalk must handle requests from many users running a variety of
applications, each of which can require different accessibility of objects.
Authentication and authorization are the cornerstones of GemStone Smalltalk
security.

A server must reliably identify the people attempting to use a system resource.
This identification process is known as authentication. Authentication requires a
valid user ID and password. Preventing unauthorized users from entering the
system by requiring user names and passwords is generally effective against
casual intrusion. GemStone Smalltalk features authentication protocol.

The next type of security, known as authorization, defines a set of privileges for
controlling the use of certain system services. Privileges determine whether the
user is allowed to execute certain system functions usually only performed by the
system administrator. Privileges are more powerful than authorization. A
privileged user can override authorization protection by sending privileged
messages to change the authorization scheme.

In GemStone Smalltalk, a user is represented by an instance of class UserProfile. A
UserProfile contains the following information about a user:

 • unique userID
 • password (encrypted)
 • privileges
 • group memberships

Only users who have a UserProfile can log on to the system. For more about
UserProfiles, see the System Administration Guide for GemStone/S 64 Bit.

See Chapter 2, "Programming With GemStone."
September 2009 GemStone Systems, Inc. 27

Services to Manage the GemStone Repository GemStone Programming Guide
1.10 Services to Manage the GemStone Repository
GemStone objects are often an enterprise resource. They must be shared among all
users and applications to fill their role as repositories of critical business
information and logic. Their role goes beyond individual applications, requiring
permanence and availability to all parts of the system. GemStone is capable of
managing large numbers of objects shared by thousands of users, running
methods that access billions of objects, and handling queries over large collections
of objects by using indexes and query optimization. It can support large-scale
deployments on multiple machines in a variety of network configurations. All of
this functionality requires a wide array of services for management of the
repository, the system processes, and user sessions.

GemStone provides services that can:

 • Support flexible backup and restore procedures.
 • Recover from hardware and network failures.
 • Perform object recovery when needed.
 • Tune the object server to provide high transaction rates by using shared

memory and asynchronous I/O processes.
 • Accommodate the addition of new machines and processors without

recoding the system.
 • Make controlled changes to the definition of the business and application

objects in the system.

This manual provides information about programmatical techniques that can be
used to optimize your GemStone environment for system administration. Actual
system administration and management processes are discussed in the System
Administration Guide for GemStone/S 64 Bit.
28 GemStone Systems, Inc. September 2009

Chapter

2 Programming With
GemStone
This chapter provides an overview of the programming environment provided by
GemStone.

The GemStone Programming Model
describes how programming in GemStone differs from programming in a
client Smalltalk development environment.

GemStone Smalltalk
explains the unique aspects of GemStone Smalltalk that affect programming
and application design.

GemStone Architecture
describes GemStone’s development and runtime process architecture, and
how that architecture influences your programming design and techniques.
September 2009 GemStone Systems, Inc. 29

The GemStone Programming Model GemStone Programming Guide
2.1 The GemStone Programming Model
GemStone is an object server, so programming with GemStone is somewhat
different than programming with a client Smalltalk development environment.
However, there is a great deal that GemStone has in common with client Smalltalk
development, so many of the programming concepts will be quite familiar to you
if you have previously worked with a client Smalltalk system.

Server-Based Classes, Methods, and Objects
One key characteristic of GemStone programming is that GemStone Smalltalk runs
in a server, not in a client. Running in a server means that GemStone classes and
methods are stored in a server-based repository (image), and activated by
processes which run on a server, often without a keyboard or screen present. The
developer writing GemStone classes and methods is usually working at a client
machine, communicating with the GemStone environment remotely.

Running in a server also means that the services provided by GemStone’s own
class library are oriented toward server activity. GemStone’s class library provides
functionality for:

 • Handling data

 • Processing collections and queries

 • Managing the system

 • Managing user accounts

The GemStone class library does not provide a user interface. User interface
functionality is provided in client Smalltalk products.

Because GemStone is an object server, it provides a large number of mechanisms
for communicating with GemStone objects from remote machines for
development purposes, application support, and system management. Remote
machines often host a programming environment that communicates with
GemStone through a GemStone interface. A significant part of programming with
GemStone is designing the interactions between various client and server-based
runtime systems and the GemStone classes, methods, and objects created by the
developer.
30 GemStone Systems, Inc. September 2009

Contents The GemStone Programming Model
Client and Server Interfaces
GemStone provides a number of client and server interfaces to make it easy for
developers to write applications which make use of GemStone objects, and to write
GemStone classes and methods that make use of external data. While an entire
application can be built in GemStone Smalltalk and run in the GemStone server,
most applications include either a user interface or interaction of some kind with
other systems. In addition, management of a running GemStone system involves
using GemStone tools and interfaces to program control activities tailored to
specific system environments.

GemStone’s interfaces include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone
programming tools, and a programming interface between the client
application code and GemStone. GemBuilder for Smalltalk contains a set of
classes installed in a client Smalltalk image that provides access to objects in a
GemStone repository. Many of the client Smalltalk kernel classes are mapped
to equivalent GemStone classes, and additional class mappings can be created
by the application developer.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows
programmers to work with GemStone objects by importing them into the C
program using structural access, or by sending messages to objects in the
repository through GemStone Smalltalk. C routines can also be called from
within GemStone Smalltalk methods.

Topaz
Topaz is a GemStone programming environment that provides a scriptable
command-line interface to GemStone Smalltalk. Topaz is most commonly
used for performing repository maintenance operations. Topaz offers access to
GemStone without requiring a window manager or additional language
interfaces. You can use Topaz in conjunction with other GemStone
development tools such as GemBuilder for C to build comprehensive
applications.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks. You can
use GemBuilder for C to write these user actions, and add them to and execute
them from GemStone Smalltalk.
September 2009 GemStone Systems, Inc. 31

The GemStone Programming Model GemStone Programming Guide
For more information about the GemBuilder and Topaz products, see their
respective user manuals. UserActions are discussed in the GemBuilder for C
manual.

GemStone Sessions
All of the GemStone interfaces provide access to GemStone objects and
mechanisms for running GemStone methods in the server. This access is
accomplished by establishing a session with the GemStone object server. The
process for establishing a session is tailored to the language or user of each
interface. In all cases, however, this process requires identification of the
GemStone object server to be used, the user ID for the login, and other information
required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of
that session, be it low-level object access and creation, or invocation of GemStone
Smalltalk methods.

Sessions allow multiple users to share objects. In fact, different sessions can access
the same repository in different ways, depending on the needs of the applications
or users they are supporting. For example, an employee may only be able to access
employee names, telephone extensions and department names through the human
resources application, while a manager may be able to access and change salary
information as well.

Sessions also control transactions, which are the only way changes to the
repository can be committed. However, a passive session can run outside a
transaction for better performance and lower overhead. For example, a stock
portfolio application that reports the current value of a collection of stocks may run
in a session outside a transaction until notified that a price has changed in a stock
object. The application would then start a transaction, commit the change, and
recalculate the portfolio value. It would then return to a passive session state until
the next change notification.

On UNIX platforms, a session can be integrated with the application into a single
process, called a linked application. Each session can have only one linked
application.

Alternatively, the session can run as a separate process and respond to remote
procedure calls (RPCs) from the application. These sessions are called RPC
applications. (Sessions on Windows platforms must run in RPC mode.) Sessions
may have multiple RPC applications running simultaneously with each other and
a linked application.
32 GemStone Systems, Inc. September 2009

Contents GemStone Smalltalk
2.2 GemStone Smalltalk
All Smalltalk languages share common characteristics. GemStone Smalltalk, while
providing basic Smalltalk functionality, also provides features that are unique to
multi-user, server-based programming.

GemStone Smalltalk provides data definition, data manipulation, and query
facilities in a single, computationally complete language. It is tailored to operate in
a multi-user environment, providing a model of transactions and concurrency
control, and a class library designed for multi-user access to objects. GemStone
Smalltalk operates on server-class machines to take advantage of shared memory,
asynchronous I/O, and disk partitions. It was built with transaction throughput
and client communication as chief considerations.

At the same time, its common characteristics with other Smalltalks allow you to
implement shared business objects with the same language you use to build client
applications. Since the same code can execute either on the client or on the object
server, you can easily move behavior from the client to the server for application
partitioning.

Language Extensions
To facilitate your work with persistent objects and large collections, GemStone
Smalltalk extends standard Smalltalk in several ways.

Query Syntax

Enterprise applications need to support efficient searching over collections to find
all objects that match some specified criteria. Each collection class in GemStone
Smalltalk provides methods for iterating over its contents and allowing any kind
of complex operation to be performed on each element. All collection classes
understand the messages select:, reject:, and detect:.

In GemStone Smalltalk, an index provides a way to traverse backwards along a
path of instance variables for every object in the collection for which the index was
created. This traversal process is usually much faster than iterating through an
entire collection to find the objects that match the selection criteria.

A special query syntax lets you use GemStone Smalltalk’s extended mechanism for
querying collections with indexes. In addition, the special syntax for select blocks
lets you specify a path of named instance variables to traverse during a query.
September 2009 GemStone Systems, Inc. 33

GemStone Smalltalk GemStone Programming Guide
Auto-Growing Collections

GemStone Smalltalk allows you to create collections of variable length, allowing
you to add and delete elements without manually readjusting the collection size.
GemStone handles the memory management necessary for this process.

Class Library Differences
Also to facilitate your work with persistent objects and large collections, GemStone
Smalltalk changes the standard Smalltalk class library in several ways.

No User Interface

GemStone Smalltalk does not provide any classes for screen presentation or user
interface development. These aspects of development are handled in your client
Smalltalk.

Different File Access

GemStone class GsFile provides a way to create and access non-GemStone files.
Many of the methods in GsFile distinguish between files stored on the client
machine and files stored on the server machine. GsFile allows the use of full
pathnames or environment variables to specify location. If environment variables
are used, how the variable is expanded depends on whether the process is running
on the client or the server.

Different C Callouts

GemStone Smalltalk uses a mechanism called user actions to invoke C functions
from within methods. User actions must be written and installed according to
special rules, which are described in the GemBuilder for C manual.

Class Library Extensions
You can subclass all GemStone-supplied classes, and applications will inherit all
their predefined structure and behavior. This manual discusses some of these
classes and methods. Your GemBuilder interface provides an excellent means for
becoming familiar with the GemStone class hierarchy. A complete description of
all GemStone Smalltalk classes is found in the GemStone image class and method
comments.
34 GemStone Systems, Inc. September 2009

Contents GemStone Smalltalk
More Collection Classes

GemStone Smalltalk provides a number of specialized Collection classes, such as
the KeyValueDictionary classes, that have been optimized to improve application
speed and support scaling capability. For a full discussion of these classes, see
Chapter 4, "Collection and Stream Classes".

Reduced-Conflict Classes

Reduced-conflict (RC) classes minimize spurious conflicts that can occur in a
multi-user environment. RC classes are used in place of their regular counterpart
classes in those applications that you determine may otherwise encounter too
many of these conflicts. RC classes do not circumvent normal conflict mechanisms,
but they have been specially designed to eliminate or minimize commit errors on
operations that analysis has determined are not true conflicts.

User Account and Security Classes

UserProfile is used by GemStone in conjunction with information GemStone
gathers during each session to provide a range of security and authorization
services, including login authorization, memory and file protection, secondary
storage management, location transparency, logical name translation, and
coordination of resource use by concurrent users. This manual discusses how
UserProfile is used by GemStone during a session. The System Administration Guide
for GemStone/S 64 Bit contains procedures for creating and maintaining
UserProfiles.

Segment is used to control ownership of and access to objects. With Segment, you
can abstractly group objects, specify who owns the objects, specify who can read
them, and specify who can write them. This manual provides a full discussion of
segments in the Security chapter.

System Management Classes

GemStone Smalltalk provides a number of classes that offer system management
functionality.

 • Most of the actions that directly call on the data management kernel can be
invoked by sending messages to System, an abstract class that has no
instances.

 • All disk space used by GemStone to store data is represented as a single
instance of class Repository, and all data management functions, such as
extent creation and access, backup and restoration, and garbage collection are
performed against this class.
September 2009 GemStone Systems, Inc. 35

GemStone Smalltalk GemStone Programming Guide
 • The class ProfMonitor allows you to monitor and capture statistics about your
application performance that can then be used to optimize and tune your
Smalltalk code for maximum performance.

 • The class ClusterBucket can be used to cluster objects across transactions,
meaning their receivers will be placed, as far as possible, in contiguous
locations on the same disk page or in contiguous locations on several pages.

Implementation of these classes is discussed in this manual. All of these classes are
described in detail in their respective comments in the image.

File In and File Out

GemStone Smalltalk allows you to file out source code for classes and methods,
save the resulting text file, and file it in to another repository. The GemStone class
PassiveObject also allows you to file out objects and file them in to another
repository. For more information about the process, see See “File In, File Out, and
PassiveObject” on page 226, or read the description of the PassiveObject class in
the image.

Interapplication Communications
GemStone Smalltalk provides two ways to send information from one currently
logged-in session to another:

 • GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for
the application to repeatedly query the Gem for this information. Notification
is optional, and can be enabled for only those objects in which you are
interested.

 • Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

For more about this, see Chapter 10, "Signals and Notifiers".

DbTransience
GemStone Smalltalk classes can be DbTransient, meaning their instance variables
are not stored to disk. This is useful when your object structure includes classes
containing session state such as Semaphores.
36 GemStone Systems, Inc. September 2009

Contents Process Architecture
2.3 Process Architecture
GemStone provides the technology to build and execute applications that are
designed to be partitioned for execution over a distributed network. GemStone’s
architecture provides both scalability and maintainability. The following sections
describe the main aspects of GemStone architecture.

Gem Process
GemStone creates a Gem process for each session. The Gem runs GemStone
Smalltalk and processes messages from the client session. It provides the user with
a consistent view of the repository, and it manages the user’s GemStone session,
keeping track of the objects the users has accessed, paging objects in and out of
memory as needed, and performing dynamic garbage collection of temporary
objects. The Gem performs the bulk of commit processing. A user application is
always connected to at least one Gem, and may have connections to many Gem.
Gems can be distributed on multiple, heterogeneous servers, which provides
distribution of processing and SMP support. The Gem also offers users the ability
to link in user primitives for customization.

Stone Process
The Stone process is the resource coordinator. One Stone process manages one
repository. The Stone synchronizes activities and ensures consistency as it
processes requests to commit transactions. Individual Gem processes
communicate with the Stone through interprocess channels. The Stone performs
the following tasks:

 • Coordinates commit processing.
 • Coordinates lock acquisition.
 • Allocates object IDs.
 • Allocates object Pages.
 • Writes transaction logs.

Shared Object Cache
The shared object cache provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. A cache is started on each
machine that runs a Stone monitor, Gem session process, or linked application.

When modified, an object is written to a new location in the cache. Memory is
managed and allocated on a page basis. The cache also contains buffers for
September 2009 GemStone Systems, Inc. 37

Process Architecture GemStone Programming Guide
communications between Gems and the Stone. The shared cache monitor
initializes the shared memory cache, manages cache allocation to the sessions, and
dynamically adjusts this allocation to fit the workload. It also makes sure that
frequently accessed objects remain in memory, and that large objects queries do
not flush data from the cache. These controls allow complex applications to be run
on the same repository by multiple users with no degradation in performance.

Garbage Collection (GcGem) Processes
The garbage collection (GcGem) processes identify and dynamically reclaim space
used by unreferenced objects. The GcGem processes also dynamically defragment
the repository while maintaining requested object clustering.

 • The Admin GcGem is a Gem server process that is dedicated to performing the
administrative garbage collection tasks under supervision of the Stone. Each
repository can have up to one Admin GcGem process running.

 • The Reclaim GcGems perform the actual page reclaim operations. On a running
GemStone system, there may be between 0 and n Reclaim GcGems present,
where n is the number of extents in the repository.

For details about GemStone garbage collection, see the System Administration Guide
for GemStone/S 64 Bit.

Extents and Repositories
Extents are composed of multiple disk files or raw partitions. A repository, which
is the logical storage unit in which GemStone stores objects, is actually an ordered
file of one or more extents. Objects can be clustered on an extent for efficient
storage and access.

Transaction Log
GemStone’s transaction log provides complete point-in-time roll-forward
recovery. The tranlog contents are composed by the Gem, and the Stone writes the
tranlog using asynchronous I/O. Commit performance is improved through I/O
reduction, because only log records need to be written, not many object pages. In
addition, the object pages stay in memory to be reused. GemStone supports both
file-based and raw device configuration of tranlogs.

NetLDI
In a distributed system, each machine that runs a Stone monitor, Gem session
process, or linked application, must have its own network server process, known
38 GemStone Systems, Inc. September 2009

Contents Process Architecture
as a NetLDI (Network Long Distance Information). A NetLDI is also required if
any RPC (“remote”) Gem is used, even if all processes are on the same host.

A NetLDI reports the location of GemStone services on its machine to remote
processes that must connect to those services. The NetLDI also spawns other
GemStone processes on request.

Login Dynamics
When you log in to GemStone, GemStone establishes for you a logical entity called
a GsSession, which is comparable to an operating system session, job, or process.
GemStone creates a separate instance of GsSession each time a user logs in, and it
monitors, serves, and protects each session independently.

You can log into GemStone through any of its interfaces: GemBuilder for
Smalltalk, GemBuilder for C, or Topaz. Whichever interface you use, GemStone
requires the presentation of a user ID (a name or some other identifying string) and
a password. If the user ID and password pair match the user ID and password pair
of someone authorized to use the system, GemStone permits interaction to
proceed; if not, GemStone severs the logical connection.

The system administrator (or a user with equivalent privileges) assigns each
GemStone user an instance of class UserProfile, which contains, among other
information, the user ID and password. GemStone uses the UserProfile to establish
logical names and default locations, resolve references to system objects, and
perform similar tasks. The system administrator gives each new UserProfile
appropriate customized rights, and stores it with a set of all other UserProfiles in
a set called AllUsers.

You can obtain your own UserProfile by sending a message to System. Class
UserProfile defines protocol for obtaining information about default names,
privileges, and so forth. This manual provides examples of how UserProfile is used
in GemStone applications. For more information about class UserProfile, see the
comments in the image. For instructions about creating and maintaining
UserProfiles, see the System Administration Guide for GemStone/S 64 Bit.

The GemStone system administrator can also configure a GemStone system to
monitor failures to log in, to note repeated login attempts, and to disable a user’s
account after a number of failed attempts to log into the system through that
account. The System Administration Guide for GemStone/S 64 Bit describes these
procedures in greater detail.
September 2009 GemStone Systems, Inc. 39

Process Architecture GemStone Programming Guide
40 GemStone Systems, Inc. September 2009

Chapter

3 Resolving Names and
Sharing Objects
This chapter describes how GemStone Smalltalk finds the objects to which your
programs refer and explains how you can arrange to share (or not to share) objects
with other GemStone users.

Sharing Objects
 explains how GemStone Smalltalk allows users to share objects of any kind.

The Session-Based and UserProfile Symbol Lists
describes the mechanism that the GemStone Smalltalk compiler uses to find
objects referred to in your programs.

 Specifying Who Can Share Which Objects
discusses how you can enable other users of your application to share
information.
September 2009 GemStone Systems, Inc. 41

Sharing Objects GemStone Programming Guide
3.1 Sharing Objects
GemStone Smalltalk permits concurrent access by many users to the same data
objects. For example, all GemStone Smalltalk programmers can make references to
the kernel class Object. These references point directly to the single class
Object—not to copies of Object.

GemStone allows shared access to objects without regard for whether those objects
are files, scalar variables, or collections representing entire databases. This ability
to share data facilitates the development of multi-user applications.

To find the object referred to by a variable, GemStone follows a well-defined
search path:

1. The local variable definitions: temporary variables and arguments.

2. Those variables defined by the class of the current method definition: instance,
class, class instance, or pool variables.

3. The symbol list assigned to your current session (see the following discussion).

If GemStone cannot find a match for a name in one of these areas, you are given an
error message.

3.2 UserProfile and Session-Based Symbol Lists
The GemStone system administrator assigns each GemStone user an object of class
UserProfile. Your UserProfile stores such information as your name, your
encrypted password, native language, and access privileges. Your UserProfile also
contains the instance variable symbolList.

When you log in to GemStone, the system creates your current session (which is
an instance of GsSession object) and initializes it with a copy of the UserProfile
symbolList object. GemStone Smalltalk refers to this copy of the symbol list to find
objects you name in your application. See Figure 3.1.
42 GemStone Systems, Inc. September 2009

Contents UserProfile and Session-Based Symbol Lists
Figure 3.1 The GsSession symbolList — a copy of the UserProfile symbolList

This instance of GsSession is not copied into any client interface nor committed as
a persistent object. Since the symbolList is transient, changes to it cannot incur
concurrency conflicts, nor are they subject to rollback after an abort.

Changes to the current session’s symbolList do not affect the UserProfile
symbolList. Thus, the UserProfile symbolList can continue to serve as a default list
for other logins. At the same time, methods are provided to synchronize your
session and UserProfile symbolLists.

What’s In Your Symbol List?
In creating your UserProfile symbol list, the data curator adds SymbolDictionaries
containing associations that define the names of all objects that the data curator
thinks you might need. Although the decision about which objects to include is
entirely up to the data curator, your symbol list contains at least two dictionaries:

 • A “system globals” dictionary called Globals. This dictionary contains some or
all of the GemStone Smalltalk kernel classes (Object, Class, Collection, etc.) and
any other objects to which all of your GemStone users need to refer. Although
you can read the objects in Globals, you are probably not permitted to modify
them.

 • A private dictionary in which you can store objects for your own use and new
classes you do not need to share with other GemStone users. That private
dictionary is usually named UserGlobals.

Persistent UserProfile:

userId: aFriend
...

symbolList

GsSession data

Transient data:

symbolList

At login, GsSession creates a copy of
the symbolList in your UserProfile
September 2009 GemStone Systems, Inc. 43

UserProfile and Session-Based Symbol Lists GemStone Programming Guide
The symbol list may also include special-purpose dictionaries that are shared with
other users, so that you can all read and modify the objects they contain. The data
curator can arrange for a dictionary to be shared by inserting a reference to that
dictionary in each user’s UserProfile symbol list.

Except for the dictionaries Globals and UserGlobals, the contents of each user’s
SymbolList are likely to be different.

Examining Your Symbol List
To get a list of the dictionaries in your persistent symbol list, send your UserProfile
the message dictionaryNames. For example:

Example 3.1

System myUserProfile dictionaryNames

 1 UserGlobals
 2 UserClasses
 3 ClassesForTesting
 4 Globals
 5 Published

The SymbolDictionaries listed in the example have the following function:

 • UserGlobals
Contains per-user application and application service objects.

 • UserClasses
Contains per-user class definitions, and is created by GemBuilder for
Smalltalk to replicate classes when necessary. Putting this dictionary before
the Globals dictionary allows an application or user to override kernel classes
without changing them. Keeping it separate from UserGlobals allows a
distinction between classes and application objects.

 • ClassesForTesting
A user-defined dictionary.

 • Globals
Provides access for the GemStone kernel classes.

 • Published
Provides space for globally visible shared objects created by a user.
44 GemStone Systems, Inc. September 2009

Contents UserProfile and Session-Based Symbol Lists
To list the contents of a symbol dictionary:

 • If you are using Topaz, execute some expression that returns the dictionary.
Example 3.2 lists the dictionary keys. Alternatively, you could execute
UserGlobals to examine all keys and values.

 • If you are running GemBuilder, select the expression UserGlobals in a
GemStone workspace and execute GS-Inspect it.

Example 3.2

topaz 1> run
UserGlobals keys
%
a SymbolDictionary
 ...
 #1 NativeLanguage
 #2 UserGlobals
 #3 Nameless
 #4 GcUser

If you examine all of your symbol list dictionaries, you’ll see that most of the kernel
classes are listed. In addition, you may notice objects called CompileError,
RuntimeError, FatalError, AbortingError, WeekDayNames, and MonthNames.
These objects provide the text for error messages, days of the week, and months in
your native language.

Finally, you’ll discover that most of the dictionaries refer to themselves. Since the
symbol list must contain all source code symbols that are not defined locally nor
by the class of a method, the symbol list dictionaries need to define names for
themselves so that you can refer to them in your code. Figure 3.2 illustrates that the
dictionary named UserGlobals contains an association for which the key is
UserGlobals and the value is the dictionary itself.

The object server searches symbol lists sequentially, taking the first definition of a
symbol it encounters. Therefore, if a name, say “#BillOfMaterials,” is defined in
the first dictionary and in the last, GemStone Smalltalk finds only the first
definition.
September 2009 GemStone Systems, Inc. 45

UserProfile and Session-Based Symbol Lists GemStone Programming Guide
Figure 3.2 Self-Referencing Symbol Dictionary

Inserting and Removing Dictionaries from Your Symbol List
NOTE

To insert or remove a SymbolDictionary to/from your symbol list, you
must have the necessary system privilege. For details, see "User
Accounts and Security" in the GemStone/S 64 Bit System
Administration Guide.

Creating a dictionary is like creating any other object, as the following example
shows. Once you’ve created the new dictionary, you can add it to your symbol list
by sending your UserProfile the message insertDictionary: aSymbolDict at:
anInt.

Example 3.3

| newDict |
 newDict := SymbolDictionary new.
 newDict at: #NewDict put: newDict.
 System myUserProfile insertDictionary: newDict at: 1.

As you might expect, insertDictionary: at: shifts existing symbol list
dictionaries as needed to accommodate the new dictionary. In Example 3.3, the
new dictionary is inserted into the UserProfile symbolList and then updated in the
current session.

UserGlobals Dictionary

#Object aClass
#Collection aClass
#UserGlobals
 . .
 . .

46 GemStone Systems, Inc. September 2009

Contents UserProfile and Session-Based Symbol Lists
Because the GemStone Smalltalk compiler searches symbol lists sequentially,
taking the first definition of a symbol it encounters, your choice of the index at
which to insert a new dictionary is significant.

The following example places the object myCollection in the user’s private
dictionary named myClassDict. Then it inserts myClassDict in the first position
of the current Session’s symbolList, which causes the object server to search
myClassDict prior to UserGlobals, meaning the GemStone object server will
always find myCollection in myClassDict.

Example 3.4

| myClassDict |
(System myUserProfile resolveSymbol:#MyClassDict) isNil
 ifTrue:[
 myClassDict := (System myUserProfile createDictionary:

#MyClassDict).
]
 ifFalse:[
 myClassDict := (System myUserProfile resolveSymbol:

#MyClassDict) value
].
Object subclass: 'MyCollection'

instVarNames: #('this' 'that' 'theOther')
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: myClassDict
instancesInvariant: false
isModifiable: false

%

GsSession currentSession userProfile insertDictionary: myClassDict
at: 1.
%

"Create a new object named MyCollection,
 placed in the UserGlobals dictionary: "

Object subclass: 'MyCollection'
instVarNames: #('snakes' 'snails' 'tails')
classVars: #()
September 2009 GemStone Systems, Inc. 47

UserProfile and Session-Based Symbol Lists GemStone Programming Guide
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

%

Recall that the object server returns only the first occurrence found when searching
the dictionaries listed by the current session’s symbol list. When you subsequently
refer to myCollection, the object server returns only the version in myClassDict
(which you inserted in the first position of the symbol list) and ignores the version
in UserGlobals. If you had inserted myClassDict after UserGlobals, the object
server would only find the version of myCollection in UserGlobals.

You may redefine any object by creating a new object of the same name and
placing it in a dictionary that is searched before the dictionary in which the
matching object resides. Therefore, inserting, reordering, or deleting a dictionary
from the symbol list may cause the GemStone object server to return a different
object than you may expect.

This situation also happens when you create a class with a name identical to one
of the kernel class names.

CAUTION
We strongly recommend that you do not redefine any kernel classes, as
their implementation may change from one version of GemStone to the
next. Creating a subclass of a kernel class to redefine or extend that
functionality is usually more appropriate.

To remove a symbol dictionary, send your UserProfile the message
removeDictionaryAt: anInteger. For example:

Example 3.5

System myUserProfile removeDictionaryAt: 1

Updating Symbol Lists
There are many ways that the current session’s symbol list can get out of sync with
the UserProfile symbol list. As some of the examples in this chapter show, updates
can made to the current session symbol list that exist only as long as you are logged
48 GemStone Systems, Inc. September 2009

Contents UserProfile and Session-Based Symbol Lists
in. By changing only the symbol list for the current session, you can dynamically
change the session namespace without causing concurrency conflict. For example,
if you are developing a new class, you can purposely set your current session
symbol list to include new objects for testing.

Three UserProfile methods help synchronize the persistent and transient symbol
lists:

insertDictionary: aDictionary at: anIndex

This method inserts a Dictionary into the UserProfile symbol list at the
specified index.

removeDictionaryAt: anIndex

This method removes the specified dictionary from the UserProfile symbol
list.

symbolList: aSymbolList

This method replaces the UserProfile symbol list with the specified symbol list.

Each of these methods modifies the UserProfile symbol list. If the receiver is
identical to “GsSession currentSession userProfile”, the current session’s symbol
list is updated. If a problem occurs during one of these methods, the persistent
symbol list is updated, but the transient current session symbol list is left in its old
state.

In Example 3.6, the transient symbol list is copied into the persistent UserProfile
symbol list. The example continues with adding a new dictionary to the current
session and finally resets the current session’s symbol list back to the UserProfile
symbol list.
September 2009 GemStone Systems, Inc. 49

UserProfile and Session-Based Symbol Lists GemStone Programming Guide
Example 3.6

"Copy the GsSession symbol list to the UserProfile"
System myUserProfile symbolList:
 (GsSession currentSession symbolList copy).

"Check that the symbol lists are the same"
GsSession currentSession symbolList =
 System myUserProfile symbolList.

"Add a new dictionary to the current session"
GsSession currentSession symbolList add: SymbolDictionary new.

"Compare the two symbol lists; they should differ"
GsSession currentSession symbolList =
 System myUserProfile symbolList.

"Update the UserProfile symbolList to current session"
GsSession currentSession symbolList replaceElementsFrom:
(System myUserProfile symbolList).

Finding Out Which Dictionary Names an Object
To find out which dictionary defines a particular object name, send your
UserProfile the message symbolResolutionOf: aSymbol. If aSymbol is in your
symbol list, the result is a string giving the symbol list position of the dictionary
defining aSymbol, the name of that dictionary, and a description of the association
for which aSymbol is a key. For example:

Example 3.7

"Which symbol dictionary defines the object 'Bag'?"
System myUserProfile symbolResolutionOf: #Bag
4 Globals
 Bag Bag

If aSymbol is defined in more than one dictionary, symbolResolutionOf: finds
only the first reference. GemStone Smalltalk considers two symbols with the same
name to be identical.
50 GemStone Systems, Inc. September 2009

Contents Using Your Symbol Dictionaries
To find out which dictionary stores a name for an object and what that name is,
send your UserProfile the message dictionaryAndSymbolOf: anObject. This
message returns an array containing the first dictionary in which anObject is
stored, and the symbol which names the object in that dictionary.

Example 3.8 uses dictionaryAndSymbolOf: to find out which dictionary in the
symbol list stores a reference to class DateTime.

Example 3.8

| anArray myUserPro |
"Get the UserProfile"
myUserPro := System myUserProfile.

"Find the Dictionary containing DateTime"
anArray := myUserPro dictionaryAndSymbolOf: DateTime.
anArray at: 1.
aSymbolDictionary

"Get the name of the SymbolDictionary"
(anArray at: 1) keyAtValue: (anArray at: 1)
Globals

Note that dictionaryAndSymbolOf: returns the first dictionary in which
anObject is a value.

3.3 Using Your Symbol Dictionaries
As you know, all GemStone users have access to such objects as the kernel classes
Integer and Collection because those objects are referred to by a dictionary (usually
called Globals) that is present in every user’s symbol list.

If you want GemStone users to share other objects as well, you need to arrange for
references to those objects to be added to the users’ symbol lists.

NOTE
To insert or remove a SymbolDictionary to/from your symbol list, or to
make any changes to a UserProfile that is not your own, you must have
the necessary system privilege. For details, see "User Accounts and
Security" in the GemStone/S 64 Bit System Administration Guide.
September 2009 GemStone Systems, Inc. 51

Using Your Symbol Dictionaries GemStone Programming Guide
The Published Dictionary
The Published Dictionary is an initially empty SymbolDictionary in each user’s
symbol list. You can use the Published dictionary to "publish" application objects
to all users — for example, symbols that most users might need to access.

For example, your system administrator might add each member of a
programming team to the group Publishers. After completing the definition of a
new class, a programmer could make the class available to colleagues by adding it
to the Published dictionary. Because this dictionary is already in each user’s
symbol list, whatever you add becomes visible to users the next time they obtain a
fresh transaction view of the repository. Using the Published dictionary lets you
share these objects without having to put them in Globals, which contains the
GemStone kernel classes, and without the necessity of adding a special dictionary
to each user’s symbol list.

The Published Dictionary is not currently used by GemStone classes, but may be
utilized by future products.
52 GemStone Systems, Inc. September 2009

Chapter

4 Collection and Stream
Classes
The Collection classes make up the largest group of classes in GemStone Smalltalk.
This chapter describes the common functionality available for Collection classes.

An Introduction to Collections
introduces the GemStone Smalltalk objects that store groups of other objects.

Collection Subclasses
describes several kinds of ready-made data structures that are central to
GemStone Smalltalk data description and manipulation.

Stream Classes
describes classes that add functionality to access or modify data stored as a
Collection.
September 2009 GemStone Systems, Inc. 53

An Introduction to Collections GemStone Programming Guide
4.1 An Introduction to Collections
Collections can store groups of other objects in indexed or unnamed instance
variables. In addition, most classes in the Collection hierarchy can also have
named instance variables. Collections can be classified by the orders in which they
store elements, the kinds of objects they can store, and the kinds of access methods
they provide. A simplified structure of the Collection class hierarchy is listed in
Figure 4.1.

How you wish to access information determines which subclasses you choose to
create for your objects:

 • Access by Key — the Dictionary Classes

Keys can be numbers, strings, symbols, or any objects that respond
meaningfully to the comparison message =. A dictionary is a collection of
associations that can be accessed by their keys.

Dictionaries can have named instance variables, if you choose to define them.

 • Access by Position — the SequenceableCollection Classes

You can refer to the component objects of a SequenceableCollection with
numeric keys, just as you refer to array elements in C or other languages by
means of numeric subscripts. This Class includes Arrays, Strings, and the
Sorted Collection.

ByteArray, CharacterCollection, and CharacterCollection subclasses cannot
have named instance variables. The other sequenceable collections can have
named instance variables if you choose to define them.

 • Access by Value — the UnorderedCollection Classes

The objects in these collections are accessed by matching an unnamed instance
variable value. These Classes act as black boxes; they hide the internal
ordering of their elements from you and from other objects. Bags and Sets are
included in the UnorderedCollection Class.

You may create index structures for fast access to the contents of these classes.
54 GemStone Systems, Inc. September 2009

Contents An Introduction to Collections
Figure 4.1 Simplified Collection Class Hierarchy

Collection
AbstractDictionary

Dictionary
KeyValueDictionary

IdentityKeyValueDictionary
GsMethodDictionary
IdentityDictionary

SymbolDictionary
SymbolKeyValueDictionary

IntegerKeyValueDictionary
KeySoftValueDictionary

IdentityKeySoftValueDictionary
StringKeyValueDictionary

SequenceableCollection
Array

AbstractCollisionBucket
CollisionBucket

IdentityCollisionBucket
RcCollisionBucket

InvariantArray
Repository
SymbolList

ByteArray
CharacterCollection

DoubleByteString
DoubleByteSymbol

String
InvariantString
Symbol

Interval
OrderedCollection

SortedCollection
UnorderedCollection

Bag
IdentityBag

IdentitySet
ClassSet
StringPairSet
SymbolSet

Set
September 2009 GemStone Systems, Inc. 55

An Introduction to Collections GemStone Programming Guide
Protocol Common To All Collections
The superclass of the collection classes, Collection, provides some protocol shared
by all collection subclasses. In fact, providing that common protocol is Collection’s
only function; it is an abstract superclass. Instances of Collection itself are not
typically useful.

Collection defines methods that enable you to:

 • Create instances of its subclasses

 • Add and remove elements in collections

 • Convert from one kind of class to another

 • Enumerate (loop through), compare, and sort the content of collections

 • Select or reject certain elements on the collection based on specified criteria

The GemBuilder interface provides an excellent means for reviewing the purpose
and format for each of the categories of methods available for manipulating
Collection Classes and subclasses. The examples that follow provide a starting
point for using Collections.

All the protocol displayed in the examples is commented in the image.

Creating Instances

All Collection classes respond to the familiar instance creation message new. When
sent to a Collection class, this message causes a new instance of the class with no
elements (size zero) to be created. Most kinds of collections can expand as you add
additional objects.

Another instance creation message, new: anInteger, causes any Collection
subclass except IdentityBag or IdentitySet to create an instance with anInteger nil
elements. See Example 4.1.

Example 4.1

| myArray |
myArray := Array new: 5.
myArray at: 3 put: 'a string'.
myArray size
5

56 GemStone Systems, Inc. September 2009

Contents An Introduction to Collections
It’s sometimes slightly more efficient to use new: than new, because a Collection
created with new: need not expand repeatedly as you add new elements.

Class Collection defines an additional instance creation message,
withAll:aCollection, that creates a new instance of the receiver containing all of
the objects stored in aCollection. For example:

Example 4.2

| birds |
birds := Array withAll:#('wren' 'robin' 'turkey buzzard').
birds at: 3
turkey buzzard

Adding Elements

Collection defines for its subclasses two basic methods for adding elements:

 • The add: method adds one element to the Collection.

 • The addAll: method adds several elements to the Collection at once.

Example 4.3 uses both of these methods to add elements to an instance of
Collection’s subclass IdentitySet. (An IdentitySet is an unordered, extensible
collection of objects—you’ll learn about its properties in detail later.)

Example 4.3

| potpourri |
potpourri := IdentitySet new.
UserGlobals at: #Potpourri put: potpourri.

Potpourri add: 'a string of characters'; add: 0.0035;
add: #aSymbol.

Potpourri addAll: #(#flotsam #jetsam #salvage).
Potpourri

IdentitySet is a very simple kind of collection, so adding elements is
straightforward. Other Collection classes override these methods in order to
control access to elements or to enforce an ordering scheme. Still other subclasses
September 2009 GemStone Systems, Inc. 57

An Introduction to Collections GemStone Programming Guide
of Collection provide additional methods that add elements at numbered positions
or symbolic keys. You’ll read about those specialized methods later.

Enumerating

Collection defines several methods that enable you to loop through a collection’s
elements. Because iterating or enumerating the elements of a data structure is one
of the most common programming tasks, Collection’s built-in enumeration
facilities are extremely useful; they relieve you of worrying about data structure
size and loop indexes. And because they have been carefully tailored to each of
Collection’s specialized subclasses, you needn’t create a custom iterative control
structure for each enumeration problem.

The most general enumeration message is do: aBlock. When you send a Collection
this message, the receiver evaluates the block repeatedly, using each of its elements
in turn as the block’s argument.

Suppose that you made an instance of Array in this way:

Example 4.4

UserGlobals
at: #Virtues
put: #('humility' 'generosity' 'veracity' 'continence'

'patience').

anArray('humility', 'generosity', 'veracity', 'continence',
'patience')

To create a single String to which each virtue has been appended, you could use
the message do: aBlock like this:
58 GemStone Systems, Inc. September 2009

Contents An Introduction to Collections
Example 4.5

| aString |
aString := String new. "Make a new, empty String."
"Append a virtue, followed by a space, to the new String"
(Virtues sortAscending) do: [:aVirtue |

aString := aString , ' ' , aVirtue].
^ aString

' continence generosity humility patience veracity'

In this example, the method for do: executes the body of the block
(aString , ’ ’ , aVirtue) repeatedly, substituting each element of the
Virtues collection in turn for the block argument aVirtue, until all of the virtues
have been appended to aString. (The String concatenation message (",") is
explained later in this chapter.)

In addition to do: aBlock, Collection provides several specialized enumeration
methods. When sent to SequenceableCollections, those messages that return
collections (such as select:) always preserve the ordering of the receiver in the
result. That is, if element a comes before element b in the receiver, then element a
is guaranteed to come before b in the result.

NOTE
To avoid unpredictable consequences, do not add elements to or remove
them from a collection during enumeration.

sortAscending and sortDescending sort the elements of the collection whose
elements have a known sort order, such as alphabetic or numeric. To sort a
collection of elements according to other criteria, use the following methods:

 • sortWithBlock: sorts the elements using a sort block you define.

 • sortWithBlock:persistentRoot: sorts using the sort block you define,
but can commit intermediate results, to allow sorting of collections that are too
large to fit into memory.

This method makes use of the IndexManager’s ability to set up autoCommit,
allowing a commit to be performed at regular, configurable intervals. For
more information, see page 119. You do not need an index on the Collection in
order to use the sortWithBlock:persistentRoot: method.

The following example creates a collection of Strings and sorts them by length
rather than alphabetically:
September 2009 GemStone Systems, Inc. 59

An Introduction to Collections GemStone Programming Guide
Example 4.6

| scrabbleWords |
scrabbleWords := IdentitySet new.
scrabbleWords add: 'able'; add: 'zebra'; add: 'jumper';

add: 'yet'.
scrabbleWords sortWithBlock: [:a :b | a size < b size]
 anArray('yet', 'able', 'zebra', 'jumper')

Sort ordering and collation

Many of the useful features to sort and search Strings depend on the collation
sequence. GemStone by default sorts primarily according to the ASCII or Unicode
value, that is, the Integer associated with the Character (exceptions are lower-case
and upper-case of the 26 standard English-language letters sort adjacently, and
certain punctuation sorts after these Characters). This is not always the ideal
collation for a particular language or use.

Collation in GemStone must be the same for all users on a repository, and can only
be changed by SystemUser. For more information on customizing collation, see the
System Administration Guide for GemStone/S 64 Bit, appendix F.

The Character Data Tables that control collation also represent the relationships
between lower-case and upper-case letters. Case-insensitive searches depend on
how this is configured.

Selecting and Rejecting Elements

The messages select: aBlock and reject: aBlock make it easy to pick out those
elements of a collection that meet some condition and to store them in a new
collection of the same kind as the original.

The following examples form two new sets, one containing the virtues ’patience’
and ’continence’, the other containing all of the other virtues.
60 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.7

"Select all of the virtues equal to ’patience’ or ’continence’"
Virtues select: [:n | (n = ’patience’) | (n = ’continence’)]
an IdentitySet
 ...
 #1 patience
 #2 continence

"Select all of the virtues NOT equal to ’patience’ or ’continence’"
Virtues reject: [:n | (n = ’patience’) | (n = ’continence’)]
an IdentitySet
 ...
 #1 veracity
 #2 humility
 #3 generosity

4.2 Collection Subclasses
This chapter describes the properties of Collection’s concrete subclasses, and it
gives you some guidance about choosing places for new classes that you might
want to add to the Collection hierarchy.

Subclasses of Collection can be grouped by the kinds of access methods they
provide and the kinds of objects their instances can store. Let’s first consider those
collection classes that don’t provide access to elements through external numeric
indexes.

AbstractDictionary
AbstractDictionary is a subclass of Collection. AbstractDictionary requires that all
of an instance’s elements must have unique keys.

The subclasses of AbstractDictionary provide access to their elements by means of
keys that can be strings, symbols, integers, or objects of any kind.

AbstractDictionary Protocol

AbstractDictionary defines a large number of methods that enable you to store and
retrieve objects on the basis of either keys or values. Some of the methods return
only single keys or values, while others return entire associations.
September 2009 GemStone Systems, Inc. 61

Collection Subclasses GemStone Programming Guide
Internal Dictionary Structure

Dictionaries provide their special facilities by storing key-value pairs instead of
simple, linear lists of objects. Many of the messages that dictionaries understand
are specialized for referring to either the key or the value portions of their
component associations.

In Example 4.8, the message includesKey: aKey tests to see whether the
dictionary myDictionary contains the definition of glede.

Example 4.8

| myDictionary |
myDictionary := StringKeyValueDictionary new.
myDictionary at: ’glede’ put: 'a bird of prey'.
(myDictionary includesKey: ’glede’) ifTrue:
 [myDictionary at: ’glede’].

a bird of prey

KeyValueDictionary

KeyValueDictionary has several subclasses, divided according to the type of key
used to access the information:

 • IdentityKeyValueDictionary

 • IntegerKeyValueDictionary

 • StringKeyValueDictionary

In each case, the hashing function is applied to the key.

In addition, the subclass KeySoftValueDictionary (page 63) can be particularly
useful for managing temporary memory.

SymbolDictionary

A subclass of IdentityKeyValueDictionary, SymbolDictionary, constrains all of its
keys to be symbols, which it stores in instances of class SymbolAssociation.

Example 4.9 creates a new instance of SymbolDictionary called “Lizards,” then
stores some strings at symbolic keys.
62 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.9

| Lizards |
Lizards := SymbolDictionary new.
Lizards at: #skink put: 'a small, berry-eating lizard'.
Lizards at: #gecko put: 'a harmless, nocturnal lizard'.
Lizards at: #komodo put: 'a big, irascible reptile'.
Lizards at: #monitor put: 'a large reptile that lives in
your roommate''s closet and usually doesn''t bite'.

"Access one of the SymbolDictionary elements:"
Lizards at: #skink
 a small, berry-eating lizard

The at:put: message in this example took a symbol as its first argument instead
of (as with sequenceable collections) an integer.

To retrieve a value from a dictionary, you need only send it the message at: aKey.
At the end of the previous example, #skink is a key.

It’s important to understand that, just as the entry for “2” is not necessarily the
second item in the dictionary on your bookshelf, the numeral 2 does not signify
anything about position when used as a key in a GemStone Smalltalk dictionary.
Like strings, symbols, and other dictionary keys, numerals identify but do not
locate dictionary values.

This simple protocol for storing and retrieving objects on the basis of symbolic
instead of positional keys finds wide use in GemStone Smalltalk. In fact, the
GemStone Smalltalk compiler and interpreter take advantage of dictionaries to
resolve symbols, store methods, and retrieve error messages, as well as other tasks.

KeySoftValueDictionary

A KeySoftValueDictionary is a subclass of KeyValueDictionary that allows the
virtual machine to remove entries as needed to free up memory.

Typically, you might use a KeySoftValueDictionary to manage non-persistent
objects that are large and take time to create, but that can be recreated whenever
needed from small, readily available objects (tokens). For example, you might
create a KeySoftValueDictionary to serve as a cache to hold large, expensive
objects that are needed repeatedly. Within that dictionary, the values would be the
large calculated objects, and the keys would be the corresponding tokens. If your
application needs a large, expensive object but does not find it in the
September 2009 GemStone Systems, Inc. 63

Collection Subclasses GemStone Programming Guide
KeySoftValueDictionary, you can create the object and add it to the cache so that it
might be available the next time it is needed.

As memory fills up, the virtual machine might remove some objects from the
cache. (Remember, the contents of the cache are non-persistent and can be
recreated.) The virtual machine may remove keys and values from the
KeySoftValueDictionary until adequate memory is available. For details about
how to manage the number of KeySoftValueDictionary entries, see “Getting Rid of
Non-Persistent Objects” on page 311.

Bear in mind the following:

 • Entries are removed from a KeySoftValueDictionary only if there are no strong
references to the entry’s value.

 • If an entry in a KeySoftValueDictionary is cleared, all other entries that
reference this value directly or indirectly will also have been cleared.

 • Before generating an OutOfMemory error, the virtual machine removes all
KeySoftValueDictionary entries that are eligible for removal.

 • KeySoftValueDictionary entries are cleared during a mark/sweep operation,
but are not cleared during a scavenge. For more about mark/sweep and
scavenge operations, see the “Managing Growth” chapter of the System
Administration Guide for GemStone/S 64 Bit.

 • A corresponding subclass, IdentityKeySoftValueDictionary, uses identity
(rather than equality) comparison on keys. For details, see the image.

 • A KeySoftValueDictionary frequently contains instances of SoftReference. Do
not be tempted to confuse this with the notion of WeakReference found in
many Smalltalk dialects; the two mechanisms are quite different.

SequenceableCollection
Unlike the AbstractDictionary collections, the SequenceableCollections let you
refer to their elements with integer indexes, and they understand messages such
as first and last that refer to the order of those indexed elements. The
SequenceableCollection classes differ from one another mainly in their literal
representations, the kinds of elements they store, and the kinds of changes they
permit you to make to their instances.

Figure 4.2 is an abbreviated diagram of the SequenceableCollection family tree. It
depicts the SequenceableCollection classes you are likely to use as general-purpose
data structures.
64 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Figure 4.2 SequenceableCollection Class Hierarchy

SequenceableCollection
Array
ByteArray
CharacterCollection

DoubleByteString
DoubleByteSymbol

String
 Symbol

Interval
OrderedCollection

SortedCollection

NOTE
The GemStone/S 64 Bit implementation of Array is non-standard.
According to the ANSI standard, a SequenceableCollection returns an
error if #at: or #at:put: is called with an offset greater than the
collection size. Using OrderedCollection rather than Array would make
your code more portable to other Smalltalk dialects.

SequenceableCollection is an abstract superclass. The methods it establishes for its
concrete subclasses let you read, write, copy, and enumerate collections in ways
that depend on ordering.

For example, there are methods that enable you to read or write an element at a
particular index, to ask for an element’s index, to request the first and last elements
of a collection, and to copy specified parts of one collection to another.

Accessing and Updating Protocol

Class Object defines the messages at: anIndex and at: anIndex put: anObject. The
class SequenceableCollection interprets these messages as referring to elements
whose positions are identified by integer keys.

Example 4.10 uses at: and at:put: to read and write elements of an Array.

Example 4.10

| colors |
colors := Array new.
colors at: 1 put: 'vermilion'.
colors at: 2 put: 'scarlet'.
September 2009 GemStone Systems, Inc. 65

Collection Subclasses GemStone Programming Guide
colors at: 3 put: 'crimson'.
colors at: 2
scarlet

Most of the time, SequenceableCollection can grow to accommodate new objects.
However, you must store each new item at an index no more than one greater than
the largest index you’ve already used. In the previous example, this requirement
permits you to add a color at index 4, but not at index 7. The subsection “Creating
Arrays” (page 71) explains a feature for creating large arrays with nil elements.
Initializing the array with nil values enables you to store new objects wherever you
want.

Example 4.11 uses other methods defined by SequenceableCollection.

Example 4.11

| anArray |
anArray := Array new.
anArray at: 1 put: 'string one';
 at: 2 put: 'string two';
 at: 3 put: 'string three'.
anArray first.
string one
anArray last.
string three
anArray indexOf: (anArray at: 2)
2

Adding Objects to SequenceableCollection

SequenceableCollection defines two new methods for adding objects to its in-
stances.

The message addLast: anObject appends its argument to the receiver, increasing
the size of the receiver by one. For example, given the array anArray:

Example 4.12

anArray addLast: 'string four'.
anArray size.
4

66 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
anArray last.
string four

The message insert: aSequenceableCollection at: anIndex inserts the elements of
a new SequenceableCollection into the receiver at anIndex and returns the receiver.
For example:

Example 4.13

| colors moreColors |
colors := Array new add: 'red'; add: 'blue';
 add: 'green'; yourself.
moreColors := Array new add: 'mauve'; add: 'taupe';yourself.
colors insert: moreColors at: 2.
colors
%
an Array
 #1 red
 #2 mauve
 #3 taupe
 #4 blue
 #5 green

If anIndex is exactly one greater than the size of the receiver, this method appends
each of aSequenceableCollection’s elements to the receiver.

In addition to the two new adding methods, SequenceableCollection redefines
add: so it puts objects only at the end of the receiver. In other words, add: does
the same thing as addLast:.

Removing Objects from a SequenceableCollection

You can remove a one or more objects from a SequenceableCollection. In
Example 4.14, deleteObjectAt: removes the first element of the array
rockClingers, decreasing the array’s size by one.

Example 4.14

| rockClingers |
rockClingers := Array withAll: #('limpet' 'mussel' 'whelk').
UserGlobals at: #rockClingers put: rockClingers.
September 2009 GemStone Systems, Inc. 67

Collection Subclasses GemStone Programming Guide
(rockClingers deleteObjectAt: 1) = 'limpet'
 ifFalse:[^ 'wrong deletion result'
].

rockClingers
%
an Array
 #1 mussel
 #2 whelk

The next example removes the rest of rockClinger’s elements, leaving an array
of size zero:

Example 4.15

rockClingers deleteFrom: 1 to: 2.
rockClingers
%
an Array

Comparing SequenceableCollection

SequenceableCollection redefines the comparison methods inherited from Object
so that those methods take into account the classes of the collections to be
compared and the number and order of their elements. In order for two
SequenceableCollections to be considered equal, the following conditions must be
met:

 • The classes of the two SequenceableCollections must be the same.

 • The two SequenceableCollections must be of the same size.

 • Corresponding elements of the two objects must be equal.

You can, of course, create subclasses of SequenceableCollections in which you
implement comparison messages with different behavior.

Copying SequenceableCollection

SequenceableCollection understands three copying messages—one that returns a
sequence of the receiver’s elements as a new collection, one that copies a sequence
of the receiver’s elements into an existing SequenceableCollection, and a third
68 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
message that copies elements from one SequenceableCollection into another
without faulting the contents into memory.

The following example copies the first two elements of an InvariantArray to a new
InvariantArray:

Example 4.16

| tropicalMammals |
tropicalMammals:= #('capybara' 'tapir' 'margay')

copyFrom: 1 to: 2.
tropicalMammals
%
an Array
#1 capybara
#2 tapir

Example 4.17 copies two elements of an array into a different array, overwriting
the target array’s original contents:

Example 4.17

| numericArray |
numericArray := Array new add: 1; add: 2;
 add: 99; add: 88; yourself.
#(1 2 3 4) copyFrom: 3 to: 4 into: numericArray startingAt: 3.
numericArray
%
an Array
 #1 1
 #2 2
 #3 3
 #4 4

Alternatively, you can use this message to copy elements from one
SequenceableCollection into another without faulting the contents into memory:

copyFrom: index count: aCount into: aCollection startingAt: destIndex

Bear in mind that copies of SequenceableCollection, like most GemStone Smalltalk
copies, are “shallow.” In other words, the elements of the copy are not simply
equal to the elements of the receiver—they are the same objects.
September 2009 GemStone Systems, Inc. 69

Collection Subclasses GemStone Programming Guide
Enumeration and Searching Protocol

Class SequenceableCollection redefines the enumeration and searching messages
inherited from Collection in order to guarantee that they process elements in
order, starting with the element at index 1 and finishing with the element at the last
index.

SequenceableCollection also defines a new enumeration message, reverseDo:,
which acts like do: except that it processes the receiver’s elements in the opposite
order.

SequenceableCollections understand findFirst: aBlock and findLast: aBlock.
The message findFirst: returns the index of the first element that makes aBlock
true, while findLast: returns the index of the last. For example, given
tropicalMammals as defined in Example 4.16:

Example 4.18

tropicalMammals findFirst: [:aMammal | aMammal = 'tapir']
%
2

Arrays

As you have seen in previous examples, instances of Array and of its subclasses
contain elements that you can address with integer keys that describe the positions
of Array elements. For example, myArray at: 1 refers to the first element of
myArray. Example 4.19 uses Array indexing, with protocol from Number, Block,
and Boolean, to code a classic sorting algorithm for a subclass of Array.
70 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.19

method: SubArray
sortAscending
| selfSize tempStorage exchangeMade |
exchangeMade := true.
selfSize := (self size) - 1.
[exchangeMade] whileTrue:
 [exchangeMade := false.
 1 to: selfSize do: [:n |
 ((self at: n) > (self at: n + 1))
 ifTrue: [tempStorage := self at: n.
 self at: n put: (self at: 1 + n).
 self at: n+1 put: tempStorage.
 exchangeMade := true.].].].
^self
%
run "See that the bubble sort works"
(SubArray withAll: #(9 7 5 3 1 2 4 6 8))
 sortAscending verifyElementsIn: #(1 2 3 4 5 6 7 8 9)
%
true

One of the most important differences between client Smalltalk arrays and a
GemStone Smalltalk array is that GemStone arrays are extensible; you can add
new elements to an array at any time. However, it is usually most efficient to create
arrays that are initially large enough to hold all of the objects you may want to add.

Creating Arrays

You are free to create an array with the inherited message new and let the array
lengthen automatically as you add elements. However, arrays created with new
initially allocate very little storage. As you add objects to such an array, it must
lengthen itself to accommodate the new objects.

Therefore, you will often want to create your arrays with the message new: aSize
(inherited from class Behavior), which makes a new instance of the specified size:

| tenElementArray |
tenElementArray := Array new: 10.
September 2009 GemStone Systems, Inc. 71

Collection Subclasses GemStone Programming Guide
The selector new: stores nil in the indexed instance variables of the empty array.
Having created an array with enough storage for the elements you intend to add,
you can proceed to fill it quickly.

Changing the Size of an Existing Array

As you’ve seen, a SequenceableCollection can grow or shrink automatically at run
time as you add or delete elements. However, it’s also possible for you to change
the size without explicitly storing or removing elements, using the message size:
inherited from class Object.

In the following example, size: increases the length of an array to 500 and then
decreases it to zero.

Example 4.20

| anArray |
anArray := Array new.
anArray size: 500.
anArray size: 0

When you lengthen an array with size:, the new elements are set to nil.

Example 4.21 uses size: in a simple implementation of a Stack class.
72 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.21

Array subclass: 'Stack'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

category: 'Stack Management'
method: Stack
push: anObject
self add: anObject
%
method: Stack
pop
| theTop |
theTop := self last.
self size: (self size - 1).
^theTop
%
method: Stack
clear
self size: 0
%
method: Stack
top
^self last
%
run
"See that it works"
#[Stack new push: #one; push: #two; push: #three; pop;
push: #four; pop; pop]
verifyElementsIn: #(#two)
%

Efficient Implementations of Large Arrays

When you create an array of slightly over 2000 elements with new:, or when you
add enough new elements to grow an array to this size using size:, the new
September 2009 GemStone Systems, Inc. 73

Collection Subclasses GemStone Programming Guide
elements are not set to nil; doing that would waste storage. Instead, GemStone uses
a sparse tree implementation to make more efficient use of resources. This
behavior occurs in a manner that is transparent to you, and you can place values
into the new elements of the array in the same manner as you would with smaller
arrays.

Strings

A String is a SequenceableCollection modified to accept only instances of
Character as elements. Class String expands the protocol it inherits from
SequenceableCollection to include messages specialized for comparing, searching,
concatenating, and changing the case of character sequences.

Class String and its subclasses are all byte objects. A byte object has two important
practical implications:

 • You cannot create a String subclass that has named instance variables.

 • When you use new: to create an instance of a kind of String, GemStone
Smalltalk sets the new instance’s indexed instance variables to null (ASCII 0).

Creating Strings

You have already seen many strings created as literals. In addition to creating
strings literally, you can use the instance creation methods inherited from String’s
superclasses:

Example 4.22

| myString |
myString := String withAll: #($a $z $u $r $e).
myString
azure

Many of String’s other inherited messages are also useful. For example:
74 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.23

'azure' last "return the String’s last character"
$e

'azure' indexOf:$z "return the position of $z in the String"
2

Searching and Pattern-Matching Strings

Class String defines methods that can tell you whether a string contains a
particular sequence of characters and, if so, where the sequence begins. The Class
String contains methods for case-sensitive and case-insensitive search and
compare. Table 4.1 describes those messages for case-insensitive strings, Table 4.2
describes those messages for case-sensitive strings.

Table 4.1 String’s Case-Insensitive Search Protocol

at: anIndex
equalsNoCase:
aCharCollection

Returns true if aCharCollection is contained in the
receiver, starting at anIndex. Returns false otherwise.

findPattern: aPattern
startingAt: anIndex

Searches the receiver, beginning at anIndex, for a
substring that matches aPattern. If a matching
substring is found, returns the index of the first
character of the substring. Returns zero (0) otherwise.

The argument aPattern is an Array containing zero or
more Strings plus zero or more occurrences of the
special wildcard characters $* or $?. The character $?
matches any single character in the receiver, and $*
matches any sequence of characters in the receiver.
September 2009 GemStone Systems, Inc. 75

Collection Subclasses GemStone Programming Guide
Example 4.24 shows the use of wildcard characters in pattern matching.

Example 4.24

'weimaraner' matchPattern: #('w' $* 'r')
 true

This example returns true because the character $* is interpreted as “any sequence
of characters.” Similarly, Example 4.25 returns the index at which a sequence of
characters beginning and ending with $r occurs in the receiver.

Example 4.25

'weimaraner' findPattern: #('r' $* 'r') startingAt: 1
6

If either of the wildcard characters occurs in the receiver, it is interpreted literally.
The following expression returns false because the character $* in the receiver is
interpreted literally:

Table 4.2 String’s Case-Sensitive Search Protocol

at: anIndex
equals:
 aCharCollection

Returns true if aCharCollection is contained in the
receiver, starting at anIndex. Returns false otherwise.
Generates an error if aCharCollection is not a kind of
CharacterCollection, or if anIndex is not a
SmallInteger.

match: aPrefix Returns true if the argument, aPrefix, is a prefix of the
receiver. Returns false otherwise. The value for aPrefix
may include the wildcard characters $* or $?. The
character $? matches any single character in the
receiver, and $* matches any sequence of characters in
the receiver.

includes: aCharacter Returns true if the receiver contains aCharacter.
indexOf: aCharacter
startingAt: startIndex

Returns the index of the first occurrence of aCharacter
in the receiver, not preceding startIndex. Returns zero
(0) if no match is found.
76 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.26

"Wildcard characters are literal"
'w*r' matchPattern: #('weimaraner')
 false

Comparing Strings

The Class String supports case-insensitive String comparisons, with additional
messages for case sensitivity where that behavior is desired. The following
behavior is provided in String:

= compare case-sensitive

isEquivalent: compare case-insensitive

equalsNoCase: compare case-insensitive

The following four methods first perform a case-insensitive comparison of the
receiver and argument; if they are found to be equal, then the result is the
result of comparing them again using the collating order AaBb...Zz for the
ASCII letters.

<

<=

>

>=

The default behavior for SortedCollection and for the sortAscending method in
Collection is consistent with the < method in String. Similarly, the
sortDescending method is consistent with the > method.

For example, consider the following message:

#('c' 'MM' 'Mm' 'mb' 'mM' 'mm' 'x') asSortedCollection

results:

('c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x')

Only the methods =, ==, ~=, ~~, <, <=, >, and >= can be used within selection
blocks, that is, blocks of the form { }.

The following methods take a user-defined collating sequence. For the collating
sequence AB...Zab...z, use these methods with the table provided in Globals at:
September 2009 GemStone Systems, Inc. 77

Collection Subclasses GemStone Programming Guide
#AsciiCollatingTable. The methods can be used in sort blocks of SortedCollections,
but they are not usable by implementations of sortAscending: or
sortDescending:.

lessThan:collatingTable:

lessThanOrEqual:collatingTable:

greaterThan:collatingTable:

greaterThanOrEqual:collatingTable:

Concatenating Strings

A string responds to the message #, aStringOrCharacter by returning a new string
in which aStringOrCharacter has been appended to the string’s original contents.
See Example 4.27.

Example 4.27

'String ' , 'con' , 'catenation'
 String concatenation

Although this technique is handy when you need to build a small string, it’s not
very efficient. In the last example, GemStone Smalltalk creates a String object for
the first literal, ’String’. The #, message returns a new instance of String
containing ’String con’, which is in turn passed to the #, message again to
create a third string.

When you need to build a longer string, you’ll find it more efficient to use
addAll: or add: (they’re the same for class String). For example:

Example 4.28

| resultString |
resultString := String new.
resultString add: 'String ';
 add: 'con';
 add: 'catenation'.
resultString

String concatenation
78 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Efficient Implementations of Large Strings

When you create a string of somewhat more than 16,000 characters, characters
without values are not set to ASCII null; doing that would waste storage. Instead,
GemStone uses a sparse tree implementation to make more efficient use of
resources. This behavior occurs in a manner that is transparent to you, and you can
put new characters in the string in the same manner as you would with smaller
strings.

Converting Strings to Other Kinds of Objects

Class String defines messages that let you convert a string to an upper- or
lowercase string, to a symbol, or to a floating-point number. See Example 4.29.

Example 4.29

'ABCDE' asLowercase
abcde

'abcde' asUppercase
ABCDE

'abcde' asSymbol
abcde

'15' asFloat = 1.5e1
true

'15' asFloat = 1.5E1
true

Literal and nonliteral InvariantStrings and Strings behave differently in identity
comparisons. Each nonliteral String (created, for example, with new, withAll:,
or asString) has a unique identity. That is, two Strings that are equal are not
necessarily identical. For example:

Example 4.30

| nonlitString1 nonlitString2 |
nonlitString1 := String withAll: #($a $b $c).
nonlitString2 := String withAll: #($a $b $c).
September 2009 GemStone Systems, Inc. 79

Collection Subclasses GemStone Programming Guide
(nonlitString1 == nonlitString2)
false

However, literal strings (InvariantStrings created literally) that contain the same
character sequences and are compiled at the same time are both equal and
identical:

Example 4.31

 | litString1 litString2 |
litString1 := 'abc'.
litString2 := 'abc'.
(litString1 == litString2)
true

This distinction can become significant in building sets. Because a set does not
accept more than one element with the same identity, if you add both litString1 and
litString2 to the same set, the set will contain only one instance of 'abc'. You can,
however, store both nonlitString1 and nonlitString2 in a single set.

Symbols

Class Symbol is a subclass of String. GemStone Smalltalk uses symbols internally
to represent variable names and selectors. All symbols may be viewed by all users.
All private information should be maintained in Strings, not in Symbols.

You create a symbol using the withAll: method. Once a symbol is created, it may
not be modified. When you use the withAll: method to create a new symbol,
GemStone Smalltalk checks to see whether the symbol exists in its view of
AllSymbols. If the symbol already exists, the OOP for that symbol is returned,
otherwise a new OOP is returned.

DoubleByteString and DoubleByteSymbol

The DoubleByteString and DoubleByteSymbol classes provide the functionality of
String and Symbol classes for DoubleByte character sets.

UnorderedCollection
The class UnorderedCollection implements protocol for indexing, which in turn
allows for large collections to be queried and sorted efficiently.
80 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
UnorderedCollections are frequently known as non-sequenceable collections
(NSCs).

All subclasses of UnorderedCollection do not allow nil elements. The repository
will silently ignore attempts to create nil elements in these classes.

Chapter 5, “Querying,” describes the querying/sorting functions in detail. The
following section describes the protocol implemented in UnorderedCollection’s
subclasses.

Bag

A Bag is the simplest unordered collection, made of an aggregation of unordered
instance variables. Bags, like most other collections, are elastic, growing to
accommodate new objects as you add them.

You access a Bag’s elements by equality. That is, if a variable has the same value as
an element that is in the Bag, that element is equal to the variable. If you have two
elements in the Bag with the same value, the first element encountered is always
returned.

If the Bag contains elements that are themselves complex objects, determining the
equality is complex and therefore slower than you might have hoped.

The equality-accessed class Bag is provided for compatibility with client Smalltalk
standards. If you anticipate a large number of elements in a Bag, we recommend
you use the class IdentityBag.

IdentityBag

IdentityBag has faster access than Bag. Like a Bag, an IdentityBag is elastic and can
hold objects of any kind. An IdentityBag can hold up to 240 -1 (OBJ_MAX_SIZE)
objects.

To access an IdentityBag, you rely on the identity (OOP) of the object. This is a
much less time-consuming task than an equality comparison, and in most cases it
should be sufficient for your design.

Because IdentityBag is not ordered, class IdentityBag disallows the inherited
message at:put:. The inherited messages add: and addAll: work pretty much
as they do with other kinds of collection, except, of course, that they are not
guaranteed to insert objects at any particular positions. There’s one other
significant difference: if the argument to addAll: is an Array or
OrderedCollection, the elements in the collection are not faulted into memory.
September 2009 GemStone Systems, Inc. 81

Collection Subclasses GemStone Programming Guide
IdentityBag defines one new adding message, add: anObject
withOccurrences: anInteger. This message enables you to add several identical
objects to an IdentityBag with a single message:

Example 4.32

| aBag |

aBag := IdentityBag new add: 'chipmunk' withOccurrences: 3.
aBag occurrencesOf: 'chipmunk'
3

IdentityBag also defines two messages that allow you to copy elements into a
Collection (which must be a kind of Array or OrderedCollection) without faulting
the contents into memory.

copyFrom: index count: aCount into: aCollection startingAt: destIndex

Copies the specified number of elements from the IdentityBag, beginning at
index.

copyFrom: index1 to: index2 into: aCollection startingAt: destIndex

Copies the designated elements, beginning at index.

Accessing an IdentityBag’s Elements

Since an IdentityBag’s elements are not ordered, IdentityBag must disallow the
message at:. Usually, you’ll need to use Collection’s enumeration protocol to get
at a particular element of a IdentityBag.

The following example uses detect: to find a IdentityBag element equal to
’agouti’:

Example 4.33

| bagOfRodents myRodent |
 bagOfRodents := IdentityBag withAll: #('beaver' 'rat' 'agouti').
 myRodent := bagOfRodents detect: [:aRodent | aRodent = 'agouti'].
 myRodent
 agouti
82 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Removing Objects from an IdentityBag

Class IdentityBag provides several messages for removing objects from an identity
collection. The message remove:ifAbsent: lets you execute some code of your
choice if the specified object cannot be found. In this example, the message returns
false if it cannot find “2” in the IdentityBag:

Example 4.34

| myBag |
myBag := IdentityBag withAll: #(2 3 4 5).
myBag remove: 2 ifAbsent: [^false].
(myBag sortAscending) verifyElementsIn: #[3,4,5]

true

Similarly, removeAllPresent: aCollection is safer than removeAll: aCollection,
because the former method does not halt your program if some members of
aCollection are absent from the receiver.

All the removal messages act to delete specific objects from an IdentityBag by
identity; they do not delete objects that are merely equal to the objects given as
arguments. Example 4.34 works correctly because the SmallInteger 2 has a unique
identity throughout the system. By way of contrast, consider Example 4.35.

Example 4.35

| myBag array1 array2 |
"Create two objects that are equal but not identical,
 and add one of them to a new IdentityBag."
array1 := Array new add: 'stuff'; add:'nonsense' ; yourself.
array2 := Array new add: 'stuff'; add:'nonsense' ; yourself.

"Create an IdentityBag containing array1."
myBag := IdentityBag new add: array1.
UserGlobals at: #MyBag put: myBag.

"Now try to remove one of the objects from the IdentityBag
by referring to its equal twin in the argument to
remove:ifAbsent"
myBag remove: array2 ifAbsent: ['Sorry, can''t find it'].
September 2009 GemStone Systems, Inc. 83

Collection Subclasses GemStone Programming Guide
 Sorry, can’t find it

Comparing IdentityBags

Class IdentityBag redefines the selector = in such a way that it returns true only if
the receiver and the argument:

 • are of the same class,

 • have the same number of elements,

 • contain only identical (==) elements, and

 • contain the same number of occurrences of each object.

Union, Intersection, and Difference

Class IdentityBag provides three messages that perform functions reminiscent of
the familiar set union, set intersection, and set difference operators. There is one
significant difference between these messages and the set operators —
IdentityBag’s messages consider that either the receiver or the argument can
contain duplicate elements. The comment for class IdentityBag in the image
provides more information about how these messages behave when the receiver’s
class is not the same as the class of the argument.

Sorting an IdentityBag

Class IdentityBag defines methods that can sort collection elements with
maximum efficiency. Sort keys are specified as paths, and they are restricted to
paths that are able to bear equality indexes. (For a description of paths, see “Path
Expressions” on page 373. For a description of equality indexes, see page 116.)

Example 4.36 defines an Employee object, and an subclass of IdentityBag for
containing Employees. The subsequent examples add instances of Employee to the
IdentityBag and then sort those instances.
84 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
Example 4.36

Object subclass: 'Employee'
instVarNames: #('name' 'job' 'age' 'bday' 'address')
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

%

Employee compileAccessingMethodsFor:
 #('name' 'job' 'age' 'bday' 'address’).
Employee subclass: 'SymbolNameEmployee'

instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

%

IdentityBag subclass: 'BagOfEmployees'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

%

Example 4.37 creates a few instances of Employee, places them in an IdentityBag
subclass named BagOfEmployees, and sorts by sortDescending:
September 2009 GemStone Systems, Inc. 85

Collection Subclasses GemStone Programming Guide
Example 4.37

"Make some Employees and store them in a BagOfEmployees."
| Conan Lurleen Fred myEmployees |
Conan := (Employee new) name: #Conan;
 job: 'librarian'; age: 40; address: '999 W. West'.
Fred := (Employee new) name: #Fred;
 job: 'clerk'; age: 40; address: '221 S. Main'.
Lurleen := (Employee new) name: #Lurleen;
 job: 'busdriver'; age: 24; address: '540 E. Sixth'.
myEmployees := BagOfEmployees new.
myEmployees add: Fred; add: Lurleen; add: Conan.
UserGlobals at: #myEmployees put: myEmployees
%

myEmployees sortDescending: 'name'.

an Array
 #1 an Employee
 name Lurleen
 job busdriver
 age 24
 bday nil
 address 540 E. Sixth

 #2 an Employee
 name Fred
 job clerk
 age 40
 bday nil
 address 221 S. Main

 #3 an Employee
 name Conan
 job librarian
 age 40
 bday nil
 address 999 W. West

The messages sortAscending: and sortDescending: return arrays of
elements sorted by a specified instance variable of the element class.
86 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
In sorting instances of Float, NaN is regarded as greater than an ordinary floating-
point number.

To sort a bag that contains only simple values (such as strings, symbols, numbers,
instances of DateTime, or characters), use sortAscending or sortDescending.

Example 4.38

| myBagOfStrings |
myBagOfStrings := IdentityBag new
 add: 'beta'; add: 'alpha'; yourself.
myBagOfStrings sortAscending

an Array
 #1 alpha
 #2 beta

Either of IdentityBag’s sorting methods can take an array of paths as its argument.
The first path in the array is taken as the primary sort key and the others are taken
in order as subordinate keys, as shown in Example 4.39.

Example 4.39

| returnArray tempString |
tempString := String new.
returnArray := myEmployees sortAscending: #('age' 'name').
"Build a printable list of the sorted ages and names"
returnArray do: [:i | tempString add: (i age asString);
 add: ' '; add: i name;
 add: Character lf].
tempString

 24 Lurleen
 40 Conan
 40 Fred

Here Employees are ordered initially by ’age’, the primary sort key. The two
Employees who have the same age are ordered by ’name’, the secondary sort key.

You may sort a collection on as many as keys as you need. However, the more keys
you sort on, the longer the sort will take (in general).
September 2009 GemStone Systems, Inc. 87

Collection Subclasses GemStone Programming Guide
To sort in ascending order on some keys while sorting in descending order on
others, use sortWith: anArray. The argument to this message is an Array of paths
alternating with sort specifications.

Example 4.40 uses sortWith: to sort on age in ascending order and on name in
descending order.

Example 4.40

| returnArray tempString |
tempString := String new.
returnArray := myEmployees sortWith: #('age' 'Ascending'
 'name' 'Descending').
returnArray do: [:i | tempString add: (i age asString);
 add: ' '; add: i name;
 add: Character lf].
tempString

 24 Lurleen
 40 Fred
 40 Conan

Class IdentitySet

IdentitySet is similar to IdentityBag, except that IdentitySet cannot contain
duplicate (that is, identical) elements. You may find sets useful for modeling such
entities as relations, which must contain only unique tuples.

To access objects in an IdentitySet, you rely on the identity (OOP) of the object. This
is a much less time-consuming task than an equality comparison, and in most cases
it should be sufficient for your design.

Because IdentitySet is not ordered, class IdentitySet disallows the inherited
messages at: and at:put:. The inherited messages add: and addAll: work
pretty much as they do with other kinds of Collection, except, of course, that they
are not guaranteed to insert objects at any particular positions.
88 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
IdentitySet as Relations

Suppose that you wanted to build and query a relation such as the one shown in
Figure 4.3:

Figure 4.3 Employee Relations

 Employees
Name Job Age Address
__

Fred clerk 40 221 S. Main
Lurleen busdriver 24 540 E. Sixth
Conan librarian 40 999 W. West

In GemStone Smalltalk, it would be natural to represent such a relation as an
IdentitySet of objects of class Employee, with each Employee containing instance
variables name, job, age, and address. Each element of the IdentitySet corresponds to
a tuple, and each instance variable of an element corresponds to a field.

To make it easy to retrieve values from a tuple, you can define methods for class
Employee so that an Employee returns the value of its name instance variable upon
receiving the message name, the value of its age variable upon receiving the
message age, and so on.

The examples on the following pages create a small employee relation as described
above and show how you might use Collection’s enumeration protocol to
formulate queries about the relation.
September 2009 GemStone Systems, Inc. 89

Collection Subclasses GemStone Programming Guide
Example 4.41

Object subclass: 'Employee'
instVarNames:

 #('name' 'job' 'age' 'address' 'lengthOfService')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false.

IdentitySet subclass: 'SetOfEmployees'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false.

! ----- Create Some Instance Methods for Employee -----
category: 'Accessing'
method: Employee
name "returns the receiver’s name"
 ^name
%
method: Employee
job "returns the receiver’s job"
 ^job
%
method: Employee
age "returns the receiver’s age"
 ^age
%
method: Employee
address "returns the receiver’s address"
 ^address
%

90 GemStone Systems, Inc. September 2009

Contents Collection Subclasses
! ------- More Methods for Employee ---------
category: 'Updating'
method: Employee
name: aNameString "sets the receiver’s name"

name := aNameString
%
method: Employee
job: aJobString "sets the receiver’s job"

job := aJobString
%
method: Employee
age: anIntegerAge "sets the receiver’s age"

age := anIntegerAge
%
method: Employee
address: aString "sets the receiver’s address"

address := aString
%
category: 'Formatting'
method: Employee
asString
"Returns a String with info about the receiver (an
Employee)."
 ^ (self name) , ' ' ,(self job) , ' ' ,
 (self age asString), ' ' , (self address)
%
method: SetOfEmployees
asTable
"Prints a set of Employees, one to a line"
| aString |
aString := String new.
self do: [:anEmp |
 aString addAll: anEmp asString; add: Character lf .
].
^aString
%

September 2009 GemStone Systems, Inc. 91

Collection Subclasses GemStone Programming Guide
The following code creates some instances of class Employee and stores them in a
new instance of class SetOfEmployees:

Example 4.42

"Make some Employees, and store them in a SetOfEmployees."
| Conan Lurleen Fred myEmployees |
Conan := (Employee new) name: 'Conan'; job: 'librarian';
 age: 40; address: '999 W. West'.
Fred := (Employee new) name: 'Fred'; job: 'clerk';
 age: 40; address: '221 S. Main'.
Lurleen := (Employee new) name: 'Lurleen'; job: 'busdriver';
 age: 24; address: '540 E. Sixth'.
myEmployees := SetOfEmployees new.
myEmployees add: Fred; add: Lurleen; add: Conan.
"Store the Employees in your userglobals dictionary."
UserGlobals at: #myEmployees put: myEmployees.

Now it’s possible to form some queries using Collection’s enumeration protocol:

Example 4.43

| age40Employees |
"Use select: to ask for employees aged 40."
age40Employees := myEmployees select:
 [:anEmp | anEmp age = 40].
age40Employees asTable
Conan librarian 40 999 W. West
Fred clerk 40 221 S. Main

| conanEmps |
"Ask for employees named 'Conan'"
conanEmps := myEmployees select:
 [:anEmp | anEmp name ='Conan'].
conanEmps asTable
Conan librarian 40 999 W. West
92 GemStone Systems, Inc. September 2009

Contents Stream Classes
Example 4.44

! More examples of queries for the Collection protocol

| notConanBut40Emps |
"Get employees who are 40 years old and not named Conan."
notConanBut40Emps := myEmployees select:
 [:anEmp | (anEmp age = 40) & (anEmp name ~= 'Conan')].
notConanBut40Emps asTable
Fred clerk 40 221 S. Main

| youngerThan40Emps |
"Find the employees who are younger than 40."
youngerThan40Emps := myEmployees select:
 [:anEmp | (anEmp age)< 40].
youngerThan40Emps asTable
Lurleen busdriver 24 540 E. Sixth

Set

A Set is another unordered collection. Like the Class Bag, an element of a Set is
accessed by equality. Unlike a Bag, a Set cannot have multiple objects of the same
value.

This class is provided for compatibility with client Smalltalk standards. If you
anticipate a large number of elements for your Set, we recommend you use the
class IdentitySet, which provides faster access.

4.3 Stream Classes
Reading or writing a SequenceableCollection’s elements in sequence often entails
some drudgery. At a minimum, you need to maintain an index variable so that you
can keep track of which element you last processed.

Class Stream and its subclasses relieve you of this burden by simulating
SequenceableCollections with more desirable behavior. A Stream acts like a
SequenceableCollection that keeps track of the index most recently accessed. A
Stream that provides this kind of civilized access to a particular
SequenceableCollection is said to “stream on” or “stream over” that collection.
September 2009 GemStone Systems, Inc. 93

Stream Classes GemStone Programming Guide
There are two concrete Stream classes. Class ReadStream is specialized for reading
SequenceableCollections and class WriteStream for writing them. These concrete
Stream classes share two abstract superclasses, PositionableStream and Stream
(see Figure 4.4).

Figure 4.4 Stream Class Hierarchy

Stream
 PositionableStream

ReadStream
WriteStream

This unusual juxtaposition of two abstract classes, Stream and PositionableStream,
leaves an opening for you in the hierarchy in case you should ever decide to create
a nonpositionable stream class for accessing, say, a LinkedList class of your own
devising.

A stream provides its special kind of access to a collection by keeping two instance
variables, one of which refers to the collection you wish to read or write, and the
other to a position (an index) that determines which element is to be read or
written next. A stream automatically updates its position variable each time you
use one of Stream’s accessing messages to read or write an element.

Position and ANSI

Position in GemStone Streams is 1-based, that is, the first element in the stream is
at index 1. The ANSI Smalltalk specification indicates that Stream position should
be 0-based. GemStone methods by default do not use the ANSI-compliant
behavior, but it is provided as an alternative.

If you wish to use the ANSI-complaint behavior, execute the following as
SystemUser:

Globals at: #'PositionableStream_position' put: #'ANSI'.
PositionableStream compilePositionMethods.

This recompiles the position and position: methods, replacing the legacy
implementations with the ANSI compliant behavior.

To migrate your existing application to use the ANSI compliant behavior, replace
all calls to position or position: with calls to the following:

Stream >> positionA and positionA: for the ANSI-compliant behavior
Stream >> positionL and positionL: for the legacy behavior
Stream >> positionW and positionW: for the legacy behavior, which also
94 GemStone Systems, Inc. September 2009

Contents Stream Classes
prints a message in the Stone log that includes the call stack. This allows you to
track down difficult-to-locate calls to position and position:.

Stream Protocol
Streams provide messages to write or read an element at the next position beyond
the current position, change the current position without accessing any elements,
and peek at the next element beyond the current one without changing the
Stream’s notion of its current position. Stream also provide messages to test for an
empty collection and for the end of a stream. Finally, there is a message that
returns the collection associated with a stream. Example 4.45 demonstrates the
effect of several of these messages on a ReadStream.

Example 4.45

| aReadStream anArray |
anArray := #('item1' 'item2' 'item3' 'item4' 'item5').
aReadStream := ReadStream on: anArray.
UserGlobals at: #aReadStream put: aReadStream.
aReadStream position. "What’s the initial position?"
 1

"Return the item at the current position."
aReadStream next.
 item1

aReadStream position: 2. "Set the position to the second
element"
aReadStream next. "Read that element."
 item2

"Move to position 6. If at the end, reset the position to
the Stream’s beginning"
aReadStream position: 6. "Move past the last element"
(aReadStream atEnd)ifTrue:[aReadStream reset].
aReadStream next
 item1
September 2009 GemStone Systems, Inc. 95

Stream Classes GemStone Programming Guide
Example 4.46 shows the use of WriteStream.

Example 4.46

| aWriteStream |
aWriteStream := WriteStream on: (Array new: 5).
aWriteStream nextPut: 'item1'; nextPut: 'item2'.
UserGlobals at: #aWriteStream put: aWriteStream.
%

"Examine the Stream's contents"
aWriteStream contents
%
an Array
 #1 item1
 #2 item2

aWriteStream position: 4.
aWriteStream nextPut: 'item4'. "Store new item there."
aWriteStream nextPut: 'item5'. "Store item at next slot."
aWriteStream position: 1. "Move to position 1."
"Replace item there."
aWriteStream nextPut: 'A new item at the front'.

"Examine the Stream's contents again"
aWriteStream.itsCollection.
%
an Array
 #1 A new item at the front
 #2 item2
 #3 nil
 #4 item4
 #5 item5
96 GemStone Systems, Inc. September 2009

Contents Stream Classes
Creating Printable Strings with Streams
Streams are especially useful for building printable strings.

Example 4.47

| aStream aSet lineNumber |
lineNumber := 1.
aStream := WriteStream on: (String new).
aSet := IdentitySet withAll: #('lemur' 'gibbon' 'potto'
'siamang' 'rhesus' 'macaque' 'orangutan').
aSet do: [:i | aStream nextPutAll: lineNumber asString.
 aStream nextPutAll: ' '.
 aStream nextPutAll: i.
 aStream nextPut: Character lf.
 lineNumber := lineNumber + 1.].
aStream.itsCollection
%
aStream contents
 1 lemur
 2 gibbon
 3 potto
 4 siamang
 5 rhesus
 6 macaque
 7 orangutan
September 2009 GemStone Systems, Inc. 97

Stream Classes GemStone Programming Guide
98 GemStone Systems, Inc. September 2009

Chapter

5 Querying
This chapter describes GemStone Smalltalk’s indexed associative access
mechanism, a system for efficiently retrieving elements of large collections.

Relations
reviews the concept of relations.

Selection Blocks and Selections
describes how to use a path to select all the elements of a collection that meet
certain criteria.

Additional Query Protocol
explains how to select a single element of a collection that meets certain
criteria, or all those elements that do not meet them.

Indexing for Faster Access
discusses GemStone Smalltalk’s facilities for creating and maintaining indexes
on collections.

Sorting and Indexing
describes protocol for sorting collections efficiently.
September 2009 GemStone Systems, Inc. 99

Relations GemStone Programming Guide
5.1 Relations
It’s common practice to construct a relational database as a set of multiple-field
records. Usually, each record represents one entity and each field in a record stores
a piece of information about that entity. In a relational database, the set of records
is called a relation, individual records are called tuples, and the fields are called
attributes.

For example, the following table depicts a small relation that stores data about
employees:

Figure 5.1 Employee Relation

 Employees
Name Job Age Address

Fred clerk 40 221 S. Main
Lurleen busdriver 24 540 E. Sixth
Conan librarian 40 999 W. West
__

In GemStone, it’s natural to represent such a relation as an IdentityBag or
IdentitySet of objects of class Employee, with each employee containing the
instance variables name, job, age, and address. Each element of the IdentitySet
corresponds to a record, and each instance variable of an element corresponds to a
field.

To make it easy to retrieve values from a record, you can define selectors in class
Employee so that an instance of Employee returns the value of its name instance
variable when it receives the message name, the value of its age variable when it
receives the message age, and so on. The discussion of class IdentitySet in
Chapter 4, “Collection and Stream Classes,” describes one way to develop this
Employee class.

As Chapter 4 also explains, you can use Collection’s searching protocol to search
for a record (element) containing a particular field (instance variable) value.

myEmployees select: [:anEmployee | anEmployee age = 40]

Searching for an object by content or value instead of by name or location is called
associative access.
100 GemStone Systems, Inc. September 2009

Contents Relations
The searching messages defined by Collection must send one or more messages for
each element of the receiver. Executing the above expression requires sending the
messages age and = for each element of myEmployees. This strategy is suitable for
small collections, but it can be too slow for a collection containing thousands of
complex elements.

For efficient associative access to large collections, it’s useful to build an external
index for them. Indexing a Collection creates structures such as balanced trees that
let you find values without waiting for sequential searches. Indexing structures
can retrieve the objects you require by sending many fewer messages—ideally,
only the minimum number necessary. Indexes allow you faster access to large
UnorderedCollections because when such collections are indexed, they can
respond to queries using select:, detect:, or reject: without sending
messages for every element of the receiver.

What You Need To Know
To use GemStone Smalltalk’s facilities for searching large collections quickly, you
need to:

1. Specify which of the instance variables in a collection’s elements are indexed,
using protocol from UnorderedCollection together with a special syntactic
structure called a path to designate variables for indexing.

2. Construct a selection block whose expressions describe the values to be sought
among the instance variables within the elements of a collection: when a
selection block appears as the argument to one of UnorderedCollection’s
enumeration methods select:, reject:, and detect:, the method uses
the indexing structures you’ve specified to retrieve elements quickly.

For example, if you planned to retrieve employees with certain jobs quickly and
frequently, you need to create an “Employees” set that is indexed for fast
associative access and then build an index on the job instance variable in each
element of Employees. Then, to retrieve employees with a certain job, you build
a selection block specifying the instance variable job and the target job, and send
select: to Employees with the selection block as its argument.

This chapter tells you how to specify indexes and perform selections, and it also
provides some miscellaneous information to help you use those mechanisms
efficiently.
September 2009 GemStone Systems, Inc. 101

Selection Blocks and Selection GemStone Programming Guide
5.2 Selection Blocks and Selection
Once you’ve created a collection, you can efficiently retrieve selected elements of
the collection by formulating queries as enumeration messages that take selection
blocks as their arguments.

A selection block is a syntactic variant of an ordinary GemStone Smalltalk block.
When a collection receives select:, detect:, reject:, or one of several related
messages, with a selection block as the argument, it retrieves those of its elements
that meet the criteria specified in the selection block.

The following statement returns all Employees named ’Fred’. The selection block
is the expression delimited by curly braces { }.

Example 5.1

|fredEmps |
fredEmps := myEmployees select:
 {:anEmployee | anEmployee.name = 'Fred'}.

This statement is similar to an example given earlier, in which select: took an
ordinary block as its argument:

Example 5.2

fredEmps := myEmployees select:
 [:anEmployee | anEmployee.name = 'Fred'].

While square brackets[] delimit an ordinary block, curly braces {} delimit a
selection block; Otherwise, the two statements look the same. A query using a
selection block also returns the same results as if the selection block predicate had
been treated as a series of message expressions. However, some special restrictions
apply to the query language.

Subsequent sections of this chapter describe selection block anatomy and behavior
in general, and the query language restrictions in particular.

Selection Block Predicates and Free Variables
Like an ordinary, one-argument block, a selection block has two parts: the free
variable and the predicate. In the following selection block, the free variable is to the
left of the vertical bar and the predicate is to the right.
102 GemStone Systems, Inc. September 2009

Contents Selection Blocks and Selection
Figure 5.2 Anatomy of a Selection Block

A free variable for the selection block is analogous to an argument for an ordinary
block. As select: goes through myEmployees, it makes the free variable
anEmployee represent each element in turn. In contrast to an ordinary block, which
may have several arguments, a selection block can have only one free variable.

The predicate for a selection block is analogous to the right side of an ordinary
block, which contains GemStone Smalltalk statements. In a selection block, the
predicate must be a Boolean expression; usually, the expression compares an
instance variable from among the objects to be searched with another instance
variable or with a constant. In the example, for each element of the collection
myEmployees, the predicate compares the element’s instance variable name with
the string ’Fred’.

The method for select: gathers into the collection fredEmps each element whose
name value makes the predicate true.

A predicate contains one or more terms—the expressions that specify comparisons.

Predicate Terms
A term is a Boolean expression containing an operand and usually a comparison
operator followed by another operand, as shown in Figure 5.3:

Figure 5.3 Anatomy of a Selection Block Predicate Term

fredEmps := myEmployees select:
 {:anEmployee | anEmployee.name = 'Fred'}

free variable

predicate

anEmployee.name = 'Fred'

 operand

comparison operator

operand
September 2009 GemStone Systems, Inc. 103

Selection Blocks and Selection GemStone Programming Guide
Predicate Operands

An operand can be a path (anEmployee.name, in this case), a variable name, or a
literal (’Fred’, in this example). All kinds of GemStone Smalltalk literals except
arrays are acceptable as operands.

If a path points to objects within elements of select:’s receiver (as does
anEmployee.name), then each variable in the path must be a valid instance variable
name for the receiver and its elements. In this case, anEmployee.name is acceptable
because the receiver holds employees and class Employee defines the instance
variable name.

Predicate Operators

Table 5.1 lists the comparison operators used in a selection block predicate:

No other operators are permitted in a selection block.

The associative query mechanism and GemStone Smalltalk do not follow exactly
the same rules in determining the legality of comparisons. As in ordinary
GemStone Smalltalk expressions, an identity comparison can be performed
between two objects of any kind. The following peculiar query, for example, is
perfectly legal:

Example 5.3

| aTime |
aTime := Time now.
myEmployees select: {:i | aTime == i.name}

Because of its special significance as a placeholder for unknown or inapplicable
values, nil is comparable to every kind of object in a selection block, and every kind
of object is comparable to nil.

Table 5.1 Comparison Operators Allowed in a Selection Block

== Identity comparison operator
= Equality comparison operator, case-insensitive
< Less than equality operator, case-insensitive
<= Less than or equal to equality operator, case-insensitive
> Greater than equality operator, case-insensitive
>= Greater than or equal to equality operator, case-insensitive
104 GemStone Systems, Inc. September 2009

Contents Selection Blocks and Selection
Predicate Operators and User-Defined Classes

If you need to, you can redefine the equality operators =, <=, <, >=, > in classes
that you have created. In that case, the operands compared using these operators
need not be of the same class. If you have created a class and redefined its equality
operators, you can compare instances of that class with any other class that make
sense for your application. For further details, see “Redefined Comparison
Messages in Selection Blocks” on page 106.

Bear in mind that, in general, indexing is significantly more efficient when the
indexed objects are instances of certain GemStone Smalltalk kernel classes.
Instances of these classes are compared for equality as follows:

Nil < Symbol < String < DoubleByteSymbol < DoubleByteString < Boolean <
Character < Time < Date < subclasses of Number

In less-than or greater-than comparisons, your queries must accommodate for
heterogeneous values.

Conjunction of Predicate Terms

If you want retrieval of an element to be contingent on the values of two or more
of its instance variables, you can join several terms using a conjunction (logical
AND) operator. The conjunction operator, &, makes the predicate true if and only
if the terms it connects are true.

The predicate in the following selection block is true for the Employees who are
named Conan and work as librarians:

Example 5.4

| mySet |
mySet := myEmployees select: { :anEmployee |
 (anEmployee.name = 'Conan') & (anEmployee.job ='librarian')
}

This example returns a collection of the employees who meet the name and job
criteria. Each conjoined term must be parenthesized.

You can conjoin as many as nine terms in a selection block.

If you do not wish to use the Boolean AND operator, but instead would like to
learn which objects meet either one criterion OR another criterion, you must create
two selection blocks, each querying about one of the criteria, and then merge the
two resulting collections using the + operator for Set unions.
September 2009 GemStone Systems, Inc. 105

Selection Blocks and Selection GemStone Programming Guide
Example 5.5 shows how you can get a collection of all employees named either
Fred or Ted.

Example 5.5

| fredsAndTeds freds teds |
freds := myEmployees select: { :anEmployee | anEmployee.name = 'Fred' }.
teds := myEmployees select: { :anEmployee | anEmployee.name = 'Ted' }.
fredsAndTeds := freds + teds

Limits on String Comparisons
In comparisons involving instances of String or its subclasses, the associative
access mechanism considers only the first 900 characters of each operand. Two
strings that differ only beginning at the 901st character are considered equal.

Redefined Comparison Messages in Selection Blocks
Because GemStone Smalltalk does not execute selection block predicates by
passing messages to GemStone kernel classes, you cannot change the operation of
a selection block by redefining the comparison messages in a GemStone kernel
class. In other words, for predefined GemStone classes, the comparison operators
really are operators in the traditional programming language sense; they are not
messages.

For example, if you recompiled the class Time, redefining < to count backwards
from the end of the century, GemStone Smalltalk would ignore that redefinition
when < appeared next to an instance of Time inside a selection block. GemStone
Smalltalk would simply apply an operator that behaved like Time’s standard
definition of <.

For subclasses that you have created, however, equality operators can be
redefined. If you do so, the selection block in which they are used performs the
comparison on the basis of your redefined operators—as long as one of the
operands is the class you created and in which you redefined the equality operator.

If you redefine any, you must redefine at least the operators =, >, <, and <=. You
can redefine one or more of these in terms of another if you wish.

The operators must be defined to conform to the following rules:

 • If a < b and b < c, then a < c.

 • Exactly one of these is true: a < b, or b < a, or a = b.
106 GemStone Systems, Inc. September 2009

Contents Selection Blocks and Selection
 • a <= b if a < b or a = b.

 • If a = b, then b = a.

 • If a < b, then b > a.

 • If a >= b, then b <= a.

You must obey one other rule as well: objects that are equal to each other must
have equal hash values. Therefore, if you redefine =, you must also redefine the
method hash so that dictionaries will behave in a consistent and logical manner.

Suppose that you define the class Soldier as follows:

Example 5.6

Object subclass: #Soldier
instVarNames: #(rank)
classVars: #(#Ranks)
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

You then compile accessing methods for its instance variables, and define an
initialization method to initialize the class variable Ranks, as in the following
example:

Example 5.7

Soldier compileAccessingMethodsFor: Soldier instVarNames .

classmethod: Soldier
initialize
 "Initialize the class variable Ranks as an array."
 | index |
Ranks := SymbolKeyValueDictionary new.
index := 1.
#(#Lieutenant #Captain #Major #Colonel #General)

do: [:e | Ranks at: e put: index.
index := index + 1].
September 2009 GemStone Systems, Inc. 107

Selection Blocks and Selection GemStone Programming Guide
%

We then initialize the class by executing the expression:

Soldier initialize

We define the equality operators in the class Soldier as follows:

Example 5.8

method: Soldier
< aSoldier
"Return true if the rank of the receiver is lower than the
rank of the argument. Return false otherwise."
^ (Ranks at: rank otherwise: 0) <

(Ranks at: aSoldier rank otherwise: 0)
%
method: Soldier
= aSoldier
"Return true if the rank of the receiver is equal to the
rank of the argument. Return false otherwise."
^ (Ranks at: rank otherwise: 0) =

(Ranks at: aSoldier rank otherwise: 0)
%
method: Soldier
> aSoldier
"Greater than is defined in terms of less than."
^ aSoldier < self
%
method: Soldier
<= aSoldier
"Return true if the rank of the receiver is less than or
equal to the rank of the argument. Return false otherwise."
^ (Ranks at: rank otherwise: 0 <=

(Ranks at: aSoldier rank otherwise: 0)
%
method: Soldier
hash
"Return a hash value based on the receiver's rank, because
equality is defined in terms of a Soldier's rank."
^ rank hash
108 GemStone Systems, Inc. September 2009

Contents Selection Blocks and Selection
%

We now create instances of Soldier having each possible rank, naming them
aLieutenant and so on. We also create an instance of Soldier without any rank, and
name it aPrivate. See Example 5.9.

Example 5.9

| tmp myArmy tmp2 |
myArmy := IdentityBag new.
1 to: 5 do: [:i |
 tmp := (Soldier.classVars at: #Ranks) keys do: [:tmp |
 tmp2 := (Soldier new rank: tmp).
 UserGlobals at: (’a’ + tmp) asSymbol put: tmp2.
 myArmy add: tmp2
].
].
tmp2 := (Soldier new rank: #Private).
UserGlobals at: #aPrivate put: tmp2;
 at: #myArmy put: (myArmy add: tmp2; yourself) .
^ myArmy
%

We can now execute expressions of the form:

Example 5.10

aLieutenant < aMajor
true

aCaptain < aLieutenant
false

Expressions in selection blocks get the same results. Given a collection of soldiers
named myArmy, the following selection block collects all the officers:
September 2009 GemStone Systems, Inc. 109

Selection Blocks and Selection GemStone Programming Guide
Example 5.11

| officers |
officers := myArmy select: { :aSoldier | aSoldier > aPrivate }

Changing the Ordering of Instances

Once you redefine the equality operators for a given class and create instances of
that class, your instances may not remain the same forever. For example, the
soldiers we created in Example 5.9 may not all stay the same rank for their entire
careers. Some may be promoted; others may be demoted. If an instance of Soldier
changes its ordering relative to the other instances, you must manually update the
equality index in which it participates. Because you have redefined the equality
operators, GemStone has no way of determining how to update the index
automatically, as it will when you use the system-supplied equality operators.

To handle updating the equality index in your application, follow these steps:

1. Confine code that can change the relative ordering of instances to as few places
as possible. For the class Soldier, for example, we would write two methods:
promoteTo: and demoteTo:. Code that changed the relative ranking of
soldiers would appear only within these two methods.

2. Before the code that changes the ordering of the instance, include a line such
as the following:

anArray := self removeObjectFromBtrees

The method removeObjectFromBtrees returns an array that you will need
later within the method. Therefore you must assign the result to some
variable—anArray in the example above.

3. After the code that changes the ordering of the instance, include a line such as
the following:

self addObjectToBtreesWithValues: anArray

4. Once you have performed the method removeObjectFromBtrees, do not
commit the transaction unless the addObjectToBtreesWithValues:
method successfully completes.
110 GemStone Systems, Inc. September 2009

Contents Selection Blocks and Selection
If the ordering of the instance depends on more than one instance variable, this
pair of lines must appear in the methods that set the value of each instance
variable.

CAUTION
Failing to include these lines can corrupt the equality index and lead to
your application receiving GemStone errors notifying you that certain
objects do not exist. You may need to remove all indexes related to a
collection in order to fix the problem.

Collections Returned by Selection
The message select: returns a collection of the same class as the message’s
receiver. For example, sending select: to a SetOfEmployees results in a new
SetOfEmployees.

NOTE
When sent to an instance of RcIdentityBag, the message select:
returns an instance of IdentityBag instead. This is because the reduced-
conflict classes use more memory or disk space than their ordinary
counterparts, and conflict is not ordinarily a problem with collections
returned from a query. If it causes a problem for your application,
however, you can convert the resulting instance myBag to an instance
of RcIdentityBag with an expression such as either of the two following:

RcIdentityBag withAll: myBag
RcIdentityBag new addAll: myBag; yourself

RcQueue displays comparable behavior; the message select: returns
an Array. For further details on class RcIdentityBag, see Chapter 6,
Transactions and Concurrency Control.

The collection returned by a selection query has no index structures. (Indexes are
discussed in detail beginning on page 115.) This is because indexes are built on
individual instances of unordered collections rather than the classes. If you want
to perform indexed selections on the new collection, you must build all of the
necessary indexes. A later section, “Duplicating a Collection’s Indexes” on
page 122, describes a technique for duplicating a collection’s indexes in a new
instance.
September 2009 GemStone Systems, Inc. 111

Selection Blocks and Selection GemStone Programming Guide
Streams Returned by Selection
The result of a selection block can be returned as a stream instead of a collection.
Returning the result as a stream is faster. If you are not sure that your query is
precisely the right one, using a stream allows you to test the results with minimal
overhead.

When GemStone returns the result of a selection block as a collection, the following
operations must occur:

1. Each object in the result must be read.

2. The collection must be created.

3. Each object in the result must be put into the collection.

For a collection consisting of many thousands of objects, these operations can take
a significant amount of time. By contrast, when GemStone returns the result of a
selection block as a stream, the resulting objects are returned one at a time. Each
object you request is read once, resulting in significantly faster performance and
less overhead.

Streams do not automatically save the resulting objects. If you do not save them as
you read them, the results of the query are lost.

The results of a selection block can be returned as a stream using the method
selectAsStream:. This method returns an instance of the class
RangeIndexReadStream, similar to a ReadStream but making more efficient use of
GemStone resources. Like instances of ReadStream instances of
RangeIndexReadStream understand the messages next and atEnd.

Suppose your company wishes to send a congratulatory letter to anyone who has
worked there for ten years or more. Once you have sent the letter, you have no
further use for the data. Assuming that each employee has an instance variable
called lengthOfService, you can use a stream to formulate the query as follows:

Example 5.12

method: Employee
sendCongratulations
^ 'Congratulations. Thank you for your years of service. '
%
myEmployees createEqualityIndexOn: 'lengthOfService'
 withLastElementClass: SmallInteger

| oldTimers anOldTimer |
112 GemStone Systems, Inc. September 2009

Contents Selection Blocks and Selection
oldTimers := myEmployees selectAsStream:
 { :anEmp | anEmp.lengthOfService >= 10}.
[oldTimers atEnd] whileFalse: [
 anOldTimer := oldTimers next.
 anOldTimer sendCongratulations.].
%
nil

The method selectAsStream: has certain limitations, however.

 • It takes a single predicate only; no conjunction of predicate terms is allowed.

 • The collection you are searching must have an equality index on the path
specified in the predicate. (Creating equality indexes is discussed in the section
“Indexing For Faster Access” on page 115.)

 • The predicate can contain only one path.

For example, the predicate in Example 5.13 compares the result of one path with
the result of another and therefore cannot be used with selectAsStream:

Example 5.13

myEmployees select: { :emp | emp.age > emp.lengthOfService }

myEmployees createEqualityIndexOn: 'age'
withLastElementClass: SmallInteger;

 createEqualityIndexOn: 'lengthOfService'
withLastElementClass: SmallInteger

myEmployees selectAsStream:
 { :emp | emp.age > emp.lengthOfService }
%

GemStone: Error Nonfatal
 The predicate for selectAsStream was invalid.
Error Category: [GemStone] Number: 2313 Arg Count: 1

Formulating a query using selectAsStream: is inappropriate for these cases:

 • You wish to modify the receiver of the message (the unordered collection) by
adding or removing elements.
September 2009 GemStone Systems, Inc. 113

Additional Query Protocol GemStone Programming Guide
 • You want to modify instance variables upon which the query is based in the
elements returned by the stream, while you are accessing the stream. Doing so
can cause a GemStone error or corrupt the stream. If you must modify the
receiver or its elements based on the query, use select: instead, which
returns the entire resulting collection at once.

5.3 Additional Query Protocol
In addition to select:, three other messages search when sent to a collection with
a selection block as an argument.

If you want to use the associative access mechanism to retrieve all elements of a
Collection for which a selection block is false, send reject: aBlock. The following
expression, for example, retrieves all elements of myEmployees not named
'Lurleen':

Example 5.14

myEmployees reject: {:i | i.name = 'Lurleen'}

The messages detect: aBlock and detect: aBlock ifNone: exceptionBlock can
also take selection blocks as arguments when sent to collections. The message
detect: aBlock returns a single element of the receiver that meets the criteria
specified in aBlock. The following expression returns an Employee of age 40:

Example 5.15

myEmployees detect: {:i | i.age = 40}

For UnorderedCollections (NSCs), there is no telling which element will be
returned when there are several qualified candidates. If no elements are qualified,
detect: issues an error notification and the interpreter halts.

If you don’t want the interpreter to halt in the event of a fruitless search, use
detect: aBlock ifNone: exceptionBlock.
114 GemStone Systems, Inc. September 2009

Contents Indexing For Faster Access
5.4 Indexing For Faster Access
Although queries using selection blocks can execute more rapidly than
conventional selections that pass messages, their default behavior is to search
collections in a relatively inefficient sequential manner. Given the right
information, however, GemStone Smalltalk can build indexes that use as keys the
values of instance variables within the elements of a collection. The keys can be the
collection’s elements or the values of instance variables of the collection’s
elements. In fact, keys can be the values of variables nested within the elements of
a collection up to 16 levels deep. Values that serve as keys need not be unique.

In the presence of indexes, collections need not be searched sequentially in order
to answer queries. Therefore, searching a large indexed collection can be
significantly faster than searching a similar, nonindexed collection.

GemStone Smalltalk can create and maintain two kinds of indexes: identity indexes,
which facilitate identity queries, and equality indexes, which facilitate equality
queries.

Identity Indexes
Identity indexes accelerate identity queries. The simplest kind of identity query
selects the elements of a collection in which some instance variable is identical to
(or not identical to) a target value. The following example retrieves from a
collection of employees those elements in which the instance variable age has the
value 40:

Example 5.16

|age40Employees |
age40Employees := myEmployees select:
 {:anEmployee | anEmployee.age == 40}
aSetOfEmployees

In order to execute such a query with the greatest possible efficiency, you need to
have built an identity index on the path to the instance variable age.

Creating Identity Indexes

To create an identity index, use UnorderedCollection’s selector
createIdentityIndexOn:, which takes as its argument a path, specified as a
string. Here is a message telling myEmployees to create an identity index on the
instance variable age within each of its elements:
September 2009 GemStone Systems, Inc. 115

Indexing For Faster Access GemStone Programming Guide
myEmployees createIdentityIndexOn: 'age'.

Another example may be helpful. Given that each Employee’s instance variable
address contains another instance variable, zipcode, the following statement creates
an identity index on the zipcodes nested within the elements of the IdentityBag
MyEmployees:

myEmployees createIdentityIndexOn: 'address.zipcode'.

While the index is being created, the index is write-locked. Any query that would
normally use the index is performed directly on the collection, by brute force. If a
concurrent user modifies an object that is actively participating in the index at the
same time, the createIdentityIndexOn: method is terminated with an error.

The message progressOfIndexCreation returns a description of the current
status for an index as it is created.

Creating Indexes on Large Collections

For large collections, it may take a long time to create an index in a single
transaction. By breaking the index creation into multiple, smaller transactions, the
overall time required to build the index is shorter.

What’s more, creating indexes can consume a significant amount of temporary
object memory, which can lead to out-of-memory conditions.

For these reasons, you may choose to commit your work to the repository
incrementally during index creation. For details, see “Indexes and Transactions”
on page 119.

Equality Indexes
Equality indexes facilitate equality queries. The simplest kind of equality query
selects the elements of a collection in which a particular named instance variable is
equal to some target value.

The following example retrieves from a collection of employees those elements for
which the instance variable name has the value ’Fred’:

Example 5.17

| freds |
freds := myEmployees select:
 { :anEmployee | anEmployee.name = 'Fred' }
aSetOfEmployees
116 GemStone Systems, Inc. September 2009

Contents Indexing For Faster Access
As explained in Table 5.1 (on page 104), equality queries use the related
comparison operators =, <, <=, >, and >=.

You can create equality indexes on the following kinds of objects:

You can create equality indexes on classes you have defined, as long as they either
implement or inherit at least methods for the selectors =, >, >=, <, <=. One or more
of these methods can be implemented in terms of the others, if necessary.

Creating Equality Indexes

The technique for creating equality indexes is similar to the technique for creating
identity indexes, with one significant difference: you must specify the class of the
final element of the path:

createEqualityIndexOn: aPath withLastElementClass: aClass

The argument to the first keyword is a path (or an empty string). The argument to
the second keyword is the name of the class whose instances you expect to
encounter at the end of the path. Here are several examples:

aBagOfAnimals createEqualityIndexOn: ''
withLastElementClass: Animal.

myEmployees createEqualityIndexOn: 'address'
withLastElementClass: Address.

myEmployees createEqualityIndexOn: 'department.manager'
withLastElementClass: Employee.

Creating Reduced Conflict Equality Indexes

If you are creating an index on an reduced-conflict (RC) collection, such as
RcIdentityBag, you may benefit from creating RC equality indexes rather than
plain equality indexes. This will avoid some transaction conflicts on the indexing
structures themselves, which may happen even if there are no conflicts between
modifications to the collection itself (for details on this, see “Indexes and
Concurrency Control” on page 136).

The protocol for creating reduced conflict equality indexes is the similar to equality
indexes:

 • Boolean • DateTime • String
 • Character • Number • UndefinedObject
September 2009 GemStone Systems, Inc. 117

Indexing For Faster Access GemStone Programming Guide
createRcEqualityIndexOn: aPath withLastElementClass: aClass

IdentityIndexes always use internal structures that are reduced conflict.

Creating Indexes on Large Collections

For large collections, it may take a long time to create an index in a single
transaction. By breaking the index creation into multiple, smaller transactions, the
overall time required to build the index is shorter.

What’s more, creating indexes can consume a significant amount of temporary
object memory, which can lead to out-of-memory conditions.

For these reasons, you may choose to commit your work to the repository
incrementally during index creation. For details, see “Indexes and Transactions”
on page 119.

Automatic Identity Indexing

GemStone Smalltalk can build either identity or equality indexes on special
objects—that is, instances of Boolean, Character, SmallInteger, SmallDouble and
UndefinedObject. In fact, for those kinds of objects, equality and identity are the
same, so creating an equality index effectively creates an identity index as well.

Implicit Indexes

In the process of creating an index on a nested instance variable, GemStone
Smalltalk also creates identity indexes on the values that lie on the path to that
variable. For example, creating an equality index on last in the following
expression also creates an identity index on name.

myEmployees createEqualityIndexOn: 'name.last'
withLastElementClass: String.

Therefore, executing the above expression allows you to make indexed identity
queries in terms of name values without explicitly creating an index on name.

Managing indexes
After creating indexes, you may at times wish to find out about all the indexes in
your system, and to remove selected indexes or clean up indexes that were not
successfully created. This functionality is provided by the class IndexManager.

IndexManager has a single instance which provides much of the functionality,
accessible via:

IndexManager current
118 GemStone Systems, Inc. September 2009

Contents Indexing For Faster Access
Indexes and Transactions
Modifying an object that participates in an index on some collection can, under
certain circumstances, write certain objects built and maintained internally by
GemStone as part of the indexing mechanism. Chapter 6, “Transactions and
Concurrency Control,” explains the significance of your writing an object.

Committing Your Work Incrementally

The class IndexManager controls the transactional behavior of index creation and
removal. IndexManager provides methods that allow you to commit your work to
the repository incrementally during index creation (or removal). As mentioned
earlier, this approach enables you to avoid out-of-memory conditions, while
significantly reducing the overall time required to build the index.

When you send the following message:

IndexManager autoCommit: true

the current transaction is committed during indexing whenever the current
session receives a signal indicating temporary object memory is almost full, or
when either of these thresholds is reached:

 • dirtyObjectCommitThreshold — When the number of objects that have been
modified (that is, have become "dirty") during the current transaction exceeds
this threshold, the transaction is committed. The default is 20000. To change
this threshold, send the message:

IndexManager >> dirtyObjectCommitThreshold: anInt

 • percentTempObjSpaceCommitThreshold — When the percentage of
temporary object memory in use reaches this threshold, the transaction is
committed. (When this value is nil, the threshold is ignored.) The default is 75.
To change this threshold, send the message:

IndexManager >> percentTempObjSpaceCommitThreshold: anInt

When autoCommit is true, a transaction will be started (if necessary) before the
indexing operation begins, and the IndexManager will commit at the completion
of the indexing operation.

Inquiring About Indexes
Class UnorderedCollection defines messages that enable you to ask collections
about the indexes on their contents. These messages are:

 • equalityIndexedPaths and identityIndexedPaths
September 2009 GemStone Systems, Inc. 119

Indexing For Faster Access GemStone Programming Guide
Returns, respectively, the equality indexes and the identity indexes on the
receiver’s contents. Each message returns an array of strings representing the
paths in question.

For example, the following expression returns the paths into myEmployees
that bear equality indexes:

myEmployees equalityIndexedPaths

 • kindsOfIndexOn: aPathNameString

Returns information about the kind of index present on an instance variable
within the elements of the receiver. The information is returned as one of these
symbols: #none, #identity, #equality, #identityAndEquality.

 • equalityIndexedPathsAndConstraints

Returns an array in which the odd-numbered elements are the elements of the
path, and the even-numbered elements are the constraints specified when
creating an index using the keyword withLastElementClass:.

The following IndexManager messages allow you to inquire about all indexes in
the repository.

 • getAllNSCRoots

Returns a collection of all UnorderedCollections in the repository that have
indexes.

 • getAllIndexes

Returns a collection of all indexes on all UnorderedCollections in the
repository.

The following sections describe several practical uses for these messages.

Removing Indexes
Class UnorderedCollection defines these messages for removing indexes from a
collection:

 • removeEqualityIndexOn: aPathString

Removes an equality index from the variable indicated by aPathString. If the
path specified does not exist (perhaps because you mistyped), this method
returns an error. If the path specified was implicitly created, the method
returns the path, but the index is not removed. If the index is successfully
removed, the method returns the receiver.
120 GemStone Systems, Inc. September 2009

Contents Indexing For Faster Access
 • removeIdentityIndexOn: aPathString

Removes identity indexes. If the path specified does not exist, the method
returns an error. If the path specified was implicitly created, the method
returns the path, but the index is not removed. If the index is successfully
removed, the method returns the receiver.

 • removeAllIndexes

Removes all explicitly created indexes from the receiver. If the receiver retains
implicit indexes after the removal, this method returns an array indicating that
the receiver participates, as an element of a path, in indexes created on other
collections. Otherwise, this method returns the receiver.

The IndexManager provides additional protocol for removing all indexes in the
repository.

 • removeAllIndexes

Removes all indexes on all UnorderedCollections.

 • removeAllIncompleteIndexes

Removes all incomplete indexes on all UnorderedCollections. This method is
used when an error occurs during index creation with autoCommit: on, so
portions of the index being created have been committed.

Removing Indexes from Large Collections

For large collections, it may take a long time to remove an index in a single
transaction. By breaking the index removal into multiple, smaller transactions, the
overall time required to remove the index is shorter.

What’s more, removing indexes can consume a significant amount of temporary
object memory, which can lead to out-of-memory conditions.

For these reasons, you may choose to commit your work to the repository
incrementally during index removal. For details, see “Indexes and Transactions”
on page 119.

Implicit Index Removal

As previously explained, building an index on the path 'a.b.c' causes GemStone to
create implicit identity indexes on the paths 'a.b' and 'a', as well. When you remove
explicitly created indexes, the implicit ones that were created on the same path are
also removed. That is, when you remove indexes from the path 'a.b.c', GemStone
also removes the implicit indexes from the paths 'a.b' and 'a'.
September 2009 GemStone Systems, Inc. 121

Indexing For Faster Access GemStone Programming Guide
Implicitly created indexes cannot be explicitly removed. However, explicitly
created indexes must be explicitly removed.

Duplicating a Collection’s Indexes

As explained on page 111 ("Collections Returned by Selection"), a collection
returned by select: is devoid of indexing, even when select:’s receiver has
indexes in place. Fortunately, the index inquiry protocol for UnorderedCollection
makes it easy to duplicate the indexes in a new collection. See Example 5.18.

Example 5.18

| someEmployees identityIndexes equalityIndexes |
"First, gather some elements of myEmployees into a new
Collection."
someEmployees := myEmployees select:
 { :anEmp | anEmp.job = 'clerk'}.
"Now make some arrays containing the indexes on employees."
identityIndexes := myEmployees identityIndexedPaths.
equalityIndexes := myEmployees
equalityIndexedPathsAndConstraints.

"For each index on myEmployees, create a similar index on
someEmployees."
1 to: (identityIndexes size) do:
 [:n | someEmployees createIdentityIndexOn:
 (identityIndexes at: n)].

1 to: (equalityIndexes size) by: 2 do:
 [:n | someEmployees createEqualityIndexOn:
 (equalityIndexes at: n)
 withLastElementClass:
 (equalityIndexes at: n + 1)].

Removing and Re-Creating Indexes

For several reasons, you may sometimes wish to remove indexes temporarily and
then create them again. For example, you may want to accelerate updates or you
may be migrating a class to a new version.
122 GemStone Systems, Inc. September 2009

Contents Indexing For Faster Access
When you change the value of an object that participates in an index, GemStone
Smalltalk in most cases automatically adjusts the indexes to accommodate the new
value. When changing the value of any object more complex than a Number or
String, however, you must be especially careful. For more about this, see
“Changing the Ordering of Instances” on page 110.

Obviously, this entails more work than must ordinarily be done when a value
changes. Therefore, when your program needs to make a large batch of changes to
an object that participates in an index, it might be most efficient to remove some or
all of the object’s indexes before performing the updates. When the frequency of
updates to the object decreases, you can rebuild the indexes to accelerate queries
again.

Removing Residual Indexes

As stated earlier, you must explicitly remove any indexes that you have created
explicitly. If you attempt to dereference an UnorderedCollection on which indexes
still exist, those residual indexes will prevent the collection from being successfully
garbage-collected, and you will be unable to free up permanent object memory.

With IndexManager autoCommit set to true, commits may occur during index
creation. If an error occurs after portions of the index have been created and
committed, the unusable partial index must be explicitly removed. The
IndexManager defines instance methods to remove incomplete indexes:

IndexManager current removeAllIncompleteIndexes

Removes all incomplete indexes on all UnorderedCollections.

IndexManager current removeAllIncompleteIndexesOn: anNSC

Removes all incomplete indexes on the specified UnorderedCollection.

Indexing and Performance
Under ordinary circumstances, indexing a large collection speeds up queries
performed on that collection and has little effect on other operations. Under certain
uncommon circumstances, however, indexing can cause a performance
bottleneck.

For example, you may notice slower than acceptable performance if you are
making a great many modifications to the instance variables of objects that
participate in an index, and:

 • the path of the index is long; or
September 2009 GemStone Systems, Inc. 123

Indexing For Faster Access GemStone Programming Guide
 • the object occurs many times within the indexed IdentityBag or Bag (recall that
neither IdentitySet nor Set may have multiple occurrences of the same object);
or

 • the object participates in many indexes.

Even so, indexing a large collection is still likely to improve performance unless
more than one of these circumstances holds true. If you do experience a
performance problem, you can work around it in one of two ways:

 • If you have created relatively few indexes but are modifying many indexed
objects, it may be worthwhile to remove the indexes, modify the objects, and
then re-create the indexes.

 • If you are making many modifications to only a few objects, or if you have
created a great many indexes, it is more efficient to commit frequently during
the course of your work. That is, modify a few objects, commit the transaction,
modify a few more objects, and commit again. Frequent commits improve
performance noticeably.

Indexing Errors
When you create an index, it is possible to encounter an object for which the
specified path is in error. For example, imagine that the class Employee defines the
instance variable address, which is intended to store instances of the class Address.
The current class Address includes an instance variable named zipCode. However,
the employees that have worked for your company the longest store instances of a
previous version of Address, which did not include this instance variable. You
then attempt to create an index on the following path for such a collection:

myEmployees createEqualityIndexOn: 'address.zipCode'
withLastElementClass: String.

When GemStone finds the employees whose addresses do not contain a zip code,
it notifies you of an error. However, creating an index is an operation that creates
a complex and specialized indexing structure. An error in the middle of this
operation can leave the indexing structure in an inconsistent state. In order to
avoid this, a transaction in which such an operation occurs cannot be committed.
If you think you may have a collection in which this could be a problem, create its
index in a transaction by itself.

If you modify objects that participate in an index, try to commit your transaction,
and your commit operation fails, query results can become inconsistent. If this
occurs, abort the transaction and try again.

For details on committing transactions, see Chapter 6.
124 GemStone Systems, Inc. September 2009

Contents Sorting and Indexing
Auditing Indexes

You can audit the internal indexing structures for a collection, to determine if there
are any problems, by executing:

aCollection auditIndexes

You should audit indexes as part of your regular application maintenance.

5.5 Sorting and Indexing
Although indexes are not necessary for sorting, GemStone Smalltalk can take
advantage of equality indexes to accelerate some kinds of sorts. Specifically, an
index is helpful in sorting on a path consisting of at most one instance variable
name. For example, an equality index on name makes the following expression
execute more quickly than it would in the absence of an index:

myEmployees sortAscending: 'name'

Similarly, the following expression sorts an IdentityBag more rapidly with an
index on the path ’ ’ (the elements of the collection):

myBagOfStrings sortAscending: ''.
September 2009 GemStone Systems, Inc. 125

Sorting and Indexing GemStone Programming Guide
126 GemStone Systems, Inc. September 2009

Chapter

6 Transactions and
Concurrency Control
GemStone users can share code and data objects by maintaining common
dictionaries that refer to those objects. However, if operations that modify shared
objects are interleaved in any arbitrary order, inconsistencies can result. This
chapter describes how GemStone manages concurrent sessions to prevent such
inconsistencies.

GemStone’s Conflict Management
introduces the concept of a transaction and describes how it interacts with
each user’s view of the repository.

Changing Transaction Mode
describes how to start and commit, continue, or abort a transaction in either
automatic or manual transaction mode.

Concurrency Management
introduces optimistic and pessimistic concurrency control.

Controlling Concurrent Access With Locks
discusses the kinds of lock you can use to prevent conflict.

Classes That Reduce the Chance of Conflict
describes the classes that help reduce the likelihood of a conflict.
September 2009 GemStone Systems, Inc. 127

GemStone’s Conflict Management GemStone Programming Guide
6.1 GemStone’s Conflict Management
GemStone prevents conflict between users by encapsulating each session’s
operations (computations, stores, and fetches) in units called transactions. The
operations that make up a transaction act on what appears to you to be a private
view of GemStone objects. When you tell GemStone to commit the current
transaction, GemStone tries to merge the modified objects in your view with the
shared object store.

Views and Transactions
As shown in Figure 6.1, every user session maintains its own consistent view of the
repository state. Objects that the repository contained at the beginning of your
session are preserved in your view, even if you are not using them—and even if
other users’ actions have rendered them obsolete. The storage that those objects are
using cannot be reclaimed until you commit or abort your transaction. Depending
upon the characteristics of your particular installation (such as the number of
users, the frequency of transactions, and the extent of object sharing), this burden
can be trivial or significant.

When you log in to GemStone, a transaction is started for you. Your current
transaction exists until you successfully commit the transaction, abort it, or log out.
Your view endures for the length of the transaction, unless you explicitly choose
to get a new view by continuing the transaction. When you obtain a new view of
the repository, any new or modified objects that have been committed by other
users become visible to you.

(In manual transaction mode, even though your session may exist outside of a
transaction, your view is not updated until you begin a transaction and then
commit, abort, or continue it. For details, see “Transaction Modes” on page 131.)

When Should You Commit a Transaction?
Most applications create or modify objects in logically separate steps, combining
trivial operations in sequences that ultimately do significant things. To protect
other users from reading or using intermediate results, you want to commit after
your program has produced some stable and usable results. Changes become
visible to other users only after you’ve committed.

Your chance of being in conflict with other users increases with the time between
commits.
128 GemStone Systems, Inc. September 2009

Contents GemStone’s Conflict Management
Figure 6.1 View States

Reading and Writing in Transactions
GemStone considers the operations that take place in a transaction (or view) as
reading or writing objects. Any operation that sends a message to an object, or
accesses any instance variable of an object, is said to read that object. An operation
that stores something in one of an object’s instance variables is said to write the
object. While you can read without writing, writing an object always implies

view of current

view of your
Commit

Log out

Log in

Modify an

Start

object

modifications transaction

Modify an

view of your
modifications and
updated objects

modified by others

Log out

Log out

Modify an
object

Continue transaction

Continue
transaction

view does
not exist

Abort
transaction

Abort transaction

object

committed repository

Commit
succeeds

Commit
fails

September 2009 GemStone Systems, Inc. 129

How GemStone Detects Conflict GemStone Programming Guide
reading it. GemStone must read the internal state of an object in order to store a
new value in the object.

Operations that fetch information about an object also read the object. In
particular, fetching an object’s size or class reads the object. An object also gets read
in the process of being stored into another object.

The following expression sends a message to obtain the name of an employee and
so reads the object:

theName := anEmployee name. "reads anEmployee"

The following example reads aName in the same operation that anEmployee is
written:

anEmployee name: aName "writes anEmployee, reads aName"

Some less common operations cause objects to be read or written. For example,
modifying an object that participates in an index may write support objects built
and maintained as part of the indexing mechanism.

For the purposes of detecting conflict among concurrent users, GemStone keeps
separate sets of the objects you have written during a transaction and the objects
you have only read. These sets are called the write set and the read set; the read set
is always a superset of the write set.

Reading and Writing Outside of Transactions
Outside of a transaction, reading an object is accomplished precisely the same way.
You can write objects in the same way as well, but you cannot commit these
changes to make them a permanent part of the repository.

6.2 How GemStone Detects Conflict
GemStone detects conflict by comparing your read and write sets with those of all
other transactions committed since your transaction began. The following
conditions signal a possible concurrency conflict:

 • An object in your write set is also in the write set of another transaction—a
write-write conflict. Write-write conflicts can involve only a single object.

 • An object in your write set is also in another session’s dependency list—a
write-dependency conflict. An object belongs to a session’s dependency list if the
session has added, removed, or changed a dependency (index) for that object.
130 GemStone Systems, Inc. September 2009

Contents How GemStone Detects Conflict
For details about how GemStone creates and manages indexes on collections,
see Chapter 5, Querying.

If a write-write or write-dependency conflict is detected, then your transaction
cannot commit. This mode allows an occasional out-of-date entry to overwrite a
more current one. You can use object locks to enforce more stringent control if you
can anticipate the problem.

Concurrency Management
As the application designer, you determine your approach to concurrency control.

 • Using the optimistic approach to concurrency control, you simply read and
write objects as if you were the only user. The object server detects conflicts
with other sessions only at the time you try to commit your transaction. Your
chance of being in conflict with other users increases with the time between
commits and the size of your write set.

Although easy to implement in an application, this approach entails the risk
that you might lose the work you’ve done if conflicts are detected and you are
unable to commit.

 • Using the pessimistic approach to concurrency control, you detect and prevent
conflicts by explicitly requesting locks that signal your intentions to read or
write objects. By locking an object, other users are unable to use the object in a
way that conflicts with your purposes. If you are unable to acquire a lock, then
someone else has already locked the object and you cannot use the object. You
can then abort the transaction immediately instead of doing work that can’t be
committed.

 • Using reduced-conflict (RC) classes to perceive a write-write conflict and further
test the changes to see if they can truly be added concurrently. In some cases,
allowing operations to succeed leaves the object in a consistent state, even
though a write conflict is detected.

The GemStone reduced-conflict classes work well in situations that otherwise
experience unnecessary conflicts. These classes include: RcCounter,
RcIdentityBag, RcQueue, and RcKeyValueDictionary. See “Classes That
Reduce the Chance of Conflict” on page 153.

Transaction Modes
You use GemStone in any of three modes:
September 2009 GemStone Systems, Inc. 131

How GemStone Detects Conflict GemStone Programming Guide
 • Automatic transaction mode. In this mode, GemStone begins a transaction
when you log in, and starts a new one after each commit or abort message. In
this default mode, you are in a transaction the entire time you are logged into
a GemStone session. If the work you are doing requires committing to the
repository frequently, you need to use automatic transaction mode, as you
cannot make permanent changes to the repository when you are outside a
transaction.

 • Manual transaction mode. In this mode, you can be logged in and outside of
a transaction. You explicitly control whether your session can commit.
Although a transaction is started for you when you log in, you can set the
transaction mode to manual, which aborts the current transaction and leaves
you outside a transaction. You can subsequently start a transaction when you
are ready to commit. Manual transaction mode provides a method of
minimizing the transactions, while still managing the repository for
concurrent access.

In manual transaction mode, you can view the repository, browse objects, and
make computations based upon object values. You cannot, however, make
your changes permanent, nor can you add any new objects you may have
created while outside a transaction. You can start a transaction at any time
during a session; you can carry temporary results that you may have
computed while outside a transaction into your new transaction, where they
can be committed, subject to the usual constraints of conflict-checking.

 • Transactionless mode. In transactionless mode, you remain outside a
transaction. This mode is intended primarily for idle sessions. If all you need
to do is browse objects in the repository, transactionless mode can be a more
efficient use of system resources. However, you are at risk of obtaining
inconsistent views.

To determine the transaction mode you are in, print the result of sending the
message:

System transactionMode

Changing Transaction Mode
To change to manual transaction mode, send the message:

System transactionMode: #manualBegin

This message aborts the current transaction and changes the transaction mode. It
does not start a new transaction, but it does provide a fresh view of the repository.
(Use #autoBegin to return to automatic transaction mode.)
132 GemStone Systems, Inc. September 2009

Contents How GemStone Detects Conflict
Beginning a New Transaction in Manual Mode

In manual transaction mode, you can start a transaction by sending the message:

System beginTransaction

This message gives you a fresh view of the repository and starts a transaction.
When you commit or abort this new transaction, you will again be outside of a
transaction until you either explicitly begin a new one or change transaction
modes.

If you send the message System beginTransaction while you are already in
a transaction, GemStone does an abort.

You can determine whether you are currently in a transaction by sending the
message:

System inTransaction

This message returns true if you are in a transaction and false if you are not.

Committing Transactions
Committing a transaction has two effects:

 • It makes your new and changed objects visible to other users as a permanent
part of the repository.

 • It makes visible to you any new or modified objects that have been committed
by other users in an up-to-date view of the repository.

When you tell GemStone to commit your transaction, the object server performs
these actions:

1. Checks whether other concurrent sessions have committed transactions that
modify an object that you modified during your transaction.

2. Checks to see whether other concurrent sessions have committed transactions
of their own, modifying an object that you have read during your transaction,
while at the same time you have modified an object that another session has
read.

3. Checks to see whether other concurrent sessions have added, removed, or
changed indexes on an object that you have modified during your transaction.

4. Checks for locks set by other sessions that indicate the intention to modify
objects that you have read.
September 2009 GemStone Systems, Inc. 133

How GemStone Detects Conflict GemStone Programming Guide
If none of these conditions is found, GemStone commits the transaction. The
message commitTransaction commits the current transaction:

Example 6.1

UserGlobals at: #SharedDictionary put: SymbolDictionary new.

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System commitTransaction.
"commit the transaction, merging my private view
 of SharedDictionary with the committed repository"

%

The message commitTransaction returns true if GemStone commits your
transaction and false if it can’t. To find why your transaction failed to commit, you
can send the message:

System transactionConflicts

This method returns a symbol dictionary that contains an Association whose key
is #commitResult and whose value is one of the following symbols:

#readOnly
#success
#rcFailure
#dependencyFailure
#failure
#retryFailure
#commitDisallowed
#retryLimitExceeded.

The remaining Associations in the dictionary are used to report the conflicts found.
Each Association’s key indicates the kind of conflict detected; its associated value
is an Array of OOPs for the objects that are conflicting.

Table 6.1 lists the possible keys for the conflict.

Table 6.1 Transaction Conflict Keys

Key Meaning
#'Read-Write' StrongReadSet and WriteSetUnion conflict.

Used by GemStone indexing mechanism.
134 GemStone Systems, Inc. September 2009

Contents How GemStone Detects Conflict
If there are no conflicts for the transaction, the returned symbol dictionary has no
additional Associations.

Conflict sets are cleared at the beginning of a commit or abort and thus can be
examined until the next commit, continue, or abort.

NOTE
To avoid making conflict sets persistent, be sure to disconnect them
before committing.

To determine whether the current transaction has write-write conflicts, you can
send the following message before attempting to commit the transaction:

System currentTransactionHasWWConflicts

Similarly, to determine whether the current transaction has write-dependency
conflicts, you can send this message:

System currentTransactionHasWDConflicts

If the above message returns true, you can send the appropriate message to obtain
a list of write-write (or write-dependency) conflicts in the current transaction:

System currentTransactionWWConflicts (write-write)

or:

System currentTransactionWDConflicts (write-dependency)

Handling Commit Failure In A Transaction
If GemStone refuses to commit your transaction, the transaction read or wrote an
object that another user modified and committed to the repository (or involved in
indexing operations) since your transaction began. Because you can’t undo a read
or a write operation, simply repeating the attempt to commit will not succeed.

#'Write-Write' WriteSet and WriteSetUnion conflict.
#'Write-Dependency' WriteSet and DependencyChangeSetUnion

conflict.
#'Write-WriteLock' WriteSet and WriteLockSet conflict.
#’Rc-Write-Write’ Logical Write-Write conflict on an instance of

a reduced conflict class.

Table 6.1 Transaction Conflict Keys (Continued)
September 2009 GemStone Systems, Inc. 135

How GemStone Detects Conflict GemStone Programming Guide
You must abort the transaction in order to get a new view of the repository and,
along with it, an empty read set and an empty write set. A subsequent attempt to
run your code and commit the view can succeed. If the competition for shared data
is heavy, subsequent transactions can also fail to commit. In this situation, locking
objects that are frequently modified by other transactions gives you a better chance
of committing.

One common cause of a write-write conflict occurs when two users
simultaneously try to override the same inherited method, even though the two
users are implementing their methods in two different subclasses. If both of the
subclasses to which the users are adding the method have been committed, but
neither subclass implemented the inherited method, the first user who tries to
commit will succeed, but the second user will get a write-write conflict for that
method in the superclass’s method dictionary. In this case, the second user can
commit after aborting the transaction, because the first user will have completed
the implementation and will no longer be in the first user’s write set.

Indexes and Concurrency Control
Although unlikely, it is possible that you can encounter conflict on the internal
indexing structures used by GemStone. For example, if two transactions modify
the salaries of different employees that participate in the same indexed set, it is
possible that both transactions will modify the same internal indexing structure
and therefore conflict, despite the fact that neither transaction has explicitly
accessed an object written by the other transaction.

To check this possibility, examine the dictionary returned by evaluating System
transactionConflicts (page 134). If that dictionary includes any Associations
whose key is #'Write-Dependency', you have experienced a conflict on some
portion of an indexing structure. In that case, you can abort the transaction and try
the modification again.

Aborting Transactions
If GemStone refuses to commit your modifications, your view remains intact with
all of the new and modified objects it contains. However, your view now also
includes other users’ modifications to objects that are visible to you, but that you
have not modified. You must take some action to save the modifications in your
session or in a file outside GemStone.

Then you need to abort the transaction. This discards all of the modifications from
the aborted transaction, and gives you a new view containing the shared,
committed objects. Depending on the activities of other users, you can repeat your
136 GemStone Systems, Inc. September 2009

Contents How GemStone Detects Conflict
operations using the new values and commit the new transaction without
encountering conflicts.

The message abortTransaction discards the modified objects in your view. If
you are in automatic transaction mode, this message also begins a new transaction.

Example 6.2

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System abortTransaction.

"discard the modified copy of SharedDictionary
 and all other modified objects, get a new view,
 and start a new transaction"

Aborting a transaction discards any changes you have made to shared objects
during the transaction. However, work you have done within your own object
space is not affected by an abortTransaction. GemStone gives you a new view
of the repository that does not include any changes you made to permanent objects
during the aborted transaction—because the transaction was aborted, your
changes did not affect objects in the repository. The new view, however, does
include changes committed by other users since your last transaction started.
Objects that you have created in the GemBuilder for Smalltalk object space, outside
the repository, remain until you remove them or end your session.

Updating the View Without Committing or Aborting

The message continueTransaction gives you a new, up-to-date view of other
users’ committed work without discarding the objects you have modified in your
current session.

The message continueTransaction returns true if your uncommitted changes
do not conflict with the current state of the repository; it returns false if the
repository has changed.

Unlike commitTransaction and abortTransaction,
continueTransaction does not end your transaction. It has no effect on object
locks, and it does not discard any changes you have made or commit any changes.
Objects that you have modified or created do not become visible to other users.

Work you have done locally within your own interface is not affected by a
continueTransaction. Objects that you have created in your own application
September 2009 GemStone Systems, Inc. 137

How GemStone Detects Conflict GemStone Programming Guide
remain. Similarly, any execution that you have begun continues, unless the
execution explicitly depends upon a successful commit operation.

Note that if you were unable to commit your transaction due to conflicts, you
cannot use continueTransaction until you abort the transaction.

Being Signaled To Abort

As mentioned earlier, being in a transaction incurs certain costs. When you are in
a transaction, GemStone waits until you commit or abort before it attempts to
reclaim obsolete objects in your view. While you are in a transaction, your session
will not receive a #rtErrSignalAbort or #abortErrLostOtRoot error. However, your
repository may grow until it runs out of disk space.

When you are outside of a transaction, GemStone warns you when your view is
outdated, sending your session the error #rtErrSignalAbort. You are allowed a
certain amount of time to abort your current view, as specified in the
STN_GEM_ABORT_TIMEOUT parameter in your configuration file. When you
abort your current view (by sending the message System abortTransaction),
GemStone can reclaim storage and you get a fresh view of the repository.

If you do not respond within the specified time period, the object server sends your
session the error #abortErrLostOtRoot and then either terminates the Gem or
forces an abort, depending on the value of the related configuration parameter
STN_GEM_LOSTOT_TIMEOUT. (These parameters are described in Appendix A
of the System Administration Guide for GemStone/S 64 Bit.) Forcing an abort
recomputes your view of the repository; copies of objects that your application had
been holding may no longer be valid.

Work that you have done locally (such as references to objects within your
application) is retained, and you still cannot commit work to the repository when
running outside of a transaction. However, you must read again those objects that
you had previously read from the repository, and recompute the results of any
computations performed on them, because the object server no longer guarantees
that the application values are valid.

Your GemStone session controls whether it receives the error message
#rtErrSignalAbort. To enable receiving it, send the message:

System enableSignaledAbortError

To disable receiving it, send the message:

System disableSignaledAbortError
138 GemStone Systems, Inc. September 2009

Contents How GemStone Detects Conflict
To determine whether receiving this error message is currently enabled or
disabled, send the message:

System signaledAbortErrorStatus

This method returns true if the error message is enabled, and false if it is disabled.
By default, GemStone sessions disable receiving this error message. The
GemBuilder interfaces may change this default. If you wish to be notified of the
error, then you must explicitly enable the signaled abort error, and reenable it after
each time the signal is received.

NOTE
Not only do you need to enable the signaled abort handler, you must also
set up a signal handler to abort the transaction or take other appropriate
action.

Being Signaled to continueTransaction

As described earlier, when you are in a transaction, GemStone does not send your
session a #rtErrSignalAbort or #abortErrLostOtRoot error. This entails a risk that
your repository may grow until it runs out of disk space.

To avoid this problem, you can enable your GemStone session to receive the error
message #rtErrSignalFinishTransaction. This prompts your session that it is now
holding the oldest view of the repository, and potentially causing your repository
to grow. When your session receives this signal, it may execute a
continueTransaction, or abort or commit its changes.

Your GemStone session controls whether it receives the error message
#rtErrSignalFinishTransaction. To enable receiving it, send the message:

System enableSignaledFinishTransactionError

To disable receiving it, send the message:

System disableSignaledFinishTransactionError

To determine whether receiving this error message is currently enabled or
disabled, send the message:

System signaledFinishTransactionErrorStatus

This method returns true if the error message is enabled, and false if it is disabled.
By default, GemStone sessions disable receiving this error message. If you wish to
be notified of the error, then you must explicitly enable the signaled abort error
after each time the signal is received.
September 2009 GemStone Systems, Inc. 139

Controlling Concurrent Access With Locks GemStone Programming Guide
6.3 Controlling Concurrent Access With Locks
If many users are competing for shared data in your application, or you can’t
tolerate even an occasional inability to commit, then you can implement
pessimistic concurrency control by using locks.

Locking an object is a way of telling GemStone (and, indirectly, other users) your
intention to read or write the object. Holding locks prevents transactions whose
activities would conflict with your own from committing changes to the
repository. Unless you specify otherwise, GemStone locks persist across aborts. If
you lock on an object and then abort, your session still holds the lock after the
abort. Aborting the current transaction (and starting another, if you are in manual
transaction mode) gives you an up-to-date value for the locked object without
removing the lock.

Remember, locking improves one user’s chances of committing only at the expense
of other users. Use locks sparingly to prevent an overall degradation of system
performance.

Locking and Manual Transaction Mode
GemStone permits you to request any kind of lock, regardless of your transaction
mode or whether you are in a transaction. When you are in manual transaction
mode and running outside of a transaction, however, you are not allowed to
commit the results of your operations. Requesting a lock under such circumstances
is not helpful, and can adversely affect other users’ ability to get work done. It may
be useful to request a lock to determine whether an object is dirty, and therefore to
ascertain whether your view of it is current and valid. Otherwise, do not request a
lock when outside a transaction.

Lock Types
GemStone provides two kinds of locks you may use on any objects: read and write.
A session may hold only one kind of lock on an object at a time. GemStone also
provides another type of lock, applicationWriteLock, which is limited to a single
unique lock object; it behaves similarly but is used to provide a mutex. While these
behave similarly to read and write locks, they are used differently and are
discussed separately.

Read Locks

Holding a read lock on an object means that you can use the object’s value, and
then commit without fear that some other transaction has committed a new value
140 GemStone Systems, Inc. September 2009

Contents Controlling Concurrent Access With Locks
for that object during your transaction. Another way of saying this is that holding
a read lock on an object guarantees that other sessions cannot:

 • acquire a write lock on the object, or

 • commit if they have written the object.

To understand the utility of read locks, imagine that you need to compute the
average age of a large number of employees. While you are reading the employees
and computing the average, another user changes an employee’s age and commits
(in the aftermath of the birthday party). You have now performed the computation
using out-of-date information. You can prevent this frustration by read-locking the
employees at the outset of your transaction; this prevents changes to those objects.

Multiple sessions can hold read locks on the same object. A maximum of 1 million
read locks can be held concurrently. Because locking incurs a cost at commit time,
you should keep the aggregate number of locked objects as small as possible.

NOTE
If you have a read lock on an object and you try to write that object, your
attempt to commit that transaction will fail.

Write Locks

Holding a write lock on an object guarantees that you can write the object and
commit. That is, it ensures that you won’t find that someone else has prevented
you from committing by writing the object and committing it before you, while
your transaction was in progress. Another way of looking at this is that holding a
write lock on an object guarantees that other sessions cannot:

 • acquire either a read or write lock on the object, or

 • commit if they have written the object.

Write locks are useful, for example, if you want to change the addresses of a
number of employees. If you write-lock the employees at the outset of your
transaction, you prevent other sessions from modifying one of the employees and
committing before you can finish your work. This guarantees your ability to
commit the changes.

Write locks differ from read locks in that only one session can hold a write lock on
an object. In fact, if a session holds a write lock on an object, then no other session
can hold any kind of lock on the object. This prevents another session from
receiving the assurance implied by a read lock: that the value of the object it sees
in its view will not be out of date when it attempts to commit a transaction.
September 2009 GemStone Systems, Inc. 141

Controlling Concurrent Access With Locks GemStone Programming Guide
Acquiring Locks
The kernel class System is the receiver of all lock requests. The following
statements request one lock of each kind:

Example 6.3

System readLock: SharedDictionary.
System writeLock: myEmployees.

When locks are granted, these messages return System.

Commits and aborts do not necessarily release locks, although locks can be set up
so that they will do so. Unless you specify otherwise, once you acquire a lock, it
remains in place until you log out or remove it explicitly. (Subsequent sections
explain how to remove locks.)

When a lock is requested, GemStone grants it unless one of the following
conditions is true:

 • The object is an instance of SmallInteger, Boolean, Character, SmallDouble, or
nil. Trying to lock these special objects is meaningless.

 • The object is already locked in an incompatible way by another session
(remember, only read locks can be shared).

Variants of the readLock: and writeLock: messages allow you to lock
collections of objects en masse. For details, see “Locking Collections Of Objects
Efficiently” on page 145.

Lock Denial

If you request a lock on an object and another session already holds a conflicting
lock on it, then GemStone denies your request; GemStone does not automatically
wait for locks to become available.

If you use one of the simpler lock request messages (such as readLock:), lock
denial generates an error. If you want to take some automatic action in response to
the denial, use a more complex lock request message, such as this:

System readLock: anObject
ifDenied: [block1]
ifChanged: [block2].
142 GemStone Systems, Inc. September 2009

Contents Controlling Concurrent Access With Locks
A lock denial causes GemStone to execute the block argument to ifDenied:. The
method in Example 6.4 uses this technique to request a lock repeatedly until the
lock becomes available.

Example 6.4

testObject := Object new.
%
Object subclass: #Dummy

instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

%
method: Dummy
getReadLockOn: anObject
 "This method tries to lock anObject. If the lock is
 denied, it determines the kind of lock and the user who
 has locked the object."
System readLock: anObject
 ifDenied: [^ #[System lockKind: anObject,
 System lockOwners: anObject]]
 ifChanged: [System abortTransaction].
%
Dummy new getReadLockOn: testObject
%
method: Dummy
getReadLockOn: anObject
System readLock: anObject
 ifDenied: [self getReadLockOn: anObject]
 ifChanged: [System abortTransaction]
%

Dummy new getReadLockOn: testObject
%

September 2009 GemStone Systems, Inc. 143

Controlling Concurrent Access With Locks GemStone Programming Guide
Dead Locks

You may never succeed in acquiring a lock, no matter how long you wait.
Furthermore, because GemStone does not automatically wait for locks, it does not
attempt deadlock detection. It is your responsibility to limit the attempts to acquire
locks in some way. For example, you can write a portion of your application in
such a way that there is an absolute time limit on attempts to acquire a lock. Or you
can let users know when locks are being awaited and allow them to interrupt the
process if needed.

Dirty Locks

If another user has written an object and committed the change since your
transaction began, then the value of the object in your view is out of date. Although
you may be able to acquire a lock on the object, it is a dirty lock because you cannot
use the object and commit, despite holding the lock.

This condition is trapped by the argument to the ifChanged: keyword following
read lock request message:

System readLock: anObject
ifDenied: [block1]
ifChanged: [block2].

Like its simpler counterpart, this message returns System if it acquires a lock on
anObject without complications. It generates an error if the user selects one of the
blocks passed as arguments and executes that block, returning the block’s value.

For example, if a conflicting lock is held on anObject, this message executes the
block given as an argument to the keyword ifDenied:. Similarly, if anObject has
been changed by another session, it executes the argument to ifChanged:. The
following sections provide some suggestions about the code such blocks might
contain. For example:

Example 6.5

System readLock: anObject
 ifDenied: []
 ifChanged: [System abortTransaction]

To minimize your chances of getting dirty locks, lock the objects you need as early
in your transaction as possible. If you encounter a dirty lock in the process, you can
keep track of the fact and continue locking. After you finish locking, you can abort
144 GemStone Systems, Inc. September 2009

Contents Controlling Concurrent Access With Locks
your transaction to get current values for all of the objects whose locks are dirty.
See Example 6.6.

Example 6.6

| dirtyBag |
dirtyBag := IdentityBag new.
myEmployees do: [:anEmp |
 System readLock: anEmp
 ifDenied: []
 ifChanged: [dirtyBag add: anEmp]].
dirtyBag isEmpty
 ifTrue: [^true]
 ifFalse: [System abortTransaction].

Your new transaction can then proceed with clean locks.

Locking Collections Of Objects Efficiently

In addition to the locking request messages for single objects, GemStone provides
messages to request locks on an entire collection of objects. If the objects you need
to lock are already in collections, or if they can be gathered into collections without
too much work, it is more efficient to use the collection-locking methods than to
lock the objects individually.

The following statements request locks on each of the elements of two different
collections:

Example 6.7

UserGlobals at: #myArray put: Array new;
 at: #myBag put: IdentityBag new.
%

System readLockAll: myArray.
System writeLockAll: myBag.
%

The messages in Example 6.7 are similar to the simple, single-object locking-
request messages (such as readLock:) that you’ve already seen. If a clean lock is
acquired on each element of the argument, these messages return System.
September 2009 GemStone Systems, Inc. 145

Controlling Concurrent Access With Locks GemStone Programming Guide
The difference between these methods and their single-object counterparts is in the
handling of other errors. The system does not immediately halt to report an error
if an object in the collection is changed, or if a lock must be denied because another
session has already locked the object. Instead, the system continues to request
locks on the remaining elements, acquiring as many locks as possible. When the
method finishes processing the entire collection, it generates an error. In the
meantime, however, all locks that you acquired remain in place.

You might want to handle these errors from within your GemStone Smalltalk
program instead of letting execution halt. For this purpose, class System provides
collection-locking methods that pass information about unsuccessful lock requests
to blocks that you supply as arguments. For example:

System writeLockAll: aCollection ifIncomplete: aBlock

The argument aBlock that you supply to this method must take three arguments. If
locks are not granted on all elements of aCollection (for any reason), the method
passes three arrays to aBlock and then executes the block.

 • The first array contains all elements of aCollection for which locks were denied.

 • The second array contains all elements for which dirty locks were granted.

 • The third array is empty, and is there for compatibility with previous versions
of GemStone.

You can then take appropriate actions within the block. See Example 6.8.
146 GemStone Systems, Inc. September 2009

Contents Controlling Concurrent Access With Locks
Example 6.8

classmethod: Dummy
handleDenialOn: deniedObjs
^ deniedObjs
%
classmethod: Dummy
getWriteLocksOn: aCollection
System writeLockAll: aCollection
 ifIncomplete: [:denied :dirty :unused |
 denied isEmpty ifFalse: [self handleDenialOn: denied].
 dirty isEmpty ifFalse: [System abortTransaction]]
%
System readLockAll: myEmployees
%
Dummy getWriteLocksOn: myEmployees
%

Upgrading Locks

On occasion, you might want to upgrade a read lock to a write lock. For example,
you might initially intend to read an object, only to discover later that you must
also write the object.

However, if you have a read lock on an object, you cannot successfully write that
object. If you attempt to do so, your attempt to commit that transaction will fail.

GemStone currently provides no built-in support for upgrading locks. However,
to ensure your ability to commit, you can remove the read lock you currently hold
on an object and then immediately request a write lock.

It is important to request the upgraded lock immediately, because between the
time that the lock is removed, and the time that the upgraded lock is requested,
another session has the opportunity to lock the object, or to write it and commit.

Locking and Indexed Collections
When indexes are present, locking can fail to prevent conflict. The reasons are
similar to those discussed in the section “Indexes and Concurrency Control” on
page 136. Briefly, GemStone maintains indexing structures in your view and does
not lock these structures when an indexed collection or one of its elements is
September 2009 GemStone Systems, Inc. 147

Controlling Concurrent Access With Locks GemStone Programming Guide
locked. Therefore, despite having locked all of the visible objects that you touched,
you can be unable to commit.

Specifically, this means that:

 • if an object is either an element of an indexed collection, or participates in an
index (meaning it is a component of an element bearing an index);

 • and another session can access the object, an indexed collection of which the
object is a member, or one of its predecessors along the same indexed path;

 • then locking the object does not guarantee that you can commit after reading
or writing the object.

Therefore, don’t rely on locking an object if the object participates in an index.

Removing or Releasing Locks
Once you lock an object, its default behavior is to remain locked until you either
log out or explicitly remove the lock; unless you specify otherwise, locks persist
through aborts and commits. In general, remove a lock on an object when you have
used the object, committed the resulting values to the repository, and no longer
foresee an immediate need to maintain control of the object.

Class System provides the following messages for removing locks:

System removeLock: anObject

Removes any lock you might hold on a single object. If anObject is not locked,
GemStone does nothing. If another session holds a lock on anObject, this
message has no effect on the other session’s lock.

System removeLockAll: aCollection

Removes any locks you might hold on the elements of a collection.

If you intend to continue your session, but the next transaction is to work on a
different set of objects, you might wish to remove all the locks held by your
session. Class System provides two mechanisms for doing so.

System commitTransaction; removeLocksForSession

Attempts to commit the present transaction and removes all locks it holds,
even if the commit does not succeed.

System commitAndReleaseLocks
148 GemStone Systems, Inc. September 2009

Contents Controlling Concurrent Access With Locks
Attempts to commit your transaction and release all the locks you hold in a
single operation. If your transaction fails to commit, all locks are held instead
of released.

Releasing Locks Upon Aborting or Committing

After you have locked an object, you can add it to either of two special sets. One
set contains objects whose locks you wish to release as soon as you commit your
current transaction. The other set contains objects whose locks you wish to release
as soon as you either commit or abort your current transaction. Executing
continueTransaction does not release the locks in either set.

The following statement adds a locked object to the set of objects whose locks are
to be released upon the next commit:

System addToCommitReleaseLocksSet: aLockedObject

The following statement adds a locked object to the set of objects whose locks are
to be released upon the next commit or abort:

System addToCommitOrAbortReleaseLocksSet: aLockedObject

The following statement adds the locked elements of a collection to the set of
objects whose locks are to be released upon the next commit:

System addAllToCommitReleaseLocksSet: aLockedCollection

The following statement adds the locked elements of a collection to the set of
objects whose locks are to be released upon the next commit or abort:

System addAllToCommitOrAbortReleaseLocksSet: aLockedCollection
NOTE

If you add an object to one of these sets and then request an updated lock
on it, the object is removed from the set.

You can remove objects from these sets without removing the lock on the object.
The following statement removes a locked object from the set of objects whose
locks are to be released upon the next commit:

System removeFromCommitReleaseLocksSet: aLockedObject

The following statement removes a locked object from the set of objects whose
locks are to be released upon the next commit or abort:

System removeFromCommitOrAbortReleaseLocksSet: aLockedObject
September 2009 GemStone Systems, Inc. 149

Controlling Concurrent Access With Locks GemStone Programming Guide
The following statement removes the locked elements of a collection from the set
of objects whose locks are to be released upon the next commit:

System removeAllFromCommitReleaseLocksSet: aLockedCollection

The following statement removes the locked elements of a collection from the set
of objects whose locks are to be released upon the next commit or abort:

System removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

You can also remove all objects from either of these sets with one message. The
following statement removes all objects from the set of objects whose locks are to
be released upon the next commit:

System clearCommitReleaseLocksSet

The following statement removes all objects from the set of objects whose locks are
to be released upon the next commit or abort:

System clearCommitOrAbortReleaseLocksSet

The statement System commitAndReleaseLocks also clears both sets if the
transaction was successfully committed.

Inquiring About Locks
GemStone provides messages for inquiring about locks held by your session and
other sessions. Most of these messages are intended for use by the data curator, but
several can be useful to ordinary applications.

The message sessionLocks gives you a complete list of all the locks held by your
session. This message returns a three-element array. The first element is an array
of read-locked objects; the second is an array of write-locked objects. (The third
element is always empty.)

The following code uses this information to remove all write locks held by the
current session:

System removeLockAll: (System sessionLocks at: 2)

Another useful message is systemLocks, which reports locks on all objects held
by all sessions currently logged in to the repository. The only exception is that
systemLocks does not report on any locks that other sessions are holding on their
temporary objects—that is, objects that they have never committed to the
repository. Because such objects are not visible to you in any case, this omission is
not likely to cause a problem. The message systemLocks can help you discover
the cause of a conflict.
150 GemStone Systems, Inc. September 2009

Contents Controlling Concurrent Access With Locks
Another lock inquiry message, lockOwners: anObject, is useful if you’ve been
unable to acquire a lock because of conflict with another session. This message
returns an array of SmallIntegers representing the sessions that hold locks on
anObject. The method in Example 6.9 uses lockOwners: to build an array of the
userIDs of all users whose sessions hold locks on a particular object.

Example 6.9

classmethod: Dummy
getNamesOfLockOwnersFor: anObject
| userIDArray sessionArray |
sessionArray := System lockOwners: anObject.
userIDArray := Array new.
sessionArray do:
 [:aSessNum | userIDArray add:
 (System userProfileForSession: aSessNum) userId].
^userIDArray
%

Dummy getNamesOfLockOwnersFor: (myEmployees detect: {:e | e.name =
’Conan’ })
%

You can test to see whether an object is included in either of the sets of locked
objects whose locks are to be released upon the next abort or commit operation.
The following statement returns true if anObject is included in the set of objects
whose locks are to be released upon the next commit:

System commitReleaseLocksSetIncludes: anObject

The following statement returns true if anObject is included in the set of objects
whose locks are to be released upon the next commit or abort:

System commitOrAbortReleaseLocksSetIncludes: anObject

For information about the other lock inquiry messages, see the description of class
System in the image.

Application Write Locks
Unlike read and write locks, application write locks can only be placed on a single
object per lock queue (there are two lock queues available). The object can be any
persistent object; the first time an application lock write is invoked on a lock queue,
September 2009 GemStone Systems, Inc. 151

Controlling Concurrent Access With Locks GemStone Programming Guide
the object that is locked is registered for that lock queue, and all subsequent uses
of that lock queue can only lock this particular object until the next Stone restart.

This allows it to be used as a mutex, or simplifies serializing modifications to a
single critical object, such as a collection.

The other difference in locking behavior is that invoking the method to place an
application write lock does not return until the lock is acquired, or the lock wait
times out. The timeout is controlled by the configuration parameter
STN_OBJ_LOCK_TIMEOUT. This frees you from having to repeatedly request a
lock if it is not immediately available.

To set an application write lock on an object, send the message:

System waitForApplicationWriteLock: lockObject queue: lockIdx
autoRelease: aBoolean

lockId must be 1 or 2, depending on which lock queue is being used.

If aBoolean is true, the lock is released automatically on commit or abort, otherwise
you must manually remove the lock when you are done.

This method returns an integer code, one of the following:

1 - lock granted
2074 - lock granted; the lock object has been modified by another session
2418 - lock not granted, deadlock
2419 - lock not granted, wait for lock timed out
152 GemStone Systems, Inc. September 2009

Contents Classes That Reduce the Chance of Conflict
6.4 Classes That Reduce the Chance of Conflict
Often, concurrent access to an object is structural, but not semantic. GemStone
detects a conflict when two users access the same object, even when respective
changes to the objects do not collide. For example, when two users both try to add
something to a bag they share, GemStone perceives a write-write conflict on the
second add operation, although there is really no reason why the two users cannot
both add their objects. As human beings, we can see that allowing both operations
to succeed leaves the bag in a consistent state, even though both operations modify
the bag.

A situation such as this can cause spurious conflicts. Therefore, GemStone
provides four reduced-conflict classes that you can use instead of their regular
counterparts in applications that might otherwise experience too many
unnecessary conflicts. These classes are:

 • RcCounter

 • RcIdentityBag

 • RcQueue

 • RcKeyValueDictionary

Using these classes allows a greater number of transactions to commit successfully,
improving system performance. However, in order to determine whether it is
appropriate for your application to use these reduced-conflict classes, you need to
be aware of the costs:

 • The reduced-conflict classes use more storage than their ordinary
counterparts.

 • When using instances of these classes, your application may take longer to
commit transactions.

 • Under certain circumstances, instances of these classes can hide conflicts from
you that you indeed need to know about. They are not always appropriate.

 • These classes are not exact copies of their regular counterparts. In certain cases
they may behave slightly differently.

“Reduced conflict” does not mean “no conflict.” The reduced-conflict classes do
not circumvent normal conflict mechanisms; under certain circumstances, you will
still be unable to commit a transaction. These classes use different implementations
or more sophisticated conflict-checking code to allow certain operations that
September 2009 GemStone Systems, Inc. 153

Classes That Reduce the Chance of Conflict GemStone Programming Guide
human analysis has determined need not conflict. They do not allow all operations.
Using these classes significantly reduces write-write conflicts on their instances.

NOTE
Unlike other Dictionaries, the class RcKeyValueDictionary does not
support indexing because of its position in the class hierarchy.

RcCounter
The class RcCounter can be used instead of a simple number in order to keep track
of the amount of something. It allows multiple users to increment or decrement the
amount at the same time without experiencing conflicts.

The class RcCounter is not a kind of number. It encapsulates a number—the
counter—but it also incorporates other intelligence; you cannot use an RcCounter
to replace a number anywhere in your application. It only increments and
decrements a counter.

For example, imagine an application to keep track of the number of items in a
warehouse bin. Workers increment the counter when they add items to the bin,
and decrement the counter when they remove items to be shipped. This
warehouse is a busy place; if each concurrent increment or decrement operation
produces a conflict, work slows unacceptably.

Furthermore, the conflicts are mostly unnecessary. Most of the workers can
tolerate a certain amount of inaccuracy in their views of the bin count at any time.
They do not need to know the exact number of items in the bin at every moment;
they may not even worry if the bin count goes slightly negative from time to time.
They may simply trust that their views are not completely up-to-date, and that
their fellow workers have added to the bin in the time since their views were last
refreshed. For such an application, an RcCounter is helpful.

Instances of RcCounter understand the messages increment (which increments
by 1), decrement (which decrements by 1), and value (which returns the
number of elements in the counter). Additional protocol allows you to increment
or decrement by specified numbers; to decrement unless that operation would
cause the value of the counter to become negative, in which case an alternative
block of code is executed instead; or to decrement unless that operation would
cause the value of the counter to be less than a specified number, in which case an
alternative block of code is executed instead.
154 GemStone Systems, Inc. September 2009

Contents Classes That Reduce the Chance of Conflict
For example, the following operations can all take place concurrently from
different sessions without causing a conflict:

Example 6.10

!session 1
UserGlobals at: #binCount put: RcCounter new.
System commitTransaction.
%
!session 2
binCount incrementBy: 48.
System commitTransaction.
%
!session 1
binCount incrementBy: 24.
System commitTransaction.
%
!session 3
binCount decrementBy: 144
 ifLessThan: -24
 thenExecute: [^'Not enough widgets to ship today.'].
System commitTransaction.
%

RcCounter is not appropriate for all applications—for example, it would not be
appropriate to use in an application that keeps track of the amount of money in a
shared checking account. If two users of the checking account both tried to
withdraw more than half of the balance at the same time, an RcCounter would
allow both operations without conflict. Sometimes, however, you need to be
warned—for example, of an impending overdraft.

RcIdentityBag
The class RcIdentityBag provides much of the same functionality as IdentityBag,
including the expected behavior for add:, remove:, and related messages.
However, no conflict occurs on instances of RcIdentityBag when any of these
conditions exists:

 • Any number of users read objects in the bag at the same time.

 • Any number of users add objects to the bag at the same time.
September 2009 GemStone Systems, Inc. 155

Classes That Reduce the Chance of Conflict GemStone Programming Guide
 • One user removes an object from the bag while any number of users are
adding objects.

 • Any number of users remove objects from the bag at the same time, as long as
no more than one of them tries to remove the last occurrence of an object.

When your session and others remove different occurrences of the same object,
you may sometimes notice that it takes a bit longer to commit your transaction.

Indexing an instance of RcIdentityBag does diminish somewhat its “reduced-
conflict” nature, because of the possibility of a conflict on the underlying indexing
structure. (For a more complete explanation of this possibility, see “Indexes and
Concurrency Control” on page 136.) You can reduce the risk further by using
reduced conflict equality indexes; see “Creating Reduced Conflict Equality
Indexes” on page 117. However, even an indexed instance of RcIdentityBag
reduces the possibility of a transaction conflict, compared to an instance of
IdentityBag, indexed or not.

RcQueue
The class RcQueue approximates the functionality of a first-in-first-out queue,
including the expected behavior for add:, remove:, size, and do:, which
evaluates the block provided as an argument for each of the elements of the queue.
No conflict occurs on instances of RcQueue when any of these conditions exists:

 • Any number of users read objects in the queue at the same time.

 • Any number of users add objects to the queue at the same time.

 • One user removes an object from the queue while any number of users are
adding objects.

If more than one user removes objects from the queue, they are likely to experience
a write-write conflict. When a commit fails for this reason, the user loses all
changes made to the queue during the current transaction, and the queue remains
in the state left by the earlier user who made the conflicting changes.

RcQueue approximates a first-in-first-out queue, but it cannot implement such
functionality exactly because of the nature of repository views during transactions.
The consumer removing objects from the queue sees the view that was current
when his or her transaction began. Depending upon when other users have
committed their transactions, the consumer may view objects added to the queue
in a slightly different order than the order viewed by those users who have added
to the queue. For example, suppose one user adds object A at 10:20, but waits to
commit until 10:50. Meanwhile, another user adds object B at 10:35 and commits
immediately. A third user viewing the queue at 10:30 will see neither object A nor
156 GemStone Systems, Inc. September 2009

Contents Classes That Reduce the Chance of Conflict
B. At 10:35, object B will become visible to the third user. At 10:50, object A will also
become visible to the third user, and will furthermore appear earlier in the queue,
because it was created first.

Objects removed from the queue always come out in the order viewed by the
consumer.

Because of the manner in which RcQueues are implemented, reclaiming the
storage of objects that have been removed from the queue actually occurs when
new objects are added. If a session adds a great many objects to the queue all at
once and then does not add any more as other sessions consume the objects,
performance can become degraded, particularly from the consumer’s point of
view. In order to avoid this, the producer can send the message
cleanupMySession occasionally to the instance of the queue from which the
objects are being removed. This causes storage to be reclaimed from obsolete
objects.

NOTE
If you subclass and reimplement these methods, build in a check for nils.
Because of lazy initialization, the expected subcomponents of the
RcQueue may not exist yet.

To remove obsolete entries belonging to all inactive sessions, the producer can
send the message cleanupQueue.

You may also experience commit conflicts when additional users begin to add or
remove objects from the RcQueue, since the internal structure of the RcQueue itself
is not reduced-conflict. If you know in advance how many users will be adding or
removing from the RcQueue, you should specify the RcQueue size on creation
using the new: method.

RcKeyValueDictionary
The class RcKeyValueDictionary provides the same functionality as
KeyValueDictionary, including the expected behavior for at:, at:put:, and
removeKey:. However, no conflict occurs on instances of RcKeyValueDictionary
when any of these conditions exists:

 • Any number of users read values in the dictionary at the same time.

 • Any number of users add keys and values to the dictionary at the same time,
unless a user tries to add a key that already exists.

 • Any number of users remove keys from the dictionary at the same time, unless
more than one user tries to remove the same key at the same time.
September 2009 GemStone Systems, Inc. 157

Special Cases of Persistence GemStone Programming Guide
 • Any number of users perform any combination of these operations.

6.5 Special Cases of Persistence
In some cases, you may want objects to not be persistent, that is, not be written to
disk; you may want to include session dependent information that shouldn’t be
read by another session, or information that can be recreated rather than stored.
There are several ways to handle this.

Non-Persistent Classes
You can define a class as having only non-persistent instances. This means that
instances of this class cannot be committed, so you cannot include references to
instances of non-persistent classes within a persistent data structure..

As discussed in Chapter 4, GemStone provides a class called
KeySoftValueDictionary, which allows you to manage non-persistent objects that
are large and take time to create, but can be recreated whenever needed from
small, readily available objects (tokens).

You cannot commit instances of a non-persistent class. If you attempt to do so,
GemStone issues an error that indicates whether the object’s class or a superclass
is non-persistent. (The non-persistent status of a class is inherited by all of its
subclasses.)

To determine whether a class’s instances are non-persistent, you can send the
following message:

theClass instancesNonPersistent

This message returns true if the class is non-persistent, false otherwise.

To make all instances of a class non-persistent, send the message:

theClass makeInstancesNonPersistent

Similarly, send this message to make all instances of a class persistent:

theClass makeInstancesPersistent

To make all instances of a class (and all of its subclasses) non-persistent, even if the
class is non-modifiable:

ClassOrganizer makeInstancesNonPersistent: theClass
158 GemStone Systems, Inc. September 2009

Contents Special Cases of Persistence
Similarly, you can send this message to make all instances of a class persistent,
even if the class is non-modifiable:

ClassOrganizer makeInstancesPersistent: theClass

DbTransient
Classes can also be defined as DbTransient. Instances of classes that are
DbTransient can be committed — that is, there is no error if they are committed —
but their instance variables are not written to disk. This is useful if you need to
encapsulate objects that should not be persistent, such as semaphores, within
object structures that do need to be persistent and shared.

When a data structure containing an instance of a DbTransient class is committed,
the instance variables of the DbTransient object are written to the repository as
nil. Whenever a DbTransient object is read into a session from the repository, all
of its instance variables are nil.

Since DbTransient instances are stored only in memory, they are affected by the
in-memory GC operations (see “Managing VM Memory” on page 312). If
memory becomes low, the transient objects may be stubbed out of memory. When
needed, it is re-read from the repository. However, all the instance variables will
be nil after a re-read. To prevent losing non-nil instance variable values, you
should keep a reference to DbTransient instances in session state.

Since the DbTransient object will remain in memory while referenced from
session state, the reference from session state should be removed when the
DbTransient object is no longer needed, to avoid filling up memory and causing
an out of memory error.

Note that while DbTransient objects are only committed once (on creation), and
so do not normally cause concurrency conflicts, if they are clustered the object
will be written (still with all instance variables nil), and could potentially cause a
concurrency conflict.

To set a class so all instances are DbTransient, send:

aClass makeInstancesDbTransient

aClass must be a a non-indexable pointer classes. This will cause any instance of
aClass to be DbTransient. The change takes place immediately.

Sending:

aClass makeInstancesNotDbTransient
September 2009 GemStone Systems, Inc. 159

Special Cases of Persistence GemStone Programming Guide
will cause instances to be non-DbTransient, that is, allow instance variables to be
written to disk.

To determine if an class’s instances are DbTransient, send:

aClass instancesDbTransient
160 GemStone Systems, Inc. September 2009

Chapter

7 Object Security and
Authorization
This chapter explains how to set up the object security required for developing an
application and for running the completed application. It covers:

How GemStone Security Works
describes the Gemstone object security model.

Assigning Objects to Segments
summarizes the messages for reporting your current segment, changing your
current segment, and assigning a segment to simple and complex objects.

An Application Example and A Development Example
provides examples for defining and implementing object security for your
projects.

Privileged Protocol for Class Segment
defines the system privileges for creating or changing segment authorization.

Segment-related Methods
lists the methods that affect segments.
September 2009 GemStone Systems, Inc. 161

How GemStone Security Works GemStone Programming Guide
7.1 How GemStone Security Works
GemStone provides security at several levels:

 • Login authorization keeps unauthorized users from gaining access to the
repository;

 • Privileges limit ability to execute special methods affecting the basic
functioning of the system (for example, the methods that reclaim storage
space); and

 • Object level security allows specific groups of users access to individual
objects in the repository.

Login Authorization
You log into GemStone through any of the interfaces provided: GemBuilder for
Smalltalk, GemBuilder for Java, Topaz, or the C interface (see the appropriate
interface manual for details). Whichever interface you use, GemStone requires the
presentation of a user ID (a name or some other identifying string) and a password.
If the user ID and password pair match the user ID and password pair of someone
authorized to use the system, GemStone permits interaction to proceed; if not,
GemStone severs the logical connection.

The GemStone system administrator, or someone with equivalent privileges (see
below), establishes your user ID and password when he or she creates your
UserProfile. The GemStone system administrator can also configure a GemStone
system to monitor failures to log in, and to note the attempts in the Stone log file
after a certain number of failures have occurred within a specified period of time.
A system can also be configured to disable a user account after a certain number of
failed attempts to log into the system through that account. See the GemStone
System Administration Guide for details.

The UserProfile

Each instance of UserProfile is created by the system administrator. The
UserProfile is stored with a set of all other UserProfiles in a set called AllUsers. The
UserProfile contains:

 • Your UserID and Password.

 • A SymbolList (the list of symbols, or objects, that the user has access to—
UserGlobals, Globals, and Published) for resolving symbols when compiling.
Chapter 3, “Resolving Names and Sharing Objects,” discusses these topics, so
they are not talked about in this chapter.
162 GemStone Systems, Inc. September 2009

Contents How GemStone Security Works
 • The groups to which you belong and any special system privileges you may
have.

 • A defaultSegment to assign your session at login.

 • Your language and character set used for internationalization.

See the GemStone System Administration Guide for instructions about creating
UserProfiles.

System Privileges
Actions that affect the entire GemStone system are tightly controlled by privileges
to use methods or access instances of the System, UserProfile, Segment, and
Repository classes, and to modify code. Privileges are given to individual
UserProfile accounts to access various parts of GemStone or perform important
functions such as storage reclamation.

The privileged messages for the System, UserProfile, Segment and Repository
Classes are described in the image, and their use is discussed in the GemStone
System Administration Guide.

Object-level Security
GemStone object-level security allows you to:

 • abstractly group objects;

 • specify who owns the objects;

 • specify who can read them; and

 • specify who can write them.

Each site designs a custom scheme for its data security. Objects can be secured for
selective read or write access by a group or individual users. Objects can also be
left unsecured, so any user can read or modify them. Not restricting access will
improve performance for sites with fewer security requirements.

The GemStone Segment class facilitates this security.

Segments

Each object's header includes a 16 bit unsigned segmentId that specifies the
Segment to which the object has been assigned. All objects assigned to a segment
also have exactly the same protection; that is, if you can read or write one object
assigned to a certain segment, you can read or write them all. Each segment is
September 2009 GemStone Systems, Inc. 163

How GemStone Security Works GemStone Programming Guide
owned by a single user, and all objects assigned to the same segment have the same
owner. Groups of users can have read, write, or no access to a segment. Likewise,
any authorized GemStone user can have read, write, or no access to a segment.

An object may also have no segment, in which case its segmentId is zero. This
means that there are no restrictions on access to this object; any logged-in user can
read and write this object.

Whenever an application tries to access an object, GemStone compares the object’s
authorization attributes in the segment associated with the object with those of the
user whose application is attempting access. If the user is appropriately
authorized, the operation proceeds. If not, GemStone returns an error notification.

The user name, group membership, and segment authorization control access to
objects, as shown by Figure 7.6:

Figure 7.1 User Access to Application Segment1

Three users access this application:

 • The System Administrator owns segment1 and can read and write the objects
assigned to it.

 • User3 belongs to the Personnel group, which authorizes read and write access
to Segment1’s objects.

User3
Group: Admin
 Personnel

Segment1
Owner (System Admin): Write
World: Read
Group1 (Personnel): Write

User2
Group: Payroll
 Admin

User1
System Admin
164 GemStone Systems, Inc. September 2009

Contents Assigning Objects to Segments
 • User2 doesn’t belong to a group that can access Segment1, but can still read
those objects, because Segment1 gives read authorization to all GemStone
users.

Because segments are objects, access to a segment object is controlled by the
segment it is assigned to, exactly like access to any other object. Segment objects
are usually assigned to the DataCurator segment. The access information stored in
the segment object’s own authorizations instance variable, which controls access to
the objects assigned to that segment, does not control access to the segment object
itself.

Objects do not “belong” to a segment. It is more correct to say that objects are
associated with a segment. Although objects know which segment they are
assigned to, segments do not know which objects are assigned to them. Segments
are not meant to organize objects for easy listing and retrieval. For those purposes,
you must turn to symbol lists, which are described in Chapter 3, “Resolving
Names and Sharing Objects“.

7.2 Assigning Objects to Segments
For segment authorizations to have any effect, you must assign some objects to the
segments whose authorizations you have set up.

Default Segment and Current Segment

In your UserProfile, you may be assigned a default segment, or this may be left
empty. When you login to GemStone, your Session uses this default segment as
your current segment. Any objects you create are assigned to your current
segment; if your do not have a current segment, the new objects do not have a
segment, and so have world read and write access.

Class UserProfile has the message defaultSegment, which returns your default
Segment (or nil). Sending the message currentSegment: to System changes
your current segment:

Example 7.1

| aSegment mySegment |
mySegment := System myUserProfile defaultSegment.
aSegment := Segment newInRepository: SystemRepository.
System commitTransaction.
"change my current segment to aSegment"
September 2009 GemStone Systems, Inc. 165

Assigning Objects to Segments GemStone Programming Guide
System currentSegment: aSegment

Only committed instances of Segment can be used.

If you commit after changing segments, the new segment remains your current
segment until you change the segment again or log out. If you abort after changing
your current segment, your current segment is reset from yourUserProfile’s
default segment.

Unnamed segments are often stored in a UserProfile, but named segments are
stored in symbol dictionaries like other named objects. Private segments are
typically kept in a user’s UserGlobals dictionary; segments for groups of users are
typically kept in a shared dictionary.

You can also put segments in application dictionaries that appear only in the
symbol lists of that application’s users.

Example 7.2

| mySegment |
"get default Segment"
mySegment := System myUserProfile defaultSegment.
"compare with current Seg"
mySegment = System currentSegment

true

Objects and Segments
GemStone Object Security is defined for objects, not just instance variable slots.
Your security scheme must be defined to protect sensitive data in separate objects,
either by itself or as a member object of a customer class. Since each object has
separate authorization, each object must be assigned separately.

Compound Objects

Usually, the objects you are working with are compound, and each part is an object
in its own right, with its own segment assignment. For example, look at
anEmployee in Figure 7.2. The contents of its instance variables (name, salary, and
department) are separate objects that can be assigned to different segments. Salary
is assigned to Segment2, which enforces more restricted access than Segment1.
166 GemStone Systems, Inc. September 2009

Contents Assigning Objects to Segments
Figure 7.2 Multiple Segment Assignments for a Compound Object

Collections

When you assign collections of objects to segments, you must distinguish the
container from the items it contains. Each of the items must also be assigned to the
proper segment. Distinguishing between a collection and the objects it contains
allows you to create collections most elements of which are publicly accessible,
while some elements are sensitive.

Read and Write Authorization and Segments
Segments store authorization information that defines what a particular user or
group member can do to the objects assigned to that segment. Three levels of
authorization are provided:

write — means that a user can read and modify any of the segment’s objects and
create new objects associated with the segment.

Segment1
Owner (System Admin): Write
Group1 (Personnel): Write

anEmployee

 name

 salaryHistory

dept.

Segment2
Owner (System Admin): Write
Group1 (Personnel): Read

World: Read

Group2 (Payroll): Write
World: None
September 2009 GemStone Systems, Inc. 167

Assigning Objects to Segments GemStone Programming Guide
read — means that a user can read any of the segment’s objects, but cannot modify
(write) them or add new ones.

none — means that a user can neither read nor write any of the segment’s objects.

By assigning an object to a segment, you give the object the access information
associated with that segment. Thus, all objects assigned to a segment have exactly
the same protection; that is, if you can read or write one object assigned to a certain
segment, you can read or write them all.

Controlling authorizations at the segment level rather than storing the information
in each object makes them easy to change. Instead of modifying a number of
objects individually, you just modify one segment object. This also keeps the
repository smaller, eliminating the need for duplicate information in each of the
objects.

How GemStone Responds to Unauthorized Access

GemStone immediately detects an attempt to read or write without authorization
and responds by stopping the current method and issuing an error. When you
successfully commit your transaction, GemStone verifies that you are still
authorized to write in your current segment. If you are no longer authorized to do
so, GemStone issues an error, and your default segment once again becomes your
current segment. If you are no longer authorized to write in your default segment,
GemStone terminates your session, and you are unable to log back in to GemStone.
If this happens, see your system administrator for assistance.

Owner Authorization

The user that owns the segment controls what access other users have to it. The
owner authorizes access separately for:

 • a segment’s owner

 • groups of users (by name)

 • the world of all GemStone users

These categories can overlap.

Whenever a program tries to read or write an object, GemStone compares the
object’s authorization attributes with those of the user who is attempting to do the
reading or writing. If the user has authorization to perform the operation, it
proceeds. If not, GemStone returns an error notification.
168 GemStone Systems, Inc. September 2009

Contents Assigning Objects to Segments
Groups

Groups are an efficient way to ensure that a number of GemStone users all will
share the same level of access to objects in the repository, and all will be able to
manipulate certain objects in the same ways.

Groups are typically organized as categories of users who have common interests
or needs. In Figure 7.3, for example, Group1 was set up to allow a few users to read
the objects in aSegment, while GemStone users in general aren’t allowed any
access.

Figure 7.3 User Access to a Segment’s Objects

Membership in a group is granted by having the group name in one’s UserProfile,
and a group consists of all users with the group name in their profiles.

World Authorization

In addition to storing authorization for its owner and for some groups, a segment
can also be told to authorize or to deny access by all GemStone users (the world.)

The message in class Segment that returns the rights of all users is
worldAuthorization.

Changing the Authorization for World

A corresponding message, worldAuthorization: anAuthSymbol, sets the
authorization for all GemStone users:

mySeg worldAuthorization: #read

Because of the way authorizations combine, changing access rights for the world
may not alter a particular user’s rights to a segment.

aSegment
Owner: Write
Group1: Read
World: None
September 2009 GemStone Systems, Inc. 169

Assigning Objects to Segments GemStone Programming Guide
Segments in the Repository
 The initial GemStone repository has eight segments:

1. SystemSegment

This segment is defined in the Globals dictionary, and is owned by the
SystemUser (who has write authorization for any of the objects in this
segment). The world access is set to read, but not write, the objects in this
segment. In addition, the group #System is authorized to write in this
segment.

2. DataCuratorSegment

This segment is defined in the Globals dictionary, and is owned by the
DataCurator. All GemStone users, represented by world access, are
authorized to read, but not write, objects associated with this segment. The
group #DataCuratorGroup is authorized to write in this segment.

Objects in the DataCuratorSegment include the Globals dictionary, the
SystemRepository object, all Segment objects, AllUsers (the set of all
GemStone UserProfiles), AllGroups (the collection of groups authorized to
read and write objects in GemStone segments), and each UserProfile object.

NOTE:
When GemStone is installed, only the DataCurator is authorized to
write in this segment. To protect the objects in the DataCurator Segment
against unauthorized modification, other users should not write in this
segment.

3. (unnamed)

The initial repository does not use this Segment Id. Repositories that have been
converted from earlier GemStone/S server products use this for the
GsTimeZoneSegment.

4. GsIndexingSegment

This segment is used by the indexing subsystem.

5. SecurityDataSegment

This segment is used by the system for passwords for UserProfiles, and other
highly protected information.

6. PublishedSegment

This segment is used for objects in the Published symbol dictionary.
170 GemStone Systems, Inc. September 2009

Contents Assigning Objects to Segments
7. (unnamed) default segment of GcUser

This segment is used by the system for reclaiming storage.

8. (unnamed) default segment of Nameless

This segment is used by Nameless sessions.

For repositories that have been converted from earlier versions, there may also be
a segment 20 with world write.

These segments are shown as part of the Repository in Figure 7.4.

Each segment in the Repository contains the following instance variables:
itsRepository; itsOwner; groupIds; and authorizations (a
SmallInteger that indicates whether each group is authorized to read and/or write
objects in this segment).
September 2009 GemStone Systems, Inc. 171

Assigning Objects to Segments GemStone Programming Guide
Figure 7.4 Segments in a GemStone Repository

Changing the Segment for an Object

If you have the authorization, you can change the accessibility of an individual
object by assigning it to a different segment. Class Object defines a message that
returns the segment to which the receiver is assigned, and another message that
assigns the receiver to a new segment.

The message segment returns the segment to which the receiver is assigned, or nil
if the receiver does not have a segment:

SystemSegment DataCuratorSegment

Segment1 Segmentn

SystemRepository

original segments

. . .

GcUser
Segment
172 GemStone Systems, Inc. September 2009

Contents Assigning Objects to Segments
Example 7.3

UserGlobals segment

The message changeToSegment: aSegment assigns the receiver to the segment
aSegment. You also use this method to remove the segment assignment, so the
receiver object has world read and write access. You must have write authorization
for both segments: the argument and the receiver. Assuming the necessary
authorization, this example assigns class Employee to a new segment:

Employee changeToSegment: aSegment.

You may override the method changeToSegment: for your own classes,
especially if they have several components.

For objects having several components, such as collections, you may assign all the
component objects to a specified segment when you reassign the composite object.
You can implement the message changeToSegment: aSegment to perform these
multiple operations. Within the method changeToSegment: for your composite
class, send the message assignToSegment: to the receiver and each object of
which it is composed.

For example, a changeToSegment: method for the class Menagerie might
appear as shown in Example 7.4. The object itself is assigned to another segment
using the method assignToSegment:. Its component objects, the animals
themselves, have internal structure (names, habitats, and so on), and therefore call
Animal’s changeToSegment: method, which in its turn sends the message
assignToSegment: to each component of anAnimal, ensuring that each animal
is properly and completely reassigned to the new segment.

Example 7.4

(Array subclass: 'Menagerie'
instVarNames: #()
inDictionary: UserGlobals) name

method: Menagerie
changeToSegment: aSegment
"Assign receiver each component to the given segment."
self assignToSegment: aSegment.
1 to self size do:

[:eachAnimal | eachAnimal changeToSegment: aSegment.]
September 2009 GemStone Systems, Inc. 173

Assigning Objects to Segments GemStone Programming Guide
%

SmallInteger, Character, Boolean, and nil are assigned the SystemSegment and
cannot be assigned another segment.

Segment Ownership

Each segment is owned by one user—by default, the user who created it. A
segment’s owner has control over who can access the segment’s objects. As a
segment’s owner, you can alter your own access rights at any time, even
forbidding yourself to read or write objects assigned to the segment.

You might not be the owner of your default segment. To find out who owns a
segment, send it the message owner. The receiver returns the owner’s UserProfile,
which you may read, if you have the authorization:

Example 7.5

"Return the userId of the owner of the default segment for
the current Session."
| aUserProf myDefaultSeg |
"get default Segment"
myDefaultSeg := System myUserProfile defaultSegment.
myDefaultSeg notNil ifTrue:

["return its owner’s UserProfile"
aUserProf := myDefaultSeg owner.
"request the userId"
aUserProf userId]

user1

Every segment understands the message owner: aUserProfile. This message
assigns ownership of the receiver to the person associated with aUserProfile. The
following expression, for example, assigns the ownership of your default segment
to the user associated with aUserProfile:

System myUserProfile defaultsegment owner: aUserProfile

In order to reassign ownership of a segment, you must have write authorization
for the DataCuratorSegment. Because of the way separate authorizations for
174 GemStone Systems, Inc. September 2009

Contents Assigning Objects to Segments
owners, groups and world combine, changing access rights for the any one of them
may not alter a particular user’s rights to a segment.

CAUTION
Do not, under any circumstances, attempt to change the authorization of
the SystemSegment.

Revoking Your Own Authorization: a Side Effect

You may occasionally want to create objects and then take away authorization for
modifying them.

CAUTION
Do not remove your write authorization for your default segment or your
current segment. If lose write authorization for your default segment,
you will not be able to log in again.

Finding Out Which Objects are in a Segment

It may be useful for you to be able to find all the objects that are in a particular
Segment. An expression of the form:

SystemRepository listObjectsInSegments: anArray

takes as its argument an array of segment IDs, and returns an array of arrays. Each
inner array contains all objects whose segmentId is equal to the corresponding
segmentId element in the argument anArray.

Note that this method aborts the current transaction and scans the object header of
each object in the repository.

If the result set is very large, there is a risk of out of memory errors. To avoid the
need to have the entire result set in memory, the following methods are provided:

Repository >> listObjectsInSgementToHiddenSet: aSegmentId

This method puts the set of all objects in the specified segment in the
ListInstancesResult hidden set. (a hidden set is an internal memory structure that,
while not an object, is treated as one).

To enumerate the hidden set, you can use this method:

System >> _hiddenSetEnumerate: hiddenSetId limit: maxElements

using a hiddenSetId of 1, which is the number of the “ListInstancesResult” hidden
set in GemStone/S 64 Bit v2.4. This hidden set number is subject to change in new
releases; to determine which hidden sets are in a particular release, use the
GemStone Smalltalk method System Class >> HiddenSetSpecifiers.
September 2009 GemStone Systems, Inc. 175

An Application Example GemStone Programming Guide
You can also list objects that are in particular Segments to an external binary file,
which can later be read into a hidden set. To do this, use the method:

Repository >> listObjectsinHiddenSet: anArray toDirectory:
aString

This method scans the repository for the instances in the segments in anArray and
writes the results to binary bitmap files in the directory specified by aString. Binary
bitmap files have an extension of .bm and may be loaded into hidden sets using
class methods in System.

Bitmap files are named:

segment<segmentId>-objects.bm

where segmentId is the Segment ID.

The result is an Array of pairs. For each element of the argument anArray, the
result array contains segmentId, numberOfInstances. The numberOfInstances is the
total number written to the output bitmap file.

7.3 An Application Example
The structure of the user community determines how your data is stored and
accessed. Regardless of their job titles, users generally fall into three categories:

 • Developers define classes and methods.

 • Updaters create and modify instances.

 • Reporters read and output information.

When you have a group of users working with the same GemStone application,
you need to ensure that everyone has access to the objects that should be shared,
such as the application classes, but you probably want to limit access to certain
data objects. Figure 7.5 shows a typical production situation.
176 GemStone Systems, Inc. September 2009

Contents An Application Example
Figure 7.5 Application Objects Assigned to Three Segments

In this example, all the application users need access to the data, but different users
need to read some objects and write others. So most data goes into Segment1,
which anyone can look at, but only the Personnel group or owner can change.
Segment 2 is set up for sensitive salary data, which only the Payroll group or
owner can change, and only they and the Personnel group can see. You don’t want
anyone to accidentally corrupt the application classes, so they go into Segment3,
which no one can change.

Look at how the user name, group membership, and segment authorization
control access to objects, as shown by Figure 7.6 and Figure 7.7:

Segment2
Owner (System Admin): Write
Group1 (Personnel): Read

Salary Data

Segment3
Owner (System Admin): Read
World: Read

Application Classes

Group2 (Payroll): Write
World: None

Segment1
Owner (System Admin): Write
Group1 (Personnel): Write

General Employee Data

World: Read
September 2009 GemStone Systems, Inc. 177

An Application Example GemStone Programming Guide
Figure 7.6 User Access to Application Segment1

Four users access this application:

 • The System Administrator owns both segments and can read and write the
objects assigned to them.

 • Leslie belongs to the Personnel group, which authorizes her to read and write
Segment1’s objects and read Segment2’s objects.

 • Jo can read and write the objects assigned to Segment2, because she belongs to
the Payroll group. She doesn’t belong to a group that can access Segment1, but
she can still read those objects, because Segment1 gives read authorization to
all GemStone users.

 • Myron does not belong to a group that can access either segment. He can read
the objects assigned to Segment1 objects, because it allows read access to all
GemStone users. He has no access at all to Segment2.

Leslie and Jo are sometimes updaters and sometimes reporters, depending on the
type of data. Myron is strictly a reporter.

User4
Leslie
Group1: Admin
Group2: Personnel

Segment1
Owner (System Admin): Write
World: Read
Group1 (Personnel): WriteUser3

Group1: Payroll
Group2: Admin

User2
Myron
Group1: Admin

User1
System Admin
178 GemStone Systems, Inc. September 2009

Contents A Development Example
Figure 7.7 User Access to Application Segment2

7.4 A Development Example
Up to now, this discussion has been limited to applications in a production
environment, but issues of access and security arise at each step of application
development. During the design phase you need to consider the segments needed
for the application life cycle: development, testing, and production.

The access required at each stage is a subset of the preceding one, as shown in
Figure 7.8.

User4
Leslie
Group1: Admin
Group2: Personnel

Segment2
Owner (System Admin): Write
World: None
Group1 (Personnel): Write

User2
Myron
Group1: Admin

User1
System Admin

User3
Jo
Group1: Payroll
Group2: Admin

Group2 (Payroll): Write
September 2009 GemStone Systems, Inc. 179

A Development Example GemStone Programming Guide
Figure 7.8 Access Requirements During an Application’s Life Cycle

Planning Segments for User Access
As you design your application, decide what kind of access different end users will
need for each object.

Protecting the Application Classes

All the application users need read access to the application classes and methods,
so they can execute the methods. To prevent accidental damage to them, however,
you probably want to limit write access. The CodeModification privilege is
required to create or modify classes and methods. You can further limit write
access using segments. You may even want to change the owner’s authorization to
read, until changes are required.

1

2

3

Testers: read access to all
classes and methods,
write access to test data

Developers: write access to
all application objects

Users: read access
to classes and
public methods,
read, write, or
no access to
specified data
180 GemStone Systems, Inc. September 2009

Contents A Development Example
Like other objects, classes and their methods are assigned to segments on an object-
by-object basis. You may keep separate subsections of your application in different
segments, with different write authorizations, if you want.

CodeModification privilege

All application developers will need to have CodeModification privilege. This is in
addition to the ability to read and write the appropriate segments. Without
CodeModification privilege, you cannot compile methods or classes, add new
methods, add a Class to a SymbolDictionary, or perform other operations required
for application development.

Application users, on the other hand, should not have CodeModification privilege,
since they will not be modifying methods or classes. This allows you to protect the
application code for inadvertent (or intentional) damage or modification, even if
you do not want to implement Segment security.

Planning Authorization for Data Objects

Authorization for data objects means protecting the instances of the application’s
classes, which will be created by end users to store their data. You can begin the
planning process by creating a matrix of users and their required access to objects.
Table 7.1 shows part of such a matrix, which maps out access to instances of the
class Employee and some of its instance variables.

Security is easier to implement if it is built into the application design at the
beginning, not added later. In the following sections, planning for the third stage,
end user access, comes first. Following the planning discussion comes the
implementation instructions, which explain how to set up segments for the
developers, extend the access to the testers, and finally move the application into
production.

Remember that in effect you have four options, shown on the matrix as:

W — need to write (also allows reading)

R — need to read, must not write

N — must not read or write

blank — don’t need access, but it won’t hurt
September 2009 GemStone Systems, Inc. 181

A Development Example GemStone Programming Guide
World Access

To begin analyzing your access requirements, check whether the objects have any
Ns. For objects that do, world authorization must be set to none.

If you have people who need read access to nonsensitive information, give world
read authorization to those objects. In this example, world can have read access to
anEmployee, name, position, dept., and manager. The objects can still be protected
from casual browsing by storing them in a dictionary that does not appear in
everyone’s symbol list. This does not absolutely prevent someone from finding an
object, but it makes it difficult. For more information, see Chapter 3, “Resolving
Names and Sharing Objects“.

Owner

By default, the owner has write access to the objects in a segment. To choose an
owner, look for a user who needs to modify everything. In terms of the basic user
categories described earlier, the owner could be either an administrator or an
updator. This depends on the type of objects that will be assigned to the segment.

Table 7.1 Access for Application Objects Required by Users

Users

Objects
System
Admin.

Human
Resource

Employee
Records Payroll Mktg Sales

Customer
Support

anEmployee W W W R R R R
name W W W R R R R
position W W W R R
dept. W W W R R
manager W W W R R
dateHired W W W R N R N
salary W R R W N N N
salesQuarter W R R R N W N
salesYear W R R R N W N
vacationDays W W W N N N N
sickDays W W W N N N N
182 GemStone Systems, Inc. September 2009

Contents A Development Example
In Table 7.1 the system administrator is the user who needs write access. So the
system administrator is made the owner, with full control of all the objects. The
DataCurator and SystemUser logins are available to the system administrator. The
DataCurator is not automatically authorized to read and write all objects,
however. Like any other user account, it must be explicitly authorized to access
objects in segments it does not own. Although the SystemUser can read and write
all objects, it should not be used for these purposes.

Planning Groups

The rest of the access requirements must be satisfied by setting up groups. The
thing to remember about groups is that they do not reflect the organization chart;
they reflect differences in access requirements. Because the number of possible
authorization combinations is limited, the number of groups required is also
limited.

First look at the existing access to anEmployee, name, position, dept., and
manager, as shown in Table 7.2. By making the system administrator the owner
with write authorization and assigning read authorization to world, you have
already satisfied the needs of five departments.

You still need to provide authorization for the Human Resources and Employee
Records departments. In every case, they need the same access (see Table 7.1) so
you only have to create one group for the two departments. This group, named
Personnel, requires write authorization for the objects in Table 7.2.

Table 7.2 Access to the First Five Objects Through Owner and World Authorization

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

Employee W W W R R
name W W W R R
position W W W R R
dept. W W W R R
manager W W W R R

 write access as owner or read access as world
September 2009 GemStone Systems, Inc. 183

A Development Example GemStone Programming Guide
Now look at the existing access to the rest of the objects. These objects store more
sensitive information, so access requirements of different users are more varied.
Assigning write authorization to owner and none to world has completely
satisfied the needs of three departments, as shown in Table 7.3.

Two more departments, Human Resources and Employee Records, are already set
up to access as the Personnel group. As shown in Table 7.4, this group needs write
authorization to dateHired, vacationDays, and sickDays, which they must be able
to read and modify. They need read authorization to salary, salesQuarter, and
salesYear, which they must read but cannot modify.

Table 7.3 Access to the Last Six Objects Through Owner and World Authorization

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

dateHired W W W R N R N
salary W R R W N N N
salesQuarter W R R R N W N
salesYear W R R R N W N
vacationDays W W W N N N N
sickDays W W W N N N N

 write access as owner or no access as world

Table 7.4 Access to the Last Six Objects Through the Personnel Group

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

dateHired W W W R N R N
salary W R R W N N N
salesQuarter W R R R N W N

 read or write access as Personnel group
184 GemStone Systems, Inc. September 2009

Contents A Development Example
Now the Payroll and Sales departments still require access to the objects, as shown
in Table 7.3. Because these departments’ needs don’t match anyone else’s, they
must each have a separate group.

In all, this example only requires three groups: Personnel, Payroll, and Sales, even
though it involves seven departments.

Planning Segments

When you have been through this exercise with all your application’s prospective
objects and users, you are ready to plan the segments. For easiest maintenance, use
the smallest number of segments that your required combinations of owner,

salesYear W R R R N W N
vacationDays W W W N N N N
sickDays W W W N N N N

Table 7.4 Access to the Last Six Objects Through the Personnel Group

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

 read or write access as Personnel group

Table 7.5 Access to the Last Six Objects Through the Payroll and Sales Groups

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

dateHired W W W R N R N
salary W R R W N N N
salesQuarter W R R R N W N
salesYear W R R R N W N
vacationDays W W W N N N N
sickDays W W W N N N N

 read or write access as Payroll or Sales group
September 2009 GemStone Systems, Inc. 185

A Development Example GemStone Programming Guide
group, and world authorizations allow. You don’t need different segments with
duplicate functionality to separate particular objects, like the application classes
and data objects. Remember that symbol lists, not segments, are used to organize
objects for listing and retrieval.

In this example you need six segments, as shown in Figure 7.9. Notice that each
one has different authorization.

Developing the Application
During application development you implement two separate schemes for object
organization: one for sharing application objects by the development team and one
controlling access by the end users. In addition, you may need to allow access for
the testers, who may need different access to objects.

Once you have planned the segments and authorizations you want for your
project, you can refer to procedures in the GemStone System Administration Guide
for implementing that plan.

Setting Up Segments for Joint Development

To make joint development possible, you need to set up authorization and
references so that all the developers have access to the classes and methods that are
being created. Create a new symbol dictionary for the application and put it in
everyone’s symbol list; make sure it includes references to any shared segments. If
only developers are using the repository, you can give world access to shared
objects, but if other people are using the repository, you must set up a group for
developers.

You can organize segment assignments in various ways:

 • Full access to all personal segments. Give all the developers their own default
segments to work in. Give everyone in the team write access to all the
segments. Because the objects you create are typically assigned to your default
segment, this method may be the simplest way to organize shared work.

 • Read access to all personal segments. Set up the same as above, except give
everyone read access to the segments. If each developer is doing a separate
module, read access may be enough. Then everyone can use other people’s
classes, but not change them. This has the advantage of enforcing the line
between application and data.

 • Full access to a shared segment. Give all developers the same default
segment, writable by everyone. This is an easy, informal way to share objects.
186 GemStone Systems, Inc. September 2009

Contents A Development Example
 • Full access to a shared segment plus private segments. Developers work in
their own default segments and reassign their objects to the shared segment
when they are finished. This lets you share a collection, for example, but keep
the existing elements private, so that other developers could add elements but
not modify the elements you have already created. To share a collection this
way, assign the collection object itself to the accessible segment. The collection
has references to many other objects, which can be associated with other
segments. Everyone has the references, but they get errors if they try to access
objects assigned to non-readable segments. You might also choose to share an
application symbol dictionary, so that other developers can put objects in it,
without making the objects themselves public.
September 2009 GemStone Systems, Inc. 187

A Development Example GemStone Programming Guide
Figure 7.9 Segments Required for User Access to Application Objects

salary

Segment1
Owner (System Admin): Write
Group1 (Personnel): Write

Segment2
Owner (System Admin): Write

Group2 (Payroll): Read

Segment3
Owner (System Admin): Write

Segment4
Owner (System Admin): Write

Segment5
Owner (System Admin): Write

Segment6
Owner (System Admin): Read
World: Read

Group3 (Sales): Read

World: Read

Group1 (Personnel): Write

World: None

Group1 (Personnel): Read
Group2 (Payroll): Write
World: None

Group1 (Personnel): Read
Group2 (Payroll): Read
Group3 (Sales): Write
World: None

Group1 (Personnel): Write
World: None

position

name

dept.

anEmployee

manager

dateHired

salesQuarter salesYear

sickDays vacationDays

Employee
188 GemStone Systems, Inc. September 2009

Contents A Development Example
Making the Application Accessible for Testing

Testers need to be able to alternate between two distinct levels of access:

 • Full access. As members of the development team, they need read access to
all the classes and methods in the application, including the private methods.
Testers also need write access to their test data.

 • User-level access. They need a way to duplicate the user environment, or
more likely several environments created for different user groups.

This can be done by setting up a tester group and one or more sample user groups
during the development phase. For testing the user environment, the application
must already be set up for multi-user production use, as explained in the following
section.

Moving the Application into a Production Environment

When you have created the application, it is time to set it up for a multi-user
environment. A GemStone application is developed in the repository, so all you
have to do to install an application is to give other users access to it. This means
implementing the rest of your application design, in roughly the reverse order of
the planning exercise. To give other users authorization to use the objects in the
application:

1. Create the segments.

2. Create the necessary user groups specified in up-front development, if they
don’t exist.

3. Assign the required owner, world, and group authorizations to the segments.

4. Assign testers to the user groups and complete multi-user testing.

5. Assign any end users that need group authorization to the user groups.

6. Assign the application’s objects to the segments you created.

You also have to give users a reference to the application so they can find it. An
application dictionary is usually created with references to the application objects,
including its segments. A reference to this dictionary usually must appear in the
users’ symbol lists. For more information on the use of symbol dictionaries, see the
discussion of symbol resolution and object sharing in Chapter 3, “Resolving
Names and Sharing Objects.”
September 2009 GemStone Systems, Inc. 189

Privileged Protocol for Class Segment GemStone Programming Guide
Segment Assignment for User-created Objects
Because segment assignment is on an object-by-object basis, it is important to
know how objects are assigned. When the objects are being created by end users of
an application, as in this example, you may want to partially or fully automate the
process of segment assignment. Depending on the needs of the local site, you can
implement various mechanisms to ensure data security, prevent accidental
damage to existing data, or simply avoid misplaced data.

Assign a Specified Segment to the User Account

Set up users with the proper application segment by default. This is a simple way
to assure that someone who creates objects in a single application segment doesn’t
misplace them. To make it impossible to change segments, rather than just
unlikely, you also have to close write access for group and world to all the other
segments.

This solution would work for the Sales and Payroll groups in the example
(Figure 7.9 on page 188). They need read access to several segments, but they only
write in one.

The drawback of this solution is that the user can only use one application.

Develop the Application to Create the Data Objects

Your best choice is to create objects in the correct segment, using the
Segment>>setCurrentWhile: method. With this method, the application
stores data objects in the proper segments. This provides the most protection.
Besides guaranteeing that the objects end up in the proper segment, this prevents
users from accidentally modifying objects they have created. It also prevents them
from reading the data that other users enter, even when everyone is creating
instances of the same classes.

7.5 Privileged Protocol for Class Segment
Privileges stand apart from the segment and authorization mechanism. Privileges
are associated with certain operations: they are a means of stating that, ordinarily,
only the DataCurator or SystemUser is to perform these privileged operations. The
DataCurator can assign privileges to other users at his or her discretion, and then
those users can also perform the operations specified by the particular privilege.

NOTE
Privileges are more powerful than segment authorization. Although the
190 GemStone Systems, Inc. September 2009

Contents Privileged Protocol for Class Segment
owner of a segment can always use read/write authorization protocol to
restrict access to objects in a segment, the DataCurator can override that
protection by sending privileged messages to change the authorization
scheme.

The following message to Segment always requires special privileges:

newInRepository: (class method)

You can always send the following messages to the segments you own, but you
must have special privileges to send them to other segments:

group:authorization:
ownerAuthorization:
worldAuthorization:

For changing privileges, UserProfile defines two messages that also work in terms
of the privilege categories described above. The message addPrivilege:
aPrivString takes a number of strings as its argument, including the following:

'DefaultSegment'
'SegmentCreation'
'SegmentProtection'

To add segment creation privileges to your UserProfile, for example, you might do
this:

System myUserProfile addPrivilege: 'SegmentCreation'.

This gives you the ability to execute Segment newInRepository:
SystemRepository.

A similar message, privileges:, takes an array of privilege description strings
as its argument. The following example adds privileges for segment creation and
password changes:

System myUserProfile privileges:
 #(’SegmentCreation’ ’UserPassword’)

To withdraw a privilege, send the message deletePrivilege: aPrivString. As
in preceding examples, the argument is a string naming one of the privilege
categories. For example:

System myUserProfile deletePrivilege: ’SegmentCreation’

Because UserProfile privilege information is typically stored in a segment that only
the data curator can modify, you might not be able to change privileges yourself.
You must have write authorization to the DataCuratorSegment in order to do so.
September 2009 GemStone Systems, Inc. 191

Segment-related Methods GemStone Programming Guide
For direction and information about configuring user accounts, adding user
accounts and assigning segments to those accounts, and checking authorization
for user accounts, see the GemStone System Administration Guide.

7.6 Segment-related Methods
Most of the methods used for basic operations on segments are implemented in the
GemStone kernel class Segment. For the protocol of class Segment, see the image.
Methods for segment-related operations are also implemented in a few other
classes:

Class

Instance Protocol: Authorization

changeToSegment: segment

Assign the receiver and its non-shared components to the given segment. aSegment
must be a committed Segment, or nil. The segments of class variable values are not
changed. The current user must have write access to both the old and new
segments for this method to succeed.

Object

Instance Protocol: Updating

assignToSegment: aSegment

Reassigns the receiver to aSegment. aSegment must be a committed Segment, or nil.
The user must be authorized to write to both segments (the receiver’s current
segment and aSegment). Generates an error if there is an authorization conflict, or
if the receiver is a special object (SmallInteger, AbstractCharacter, Boolean,
SmallDouble, or UndefinedObject).

changeToSegment: segment

Assign the receiver to the given segment. This method calls the same code as
assignToSegment: aSegment. You can reimplement it, however, to assign
components of the receiver as well. This has been done for class Class (above). Use
that version as an example for implementations tailored to your own classes.
192 GemStone Systems, Inc. September 2009

Contents Segment-related Methods
System

Class Protocol: Session Control

currentSegment

Return the Segment in which objects created in the current session are stored, or
nil if there is no current segment. At login, the current segment is the default
segment of the UserProfile for the session of the sender.

currentSegment: aSegment

Redefines the Segment in which subsequent objects created in the current session
will be stored. aSegment must be a committed Segment, or nil. Return the receiver.
If aSegment is not nil, you must have write authorization for aSegment.

UserProfile

Instance Protocol: Accessing

defaultSegment

Return the default login Segment associated with the receiver, or nil if the receiver
does not have a default Segment.

Instance Protocol: Updating

defaultSegment: aSegment

Redefines the default login Segment associated with the receiver, and return the
receiver. aSegment must be a committed Segment, or nil.

This method requires the #DefaultSegment privilege. You must have write
authorization for the Segment where the UserProfile resides.

Exercise caution when using this method; if the UserProfile’s default Segment is
set to a Segment for which it does not have write authorization, the user will be
unable to log into GemStone.

Class Protocol: Instance Creation

newWithUserId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols

Return a new UserProfile with the associated characteristics. aSegment must be a
committed Segment, or nil.
September 2009 GemStone Systems, Inc. 193

Segment-related Methods GemStone Programming Guide
newWithUserId: aSymbol password: aString privileges: anArrayOfStrings
inGroups: aCollectionOfGroupSymbols

Return a new UserProfile with the associated characteristics. The UserProfile’s
default segment will be nil (new objects are created with World write permission).

UserProfileSet

Instance Protocol: Adding

addNewUserWithId: aSymbol password: aPassword

Creates a new UserProfile and adds it to the receiver. The new UserProfile has no
privileges, and belongs to no groups. This method creates a new Segment with
world-read permission, which is owned by the new user and assigned as the user’s
default segment. The new UserProfile and Segment are committed by this method.

This method requires the #OtherPassword privilege. The current session must be
in a transaction with no uncommitted changes, and the method must be able to
writeLock AllUsers and SystemRepository. It generates an error if the userId
aSymbol duplicates the userId of any existing element of the receiver.

This method can be used by the data curator in batch user installations. Return the
new UserProfile.

If the receiver is not AllUsers, the new user will be unable to log in to GemStone.

addNewUserWithId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols

Creates and return a new UserProfile with the associated characteristics, and adds
it to the receiver. aSegment must be a committed Segment, or nil. Generates an error
if the userId aSymbol duplicates the userId of any existing element of the receiver.

This method requires the #OtherPassword privilege.

If the receiver is not AllUsers, the new user will be unable to log in to GemStone.
In addition, in order to log in to GemStone, the user must be authorized to read and
write in the specified default Segment.

addNewUserWithId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols
compilerLanguage: aLangString

Creates a new UserProfile with the associated characteristics and adds it to the
receiver. aSegment must be a committed Segment, or nil. Generates an error if the
userId aSymbol duplicates the userId of any existing element of the receiver. Return
the new UserProfile.
194 GemStone Systems, Inc. September 2009

Contents Segment-related Methods
This method requires the #OtherPassword privilege.

If the receiver is not AllUsers, the new user will be unable to log in to GemStone.
In addition, in order to log in to GemStone, the user must be authorized to read and
write in the specified default Segment.
September 2009 GemStone Systems, Inc. 195

Segment-related Methods GemStone Programming Guide
196 GemStone Systems, Inc. September 2009

Chapter

8 Class Versions and
Instance Migration
Few of us can design something perfectly the first time. Although you
undoubtedly designed your schema with care and thought, after using it for a
while you will probably find a few things you would like to improve.
Furthermore, the world seldom remains the same for very long. Even if your
design was perfect, real-world changes usually require changes to the schema
sooner or later. This chapter discusses the mechanisms GemStone Smalltalk
provides to allow you to make these changes.

Versions of Classes
defines the concept of a class version and describes two different approaches
you can take to specify one class as a version of another.

ClassHistory
describes the GemStone Smalltalk class that encapsulates the notion of class
versioning.

Migrating Objects
explains how to migrate either certain instances, or all of them, from one
version of a class to another while retaining the data that these instances hold.
September 2009 GemStone Systems, Inc. 197

Versions of Classes GemStone Programming Guide
8.1 Versions of Classes
You cannot create instances of modifiable classes. In order to create instances—in
other words, in order to populate your database with usable data—you defined
your classes as well as you could, and then, when you believed that your schema
was fully defined, the message immediateInvariant was sent to your classes.
They were thereafter no longer modifiable, and instances of them could be created.
You may now have instances of invariant classes populating your database and a
need to modify your schema by redefining certain of these classes.

 To support this inevitable need for schema modification, GemStone allows you to
define different versions of classes. Every class in GemStone has a class
history—an object that maintains a list of all versions of the class—and every class
is listed in exactly one class history. You can define as many different versions of
a class as required, and declare that the different versions belong to the same class
history. You can migrate some or all instances of one version of a class to another
version when you need to. The values of the instance variables of the migrating
instances are retained, if you have defined the new version to do so.

NOTE
Although this chapter discusses schema migration in the context of
GemStone Smalltalk, the various interfaces have tools to make the job
easier. The functionality described in this chapter is common to all
interfaces. Consult your GemBuilder manual for other ways in which
you might lighten your burden.

Defining a New Version
In GemStone Smalltalk classes have versions. Each version is a unique class object,
but the versions are related to each other through a common class history. The
classes need not share a similar structure, nor even a similar implementation. The
classes need not even share a name, although it is probably less confusing if they
do, or if you establish and adhere to some naming convention.

You can take one of two approaches to defining a new version:

 • Define a class having the same name as an existing class. The new class
automatically becomes a new version of the previously existing class.
Instances that predate the new version remain unchanged, and continue to
access the old class’s methods. Instances created after the redefinition have the
new class’s structure and access to the new class’s methods.
198 GemStone Systems, Inc. September 2009

Contents Versions of Classes
 • Define a new class by another name, and then declare explicitly that it shares
the same class history as the original class. You can do this with any of the class
creation messages that include the keyword newVersionOf:.

New Versions and Subclasses
When you create a new version of a class—for example, Animal—subclasses of the
old version of Animal still point to the old version of Animal as their superclass. If
you wish these classes to become subclasses of the new version, recompile the
subclass definitions to make new versions of the subclasses, specifying the new
version of Animal as their superclass.

One simple way to do this is to file in the subclasses of Animal after making the
new version of Animal (assuming the new version of the superclass has the same
name).

New Versions and References in Methods
A reference to a class in a method is static. When you refer to a class in a method
and then compile that method, the class reference that is compiled into the method
is the SymbolAssociation that results from evaluating this expression:

symbolList resolveSymbol: #theClassName

This SymbolAssociation will not change until you recompile the method.

To understand how this works, let’s consider the sample class MyClass. MyClass
defines the method makeANewOne, which returns an instance of MyClass.

When you change MyClass and recompile it, two versions of the class now exist.
Let’s consider what happens when you subsequently execute MyClass
makeANewOne. If you recompiled the class using the GemStone Browser (the
common way of doing this), the original SymbolAssociation is reused, and now
points to the correct, current class version. The method makeANewOne returns an
instance of the new version of MyClass.
September 2009 GemStone Systems, Inc. 199

ClassHistory GemStone Programming Guide
8.2 ClassHistory
In GemStone Smalltalk, any class can be associated with a class history,
represented by the system as an instance of the class ClassHistory. A class history
is an array of classes that are meant to be different versions of each other.

Defining a Class with a Class History
When you define a new class whose name is the same as an existing class in one of
your symbol list dictionaries, it is by default created as the latest version of the
existing class and shares its class history.

When you define a new class by a name that is new to your symbol list dictionaries,
the class is by default created with a unique class history. If you use a class creation
message that includes the keyword newVersionOf:, you can specify an existing
class whose history you wish the new class to share.

For example, suppose your existing class Animal was defined like this:

Example 8.1

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

Example 8.2 creates a class named NewAnimal and specifies that the class shares
the class history used by the existing class Animal.
200 GemStone Systems, Inc. September 2009

Contents ClassHistory
Example 8.2

Object subclass: 'NewAnimal'
instVarNames: #('diet' 'favoriteFood' 'habitat' 'name'

'predator')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: false
newVersionOf: Animal
isModifiable: false

If you wish to define a new class Animal with its own unique class history, you can
add it to a different symbol dictionary, and specify the argument nil to the
keyword newVersionOf:. See Example 8.3.

Example 8.3

Object subclass: 'Animal'
instVarNames: #('favoriteFood' 'habitat' 'name'

'predator')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: false
newVersionOf: nil
isModifiable: false

If you try to define a new class with the same name as an existing class that you
did not create, you will most likely get an error, because you are trying to modify
the class history of that class — an object which you are probably not permitted to
modify. If this restriction becomes a problem, use a subclass creation message that
includes the keyword newVersionOf:, and set it to nil. In this way, the existing
class history remains unmodified and your new class has its own class history.

CAUTION
If you try to define a new class with the same name as one of the
GemStone Smalltalk kernel classes, you will definitely get such an error.
September 2009 GemStone Systems, Inc. 201

Migrating Objects GemStone Programming Guide
Do not use the above workaround in this case. Redefining a kernel class
can cause aberrant system behavior and even system failure.

Accessing a Class History
You can access the class history of a given class by sending the message
classHistory to the class. For example, the following expression returns the
class history of the class Employee:

Employee classHistory

You can use an expression such as this to collect all instances of any version of a
class, as you will see in a later example.

Assigning a Class History
You can assign a class history by sending the message addNewVersion: to the
class whose class history you wish to use; the argument to this message is the class
whose history is to be reassigned. For example, suppose that when we created the
class NewAnimal, we intended to assign it the same class history as Animal, but
forgot to do so. To specify that it is a new version of Animal, we execute the
following expression:

Animal addNewVersion: NewAnimal

8.3 Migrating Objects
Once you define two or more versions of a class, you may wish to migrate
instances of the class from one version to another. Migration in GemStone
Smalltalk is a flexible, configurable operation:

 • Instances of any class can migrate to any other, as long as they share a class
history. The two classes need not be similarly named, or, indeed, have
anything else in common.

 • Migration can occur whenever you specify.

 • Not all instances of a class need to migrate at the same time—you can migrate
only certain instances at a time. Other instances need never migrate, if that is
appropriate.

 • The manner in which values of the old instance variables are used to initialize
values of the new instance variables is also under your control. A default
mapping mechanism is provided, which you can override if you need to.
202 GemStone Systems, Inc. September 2009

Contents Migrating Objects
Migration Destinations
If you know the appropriate class to which you wish to migrate instances of an
older class, you can set a migration destination for the older class. To do so, send a
message of the form:

OldClass migrateTo: NewClass

This message configures the old class to migrate its instances to become instances
of the new class, but only when it is instructed to do so. Migration does not occur
as a result of sending the above message.

It is not necessary to set a migration destination ahead of time. You can specify the
destination class when you decide to migrate instances. It is also possible to set a
migration destination, and then migrate the instances of the old class to a
completely different class, by specifying a different migration destination in the
message that performs the migration.

You can erase the migration destination for a class by sending it the message
cancelMigration. For example:

OldClass cancelMigration

If you are in doubt about the migration destination of a class, you can query it with
an expression of the form:

MyClass migrationDestination

The message migrationDestination returns the migration destination of the
class, or nil if it has none.

Migrating Instances
A number of mechanisms are available to allow you to migrate one instance, or a
specified set of instances, to either the migration destination, or to an alternate
explicitly specified destination.

No matter how you choose to migrate your data, however, you should migrate
data in its own transaction. That is, as part of preparing for migration, commit your
work so far. In this way, if migration should fail because of some error, you can
abort your transaction and you will lose no other work; your database will be in a
consistent state from which you can try again.

Moreover, many of the methods discussed below — allInstances,
listInstances:, migrateInstancesTo:, and others — abort your current
view and thus must be executed in a separate transaction.
September 2009 GemStone Systems, Inc. 203

Migrating Objects GemStone Programming Guide
After migration succeeds, commit your transaction again before you do any
further work. Again, this technique ensures a consistent database from which to
proceed.

If you need to migrate many instances of a class, break your work into multiple
transactions.

Finding Instances and References

To prepare for instance migration, several methods are available to help you find
instances of specified classes or references to such instances. An expression of the
form:

SystemRepository listInstances: anArray

takes as its argument an array of class names, and returns an array of sets. Each set
contains all instances whose class is equal to the corresponding element in the
argument anArray.

NOTE
The above method searches the database once for all classes in the array.
Executing allInstances for each class would require searching the
database once per class.

An expression of the form:

SystemRepository listReferences: anArray

takes as its argument an array of objects, and returns an array of sets. Each set
contains all instances that refer to the corresponding element in the argument
anArray.

NOTE
Executing either listInstances: or listReferences: causes
an abort. However, if the abort would cause any modifications to
persistent objects to be lost, the method returns the error
#rtErrAbortWouldLoseData instead.

What If the Result Set Is Very Large?

If Repository>>listInstances: returns a very large result set, there is a risk
of out of memory errors. To avoid the need to have the entire result set in memory,
the following methods are provided:

Repository >> listInstances: anArray limit: aSmallInteger
204 GemStone Systems, Inc. September 2009

Contents Migrating Objects
This method is similar to listInstances:, but returns just the first aSmallInteger
instances of each of the classes in anArray.

Repository >> listInstancesToHiddenSet: aClass

This method puts the set of all instances of aClass in a new hidden set (an internal
memory structure that, while not an object, is treated as one).

To enumerate the hidden set, you can use this method:

System >> _hiddenSetEnumerate: hiddenSetId limit: maxElements

using a hiddenSetId of 1, which is the number of the “ListInstancesResult” hidden
set in GemStone/S 64 Bit v2.4, the hidden set in which listInstances results are
placed. This hidden set number is subject to change in new releases. To determine
which hidden sets are in a particular release, use the GemStone Smalltalk method
System Class >> HiddenSetSpecifiers.

You can also list instances to an external binary file, which can later be read into a
hidden set. To do this, use the method:

Repository >> listInstances: anArray toDirectory: aString

This method scans the repository for the instances of classes in anArray and writes
the results to binary bitmap files in the directory specified by aString. Binary
bitmap files have an extension of .bm and may be loaded into hidden sets using
class methods in System.

Bitmap files are named:

className-classOop-instances.bm

where className is the name of the class and classOop is the object ID of the class.

The result is an Array of pairs. For each element of the argument anArray, the
result array contains aClass, numberOfInstances. The numberOfInstances is the total
number written to the output bitmap file.

List Instances in Page Order

For even more efficient migration of large sets of objects of multiple classes, you
can list all the instances of all the classes in page order - the same order as the
objects are stored on disk. This allows multiple objects of several different classes
on the same page in the repository to be migrated at the same time.

If migration performance is an issue for your application, the following methods
can be used to write the list of instances to a file, and open, read, and process the
instances from the file.
September 2009 GemStone Systems, Inc. 205

Migrating Objects GemStone Programming Guide
Repository >> listInstancesInPageOrder: anArray toFile: aString
Repository >> openPageOrderOopFile: aString.
Repository >> readObjectsFromFileWithId: fileId

startingAt: startIndex upTo: endIndex into: anArray.
Repository >> closePageOrderOopFileWithId: fileId
Repository >> auditPageOrderOopFileWithId: fileId

For details on these methods and how to use them, refer to the method comments
in the image.

Since the normal operation of the repository, where objects are added, removed,
and modified, will cause objects to move from page to page, over time the actual
ordering of the objects by page will diverge from the order of the results. When the
file is read later, it will (of course) not contain any references to objects that were
created since the listInstances was run. During the read, if any of the instances have
been garbage collected, the Array of results will contain a nil. Given these issues,
it is important to read and process the file as soon as possible after it is created.

Using the Migration Destination

The simplest way to migrate an instance of an older class is to send the instance the
message migrate. If the object is an instance of a class for which a migration
destination has been defined, the object becomes an instance of the new class. If no
destination has been defined, no change occurs.

The following series of expressions, for example, creates a new instance of Animal,
sets Animal’s migration destination to be NewAnimal, and then causes the new
instance of Animal to become an instance of NewAnimal.

Example 8.4

| aLemming |
aLemming := Animal new.
Animal migrateTo: NewAnimal.
aLemming migrate.

Other instances of Animal remain unchanged until they, too, receive the message
to migrate.

If you have collected the instances you wish to migrate into a collection named
allAnimals, execute:

allAnimals do: [:each | each migrate]
206 GemStone Systems, Inc. September 2009

Contents Migrating Objects
Bypassing the Migration Destination

You can bypass the migration destination, if you wish, or migrate instances of
classes for which no migration destination has been specified. To do so, you can
specify the destination directly in the message that performs the migration. Two
methods are available to do this.

Neither of these messages changes the class’s persistent migration destination.
Instead, they specify a one-time-only operation that migrates the specified
instances, or all instances, to the specified class, ignoring any migration destination
that has been defined for the class.

The message migrateInstances:to: takes a collection of instances as the
argument to the first keyword, and a destination class as the argument to the
second. The following example migrates the specified instances of Animal to
instances of NewAnimal:

Animal migrateInstances: #[aDugong, aLemming] to: NewAnimal.

Alternatively, the message migrateInstancesTo: migrates all instances of the
receiver to the specified destination class. The following example migrates all
instances of Animal to instances of NewAnimal:

Animal migrateInstancesTo: NewAnimal.

NOTE
Executing either migrateInstances:to: or
migrateInstancesTo: causes an abort. To avoid loss of work,
always commit your transaction before you begin data migration.

Example 8.5 uses migrateInstances:to: to migrate all instances of all
versions of a class, except the latest version, to the latest version.

Example 8.5

| animalHist allAnimals |
animalHist := Animal classHistory.
allAnimals := SystemRepository listInstances: animalHist.
"Returns an array of the same size as the class history.
 Each element in the array is a set corresponding to one
 version of the class. Each set contains all the
 instances of that version of the class."

1 to: animalHist size-1 do: [:index | (animalHist at: index)
migrateInstances:(allAnimals at: index)
September 2009 GemStone Systems, Inc. 207

Migrating Objects GemStone Programming Guide
to: (animalHist at: animalHist size)].

The migration methods migrateInstancesTo: and migrateInstances:to:
return an array of four collections. The first two collections in the array are always
empty.

 • The third collection is a set of objects that are instances of indexed collections,
and were not migrated. See the following discussion, “Migration Errors”.

 • The fourth collection is a set of objects whose class was not identical to the
receiver—presumably, incorrectly gathered instances—and thus, were not
migrated. See “Instance Variable Mappings” on page 209.

If all four of these collections are empty, all requested migrations have occurred.

Migration Errors

Several problems can occur with migration:

 • You may be trying to migrate an object that the interpreter needs to remain in
a constant state (migrating to self).

 • You may be trying to migrate an instance that is indexed, or participates in an
index.

Migrating self

Sometimes a requested migration operation can cause the interpreter to halt and
display an error message of the following form:

The object <anObject> is present on the GemStone
Smalltalk stack, and cannot participate in a become.

This error occurs when you try to send the message migrate (or one of its
variants) to self. Migration can change the structure of an object. If the interpreter
was already accessing the object whose structure you are trying to change, the
database can become corrupted. To avoid this undesirable consequence, the
interpreter checks for the presence of the object in its stack before trying to migrate
it, and notifies you if it finds it.

If you receive such a notifier, rewrite the method that sends the migration message
to self, so as to accomplish its purpose in some other manner.
208 GemStone Systems, Inc. September 2009

Contents Migrating Objects
Migrating Instances That Participate in an Index

If an instance participates in an index (for example, because it is part of the path on
which that index was created), then the indexing structure can, under certain
circumstances, cause migration to fail. Three scenarios are possible:

 • Migration succeeds. In this case, the indexing structure you have made
remains intact. Commit your transaction.

 • GemStone examines the structures of the existing version of the class and the
version to which you are trying to migrate, and determines that migration is
incompatible with the indexing structure. In this case, GemStone raises an
error notifying you of the problem, and migration does not occur.

You can commit your transaction, if you have done other meaningful work
since you last committed, and then follow these steps:

1. Remove the index in which the instance participates.

2. Migrate the instance.

3. Modify the indexing code as appropriate for the new class version and
re-create the index.

4. Commit the transaction.

 • In the final case, GemStone fails to determine that migration is incompatible
with the indexing structure, and so migration occurs and the indexing
structure is corrupted. In this case, GemStone raises an error notifying you of
the problem, and you will not be permitted to commit the transaction. Abort
the transaction and then follow the steps explained above.

For more information about indexing, see Chapter 5, “Querying.”

For more information about committing and aborting transactions, see Chapter 6,
“Transactions and Concurrency Control.”

Instance Variable Mappings
Earlier, we explained that migration can involve changing the structure of an
object. By now, you are probably wondering what happens to the values of the
variables in that object—the class, class instance, and instance variables.

When an object is migrated, it refers to the class and class instance variables that
have been defined for the new version of the class. These variables have whatever
values have been assigned to them in the class object.
September 2009 GemStone Systems, Inc. 209

Migrating Objects GemStone Programming Guide
Migrating instances, however, is not terribly helpful unless you can retain the data
they contain. Instance variables, therefore, can retain their values when you
migrate instances. The following discussion describes the default manner in which
instance variables are mapped. This default arrangement can be modified if
necessary.

Default Instance Variable Mappings

The simplest way to retain the data held in instance variables is to use instance
variables with the same names in both class versions. If two versions of a class have
instance variables with the same name, then the values of those variables are
automatically retained when the instances migrate from one class to the other.

Suppose, for example, you create two instances of class Animal and initialize their
instance variables as shown in Example 8.6.

Example 8.6

| aLemming aDugong |
aLemming := Animal new.
aLemming name: 'Leopold'.
aLemming favoriteFood: 'grass'.
aLemming habitat: 'tundra'.
aDugong := Animal new.
aDugong name: 'Maybelline'.
aDugong favoriteFood: 'seaweed'.
aDugong habitat: 'ocean'.

You then decide that class Animal really needs an additional instance variable,
predator, which is a Boolean—true if the animal is a predator, false otherwise. You
create a class called NewAnimal, and define it to have four instance variables:
name, favoriteFood, habitat, and predator, creating accessing methods for all four. You
then migrate aLemming and aDugong. What values will they have?

Example 8.7 takes the class and method definitions for granted and performs the
migration. It then shows the results of printing the values of the instance variables.

Example 8.7

| bagOfAnimals |
bagOfAnimals := IdentityBag new.
bagOfAnimals add: aLemming; add: aDugong.
Animal migrateInstances: bagOfAnimals to: NewAnimal.
210 GemStone Systems, Inc. September 2009

Contents Migrating Objects
aLemming name.
Leopold

aLemming favoriteFood.
grass

aLemming habitat.
tundra

aLemming predator.
nil

aDugong name.
Maybelline

aDugong favoriteFood.
seaweed

aDugong habitat.
ocean

aDugong predator.
nil

As you see, the migrated instances retained the data they held. They have done so
because the class to which they migrated defined instance variables that had the
same names as the class from which they migrated. The new instance variable
name was initialized with the value of the old instance variable name, and so on.

The new class also defined an instance variable, predator, for which the old class
defined no corresponding variable. This instance variable therefore retains its
default value of nil.

If the class to which you migrate instances defines no instance variable having the
same name as that of the class from which the instance migrates, the data is
dropped. For example, if you migrated an instance of NewAnimal back to become
an instance of the original Animal class, any value in predator would be lost.
Because Animal defines no instance variable named predator, there is no slot in
which to place this value.

To summarize, then:
September 2009 GemStone Systems, Inc. 211

Migrating Objects GemStone Programming Guide
 • If an instance variable in the new class has the same name as an instance
variable in the old class, it retains its value when migrated.

 • If the new class has an instance variable for which no corresponding variable
exists in the old class, it is initialized to nil upon migration.

 • If the old class has an instance variable for which no corresponding variable
exists in the new class, the value is dropped and the data it represents is no
longer accessible from this object.

Customizing Instance Variable Mappings

This section describes two kinds of customization:

 • To initialize an instance variable with the value of a variable that has a
different name, you must provide an explicit mapping from the instance
variable names of the older class to the instance variable names of the
migration destination.

 • To perform a specific operation on the value of a given variable before
initializing the corresponding variable in the class to which the object is
migrating, you can implement methods to transform the variable values.

Explicit Mapping by Name

The first situation requires providing an explicit mapping from the instance
variable names of the older class to the instance variable names of the migration
destination. To provide such a customized mapping, override the default mapping
strategy by implementing a class method named instVarMappingTo: in your
destination class.

For example, suppose that you define the class NewAnimal with three instance
variables: species, name, and diet. When instances of Animal migrate to
NewAnimal, it is impossible to determine the value to which species ought to be
initialized. The value of name can be retained, and the value of diet ought to be
initialized with the value presently held in favoriteFood. In that case, the class
NewAnimal must define a class method as shown in Example 8.8.
212 GemStone Systems, Inc. September 2009

Contents Migrating Objects
Example 8.8

instVarMappingTo: anotherClass
| result myNames itsNames dietIndex |
"Use the default strategy first to properly fill in inst
vars having the same name."
result := super instVarMappingTo: anotherClass.
myNames := self allInstVarNames.
itsNames := anotherClass allInstVarNames.
dietIndex := myNames indexOfValue: #diet.
dietIndex > 0
 ifTrue: [(result at: dietIndex) = 0

ifTrue:[result at: dietIndex
put:(itsNames indexOfValue: #favoriteFood)]].

^result

The method allInstVarNames is used because it would also migrate all
inherited instance variables, although at the expense of performance. If your class
inherits no instance variables, you could use the method instVarNames instead,
for efficiency.

Transforming Variable Values

Another kind of customization is required when the format of data changes. For
example, suppose that you have a class named Point, which defines two instance
variables x and y. These instance variables define the position of the point in
Cartesian two-dimensional coordinate space.

Suppose that you define a class named NewPoint to use polar coordinates. The
class has two instance variables named radius and angle. Obviously the default
mapping strategy is not going to be helpful here; migrating an instance of Point to
become an instance of NewPoint loses its data—its position—completely. Nor is it
correct to map x to radius and y to angle. Instead, what is needed is a method that
implements the appropriate trigonometric function to transform the point to its
appropriate position in polar coordinate space.

In this case, the method to override is migrateFrom: instVarMap:, which you
implement as an instance method of the class NewPoint. Then, when you request
an instance of Point to migrate to an instance of NewPoint, the migration code that
calls migrateFrom: instVarMap: executes the method in NewPoint instead of
in Object.
September 2009 GemStone Systems, Inc. 213

Migrating Objects GemStone Programming Guide
Example 8.9

Object subclass: #oldPoint
instVarNames: #(#x #y)
classVars: #()
classInstVars:
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

oldPoint compileAccessingMethodsFor: oldPoint instVarNames

Object subclass: #Point
instVarNames: #(#radius #angle)
classVars: #()
classInstVars:
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

Point compileAccessingMethodsFor: Point instVarNames

method: Point
migrateFrom: oldPoint instVarMap: aMap

| x y |
x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (x/y) asFloat arcTan.
^self

Point new migrateFrom: (oldPoint new x: 123; y: 456)
 instVarMap: ’unused argument’.

a Point
 radius 4.7229757568719322E+02
 angle 2.6346654103491746E-01
214 GemStone Systems, Inc. September 2009

Contents Migrating Objects
Of course, if you believe there is a chance that you might be migrating instances
from a completely separate version of class Point that does not have the instance
variables x and y, nor use the Cartesian coordinate system, then it is wise to check
for the class of the old instance before you determine which method
migrateFrom:instVarMap: to use.

For example, you could define a class method isCartesian for your old class
Point that returns true. Other versions of class Point could define the same method
to return false. (You could even define the method in class Object to return false.)
You could then modify the above method as follows:

Example 8.10

method: Point
migrateFrom: oldPoint instVarMap: aMap
| x y |
oldPoint isCartesian
 ifTrue: [

x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (x/y) asFloat arcTan.
^self]

 ifFalse: [^super migrateFrom: oldPoint instVarMap: aMap]
September 2009 GemStone Systems, Inc. 215

Migrating Objects GemStone Programming Guide
216 GemStone Systems, Inc. September 2009

Chapter

9 File I/O and
Operating System
Access
As a GemStone application programmer, you’ll seldom need to trouble yourself
with the details of operating system file management. Occasionally, however, you
might wish to transfer GemStone data to or from a text file on the GemStone object
server’s host machine. This chapter explains how such tasks can be accomplished.

Accessing Files
describes the protocol provided by class GsFile to open and close files, read
their contents, and write to them.

Executing Operating System Commands
describes the protocol provided by class System to spawn a new process on the
server’s machine to execute operating system commands.

Storing Objects and Exchanging Data
introduces the class PassiveObject—the mechanism that GemStone provides
for storing the objects that represent your data and exchanging data between
GemStone repositories.

Creating and Using Sockets
describes the protocol provided by class GsSocket to create operating system
sockets and exchange data between two independent interface processes.
September 2009 GemStone Systems, Inc. 217

Accessing Files GemStone Programming Guide
9.1 Accessing Files
The class GsFile provides the protocol to create and access operating system files.
This section provides a few examples of the more common operations for text files.
For a complete description of the functionality available, including the set of
messages for manipulating binary files, see the comment for the class GsFile in the
image.

Specifying Files
Many of the methods in the class GsFile take as arguments a file specification, which
is any string that constitutes a legal file specification in the operating system under
which GemStone is running. Wildcard characters are legal in a file specification if
they are legal in the operating system.

Many of the methods in the class GsFile distinguish between files on the client
versus the server machine. In this context, the term client refers to the machine on
which the interface is executing, and the server refers to the machine on which the
Gem is executing. (This may not necessarily be the same machine on which the
Stone is executing.) In the case of a linked interface, the interface and the Gem
execute as a single process, so the client machine and the server machine are the
same. In the case of an RPC interface, the interface and the Gem are separate
processes, and the client machine can be different from the server machine.

Specifying Files Using Environment Variables

If you supply an environment variable instead of a full path when using the
methods described in this chapter, the way in which the environment variable is
expanded depends upon whether the process is running on the client or the server
machine.

 • If you are running a linked interface or you are using methods that create
processes on the server, the environment variables accessed by your
GemStone Smalltalk methods are those defined in the shell under which the
Gem process is running.

 • If you are running an RPC interface and using methods that create processes
on a separate client machine, the environment variables are instead those
defined by the remote user account on the client machine on which the
application process is running.
218 GemStone Systems, Inc. September 2009

Contents Accessing Files
NOTE
If you do not wish to concern yourself with such details, supply full path
names and avoid the use of environment variables. This allows your
application to work uniformly across different environments.

The examples in this section use a UNIX path as a file specification.

Creating a File
You can create a new operating system file from GemStone Smalltalk using several
class methods for GsFile. Example 9.1 creates a file named aFileName in the
current directory on the client machine.

Example 9.1

| myFile mySpec |
mySpec := 'aFileName'.
myFile := GsFile openWrite: mySpec.
UserGlobals at: #mySpec put: mySpec;
at: #myFile put: myFile.
%
"must close the file"
myFile close
%

The default is text mode.

NOTE
 As a client on a Windows system, you need to keep track of whether the
type of a file is TXT or BIN, because of the way in which Windows treats
the two file types for editing. Opening or writing a BIN file in TXT mode
may cause portability problems, because end-of-line characters are
different in the two file types. On UNIX systems, end-of-line is treated
consistently.
September 2009 GemStone Systems, Inc. 219

Accessing Files GemStone Programming Guide
Example 9.2 creates a file named aFileName in the current directory on the server.

Example 9.2

myFile := GsFile openWriteOnServer: mySpec
%

myFile close
%

These methods return the instance of GsFile that was created, or nil if an error
occurred. Common errors include insufficient permissions to open the file for
modification. For information about error messages, see Appendix B, ”GemStone
Error Messages”.

Opening and Closing a File
GsFile provides a wide variety of protocol to open and close files. For a complete
list, see the image.

Table 9.1 GsFile Method Summary

Method Description

GsFile openRead: aFile Opens a file on the client machine for reading,
replacing the existing contents. Returns the instance
of GsFile that was created; nil if an error occurred.

GsFile openAppend: aFile Opens a file on the client machine for reading,
appending the new contents instead of replacing the
existing contents. Returns the instance of GsFile that
was created; nil if an error occurred.

GsFile openReadOnServer: Opens a file on the server for reading, replacing the
existing contents. Returns the instance of GsFile that
was created; nil if an error occurred.

GsFile openAppendOnServer: Opens a file on the server for reading, appending the
new contents instead of replacing the existing
contents. Returns the instance of GsFile that was
created; nil if an error occurred.

GsFile close Closes the receiver. Returns the receiver if
successful; nil if an error occurred.
220 GemStone Systems, Inc. September 2009

Contents Accessing Files
Your operating system limits the number of files a process can concurrently access;
some systems allow this limit to be changed. Using GemStone classes to open, read
or write, and close files does not lift your application’s responsibility for closing
open files. Make sure you write and close files as soon as possible.

Writing to a File
After you have opened a file for writing, you can add new contents to it in several
ways. For example, the instance methods addAll: and nextPutAll: take
strings as arguments and write the string to the end of the file specified by the
receiver. The method add: takes a single character as argument and writes the
character to the end of the file. And various methods such as cr, lf, and ff write
specific characters to the end of the file—in this case, a carriage return, a line feed,
and a form feed character, respectively.

For example, the following code writes the two strings specified to the file
myFile.txt, separated by end-of-line characters.

Example 9.3

myFile := GsFile openWrite: mySpec.
myFile nextPutAll: 'All of us are in the gutter,'.
myFile cr.
myFile nextPutAll: 'but some of us are looking at the stars.'.
GsFile closeAll.
myFile := GsFile openRead: mySpec.
myFile contents.
%

GsFile closeAll.
%

GsFile closeAll Closes all open GsFile instances on the client
machine except stdin, stdout, and stderr. Returns the
receiver if successful; nil if an error occurred.

GsFile closeAllOnServer Closes all open GsFile instances on the server except
stdin, stdout, and stderr. Returns the receiver if
successful; nil if an error occurred.

Table 9.1 GsFile Method Summary

Method Description
September 2009 GemStone Systems, Inc. 221

Accessing Files GemStone Programming Guide
These methods return the number of bytes that were written to the file, or nil if an
error occurs.

Reading From a File
Instances of GsFile can be accessed in many of the same ways as instances of
Stream subclasses. Like streams, GsFile instances also include the notion of a
position, or pointer into the file. When you first open a file, the pointer is
positioned at the beginning of the file. Reading or writing elements of the file
ordinarily repositions the pointer as if you were processing elements of a stream.

A variety of methods allow you to read some or all of the contents of a file from
within GemStone Smalltalk. For example, the contents method (at the end of
Example 9.3) returns the entire contents of the specified file and positions the
pointer at the end of the file.

In Example 9.4, next: into: takes the 12 characters after the current pointer
position and places them into the specified string object. It then advances the
pointer by 12 characters.

Example 9.4

| myString |
myString := String new.
myFile := GsFile openRead: mySpec.
myFile next: 12 into: myString
%

myFile close
%

These methods return nil if an error occurs.

Positioning

You can also reposition the pointer without reading characters, or peek at
characters without repositioning the pointer. For example, the following code
allows you to view the next character in the file without advancing the pointer.

Example 9.5

myFile peek
222 GemStone Systems, Inc. September 2009

Contents Accessing Files
Example 9.6 allows you to advance the pointer by 16 characters without reading
the intervening characters.

Example 9.6

myFile skip: 16

Testing Files
The class GsFile provides a variety of methods that allow you to determine facts
about a file. For example, the following code tests to see whether the specified file
exists on the client machine:

Example 9.7

GsFile exists: '/tmp/myfile.txt'

This method returns true if the file exists, false if it does not, and nil if an error
occurred. To determine if the file exists on the server machine, use the method
existsOnServer: instead.

To determine if a specified file is open, or to obtain its file size or path, execute an
expression of the form:

Example 9.8

myFile isOpen.
myFile fileSize.
myFile pathName.

Renaming Files
fFiles on the client or server can be renamed or moved. For example:

Example 9.9

GsFile rename: '/tmp/myfile.txt' to: '/tmp/newname.txt'.
September 2009 GemStone Systems, Inc. 223

Accessing Files GemStone Programming Guide
Example 9.10

GsFile renameFileOnServer: '$GEMSTONE/data/system.conf' to:
'/users/david/mysystem.conf'.

Removing Files
To remove a file from the client machine, use an expression of the form:

Example 9.11

GsFile closeAll.
GsFile removeClientFile: mySpec.
%

To remove a file from the server machine, use the method removeServerFile:
instead. These methods return the receiver or nil if an error occurred.

Examining a Directory
To get a list of the names of files in a directory, send GsFile the message
contentsOfDirectory: aFileSpec onClient: aBoolean. This message acts very
much like the UNIX ls command, returning an array of file specifications for all
entries in the directory.

If the argument to the onClient: keyword is true, GemStone searches on the
client machine. If the argument is false, it searches on the server instead.

For example:

Example 9.12

GsFile contentsOfDirectory: '/usr/tmp/' onClient: true

If the argument is a directory name, this message returns the full pathnames of all
files in the directory, as shown in Example 9.12. However, if the argument is a
filename, this message returns the full pathnames of all files in the current
directory that match the filename. The argument can contain wildcard characters
such as *. Example 9.13 shows a different use of this message.
224 GemStone Systems, Inc. September 2009

Contents Executing Operating System Commands
Example 9.13

GsFile contentsOfDirectory: '/tmp/*.c' onClient: false

If you wish to distinguish between files and directories, you can use the message
contentsAndTypesOfDirectory: onClient: instead. This method returns
an array of pairs of elements. After the name of the directory element, a value of
true indicates a file; a value of false indicates a directory. For example:

Example 9.14

GsFile contentsAndTypesOfDirectory: '/tmp/personal/'
onClient: true

All the above methods return nil if an error occurs.

9.2 Executing Operating System Commands
System also understands the message performOnServer: aString, which causes
the UNIX shell commands given in aString to execute in a subprocess of the current
GemStone process. The output of the commands is returned as a GemStone
Smalltalk string. For example:

Example 9.15

System performOnServer: 'date'
%
Thu Mar 22 12:21:26 PDT 2007

The commands in aString can have exactly the same form as a shell script; for
example, new lines or semicolons can separate commands, and the character “\”
can be used as an escape character. The string returned is whatever an equivalent
shell command writes to stdout. If the command or commands cannot be executed
successfully by the subprocess, the interpreter halts and GemStone returns an
error message.
September 2009 GemStone Systems, Inc. 225

File In, File Out, and PassiveObject GemStone Programming Guide
9.3 File In, File Out, and PassiveObject
To archive your application or transfer GemStone classes to another repository
you can file out GemStone Smalltalk source code for classes and methods to a text
file. To port your application to another repository, you can file in that text file, and
the source code for your classes and methods is immediately available in the new
repository.

Objects representing your data are stored for transfer to another repository with
the GemStone class PassiveObject. PassiveObject starts with a root object and
traces through its instance variables, and their instance variables, recursively until
it reaches special objects (instances of SmallInteger, Character, Boolean,
SmallDouble, or UndefinedObject), or classes that can be reduced to special objects
(strings and numbers that are not integers), creating a representation of the object
that preserves all of the values required to re-create it. The resulting network of
object descriptions can be written to a file, stream, or string. Each file can hold only
one network—you cannot append additional networks to an existing passive
object file, stream, or string.

A few objects and aspects of objects are not preserved:

 • Instances of UserProfile cannot be preserved in this way, for obvious security
reasons.

 • SystemRepository cannot be preserved.

 • Blocks that refer to globals or other variables outside the scope of the block
cannot be reactivated correctly.

 • Blocks that can be associated with objects (such as the sort block in
SortedCollections) are not preserved.

 • Any indexes you have created on the object are lost as well.

The relationship between two objects is conserved only so long as they are
described in the same network. Similarly, if two separate objects A and B both refer
to the same third object C, then making A and B passive in two separate operations
will result in duplicating the object C, which will be represented in both A’s and
B’s network. Because the resulting network of objects can be quite large anyway,
you want to avoid such unnecessary duplication. For this reason, it is usually a
good idea to create one collection to hold all the objects you wish to preserve before
invoking one of the PassiveObject methods.

The class PassiveObject implements the method passivate: anObject
toStream: aGsFileOrStream to write objects out to a stream or a file. To write the
226 GemStone Systems, Inc. September 2009

Contents File In, File Out, and PassiveObject
object bagOfEmployees out to the file allEmployees.obj in the current directory,
execute an expression of the form shown in Example 9.16.

Example 9.16

| empFile |
empFile := GsFile openWriteOnServer: 'allEmployees.obj'.
PassiveObject passivate: bagOfEmployees toStream: empFile.
empFile close.

The class PassiveObject implements the method newOnStream: aGsFileOrStream
to read objects from a stream or file into a repository. The method activate then
restores the object to its previous form.

The following example reads the file allEmployees.obj into a GemStone repository:

Example 9.17

empFile := GsFile openReadOnServer: 'allEmployees.obj'.
bagOfEmployees := (PassiveObject newOnStream: empFile)

activate.
empFile close.

Examples 9.16 and 9.17 use streams rather than files to actually move the data. This
is useful, as streams do not create temporary objects that occupy large amounts of
memory before the garbage collector can reclaim their storage.

If you wish to write the contents directly to a file on either the client or the server
machine, you can use a method such as the following:

Example 9.18

empfile := GsFile openWriteOnServer: 'allEmployees.obj').
empfile addAll: (bagOfEmployees passivate)
empfile close.

You can use the method openWrite: to specify a file on the client machine
instead. The passive object can be read into another repository with an expression
like the one in Example 9.19.
September 2009 GemStone Systems, Inc. 227

Creating and Using Sockets GemStone Programming Guide
Example 9.19

empFile := GsFile openReadOnServer: 'allEmployees.obj'.
bagOfEmployees := (PassiveObject newWithContents: empFile

contents) activate.
empFile close.

Expressions such as those in Examples 9.18 and 9.19 allow you to specify files on
specific machines, but they have the disadvantage of creating large temporary
objects which occupy inconvenient amounts of storage until the garbage collector
reclaims it.

9.4 Creating and Using Sockets
Sockets open a connection between two processes, allowing a two-way exchange
of data. The class GsSocket provides a mechanism for manipulating operating
system sockets from within GemStone Smalltalk.

Methods in the class GsSocket do not use the terms client and server in the same
way as the methods in class GsFile. Instead, these terms refer to the roles that two
processes play with respect to the socket: the server process creates the socket,
binds it to a port number, and listens for the client, while the client connects to an
already created socket. Both client and server are processes created (or spawned)
by a Gem process.

The class GsSocket includes two class methods, clientExample and
serverExample, that provide an example of how you can create a GsSocket
between two sessions. The example methods work together; they require two
separate sessions running from two independently executing interfaces, one
running the server example and one running the client example. You can execute
these methods from Topaz or in a GemBuilder for Smalltalk workspace.

The examples create a socket, establish a connection between them, exchange data
using instances of PassiveObject, and then close the socket.

NOTE
The method serverExample will take control of the interface that
invokes it, allowing no further user input until the socket it creates
succeeds in connecting to the client socket. If this happens, you need to
interrupt the command.
228 GemStone Systems, Inc. September 2009

Contents Creating and Using Sockets
To run this example, execute the expression GsSocket serverExample from
one interface before invoking the expression GsSocket clientExample from
the other interface.
September 2009 GemStone Systems, Inc. 229

Creating and Using Sockets GemStone Programming Guide
230 GemStone Systems, Inc. September 2009

Chapter

10 Signals and Notifiers
This chapter discusses how to communicate between one session and another, and
between one application and another.

Communicating Between Sessions
introduces two ways to communicate between sessions.

Object Change Notification
describes the process used to enable object change notification for your
session.

Gem-to-Gem Signaling
describes one way to pass signals from one session to another.

Other Signal Related Issues
describes performance, signal buffer overflow, and other signal related
considerations.
September 2009 GemStone Systems, Inc. 231

Communicating Between Sessions GemStone Programming Guide
10.1 Communicating Between Sessions
Applications that handle multiple sessions often find it convenient to allow one
session to know about other sessions’ activities. GemStone provides two ways to
send information from one current session to another:

 • Object change notification

Reports the changes recorded by the object server. You set your session to be
notified when specific objects are modified. Once enabled, notification is
automatic, but a signal is not sent until the changed objects are committed.

 • Gem-to-Gem signaling

Reports events that happen independent of the transaction space. Currently
logged-in users signal to send messages to each other. Gems can also pass
information that is not necessarily visible to users, such as the name of a queue
that needs servicing. Sending a signal requires a specific action by the other
Gem; it happens immediately.

Object change notification and Gem-to-Gem signals only reach logged-in sessions.
For applications that need to track processes continuously, you can create a Gem
that runs independently of the user sessions and monitors the system. See the
instructions on creating a custom Gem in the GemBuilder for C manual.

10.2 Object Change Notification
Object change notifiers are signals that can be generated by the object server to
inform you when specified objects have changed. You can request that the object
server inform you of these changes by adding objects to your notify set.

When a reference to an object is placed in a notify set, you receive notification of
all changes to that object (including the changes you commit) until you remove it
from your notify set or end your GemStone session. The notification you receive
can vary in form and content, depending on which interface to GemStone you are
running and how the notification action was defined.

Your application can respond in several ways:

 • Prompt users to abort or commit for an updated image

 • Log the information in an object change report.

 • Use the notifiers to trigger another action. For example, a package for
managing investment portfolios might check the stock that triggered the
232 GemStone Systems, Inc. September 2009

Contents Object Change Notification
notifier and enter a transaction to buy or sell if the price went below or above
preset values.

To set up a simple notifier for an object:

1. Create the object and commit it to the object server.

2. Add the object to your session’s notify set with the messages:

System addToNotifySet: aCommittedObject
System addAllToNotifySet: aCollectionOfCommittedObjects

3. Define how to receive the notifier with either a notifier message or by polling.

4. Define what your session will do upon receiving the notifier.

The following section describes each of these steps in detail.

Setting Up a Notify Set
GemStone defines a notify set for each user session to which you add or remove
objects. Except for a few special cases discussed later, any object you can refer to
can be added to a notify set.

Notify sets persist through transactions, living as long as the GemStone session in
which they were created. When the session ends, the notify set is no longer in
effect. If you need notification regarding the same objects for your next session,
you must once again add those objects to the notify set.

Adding an Object to a Notify Set

To add an object to your notify set, use an expression of the form:

System addToNotifySet: aCommittedObject

When you add an object to the notify set, GemStone begins monitoring changes to
it immediately.

Most GemStone objects are composite objects, made up of a root object and a few
subobjects. Usually you can just ignore the subobjects. However, there are
circumstances in which the both the root object and subobjects must appear in the
notify set. For details, see “Special Classes” on page 241.
September 2009 GemStone Systems, Inc. 233

Object Change Notification GemStone Programming Guide
Example 10.1 creates a collection of stock holdings and then creates a notify set for
the stocks in the collection. Finally, the session is set to automatically receive the
notifier.

Example 10.1

" Create a Class to record stock name, number and price: "
Object subclass: #Holding

instVarNames: #(’name’ ’number’ ’price’)
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: Published
instancesInvariant: false
isModifiable: false

%

Holding compileAccessingMethodsFor: Holding instVarNames
" Add a Collection for Holdings to the UserGlobals
dictionary"
UserGlobals
 at: #MyHoldings put: IdentityBag new.

! Add some stocks to my collection:

MyHoldings add:
 (Holding new name: #USSteel;
 number: 100000; price: 120.00).
MyHoldings add:
 (Holding new name: #SallieMae;
 number: 1000; price: 95.00).
MyHoldings add:
 (Holding new name: #ATT;
 number: 100000; price: 150.00).

"Add the collection object to the notify set"
System addToNotifySet: MyHoldings.
(System notifySet) includesIdentical: MyHoldings

System enableSignaledObjectsError.
234 GemStone Systems, Inc. September 2009

Contents Object Change Notification
Objects That Cannot Be Added

Not every object can be added to a notify set. Objects in a notify set must be visible
to more than one session; otherwise, other sessions could not change them. So,
objects you have created for temporary use or have not committed cannot be
added to a notify set. GemStone responds with an error if you try to add such
objects to the notify set.

You also receive an error if you attempt to add objects whose values cannot be
changed. This includes special objects such as instances of Character, SmallInteger,
SmallDouble, Boolean, or nil.

Adding a Collection to a Notify Set

To add a collection of objects to your notify set, use an expression like this:

System addAllToNotifySet: aCollectionOfCommittedObjects

This expression adds the elements of the collection to the notify set.

You don’t have to add the collection object itself, but if you do, use
addToNotifySet: rather than addAllToNotifySet:.When a collection
object is in the notify set, adding elements to the collection or removing elements
from it trigger notification. Modifications to the elements do not trigger
notification on the collection object; if you want to know when the elements
change, you must add them to the notification set.

Example 10.2 shows the notify set containing both the collection object and the
elements in the collection.

Example 10.2

| notifyObjs |
"Add the stocks in the collection to the notify set"
System addAllToNotifySet: MyHoldings.
%
an Array
 #1 a Holding
 #2 a Holding
 #3 a Holding

"Add the collection object itself to the notify set"
System addToNotifySet: MyHoldings.
System notifySet
%
September 2009 GemStone Systems, Inc. 235

Object Change Notification GemStone Programming Guide
an Array
 #1 an IdentityBag
 #2 a Holding
 #3 a Holding
 #4 a Holding

Very Large Notify Sets

You can register any number of objects for notification, but very large notify sets
can degrade system performance. GemStone can handle thousands of objects —
for a single session or across all sessions — without significant impact. Beyond
that, test whether the response times are acceptable for your application.

If performance is a problem, you can set up a more formal system of change
recording:

1. Have each session maintain its own list of the last several objects updated. The
list is a collection written only by that session.

2. Create a global collection of collections that contains every session’s list of
changes.

3. Put the global collection and its elements in your modify set, so you receive
notification when a session commits a modified list of changed objects. Then
you can check for changes of interest.

Keeping a global collection of changes in your modify set preserves the order of
the additions, so that the new objects can be serviced in the correct order.
Notification on a batch of changed objects is received in OOP order.

Listing Your Notify Set

To determine the objects in your notify set, execute:

System notifySet

Removing Objects From Your Notify Set

To remove an object from your notify set, use an expression of the form:

System removeFromNotifySet: anObject

To remove a collection of objects from your notify set, use an expression of the
form:

System removeAllFromNotifySet: aCollection
236 GemStone Systems, Inc. September 2009

Contents Object Change Notification
This expression removes the elements of the collection. If the collection object itself
is also in the notify set, remove it separately, using removeFromNotifySet:.

To remove all objects from your notify set, execute:

System clearNotifySet
NOTE

To avoid missing intermediate changes to objects in your notify set, do
not clear your notify set after each transaction and then add some of the
same objects to it again.

Notification of New Objects
In a multi-user environment, objects are created in various sessions, committed,
and immediately open to modification. It may not be sufficient to receive notifiers
on the objects that existed at the beginning of your session. You may also need
notification concerning new objects.

You cannot put unknown objects in your notify set, but you can create a collection
for those kinds of objects and add that collection to the notify set. Then when the
collection changes, meaning that objects have been added or removed, you can
stop and look for new objects. For example, to receive notification when the price
of any stock in your portfolio changes, you can perform the following steps:

1. Create a globally known collection (for example, MyHoldings) and add your
existing stock holdings (instances of class Holding) to it.

2. Place all of these stocks in your notify set:

System addAllToNotifySet: MyHoldings

3. Place the collection MyHoldings in your notify set, so that you receive
notification that the collection has changed when a stock is bought or sold:

System addToNotifySet: MyHoldings

4. Place new stock purchases in MyHoldings by adding code to the instance
creation method for class Holding.

5. When you receive notification that the contents of MyHoldings have changed,
compare the new MyHoldings with the original.

6. When you find new stocks, add them to your notify set, so that you will be
notified if they are changed.

Example 10.3 shows one way to do steps 5 and 6.
September 2009 GemStone Systems, Inc. 237

Object Change Notification GemStone Programming Guide
Example 10.3

"Make a temporary copy of the set."

| tmp newObjs |
tmp := MyHoldings copy.

"Refresh the view (commit or abort)."
System commitTransaction.

"Get the difference between the old and new sets."
newObjs := (MyHoldings - tmp).

"Add the new elements to the notify set."
newObjs size > 0 ifTrue: [System addAllToNotifySet: newObjs].

You can also identify objects to remove from the notify set by doing the opposite
operation:

tmp - MyHoldings

This method could be useful if you are tracking a great many objects and trying to
keep the notify set as small as possible.

Note that only IdentityBag and its subclasses understand "-" as a difference
operator.

Receiving Object Change Notification

After a commit, each session view is updated. The object server also updates its list
of committed objects. This list of objects is compared with the contents of the notify
set for each session, and a set of the changed objects for each notify set is compiled.

You can receive notification of committed changes to the objects in your notify set
in two ways:

 • Enabling automatic notification, which is faster and uses less CPU

 • Polling for changes
238 GemStone Systems, Inc. September 2009

Contents Object Change Notification
Automatic Notification of Object Changes

For automatic notification, you enable your session to receive the event signal
#rtErrSignalCommit. By default, #rtErrSignalCommit is disabled (except
in GemBuilder for Smalltalk, which enables the signal as part of
GbsSession>>notificationAction:).

To enable the event signal for your session, execute:

System enableSignaledObjectsError

To disable the event signal, send the message:

System disableSignaledObjectsError

To determine whether this error message is enabled or disabled for your session,
send the message:

System signaledObjectsErrorStatus

This method returns true if the signal is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you
end the session, or you receive the signal. The signal is automatically disabled
when you receive it so that the exception handler can take appropriate action.

The receiving session traps the signal with an exception handler. Your exception
handler is responsible for reading the set of signaled objects (by sending the
message System class>>signaledObjects) as well as taking the
appropriate action.

Reading the Set of Signaled Objects

The System class>>signaledObjects method reads the incoming changed
object signals. This method returns an array, which includes all the objects in your
notify set that have changed since the last time you sent signaledObjects in
your current session. The array contains objects changed and committed by all
sessions, including your own. If more than one session has committed, the OOPs
are OR’d together. The elements of the array are arranged in OOP order, not in the
order the changes were committed. If none of the objects in your notify set have
been changed, the array is empty.

Use a loop to call signaledObjects repeatedly, until it returns an empty
collection. The empty collection guarantees that there are no more signals in the
queue.

Also see the discussion of “Frequently Changing Objects” on page 241.
September 2009 GemStone Systems, Inc. 239

Object Change Notification GemStone Programming Guide
Polling for Changes to Objects
You also use System class>>signaledObjects to poll for changes to objects
in your notify set.

Example 10.4 uses the polling method to inform you if anyone has added objects
to a set or changed an existing one. Notice that the set is created in a dictionary that
is accessible to other users, not in UserGlobals.

Example 10.4

System disableSignaledObjectsError;
 signaledObjectsErrorStatus
 "Create a set."
UserGlobals at: #Changes put: IdentitySet new.
System commitTransaction

System addToNotifySet: Changes
%
Changes add: 'here is a change'.
System commitTransaction
%

| newSymbols count |
System abortTransaction.
count := 0 .
[newSymbols := System signaledObjects.
 newSymbols size = 0 and:[count < 50]
]
 whileTrue: [
 System sleep: 10 .
 count := count + 1
].
^ newSymbols.
%
System commitTransaction
240 GemStone Systems, Inc. September 2009

Contents Object Change Notification
Troubleshooting
Notification on object changes may occasionally produce unexpected results. The
following sections outline areas of concern.

Frequently Changing Objects

If users are committing many changes to objects in your notify set, you may not
receive notification of each change. You might not be able to poll frequently
enough, or your exception handler might not process the errors it receives fast
enough. In such cases, you can miss some intermediate values of frequently
changing objects.

Special Classes

Most GemStone objects are composite objects, but for the purposes of notification
you can usually ignore this fact. They are almost always implemented so that
changes to subobjects affect the root, so only the root object needs to go into the
notify set. Example 10.5 shows several common operations that trigger notification
on the root object.

Example 10.5

"assignment to an instance variable"
name := 'dowJones'.

"updating the indexable portion of an object"
self at: 3 put: 'active'.

"adding to a collection"
self add: 3.
September 2009 GemStone Systems, Inc. 241

Object Change Notification GemStone Programming Guide
In a few cases, however, the changes are made only to subobjects. For the following
GemStone kernel classes, both the object and the subobjects must appear in the
notification set:

 • RcQueue

 • RcIdentityBag

 • RcCounter

 • RcKeyValueDictionary

You can also have the problem with your own application classes. Wherever
possible, you should implement objects so that changes modify the root object.
You must also balance the needs of notification with potential problems of
concurrency conflicts.

If you are not being notified of changes to a composite object in your notify set,
look at the code and see which objects are actually modified during common
operations such as add: or remove:. When you are looking for the code that
actually modifies an object, you may have to check a lower-level method to find
where the work is performed.

Once you know the object’s structure and have discovered which elements are
changed, add the object and its relevant elements to the notify set. For cases where
elements are known, you can add them just like any other object:

System addToNotifySet: anObject

Example 10.6 shows a method that creates an object and automatically adds it to
the notify set in the process.

Example 10.6

method: SetOfHoldings
add: anObject

System addToNotifySet: anObject.
^super add: anObject

%

242 GemStone Systems, Inc. September 2009

Contents Gem-to-Gem Signaling
Methods for Object Notification
Methods related to notification are implemented in class System. Browse the class
System and read about these methods:

addAllToNotifySet:
addToNotifySet:
clearNotifySet
disableSignaledObjectsError
enableSignaledObjectsError
notifySet
removeAllFromNotifySet:
removeFromNotifySet:
signaledObjects
signaledObjectsErrorStatus

Class Exception provides the behavior for capturing signals. Look at these
methods related to exception handling:

category:number:do:
installStaticException:category:number:subtype:
remove
removeStaticException:

10.3 Gem-to-Gem Signaling
GemStone enables you to send a signal from your Gem session to any other current
Gem session. GsSession implements several methods for communicating between
two sessions. Unlike object change notification, inter-session signaling operates on
the event layer and deals with events that are not being recorded in the repository.
Signaling happens immediately, without waiting for a commit.

An application can use signals between sessions for situations like a queue, when
you want to pass the information quickly. Signals can also be a way for one user
who is currently logged in to send information to another user who is logged in.

NOTE
A signal is not an interrupt, and it does not automatically awaken an idle
session. The signal can be received only when your session is actively
executing Smalltalk code.

You can receive a signal from another session by polling for the signal or by
receiving automatic notification.
September 2009 GemStone Systems, Inc. 243

Gem-to-Gem Signaling GemStone Programming Guide
When the signal is received by polling, the session sends out the message System
signalFromGemStoneSession at regular intervals.

As an example of Gem-to-Gem signaling, Figure 10.1 shows the following
sequence of events:

1. session1 enables event signals from other Gem sessions. (For details, see
“Receiving an Exception from the Stone” on page 249.)

2. session2 sends a signal to session1. (See “Sending a Signal” on page 246.)

3. The Stone sends the exception #rtErrSignalGemStoneSession to
session1. The receiving session processes the signal with an exception handler.
For details, see Chapter 11, Handling Errors.
244 GemStone Systems, Inc. September 2009

Contents Gem-to-Gem Signaling
Figure 10.1 Communicating from Session to Session

Class Exception provides the behavior for capturing signals. Look at these
methods related to exception handling:

category:number:do:
installStaticException:category:number:subtype:
remove
removeStaticException:

session 1 session 2

Stone
#
r
t
E
r
r
S
i
g
n
a
l
G
e
m
S
t
o
n
e
S
e
s
s
i
o
n

System enable-

Sy
st
em
 s
en
dS
ig
na
l:
to
:w
it
hM
es
sa
ge

1

SignaledGemStone-
SessionError

3

2

September 2009 GemStone Systems, Inc. 245

Gem-to-Gem Signaling GemStone Programming Guide
Sending a Signal
To communicate, one session must send a signal and the receiving session must be
set up to receive the signal.

Finding the Session ID

To send a signal to another Gem session, you must know its session ID. To see a
description of sessions that are currently logged in, execute the following method:

System currentSessions

This message returns an array of SmallIntegers representing session IDs for all
current sessions. Example 10.7 shows how you might use this method to find the
session ID for user1 and send a message.

Example 10.7

| sessionId serialNum aGsSession otherSession signalToSend|
 sessionId := System currentSessions
 detect:[:each |(((System descriptionOfSession: each) at: 1)
 userId = 'user1')]
 ifNone: [nil].
sessionId notNil ifTrue: [
 serialNum := GsSession serialOfSession: sessionId .
 otherSession := GsSession sessionWithSerialNumber: serialNum .
 signalToSend :=
 GsInterSessionSignal signal: 4
 message:'reinvest form is here'.
 signalToSend sendToSession: otherSession .
]

Example 10.7 uses the method signalToSend sendToSession:
otherSession. Alternatively, you might use this method:

otherSession sendSignalObject: signalToSend

Still another alternative is this one, which replaces the final two expressions in
Example 10.7 with a single expression:

System sendSignal: aSignalNumber to: otherSession
withMessage: aMessage

No matter how the message is sent, the other session needs to receive it, as shown
in Example 10.8.
246 GemStone Systems, Inc. September 2009

Contents Gem-to-Gem Signaling
Example 10.8

GsSession currentSession signalFromSession message

reinvest form is here

Sending the Message

When you have the session ID, you can use the method GsInterSessionSignal
class>>signal: aSignalNumber message: aMessage.

 • aSignalNumber is determined by the particular protocol you arranged at
your site and the specific message you wish to send. Sending the integer “1,”
for example, doesn’t convey a lot unless everyone has agreed that ”1” means
“Ready to trade.” You could set up an application-level symbol dictionary of
meanings for the different signal numbers, similar to the standard GemStone
error dictionary discussed in Chapter 11.

 • aMessage is a String object with up to 1023 characters.

Instead of assigning meanings to aSignalNumber, your site might agree that the
integer is meaningless, but the message string is to be read as a string of characters
conveying the intended message, as in Example 10.9.

For more complex information, the message could be a code where each symbol
conveys its own meaning.

You can use signals to broadcast a message to every user logged in to GemStone.
In Example 10.9, one session notifies all current sessions that it has created a new
object to represent a stock that was added to the portfolio. In applications that
commit whenever a new object is created, this code could be part of the instance
creation method for class Holding. Otherwise, it could be application-level code,
triggered by a commit.

Example 10.9

System currentSessions do: [:each |
 System sendSignal: 8 to: each
 withMessage: 'new Holding: SallieMae'.].

System signalFromGemStoneSession at: 3.
September 2009 GemStone Systems, Inc. 247

Gem-to-Gem Signaling GemStone Programming Guide
If the message is displayed to users, they can commit or abort to get a new view of
the repository and put the new object in their notify sets. Or the application could
be set up so that signal 8 is handled without user visibility. The application might
do an automatic abort, or automatically start a transaction if the user is not in one,
and add the object to the notify set. This enables setting up a notifier on a new
unknown object. Also, because signals are queued in the order received, you can
service them in order.

Receiving a Signal

You can receive a signal from another session in either of two ways: you can poll
for such signals, or you can enable a signal from GemStone. Signals are queued in
the receiving session in the order in which they were received. If the receiving
session has inadequate heap space for an incoming signal, the contents of the
signal is written to stdout, whether the receiving session has enabled receiving such
signals or not. (Both the structure of the signal contents and the process of enabling
signals are described in detail in the following sections.)

The method System class>>signalFromGemStoneSession reads the
incoming signals, whether you poll or receive a signal. If there are no pending
signals, the array is empty.

Use a loop to call signalFromGemStoneSession repeatedly, until it returns a
nil. This guarantees that there are no more signals in the queue. If signals are being
sent quickly, you may not receive a separate #rtErrSignalGemStoneSession
for every signal. Or, if you use polling, signals may arrive more often than your
polling frequency.

Polling

To poll for signals from other sessions, send the following message as often as you
require:

System signalFromGemStoneSession

If a signal has been sent, this method returns a three-element array containing:

 • The session ID of the session that sent the signal (a SmallInteger).

 • The signal value (a SmallInteger).

 • The string containing the signal message.

If no signal has been sent, this method returns an empty array.
248 GemStone Systems, Inc. September 2009

Contents Gem-to-Gem Signaling
Example 10.10 shows how to poll for Gem-to-Gem signals. If the polling process
finds a signal, it immediately checks for another one until the queue is empty. Then
the process sleeps for 10 seconds.

Example 10.10

| response count |
count := 0 .
[response := System signalFromGemStoneSession.
 response size = 0 and:[count < 50]
] whileTrue: [
 System sleep: 10.
 count := count + 1
].
^response

Receiving an Exception from the Stone

To use the error mechanism to receive signals from other Gem sessions, you must
enable the exception #rtErrSignalGemStoneSession. This error has the same
three arguments mentioned above:

 • The session ID of the session that sent the signal (a SmallInteger).

 • The signal value (a SmallInteger).

 • The string containing the signal message.

By default, the exception #rtErrSignalGemStoneSession is disabled, except
in the GemBuilder for Smalltalk interface, which enables the error as part of
GbsSession>>gemSignalAction:.

To enable this exception, execute:

System enableSignaledGemStoneSessionError

To disable the exception, send the message:

System disableSignaledGemStoneSessionError

To determine whether receiving this exception is presently enabled or disabled,
send the message:

System signaledGemStoneSessionErrorStatus

This method returns true if the error is enabled, and false if it is disabled.
September 2009 GemStone Systems, Inc. 249

Other Signal Related Issues GemStone Programming Guide
This setting is not affected by commits or aborts. It remains until you change it, you
end the session, or you receive the error. The error is automatically disabled when
you receive it so that the exception handler can take appropriate action without
further interruption. You must re-enable the error afterwards.

10.4 Other Signal Related Issues
GemStone notifiers and Gem-to-Gem signals use the same underlying
implementation. The following performance and other considerations apply when
using either mechanism.

Increasing Speed

No matter how you set up your application, signals and notifiers require a few
milliseconds to get to their destination. You can improve the speed by using linked
Gems, rather than separate RPC sessions.

Receiving the signal can also be delayed. GemStone is not an interrupt-driven
application programming interface. It is designed to make no demands on the
application until the application specifically requests service. Therefore, Gem-to-
Gem signals and object change notifiers are not implemented as interrupts, and
they do not automatically awaken an idle session. They can be received only when
GemBuilder is running, not when you are running client code, sitting at the Topaz
prompt, writing to a socket connection, or waiting for a child process to complete.
The signals are queued up and wait until you read them, which can create a
problem with signal overflow if the delay is too long and the signals are coming
rapidly.

You can receive signals at reliable intervals by regularly performing some
operation that activates GemBuilder. For example, in a GemStone Smalltalk
application, you could set up a polling process that periodically sends out
GbsSession>>pollForSignal. The pollForSignal method causes
GemBuilder for Smalltalk to poll the repository. GemBuilder for C also provides a
wrapper for the function GciPollForSignal.

You should also check in your application to make sure the session does not hang.
For instance, use GsSocket>>readReady to make sure your session won’t be
waiting for nonexistent input at a socket connection.

See “Using Signals and Notifiers with RPC Applications” on page 251.
250 GemStone Systems, Inc. September 2009

Contents Other Signal Related Issues
Dealing With Signal Overflow
Gem-to-Gem signals and object change notification signals are queued separately
in the receiving session. The queues maintain the order in which the signals are
received.

NOTE
For object change notification, the queue does not preserve the order in
which the changes were committed to the repository. Each notification
signal contains an array of OOPs, and these changes are arranged in
OOP order. See “Receiving Object Change Notification” on page 238.

Each session has a signal buffer that will accomodate 50 signals. Signals remain in
the signal buffer until they are received and read by the receiving session. If the
receiving session does not read the signals, or if it does not read them fast enough
to keep up with signals that are being sent, the signal buffer will fill up. In this case,
further signals will cause the error #errSesBlockedOnOutput to be raised on
the sender. Set your application so that the sender gracefully handles this error. For
example, the sender might try to send the signal five times, and finally display a
message of the form:

Receiver not responding.

The most effective way to prevent signal overflow is to keep the session in a state
to receive signals regularly, using the techniques discussed in the preceding
section. When you do receive signals, make sure you read all the signals off the
queue. Repeat signaledObjects or signalFromGemStoneSession until it
returns a nil. You can postpone the problem by sending very short messages, such
as an OOP pointing to some string on disk or perhaps an index into a global
message table. For a better idea of how the message queue works, see System
class>>sendSignal:to:withMessage: in the image.

Using Signals and Notifiers with RPC Applications

RPC user applications need to call GciPollForSignal regularly to receive the signal
from the Gem. For linked applications, this call is not necessary, because the
applications run as part of the same process as the Gem. For more information, see
the GemBuilder for C manual.

Sending Large Amounts of Data

If you want to pass large amounts of data between sessions, sockets are more
appropriate than Gem-to-Gem signals. Chapter 9, "File I/O and Operating System
Access" describes the GemStone interface to TCP/IP sockets. That solution does
September 2009 GemStone Systems, Inc. 251

Other Signal Related Issues GemStone Programming Guide
not pass data through the Stone, so it does not create system overload when you
send a great many messages or very long ones.

Maintaining Signals and Notification When Users Log Out
Object change notification and Gem-to-Gem signals only reach logged-in sessions.
For applications that need to track processes continuously, you can create a Gem
that runs independently of the user sessions and monitors the system. For
example, such a Gem can monitor a machine and send a warning to all current
sessions when something is out of tolerance. Or it might receive the information
that all the users need and store it where they can find it when they log in.

Example 10.11 shows some of the code executed by an error handler installed in a
monitor Gem. It traps Gem-to-Gem signals and writes them to a log file.

Example 10.11

| gemMessage logString |
gemMessage := System signalFromGemStoneSession.
logString := String new.
logString add:
'---
The signal ';

add: (gemMessage at: 2) asString;
add: ' was received from GemStone sessionId = ';
add: (gemMessage at: 1) asString;
add: ' and the message is ';
addAll: (gemMessage at: 3).

(GsFile openWriteOnServer: '$GEMSTONE/gemmessage.txt')
addAll: logString; close.
252 GemStone Systems, Inc. September 2009

Chapter

11 Handling Errors
GemStone provides several mechanisms that allow you to deal with errors in your
programs.

Signaling Errors to the User
describes the mechanism whereby an application can halt execution and
report errors to the user.

Handling Errors in Your Application
describes the class Exception, which allows you to define categories of errors
and install handlers in your application to cope with them without halting
execution.

11.1 Signaling Errors to the User
Class System provides a facility to help you trap and report errors in your
GemStone Smalltalk programs. When you send a message of the form:

System signal: anInt args: anArray signalDictionary: aDict

System looks up an object identified by the number anInt in the SymbolDictionary
aDict. Using that object and any information you included in anArray, it builds a
September 2009 GemStone Systems, Inc. 253

Signaling Errors to the User GemStone Programming Guide
string that it passes back to the user interface code as an error description. The
GemStone Smalltalk interpreter halts.

Suppose, for example, that you create a SymbolDictionary called MyErrors in
which the string 'Employee age out of range' is identified by the number 1. The
following method causes that string to be passed back to the user interface
whenever the method’s argument is out of range.

Example 11.1

UserGlobals at: #MyErrors put: SymbolDictionary new.
%
method: Employee
age: anInt
(anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #() signalDictionary:
MyErrors].
age := anInt.
%

The SymbolDictionary containing error information is actually keyed on symbols
such as #English or #Tagalog that name natural languages. Each key is associated
with an array of error-describing objects. Here, in Example 11.2, is a
SymbolDictionary containing English and Pig Latin error descriptions:

Example 11.2

| signalDict |
signalDict := SymbolDictionary new.
signalDict at: #English put: Array new;
 at: #PigLatin put: Array new.
(signalDict at: #English)
 at: 1 put: #('Employee age out of range');
 at: 2 put: #('Distasteful input').
(signalDict at: #PigLatin)
 at: 1 put: #('Employeeay ageay outay ofay angeray');
 at: 2 put: #('Istastefulday inputay').
UserGlobals at: #MyErrors put: signalDict.

The error string to be returned in response to a particular signal number depends
on the value of the instance variable nativeLanguage in your UserProfile. The
254 GemStone Systems, Inc. September 2009

Contents Signaling Errors to the User
message nativeLanguage lets you read the value of that variable, and the
message nativeLanguage: lets you change it. However, changes to native
language do not take effect until you have committed the change, logged out and
in again.

To set GemStone to respond to you in Pig Latin:

System myUserProfile nativeLanguage: #PigLatin.
System commitTransaction.

Log out, and log in again as the same user. Now if you have defined the method
Employee >> age: as shown above, then this expression:

myEmployee age: -1

elicits the error report ’Employeeay ageay outay ofay angeray’.

NOTE
Signal 0 (zero) is reserved for use by GemStone. Do not use it.

Since GemStone does not have system error messages defined for #PigLatin, you
may prefer to reset your native language to English before continuing.

System myUserProfile nativeLanguage: #English.
System commitTransaction.

And again, log out, and log in again as the same user.

As the previous examples have shown, each error object is an array. Although the
arrays in the previous example contained only strings, they can also include
SmallIntegers that act as indexes into the parameter to args:. When the error
string is constructed, each positive SmallInteger in the error object is replaced by
the result of sending asString to the corresponding element of the args: array.
This lets you capture and report some diagnostic information from the context of
the error.

Suppose, for example, that you wanted to report the actual argument to age: that
triggered the “out of range” error. You can define your error dictionary this way:

Example 11.3

| signalDict |
signalDict := SymbolDictionary new.
signalDict at: #English put: Array new;
 at: #PigLatin put: Array new.
September 2009 GemStone Systems, Inc. 255

Signaling Errors to the User GemStone Programming Guide
(signalDict at: #English)
 at: 1 put: #('Employee age ' 1 ' out of range');
 at: 2 put: #('Distasteful input').
(signalDict at: #PigLatin)
 at: 1 put: #('Employeeay ageay ' 1 ' outay ofay
angeray');
 at: 2 put: #('Istastefulday inputay').
UserGlobals at: #MyErrors put: signalDict.

And then you can define age: like this:

Example 11.4

method: Employee
age: anInt
(anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #[anInt]
signalDictionary: MyErrors].
age := anInt.
%

When an argument to age: is out of range, System looks up the array representing
the error for signal 1 and begins building a string. The first part of that string is
’Employee age’ (the first element of the array), the second part is the result of
sending asString to anInt, and the final part is ’ out of range’ (the third element
of the array). The resulting string has the form ’Employee age –1 out of range’.

The following example shows how you can use a two-element argument array:

Example 11.5

(MyErrors at: #English)
 at: 1 put: #('The employee named ' 2 ' cannot be ' 1 ' years
old');
 at: 2 put: #('Distasteful input')
%
method: Employee
age: anInt
 (anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #[anInt, self name]
 signalDictionary: MyErrors].
256 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
 age := anInt.
%

If one of the SmallIntegers in the error object is negative, the absolute value of that
number is used for indexing into the args: array. Then, when the error string is
constructed, the negative SmallInteger is replaced by the identifier of the
corresponding object. For example, if the error object contains the SmallInteger -3,
then the error string contains the identifier of the third element of the args: array.

In Example 11.6, the error-handling code given earlier is modified to report the
identifier of any employee receiving the message age: with an inappropriate
argument.

Example 11.6

(MyErrors at: #English)
 at: 1 put: #('The employee with object identifier ' -2
 ' cannot be ' 1 ' years old');
 at: 2 put: #('Distasteful input').
method: Employee
age: anInt
 (anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #[anInt, self]
 signalDictionary: MyErrors].
 age := anInt.
%

Invoking age: with an out-of-range argument now elicits an error report of the
form “The employee with object identifier 77946 cannot be –1 years old.”

11.2 Handling Errors in Your Application
Unless an error is fatal to GemStone, it can be handled in your application without
halting execution with the class Exception. You define a category of errors to which
your application must respond, raise the error under appropriate circumstances,
and execute additional GemStone Smalltalk code to recover from the error
gracefully.
September 2009 GemStone Systems, Inc. 257

Handling Errors in Your Application GemStone Programming Guide
If no GemStone Smalltalk exception handler is defined for a given error, control
returns to the interface you are using. See your GemBuilder or Topaz manual for
details of its behavior in response to errors.

GemStone Smalltalk allows you to define two kinds of exceptions: static exceptions
and activation exceptions.

Activation Exceptions
An activation exception is associated with a method and the associated state in
which the GemStone Smalltalk virtual machine is presently executing. These
exceptions live and die with their associated method contexts—when the method
returns, control is passed to the next method and the exception is gone.

Each exception is associated with one method context, but each method context
can have a stack of associated exceptions. The relationship is diagrammed in
Figure 11.1.

Figure 11.1 Method Contexts and Associated Exceptions

Static Exceptions
A static exception is a final line of defense—if you define one, it will take control in
the event of any error for which no other handler has been defined. A static
exception executes without changing in any way the stack, or the return value of

method
Exception

top

next

Exception

next = nil

Exception

next

Exception

context

method
context

method
context

Exception

next

S
ta

ck

resignal:

.

.

.

258 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
the method that called it. Static exception handlers are therefore useful for
handling errors that appear at unpredictable times, such as the errors listed in
Table 11.1. You can use a static exception handler as you would an interrupt
handler, coding it to change the value of some global variable, perhaps, so that you
can determine that an error did, in fact, occur.

The errors in Table 11.1 are sometimes called event exceptions. Although they are
not true errors, their implementation is based on the GemStone error mechanism.
For examples that use these event exceptions, also called signals, see Chapter 10,
“Signals and Notifiers”.

Table 11.1 Common GemStone Event Exceptions

Name Number Description
#rtErrSignalAbort 6009 While running outside a transaction, Stone

requested Gem to abort. This error is
generated only if you have executed the
method enableSignaledAbortError. No
arguments.

#abortErrLostOtRoot 3031 While running outside a transaction, Stone
requested Gem to abort. Gem did not respond
in the allocated time, and Stone was forced to
revoke access to the object table. No
arguments.

#rtErrSignalCommit 6008 An element of the notify set was committed
and added to the signaled objects set. This
error is received only if you have executed the
method enableSignaledObjectsError.
No arguments.

#rtErrSignalGemStoneSession 6010 Your session received a signal from another
GemStone session. This error is received only
if you have executed the method
enableSignaledGemstoneSessionError.
Arguments:
1. The session ID of the session that sent the
signal.
2. An integer representing the signal.
3. A message string.
September 2009 GemStone Systems, Inc. 259

Handling Errors in Your Application GemStone Programming Guide
The following exception handler, for example, handles the error
#abortErrLostOtRoot:

Example 11.7

UserGlobals at: #tx3 put:
 ("Handle lost OT root"
 Exception
 installStaticException: [:ex :cat :num :args |
 System abortTransaction.
]
 category: GemStoneError
 number: 3031
 subtype: nil
).

#rtErrSignalFinishTransaction 6012 This exception indicates that stone has
requested the session to commit, abort or
continue (with continueTransaction) the
current transaction. This error is received only
if you have executed the method
enableSignaledFinishTransactionErr
or and the session is in transaction.

#rtErrSignalAlmostOutOfMemor
y

6013 This exception indicates the temporary object
memory for the session is almost full. The error
is deferred if in user action or index mainte-
nance. This error is received only if you have
executed the method
enableAlmostOutOfMemoryError or
signalAlmostOutOfMemoryThreshold:.

#rtErrTranlogDirFull 2339 This exception indicates all available transac-
tion log directories or partitions are full. This
error is received if you are DataCurator or Sys-
temUser, otherwise only if you have executed
the method enableSignalTranlogsFull
in this session.

Table 11.1 Common GemStone Event Exceptions (Continued)

Name Number Description
260 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
To remove the handler, execute:

self removeExceptionHandler: (UserGlobals at: #tx3).

Defining Exceptions
Instances of class Exception represent specific exception handlers—the code to
execute in the event that the error occurs.

An exception handler—an instance of class Exception—consists of the following:

 • An optional category to which the error belongs.

 • An optional error number to further distinguish errors within a category.

 • The code to execute in the event that the specific error is raised.

 • In activation exception handlers, a pointer to the next exception handler
associated with this method context, as shown in Figure 11.1 on page 258.

If this pointer is nil, the interpreter searches the previous method context for its
stack of exception handlers instead.

 The interpreter decides to give control to a specific exception handler based upon
its category and error number. These ideas are explained in detail below.

Categories and Error Numbers

Errors are defined in an instance of LanguageDictionary. Each
LanguageDictionary represents a specific category of errors. Your application can
include any number of such error dictionaries, each representing a given category
of error. However, each such category of errors must be defined in UserGlobals or
some other dictionary to which your application has access.

Like the SignalDict SymbolDictionary described earlier, the dictionary that defines
your errors is keyed on symbols such as #English or #Tagalog that name natural
languages. Each key is associated with an array of error-describing objects.

The index into the array is a specific error number, and the value is either a string
or another array.

If it is a string, the string represents the text of an error message. Using an array,
however, allows you to capture and report diagnostic information from the
context of the error. This works just as it did using the signaling mechanism
described earlier; SmallIntegers interspersed with strings act as indexes into an
array of arguments passed back from the specific error that was raised. When the
error string is constructed, each positive SmallInteger in the error object is replaced
by the result of sending asString to the corresponding element of the args:
September 2009 GemStone Systems, Inc. 261

Handling Errors in Your Application GemStone Programming Guide
array specified when the exception is raised. (This array is discussed in detail in the
next section.)

The GemStone system itself uses this mechanism. GemStone errors are defined in
the dictionary GemStoneError, and all GemStone system errors belong to this
category. This dictionary is accessible to all users by virtue of being defined in the
dictionary Globals. The dictionary GemStoneError contains one key: #English. The
value of this key is an array.

It is not, however, an array of error numbers. Numbers are not the most useful
possible way to refer to errors; sprinkling code with numbers does not lead to an
application that can be easily understood and maintained. For this reason,
GemStoneError defines mnemonic symbols for each error number in a
SymbolDictionary called ErrorSymbols. The keys in this dictionary are the
mnemonic symbols, and their values are the error numbers. These numbers, in
turn, are used to map each error to the appropriate index of the array that holds
the error text. This structure is diagrammed in Figure 11.2.

Figure 11.2 Defining Error Dictionaries

LanguageDictionary (error category)

key: value: Array

#English index: value:

1
2
3
4

error text —

SymbolDictionary

key: value:

#aSymbol
#anotherSymbol

error

error

String or Array of
strings and arguments

numbers

numbers

.

.

.

1
2
3
4
.
.
.

262 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
If your application needs only one exception handler, you need not define your
own error dictionary. You can instead use the generic error already defined for you
in the GemStone ErrorSymbols dictionary as #genericError.

For example, suppose we define the class Cargo as follows:

Example 11.8

Object subclass: #Cargo
instVarNames: #(#name #diet #kind)
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

We give our new class the following instance creation method:

Example 11.9

classMethod: Cargo
named: aName diet: aDiet kind: aKind

| result |

result := self new.
result name: aName.
result diet: aDiet.
result kind: aKind.
^result.

And we create accessing and updating methods for its instance variables:

Example 11.10

Cargo compileAccessingMethodsFor: Cargo instVarNames.

Now we can make some instances:
September 2009 GemStone Systems, Inc. 263

Handling Errors in Your Application GemStone Programming Guide
Example 11.11

UserGlobals at: #Sheep put:
(Cargo named: #Sheep diet: #Vegetarian kind: #animal).

UserGlobals at: #Cabbage put:
(Cargo named: #Cabbage diet: #Photosynthesis kind: #plant).

UserGlobals at: #Wolf put:
(Cargo named: #Wolf diet: #Carnivore kind: #animal).

We wish all the errors in this application to belong to the category CargoErrors, so
we define a LanguageDictionary by that name and a SymbolDictionary to contain
the mnemonic symbols for its errors. See Example 11.12.
264 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
Example 11.12

UserGlobals at: #CargoErrors put: LanguageDictionary new.
UserGlobals at: #CargoErrorSymbols put: SymbolDictionary new.

We then populate these dictionaries with error symbols and error text:

Example 11.13

| errorMsgArray |
CargoErrorSymbols at: #VegetarianError put: 1.
CargoErrorSymbols at: #CarnivoreError put: 2.
CargoErrorSymbols at: #PlantError put: 3.
errorMsgArray := Array new.
CargoErrors at: #English put: errorMsgArray.
errorMsgArray at: 1 put: #('Sheep can''t eat wolves!').
errorMsgArray at: 2 put: #('Wolves won''t eat cabbage!').
errorMsgArray at: 3 put: #('Cabbages don''t eat animals!').

We can now define some more meaningful methods for Cargo:

Example 11.14

method: Cargo
eat: aCargo
^name , ' ate ' , (self swallow: aCargo) , '.'
%
method: Cargo
swallow: aFood
^aFood name
%

And finally, we can verify that our example so far works as we expect:

Example 11.15

Wolf eat: Sheep
'Wolf ate Sheep.'
September 2009 GemStone Systems, Inc. 265

Handling Errors in Your Application GemStone Programming Guide
Handling Exceptions
Keep the handler as simple as possible, because you cannot receive any additional
errors while the handler executes. Normally your handler should never terminate
the ongoing activity and change to some other activity.

Handling Activation Exceptions

To define an exception handler for an activation exception, use the class method
Exception category:number:do:.

 • The argument to the category: keyword is the specific error category of the
error you wish to catch—the instance of LanguageDictionary in which the
error is defined.

 • The argument to the number: keyword is the specific error number you wish
to catch.

 • The argument to the do: keyword is a four-argument block you wish to
execute when the error is raised.

The first argument to the four-argument block is the instance of Exception you
are currently defining.

The second argument to the four-argument block is the error category, which
can be nil.

The third argument to the four-argument block is the error number, which can
be nil.

The fourth argument to the four-argument block is the information the error
passes to the exception handler in the form of arguments.

If your exception handler does not specify an error number (an error number of
nil), then it receives control in the event of any error of the specified category.

The following errors can only be caught when the exception handler specifies the
error number:

objErrCorruptObj
objErrDoesNotExist
rtErrClientFwdSend
rtErrGsProcessTerminated
rtErrSignalAlmostOutOfMemory

If your exception handler does not specify a category (a category of nil), then it
receives control in the event of any error at all.
266 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
If your exception handler specifies an error number but the error category is nil,
the error number is ignored and this exception handler receives control in the
event of any error at all.

The following exception handler defines #VegetarianError so that, when it is
raised, it changes the result returned, changing the object eaten from Wolf to
Cabbage:

Example 11.16

method: Cargo
eat: aCargo
 Exception

category: CargoErrors
number: (CargoErrorSymbols at: #VegetarianError)
do: [:ex:cat:num:args | aCargo == Wolf

ifTrue: ['Cabbage']].

^name , ' ate ' , (self swallow: aCargo) , '.'
%

Handling Static Exceptions

To define an exception handler for static exceptions, use the Exception class
method installStaticException:category:number: instead.

 • The argument to the installStaticException: keyword is the block you
wish to execute when the error is raised.

 • The argument to the category: keyword is the specific error category of the
error you wish to catch—the instance of LanguageDictionary in which the
error is defined.

 • The argument to the number: keyword is the specific error number you wish
to catch.

The same rules about error categories and error numbers apply to static exceptions
as to activation exceptions.
September 2009 GemStone Systems, Inc. 267

Handling Errors in Your Application GemStone Programming Guide
Raising Exceptions
To raise an exception, use the class method System signal:args:
signalDictionary:.

 • The argument to the signal: keyword is the specific error number you wish
to signal.

 • The argument to the args: keyword is an array of information you wish to
pass to the exception handler. This is the array whose elements can be used to
build the error messages described in the section entitled “Defining
Exceptions” on page 261.

The error message template defined with your exception is composed of a
mixture of Strings and Integers. The Integers in the error message serve as
indexes into the args: array. When the actual error message is constructed,
each Integer in the error message template is replaced by the result of sending
asString to the corresponding element of this array.

 • The argument to the signalDictionary: keyword is the specific error
category of the error you wish to signal—the instance of LanguageDictionary
in which the error is defined.

To raise the generic exception defined for you in ErrorSymbols as #genericError,
use the class method System genericSignal:text:args:, or one of its
variants.

 • The argument to the genericSignal: keyword is an object you can define
to further distinguish between errors, if you wish. Alternatively, it can be nil.

 • The argument to the text: keyword is a string you can use for an error
message. It will appear in GemStone’s error message when this error is raised.
It can be nil.

 • The argument to the args: keyword is an array of information you wish to
pass to the exception handler, as described above.

Other variants of this message are System genericSignal:text:arg: for
errors having only one argument, or System genericSignal:text: for errors
having no arguments.
268 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
For example, we can now raise the exception #VegetarianError for which we
previously defined a handler (in Example 11.16 on page 267):

Example 11.17

method: Cargo
swallow: aFood
diet = #Vegetarian ifTrue: [

aFood kind = #plant ifFalse: [
^System signal: (CargoErrorSymbols at: #VegetarianError)

 args: #() signalDictionary: CargoErrors
]

].
^aFood name
%

When we test this exception, we get:

Example 11.18

Sheep eat: Wolf
'Sheep ate Cabbage.'

Flow of Control
Exception handlers with no explicit return operate like interrupt handlers—they
return control directly to the method from which the exception was raised. Write
all static exception handlers this way, because the stack usually changes by the
time they catch an error. Activation exception handlers can also be written to
behave that way, like the one in Example 11.16.

In Example 11.17 and 11.18, control returns directly to the method swallow:, as
shown in Figure 11.3.
September 2009 GemStone Systems, Inc. 269

Handling Errors in Your Application GemStone Programming Guide
Figure 11.3 Default Flow of Control in Exception Handlers

Sometimes, however, this is not useful behavior—the application may simply have
to raise the same error again. In activation exception handlers, it can be useful
instead to return control to the method that defined the handler, such as method
eat: in Example 11.16.

You can accomplish this by defining an explicit return (using the return character
^) in the block that is executed when the exception is raised. For example, the
method in Example 11.19 redefines how the exception #VegetarianError is to be
handled. It explicitly returns a string. Code that follows after this exception is
raised is therefore never executed, because control returns to the sender of this
message instead.

top

to interface

Exception
without ^

executed
code

aCargo
swallow:

aCargo
eat:

System
signal:

args:
270 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
Example 11.19

method: Cargo
eat: aCargo

Exception
category: CargoErrors
number: (CargoErrorSymbols at: #VegetarianError)

 do: [:ex:cat:num:args | ^ 'The sheep is not hungry.'].
^name + ' ate ' + (self swallow: aCargo)

%

Using the method swallow: that was defined in Example 11.17, we now get a
different result:

Example 11.20

Sheep eat: Wolf
'The sheep is not hungry.'

Figure 11.4 shows the flow of control in Examples 11.19 and 11.20.
September 2009 GemStone Systems, Inc. 271

Handling Errors in Your Application GemStone Programming Guide
Figure 11.4 Activation Exception Handler With Explicit Return

When you raise an error in a user action, you need to install an exception handler
that explicitly returns, or the exception block may not leave the activation record
stack in the correct state for continued execution. If the exception block does not
contain an explicit return, the call to userAction should be placed by itself inside
a method similar to this:

Example 11.21

callAction: aSymbol withArgs: args
^ System userAction: aSymbol withArgs: args
%

top

to interface

executed
code

aCargo
swallow:

aCargo
eat:

System
signal:

args:

Exception
with ^
272 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
Signaling Other Exception Handlers

Under certain circumstances, your exception handler can choose to pass control to
a previously defined exception handler, one that is below the present exception
handler on the stack. To do so, your exception handler can send the message
resignal:number:args:.

 • The argument to the resignal: keyword is the specific error category of the
error you wish to signal—the instance of LanguageDictionary in which the
error is defined.

 • The argument to the number: keyword is the specific error number you wish
to signal.

 • The argument to the args: keyword is an array of information you wish to
pass to the exception handler. This is the array whose elements can be used to
build the error messages described above.

The error message template defined with your exception is composed of a
mixture of Strings and Integers. The Integers in the error message serve as
indexes into the args: array. When the actual error message is constructed,
each Integer in the error message template is replaced by the result of sending
asString to the corresponding element of this array.

For example, we might compile a method that defines an exception handler as
follows:

Example 11.22

method: Cargo
eat: aCargo

Exception
category: CargoErrors
number: nil
do: [:ex:cat:num:args |

(num == (CargoErrorSymbols at: #VegetarianError))
ifTrue: [ex resignal: cat number: num args:

args]
ifFalse: [^ 'The sheep is not hungry.']
].

^name , ' ate ' , (self swallow: aCargo)
%

September 2009 GemStone Systems, Inc. 273

Handling Errors in Your Application GemStone Programming Guide
We then execute the following code:

Example 11.23

Exception category: CargoErrors
 number: nil
 do: [:ex:cat:num:args |
 ^'Shepherd intervened with a resignal.'].
Sheep eat: Wolf.
%
'Shepherd intervened with a resignal.'.

The resignal: message in Example 11.22 means that, when the VegetarianError
is raised, control passes to the exception handler defined in the executed code
instead. This means that the result of executing Sheep eat: Wolf will be a return
of the string 'Shepherd intervened with a resignal.'.

Figure 11.5 shows the flow of control in Examples 11.22 and 11.23.
274 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
Figure 11.5 Activation Exception Handler Passing Control to Another Handler

Removing Exception Handlers

You can define an exception so that it removes itself after it has been raised, using
the Exception instance method remove. In conjunction with the resignal:
mechanism described in the previous section, remove allows you to set up your
application so that successive occurrences of the same error (or category of errors)
are handled by successively older exception handlers that are associated with the
same context.

Exception
with ^

Exception
with resignal

to interface

top

executed
code

aCargo
swallow:

aCargo
eat:

System
signal:

args:
September 2009 GemStone Systems, Inc. 275

Handling Errors in Your Application GemStone Programming Guide
For example, suppose we define the eat: method as shown in Example 11.22 and
then execute the following code:

Example 11.24

Exception
category: CargoErrors
number: nil
do: [:ex:cat:num:args |ex remove.'clover'].

Exception
category: CargoErrors
number: nil
do: [:ex:cat:num:args | ex remove.'grass'].

^(Sheep eat: Wolf) , ', ' , (Sheep eat: Wolf) , '.'
%
'Sheep ate grass, Sheep ate clover.'

The first occurrence of VegetarianError executes the most recent exception
defined, which returns the string 'grass'. The exception then removes itself, so
that the next occurrence of the same error executes the exception handler stacked
previously within the same method context. This exception handler returns the
string 'clover'.

Recursive Errors
If you define an exception handler broadly to handle many different errors, and
you make a programming mistake in your exception handler, the exception
handler may then raise an error that calls itself repeatedly. Such infinitely
recursive error handling eventually reaches the stack limit. The resulting stack
overflow error is received by whichever interface you are using.

If you receive such an error, check your exception handler carefully to determine
whether it includes errors that are causing the problem.
276 GemStone Systems, Inc. September 2009

Contents Handling Errors in Your Application
Uncontinuable Errors
Some errors are sufficiently complex or serious that execution cannot continue.
Exception handlers cannot be defined for these errors—instead, control returns to
whichever interface you are using.

The following errors cannot be caught by an exception handler:

abortErrObjAuditFail
otErrCompactSuccessful
otErrRebuildSuccessful
rtErrCommitAbortPending
rtErrHardBreak
rtErrStackLimit
rtErrUncontinuableError

The following fatal errors kill the session and thus cannot be "handled":

abortErrFinishedObjAuditRepair
bkupErrRestoreSuccessful

The following errors cannot be caught if a debugger single-step operation is in
progress in the GemStone Smalltalk debugger via GciStep() or via single-stepping
methods in GsProcess.

rtErrCodeBreakpoint
rtErrStackBreakpoint
rtErrStep
September 2009 GemStone Systems, Inc. 277

Handling Errors in Your Application GemStone Programming Guide
278 GemStone Systems, Inc. September 2009

Chapter

12 Handling Exceptions
the ANSI Way
In addition to the error handling mechanisms described in Chapter 11 (the legacy
Exception framework), GemStone Smalltalk implements the ANSI exception
handling protocols, with provisions for signaling that an exception has occurred
and for defining handlers for signaled exceptions.

Signaling Exceptions
describes the mechanism whereby an application can signal that an unusual or
undesired event occurred. The class of the signaled exception determines
which handler(s) will be invoked. A handler might halt execution and report
an error to the user.

Handling Exceptions
describes how to define handlers in your application to cope with signaled
exceptions. Depending on the type of the exception, your application might be
able to handle the exception gracefully, possibly even without the user being
informed of the exception.

Legacy Exceptions
describes how the ANSI exception framework interacts with the legacy
GemStone exception framework.
September 2009 GemStone Systems, Inc. 279

Signaling Exceptions GemStone Programming Guide
12.1 Signaling Exceptions
ANSI Exceptions are class-based, meaning that you use a class in the ExceptionA
hierarchy to describe errors and other exceptions in your GemStone Smalltalk
programs. (ANSI errors include MessageNotUnderstood and ZeroDivide.) You
can extend the built-in exception types by defining new subclasses. You can also
change your new exception’s default behavior by adding method overrides to the
new class (for example, defaultAction and isResumable).

When an application sends a message of the form:

ExceptionA signal: aString

GemStone Smalltalk creates an instance of the signaled class and passes it to a
handler associated with that exception class. There is always a default handler. For
most errors, the default behavior is to halt the GemStone Smalltalk interpreter and
pass the string back to the client to be handled (by Topaz, GemBuilder, or another
application) as an error.

Example 12.1

method: Employee
age: anInt
(anInt between: 15 and: 65)

ifFalse: [Error signal: 'Employee age out of range'].
age := anInt.
%

12.2 Handling Exceptions
Other than a few fatal errors, most signaled exceptions can be handled in your
GemStone Smalltalk application. To do so, you identify the type of exception that
might be signaled (ExceptionA or, more often, a subclass of ExceptionA) and
provide GemStone Smalltalk code to handle the exception.

GemStone Smalltalk allows you to define two kinds of exception handlers: default
handlers and activation handlers.
280 GemStone Systems, Inc. September 2009

Contents Handling Exceptions
Default Handlers
A default handler is the final line of defense—it is invoked if the indicated
exception is signaled and not handled (or is passed) by an activation handler or a
subclass’s default handler. Because a default handler is not associated with an
ExecutableBlock (as is the case with activation handlers), it is useful for handling
exceptions that appear at unpredictable times.

The default handler for some exceptions (such as Notification) is to do nothing:
execution resumes with the code immediately following the signaling of the
exception. For other exceptions (such as Error), the default handler is to stop the
GemStone Smalltalk interpreter and pass an error message back to the client (to be
handled by Topaz, GemBuilder, or another application).

The built-in exception types have default handlers. To define a default handler for
a new exception, add a defaultAction method in your new class.

Activation Handlers
An activation handler is associated with an ExecutableBlock and the associated
state in which the GemStone Smalltalk virtual machine is presently executing.
These handlers live and die with their associated blocks—when the block is exited,
the handler is gone.

An activation handler is associated with exactly one ExecutableBlock and applies
as long as the ExecutableBlock is being executed. Because an ExecutableBlock can
be embedded in another ExecutableBlock, multiple activation handlers can be
active at one time. Figure 12.1 illustrates this relationship.

Figure 12.1 ExecutableBlock and Associated Handlers

top
...
^

/ ExecutableBlock -> Optional activation handler
Stack ^

\ ExecutableBlock -> Optional activation handler
^
bottom

To define an activation handler for an ExecutableBlock, send the on:do: message
to the block. Example 12.2 defines an averagePay method for the Employee class.
The method calculates an average by dividing two values. If the division signals a
September 2009 GemStone Systems, Inc. 281

Handling Exceptions GemStone Programming Guide
ZeroDivide exception, the exception handler returns zero as the result of the
method. In this implementation, the method will never result in a “division by zero
error” being seen by the user. (Of course, there are other ways you might write this
particular method. This example simply serves to highlight the on:do: exception
handling approach.)

Example 12.2

method: Employee
averagePay

[
^self totalPay / self yearsOfService.

] on: ZeroDivide do: [:ex |
^0.

].
%

The first argument to the on:do: method specifies what types of exception the
handler should catch. The argument can be a class in the ExceptionA hierarchy, or
it can be an ExceptionSet made up of one or more classes in the ExceptionA
hierarchy.

The second argument specifies a one-argument ExecutableBlock that will be
invoked when the specified exception is signaled. The one argument is the newly-
created instance of the class of the exception that was signaled, and can contain
additional information about the exception (including the string that was passed
to the signal: method). For example, an instance of the ZeroDivide error can be
queried for the dividend (obviously, the divisor is zero). Similarly, an instance of
the MessageNotUnderstood error can be queried for the receiver and message
(selector and arguments).

Selecting a Handler
When an exception is signaled, GemStone starts at the top of the current process’s
stack, searching down the stack for a handler that handles the exception. Each
exception handler in the stack is examined to see if it was installed (using the
on:do: message) as a handler for the signaled exception’s class. If a handler is
found but it does not handle the signaled exception, it is passed over and the
search continues down the stack.
282 GemStone Systems, Inc. September 2009

Contents Handling Exceptions
A handler for a superclass will handle subclass exceptions. That is, an exception
handler for the class Error will be invoked for an exception of its subclass
ZeroDivide, and an exception handler for the class Notification will be invoked for
an exception of its subclass Warning.

A subclass does not, however, handle a superclass exception. This means that an
exception handler for the class MessageNotUnderstood will not be invoked for an
exception of its superclass Error.

Example 12.3 contains six blocks, three protected blocks and three handler blocks.
Each of the three on:do: messages creates a new stack frame that has an
associated handler block.

Example 12.3

method: Employee
doStuff

| a b c |
a := [

self doStuffA.
b := [

self doStuffB.
c := [

self doStuffC.
self doStuffD.

] on: ZeroDivide do: [:zdEx |
self handleZeroDivide: zdEx.
^self.

].
self doStuffE.

] on: Warning do: [:wEx |
self handleWarning: wEx.
wEx resume: #ok.

].
self doStuffF.
#good.

] on: Error do: [:erEx |
self handleError: erEx.
erEx return: #bad.

].
%

September 2009 GemStone Systems, Inc. 283

Handling Exceptions GemStone Programming Guide
As shown in Figure 12.2, the handler for Error is installed first, and catches any
Error or subclass exception signaled during the block that begins with self
doStuffA.

The handler for Warning is installed next, and catches any Warning or subclass
exception signaled during the block that begins with self doStuffB.

If a ZeroDivide error is signaled during doStuffB, it is handled by the Error
handler, not by the ZeroDivide handler (which is not yet installed).

The handler for ZeroDivide is installed last, and catches any ZeroDivide error or
subclass exception signaled during the block that begins with self doStuffC.

If a MessageNotUnderstood error were signaled during doStuffC, it would not
be handled by either the ZeroDivide or Warning handler, even though they were
installed more recently. Those handlers are not of the proper class;
MessageNotUnderstood does not inherit from ZeroDivide or Warning. Instead, a
MessageNotUnderstood error would be handled by the Error handler associated
with the block that begins with self doStuffA.

Figure 12.2 Selecting a Handler

Flow of Control
Once control is passed by sending value: to the handler block with the exception
instance as an argument, the handler block can attempt to address the situation.

Keep in mind that an activation handler is just an ExecutableBlock that is defined
in a method and passed as an argument during a message send (like a block sent
with a select: message). As such, the activation handler has access to the
method context in which it is defined, including method temporaries and block
variables in its scope, as well as the object in which the method is defined

Newest or innermost call Handler

 Direction
 of
 Search

doStuffC ZeroDivide
doStuffB Warning
doStuffA Error

Oldest or outermost call
284 GemStone Systems, Inc. September 2009

Contents Handling Exceptions
(including instance variables). The handler may, of course, send messages to any
object to which it has access.

In particular, the activation handler may return from the method containing the
activation handler. In Example 12.3 (on page 283), the ZeroDivide handler returns
self. If a ZeroDivide exception were signaled during doStuffC, then the
doStuff method would return and other messages would never be sent
(doStuffD, doStuffE, and doStuffF).

Messages That Alter the Flow of Control

In addition to an explicit return from the containing method, an activation handler
can send the following messages to the exception instance to cause other changes
in the flow of control. Sending one of these messages is similar to a method return
in that there is no return from these messages (except for outer, which might
return).

resume: anObject
Causes anObject to be returned as the result of the signal: message that
triggered the exception. Sending resume: to a non-resumable exception is an
error.

In Example 12.3, the Warning handler returns #ok as the result of the
signal: message.

resume
Causes nil to be returned as the result of the signal: message. Sending
resume to a non-resumable exception is an error.

return: anObject
Causes anObject to be returned as the result of the on:do: message to the
protected block. In Example 12.3, the Error handler returns #bad to the local
variable ‘a’ as the result of the on:do: message. If no Error occurred during
the protected block, then the on:do: method would return #good as the
result of evaluating the protected block.

return
Causes nil to be returned as a result of the on:do: message.

retry
Unwinds the stack and re-evaluates the protected block (starting with the
on:do: message).

retryUsing: aBlock
Unwinds the stack and evaluates the replacement block as the protected block,
sending it the on:do: message.
September 2009 GemStone Systems, Inc. 285

Legacy Exceptions GemStone Programming Guide
pass
Exits the current handler and searches for the next handler. In Example 12.3, if
the ZeroDivide handler sends pass to the ZeroDivide exception instance,
control passes to the Error handler as if the ZeroDivide handler didn’t exist
(except that any side effects of its operation up to the pass message are
preserved).

outer
Similar to pass, except that if the outer handler sends resume: or resume to
the exception instance, control returns to the inner handler from the outer
message.

resignalAs: ReplacementException
Sending this message to an instance of OriginalException causes GemStone
Smalltalk to start searching for an exception handler for
ReplacementException at the top of the stack as if the original signal:
message had been sent to ReplacementException instead of
OriginalException.

Resumable and Nonresumable Exceptions
A handler block normally completes by executing the last statement of the block
and returning the value of the last statement. Where that value is returned
depends on whether the exception is resumable or not.

 • If the exception is not resumable, the value is returned as the value of the
protected block (as if returned by the on:do: message).

 • If the exception is resumable, the value is returned as the value of the signal:
message that initiated execution of the handler block.

While the implicit exit behavior from the handler block is well defined, it is
considered good practice to make the exit behavior explicit by using resume: or
return: (or outer, pass). Exception handling code is confusing enough without
adding in the uncertainty about what happens at the end of a handler block.

12.3 Legacy Exceptions
Like the other Smalltalk dialects, GemStone Smalltalk has a full-featured exception
handling framework that predates the ANSI standard. The ANSI framework is
built completely out of the legacy framework, and is intended to be backwards
compatible with it. In fact, in order to accommodate the legacy framework, the top-
286 GemStone Systems, Inc. September 2009

Contents Legacy Exceptions
level exception in the ANSI framework is named ExceptionA rather than
Exception.

The two frameworks should work together so that signaling a legacy exception
should be caught by an ANSI exception handler and signaling an ANSI exception
should be caught by a legacy exception handler.

In one respect, the legacy framework has an additional feature: creating static
exception handlers for built-in exceptions. Using the ANSI framework, you can
create default handlers for new exceptions, but the only way to change the default
action for an built-in exception would be to modify the defaultAction method
of the base class Error. Generally, modifying base classes is not a good practice.

Example 12.4 shows a sample use of the legacy framework. Example 12.5 shows a
comparable use of the ANSI framework.

Example 12.4 Sample use of the legacy framework

method: Employee
legacyMethod

self doA.
Exception

category: GemStoneError
number: nil
do: [:ex :cat :num :args |

self handlerCode.
self shouldReturn ifTrue: [

^self returnValue.
].
self continueValue.

].
self doB.
instVar1 := System

signal: 1
args: #()
signalDictionary: GemStoneError.

self doC.
^instVar2.

%

September 2009 GemStone Systems, Inc. 287

Legacy Exceptions GemStone Programming Guide
Example 12.5 Sample use of the ANSI framework

method: Employee
ansiMethod

self doA.
[

self doB.
instVar1 := Error signal: ‘anError’.
self doC.

] on: Error do: [:ex |
self handlerCode.
self shouldReturn ifTrue: [

^self returnValue.
].
self continueValue.

].
^instVar2.

%

288 GemStone Systems, Inc. September 2009

Chapter

13 Tuning Performance
GemStone Smalltalk includes several tools to help you tune your applications for
faster performance.

Clustering Objects for Fast Retrieval
discusses how you can cluster objects that are often accessed together so that
many of them can be found in the same disk access. Unnecessarily frequent
disk access is ordinarily the worst culprit when application performance is not
up to expectations.

Optimizing for Faster Execution
describes the profiling tool that allows you to pinpoint the problem areas in
your application code and rewrite it to use more efficient mechanisms.

Modifying Cache Sizes for Better Performance
explains how to increase or decrease the size of various caches in order to
minimize disk access and storage reclamation, both of which can significantly
slow your application.

Managing VM Memory
discusses issues to consider when allocating and managing temporary object
memory, and presents techniques for diagnosing and addressing
OutOfMemory conditions.
September 2009 GemStone Systems, Inc. 289

Clustering Objects for Faster Retrieval GemStone Programming Guide
13.1 Clustering Objects for Faster Retrieval
As you’ve seen, GemStone ordinarily manages the placement of objects on the disk
automatically—you’re never forced to worry about it. Occasionally, you might
choose to group related objects on secondary storage to enable GemStone to read
all of the objects in the group with as few disk accesses as possible.

Because an access to the first element usually presages the need to read the other
elements, it makes sense to arrange those elements on the disk in the smallest
number of disk pages. This placement of objects on physically contiguous regions
of the disk is the function of class Object’s clustering protocol. By clustering small
groups of objects that are often accessed together, you can sometimes improve
performance.

Clustering a group of objects packs them into disk pages, each page holding as
many of the objects as possible. The objects are contiguous within a page, but pages
are not necessarily contiguous on the disk.

Will Clustering Solve the Problem?
Clustering objects solves a specific problem—slow performance due to excessive
disk accessing. However, disk access is not the only factor in poor performance. In
order to determine if clustering will solve your problem, you need to do some
diagnosis. You can use GemStone’s VSD utility to find out how many times your
application is accessing the disk. VSD allows you to chart system statistics over
time to better understand the performance of your system. The System
Administration Guide for GemStone/S 64 Bit provides a detailed discussion of the
VSD utility.

The following statistics are of interest:

 • pageReads — how many pages your session has read from the disk since the
session began

 • pageWrites — how many pages your session has written to the disk since
the session began

You can examine the values of these statistics before and after you commit each
transaction to learn whether your application has written large temporary objects
to disk, to discover how many pages it read in order to perform a particular query,
and to determine the number of disk accesses required by the process of
committing the transaction.

It is tempting to ignore these issues until you experience a problem such as an
extremely slow application, but if you keep track of such statistics on a regular
290 GemStone Systems, Inc. September 2009

Contents Clustering Objects for Faster Retrieval
(even if intermittent) basis, you will have a better idea of what is “normal”
behavior when a problem crops up.

Cluster Buckets
You can think of clustering as writing the components of their receivers on a
stream of disk pages. When a page is filled, another is randomly chosen and
subsequent objects are written on the new page. A new page is ordinarily selected
for use only when the previous page is filled, or when a transaction ends. Sending
the message cluster to objects in repeated transactions will, within the limits
imposed by page capacity, place its receivers in adjacent disk locations. (Sending
the message cluster to objects repeatedly within a transaction has no effect.)

The stream of disk pages used by cluster and its companion methods is called a
bucket. GemStone captures this concept in the class ClusterBucket.

If you determine that clustering will improve your application’s performance, you
can use instances of the class ClusterBucket to help. All objects assigned to the
same instance of ClusterBucket are to be clustered together. When the objects are
written, they are moved to contiguous locations on the same page, if possible.
Otherwise the objects are written to contiguous locations on several pages.

Once an object has been clustered into a particular bucket and committed, that
bucket remains associated with the object until you specify otherwise. When the
object is modified, it continues to cluster with the other objects in the same bucket,
although it might move to another page within the same bucket.

Cluster Buckets and Extents

You can determine the extentId of a given cluster bucket by executing an
expression of the form:

aClusterBucket extentId

Using Existing Cluster Buckets

By default, a global array called AllClusterBuckets defines seven instances of
ClusterBucket. Each can be accessed by specifying its offset in the array. For
example, the first instance, AllClusterBuckets at: 1, is the default bucket
when you log in. It specifies an extentId of nil. This bucket is invariant—you cannot
modify it.

The second, third, and seventh cluster buckets in the array also specify an extentId
of nil. They can be used for whatever purposes you require and can all be
modified.
September 2009 GemStone Systems, Inc. 291

Clustering Objects for Faster Retrieval GemStone Programming Guide
The GemStone system makes use of the fourth, fifth, and sixth buckets of the array
AllClusterBuckets:

 • AllClusterBuckets at: 4 is the bucket used to cluster the methods
associated with kernel classes.

 • AllClusterBuckets at: 5 is the bucket used to cluster the strings that
define source code for kernel classes.

 • AllClusterBuckets at: 6 is the bucket used to cluster other kernel
objects such as globals.

You can determine how many cluster buckets are currently defined by executing:

System maxClusterBucket

A given cluster bucket’s offset in the array specifies its clusterId. A cluster bucket’s
clusterId is an integer in the range of 1 to (System maxClusterBucket).

NOTE
For compatibility with previous versions of GemStone, you can use a
clusterId as an argument to any keyword that takes an instance of
ClusterBucket as an argument.

You can determine which cluster bucket is currently the system default by
executing:

System currentClusterBucket

You can access all instances of cluster buckets in your system by executing:

ClusterBucket allInstances

You can change the current default cluster bucket by executing an expression of
the form:

System clusterBucket: aClusterBucket

Creating New Cluster Buckets

You are not limited to the predefined instances of ClusterBucket. You can create
new instances of ClusterBucket with the simple expression:

ClusterBucket new

This expression creates a new instance of ClusterBucket and adds it to the array
AllClusterBuckets. You can then access the bucket in one of two ways. You can
assign it a name:

UserGlobals at: #empClusterBucket put: (ClusterBucket new)
292 GemStone Systems, Inc. September 2009

Contents Clustering Objects for Faster Retrieval
You could then refer to it in your application as empClusterBucket. Alternatively,
you can use the offset into the array AllClusterBuckets. For example, if this is the
first cluster bucket you have created, you could refer to it this way:

AllClusterBuckets at: 8

(Recall that the first seven elements of the array are predefined.)

You can determine the clusterId of a cluster bucket by sending it the message
clusterId. For example:

empClusterBucket clusterId
8

You can access an instance of ClusterBucket with a specific clusterId by sending it
the message bucketWithId:. For example:

ClusterBucket bucketWithId: 8
empClusterBucket

You can create and use as many cluster buckets as you need—up to thousands, if
necessary.

NOTE
For best performance and disk space usage, use no more than 32 cluster
buckets in a single session.

Cluster Buckets and Concurrency

Cluster buckets are designed to minimize concurrency conflicts. As many users as
necessary can cluster objects at the same time, using the same cluster bucket,
without experiencing concurrency conflicts. Each cluster operation only reads the
associated cluster bucket.

However, creating a new instance of ClusterBucket automatically adds it to the
global array AllClusterBuckets. Adding an instance to AllClusterBuckets causes a
concurrency conflict when more than one transaction tries to create new cluster
buckets at the same time, since all the transactions are all trying to write the same
array object.

To avoid concurrency conflicts, you should design your clustering when you
design your application. Create all the instances of ClusterBucket you anticipate
needing and commit them in one or few transactions.

To facilitate this kind of design, GemStone allows you to associate descriptions
with specific instances of ClusterBucket. In this way, you can communicate to your
fellow users the intended use of a given cluster bucket with the message
description:. For example:
September 2009 GemStone Systems, Inc. 293

Clustering Objects for Faster Retrieval GemStone Programming Guide
Example 13.1

UserGlobals at: #empClusterBucket put: (ClusterBucket new)
empClusterBucket description: 'Use this bucket for

clustering employees and their instance variables.'

As you can see, the message description: takes a string of text as an argument.

Changing the attributes of a cluster bucket, such as its description or clusterId,
writes that cluster bucket and thus can cause concurrency conflict. Only change
these attributes when necessary.

NOTE
For best performance and disk space usage as well as avoiding
concurrency conflicts, create the required instances of ClusterBucket all
at once, instead of on a per-transaction basis, and update their attributes
infrequently.

Cluster Buckets and Indexing

Indexes on an unordered collection are created and modified using the cluster
bucket associated with the specific collection, if any. To change the clustering of an
unordered collection:

1. Remove its index.

2. Recluster the collection.

3. Re-create its index.

Clustering Objects
Class Object defines several clustering methods. One method is simple and
fundamental. Another method is more sophisticated and attempts to order the
receiver’s instance variables as well as writing the receiver itself.

The Basic Clustering Message

The basic clustering message defined by class Object is cluster. For example:

myObject cluster

This simplest clustering method simply assigns the receiver to the current default
cluster bucket—it does not attempt to cluster the receiver’s instance variables.
294 GemStone Systems, Inc. September 2009

Contents Clustering Objects for Faster Retrieval
When the object is next written to disk, it will be clustered according to the
attributes of the current default cluster bucket.

If you wish to cluster the instance variables of an object, you can define a special
method to do so.

CAUTION
Do not redefine the method cluster in the class Object, because other
methods rely on the default behavior of the cluster method. You can,
however, define a cluster method for classes in your application if
required.

Suppose, for example, that you defined class Name and class Employee as shown
in Example 13.2.

Example 13.2

Object subclass: 'Name'
instVarNames: #('first' 'middle' 'last')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: #[]
isModifiable: false.

Object subclass: 'Employee'
instVarNames: #('name' 'job' 'age' 'address')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
instancesInvariant: #[]
isModifiable: false.

The following clustering method might be suitable for class Employee. (A more
purely object-oriented approach would embed the information on clustering first,
middle, and last names in the cluster method for Name, but such an approach
does not exemplify the breadth-first clustering technique we wish to show here.)

Example 13.3

method: Employee
September 2009 GemStone Systems, Inc. 295

Clustering Objects for Faster Retrieval GemStone Programming Guide
clusterBreadthFirst
 self cluster.
 name cluster.
 job cluster.
 address cluster.
 name first cluster.
 name middle cluster.
 name last cluster.
 ^false
%

| Lurleen |
Lurleen := Employee new name: (Name new first: #Lurleen);
 job: 'busdriver'; age: 24; address: '540 E. Sixth'.
Lurleen clusterBreadthFirst
%

The elements of byte objects such as instances of String and Float are always
clustered automatically. A string’s characters, for example, are always written
contiguously within disk pages. Consequently, you need not send cluster to
each element of each string stored in job or address—clustering the strings
themselves is sufficient. Sending cluster to individual special objects (instances
of SmallInteger, Character, Boolean, SmallDouble, or UndefinedObject) has no
effect. Hence no clustering message is sent to age in the previous example.

After sending cluster to an Employee, the Employee is clustered as follows:

anEmp aName job address first middle last

cluster returns a Boolean value. You can use that value to eliminate the
possibility of infinite recursion when you’re clustering the variables of an object
that can contain itself. Here are the rules that cluster follows in deciding what
to return:

 • If the receiver has already been clustered during the current transaction or if
the receiver is a special object, cluster declines to cluster the object and
returns true to indicate that all of the necessary work has been done.

 • If the receiver is a byte object that has not been clustered in the current
transaction, cluster writes it on a disk page and, as in the previous case,
returns true to indicate that the clustering process is finished for that object.
296 GemStone Systems, Inc. September 2009

Contents Clustering Objects for Faster Retrieval
 • If the receiver is a pointer object that has not been clustered in the current
transaction, cluster writes the object and returns false to indicate that the
receiver might have instance variables that could benefit from clustering.

Depth-First Clustering

clusterDepthFirst differs from cluster only in one way: it traverses the tree
representing its receiver’s instance variables (named, indexed, or unordered) in
depth-first order, assigning each node to the current default cluster bucket as it is
visited. That is, it writes the receiver’s first instance variable, then the first instance
variable of that instance variable, then the first instance variable of that instance
variable, and so on to the bottom of the tree. It then backs up and visits the nodes
it missed before, repeating the process until the whole tree has been written.

This method clusters an Employee as shown below:

anEmp aName first middle last job address

Assigning Cluster Buckets

Both cluster and clusterDepthFirst use the current default cluster bucket.
If you wish to use a specific cluster bucket instead, you can use the method
clusterInBucket:. For example, the following expression clusters
aBagOfEmployees using the specific cluster bucket empClusterBucket:

aBagOfEmployees clusterInBucket: empClusterBucket

In order to determine the cluster bucket associated with a given object, you can
send it the message clusterBucket. For example, after executing the example
above, the following example would return the value shown below:

aBagOfEmployees clusterBucket
empClusterBucket

Clustering and Transactions

Clustering tags objects in memory so that when the next successful commit occurs,
the objects are clustered onto data pages according to the method specified. After
an object has been clustered, it is considered to be “dirty”.

A maximum of GEM_TEMPOBJ_CACHE_SIZE objects can be clustered in a single
transaction.

Using Several Cluster Buckets

When you want to write a loop that clusters parts of each object in a group into
separate pages, it is helpful to have multiple cluster buckets available. Suppose
September 2009 GemStone Systems, Inc. 297

Clustering Objects for Faster Retrieval GemStone Programming Guide
that you had defined class SetOfEmployees and class Employee as in Chapter 4.
Suppose, in addition, that you wanted a clustering method to write all employees
contiguously and then write all employee addresses contiguously. With only one
cluster bucket at your disposal, you would need to define your clustering method
as shown in Example 13.4. In this approach, each employee is fetched once for
clustering, then fetched again in order to cluster the employee’s address.

Example 13.4

method: SetOfEmployees
clusterEmployees
 self do: [:n | n cluster].
 self do: [:n | n address cluster].
%
myEmployees clusterEmployees

Clustering Class Objects

Clustering provides the most benefit for small groups of objects that are often
accessed together — for example, a class with its instance variables. Those instance
variables of a class that describe the class’s variables are often accessed in a single
operation, as are the instance variables that contain a class’s methods. Therefore,
class Behavior defines the following special clustering methods for classes:

Table 13.1 Clustering Protocol

clusterBehavior Clusters in depth-first order the parts of the
receiver required for executing GemStone
Smalltalk code (the receiver and its method
dictionary). Returns true if the receiver was
already clustered in the current transaction.

clusterDescription Clusters in depth-first order those instance
variables in the receiver that describe the structure
of the receiver’s instances. (Does not cluster the
receiver itself.) The instance variables clustered are
instVarNames, classVars, categories, and class
histories.
298 GemStone Systems, Inc. September 2009

Contents Clustering Objects for Faster Retrieval
The code in Example 13.5 clusters class Employee’s structure-describing variables,
then its class methods, and finally its instance methods.

Example 13.5

| behaviorBucket descriptionBucket |
behaviorBucket := AllClusterBuckets at: 4.
descriptionBucket := AllClusterBuckets at: 5.
System clusterBucket: descriptionBucket.
Employee clusterDescription.
System clusterBucket: behaviorBucket.
Employee class clusterBehavior.
Employee clusterBehavior.
%

The next example clusters all of class Employee’s instance methods except for
address and address:

 Employee clusterBehaviorExceptMethods: #(#address #address:).

Maintaining Clusters
Once you have clustered certain objects, they do not necessarily stay that way
forever. You may therefore wish to check an object’s location, especially if you
suspect that such declustering is causing your application to run more slowly than
it used to.

Determining an Object’s Location

To enable you to check your clustering methods for correctness, Class Object
defines the message page, which returns an integer identifying the disk page on
which the receiver resides. For example:

anEmp page
2539

clusterBehaviorExceptMethods:
aCollectionOfMethodNames

This method can sometimes provide a better
clustering of the receiving class and its method
dictionary by omitting those methods that are
seldom used. This omission allows frequently used
methods to be packed more densely.

Table 13.1 Clustering Protocol (Continued)
September 2009 GemStone Systems, Inc. 299

Clustering Objects for Faster Retrieval GemStone Programming Guide
Disk page identifiers are returned only for temporary use in examining the results
of your custom clustering methods—they are not stable pointers to storage
locations. The page on which an object is stored can change for several reasons, as
discussed in the next section.

For special objects (instances of SmallInteger, Character, Boolean, SmallDouble, or
UndefinedObject), the page number returned is 0.
300 GemStone Systems, Inc. September 2009

Contents Optimizing for Faster Execution
Why Do Objects Move?

The page on which an object is stored can change for any of the following reasons:

 • A clustering message is sent to the object or to another object on the same page.

 • The current transaction is aborted.

 • The object is modified.

 • Another object on the page with the object is modified.

 • The extent in which you requested the object be clustered had insufficient
space.

As your application updates clustered objects, new values are placed on secondary
storage using GemStone’s normal space allocation algorithms. When objects are
moved, they are automatically reclustered within the same clusterId. If a specific
clusterId was specified, it continues to be used; if not, the default clusterId is used.

If, for example, you replace the string at position 2 of the clustered array
ProscribedWords, the replacement string is stored in a page separate from the one
containing the original, although it will still be within the same clusterId.
Therefore, it might be worthwhile to recluster often-modified collections
occasionally to counter the effects of this fragmentation. You’ll probably need
some experience with your application to determine how often the time required
for reclustering is justified by the resulting performance enhancement.

13.2 Optimizing for Faster Execution
 Ordinarily, disk access has the greatest impact on application performance.
However, your GemStone Smalltalk code can also affect the speed of your
application—as with other programming languages, some code is more efficient
than other code. In order to help you determine how you can best optimize your
application, GemStone Smalltalk provides a profiling tool, defined by the class
ProfMonitor.

The Class ProfMonitor
The class ProfMonitor allows you to sample the methods that are executed in a
given block of code and to estimate the percentage of total execution time
represented by each method. ProfMonitor starts a timer that determines which
method is executing at specified intervals for a specified period of time. When it is
done, it collects the results and returns them in the form of a string formatted as a
report.
September 2009 GemStone Systems, Inc. 301

Optimizing for Faster Execution GemStone Programming Guide
ProfMonitor stores its results temporarily in a file with the default filename
/tmp/gemprofile.tmp. You can specify a different filename by using ProfMonitor’s
instance method fileName:.

You can also specify the interval at which ProfMonitor checks to see which method
is executing. By default, ProfMonitor checks execution every 10 ms. You can use
ProfMonitor’s instance method interval: to specify a shorter or longer interval
in milliseconds.

By default, ProfMonitor reports every method it found executing, even once. If you
are interested only in methods that execute a certain number of times or more, you
can change the lower bound on this tally. ProfMonitor’s instance method
reportDownTo: anInteger allows you to specify that methods executed fewer
times than the argument are to be omitted from the report.

Profiling Your Code
To determine the execution profile for a piece of code, you must format it as a
block. It can then be provided as the argument to monitorBlock:. Example 13.6
uses the default interval of 10 ms and includes every method it finds in its results,
even those executing only once.

Example 13.6

ProfMonitor monitorBlock: [10 timesRepeat:
[System myUserProfile dictionaryNames]]

As a convenience to Smalltalk programmers, the method spyOn: is also available
to perform the same function as monitorBlock:. Example 13.7 is exactly
equivalent to Example 13.6.

Example 13.7

ProfMonitor spyOn: [10 timesRepeat:
[System myUserProfile dictionaryNames]]

Example 13.8 uses a variant of monitorBlock: to check every 20 ms and include
only methods that were found executing at least five times.
302 GemStone Systems, Inc. September 2009

Contents Optimizing for Faster Execution
Example 13.8

ProfMonitor
monitorBlock: [10 timesRepeat:

[System myUserProfile dictionaryNames]]
downTo: 5
interval: 20

To start and stop profiling, you use the appropriately named instance methods
startMonitoring and stopMonitoring. The instance method
gatherResults tallies the methods that were found, and the instance method
report returns a string formatting the results.

Using these methods, you can profile any arbitrary sequence of GemStone
Smalltalk statements; they need not be a block. Example 13.9 creates a new
instance of ProfMonitor and changes the default file it will use to tally the results.
It then starts profiling, executes the code to be profiled, stops profiling, tallies the
methods encountered, and reports the results.

Example 13.9

| aMonitor |
aMonitor := ProfMonitor newWithFile: 'profile.tmp'.
aMonitor startMonitoring.
10 timesRepeat: [System myUserProfile dictionaryNames].
aMonitor stopMonitoring; gatherResults; report.

The class method profileOn also initiates profiling. You can use it, for example,
to profile code contained in a file-in script. Example 13.10 shows how to do this
using Topaz format.
September 2009 GemStone Systems, Inc. 303

Optimizing for Faster Execution GemStone Programming Guide
Example 13.10

! get a profile report on a filein script
run
UserGlobals at: #Monitor put: ProfMonitor profileOn
%
input testFileScript.gs
! turn off profiling and get a report
run
Monitor profileOff
%

If you simply want to know how long it takes a given block to return its value, you
can use the familiar GemStone Smalltalk method millisecondsToRun:, defined
in class System. This method takes a zero-argument block as its argument and
returns the time in milliseconds required to evaluate the block.

The Profile Report
The profiling methods discussed in Examples 13.6 through 13.10 return a string
formatted as a report. Example 13.11 shows a sample run.
304 GemStone Systems, Inc. September 2009

Contents Optimizing for Faster Execution
Example 13.11

topaz 1> printit
ProfMonitor monitorBlock:[
 100 timesRepeat:[System myUserProfile dictionaryNames]
]
%

STATISTICAL SAMPLING RESULTS
elapsed CPU time: 270 ms
monitoring interval: 10 ms

tally % class and method name
------ ----- --------------------------------------
 9 36.00 IdentityDictionary >> associationsDo:
 8 32.00 SymbolList >> names
 8 32.00 AbstractDictionary >>
associationsDetect:ifNone:
 25 100.00 Total

STATISTICAL METHOD SENDERS RESULTS
elapsed CPU time: 270 ms
monitoring interval: 10 ms

% tally class and method name
------ ------ --------------------------------------

 36.0% 9 IdentityDictionary >> associationsDo:
 9 times sender was AbstractDictionary >>
associationsDetect:ifNone:

 9 times receiver class was SymbolDictionary

 32.0% 8 SymbolList >> names
 8 times sender was AbstractDictionary >>
associationsDetect:ifNone:

 8 times receiver class was ComplexBlock

September 2009 GemStone Systems, Inc. 305

Optimizing for Faster Execution GemStone Programming Guide
 32.0% 8 AbstractDictionary >> associationsDetect:ifNone:
 8 times sender was IdentityDictionary >>
associationsDo:

 8 times receiver class was ComplexBlock

OBJECT CREATION PROFILING Not Enabled

METHOD INVOCATION COUNTS - not implemented in this release

As you can see, the report lists the methods that the profile monitor encountered
when it checked the execution stack every 10 ms. It sorts the methods according to
the number of times they were found, with the most-often-used methods first. The
ProfMonitor also calculates the percentage of total execution time represented by
each method—useful information if you need to know where optimizing can do
you the most good.

Other Optimization Hints
While optimization is an application-specific problem, we can provide a few ideas
for improving application performance:

 • Arrays tend to be faster than sets. If you do not need the particular semantics
that a set affords, use an array instead.

 • The following Number classes are listed in decreasing order of performance:

SmallInteger

SmallDouble

Float

LargeInteger

ScaledDecimal

DecimalFloat
306 GemStone Systems, Inc. September 2009

Contents Optimizing for Faster Execution
 • Avoid coercing integers to floating point numbers. Although GemStone
Smalltalk can easily handle mixing integers and floating point numbers in
computations, the coercion required can be time-consuming.

 • If you create an instance of a Dictionary class (or subclass) that you intend to
load with values later, create it to be approximately the final required size in
order to avoid rehashing, which can significantly slow performance.

 • Prefer methods that invoke primitives, if possible, or methods that cause
primitives to be invoked after fewer intermediate message-sends. (For
information on writing your own primitive methods, see the GemBuilder for C
manual.)

 • Prefer message-sends over path notation, where possible. (This is not possible
for associative access, however.)

 • Use the linkable interface when possible. Interfaces that run remotely incur
interprocess communication overhead.

 • Prefer simpler blocks to more complex blocks. The most efficient blocks refer
only to one or more literals, global variables, pool variables, class variables,
local block arguments, or block temporaries; they also do not include a return
statement.

Less efficient blocks include a return statement and can also refer to one or
more of the pseudovariables super or self, instance variables of self, arguments
to the enclosing method, temporary variables of the enclosing method, block
arguments, or block temporaries of an enclosing block.

The least efficient blocks enclose a less efficient block of the kind described in
the above paragraph.

Blocks provided as arguments to the methods ifTrue:, ifFalse:,
ifTrue:ifFalse:, ifFalse:ifTrue:, whileFalse:, and whileTrue:
are specially optimized. Unless they contain block temporary variables, you
need not count them when counting levels of block nesting.

 • Used optimized selectors whenever possible. For example, iterations
usingto:do are specially optimized; using to:do: instead of another
collection iteration method avoids avoids a message send and a level of block
nesting, possibly avoiding the cost of using a block altogether. See page 367 for
a list of optimized selectors.

In the same way, for fastest performance in iterating over Collections, use the
to:do: or to:by:do: methods to iterate, rather than do: or other collection
iteration methods
September 2009 GemStone Systems, Inc. 307

Modifying Cache Sizes for Better Performance GemStone Programming Guide
 • Avoid concatenating strings. Instead, use the add: method to dynamically
resize strings. This is much more efficient.

 • If you have a choice between a method that modifies an object and one that
returns a modified copy, use the method that modifies the object directly if
your application allows it. This creates fewer temporary objects whose storage
will have to be reclaimed. For example, String >> , creates a new string to
use in modifying the old one, whereas String >> add: modifies a string.

 • Use ==nil rather than isNil.
Use ~~nil rather than notNil
Use == rather than = wherever possible.

 • Avoid generating temporary objects whose storage will need to be reclaimed.
Storage reclamation can slow your application significantly.

 • Keep repository files on a disk reserved for their use, if possible. Particularly
avoid putting repository files on the disk used for swapping.

 • For large applications, you may need to commit incrementally, rather than
waiting to commit all at once. There is a limit on how large a transaction can
be, either in terms of the total size of previously committed objects that are
modified, or of the total size of temporary objects that are transitively
reachable from modified committed objects.

13.3 Modifying Cache Sizes for Better Performance
As code executes in GemStone, committed objects must be fetched from disk or
from cache, and temporary objects must be managed. This is handled
transparently by the GemStone repository monitor. The performance of your
application can be affected both by the tuning of the caches, and the structure and
usage patterns of your application.

GemStone Caches
GemStone uses four kinds of caches: temporary object space, the Gem private page
cache, the Stone private page cache, and the shared page cache.

Two caches are associated with Gem processes: the temporary object space and the
Gem private page cache. The other two caches (Stone private page cache and
shared page cache) are associated with the Stone (although the Gem also makes
use of the shared page cache).
308 GemStone Systems, Inc. September 2009

Contents Modifying Cache Sizes for Better Performance
Temporary Object Space

The temporary object space cache is used to store temporary objects created by your
application. Each Gem session has a temporary object memory that is private to the
Gem process and its corresponding session. When you fault persistent
(committed) objects into your application, they are copied to temporary object
memory.

Some of these objects may ultimately become permanent and reside on the disk,
but probably not all of them. Temporary objects that your application creates
merely in order to do its work reside in temporary object space until they are no
longer needed, when the Gem’s garbage collector reclaims the storage they use.

It is important to provide sufficient temporary object space. At the same time, you
must design your application so that it does not create an infinite amount of
reachable temporary objects. Temporary object memory must be large enough to
accommodate the sum of live temporary objects and modified persistent objects. It
that sum exceeds the allocated temporary object memory, the Gem can encounter
an OutOfMemory condition and terminate.

The amount of memory allocated for temporary object space is primarily
determined by the GEM_TEMPOBJ_CACHE_SIZE configuration option. You
should increase this value for applications that create a large number of temporary
objects — for example, applications that make heavy use of the reduced conflict
classes or sessions performing a bulk load. (For more information about the
reduced-conflict classes, see “Classes That Reduce the Chance of Conflict” on
page 153.)

You will probably need to experiment somewhat before you determine the
optimum size of the temporary object space for the application. The default of
10000 (10 MB) should be adequate for normal user sessions. For sessions that place
a high demand on the temporary object cache, such as upgrade, you may wish to
use 100000 (i.e., 100 MB). On AIX and HP-UX, you may also need to adjust the
GEM_TEMPOBJ_INITIAL_SIZE.

For a more exhaustive discussion of the issues involved in managing the size of
temporary object memory, and a general discussion of garbage collection, see the
“Garbage Collection” chapter of the System Administration Guide for GemStone/S
64 Bit.

For details about how to set the size of GEM_TEMPOBJ_CACHE_SIZE and
GEM_TEMPOBJ_INITIAL_SIZE in the Gem configuration file, see the“GemStone
Configuration Options” appendix of the System Administration Guide for
GemStone/S 64 Bit.
September 2009 GemStone Systems, Inc. 309

Modifying Cache Sizes for Better Performance GemStone Programming Guide
Gem Private Page Cache

The Gem private page cache is only used to hold bitmap pages and shadow object
table pages during commit processing. When you commit objects created by your
application, they move directly from temporary object memory to the shared page
cache.

The amount of memory allocated for the Gem private page cache is determined by
the GEM_PRIVATE_PAGE_CACHE_KB configuration option. The default size is
1000 KB; the minimum is 128 KB; the maximum is 524288 KB.

NOTE
Under normal circumstances, you should not need to modify the default
values of the Gem private page cache.

Stone Private Page Cache

The Stone private page cache is used to maintain lists of allocated object identifiers
and pages for each active Gem process that the Stone is monitoring. The single
active Stone process per repository has one Stone private page cache.

The amount of memory allocated for the Stone private page cache is determined
by the STN_PRIVATE_PAGE_CACHE_KB configuration option. The default size
is 2000 KB; the minimum is 128 KB; the maximum is 524288 KB.

NOTE
Under normal circumstances, you should not need to modify the default
values of the Stone private page cache.

Shared Page Cache

The shared page cache is used to hold the object table—a structure containing pointers
to all the objects in the repository—and copies of the disk pages that hold the
objects with which users are presently working. The system administrator must
enable the shared page cache in the configuration file for a host. The single active
Stone process per repository has one shared page cache per host machine. The
shared page cache is automatically enabled for the host machine on which the
Stone process is running.

Whenever the Gem needs to read an object, it reads into the shared page cache the
entire page on which an object resides. If the Gem then needs to access another
object, GemStone first checks to see if the object is already in the shared page cache.
If it is, no further disk access is necessary. If it is not, it reads another page into the
shared page cache.
310 GemStone Systems, Inc. September 2009

Contents Modifying Cache Sizes for Better Performance
For acceptable performance, the shared page cache should be large enough to hold
the entire object table. To get the best possible performance, make the shared page
cache as large as possible.

The amount of memory allocated for the shared page cache is determined by the
SHR_PAGE_CACHE_SIZE_KB configuration parameter (in the Stone
configuration file). The default size is 75000 KB; the minimum is 512 KB; the
maximum is limited by the available system memory and the kernel configuration.

For details about how to set the size of SHR_PAGE_CACHE_SIZE_KB in the Stone
configuration file, see the System Administration Guide for GemStone/S 64 Bit
(Appendix A, GemStone Configuration Options).

By default, only the system administrator is privileged to set this parameter, which
is set at repository startup. However, if a Gem session is running remotely and it
is the first Gem session on its host, its configuration file sets the size of the shared
page cache on that host.

Getting Rid of Non-Persistent Objects
As discussed in Chapter 4, you can create instances of KeySoftValueDictionary to
enable your session to free up temporary object memory as needed. The entries in
a KeySoftValueDictionary are non-persistent; that is, they cannot be committed to
the database. When there is a demand on memory, you can configure GemStone
to clear non-persistent entries as needed during a VM mark/sweep garbage
collection.

The action taken during mark/sweep depends on two configuration parameters,
along with startingMemUsed — the percentage of temporary object memory in-use
at the beginning of the VM mark/sweep.

Case 1: GEM_SOFTREF_CLEANUP_PERCENT_MEM < startingMemUsed < 80%

If startingMemUsed is greater than
GEM_SOFTREF_CLEANUP_PERCENT_MEM but less than 80%, the VM
mark/sweep will attempt to clear an internally determined number of least
recently used SoftReferences (non-persistent entries). Under rare
circumstances, you might choose to specify a minimum number
(GEM_KEEP_MIN_SOFTREFS) that will not be cleared.

Case 2: startingMemUsed < GEM_SOFTREF_CLEANUP_PERCENT_MEM

No SoftReferences will be cleared.

Case 3: startingMemUsed > 80%

VM mark/sweep will attempt to clear all SoftReferences.
September 2009 GemStone Systems, Inc. 311

Managing VM Memory GemStone Programming Guide
For more about these and other configuration parameters, see the “GemStone
Configuration Options” appendix of the System Administration Guide for
GemStone/S 64 Bit.

Several cache statistics may also be of interest: NumSoftRefsCleared,
NumLiveSoftRefs, and NumNonNilSoftRefs. For more about these statistics, see
the “Monitoring GemStone” chapter of the System Administration Guide for
GemStone/S 64 Bit.

13.4 Managing VM Memory
As mentioned earlier in this chapter, each Gem session has a temporary object
memory that is private to the Gem process and its corresponding session. When
you fault persistent (committed) objects into your application, they are copied to
temporary object memory.

It is important to provide sufficient temporary object space. At the same time, you
must design your application so that it does not create an infinite amount of
reachable temporary objects. Temporary object memory must be large enough to
accommodate the sum of live temporary objects and modified persistent objects. It
that sum exceeds the allocated temporary object memory, the Gem can encounter
an OutOfMemory condition and terminate.

There is a limit on how large a transaction can be, either in terms of the total size
of previously committed objects that are modified, or of the total size of temporary
objects that are transitively reachable from modified committed objects. For large
applications, you may need to commit incrementally, rather than waiting to
commit all at once.

The remainder of this chapter discusses issues to consider when allocating and
managing temporary object memory, and presents techniques for diagnosing and
addressing OutOfMemory conditions. This section assumes you have read the
general discussion of garbage collection in the “Garbage Collection” chapter of the
System Administration Guide for GemStone/S 64 Bit.

Large Working Set

If your application requires a large working set of committed objects in memory,
you can configure the pom area to be large (compared to other object spaces)
without having an adverse effect on in-memory garbage collection. To do this,
increase the setting for the configuration parameter
GEM_TEMPOBJ_POMGEN_SIZE. For details on how to do this, see the System
Administration Guide for GemStone/S 64 Bit, Appendix A.
312 GemStone Systems, Inc. September 2009

Contents Managing VM Memory
Class Hierarchy

If your application references a very deep class hierarchy, you may need to adjust
the memory configuration accordingly to allow a larger temporary object memory.
When an object is in memory, its class is also faulted into the perm area of
temporary object memory, along with the class’s superclass, extending up through
the hierarchy all the way to Object. While this approach provides for significantly
faster message lookups, it also increases the consumption of temporary object
memory.

For example, the default configuration provides 1 MB for the perm area. Each class
consumes about 400 bytes (including the Metaclass). Thus, the default
configuration can accommodate about 2500 classes in memory at once.

UserAction Considerations

NOTE
Do not compact the code region of temporary object memory while a
UserAction is executing.

When using GemBuilder for C, you may encounter an OutOfMemory error within
an UserAction in either of the following situations:

 • The UserAction faults in a large number of methods via GciPerform.

 • The UserAction compiles a large number of anonymous methods via
GciExecute.

Exported Set

The ExportSet is a collection of objects for which the Gem process has handed out
its OOP to one of the interfaces (GCI, GBS, objects returned from topaz run
commands). Objects in the ExportSet are prevented from being garbage collected
by any of the garbage collection processes (that is, by a Gem’s in-memory
collection of temporary objects, or the epoch garbage collection). The ExportSet is
used to guarantee referential integrity for objects only referenced by an
application, that is, objects that have no references to them within the Gem.

The application program is responsible for timely removal of objects from the
ExportSet. The contents of the ExportSet can be examined using hidden set
methods defined in class System.

In general, the smaller the size of the ExportSet, the better the performance is likely
to be. There are several reasons for this relationship. The ExportSet is one of the
root sets used for garbage collection. The larger the ExportSet, the more likely it is
that objects that would otherwise be considered garbage are being retained. One
September 2009 GemStone Systems, Inc. 313

Managing VM Memory GemStone Programming Guide
threshold for performance is when the size of the export set exceeds 16K objects.
When its size is smaller than 16K objects, the export set is a small object in object
memory. When its size is larger than 16K, the export set becomes a large object,
implemented as a tree of small objects in memory.

You can use GciReleaseObjs to remove objects from the ExportSet. For details, see
the GemStone/S 64 Bit GemBuilder for C manual.

Debugging out of memory errors
If you find that your application is running out of temporary memory, you can set
several GemStone environment variables to help you identify which parts of your
application are triggering OutOfMemory conditions. These environment variables
allow you to obtain multiple Smalltalk stack printouts and other useful
information before your application runs out of temporary object memory. You
can examine those printouts to determine how many objects of each class are in
temporary memory. Once you’ve identified the cause/s of the problem, you can
adjust your GemStone configuration options to provide the needed memory.

These environment variables are documented in the
$GEMSTONE/sys/gemnetdebug file, which is a debug version of the
gemnetobject script. They may be set for RPC processes usin gemnetdebug in
the gem login parameters, or via on the command line prior to starting linked
topaz. For more information on these environment variables, see the System
Administration Guide for GemStone/S 64 Bit.

Signal on low memory condition
When a session runs low on temporary object memory, there are actions it can
take to avoid running out of memory altogether; for example, the session may
commit or abort, or discard temporary objects. By enabling handling for the
signal #rtErrSignalAlmostOutOfMemory, an application can take appropriate
action before memory is entirely full. This signal is asynchronous, so may be
received at any time memory use is greater than the threshold the end of an in-
memory markSweep. However, if the session is executing a user action, or is in
index maintenance, the error is deferred and generated when execution returns.

After an #rtErrSignalAlmostOutOfMemory signal is delivered, the handling is
automatically disabled. Handling must be reenabled each time the signal occurs.
Handling this signal is enabled by executing either of the following:

System enableAlmostOutOfMemoryError
314 GemStone Systems, Inc. September 2009

Contents Managing VM Memory
or

System signalAlmostOutOfMemoryThreshold: 0

The default threshold is 85%. You can find out the current threshold using:

System almostOutOfMemoryErrorThreshold

The threshold can be modified using:

System Class >> signalAlmostOutOfMemoryThreshold: anInteger
Controls the generation of an error when session's temporary object memory
is almost full. Calling this method with 0 < anInteger < 100, sets the threshold
to the given value and enables generation of the error.

Calling this method with an argument of -1 disables generation of the error
and resets the threshold to the default.

Calling this method with an argument of 0 enables the generation of the error
and does not change the threshold.

Methods for Computing Temporary Object Space
To find out how much space is left in the old area of temporary memory, the
following methods in class System (category Performance Monitoring) are
provided:

System _tempObjSpaceUsed
Returns the approximate number of bytes of temporary object
memory being used to store objects.

System _tempObjSpaceMax
Returns the size of the old area of temporary object memory; that is,
the approximate maximum number of bytes of temporary object
memory that are usable for storing objects. When the old area fills up,
the Gem process may terminate with an OutOfMemory error.

System _tempObjSpacePercentUsed
Returns the approximate percentage of temporary object memory that
is being used to store temporary objects. This is equivalent to the
expression:

(System _tempObjSpaceUsed * 100) //
System _tempObjSpaceMax.
September 2009 GemStone Systems, Inc. 315

Managing VM Memory GemStone Programming Guide
Note that it is possible for the result to be slightly greater than 100%.
Such a result indicates that temporary memory is almost completely
full.

To measure the size of complex objects, you might create a known object graph
containing typical instances of the classes in question, and then execute the
following methods at various points in your test code to get memory usage
information:

CAUTION
Do not execute this sequence in your production code!

Example 13.12

System _vmMarkSweep .
System _tempObjSpaceUsed

Statistics for monitoring memory use
You can monitor the following statistics to better understand your application’s
memory usage. The statistics are grouped here with related statistics, rather than
alphabetically.

Table 13.2 Statistics Related to the Objects Copied into Memory

ObjectsRead The number of committed objects copied into VM memory
since the start of the session.

ClassesRead The number of classes copied into the perm generation area
of VM memory since the start of the session.

MethodsRead The number of GsMethods copied into the code generation
area of VM memory since the start of the session.

ObjectsRefreshed The number of committed objects in VM memory that have
been re-read from the shared page cache after transaction
boundaries, since the start of the session.

Table 13.3 Statistics Related to Mark/Sweeps and Scavenges

NumberOfMarkSweeps The number of mark/sweeps executed by the in-memory
garbage collector.

NumberOfScavenges The number of scavenges executed by the in-memory
garbage collector. Only updated at mark/sweeps.
316 GemStone Systems, Inc. September 2009

Contents Managing VM Memory
TimeInMarkSweep The real time (in milliseconds) spent in in-memory garbage
collector mark/sweeps.

TimeInScavenge The real time (in milliseconds) spent in in-memory garbage
collector scavenges. Only updated at mark/sweeps.

Table 13.4 Statistics Related to Object Memory Regions

CodeCacheSizeBytes Total size in bytes of copies of GsMethods that are in
the code generation area and ready for execution, as of
the end of mark/sweep.

NewGenSizeBytes The number of used bytes in the new generation at the
end of mark/sweep.

OldGenSizeBytes The number of used bytes in the old generation at the
end of mark/sweep.

PomGenSizeBytes The number of used bytes in the pom generation area at
the end of mark/sweep. Pom generation holds clean
copies of committed objects.

PermGenSizeBytes The number of used bytes in the perm generation area
at the end of mark/sweep. Perm generation holds
copies of Classes.

MeSpaceUsedBytes The number of bytes occupied by the remembered set
(remSet), in-memory oopMap, and in-use map entries.

MeSpaceAllocatedBytes The number of bytes allocated for the remembered set
(remSet), in-memory oopMap, and map entries.

Table 13.5 Statistics Related to Stubbing

NumRefsStubbedMarkSweep The number of in-memory references that were
stubbed (converted to a POM objectId) by in-memory
mark/sweep.

NumRefsStubbedScavenge The number of in-memory references that were
stubbed (converted to a POM objectId) by in-memory
scavenge.

Table 13.3 Statistics Related to Mark/Sweeps and Scavenges
September 2009 GemStone Systems, Inc. 317

Managing VM Memory GemStone Programming Guide

Symbol Creation

In GemStone/S 64 Bit, a SymbolGem process runs in the background and is
responsible for creating all new Symbols, based on session requests that are
managed by the Stone. You can examine the following statistics to track the effect
of symbol creation activity on temporary object memory.

Table 13.6 Statistics Related to Garbage Collection

CodeGenGcCount The number of times the code generation area has
been garbage collected.

PomGenScavCount The number of times scavenge has thrown away the
oldest pom generation space.

Table 13.7 Statistics Related to Symbol Creation

NewSymbolRequests The number of symbol creation requests by a session to
the symbol creation gem.

NewSymbolsCount The number of symbol creation requests by a session
that did not resolve to an already committed symbol.

TimeWaitingForSymbols Cumulative elapsed time (in milliseconds) waiting for
symbol creation requests to be processed.

Table 13.8 Other Statistics

ExportedSetSize The number of objects in the ExportSet (see page 313).
TrackedSetSize The number of objects in the Tracked Objects Set, as

defined by the GCI. You can use GciReleaseObjs to
remove objects from the Tracked Objects Set. For details,
see the GemStone/S 64 Bit GemBuilder for C manual.

DirtyListSize The number of modified committed objects in the
temporary object memory dirty list.
318 GemStone Systems, Inc. September 2009

Contents Managing VM Memory

WorkingSetSize The number of objects in memory that have an objectId
assigned to them; approximately the number of
committed objects that have been faulted in plus the
number that have been created and committed.

TempObjSpacePercentUsed The approximate percentage of temporary object
memory for this session that is being used to store
temporary objects. If this value approaches or exceeds
100%, sessions will probably encounter an
OutOfMemory error. This statistic is only updated at the
end of a mark/sweep operation.

Compare with System
_tempObjSpacePercentUsed (page 315), which is
computed whenever the primitive is executed.

Table 13.8 Other Statistics
September 2009 GemStone Systems, Inc. 319

Managing VM Memory GemStone Programming Guide
320 GemStone Systems, Inc. September 2009

Chapter

14 Advanced Class
Protocol
An object responds to messages defined and stored with its class and its class’s
superclasses. The classes named Object, Class, and Behavior are superclasses of
every class. Although the mechanism involved may be a little confusing, the
practical implication is easy to grasp — every class understands the instance
messages defined by Object, Class, and Behavior.

You’re already familiar with Object’s protocol that enables an object to represent
itself as a string. The class named Class defines the familiar subclass creation
message (subclass:instVarNames:...) and some protocol for adding and
removing class variables and pool dictionaries. Class Behavior defines by far the
largest number of useful messages that you may not yet have encountered. This
chapter presents a brief overview of Behavior’s methods.

Adding and Removing Methods
describes the protocol in class Behavior for adding and removing methods.

Examining a Class’s Method Dictionary
describes the protocol in class Behavior for examining the method dictionary
of a class.

Examining, Adding, and Removing Categories
describes the protocol in class Behavior for examining, adding, and removing
method categories.
September 2009 GemStone Systems, Inc. 321

Adding and Removing Methods GemStone Programming Guide
Accessing Variable Names and Pool Dictionaries
describes the protocol in class Behavior for accessing the variables and pool
dictionaries of a class.

Testing a Class’s Storage Format
describes the protocol in class Behavior for testing the storage format of a class.

Per-Session Method Dictionaries
describes method dictionaries that.are specific to a particular session.

14.1 Adding and Removing Methods
Class Behavior defines messages for adding or removing selectors.

Defining Simple Accessing and Updating Methods
Class Behavior provides an easy way to define simple methods for establishing
and returning the values of instance variables. For each instance variable named
by a symbol in the argument array, the message
compileAccessingMethodsFor: arrayOfSymbols creates one method that sets
the instance variable’s value and one method that returns it. Each method is
named for the instance variable to which it provides access.

For example, this invocation of the method:

Animal compileAccessingMethodsFor: #(#name)

has the same effect as the Topaz script in Example 14.1.
322 GemStone Systems, Inc. September 2009

Contents Adding and Removing Methods
Example 14.1

printit
category: 'Accessing'
method: Animal
name

^name
%
printit
category: 'Updating'
method: Animal
name: aName
 name := aName
%

All of the methods created in this way are added to the categories named
“Accessing” (return the instance variable’s value) and “Updating” (set its value).

You can also use compileAccessingMethodsFor: to define methods for
accessing pool variables and class variables. The only important difference is that
to define class methods for getting at class variables, you must send
compileAccessingMethodsFor: to the class of the class that defines the class
variables of interest. The following code, for example, defines class methods that
access the class variables of the class Menagerie:

Menagerie class compileAccessingMethodsFor: #(#BandicootTally)

This is equivalent to the Topaz script in Example 14.2.
September 2009 GemStone Systems, Inc. 323

Adding and Removing Methods GemStone Programming Guide
Example 14.2

printit
category: 'Accessing'
classmethod: Menagerie
BandicootTally

 ^BandicootTally

%
printit
category: 'Updating'
classmethod: Menagerie
BandicootTally: aNumber

 BandicootTally := aNumber

%

Removing Selectors
You can send removeSelector: aSelectorSymbol to remove any selector and
associated method that a class defines. The following example removes the
selector habitat and the associated method from the class Animal’s method
dictionary.

Animal removeSelector: #habitat

To remove a class method, send removeSelector: to the class of the class
defining the method. The following example removes one of the class Animal’s
class methods:

Animal class removeSelector: #newWithName:favoriteFood:habitat:

The Basic Compiler Interface
Class Behavior defines the basic method for compiling a new method for a class
and adding the method to the class’s method dictionary. The programming
environments available with GemStone Smalltalk provide much more convenient
facilities for run-of-the-mill compilation jobs, so you’ll probably never need to use
this method. It’s provided mainly for sophisticated programmers who want to
324 GemStone Systems, Inc. September 2009

Contents Adding and Removing Methods
build a custom programming environment, or those who need to generate
GemStone Smalltalk methods automatically.

An invocation of the method has this form:

aClass compileMethod: sourceString
 dictionaries: arrayOfSymbolDicts
 category: aCategoryNameString

The first argument, sourceString, is the text of the method to be compiled,
beginning with the method’s selector. The second argument, arrayOfSymbolDicts,
is an array of SymbolDictionaries to be used in resolving the source code symbols
in sourceString. Under most circumstances, you will probably use your symbol list
for this argument. The final argument simply names the category to which the new
method is to be added.

The following code compiles a short method named habitat for the class Animal,
adding it to the category “Accessing”:

Example 14.3

Animal compileMethod:
 'habitat
 "Return the value of the receiver''s habitat
 instance variable"
 ^habitat'
 dictionaries: (System myUserProfile symbolList)
 category: #Accessing

When you write methods for compilation in this way, remember to double each
apostrophe as shown in Example 14.3.

If compileMethod:.. executes successfully, it adds the new method to the
receiver and returns nil.

If the source string contains errors, this method returns an array of three-element
arrays. Each three-element array includes an error number, an integer offset into
the source code string pointing to where the error was detected, and a string that
describes the error.

For more about GemStone Smalltalk compiler errors, refer to Appendix B. For
details about individual errors, examine the file
$GEMSTONE/include/gcierr.ht. That file defines mnemonics for all
GemStone errors and contains a description of each error and its arguments.
September 2009 GemStone Systems, Inc. 325

Examining a Class’s Method Dictionary GemStone Programming Guide
14.2 Examining a Class’s Method Dictionary
Class Behavior defines messages that let you obtain a class’s selectors and
methods. Methods are available in either source code or compiled form. Other
methods let you test for the presence of a selector in a class or in a class’s superclass
chain. See Table 14.1.

Table 14.1 Method Dictionary Access

Method Description

allSelectors Returns an array of symbols, consisting of all of the
message selectors that instances of the receiver can
understand, including those inherited from
superclasses. The symbol for keyword messages
concatenates the keywords.

canUnderstand: aSelector Returns true if the receiver can respond to the message
indicated by aSelector, returns false otherwise. The
selector (a String) can be in the method dictionary of
the receiver or any of the receiver’s superclasses.

compiledMethodAt: aSelector Returns the compiled method associated with the
argument aSelector (a String). The argument must be a
selector in the receiver’s method dictionary; if it is not,
this method generates an error.

includesSelector: aString Returns true if the receiver defines a method for
responding to aString.

selectors Returns an array of symbols, consisting of all of the
message selectors defined by the receiver. (Selectors
inherited from superclasses are not included.) The
symbol for keyword messages concatenates the
keywords.

sourceCodeAt: aSelector Returns a string representing the source code for the
argument, aSelector. If aSelector (a String) is not a
selector in the receiver’s method dictionary, this
generates an error.
326 GemStone Systems, Inc. September 2009

Contents Examining a Class’s Method Dictionary
Example 14.4 uses selectors and sourceCodeAt: in a method that produces a
listing of the receiver’s methods.

Example 14.4

classmethod: SomeClass
listMethods
"Returns a string listing the source code for the receiver’s class
and instance methods."
| selectorArray outputString |
outputString := String new.
"First, concatenate all instance methods defined by the receiver."
outputString add: '************ Instance Methods *************';
 lf;
 lf.
selectorArray := self selectors.
selectorArray do: [:i | outputString
 add: (self sourceCodeAt: i);lf;lf].
"Now add the class methods."
outputString add: '************* Class Methods *************';
 lf;lf.
selectorArray := self class selectors.
selectorArray do: [:i | outputString
 add: (self class sourceCodeAt: i);lf;lf].
^outputString
%

Suppose that you defined a subclass of SymbolDictionary called
CustomSymbolDictionary and used instances of that class in your symbol list for
storing objects used in your programs.

whichClassIncludesSelector:
aString

If the selector aString is in the receiver’s method
dictionary, returns the receiver. Otherwise, returns the
most immediate superclass of the receiver where
aString is found as a message selector. Returns nil if the
selector is not in the method dictionary of the receiver
or any of its superclasses.

Table 14.1 Method Dictionary Access (Continued)
September 2009 GemStone Systems, Inc. 327

Examining a Class’s Method Dictionary GemStone Programming Guide
The method in Example 14.5, using includesSelector:, would be able to tell
you which of the classes in a CustomSymbolDictionary implemented a particular
selector.
328 GemStone Systems, Inc. September 2009

Contents Examining a Class’s Method Dictionary
Example 14.5

printit
SymbolDictionary subclass: #CustomSymbolDictionary

instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

%

printit
method: CustomSymbolDictionary
whichClassesImplement: aSelector
"Returns a string describing which classes in the receiver
(a subclass of SymbolDictionary) implement a method whose selector
is aSelector. Distinguishes between class and instance methods."
| outputString newline |
outputString := String new.
self values do: [:aValue | (aValue isKindOf: Class)
 ifTrue: [

(aValue includesSelector: aSelector)
 ifTrue: [outputString add: aValue name;
 add: ' (as instance method)';
 lf.
].

(aValue class includesSelector: aSelector)
 ifTrue: [outputString add: aValue name;
 add: ' (as class method)';
 lf.
].
].
].
^outputString
%
September 2009 GemStone Systems, Inc. 329

Examining, Adding, and Removing Categories GemStone Programming Guide
printit
| newDict |
newDict := CustomSymbolDictionary new.
newDict at: #Dictionary put: Dictionary;
 at: #SymbolDictionary put: SymbolDictionary;
 at: #LanguageDictionary put: LanguageDictionary.
PublicDictionary at: #myCustDict put: newDict.
System commitTransaction
%

printit
(myCustDict whichClassesImplement: 'add:') = 'Dictionary (as
instance method)
'
%

14.3 Examining, Adding, and Removing Categories
Class Behavior provides a nice set of tools for dealing with categories and for
examining and organizing methods in terms of categories. See Table 14.2.

Table 14.2 Category Manipulation

Method Description

addCategory: aString Adds aString as a method category for the receiver, and
returns the receiver. If aString is already a method
category, generates an error.

categoryNames Returns an array of symbols. The elements of the array
are the receiver’s category names (excluding names
inherited from superclasses).

moveMethod: aSelector
toCategory: categoryName

Moves the method aSelector (a kind of String, usually a
Symbol) from its current category to the specified
category (also a String). Returns the receiver. If either
aSelector or categoryName is not in the receiver’s method
dictionary, or if aSelector is already in categoryName,
this generates an error.
330 GemStone Systems, Inc. September 2009

Contents Examining, Adding, and Removing Categories
Notice that removeCategory: removes not only a category but all of the
methods in that category.

Example 14.6 shows how you might move methods to another category before
deleting their original category.

Example 14.6

Animal addCategory: 'Munging'.
(Animal selectorsIn: 'Accessing') do: [:i |

Animal moveMethod: i toCategory: 'Munging'].
Animal removeCategory: 'Accessing'.

The next example demonstrates how you use these methods to list instance
methods in a format that can be read and compiled automatically by Topaz with
the input function. This partially duplicates the Topaz file-out function.

removeCategory:
 categoryName

Removes the specified category (a String) and all its
methods from the receiver’s method dictionary.
Returns the receiver. If categoryName is not in the
receiver’s method dictionary, generates an error.

renameCategory: categoryName
to: newCategoryName

Changes the name of the specified category (a String)
to newCategoryName (a String), and returns the receiver.
If categoryName is not in the receiver’s method
dictionary, or if newCategoryName is already in the
receiver’s method dictionary, generates an error.

selectorsIn: categoryName Returns an array of all selectors in the specified
category. If categoryName (a String) is not in the
receiver’s method dictionary, generates an error.

Table 14.2 Category Manipulation (Continued)
September 2009 GemStone Systems, Inc. 331

Examining, Adding, and Removing Categories GemStone Programming Guide
Example 14.7

classmethod: SomeClass
listMethodsByCategory
"Produces a string describing the receiver's instance methods by
category in FILEOUT format."
| outputString newline className |
outputString := String new.
className := self name.
self categoryNames do: "For each category..."
 [:aCatName | outputString add: 'category: ''';
 add: aCatName;
 add: '''';
 lf.
 (self selectorsIn: aCatName) do: "For each selector..."
 [:aSelector |
 outputString add: 'method: ';

add:className; lf;
 add: (self sourceCodeAt: aSelector);
 add: newline;
 add: '%'; lf;lf.
].
].
^outputString

%
332 GemStone Systems, Inc. September 2009

Contents Accessing Variable Names and Pool Dictionaries
Here is how this method behaves if it were defined for class Animal. (The output
is truncated.)

Example 14.8

printit
Animal listMethodsByCategory
%
category: 'Accessing'
method: Animal
name: aName

 name := aName

%

method: Animal
name

 ^name
%

14.4 Accessing Variable Names and Pool Dictionaries
Class Behavior’s methods provide access to the names of all of a class’s variables
(instance, class, class instance, and pool). Two methods access each kind of
variable name—one method retrieves the variables defined by the receiver, and a
second method retrieves the names of inherited variables as well. A more general
method (scopeHas:) asks whether a variable (instance, class, or pool) is defined
for a class’s methods. See Table 14.3.

Table 14.3 Access to Variable Names

Method Description

allClassVarNames Returns an array of the names of class variables addressable
by this class. Variables inherited from superclasses are
included; contrast with classVarNames.
September 2009 GemStone Systems, Inc. 333

Accessing Variable Names and Pool Dictionaries GemStone Programming Guide
To access class instance variables, send the message instVarNames or
allInstVarNames to the class of the class you are searching. For example:

Animal class instVarNames

returns an array of symbols naming the class instance variables defined by the
receiver (Animal), not including those inherited from superclasses.

The next method, defined for the class CustomSymbolDictionary (discussed
earlier on page 329), returns a list of all classes named by the receiver that define
some name as an instance, class, class instance, or pool variable.

allInstVarNames Returns an array of symbols, consisting of the names of all the
receiver’s instance variables, including those inherited from
superclasses. Contrast with instVarNames.

The ordering of the names in the array follows the ordering of
the superclass hierarchy; that is, instance variable names
inherited from Object are listed first, and those peculiar to the
receiver are last.

allSharedPools Returns an array of pool dictionaries used by this class and its
superclasses. Contrast with sharedPools.

classVarNames Returns a (possibly empty) array of class variables defined by
this class. Superclasses are not included; contrast with
allClassVarNames.

instVarNames Returns an array of symbols naming the instance variables
defined by the receiver, but not including those inherited from
superclasses. Contrast with allInstVarNames.

scopeHas: aVariableName
ifTrue: aBlock

If aVariableName (a kind of String, usually a Symbol) is an
instance, class, or pool variable in the receiver or in one of its
superclasses, this evaluates the zero-argument block aBlock
and returns the result of evaluating aBlock. Otherwise, returns
false.

sharedPools Returns an array of pool dictionaries used by this class.
Superclasses are not included; contrast with
allSharedPools.

Table 14.3 Access to Variable Names (Continued)
334 GemStone Systems, Inc. September 2009

Contents Accessing Variable Names and Pool Dictionaries
Example 14.9

method: CustomSymbolDictionary
listClassesThatReference: aVarName
"Lists the classes in the receiver, a subclass of SymbolDictionary,
that refer to aVarName as an instance, class, class instance, or
pool variable."
| theSharedPools outputString |
outputString := String new.
self valuesDo: [:aValue |
"For each value in the receiver’s Associations..."
 (aValue instVarNames includesValue: aVarName)
 ifTrue: [outputString add: aValue name;
 add: ' defines as instance variable.';
 lf.
].
 (aValue classVarNames includesValue: aVarName)
 ifTrue: [outputString add: aValue name;
 add: ' defines as class variable.';
 lf.
].
theSharedPools:= aValue sharedPools.
theSharedPools do: [:poolDict |
 (poolDict includesKey: aVarName)
 ifTrue:
 [outputString add: aValue name;
 add: ' defines as pool
variable'.
].
].
].
^outputString
%

September 2009 GemStone Systems, Inc. 335

Testing a Class’s Storage Format GemStone Programming Guide
14.5 Testing a Class’s Storage Format
Each class defines or inherits for instances the ability to store information in a
certain format. Thus, instances of Array can store information in indexed variables,
and instances of Bag can store information in unordered instance variables.
Table 14.4 describes Behavior’s protocol for testing a class’s storage format.

Example 14.10 below uses several of these messages to construct a string
describing the storage format of the receiver.

Table 14.4 Storage Format Protocol

Method Description

format Returns the value of Behavior’s format instance variable, a
SmallInteger. The following methods provide easier ways to get
at the information encoded in format. If you really need details
about format, see the comment for class Behavior in the image.

instSize Returns the number of named instance variables in the receiver.
isBytes Returns true if instances of the receiver are byte objects.

Otherwise returns false.
isIndexable Returns true if instances of the receiver have indexed variables.

Otherwise returns false.
isInvariant Returns true if instances of the receiver cannot change value.

Otherwise returns false.
isNsc Returns true if instances of the receiver are unordered collections

(IdentityBags or IdentitySets). Otherwise returns false.
isPointers Returns true if instances of the receiver are pointer objects.

Otherwise returns false.
336 GemStone Systems, Inc. September 2009

Contents Testing a Class’s Storage Format
Example 14.10

method: Object
describeStorageFormat
"Returns a string describing the receiver's format and the kinds
and numbers of its instance variables."
| outputString |
outputString := String new.
outputString add: 'The receiver is an instance of ';
 add: self class name;
 add: '.';
 lf;
 add: 'Its storage format is '.
self class isPointers "Is the receiver pointers?"
 ifTrue: [self class isIndexable
 ifTrue: [outputString add: 'pointer with indexed vars. ';
 add: 'The number of indexed vars is ';
 add: self size asString;
 lf;
 add: 'The number of named instvars is ';
 add: self class instSize asString;
 add: '.';
 lf.
]
 ifFalse: [outputString add: 'pointer with no indexed vars.';
 lf;
 add: 'The number of named instvars is ';
 add: self class instSize asString;
 add: '.';lf.
].
]
September 2009 GemStone Systems, Inc. 337

Session Methods GemStone Programming Guide
"If the object has no pointers, then it must be an unordered
 collection or a byte object."
 ifFalse:
 [self class isNSC
 ifTrue: [outputString add: 'NSC. ';

add:'The number of unordered inst vars is:';
add: self size asString;
add: '.'.

]
 ifFalse: [outputString add: 'bytes. ';

add: 'The number of byte inst vars is: ';
add: self size asString;
add: '.'.

].
].
^outputString
%

Here’s what happens if you define describeStorageFormat for class Animal
and send it to an instance of Animal:

Example 14.11

printit
Animal new describeStorageFormat
%

 The receiver is an instance of Animal.
 Its storage format is pointer with no indexed vars.
 The number of named instvars is 3.

14.6 Session Methods
In addition to normal shared class and instance methods, it is possible to install
session specific methods. This allows specific class and instance methods to be
installed in the current session without affecting any other session. Each class can
have session specific methods, as well as ordinary shared methods. Method
lookup starts with the session specific methods of the receiver, then proceeds to
338 GemStone Systems, Inc. September 2009

Contents Session Methods
shared methods of the receiver, then continues with the session specific methods
of the superclass, then shared superclass methods, and so on.

Session specific methods do not appear in the list of selectors for a Class nor do
they show up in the tools in this release.

To create and install session specific methods, instances of
GsSessionMethodDictionary are created and populated with all the added
methods for a given class. This dictionary maps selectors to GsMethod instances.

Then, another instance of GsSessionMethodDictionary is created, mapping
each Class with added methods to the GsSessionMethodDictionary
instance containing its methods. This top level GsSessionMethodDictionary
is installed in the current session.

To avoid the risk of unauthorized users modifying kernel class behavior, the
methods to add session specific methods – the methods that create, modify, and
install GsSessionMethodDictionaries – are protected. To allow users other than
SystemUser to use session methods, shared methods must be defined by
SystemUser that enter protected mode to create, modify, and install the session
method dictionaries. Later, these methods can be executed by ordinary users to
perform the creation, modification, and installation of the session method
dictionaries.

The method in Example 14.12 provides an example of how to create and install a
session specific method dictionary. This method must be compiled by
SystemUser in a class for which other users have read access. Once this method is
available, it may be executed by any user. Example 14.13 shows the execution of
this method.

In a real application, of course, you would want to compile the methods, test
them, and make the method instances persistent, rather than compiling them
every time they are installed. Most likely, you’d want to do this by creating a
persistent instance of a GsSessionMethodDictionary that can be installed when
needed.
September 2009 GemStone Systems, Inc. 339

Session Methods GemStone Programming Guide
Example 14.12

method: MyClass
buildAndInstallSessionMethodDictionary

"This method builds a session method dictionary with the
session specific method

Array >> test"

<primitive: 901> "enter protected mode"
| sessMethDict methDictForArray aGsMethod |
sessMethDict := GsSessionMethodDictionary new.
sessMethDict keyConstraint: Behavior.
sessMethDict valueConstraint: GsSessionMethodDictionary.

methDictForArray := GsSessionMethodDictionary new.

aGsMethod := Array compileMethod: 'test
^''Session specific method result'''
dictionaries: System myUserProfile symbolList
category: #SessionAdditions
intoMethodDict: GsMethodDictionary new
intoCategories: GsMethodDictionary new .

aGsMethod class == GsMethod ifFalse: [self error:
'compile error: ', aGsMethod printString].

methDictForArray at: #test put: aGsMethod.
sessMethDict at: Array put: methDictForArray.

GsCurrentSession currentSession

installSessionMethodDictionary: sessMethDict.
System _disableProtectedMode.
%

340 GemStone Systems, Inc. September 2009

Contents Session Methods
Example 14.13

printit
MyClass buildAndInstallSessionMethodDictionary.
Array new test
%
'Session specific method result'
September 2009 GemStone Systems, Inc. 341

Session Methods GemStone Programming Guide
342 GemStone Systems, Inc. September 2009

Chapter

15 The SUnit Framework
SUnit is a minimal yet powerful framework that supports the creation of
automated unit tests. This chapter discusses the importance of repeatable unit tests
and illustrates the ease of writing them using SUnit.1

Why SUnit?
introduces the SUnit framework and its benefit to the application developer.

Testing and Tests
describes the general goals of automated testing.

SUnit by Example
presents a step-by-step example that illustrates the use of SUnit.

The SUnit Framework
describes the core classes of the SUnit framework.

Understanding the SUnit Implementation
explores key aspects of the implementation by following the execution of a test
and test suite.

1. This chapter is adapted from “SUnit Explained” by Stéphane Ducasse
(http://www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf)
and is used by permission.
September 2009 GemStone Systems, Inc. 343

http://www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf

Why SUnit? GemStone Programming Guide
15.1 Why SUnit?
Writing tests is an important way of investing in the future reliability and
maintainability of your code. Tests should be repeatable, automated, and cover a
precise functionality to maximize their potential.

SUnit was developed originally by Kent Beck and was extended by Joseph Pelrine
and others. The interest in SUnit is not limited to the Smalltalk community. Indeed,
legions of developers understand the power of unit testing and versions of XUnit
(as the general framework is called) exist in many other languages.

Testing and building regression test suites is not new; it is common knowledge
that regression tests are a good way to catch errors. Extreme Programming has
brought a new emphasis to this somewhat neglected discipline by making testing
a foundation of its methodology. The Smalltalk community has a long tradition of
testing, due to the incremental development supported by its programming
environment. However, once you write tests in a workspace or as example
methods, there is no easy way to keep track of them and to automatically run them.
Unfortunately, tests that you cannot automatically run are less likely to be run.
Moreover, having a code snippet to run in isolation often does not readily indicate
the expected result. That’s why SUnit is interesting—it provides a code framework
to describe the context of your tests and to run them automatically. In less than two
minutes, you can write tests using SUnit that become part of an automated test
suite. This represents a vast improvement over writing small code snippets in an
ephemeral workspace.

15.2 Testing and Tests
Many traditional development methodologies include testing as a step that
follows coding, and this step is often cut short when time pressures arise. Yet
development of automated tests can save time, since having a suite of tests is
extremely useful and allows one to make application changes with much higher
confidence.

Automated tests play several roles. First, they are an active and always synchronized
documentation of the functionality they cover. Second, they represent the
developer’s confidence in a piece of code. Tests help you quickly find defects
introduced by changes to your code. Finally, writing tests at the same time or even
before writing code forces you to think about the functionality you want to design.
By writing tests first, you have to clearly state the context in which your
functionality will run, the way it will interact with other code, and, more
344 GemStone Systems, Inc. September 2009

Contents Testing and Tests
important, the expected results. Moreover, when you are writing tests, you are
your first client and your code will naturally improve.

The culture of tests has always been present in the Smalltalk community; a typical
practice is to compile a method and then, from a workspace, write a small
expression to test it. This practice supports the extremely tight incremental
development cycle promoted by Smalltalk. However, because workspace
expressions are not as persistent as the tested code and cannot be run
automatically, this approach does not yield the maximum benefit from testing.
Moreover, the context of the test is left unspecified so the reader has to interpret
the obtained result and assess whether it is right or wrong.

It is clear that we cannot tests all the aspects of an application. Covering a complete
application is simply impossible and should not be goal of testing. Even with a
good test suite, some defect can creep into the application and be left hidden
waiting for an opportunity to damage your system. While there are a variety of test
practices that can address these issues, the goal of regression tests is to ensure that
a previously discovered and fixed defect is not reintroduced into a later release of
the product.

Writing good tests is a technique that can be easily learned by practice. Let us look
at the properties that tests should have to get a maximum benefit:

 • Repeatable. We should be able to easily repeat a test and get the same result
each time.

 • Automated. Tests should be run without human intervention. You should be
able to run them during the night.

 • Tell a story. A test should cover one aspect of a piece of code. A test should act
as a specification for a unit of code.

 • Resilient. Changing the internal implementation of a module should not break
a test. One way to achieve this property is to write tests based on the interfaces
of the tested functionality.

In addition, for test suites, the number of tests should be somehow proportional to
the bulk of the tested functionality. For example, changing one aspect of the system
might break some tests, but it should not break all the tests. This is important
because having 100 tests broken should be a much more important message for
you than having 10 tests failing.

By using “test-first” or “test-driven” development, eXtreme Programming
proposes to write tests even before writing code. While this is counter-intuitive to
the traditional “design-code-test” mindset, it can have a powerful impact on the
overall result. Test-driven development can improve the design by helping you to
September 2009 GemStone Systems, Inc. 345

SUnit by Example GemStone Programming Guide
discover the needed interface for a class and by clarifying when you are done (the
tests pass!).

The next section provides an example of an SUnit test.

15.3 SUnit by Example
Before going into the details of SUnit, let’s look at a step-by-step example. The
example in this section tests the class Set, and is included in the SUnit distribution
so that you can read the code directly in the image.

Step 1: Define the Class ExampleSetTest

Example 15.1 defines the class ExampleSetTest, a subclass of TestCase.

Example 15.1

TestCase subclass: 'ExampleSetTest'
instVarNames: #(full empty)
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: Globals
instancesInvariant: false
isModifiable: false

The class ExampleSetTest groups all tests related to the class Set. It establishes the
context of all the tests that we will specify. Here the context is described by
specifying two instance variables, full and empty, that represent a full and
empty set, respectively.

Step 2: Define the Method setUp

Example 15.2 presents the method setUp, which acts as a context definer method
or as an initialize method. It is invoked before the execution of any test method
defined in this class. Here we initialize the empty instance variable to refer to an
empty set, and the full instance variable to refer to a set containing two elements.
346 GemStone Systems, Inc. September 2009

Contents SUnit by Example
Example 15.2

ExampleSetTest>>setUp
empty := Set new.
full := Set with: 5 with: #abc.

This method defines the context of any tests defined in the class. In testing jargon,
it is called the fixture of the test.

Step 3: Define Three Test Methods

Example 15.3 defines three methods on the class ExampleSetTest. Each method
represents one test. If your test method names begin with test, as shown here, the
framework will collect them automatically for you into test suites ready to be
executed.

Example 15.3

ExampleSetTest>>testIncludes
self assert: (full includes: 5).
self assert: (full includes: #abc).

ExampleSetTest>>testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1.

ExampleSetTest>>testRemove
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5).

The testIncludes method tests the includes: method of a Set. After running
the setUp method in Example 15.2, sending the message includes: 5 to a set
containing 5 should return true.

Next, testOccurrences verifies that there is exactly one occurrence of 5 in the
full set, even if we add another element 5 to the set.

Finally, testRemove verifies that if we remove the element 5 from a set, that
element is no longer present in the set.
September 2009 GemStone Systems, Inc. 347

SUnit by Example GemStone Programming Guide
Step 4: Execute the Tests

Now we can execute the tests, using either Topaz or one of the GemBuilder
interfaces. To run your tests, execute the following code:

(ExampleSetTest selector: #testRemove) run.

Alternatively, you can execute this expression:

ExampleSetTest run: #testRemove.

Developers often include such an expression as a comment, to be able to run them
while browsing. See Example 15.4.

Example 15.4

ExampleSetTest>>testRemove
"self run: #testRemove"
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5).

To debug a test, use one of the following expressions:

(ExampleSetTest selector: #testRemove) debug.

or

ExampleSetTest debug: #testRemove.

Examining the Value of a Tested Expression
The method TestCase>>assert: requires a single argument, a boolean that
represents the value of a tested expression. When the argument is true, the
expression is considered to be correct, and we say that the test is valid. When the
argument is false, then the test failed. The method deny: is the negation of
assert:. Hence

aTest deny: anExpression.

is equal to

aTest assert: anExpression not.
348 GemStone Systems, Inc. September 2009

Contents SUnit by Example
Finding Out If an Exception Was Raised
SUnit recognizes two kinds of defects: not getting the correct answer (a failure) and
not completing the test (an error). If it is anticipated that a test will not complete,
then the test should raise an exception. To test that exceptions have been raised
during the execution of an expression, SUnit offers two methods,
should:raise: and shouldnt:raise:. See Example 15.5.

Example 15.5

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #abc] raise: Error.

In the example provided by SUnit, the exception is provided via the TestResult
class (Example 15.6). Because SUnit runs on a variety of Smalltalk dialects, the
SUnit framework factors out the variant parts (such as the name of the exception).
If you plan to write tests that are intended to be cross-dialect, look at the class
TestResult.

Example 15.6

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: TestResult error.
self should: [empty at: 5 put: #abc] raise: TestResult
error.

Because GemStone Smalltalk has a legacy exception framework that uses numbers
to identify exceptions, a subclass of TestCase is provided, GSTestCase, which
overrides should:raise: to allow a number argument for the expected error
type.

Example 15.7

GSExampleSetTest>>testIllegal
self should: [empty at: 5] raise: 2007.
self should: [empty at: 5 put: #abc] raise: 2007.

Having provided an example of writing and running a test, we now turn to an
investigation of the framework itself.
September 2009 GemStone Systems, Inc. 349

The SUnit Framework GemStone Programming Guide
15.4 The SUnit Framework
SUnit is implemented by four main classes: TestCase, TestSuite, TestResult, and
TestResource. See Figure 15.1.

Figure 15.1 The SUnit Core Classes

TestCase

The class TestCase represents a family of tests that share a common context. The
context is specified by instance variables on a subclass of TestCase and by the
specialization method setUp, which initializes the context in which the test will be
executed. The class TestCase also defines the method tearDown, which is
responsible for cleanup, including releasing the objects allocated by setUp. The
method tearDown is invoked after the execution of every test.

TestSuite

The class TestSuite represents a collection of tests. An instance of TestSuite
contains zero or more instances of subclasses of TestCase and zero or more
instances of TestSuite. The classes TestSuite and TestCase form a composite
pattern in which TestSuite is the composite and TestCase is the leaf.
350 GemStone Systems, Inc. September 2009

Contents Understanding the SUnit Implementation
TestResult

The class TestResult represents the results of a TestSuite execution. This includes
a description of which tests passed, which failed, and which had errors.

TestResource

Recall that the setUp method is used to create a context in which the test will run.
Often that context is quite inexpensive to establish, as in Example 15.2 (on
page 347), which creates two instances of Set and adds two objects to one of those
instances.

At times, however, the context may be comparatively expensive to establish. In
such cases, the prospect of re-establishing the context for each run of each test
might discourage frequent running of the tests. To address this problem, SUnit
introduces the notion of a resource that is shared by multiple tests.

The class TestResource represents a resource that is used by one or more tests in a
suite, but instead of being set up and torn down for each test, it is established once
before the first test and reset once after the last test. By default, an instance of
TestSuite defines as its resources the list of resources for the TestCase instances
that compose it.

As shown in Example 15.8, a resource is identified by overriding the class method
resources. Here, we define a subclass of TestResource called MyTestResource.
We associate it with MyTestCase by overriding the class method resources to
return an array of the test classes to which it is associated.

Example 15.8

MyTestCase class>>resources
"associate a resource with a testcase"
^ Array with: MyTestResource.

As with a TestCase, we use the method setUp to define the actions that will be run
during the setup of the resource.

15.5 Understanding the SUnit Implementation
Let’s now look at some key aspects of the implementation by following the
execution of a test. Although this understanding is not necessary to use SUnit, it
can help you to customize SUnit.
September 2009 GemStone Systems, Inc. 351

Understanding the SUnit Implementation GemStone Programming Guide
Running a Single Test
To execute a single test, we evaluate the expression

(TestCase selector: aSymbol) run.

The method TestCase>>run creates an instance of TestResult to contain the
result of the executed tests, and then invokes the method TestCase>>run:.,
which in turn invokes the method TestResult>>runCase:. See Example 15.9.

Example 15.9

TestCase>>run
| result |
result := TestResult new.
self run: result.
^result.

TestCase>>run: aResult
aResult runCase: self.

The runCase: method (Example 15.10) invokes the method
TestCase>>runCase, which executes a test. Without going into the details,
TestCase>>runCase pays attention to the possible exception that may be raised
during the execution of the test, invokes the execution of a TestCase by calling the
method runCase, and counts the errors, failures, and passed tests.
352 GemStone Systems, Inc. September 2009

Contents Understanding the SUnit Implementation
Example 15.10

TestResult>>runCase: aTestCase
[

[
aTestCase runCase.
self passed add: aTestCase.

] sunitOn: self class failure do: [:signal |
self failures add: aTestCase.
^self.

].
] sunitOn: self class error do: [:signal |

self errors add: aTestCase.
^self.

].

As shown in Example 15.11, the method TestCase>>runCase calls the methods
setUp and tearDown.

Example 15.11

TestCase>>runCase
self setUp.
[

self performTest.
] sunitEnsure: [

self teardown.
].

Running a TestSuite
To execute more than a single test, we invoke the method TestSuite>>run on a
TestSuite (see Example 15.12). The class TestCase provides the functionality to
build a test suite from its methods. The expression MyTestCase suite returns a
suite containing all the tests defined in the class MyTestCase.

The method TestSuite>>run creates an instance of TestResult, verifies that all
the resource are available, then invokes the method TestSuite>>run: to run all
the tests that compose the test suite. All the resources are then reset.
September 2009 GemStone Systems, Inc. 353

Understanding the SUnit Implementation GemStone Programming Guide
Example 15.12

TestSuite>>run
| result |
result := TestResult new.
self areAllResourcesAvailable ifFalse: [

^TestResult signalErrorWith:
'Resource could not be initialized'.

].
[

self run: result.
] sunitEnsure: [

self resources do: [:each | each reset].
].
^result.

TestSuite>>run: aResult
self tests do: [:each |

self sunitChanged: each.
each run: aResult.

].

TestSuite>>areAllResourcesAvailable
^self resources

inject: true
into: [:total :each | each isAvailable & total].
354 GemStone Systems, Inc. September 2009

Contents For More Information
The class TestResource and its subclasses use the class method current to keep
track of their currently created instances (one per class) that can be accessed and
created. This instance is cleared when the tests have finished running and the
resources are reset. The resources are created as needed. See Example 15.13.

Example 15.13

TestResource class>>isAvailable
^self current notNil.

TestResource class>>current
current isNil ifTrue: [current := self new].
^current.

TestResource>>initialize
self setup.

15.6 For More Information
To continue your exploration of repeatable unit testing, you may find these books
of interest:

Kent Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

Kent Beck, Test-Driven Development. Addison-Wesley, 2003.

Martin Fowler, Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.
September 2009 GemStone Systems, Inc. 355

For More Information GemStone Programming Guide
356 GemStone Systems, Inc. September 2009

Appendix

A GemStone Smalltalk
Syntax
This chapter outlines the syntax for GemStone Smalltalk and introduces some
important kinds of GemStone Smalltalk objects.

A.1 The Smalltalk Class Hierarchy
Every object is an instance of a class, taking its methods and its form of data storage
from its class. Defining a class thus creates a kind of template for a whole family of
objects that share the same structure and methods. Instances of a class are alike in
form and in behavioral repertoire, but independent of one another in the values of
the data they contain.

Classes are much like the data types (string, integer, etc.) provided by conventional
languages; the most important difference is that classes define actions as well as
storage structures. In other words, Algorithms + Data Structures = Classes.

Smalltalk provides a number of predefined classes that are specialized for storing
and transforming different kinds of data. Instances of class Float, for example,
store floating-point numbers, and class Float provides methods for doing floating-
point arithmetic. Floats respond to messages such as +, -, and reciprocal.

Instances of class Array store sequences of objects and respond to messages that
read and write array elements at specified indices.
September 2009 GemStone Systems, Inc. 357

The Smalltalk Class Hierarchy GemStone Programming Guide
The Smalltalk classes are organized in a treelike hierarchy, with classes providing
the most general services nearer the root, and classes providing more specialized
functions nearer the leaves of the tree. This organization takes advantage of the fact
that a class’s structure and methods are automatically conferred on any classes
defined as its subclasses. A subclass is said to inherit the properties of its parent
and its parent’s ancestors.

How to Create a New Class
The following message expression makes a new subclass of class Object, the class
at the top of the class hierarchy:

Object subclass: 'Animal'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
instancesInvariant: false
isModifiable: false

This subclass creation message establishes a name (’Animal’) for the new class and
installs the new class in a Dictionary called UserGlobals. The String used for the
new class’s name must follow the general rule for variable names — that is, it must
begin with an alphabetic character and its length must not exceed 64 characters.
Installing the class in UserGlobals makes it available for use in the future—you
need only write the name Animal in your code to refer to the new class.

Case-Sensitivity
GemStone Smalltalk is case-sensitive; that is, names such as “SuperClass,”
“superclass,” and “superClass” are treated as unique items by the GemStone
Smalltalk compiler.
358 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
Statements
The basic syntactic unit of a GemStone Smalltalk program is the statement. A lone
statement needs no delimiters; multiple statements are separated by periods:

a := 2.
b := 3.

In a group of statements to be executed en masse, a period after the last statement
is optional.

A statement contains one or more expressions, combining them to perform some
reasonable unit of work, such as an assignment or retrieval of an object.

Comments
GemStone Smalltalk usually treats a string of characters enclosed in quotation
marks as a comment—a descriptive remark to be ignored during compilation. Here
is an example:

"This is a comment."

 A quotation mark does not begin a comment in the following cases:

 • Within another comment. You cannot nest comments.

 • Within a string literal (see page 362). Within a GemStone Smalltalk string
literal, a “comment” becomes part of the string.

 • When it immediately follows a dollar sign ($). GemStone Smalltalk interprets
the first character after a dollar sign as a data object called a character literal
(see page 362).

A comment terminates tokens such as numbers and variable names. For example,
GemStone Smalltalk would interpret the following as two numbers separated by a
space (by itself, an invalid expression):

2" this comment acts as a token terminator" 345

Expressions
An expression is a sequence of characters that GemStone Smalltalk can interpret as
a reference to an object. Some references are direct, and some are indirect.

Expressions that name objects directly include both variable names and literals
such as numbers and strings. The values of those expressions are the objects they
name.
September 2009 GemStone Systems, Inc. 359

The Smalltalk Class Hierarchy GemStone Programming Guide
An expression that refers to an object indirectly by specifying a message invocation
has the value returned by the message’s receiver. You can use such an expression
anywhere you might use an ordinary literal or a variable name. This expression:

2 negated

has the value (refers to) -2, the object that 2 returns in response to the message
negated.

The following sections describe the syntax of GemStone Smalltalk expressions and
tell you something about their behavior.

Kinds of Expressions

A GemStone Smalltalk expression can contain a combination of the following:

 • a literal

 • a variable name

 • an assignment

 • a message expression

 • an array constructor

 • a path

 • a block

The following sections discuss each of these kinds of expression in turn.

Literals

A literal expression is a representation of some object such as a character or string
whose value or structure can be written out explicitly. The five kinds of GemStone
Smalltalk literals are:

 • numbers

 • characters

 • strings

 • symbols

 • arrays of literals
360 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
Numeric Literals

In GemStone Smalltalk, literal numbers look and act much like numbers in other
programming languages. Like other GemStone Smalltalk objects, numbers receive
and respond to messages. Most of those messages are requests for arithmetic
operations. In general, GemStone Smalltalk numeric expressions do the same
things as their counterparts in conventional programming languages. For
example:

5 + 5

returns the sum of 5 and 5.

A literal floating point number must include at least one digit after the decimal
point:

5.0

You can express very large and very small numbers compactly with scientific
notation. To raise a number to some exponent, simply append the letter “e” and a
numeric exponent to the number’s digits. For example:

8.0e2

represents 800.0. The number after the e represents an exponent (base 10) to which
the number preceding the e is to be raised. The result is always a floating point
number. Here are more examples:

1e-3 represents 0.001
1.5e0 represents 1.5

In addition to “e”, GemStone/S 64 Bit also supports the exponents “d”, “D”, “E”,
and (for decimal floats) “f” and “F”. For details, see Figure A.1 on page 384.

To represent a number in a nondecimal base literally, write the number’s base (in
decimal), followed by the radix “r” or character "#", and then the number itself.
Here, for example, is how you would write octal 23 and hexadecimal FF:

8#23
16#FF

The largest radix available is 36.
September 2009 GemStone Systems, Inc. 361

The Smalltalk Class Hierarchy GemStone Programming Guide
Character Literals

A GemStone Smalltalk character literal represents a character, such as one of the
symbols of the alphabet. To create a character literal, write a dollar sign ($)
followed by the character’s alphabetic symbol. Here are some examples:

$b $B $4 $? $$

If a nonprinting ASCII character such as a tab or a form feed follows the dollar sign,
GemStone Smalltalk creates the appropriate internal representation of that
character. GemStone Smalltalk interprets this statement, for example, as a
representation of ASCII character 32:

Example A.1

$. "Creates the character representing a space (ASCII 32)"

In Example A.1, the period following the space acted as a statement terminator. If
no space had separated the dollar sign from the period, GemStone Smalltalk
would have interpreted the expression as the character literal representing a
period.

String Literals

Literal strings represent sequences of characters. They are instances of the class
String, described in Chapter 4, “Collection and Stream Classes.” A literal string is
a sequence of characters enclosed by single quotation marks. These are literal
instances of String:

'Intellectual passion drives out sensuality.'
'A difference of taste in jokes is a great strain
 on the affections.'

When you want to include apostrophes in a literal string, double them:

'You can''t make omelettes without breaking eggs.'

GemStone Smalltalk faithfully preserves control characters when it compiles
literal strings. The following example creates a String containing a line feed (ASCII
10), GemStone Smalltalk’s end-of-line character:

'Control characters such as line feeds
 are significant in literal strings.'

As explained in Chapter 4, “Collection and Stream Classes,” Strings respond to a
variety of text manipulation messages.
362 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
Also see the discussion of DoubleByteStrings on page 363.

Symbol Literals

A literal Symbol is similar to a literal String. It is a sequence of letters, numbers, or
an underscore preceded by a pound sign (#). For example:

Example A.2

#stuff
#nonsense
#may_24_thisYear

Literal Symbols can contain white space (tabs, carriage returns, line feeds,
formfeeds, spaces, or similar characters). If they do, they must be preceded by a
pound sign (#) and must also be delimited by single quotation marks, as described
in the “String Literals” discussion. For example:

#'Gone With the Wind'

Chapter 4, “Collection and Stream Classes,” discusses the behavior of Symbols.

Also see the following discussion of DoubleByteSymbols.

DoubleByteStrings and DoubleByteSymbols

Characters with values over 255 require two bytes to represent, while String and
Symbol only allow for one byte per character. If you create a String or Symbol
literal that contains any Characters with values over 255 (such as š), the String or
Symbol is transparently transformed into a DoubleByteString or
DoubleByteSymbol. These classes behave identically to String and Symbol,
respectively.

Array Literals

Arrays can hold objects of any type, and they respond to messages that read and
write individual elements or groups of elements.

A literal Array can contain only other literals—Characters, Strings, Symbols, other
literal Arrays, and three “special literals” (true, false, nil). The elements of a literal
Array are enclosed in parentheses and preceded by a pound sign (#). White space
must separate the elements.

Here is an Array that contains two Strings, a literal Array, and a third String:
September 2009 GemStone Systems, Inc. 363

The Smalltalk Class Hierarchy GemStone Programming Guide
#('string one' 'string two' #('another' 'Array') 'string three')

The following Array contains a String, a Symbol, a Character, a Number, and a
Boolean:

#('string one' #symbolOne $c 4 true)

Array literals are only one of two flavors of arrays. For a discussion of array
constructors, see page 371.

Variables and Variable Names
A variable name is a sequence of characters of either or both cases. A variable
name must begin with an alphabetic character or an underscore (“_”) , but it can
contain numerals. Spaces are not allowed, and the underscore is the only
acceptable punctuation mark. Here are some permissible variable names:

zero
relationalOperator
Top10SolidGold
A_good_name_is_better_than_precious_ointment

Most GemStone Smalltalk programmers begin local variable names with
lowercase letters and global variable names with uppercase letters. When a
variable name contains several words, GemStone Smalltalk programmers usually
begin each word with an uppercase letter. You are free to ignore either of these
conventions, but remember that GemStone Smalltalk is case-sensitive. The
following are all different names to GemStone Smalltalk:

VariableName
variableName
variablename

Variable names can contain up to 64 characters.

Declaring Temporary Variables

Like many other languages, GemStone Smalltalk requires you to declare new
variable names (implicitly or explicitly) before using them. The simplest kind of
variable to declare, and one of the most useful in your initial exploration of
GemStone Smalltalk, is the temporary variable. Temporary variables are so called
because they are defined only for one execution of the set of statements in which
they are declared.

To declare a temporary variable, you must surround it with vertical bars as in this
example:
364 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
Example A.3

| myTemporaryVariable |
myTemporaryVariable := 2.

You can declare at most 253 temporary variables for a set of statements. Once
declared, a variable can name objects of any kind.

To store a variable for later use, or to make its scope global, you must put it in one
of GemStone’s shared dictionaries that GemStone Smalltalk uses for symbol
resolution. For example:

Example A.4

| myTemporaryVariable |
myTemporaryVariable := 2.
UserGlobals at: #MyPermanentVariable put: myTemporaryVariable.

Subsequent references to MyPermanentVariable return the value 2.

Chapter 4, “Collection and Stream Classes,” explains Dictionaries and the message
at:put:. Chapter 3, “Resolving Names and Sharing Objects,” provides a
complete discussion of symbol resolution and discusses other kinds of “implicit
declaration” similar to storage in UserGlobals.

Pseudovariables

You can change the objects to which most variable names refer simply by assigning
them new objects. However, five GemStone Smalltalk variables have values that
cannot be changed by assignment; they are therefore called pseudovariables. They
are:

nil

Refers to an object representing a null value. Variables not assigned another
value automatically refer to nil.

true

Refers to the object representing logical truth.

false

Refers to the object representing logical falsity.
September 2009 GemStone Systems, Inc. 365

The Smalltalk Class Hierarchy GemStone Programming Guide
self

Refers to the receiver of the message, which differs according to the context.

super

Refers to the receiver of the message, but the method that is invoked is in the
superclass of the receiver.

Assignment
Assignment statements in GemStone Smalltalk look like assignment statements in
many other languages. The following statement assigns the value 2 to the variable
MightySmallInteger:

MightySmallInteger := 2.

The next statement assigns the same String to two different variables (C
programmers may notice the similarity to C assignment syntax):

nonmodularity := interdependence := 'No man is an island'.

Message Expressions
As you know, GemStone Smalltalk objects communicate with one another by
means of messages. Most of your effort in GemStone Smalltalk programming will
be spent in writing expressions in which messages are passed between objects.
This subsection discusses the syntax of those message expressions.

You have already seen several examples of message expressions:

2 + 2
5 + 5

In fact, the only GemStone Smalltalk code segments you have seen that are not
message expressions are literals, variables, and simple assignments:

2 "a literal"
variableName "a variable"
MightySmallInteger := 2. "an assignment"

The ubiquity of message-passing is one of the hallmarks of object-oriented
programming.

Messages

A message expression consists of:
366 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
 • an identifier or expression representing the object to receive the message,

 • one or more identifiers called selectors that specify the message to be sent, and

 • (possibly) one or more arguments that pass information with the message
(these are analogous to procedure or function arguments in conventional
programming). Arguments can be written as message expressions.

Reserved and Optimized Selectors
Because GemStone represents selectors internally as symbols, almost any
identifier that is legal as a literal symbol is acceptable as a selector. A few selectors,
however, have been reserved for the sole use of the GemStone Smalltalk kernel
classes. Those selectors are:

ifTrue: untilFalse timesRepeat:
ifFalse: untilTrue _isSymbol
ifTrue:ifFalse: whileFalse: _isInteger
ifFalse:ifTrue: whileTrue: _isSmallInteger
includesIdentical: to:do: ==
isKindOf: to:by:do: ~~
_class

Redefining a reserved selector has no effect; the same primitive method is called
and your redefinition is ignored.

In addition, the following methods are optimized in the class SmallInteger:

+ - * >= =

You can redefine the optimized methods above in your application classes, but
redefinitions in the class SmallInteger are ignored.

Messages as Expressions

In the following message expression, the object 2 is the receiver, + is the selector,
and 8 is the argument:

2 + 8

When 2 sees the selector +, it looks up the selector in its private memory and finds
instructions to add the argument (8) to itself and to return the result. In other
words, the selector + tells the receiver 2 what to do with the argument 8. The object
2 returns another numeric object 10, which can be stored with an assignment:

myDecimal := 2 + 8.
September 2009 GemStone Systems, Inc. 367

The Smalltalk Class Hierarchy GemStone Programming Guide
The selectors that an object understands (that is, the selectors for which
instructions are stored in an object’s instruction memory or “method dictionary”)
are determined by the object’s class.

Unary Messages

The simplest kind of message consists only of a single identifier called a unary
selector. The selector negated, which tells a number to return its negative, is
representative:

7 negated
-7

 Here are some other unary message expressions:

9 reciprocal. "returns the reciprocal of 9"
myArray last. "returns the last element of Array myArray"
DateTime now. "returns the current date and time"

Binary Messages

Binary message expressions contain a receiver, a single selector consisting of one
or two nonalphanumeric characters, and a single argument. You are already
familiar with binary message expressions that perform addition. Here are some
other binary message expressions (for now, ignore the details and just notice the
form):

8 * 8 "returns 64"
4 < 5 "returns true"
myObject = yourObject "returns true if myObject and
 yourObject have the same value"

Keyword Messages

Keyword messages are the most common. Each contains a receiver and up to 15
keyword and argument pairs. In keyword messages, each keyword is a simple
identifier ending in a colon.

In the following example, 7 is the receiver, rem: is the keyword selector, and 3 is
the argument:

7 rem: 3 "returns the remainder from the division of 7 by 3"
368 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
Here is a keyword message expression with two keyword-argument pairs:

Example A.5

| arrayOfStrings |
arrayOfStrings := Array new: 4.
arrayOfStrings at: (2 + 1) put: 'Curly'.
"puts 'Curly' at index position 3 in the receiver"

In a keyword message, the order of the keyword-argument pairs (at:arg1
put:arg2) is significant.

Combining Message Expressions
In a previous example, one message expression was nested within another, and
parentheses set off the inner expression to make the order of evaluation clear. It
happens that the parentheses were optional in that example. However, in
GemStone Smalltalk as in most other languages, you sometimes need parentheses
to force the compiler to interpret complex expressions in the order you prefer.

Combinations of unary messages are quite simple; GemStone Smalltalk always
groups them from left to right and evaluates them in that order. For example:

9 reciprocal negated

is evaluated as if it were parenthesized like this:

(9 reciprocal) negated

That is, the numeric object returned by 9 reciprocal is sent the message
negated.

Binary messages are also invariably grouped from left to right. For example,
GemStone Smalltalk evaluates:

2 + 3 * 2

 as if the expression were parenthesized like this:

(2 + 3) * 2

This expression returns 10. It may be read: “Take the result of sending + 3 to 2, and
send that object the message * 2.”

All binary selectors have the same precedence. Only the sequence of a string of
binary selectors determines their order of evaluation; the identity of the selectors
doesn’t matter.
September 2009 GemStone Systems, Inc. 369

The Smalltalk Class Hierarchy GemStone Programming Guide
However, when you combine unary messages with binary messages, the unary
messages take precedence. Consider the following expression, which contains the
binary selector + and the unary selector negated:

2 + 2 negated
0

This expression returns the result 0 because the expression 2 negated executes
before the binary message expression 2 + 2. To get the result you may have
expected here, you would need to parenthesize the binary expression like this:

(2 + 2) negated
-4

Finally, binary messages take precedence over keyword messages. For example:

myArrayOfNums at: 2 * 2

would be interpreted as a reference to myArrayofNums at position 4. To multiply
the number at the second position in myArrayOfNums by 2, you would need to
use parentheses like this:

(myArrayOfNums at: 2) * 2

Summary of Precedence Rules

1. Parenthetical expressions are always evaluated first.

2. Unary expressions group left to right, and they are evaluated before binary
and keyword expressions.

3. Binary expressions group from left to right, as well, and take precedence over
keyword expressions.

4. GemStone Smalltalk executes assignments after message expressions.

Cascaded Messages
You will often want to send a series of messages to the same object. By cascading
the messages, you can avoid having to repeat the name of the receiver for each
message. A cascaded message expression consists of the name of the receiver, a
message, a semicolon, and any number of subsequent messages separated by
semicolons.
370 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
For example:

Example A.6

| arrayOfPoets |
arrayOfPoets := Array new.
(arrayOfPoets add: 'cummings'; add: 'Byron'; add: 'Rimbaud';
yourself)

is a cascaded message expression that is equivalent to this series of statements:

Example A.7

| arrayOfPoets |
arrayOfPoets := Array new.
arrayOfPoets add: 'cummings'.
arrayOfPoets add: 'Byron'.
arrayOfPoets add: 'Rimbaud'.
arrayOfPoets

You can cascade any sequence of messages to an object. And, as always, you are
free to replace the receiver’s name with an expression whose value is the receiver.

Array Constructors
Most of the syntax described in this chapter so far is standard Smalltalk syntax.
However, GemStone Smalltalk also includes a syntactic construct called a Array
constructor. An Array constructor is similar to a literal array, but its elements can
be written as nonliteral expressions as well as literals. GemStone Smalltalk
evaluates the expressions in an Array constructor at run time.

Array constructors look a lot like literal Arrays; the differences are that array
constructors are enclosed in brackets and have their elements delimited by
commas.

Example A.8 shows an Array constructor whose last element, represented by a
message expression, has the value 4.
September 2009 GemStone Systems, Inc. 371

The Smalltalk Class Hierarchy GemStone Programming Guide
Example A.8

"An Array constructor"
#['string one', #symbolOne , $c , 2+2]

NOTE
The Array constructor is not part of the Smalltalk standard. You should
avoid its use in any code that might be ported to an other Smalltalk
dialect. Instead, use a message send constructor such as Array class
>> #with:. See Example A.9.

Example A.9

Array with: 'string one' with: #symbolOne with: $c with: 2+2

Because any valid GemStone Smalltalk expression is acceptable as an array
constructor element, you are free to use variable names as well as literals and
message expressions:

Example A.10

| aString aSymbol aCharacter aNumber |
aString := 'string one'.
aSymbol := #symbolOne.
aCharacter := $c.
aNumber := 4.
#[aString, aSymbol, aCharacter, aNumber]

The differences in the behavior of array constructors versus literal arrays can be
subtle. For example, the literal array:

#(123 huh 456)

is interpreted as an array of three elements: a SmallInteger, aSymbol, and another
SmallInteger. This is true even if you declare the value of huh to be a SmallInteger
such as 88, as shown in Example A.11.
372 GemStone Systems, Inc. September 2009

Contents The Smalltalk Class Hierarchy
Example A.11

| huh |
huh := 88.
#(123 huh 456)

 [sz:3 cls: InvariantArray]
 #1 [sz:0 cls: SmallInteger] 123
 #2 [sz:3 cls: Symbol] huh
 #3 [sz:0 cls: SmallInteger] 456

The same declaration used in an array constructor, however, produces an array of
three SmallIntegers:

Example A.12

| huh |
huh := 88.
#[123, huh, 456]

[sz:3 cls: Array]
 #1 [sz:0 cls: SmallInteger] 123
 #2 [sz:0 cls: SmallInteger] 88
 #3 [sz:0 cls: SmallInteger] 456

Path Expressions
With the exception of Array constructors, most of the syntax described in this
chapter so far is standard Smalltalk syntax. GemStone Smalltalk also includes a
syntactic construct called a path. A path is a special kind of expression that returns
the value of an instance variable.

A path is an expression that contains the names of one or more instance variables
separated by periods; a path returns the value of the last instance variable in the
series. The sequence of the names reflects the order of the objects’ nesting; the
outermost object appears first in a path, and the innermost object appears last. The
following path points to the instance variable name, which is contained in the
object anEmployee:

anEmployee.name
September 2009 GemStone Systems, Inc. 373

The Smalltalk Class Hierarchy GemStone Programming Guide
The path in this example returns the value of instance variable name within
anEmployee.

If the instance variable name contained another instance variable called last, the
following expression would return the value of last:

anEmployee.name.last
NOTE

Use paths only for their intended purposes. Although you can use a path
anywhere an expression is acceptable in a GemStone Smalltalk program,
paths are intended for specifying indexes, formulating queries, and
sorting. In other contexts, a path returns its value less efficiently than
an equivalent message expression. Paths also violate the encapsulation
that is one of the strengths of the object-oriented data model. Using them
can circumvent the designer’s intention. Finally, paths are not standard
Smalltalk syntax. Therefore, programs using them are less portable than
other GemStone Smalltalk programs.

Returning Values
Previous discussions have spoken of the “value of an expression” or the “object
returned by an expression.” Whenever a message is sent, the receiver of the
message returns an object. You can think of this object as the message expression’s
value, just as you think of the value computed by a mathematical function as the
function’s value.

You can use an assignment statement to capture a returned object:

Example A.13

| myVariable |
myVariable := 8 + 9. "assign 17 to myVariable"
myVariable "return the value of myVariable"
17
374 GemStone Systems, Inc. September 2009

Contents Blocks
You can also use the returned object immediately in a surrounding expression:

Example A.14

"puts 'Moe' at position 2 in arrayOfStrings"
| arrayOfStrings |
arrayOfStrings := Array new: 4.
(arrayOfStrings at: 1+1 put: 'Moe'; yourself) at: 2

And if the message simply adds to a data structure or performs some other
operation where no feedback is necessary, you may simply ignore the returned
value.

A.2 Blocks
A GemStone Smalltalk block is an object that contains a sequence of instructions.
The sequence of instructions encapsulated by a block can be stored for later use,
and executed by simply sending the block the unary message value. Blocks find
wide use in GemStone Smalltalk, especially in building control structures.

A literal block is delimited by brackets and contains one or more GemStone
Smalltalk expressions separated by periods. Here is a simple block:

[3.2 rounded]

 To execute this block, send it the message value.

[3.2 rounded] value
3

When a block receives the message value, it executes the instructions it contains
and returns the value of the last expression in the sequence. The block in the
following example performs all of the indicated computations and returns 8, the
value of the last expression.

[89*5. 3+4. 48/6] value
8

You can store a block in a simple variable:

| myBlock |
myBlock := [3.2 rounded].
myBlock value.
3

September 2009 GemStone Systems, Inc. 375

Blocks GemStone Programming Guide
or store several blocks in more complex data structures, such as Arrays:

Example A.15

| factorialArray |
factorialArray := Array new.
factorialArray at: 1 put: [1];
 at: 2 put: [2 * 1];
 at: 3 put: [3 * 2 * 1];
 at: 4 put: [4 * 3 * 2 * 1].
(factorialArray at: 3) value
6

Because a block’s value is an ordinary object, you can send messages to the value
returned by a block.

Example A.16

| myBlock |
myBlock := [4 * 8].
myBlock value / 8
4

The value of an empty block is nil.

[] value
nil

Blocks are especially important in building control structures. The following
section discusses using blocks in conditional execution.

Blocks with Arguments
You can build blocks that take arguments. To do so, precede each argument name
with a colon, insert it at the beginning of the block, and append a vertical bar to
separate the arguments from the rest of the block.

Here is a block that takes an argument named myArg:

[:myArg | 10 + myArg]
376 GemStone Systems, Inc. September 2009

Contents Blocks
To execute a block that takes an argument, send it the keyword message value:
anArgument. For example:

Example A.17

| myBlock |
myBlock := [:myArg | 10 + myArg].
myBlock value: 10.
20

The following example creates and executes a block that takes two arguments.
Notice the use of the two-keyword message value: aValue value: anotherValue.

Example A.18

| divider |
divider := [:arg1 :arg2 | arg1 / arg2].
divider value: 4 value: 2
2

A block assigns actual parameter values to block variables in the order implied by
their positions. In this example, arg1 takes the value 4 and arg2 takes the value 2.

Variables used as block arguments are known only within their blocks; that is, a
block variable is local to its block. A block variable’s value is managed
independently of the values of any similarly named instance variables, and
GemStone Smalltalk discards it after the block finishes execution. Example A.19
illustrates this:

Example A.19

| aVariable |
aVariable := 1.
[:aVariable | aVariable] value: 10.
aVariable
1

September 2009 GemStone Systems, Inc. 377

Blocks GemStone Programming Guide
You cannot assign to a block variable within its block. This code, for example,
would elicit a compiler error:

Example A.20

"The following expression attempts an invalid assignment
 to a block variable."
[:blockVar | blockVar := blockVar * 2] value: 10

Blocks and Conditional Execution
Most computer languages, GemStone Smalltalk included, execute program
instructions sequentially unless you include special flow-of-control statements.
These statements specify that some instructions are to be executed out of order;
they enable you to skip some instructions or to repeat a block of instructions. Flow
of control statements are usually conditional; they execute the target instructions
if, until, or while some condition is met.

GemStone Smalltalk flow of control statements rely on blocks because blocks so
conveniently encapsulate sequences of instructions. GemStone Smalltalk’s most
important flow of control structures are message expressions that execute a block
if or while some object or expression is true or false. GemStone Smalltalk also
provides a control structure that executes a block a specified number of times.

Conditional Selection

You will often want GemStone Smalltalk to execute a block of code only if some
condition is true or only if it is false. GemStone Smalltalk provides the messages
ifTrue: aBlock and ifFalse: aBlock for that purpose. Example A.21 contains
both of these messages:

Example A.21

5 = 5 ifTrue: ['yes, five is equal to five'].
yes, five is equal to five
5 > 10 ifFalse: ['no, five is not greater than ten'].
no, five is not greater than ten

In the first of these examples, GemStone Smalltalk initially evaluates the
expression (5 = 5). That expression returns the value true (a Boolean), to which
GemStone Smalltalk then sends the selector ifTrue:. The receiver (true) looks at
378 GemStone Systems, Inc. September 2009

Contents Blocks
itself to verify that it is, indeed, the object true. Because it is, it proceeds to execute
the block passed as an argument to ifTrue:, and the result is a String.

The receiver of ifTrue: or ifFalse: must be Boolean; that is, it must be either
true or false. In Example A.21, the expressions (5 = 5) and (5 > 10) returned
true and false, respectively, because GemStone Smalltalk numbers know how to
compute and return those values when they receive messages such as = and >.

Two-Way Conditional Selection

You will often want to direct your program to take one course of action if a
condition is met and a different course if it isn’t. You could arrange this by sending
ifTrue: and then ifFalse: in sequence to a Boolean (true or false) expression.
For example:

Example A.22

2 < 5 ifTrue: ['two is less than five'].
two is less than five
2 < 5 ifFalse: ['two is not less than five'].
nil

However, GemStone Smalltalk lets you express the same instructions more
compactly by sending the single message ifTrue: block1 ifFalse: block2 to an
expression or object that has a Boolean value. Which of that message’s arguments
GemStone Smalltalk executes depends upon whether the receiver is true or false.
In Example A.23, the receiver is true:

Example A.23

2 < 5 ifTrue: ['two is less than five']
 ifFalse: ['two is not less than five'].
two is less than five

Conditional Repetition

You will also sometimes want to execute a block of instructions repeatedly as long
as some condition is true, or as long as it is false. The messages whileTrue:
aBlock and whileFalse: aBlock give you that ability. Any block that has a
Boolean value responds to these messages by executing aBlock repeatedly while it
(the receiver) is true (whileTrue:) or false (whileFalse:).
September 2009 GemStone Systems, Inc. 379

Blocks GemStone Programming Guide
Here is an example that repeatedly adds 1 to a variable until the variable equals 5:

Example A.24

| sum |
sum := 0.
[sum = 5] whileFalse: [sum := sum + 1].
sum
5

The next example calculates the total payroll of a miserly but egalitarian company
that pays each employee the same salary.

Example A.25

| totalPayroll numberOfEmployees salariesAdded standardSalary |
totalPayroll := 0.00.
salariesAdded := 0.
numberOfEmployees := 40.
standardSalary := 5000.00.
"Now repeatedly add the standard salary to the total payroll
so long as the number of salaries added is less than the
number of employees"
[salariesAdded < numberOfEmployees] whileTrue:

[totalPayroll := totalPayroll + standardSalary.
salariesAdded := salariesAdded + 1].

totalPayroll
2.0E5

Blocks also accept two unary conditional repetition messages, untilTrue and
untilFalse. These messages cause a block to execute repeatedly until the block’s
last statement returns either true (untilTrue) or false (untilFalse).
380 GemStone Systems, Inc. September 2009

Contents Blocks
The following example is equivalent to Example A.24, but uses untilTrue
(rather than whileFalse:).

Example A.26

| sum |

sum := 0.
[sum := sum + 1. sum = 5] untilTrue.
sum

5

When GemStone Smalltalk executes the block initially (by sending it the message
value), the block’s first statement adds one to the variable sum. The block’s
second statement asks whether sum is equal to 5; since it isn’t, that statement
returns false, and GemStone Smalltalk executes the block again. GemStone
Smalltalk continues to reevaluate the block as long as the last statement returns
false (that is, while sum is not equal to 5).

The descriptions of classes Boolean and Block in the image describe these flow of
control messages and others.

Formatting Code
GemStone Smalltalk is a free-format language. A space, tab, line feed, form feed,
or carriage return affects the meaning of a GemStone Smalltalk expression only
when it separates two characters that, if adjacent to one another, would form part
of a meaningful token.
September 2009 GemStone Systems, Inc. 381

Blocks GemStone Programming Guide
In general, you are free to use whatever spacing makes your programs most
readable. The following are all equivalent:

Example A.27

UserGlobals at: #arglebargle put: 123 "Create the symbol"

#['string one',2+2,'string three',$c,9*arglebargle]

#['string one' , 2+2 , 'string three' , $c , 9*arglebargle]

#['string one',
 2 + 2,
 'string three',
 $c,
 9 * arglebargle]
382 GemStone Systems, Inc. September 2009

Contents GemStone Smalltalk BNF
A.3 GemStone Smalltalk BNF
This section provides a complete BNF description of GemStone Smalltalk. Here are
a few notes about interpreting the grammar:

A = expr

This defines the syntactic production ‘A’ in terms of the expression on the right
side of the equals sign.

B = C | D

The vertical bar ‘|’ defines alternatives. In this case, the production “B” is one
of either “C” or “D”.

C = '<'

A symbol in accents is a literal symbol.

D = F G

A sequence of two or more productions means the productions in the order of
their appearance.

E = [A]

Brackets indicate zero or one optional productions.

F = { B }

Braces indicate zero or more occurrences of the productions contained within.

G = A | (B|C)

Parentheses can be used to remove ambiguity.

In the GemStone Smalltalk syntactic productions in Figure A.1, white space is
allowed between tokens. White space is required before and after the ‘_’ character.
September 2009 GemStone Systems, Inc. 383

GemStone Smalltalk BNF GemStone Programming Guide
Figure A.1 GemStone Smalltalk BNF

AExpression = Primary [AMessage { ';' ACascadeMessage }]
ABinaryMessage = ABinarySelector Primary [UnaryMessages]
ABinaryMessages = ABinaryMessage { ABinaryMessage }
ACascadeMessage = UnaryMessage | ABinaryMessage | AKeyWordMessage
AKeyWordMessage = AKeyWordPart { AKeyWordPart }
AKeyWordPart = KeyWord Primary UnaryMessages { ABinaryMessage }
AMessage = [UnaryMessages] [ABinaryMessages] [AKeywordMessage]
AnyTerm = Operand [Operator Operand]
Array = '(' { ArrayItem } ')'
ArrayBuilder = '#[' [AExpression { ',' AExpression }] ']'
ArrayLiteral = '#' Array
ArrayItem = Symbol | Array | Literal
Assignment = VariableName ':=' Statement | VariableName ' _ ' Statement
BinaryMessage = BinarySelector Primary [UnaryMessages]
BinaryMessages = BinaryMessage { BinaryMessage }
BinaryPattern = BinarySelector VariableName
Block = '[' [BlockParameters] [MethodBody] ']'
BlockParameters = { Parameter } '|'
CascadeMessage = UnaryMessage | BinaryMessage | KeyWordMessage
Expression = Primary [Message { ';' CascadeMessage }]
KeyWordMessage = KeyWordPart { KeyWordPart }
KeyWordPart = KeyWord Primary UnaryMessages { BinaryMessage }
KeyWordPattern = KeyWord VariableName {KeyWord VariableName}
Literal = Number | NegNumber | StringLiteral | CharacterLiteral |
 SymbolLiteral | ArrayLiteral | SpecialLiteral
Message = [UnaryMessages] [BinaryMessages] [KeyWordMessage]
MessagePattern = UnaryPattern | BinaryPattern | KeyWordPattern
Method = MessagePattern [Primitive] MethodBody
MethodBody = [Temporaries] [Statements]
NegNumber = '-' Number
Operand = Path | Literal | Identifier
Operator = '=' | '==' | '<' | '>' | '<=' | '>=' | '~=' | '~~'
ParenStment = '(' Statement ')'
ParenTerm = '(' AnyTerm ')'
Predicate = (AnyTerm | ParenTerm) { '&' Term }
Primary = ArrayBuilder | Literal | Path | Block | SelectionBlock | ParenStment |
 VariableName
Primitive = '<' 'primitive:' Digits '>'
SelectionBlock = '{' Parameter } '|' Predicate '}'
Statement = Assignment | Expression
Statements = { Statement '.' } [['^'] Statement ['.']]
Temporaries = '|' { VariableName } '|'
Term = ParenTerm | Operand
UnaryMessage = Identifier
UnaryMessages = { UnaryMessage }
UnaryPattern = Identifier
384 GemStone Systems, Inc. September 2009

Contents GemStone Smalltalk BNF
GemStone Smalltalk lexical tokens are shown in Figure A.2. No white space is
allowed within lexical tokens.

Figure A.2 GemStone Smalltalk Lexical Tokens

ABinarySelector = any BinarySelector except comma
BinaryExponent = ('e' | 'E' | 'd' | 'D') ['-' | '+'] Digits
BinarySelector = (SelectorCharacter [SelectorCharacter]) |
 ('-' [SelectorCharacter])
Character = Any Ascii character with ordinal value 0..255
CharacterLiteral = '$' Character
Comment = '"' { Character } '"'
DecimalExponent = ('f' | 'F') ['-' | '+'] Digits
Digit = '0' | '1' | '2' | ... | '9'
Digits = Digit {Digit}
Exponent = BinaryExponent | DecimalExponent
FractionalPart = '.' Digits [Exponent]
Identifier = SingleLetterIdentifier | MultiLetterIdentifier
KeyWord = Identifier ':'
Letter = 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z' | '_'
MultiLetterIdentifier = Letter { Letter | Digit }
Number = RadixedLiteral | NumericLiteral
Numeric = Digit | 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z'
NumericLiteral = Digits ([FractionalPart] | [Exponent])
Numerics = Numeric { Numeric }
Parameter = ':' VariableName
Path = Identifier '.' Identifier { '.' Identifier }
RadixedLiteral = Digits ('#' | 'r') ['-'] Numerics
SelectorCharacter = '+' | '\' | '*' | '~' | '<' | '>' | '='
 | '|' | '/' | '&' | '@' | '%' | ',' | '?' | '!'
SingleLetter = 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z'
SingleLetterIdentifier = SingleLetter
SpecialLiteral = 'true' | 'false' | 'nil'
StringLiteral = "'" { Character | "''" } "'"
Symbol = Identifier | BinarySelector | (Keyword { Keyword })
SymbolLiteral = '#' (Symbol | StringLiteral)
VariableName = Identifier
September 2009 GemStone Systems, Inc. 385

GemStone Smalltalk BNF GemStone Programming Guide
386 GemStone Systems, Inc. September 2009

Appendix

B GemStone Error
Messages
All GemStone errors reside in the array GemStoneError. The Symbol Dictionary
ErrorSymbols maps mnemonic symbols to the error numbers.

There are several types of GemStone errors:

 • Compiler errors report incorrect syntax in a GemStone Smalltalk program. You
can determine if an instance of GbsError (a GemBuilder for Smalltalk class) is
a compiler error by sending it the message isCompilerError. These errors
are numbered from 1000 to 1999.

 • Interpreter errors interrupt execution (which can sometimes be restarted). You
can determine if a GbsError is an interpreter error by sending it the message
isInterpreterError. These errors are numbered from 2000 to 2999.

 • Aborting errors indicate that a transaction has been aborted. Send
isAbortingError to test for aborting errors. These errors are numbered
from 3000 to 3999.

 • Fatal errors indicate that the GemStone system is unavailable, or that a software
or hardware malfunction has occurred. (The system could be unavailable
because of operating system problems, a login failure, or because the system
administrator has disabled GemStone.) You can send isFatalError to test
for fatal errors. These errors are numbered from 4000 to 4999.
September 2009 GemStone Systems, Inc. 387

Compiler Errors GemStone Programming Guide
 • Event errors are those raised as a result of object notification or Gem-to-Gem
signaling. Send isEventError to test for event errors. These errors are
numbered from 6000 to 6999.

 • Runtime errors are detected by the GemStone Smalltalk interpreter or by the
underlying virtual machine. If execution is broken between byte codes, your
application can send its session a message to proceed, if it makes sense to do
so. Because an arbitrary amount of GemStone Smalltalk code could have
executed before the error occurred, your GemStone session could be left in an
inconsistent state. It is your responsibility to determine whether the
transaction can continue or if you must abort and restart.

B.1 Compiler Errors
All errors except compiler errors are described by the error number and from 0 to
10 optional arguments.

Compiler errors—category OOP_COMPILER_ERROR_CAT—are reported
differently from other errors. Rather than having a single error and zero or more
arguments, all compiler errors are reported as error COMPILER_ERR_STDB. This
error has at least one argument, which is an array of error descriptors. Each error
descriptor is an array of three elements:

 • An error number.

 • An offset into the source code string pointing to where the error was detected.

 • A string describing the error.

If the error occurred during automatic recompilation of methods for class
modification, the error has five additional arguments:

 • Arg. 2: The source string of the compilation in error.
 • Arg. 3: The receiver of the recompilation method.
 • Arg. 4: The category of method containing the error.
 • Arg. 5: The symbolList used by the recompilation.
 • Arg. 6: The selector of the method containing the error.

See Behavior>>recompileAllMethodsInContext: for more details.
388 GemStone Systems, Inc. September 2009

Contents Error Descriptions
B.2 Error Descriptions
For details about individual GemStone errors, examine the file
$GEMSTONE/include/gcierr.ht. That file defines mnemonics for all
GemStone errors and contains a description of each error and its arguments.

You may also find it helpful to examine the image for information about specific
errors.
September 2009 GemStone Systems, Inc. 389

Error Descriptions GemStone Programming Guide
390 GemStone Systems, Inc. September 2009

Index

Index
Symbols
+ (String) 78
, (GsFile) 221
^ 270

A
abortErrFinishedObjAuditRepair 277
#abortErrLostOtRoot 138, 259
abortErrLostOtRoot 260
abortErrObjAuditFail 277
aborting

receiving a signal from Stone 138
releasing locks when 149
transaction 136
views and 137

AbortingError 45, 387
abortTransaction (System) 137
abstract superclass

SequenceableCollection 64–70
AbstractDictionary 61

accessing
elements of an IdentityBag 82
method 322
objects in a collection by key 54
objects in a collection by position 54
objects in a collection by value 54
operating system from GemStone 217
pool dictionaries 333
SequenceableCollections with streams 93
variables 323, 333
without authorization 168

acquiring locks 142
activation exception

defined 258
defining handler for 269

activation handler
ANSI exceptions 281

add: (Collection) 57
add: (RcBag) 155
add: (RcQueue) 156
add: (String) 78
add:withOccurrences: (IdentityBag) 82
September 2009 GemStone Systems, Inc. 391

GemStone Programming Guide
addAll: (Collection) 57
addAll: (GsFile) 221
addAll: (String) 78
addAllToNotifySet: (System) 233, 235
addCategory: (Behavior) 330
adding

category 330
method 322
to a SequenceableCollection 66
to notify set 233–236
to symbol lists 44
users to symbol lists 51

addNewVersion: (Object) 202
addNewWithUserId: etc. (UserProfileSet)

194
addObjectToBtreesWithValues:

(Object) 110
addPrivilege

 (UserProfile) 191
addPrivilege: (UserProfile) 191
addPrivileges: (UserProfile) 191
addToCommitOrAbortReleaseLocks-

Set: (System) 149
addToCommitReleaseLocksSet: (System)

149
addToNotifySet: (System) 233
Admin GcGem

defined 38
allClassVarNames (Behavior) 333
AllClusterBuckets 291, 293
allInstances (ClusterBucket) 292
allInstances (Repository) 204
allInstVarNames (Behavior) 334
allSelectors (Behavior) 326
allSharedPools (Behavior) 334
AllUsers 162
AND (in selection blocks) 105
ANSI exception handler

selecting 282
ANSI exception handling

and GemStone Smalltalk 286

ANSI exceptions
flow of control 284
handling 280
signaling 280

ANSI-compliant Stream positioning 94–95
application

error handling 257
joint development, and authorization 186

application objects 137, 138
planning authorizations for 181

application write lock 151
archiving data objects 226
arguments 368

block 376
arithmetic, mixed-mode 307
Array 65–74

comparing with client Smalltalk 71
constructors 371
creating 71
large, and efficiency 73
literal 363
performance of 306
portability with other Smalltalks 65

assert: (TestCase) 348
assigning

class history 202
cluster buckets 297
migration destination 203
objects to segments 165

assignment 366
assignToSegment: (Object) 192
associative access 99–125

comparing strings 106
asterisk

as wild-card character 224
at:equals: (String) 76
atEnd (RangeIndexReadStream) 112
auditIndexes (UnorderedCollection) 125
392 GemStone Systems, Inc. September 2009

GemStone Programming Guide
authorization
and joint application development 186
assigned to segment 167
error while redefining class 201
group 169
none 168
of application classes, planning 180
of application objects, planning 181
owner 168, 174
read 168
segments and 173
world 169
write 167

authorizations, instance variable for
Segment 171

autoCommit: (IndexManager) 119
auto-growing collections 34
automated unit tests 343–355

rationale for 344
automatic transaction mode, defined 132

B
Bag 81

as relation 100
converting to RcIdentityBag 111
maximum size 81

balanced tree, defined 101
beginTransaction (System) 133
Behavior 321–338
binary file, listing instances to 205
binary messages 368, 369
binding source code symbol 42–52
bkupErrRestoreSuccessful 277
blocks 375

arguments 376
complexity of and performance 307
conditional execution 378
empty 376
executing 375
literal 375
optimized 307
reactivating 226

repeated execution 379
selection 102–111
using curly braces 102

BNF syntax for GemStone Smalltalk 383
Boolean

adding to notify set 235
locking and 142
operators in queries 105
segment of 174

branching 378
bucketWithId: (ClusterBucket) 293
By 345

C
C callouts 31
cache 308–311

changing size of 308–312
Gem private page 308
KeySoftValueDictionary 63
shared page 308
Stone private page 308
temporary object space 308, 309

cancelMigration (Object) 203
canUnderstand: (Behavior) 326
caret 270
cascaded messages 371
case of variable names 364
case-sensitivity of GemStone Smalltalk

compiler 358
category

adding 330
for errors 261
moving methods among 330
removing 330

category: number: do: (Exception) 267
categoryNames (Behavior) 330
changed object notification 233
changes, receiving notification of 232, 238–239

by polling 240
changeToSegment: (Class) 192
changeToSegment: (Object) 173, 192
September 2009 GemStone Systems, Inc. 393

GemStone Programming Guide
changing
cache sizes 308–312
cluster bucket 292
database

notification of 233–239
transaction modes and 132

frequently, and notification 241
invariant objects 198
objects

notification of 232–239
visibility of to other users 133

privileges 191
segment after committing transaction 166

Character
adding to notify set 235
literal 362
locking and 142
segment of 174

Character Data Tables 60
Class 321–338
class

clustering 298
examining method dictionary 326
history 200–202
migrating 207
RcKeyValueDictionary, indexing and 154,

157
redefining 198–199
reduced-conflict 153, 309

collections returned by selection 111
when to use 153

renaming 200
storage and reducing conflict 153
versions 198–199
versions, and method references 199
versions, and subclasses 199

class version, defined 198
ClassesRead (cache statistic) 316
ClassHistory 200–202

assigning 202
determining 202

classVarNames (Behavior) 334
cleanupMySession (RcQueue) 157

cleanupQueue (RcQueue) 157
clearCommitOrAbortReleaseLocksSet

(System) 150
clearCommitReleaseLocksSet (System)

150
clearing notify set 237
clearNotifySet (System) 237
client interfaces 31–32

GemBuilder for C 31
GemBuilder for Smalltalk 31
linked vs. remote 307
Topaz 31
user actions 31

client platforms 23
closeAll (GsFile) 224
cluster (Object) 294
clusterBehavior (Behavior) 298
clusterBehaviorExceptMethods:

(Behavior) 299
ClusterBucket 291–301

assigning 297
changing 292
concurrency and 293–294
creating 292
default 292
describing 293
determining current 292
extent of 291
indexing and 294
updating 294
using several 297

clusterBucket (Object) 297
clusterBucket: (System) 292
clusterDepthFirst (Object) 297
clusterDescription (Behavior) 298
clusterId (ClusterBucket) 293
clusterInBucket: (Object) 297
clustering 290–301

as factor in performance 290
buckets for 291

extents of 291
classes 298
concurrency conflict and 293
depth-first 297
394 GemStone Systems, Inc. September 2009

GemStone Programming Guide
global variables 292
instance variables 295
kernel class methods 292
maintaining 301
messages (table) 298
recursion and 296
source code for kernel classes 292
special objects and 296

code formatting 381
CodeCacheSizeBytes (cache statistic) 317
CodeGenGcCount (cache statistic) 318
collation, effect on sort and search 60
Collection

common protocol 56
creating efficiently 57
enumerating 58
errors while locking 146
hierarchy 55
indexing and clustering 294
locking efficiently 145
migrating instances 206
of variable length 34
portability with other Smalltalks 65
rejecting elements 60
returned by selection blocks 111
searching 60

efficiently 99–125
selecting elements 60
sorting 84
streaming over 93
subclasses 61–93
unordered 80–93
updating indexed 123

combining expressions 369
commands, executing operating system 225
comment 359
commitAndReleaseLocks (System) 148,

150
commitOrAbortReleaseLocksSet-

Includes: (System) 151
commitReleaseLocksSetIncludes:

(System) 151

committing a transaction 128
after changing segments 166
effects of 133
failure 135, 136
failure, followed by inconsistent query

results 124
moving objects to disk and 297
performance 153
releasing locks when 149
when 128
write locks to guarantee success 141

communicating between sessions 232–252
communicating from session to session

diagram 245
comparing

IdentityBags 84
InvariantStrings 79
literal strings 79
messages and selection block predicates

106
nil 104
SequenceableCollection 68
Strings 79

compileAccessingMethodsFor:
(Behavior) 322

compiledMethodAt: (Behavior) 326
CompileError 45, 388
compileMethod: dictionaries:

category: (Behavior) 325
compileMethod:dictionaries:catego

ry:intoMethodDict:intoCateg
ories: (Behavior) 340

compiling methods programmatically 325
concatenating strings 78, 308
concurrency 127

cluster buckets and 293–294
conflict 131

concurrency control
optimistic 131–136
pessimistic 140–151

conditional
execution and blocks 378
repetition 379
selection 378
September 2009 GemStone Systems, Inc. 395

GemStone Programming Guide
configuration options
GEM_PRIVATE_PAGE_CACHE_KB 310
GEM_TEMPOBJ_CACHE_SIZE 309
GEM_TEMPOBJ_INITIAL_SIZE 309
GEM_TEMPOBJ_POMGEN_SIZE 312
SHR_PAGE_CACHE_SIZE_KB 311
STN_GEM_ABORT_TIMEOUT 138
STN_GEM_LOSTOT_TIMEOUT 138
STN_PRIVATE_PAGE_CACHE_KB 310

conflict 131–151
keys (table) 134
on indexing structure 136
read set 130
reducing 153–158, 309

performance 153
semantics of 153
while overriding a method 136
with cluster buckets 293
write set 130
write-dependency 130
write-write 130, 154

conjoining predicate terms 105
consistency of database, preserving 129
constants 365
constructors, array 371
contentsAndTypesOfDirectory:

onClient (GsFile) 225
contentsOfDirectory: onClient:

(GsFile) 224
context exception, defined 258
continueTransaction (System) 137
control, flow of 58
copying objects 308
cr (GsFile) 221
createDictionary: (UserProfile) 46
createEqualityIndexOn: (Collection)

118, 124
createIdentityIndexOn: (Bag) 115

creating
arrays 71
cluster buckets 292
equality indexes 117
files 219
identity indexes 115
Strings 74
subclass 358

curly braces for selection blocks 102
currentClusterBucket (System) 292
currentSegment: (System class) 193
currentSegment: (System) 165
currentSessions (System) 246, 247
currentTransactionHasWDConflicts

(System) 135
currentTransactionHasWWConflicts

(System) 135
currentTransactionWDConflicts

(System) 135
currentTransactionWWConflicts

(System) 135
customizing data retention during migration

212

D
data

efficient retrieval 290–301
retaining during migration 209–215
sending large amounts of 251

data curator 43
database

disk for 308
logging in 132–139
logging out 132–139
modifying 133

outside a transaction 130
transaction mode and 132

pointers to objects in 310
preserving consistency 129
querying 102–114

DataCurator, privileges of 190
DataCuratorSegment (predefined system

object), defined 170
396 GemStone Systems, Inc. September 2009

GemStone Programming Guide
DbTransient 159–160
deadlocks, detecting 144
Debugging out of memory errors 314
declaring temporary variables 364
decrement (RcCounter) 154
default

cluster bucket 292
segment 165

default handler
ANSI exceptions 281

defaultAction
ANSI exception handling 281

defaultSegment 163
defaultSegment (UserProfile) 193
defaultSegment: (UserProfile) 193
defining

error category 261
error numbers 261
exception-handler 261
handler for activation exceptions 269
handler for static exceptions 267

deletePrivilege: (UserProfile) 191
deny: (TestCase) 348
denying locks 142
dependency list 130
depth-first clustering 297
describing cluster buckets 293
description: (ClusterBucket) 293
detect: (Collection) 82, 114
determining

a class’s storage format 336
class version 202
current cluster bucket 292
lock status 150
object location on disk 299

developing applications cooperatively, and
authorization 186

Dictionary 54
for GemStone errors 262
Globals 43
internal structure 62
keys 61
Published 52

shared 42–52
UserGlobals 43
values 61

dictionaryNames (UserProfile) 44
directory, examining 224
dirty locks 144
DirtyListSize (cache statistic) 318
dirtyObjectCommitThreshold:

(IndexManager) 119
disableSignaledAbortError (System)

138
disableSignaledFinishTransactionE

rror (System) 139
disableSignaledGemStoneSession-

Error (System) 249
disableSignaledObjectsError

(System) 239
disk

access 290–301
efficient use and number of cluster

buckets 293
location of database 308
location of objects 290–301
moving objects immediately to 297
page for special objects 300
pages cached from 310
pages read or written per session 290
reclaiming space 38

do: (Collection) 58
do: (RcQueue) 156
do: (SequenceableCollection) 70
DoubleByteString 80
DoubleByteSymbol 80

E
efficiency

creating collections 57
data retrieval 290–301
GemStone Smalltalk execution 301–308
large arrays 73
large strings 79
locking collections 145
searching collections 99–125
September 2009 GemStone Systems, Inc. 397

GemStone Programming Guide
selecting objects with streams 112
sorting 125

Employee
example class 89–91
relation (table) 89, 100
relation example 100

empty blocks 376
empty paths

sorting 87
enableAlmostOutOfMemoryError 260
enableSignalAbortError 259
enableSignaledAbortError (System) 138
enableSignaledFinishTransactionEr

ror (System) 139, 260
enableSignaledGemStoneSession-

Error (System) 249
enableSignaledGemstoneSessionErro

r (System) 259
enableSignaledObjectsError (System)

239, 259
enableSignalTranlogsFull 260
ending a transaction 132–139
enumerating SequenceableCollections 70
enumeration protocol 58
environment variable in file specification 218
equality

indexes 116
creating 117
re-creating within an application 110

InvariantStrings 79
operators 104

redefining 105, 106–111
rules 107

queries 116
SequenceableCollections 68
strings 79

equality comparisons
in indexes 105

equalityIndexedPaths
(UnorderedCollection) 119

equalityIndexedPathsAnd-
Constraints (Collection) 120

error 253–277
2254 251
abortErrFinishedObjAuditRepair 277
#abortErrLostOtRoot 259
abortErrLostOtRoot 260
abortErrObjAuditFail 277
aborting 387
bkupErrRestoreSuccessful 277
compiler 325, 388
errSesBlockedOnOutput 251
event 259, 388
fatal 387
flow of control and 261
interpreter 387
language used for 254
locking collections 146
message, receiving from Stone 239, 249
objErrCorruptObj 266
objErrDoesNotExist 266
otErrCompactSuccessful 277
otErrRebuildSuccessful 277
recursive 276
reporting to user 253
rtErrClientFwdSend 266
rtErrCodeBreakpoint 277
rtErrCommitAbortPending 277
rtErrGsProcessTerminated 266
rtErrHardBreak 277
#rtErrSignalAbort 259
rtErrSignalAlmostOutOfMemory 260,

266
rtErrSignalCommit 239, 259
rtErrSignalFinishTransaction 260
rtErrSignalGemStoneSession 248, 249,

259
rtErrStackBreakpoint 277
rtErrStackLimit 277
rtErrStep 277
rtErrTranlogDirFull 260
rtErrUncontinuableError 277
runtime 388
uncontinuable 277
398 GemStone Systems, Inc. September 2009

GemStone Programming Guide
while creating indexes 124
while executing operating system

commands 225
while migrating 208

error category, defining 261
error dictionaries 254

names of standard 45
error messages 387–388

defining 254
error numbers

defining 254, 261
ErrorSymbols 262

generic error in 263
purpose 387

event error 259, 388
examining

directory 224
symbol lists 44

example application with segments 176
ExampleSetTest (example class) 346
exception 253–277

activation, defined 258
and SUnit 349
ANSI 279–288
context, defined 258
legacy 286
nonresumable 286
raising 268
removing 275
resignaling another 273
resumable 286
returning values from 270
static, defined 258
static, handling 260
to receive intersession signals 249
to receive notification of changes 239

Exception (class)
for handling errors in an application 257

exception handler
defining 261
for activation exceptions 269
for static exceptions 267
selecting 282

exception handling
flow of control 284

ExceptionA
ANSI exception handling 280

exclusive locks 140
exclusiveLock: (System) 142
exclusiveLockAll: (System) 145
ExecutableBlock

and activation handler 281
executing

blocks 375
operating system commands 225

exists: (GsFile) 223
Exported Set

effect on memory 313
ExportedSetSize (cache statistic) 318
expressions

combining 369
kinds 360
message 366
order of evaluation 369
syntax 359
value of 374

extensions to Smalltalk language 33–36
extent

cluster buckets and 291
defined 38

extentId (ClusterBucket) 291
eXtreme Programming

and SUnit 345

F
false, defined 365
FatalError 45
ff (GsFile) 221
file 218–225

access, from GemStone Smalltalk 34
creating 219
data in 226
determining if open 223
external to GemStone 136
reading 222
September 2009 GemStone Systems, Inc. 399

GemStone Programming Guide
removing 224
specifying 218
temporary, for profiling 302
testing for existence 223
writing 221

fileName: (ProfMonitor) 302
fileSize (GsFile) 223
findFirst: (SequenceableCollection) 70
finding instances 204
findLast: (SequenceableCollection) 70
findPattern:startingAt: (String) 75
floating point number

performance of 306
flow of control

and blocks 378
changing with exceptions 261
looping through a collection 58

format (Behavior) 336
formatting, code 381
free variable

defined 103
in selection blocks 102

G
garbage collection 38
gatherResults (ProfMonitor) 303
GcGem 38
GciPollForSignal 250, 251
GcUserSegment (predefined system object),

defined 171
Gem

as process 37
linked, for improved signaling

performance 250
private page cache 308, 310
remote, receiving signals 251
-to-Gem signaling 243–250

overview 232
with exceptions 249

GemBuilder for C 23, 31
logging in with 162

GemBuilder for Java
logging in with 162

GemBuilder for Smalltalk 23, 31
logging in with 162

GemConnect 26
gemnetdebug, for debugging out of memory

errors 314
GEM_PRIVATE_PAGE_CACHE_KB

(configuration option) 310
gemprofile.tmp file 302
GemStone

caches 308–311
overview 21–28
process architecture 37–39
programming with 30, 36
response to unauthorized access 168
security 162–195

GemStone Smalltalk
BNF syntax for 383
errors 387–388
file access 34
language extensions 33, 36
query syntax 33
syntax 357–382

GemStoneError 262
GEM_TEMPOBJ_CACHE_SIZE (configuration

option) 309
GEM_TEMPOBJ_INITIAL_SIZE

(configuration option) 309
GEM_TEMPOBJ_POMGEN_SIZE

(configuration option) 312
genericSignal:text: (System class) 268
getAllIndexes (IndexManager) 120
getAllNSCRoots (IndexManager) 120
Globals dictionary 43
grammar, GemStone Smalltalk 383
group

authorization 169
group: authorization: (Segment) 191
groupIds instance variable for Segment 171
GsFile 34, 218–225
GsInterSessionSignal 246
GsSessionMethodDictionary 339
GsSessionMethodDictionary 339
400 GemStone Systems, Inc. September 2009

GemStone Programming Guide
GsSocket 228

H
handling errors 253–277
handling exceptions

ANSI 279–288
heap space for signals 248
hidden set, listing instances to 205

I
identification, user 39, 162
identifying a session 248
identity

indexes 115
creating 115

InvariantString 79
literal strings 79
operator 104
queries 104, 115
sets 80
strings 79

IdentityBag 81–88
accessing elements 82
adding to 81
comparing 84
nil values 81
removing 83
sorting 84

identityIndexedPaths
(UnorderedCollection) 119

IdentityKeySoftValueDictionary 64
IdentityKeyValueDictionary 62
IdentitySet 88–93

nil values 81
immediateInvariant (Object) 198
implicit indexes 118

removing 121
includesKey: (Dictionary) 62
includesSelector: (Behavior) 326
inconsistent query results 124
increment (RcCounter) 154

indexed associative access 99–125
comparing strings 106

indexed objects
comparing 105

indexing 99–125
auditing 125
automatically 118
cluster buckets and 294
concurrency control and 131–136
creating equality index 117
creating identity index 115
creating reduced conflict equality index

117
equality 116
errors while 124
identity 115
implicitly 118
inconsistent query results after failed

commit 124
IndexManager 119
inquiring about 119, 123
keys 115
locking and 148
migration and 209
not preserved as passive object 226
performance and 123
RcKeyValueDictionary and 154
re-creating equality, for user-defined

operators 110
removing 120
sorting 125
special objects 118
specifying 115
structure 101, 124

conflict on 136
transactions and 119
transferring to new collection 122
updating indexed collections 123

IndexManager 119
inquiring

about indexes 119, 123
about notify set 236

insertDictionary:at: (UserProfile) 49
September 2009 GemStone Systems, Inc. 401

GemStone Programming Guide
inserting
in a SequenceableCollection 67

inspecting objects 45
installSessionMethodDictionary: (G

sCurrentSession) 340
installStaticException:category:

number: (Exception) 267
instance

finding 204
migrating 202–215

instance variables
clustering 295
creating indexes on 115
indexed 54
inherited, and migration 213
migration and 209–215
named 54

in collections 54
unnamed 54
unordered 54

in Bags 81
instSize (Behavior) 336
instVarMapping: (Object) 212
instVarNames (Behavior) 334
Integer, performance of 306
IntegerKeyValueDictionary 62
interfaces, returning control to, after error 258
interpreter

error 387
halting while executing operating system

command 225
method context in 258

intersession signal
with exceptions 249

interval, sampling, for profiling 302
interval: (ProfMonitor) 302
inTransaction (System) 133
invariant objects, changing 198
InvariantString

comparing 79
identity 79

isAbortingError (GbsError) 387
isBytes (Behavior) 336

isCompilerError (GbsError) 387
isEventError (Behavior) 388
isFatalError (GbsError) 387
isIndexable (Behavior) 336
isInterpreterError (GbsError) 387
isInvariant (Behavior) 336
isNsc (Behavior) 336
isOpen (GsFile) 223
isPointers (Behavior) 336
iteration 58
itsOwner (instance variable for Segment) 171
itsRepository (instance variable for

Segment) 171

J
joint development, segment set-up for 186

K
kernel classes

in comparisons 105
kernel objects

clustering methods 292
clustering source code 292

key
access by 54
dictionary 61, 62
sorting on secondary 87

KeySoftValueDictionary 63, 158
KeyValueDictionary 62
keyword messages 368

maximum number of arguments 368
kindsOfIndexOn: (UnorderedCollection)

120

L
language used for reporting errors 254
legacy exceptions 286
lf (GsFile) 221
linked session 32

for improved signaling performance 250
performance and 307
402 GemStone Systems, Inc. September 2009

GemStone Programming Guide
listing contents of directory 224
listing instances 204

to binary file 205
to hidden set 205

listing objects in segments 175
to binary file 176
to hidden set 175

listInstances: (Repository) 204
listObjectsInSegments: (Repository)

175
listReferences: (Repository) 204
literal

array 363
blocks 375
character 362
number 361
String 362
symbol 363
syntax 360

locks 133, 140–151
aborting, effect of 149
acquiring 142
application write 151

defined 152
Boolean 142
Character 142
committing, effect of 149
denial of 142
difference between write and read 141
dirty 144
exclusive 140
indexes and 148
inquiring about 150–151
limit on concurrent 140
logging out, effect of 148
manual transaction mode and 140
nil 142
on collections 145
performance and 131
read 140

defined 141
releasing upon commit 149
releasing upon commit or abort 149

removing 148
shared 141
SmallInteger 142
special objects and 142
System as receiver of requests for 142
types 140
upgrading 147
write 140

defined 141
logging in 39, 132–139
logging out 132–139

effect on locks 148
signal notification after 252

logging transactions 38
loops 58
lost object table 259

M
maintaining clustering 301
managing VM memory 312
manual transaction mode 131–133

defined 132
locking and 140

maxClusterBucket (System) 292
maximum number of

arguments to a method 368
characters in a class name 358
cluster buckets for performance 293
elements in an unordered collection 81

memory
allocated for Gem private page cache 310
allocated for shared page cache 311
allocated for Stone private page cache 310
allocated for temporary object space 309
DbTranscience and 159
increasing allocation for shared page

cache 310
increasing allocation for temporary object

space 309
requirements for passive objects 227
signalling on low 314
September 2009 GemStone Systems, Inc. 403

GemStone Programming Guide
memory management
KeySoftValueDictionary 63

MeSpaceAllocatedBytes (cache statistic) 317
MeSpaceUsedBytes (cache statistic) 317
message

arguments 368
binary 368, 369
cascaded 371
expressions 366
keyword 368
privileged, to Segment 191
sending, vs. path notation, performance of

307
unary 368, 369

MessageNotUnderstood
ANSI error 280

method
accessing 322
adding 322
change notification 243
clustering for kernel classes 292
compiling programmatically 325
executing while profiling 302
primitive 307
recategorizing 330
references to classes in 199
removing 324
updating 322

method dictionary, examining 326
MethodsRead (cache statistic) 316
migrate (Object) 206
migrateFrom:instVarMap: (Object) 213
migrateInstances:to: (Object) 207
migrateInstancesTo: (Object) 207
migrateTo: (Object) 203
migrating

all instances of a class 207
collection of instances 206
errors during 208–209
indexed instances 209
instance variable values and 209–215
instances 202–215
preparing for 203

self 208
migration destination

defined 203
ignoring 207

millisecondsToRun: (System) 304
mixed-mode arithmetic 307
mode of transactions 131
modeling 23
modifying, see changing
monitorBlock: (ProfMonitor) 302
monitoring GemStone Smalltalk code 301
MonthNames 45
moveMethod:toCategory: (Behavior) 330
moving

methods between categories 330
objects among segments 172
objects on disk 301
objects to disk immediately 297

N
named instance variable

permissible names 364
named instance variables

in collections 54
naming new versions of classes 198
NaNs

sorting 87
nativeLanguage: (System) 255
NetLDI 38
network communication 38
new (ClusterBucket) 292
NewGenSizeBytes (cache statistic) 317
newInRepository: (Segment class) 191
NewSymbolRequests (cache statistic) 318
NewSymbolsCount (cache statistic) 318
newWithUserId: etc. (UserProfile class) 193
next (RangeIndexReadStream) 112
nextPutAll: (GsFile) 221
404 GemStone Systems, Inc. September 2009

GemStone Programming Guide
nil
adding to notify set 235
comparing 104
defined 365
in UnorderedCollection 81
locking and 142
segment of 174

no authorization 168
non-persistent objects 63, 158
nonresumable exception 286
nonsequenceable collection

searching efficiently 99–125
notifiers 232
notify set

adding objects 236
and reduced-conflict classes 242
and special objects 235
asynchronous error for 259
clearing 237
defined 232
inquiring about 236
permitted objects in 235
removing objects 236
restrictions on 235
size of 236

notifying user of changes 232–239
by polling 240
improving performance 250
methods for 243

notifySet (System) 236
null values

in large strings 79
in new strings 74

Number literal 361
NumberOfMarkSweeps (cache statistic) 316
NumberOfScavenges (cache statistic) 316
NumRefsStubbedMarkSweep (cache statistic)

317
NumRefsStubbedScavenge (cache statistic)

317

O
object

change notification 232
methods for 243

copying 308
local to application 137, 138
moving 301
moving among segments 172

object table 310
lost 259

object-level security 163
ObjectsRead (cache statistic) 316
ObjectsRefreshed (cache statistic) 316
objErrCorruptObj 266
objErrDoesNotExist 266
OldGenSizeBytes (cache statistic) 317
operand

defined 104
selection block predicate 104

operating system
accessing from GemStone 217
executing commands from GemStone 225
sockets 228

operator
assignment 366
precedence 370
selection block predicate 104

optimistic concurrency control 136
optimized selectors 307, 367
optimizing 289–319

arrays vs. sets 306
block complexity 307
copying objects and 308
creating Dictionary class or subclass 307
GemStone Smalltalk code 301–308
hints 306–308
integers vs. floating point numbers 306
linked vs. remote interface 307
mixed-mode arithmetic and 307
path notation vs. message-sends 307
primitive methods and 307
September 2009 GemStone Systems, Inc. 405

GemStone Programming Guide
reclaiming storage and 308
string concatenation and 308

OR (in selection blocks) 105
order of evaluation for expressions 369
OrderedCollection

portability with other Smalltalks 65
otErrCompactSuccessful 277
otErrRebuildSuccessful 277
out of memory errors

debugging 314
outer

sent by activation handler 286
out-of-memory condition

avoiding 119
output buffer full 251
overview of GemStone 21–28
owner (Segment) 174
owner authorization 168, 174
owner, changing, of a segment 174
owner: (Segment) 174
ownerAuthorization: (Segment) 191

P
page (Object) 299
page cache

Gem private 308, 310
increasing memory for 310
shared 37, 308, 310

memory allocated for 311
Stone private 308, 310

pageReads (statistic) 290
pageWrites (statistic) 290
parameters 368

block 376
pass

sent by activation handler 286
passivate (Object) 227
passivate: toStream: (PassiveObject)

226

PassiveObject 226–??
memory and 227
restrictions on 226
security considerations of 226

password 39, 162
path 373–374

defined 373
empty

sorting 87
operating system 218
performance of, vs. message-sending 307

pathName (GsFile) 223
pattern-matching in strings 76
peek (GsFile) 222
percentTempObjSpaceCommitThreshol

d: (IndexManager) 119
performance 289–319

arrays vs. sets 306
block complexity 307
cluster buckets and 293
copying objects 308
creating Dictionary class or subclass 307
determining bottlenecks 301
indexing and 123
integers vs. floating point numbers 306
linked vs. remote interface 307
locking and 131
mixed-mode arithmetic 307
of primitive methods 307
of signals and notifiers, improving 250
optimized selectors 307
path notation vs. message-sends 307
profiling 301
reclaiming storage and 308
reducing conflict and 153
string concatenation and 308
tuning cache sizes 308–311

performOnServer: (System) 225
PermGenSizeBytes (cache statistic) 317
Per-session methods: see session methods
Persistence

instances that are transient 159
instances that non-persistent 158
406 GemStone Systems, Inc. September 2009

GemStone Programming Guide
planning segments for user access 180
pollForSignal (GsSession) 250
polling

for signals 250
to receive intersession signal 243, 248
to receive notification of changes 240

PomGenScavCount (cache statistic) 318
PomGenSizeBytes (cache statistic) 317
pool dictionaries, accessing 333
portability

with other Smalltalks 65
portability among versions 213
position, access by 54
positionA, positionA: (Stream methods

for ANSI-compliant positioning) 94
PositionableStream 94
positionL, positionL: (Stream methods

for legacy non-ANSI-compliant
positioning) 94

positionW, positionW: (Stream methods
for legacy/warning positioning) 94

precedence rules 369
predicate

defined 103
in selection blocks 102
operators 104
terms 103

primitive methods 307
printable strings, creating with Stream 97
printing strings 97
privilege

changing 191
defined 190

process
architecture 37, 39
garbage collection 38
spawning 225

profileOff (ProfMonitor) 304
profileOn (ProfMonitor class) 303
profiling

GemStone Smalltalk code 301
report 304

ProfMonitor 301–306
method tally 302
sampling interval 302
temporary file for 302

programming in GemStone 30–36
programming language, comparing arrays 71
pseudovariables 307, 365

false 365
nil 365
self 366
super 366
true 365

Published symbol dictionary 44, 52

Q
query 102–114

Boolean operators in 105
equality 116
identity 115
inconsistent results from 124
syntax changes in GemStone Smalltalk 33

R
radix representation 361
raising exceptions 268
random access to SequenceableCollections 93
RangeIndexReadStream 112
RcCounter 131, 153, 154–155

notify set and 242
RcIdentityBag 111, 131, 153, 155–156

converting from Bag 111
notify set and 242

RcKeyValueDictionary 131, 153, 157
indexing and 154, 157
notify set and 242

RcQueue 131, 153, 156–157
notify set and 242
order of objects 157
reclaiming storage from 157

Rc-write-write conflict
transaction conflict key 135
September 2009 GemStone Systems, Inc. 407

GemStone Programming Guide
read authorization 168
read locks

defined 141
difference from write 141

read set 130
indexing and 130

reading
files 222
in transactions 129
outside a transaction 130
SequenceableCollection 93
with locks 140

readLock: (System) 142
readLockAll: (System) 145
readReady (GsSocket) 250
ReadStream 94
read-write conflict

transaction conflict key 134
receiving

error message from Stone 239, 249
intersession signal 248

by polling 248
with exceptions 249

notification of changes 238–239
by polling 240
with exceptions 239

signals by automatic notification 243
signals with remote Gem 251

Reclaim GcGems
defined 38

reclaiming storage 38, 138, 308
from temporary object space 309
RcQueues and 157

recursive
clustering 296
errors 276

redefining
classes 198–199

naming 198
equality operators 105, 106–111

rules 107

reduced-conflict class 153–158
and changed object notification 242
collections returned by selection 111
indexing 117
performance and 153
storage and 153
temporary objects and 309
when to use 153

reject: (Collection) 60, 114
reject: (IdentitySet) 60
relations 89

Bags and Sets as 100
remote interface 307

defined 32
file access and 218

remove (Exception) 275
remove: (RcBag) 155
remove: (RcQueue) 156
removeAllFromNotifySet: (System) 236
removeAllIncompleteIndexesOn:

(IndexManager) 123
removeAllIndexes (IndexManager) 121,

123
removeAllIndexes (UnorderedCollection)

121
removeCategory: (Behavior) 331
removeClientFile: (GsFile) 224
removeDictionaryAt: (UserProfile) 48, 49
removeEqualityIndexOn:

(UnorderedCollection) 120
removeFromCommitOrAbortRelease-

LocksSet: (System) 149, 150
removeFromCommitReleaseLocksSet:

(System) 149, 150
removeFromNotifySet: (System) 236
removeIdentityIndexOn:

(UnorderedCollection) 121
removeLock: (System) 148
removeLockAll: (System) 148
removeLocksForSession (System) 148
removeObjectFromBtrees (Object) 110
removeSelector: (Behavior) 324
removeServerFile: (GsFile) 224
408 GemStone Systems, Inc. September 2009

GemStone Programming Guide
removing
category 330
elements from an IdentityBag 83
exception 275
files 224
indexes 120
locks 148
method 324
objects from notify set 236
symbol list dictionaries 48

rename
to

: (GsFile) 223
renameCategory:to: (Behavior) 331
renameFileOnServer

to
: (GsFile) 224

renaming a class 200
reordering symbol lists 47
repeatable unit testing 343–355
repeating

blocks 379
conditionally 379

report (ProfMonitor) 303
reporting

errors to user 253
performance profile 304

reserved selectors 367
resignal:number:args: (Exception) 273
resignalAs:

sent by activation handler 286
resignaling another exception 273
resolving symbols 42–52
resumable exception 286
resume

sent by activation handler 285
resume:

sent by activation handler 285
retaining data during migration 209–215
retrieving data quickly 290–301
retry

sent by activation handler 285

retryUsing:
sent by activation handler 285

return
sent by activation handler 285

return character in exception handler 270
return:

sent by activation handler 285
returning values 374

from exceptions 270
reverseDo: (SequenceableCollection) 70
RPC session 32, 307
rtErrClientFwdSend 266
rtErrCodeBreakpoint 277
rtErrCommitAbortPending 277
rtErrGsProcessTerminated 266
rtErrHardBreak 277
#rtErrSignalAbort 138, 259
#rtErrSignalAlmostOutOfMemory 314
rtErrSignalAlmostOutOfMemory 260, 266
rtErrSignalCommit 259
#rtErrSignalFinishTransaction 139
rtErrSignalFinishTransaction 260
rtErrSignalGemStoneSession 259
rtErrStackBreakpoint 277
rtErrStackLimit 277
rtErrStep 277
rtErrTranlogDirFull 260
rtErrUncontinuableError 277
RuntimeError 45, 388

S
sampling interval for profiling 302
saving

data 226–??
objects 136

scavenger process 38
schema 198
scientific notation 361
scopeHas:ifTrue: (Behavior) 334
searching

collections see also indexed associative
September 2009 GemStone Systems, Inc. 409

GemStone Programming Guide
access 60, 100
protocol 100
SequenceableCollection 70
Strings 75

secondary keys, sorting on 87
security 162, 195

object-level 163
passive objects and 226

Segment
assigning ownership 174
authorization of 167
changing after committing transaction 166
default 165
defined 163
example application 176
moving objects 172
ownership 174
planning for user access 180
predefined 170, 171
privileged messages 191
setting up for joint development 186

segment (Object) 172
select: (Bag) 101
select: (Collection) 60, 100–106
select: (IdentitySet) 60
selectAsStream: (Collection) 112

limitations of 113
selecting elements of a collection 60
selection block 102–111

Boolean operators in 105
collections returned 111
defined 101
predicate

comparing and 106
defined 103
free variables and 102
operands 104
operators 104

streams returned 112
selection, conditional 378
selector

optimized 307, 367
reserved 367

selectors (Behavior) 326
selectorsIn: (Behavior) 331
self 307

defined 366
migrating 208

sending
large amounts of data 251
signal 246–250
signal to another Gem session 247–249

sendSignal: (System) 247
sendSignal:to:withMessage: (System)

247
SequenceableCollection 54, 64–80

accessing 65
accessing with streams 93
adding to 66
comparing 68
enumerating 70
equality of 68
inserting in 67
portability with other Smalltalks 65
searching 70
updating 65

session
communicating between 232–252
identifying 248
linked, defined 32
maximum number of cluster buckets 293
overview 32
pages read or written 290
private page cache 310
RPC, defined 32
signaling all current 247

session methods 338–341
session specific methods: see session methods
Set 93

as relation 100
identity 80
nil values 81
performance of 306

shallow copy 69
410 GemStone Systems, Inc. September 2009

GemStone Programming Guide
shared
dictionaries 42–52
locks, defined 141
page cache 37, 310

increasing size 310
memory allocated for 311

shared page cache 308
sharedPools (Behavior) 334
sharing objects 42–52
shell script 225
should:raise: (TestResult) 349
shouldnt:raise: (TestResult) 349
SHR_PAGE_CACHE_SIZE_KB 311
sigAbort - See rtErrSignalAbort
signal

distinguished from interrupt 243
overflow 251
receiving 248

by polling 243, 248
receiving, with remote Gem 251
reserved 255
sending 246–250
to abort, from Stone 138

signal:args:signalDict: (System) 253
signalAlmostOutOfMemoryThreshold

 260
signaledAbortErrorStatus 139
signaledFinishTransactionErrorSta

tus (System) 139
signaledGemStoneSessionError-

Status (System) 249
signaledObjects (System) 239
signaledObjectsErrorStatus (System)

239
signalFromGemStoneSession (System)

248

signaling
after logout 252
all current sessions 247
and socket input 250
another session 247

asynchronous error for 259
by polling 248

errors 254
Gem-to-Gem 243–250
improving performance 250
order of receiving 248

size (RcQueue) 156
size: (Object) 72
skip: (GsFile) 223
SmallInteger

adding to notify set 235
locking and 142
segment of 174

Smalltalk: see GemStone Smalltalk
socket 228–229
SoftReference 64
Sort ordering and collation 60
sortAscending, sortDescending

(Collection) 59, 77, 86
sorting

empty paths 87
IdentityBags 84
indexing 125
NaN 87

sortWith: (IdentityBag) 88
sortWithBlock: (Collection) 59
sortWithBlock:persistentRoot:

(Collection) 59
source code clustering 292
sourceCodeAt: (Behavior) 326
spacing in GemStone Smalltalk programs 381
spawning a subprocess 225
September 2009 GemStone Systems, Inc. 411

GemStone Programming Guide
special
objects

clustering and 296
disk page of 300
indexing and 118
locking and 142

selectors 367
special objects

adding to notify set 235
clustering and 296
disk page of 300
indexing and 118
locking and 142

specifying files 218
spyOn: (ProfMonitor) 302
Stack (example class) 72
stack overflow 276
starting a transaction 132–139
startMonitoring (ProfMonitor) 303
state transition diagram of view 129
statement

assignment 366
defined 359

static exception
defined 258
defining handler for 267

stdout 225, 248
STN_OBJ_LOCK_TIMEOUT (Configuration

option) 152
STN_PRIVATE_PAGE_CACHE_KB

(Configuration option) 310
Stone

private page cache 308, 310
process 37

stopMonitoring (ProfMonitor) 303
storage

format
determining a class’s 336

reclaiming 138, 308
from temporary object space 309
RcQueues and 157

reduced-conflict classes and 153

Stream 93–97
on a collection 93
returned by selection blocks 112
to create printable strings 97

String 74–80
comparing 77, 79

using associative access 106
concatenating 78, 308
creating 74
identity 79
large, and efficiency 79
literal 362
pattern matching 76
searching 75
searching and comparing methods 75
using Streams to build 97

StringKeyValueDictionary 62
subclassing 199, 358
subprocess, spawning 225
SUnit 343–355

exception handling 349
framework 350
overview 344

super 307
defined 366

Symbol 42–52, 80
determining symbol list for 50
literal 363
resolving 42–52
white space in 363

symbol list 42–50, 201
examining 43, 44
order of searches 45
removing dictionaries from 48
reordering 47

SymbolDictionary 62
used to define errors 254

symbolList
update from GsSession 49

symbolList instance variable (UserProfile) 42
symbolList: (UserProfile) 49
symbolResolutionOf: (UserProfile) 50
syntax of GemStone Smalltalk 357–382
412 GemStone Systems, Inc. September 2009

GemStone Programming Guide
system administrator, setting configuration
parameters 311

System as receiver of lock requests 142
SystemSegment

defined 170, 171
objects assigned to 174

SystemUser (instance of UserProfile)
and SystemSegment 170, 171

SystemUser, privileges of 190

T
tally of methods executed while profiling 302
_tempObjSpaceMax (System) 315
TempObjSpacePercentUsed (cache statistic)

319
_tempObjSpacePercentUsed (System) 315
_tempObjSpaceUsed (System) 315
temporary object memory

managing 312
UserActions 313

temporary object space 308, 309
increasing memory for 309
memory allocated for 309

temporary objects, adding to notify set 235
temporary variables 364

declaring 364
term

predicate, conjoining 105
predicate, defined 103
selection block predicate 103

TestCase (SUnit class) 350
TestResource (SUnit class) 350
TestResult (SUnit class) 350
TestSuite (SUnit class) 350
TimeInMarkSweep (cache statistic) 317
TimeInScavenges (cache statistic) 317
TimeWaitingForSymbols (cache statistic) 318
Topaz 31

logging in with 162
viewing symbol list dictionaries in 45

tracer 290
TrackedSetSize (cache statistic) 318

transaction 127–158
aborting 136

views 137
automatic mode 132

defined 132
being signalled while in 139
committing

after changing segments 166
moving objects to disk 297
performance 153

conflict keys (table) 134
continueing 137
creating indexes in 124
defined 128
dependency list 130
ending 132–139
failing to commit 135
indexing and 119
logging 38
manual mode 131–133

defined 132
locking 140

mode 131–139
modifying database 132

reading in 129
reading outside 130
starting 132–139
updating views 137
when to commit 128
write set 130
writing in 130
writing outside 130

transactionConflicts (System) 134
transactionless mode 132
transactionMode (System) 132
transactionMode: (System) 132
transactions

and IndexManager 119
transferring indexes 122
transient instances 159
true, defined 365
tuples 89
September 2009 GemStone Systems, Inc. 413

GemStone Programming Guide
U
unary messages 368, 369
unauthorized access 168
uncontinuable errors 277
uniqueness and dictionaries 61
unit tests

automated 343–355
UNIX commands, executing from GemStone

225
UNIX process, spawning 225
unordered collection 80–93

maximum size 81
unordered instance variables

in Bags 81
UnorderedCollection 80
untilFalse (Boolean) 380
untilTrue (Boolean) 380
updating

indexed structures 123
method 322
views and 137

upgrading locks 147
user action 31
user ID 39, 162
UserActions

and temporary object memory 313
user-defined class

redefining equality operators 105, 106–
111

rules 107
UserGlobals 43
UserProfile

establishing login identity 39, 162
nativeLanguage instance variable

used for errors 254
not preserved as passive object 226
purpose 162
symbol lists and 42

V
value

access by 54
dictionary 61, 62
returning 374

value (block) 375
value (RcCounter) 154
variable-length collections 34
variables

accessing 323, 333
creating indexes on instance 115
free, in selection blocks 102
global, clustering 292
instance

clustering 295
limits on length 364
names 364

case of 364
determining which class defines 333

retaining values during migration 209–
215

temporary 364
versioning classes 198–199

defined 198
references in methods 199
reusable code and 213
subclasses and 199

view 133
aborting a transaction 137
defined 128
invalid 138
state transition diagram 129
updating a transaction 137

visibility of modifications 133
VM memory

managing 312

W
waitForApplicationWriteLock:queue

:autoRelease: (System) 152
WeekDayNames 45
414 GemStone Systems, Inc. September 2009

GemStone Programming Guide
whichClassIncludesSelector:
(Behavior) 327

whileFalse: (Boolean) 379
whileTrue: (Boolean) 379
white space in GemStone Smalltalk programs

381
wild-card character

in file specification 218
wildcard character 76
WorkingSetSize (cache statistic) 319
workspace, GemStone 45
world authorization 169
worldAuthorization: (Segment) 191
write authorization 167
write locks

defined 141
difference with read 141

write set 130
indexing and 130

write-dependency conflict 130
defined 131
transaction conflict key 135

writeLock: (System) 142
writeLockAll: (System) 145
writeLockAll:ifInComplete: (System)

146
WriteStream 94
write-write conflict 130

defined 130
reduced-conflict classes and 154
transaction conflict key 135
while overriding a method 136

write-writeLock conflict
transaction conflict key 135

writing
files 221
in transactions 130
outside a transaction 130
SequenceableCollection 93
with locks 140

Z
ZeroDivide

ANSI error 280
September 2009 GemStone Systems, Inc. 415

GemStone Programming Guide
416 GemStone Systems, Inc. September 2009

	1 Introduction to GemStone
	1.1 Overview of the GemStone System
	1.2 Multi-User Object Server
	1.3 Programmable Server Object System
	1.4 Partitioning of Applications Between Client and Server
	1.5 Large-Scale Repository
	1.6 Queries and Indexes
	1.7 Transactions and Concurrency Control
	1.8 Connections to Outside Data Sources
	1.9 Login Security and Account Management
	1.10 Services to Manage the GemStone Repository

	2 Programming With GemStone
	2.1 The GemStone Programming Model
	Server-Based Classes, Methods, and Objects
	Client and Server Interfaces
	GemStone Sessions

	2.2 GemStone Smalltalk
	Language Extensions
	Query Syntax
	Auto-Growing Collections

	Class Library Differences
	No User Interface
	Different File Access
	Different C Callouts

	Class Library Extensions
	More Collection Classes
	Reduced-Conflict Classes
	User Account and Security Classes
	System Management Classes
	File In and File Out

	Interapplication Communications
	DbTransience

	2.3 Process Architecture
	Gem Process
	Stone Process
	Shared Object Cache
	Garbage Collection (GcGem) Processes
	Extents and Repositories
	Transaction Log
	NetLDI
	Login Dynamics

	3 Resolving Names and Sharing Objects
	3.1 Sharing Objects
	3.2 UserProfile and Session-Based Symbol Lists
	Figure 3.1 The GsSession symbolList - a copy of the UserProfile symbolList
	What’s In Your Symbol List?
	Examining Your Symbol List
	Example 3.1
	Example 3.2
	Figure 3.2 Self-Referencing Symbol Dictionary

	Inserting and Removing Dictionaries from Your Symbol List
	Example 3.3
	Example 3.4
	Example 3.5

	Updating Symbol Lists
	Example 3.6

	Finding Out Which Dictionary Names an Object
	Example 3.7
	Example 3.8

	3.3 Using Your Symbol Dictionaries
	The Published Dictionary

	4 Collection and Stream Classes
	4.1 An Introduction to Collections
	Figure 4.1 Simplified Collection Class Hierarchy
	Protocol Common To All Collections
	Creating Instances
	Example 4.1
	Example 4.2

	Adding Elements
	Example 4.3

	Enumerating
	Example 4.4
	Example 4.5
	Example 4.6

	Sort ordering and collation
	Selecting and Rejecting Elements
	Example 4.7

	4.2 Collection Subclasses
	AbstractDictionary
	AbstractDictionary Protocol
	Internal Dictionary Structure
	Example 4.8

	KeyValueDictionary
	SymbolDictionary
	Example 4.9

	KeySoftValueDictionary

	SequenceableCollection
	Figure 4.2 SequenceableCollection Class Hierarchy
	Accessing and Updating Protocol
	Example 4.10
	Example 4.11

	Adding Objects to SequenceableCollection
	Example 4.12
	Example 4.13

	Removing Objects from a SequenceableCollection
	Example 4.14
	Example 4.15

	Comparing SequenceableCollection
	Copying SequenceableCollection
	Example 4.16
	Example 4.17

	Enumeration and Searching Protocol
	Example 4.18

	Arrays
	Example 4.19
	Example 4.20
	Example 4.21

	Strings
	Example 4.22
	Example 4.23
	Table 4.1 String’s Case-Insensitive Search Protocol
	Table 4.2 String’s Case-Sensitive Search Protocol
	Example 4.24
	Example 4.25
	Example 4.26
	Example 4.27
	Example 4.28
	Example 4.29
	Example 4.30
	Example 4.31

	Symbols
	DoubleByteString and DoubleByteSymbol

	UnorderedCollection
	Bag
	IdentityBag
	Example 4.32
	Example 4.33
	Example 4.34
	Example 4.35
	Example 4.36
	Example 4.37
	Example 4.38
	Example 4.39
	Example 4.40

	Class IdentitySet
	Figure 4.3 Employee Relations
	Example 4.41
	Example 4.42
	Example 4.43
	Example 4.44

	Set

	4.3 Stream Classes
	Figure 4.4 Stream Class Hierarchy
	Position and ANSI
	Stream Protocol
	Example 4.45
	Example 4.46

	Creating Printable Strings with Streams
	Example 4.47

	5 Querying
	5.1 Relations
	Figure 5.1 Employee Relation
	What You Need To Know

	5.2 Selection Blocks and Selection
	Example 5.1
	Example 5.2
	Selection Block Predicates and Free Variables
	Figure 5.2 Anatomy of a Selection Block

	Predicate Terms
	Figure 5.3 Anatomy of a Selection Block Predicate Term
	Predicate Operands
	Predicate Operators
	Table 5.1 Comparison Operators Allowed in a Selection Block
	Example 5.3

	Conjunction of Predicate Terms
	Example 5.4
	Example 5.5

	Limits on String Comparisons
	Redefined Comparison Messages in Selection Blocks
	Example 5.6
	Example 5.7
	Example 5.8
	Example 5.9
	Example 5.10
	Example 5.11
	Changing the Ordering of Instances

	Collections Returned by Selection
	Streams Returned by Selection
	Example 5.12
	Example 5.13

	5.3 Additional Query Protocol
	Example 5.14
	Example 5.15

	5.4 Indexing For Faster Access
	Identity Indexes
	Example 5.16
	Creating Identity Indexes
	Creating Indexes on Large Collections

	Equality Indexes
	Example 5.17
	Creating Equality Indexes
	Creating Reduced Conflict Equality Indexes
	Creating Indexes on Large Collections
	Automatic Identity Indexing
	Implicit Indexes

	Managing indexes
	Indexes and Transactions
	Inquiring About Indexes
	Removing Indexes
	Implicit Index Removal
	Duplicating a Collection’s Indexes
	Example 5.18

	Removing and Re-Creating Indexes

	Indexing and Performance
	Indexing Errors
	Auditing Indexes

	5.5 Sorting and Indexing

	6 Transactions and Concurrency Control
	6.1 GemStone’s Conflict Management
	Views and Transactions
	When Should You Commit a Transaction?
	Figure 6.1 View States

	Reading and Writing in Transactions
	Reading and Writing Outside of Transactions

	6.2 How GemStone Detects Conflict
	Concurrency Management
	Transaction Modes
	Changing Transaction Mode
	Beginning a New Transaction in Manual Mode

	Committing Transactions
	Example 6.1
	Table 6.1 Transaction Conflict Keys

	Handling Commit Failure In A Transaction
	Indexes and Concurrency Control
	Aborting Transactions
	Example 6.2
	Updating the View Without Committing or Aborting
	Being Signaled To Abort
	Being Signaled to continueTransaction

	6.3 Controlling Concurrent Access With Locks
	Locking and Manual Transaction Mode
	Lock Types
	Read Locks
	Write Locks

	Acquiring Locks
	Example 6.3
	Lock Denial
	Example 6.4

	Dead Locks
	Dirty Locks
	Example 6.5
	Example 6.6

	Locking Collections Of Objects Efficiently
	Example 6.7
	Example 6.8

	Upgrading Locks

	Locking and Indexed Collections
	Removing or Releasing Locks
	Releasing Locks Upon Aborting or Committing

	Inquiring About Locks
	Example 6.9

	Application Write Locks

	6.4 Classes That Reduce the Chance of Conflict
	RcCounter
	Example 6.10

	RcIdentityBag
	RcQueue
	RcKeyValueDictionary

	6.5 Special Cases of Persistence
	Non-Persistent Classes
	DbTransient

	7 Object Security and Authorization
	7.1 How GemStone Security Works
	Login Authorization
	The UserProfile

	System Privileges
	Object-level Security
	Segments
	Figure 7.1 User Access to Application Segment1

	7.2 Assigning Objects to Segments
	Default Segment and Current Segment
	Example 7.1
	Example 7.2

	Objects and Segments
	Figure 7.2 Multiple Segment Assignments for a Compound Object

	Read and Write Authorization and Segments
	How GemStone Responds to Unauthorized Access
	Owner Authorization
	Figure 7.3 User Access to a Segment’s Objects

	Segments in the Repository
	Figure 7.4 Segments in a GemStone Repository
	Changing the Segment for an Object
	Example 7.3
	Example 7.4
	Example 7.5

	Revoking Your Own Authorization: a Side Effect
	Finding Out Which Objects are in a Segment

	7.3 An Application Example
	Figure 7.5 Application Objects Assigned to Three Segments
	Figure 7.6 User Access to Application Segment1
	Figure 7.7 User Access to Application Segment2

	7.4 A Development Example
	Figure 7.8 Access Requirements During an Application’s Life Cycle
	Planning Segments for User Access
	Protecting the Application Classes
	CodeModification privilege
	Planning Authorization for Data Objects
	Table 7.1 Access for Application Objects Required by Users

	Planning Groups
	Table 7.2 Access to the First Five Objects Through Owner and World Authorization
	Table 7.3 Access to the Last Six Objects Through Owner and World Authorization
	Table 7.4 Access to the Last Six Objects Through the Personnel Group
	Table 7.5 Access to the Last Six Objects Through the Payroll and Sales Groups

	Planning Segments

	Developing the Application
	Setting Up Segments for Joint Development
	Figure 7.9 Segments Required for User Access to Application Objects

	Making the Application Accessible for Testing
	Moving the Application into a Production Environment

	Segment Assignment for User-created Objects

	7.5 Privileged Protocol for Class Segment
	7.6 Segment-related Methods

	8 Class Versions and Instance Migration
	8.1 Versions of Classes
	Defining a New Version
	New Versions and Subclasses
	New Versions and References in Methods

	8.2 ClassHistory
	Defining a Class with a Class History
	Example 8.1
	Example 8.2
	Example 8.3

	Accessing a Class History
	Assigning a Class History

	8.3 Migrating Objects
	Migration Destinations
	Migrating Instances
	Finding Instances and References
	Using the Migration Destination
	Example 8.4

	Bypassing the Migration Destination
	Example 8.5

	Migration Errors

	Instance Variable Mappings
	Default Instance Variable Mappings
	Example 8.6
	Example 8.7

	Customizing Instance Variable Mappings
	Example 8.8
	Example 8.9
	Example 8.10

	9 File I/O and Operating System Access
	9.1 Accessing Files
	Specifying Files
	Creating a File
	Example 9.1
	Example 9.2

	Opening and Closing a File
	Table 9.1 GsFile Method Summary

	Writing to a File
	Example 9.3

	Reading From a File
	Example 9.4
	Positioning
	Example 9.5
	Example 9.6

	Testing Files
	Example 9.7
	Example 9.8

	Renaming Files
	Example 9.9
	Example 9.10

	Removing Files
	Example 9.11

	Examining a Directory
	Example 9.12
	Example 9.13
	Example 9.14

	9.2 Executing Operating System Commands
	Example 9.15

	9.3 File In, File Out, and PassiveObject
	Example 9.16
	Example 9.17
	Example 9.18
	Example 9.19

	9.4 Creating and Using Sockets

	10 Signals and Notifiers
	10.1 Communicating Between Sessions
	10.2 Object Change Notification
	Setting Up a Notify Set
	Adding an Object to a Notify Set
	Example 10.1

	Adding a Collection to a Notify Set
	Example 10.2

	Listing Your Notify Set
	Removing Objects From Your Notify Set

	Notification of New Objects
	Example 10.3
	Receiving Object Change Notification
	Reading the Set of Signaled Objects

	Polling for Changes to Objects
	Example 10.4

	Troubleshooting
	Frequently Changing Objects
	Special Classes
	Example 10.5
	Example 10.6

	Methods for Object Notification

	10.3 Gem-to-Gem Signaling
	Figure 10.1 Communicating from Session to Session
	Sending a Signal
	Example 10.7
	Example 10.8
	Example 10.9
	Receiving a Signal
	Example 10.10

	10.4 Other Signal Related Issues
	Increasing Speed
	Dealing With Signal Overflow
	Using Signals and Notifiers with RPC Applications
	Sending Large Amounts of Data

	Maintaining Signals and Notification When Users Log Out
	Example 10.11

	11 Handling Errors
	11.1 Signaling Errors to the User
	Example 11.1
	Example 11.2
	Example 11.3
	Example 11.4
	Example 11.5
	Example 11.6

	11.2 Handling Errors in Your Application
	Activation Exceptions
	Figure 11.1 Method Contexts and Associated Exceptions

	Static Exceptions
	Table 11.1 Common GemStone Event Exceptions
	Example 11.7

	Defining Exceptions
	Categories and Error Numbers
	Figure 11.2 Defining Error Dictionaries
	Example 11.8
	Example 11.9
	Example 11.10
	Example 11.11
	Example 11.12
	Example 11.13
	Example 11.14
	Example 11.15

	Handling Exceptions
	Example 11.16

	Raising Exceptions
	Example 11.17
	Example 11.18

	Flow of Control
	Figure 11.3 Default Flow of Control in Exception Handlers
	Example 11.19
	Example 11.20
	Figure 11.4 Activation Exception Handler With Explicit Return
	Example 11.21
	Signaling Other Exception Handlers
	Example 11.22
	Example 11.23
	Figure 11.5 Activation Exception Handler Passing Control to Another Handler

	Removing Exception Handlers
	Example 11.24

	Recursive Errors
	Uncontinuable Errors

	12 Handling Exceptions the ANSI Way
	12.1 Signaling Exceptions
	Example 12.1

	12.2 Handling Exceptions
	Default Handlers
	Activation Handlers
	Figure 12.1 ExecutableBlock and Associated Handlers
	Example 12.2

	Selecting a Handler
	Example 12.3
	Figure 12.2 Selecting a Handler

	Flow of Control
	Resumable and Nonresumable Exceptions

	12.3 Legacy Exceptions
	Example 12.4 Sample use of the legacy framework
	Example 12.5 Sample use of the ANSI framework

	13 Tuning Performance
	13.1 Clustering Objects for Faster Retrieval
	Will Clustering Solve the Problem?
	Cluster Buckets
	Cluster Buckets and Extents
	Using Existing Cluster Buckets
	Creating New Cluster Buckets
	Cluster Buckets and Concurrency
	Example 13.1

	Cluster Buckets and Indexing

	Clustering Objects
	The Basic Clustering Message
	Example 13.2
	Example 13.3

	Depth-First Clustering
	Assigning Cluster Buckets
	Clustering and Transactions
	Using Several Cluster Buckets
	Example 13.4

	Clustering Class Objects
	Table 13.1 Clustering Protocol
	Example 13.5

	Maintaining Clusters
	Determining an Object’s Location
	Why Do Objects Move?

	13.2 Optimizing for Faster Execution
	The Class ProfMonitor
	Profiling Your Code
	Example 13.6
	Example 13.7
	Example 13.8
	Example 13.9
	Example 13.10

	The Profile Report
	Example 13.11

	Other Optimization Hints

	13.3 Modifying Cache Sizes for Better Performance
	GemStone Caches
	Temporary Object Space
	Gem Private Page Cache
	Stone Private Page Cache
	Shared Page Cache

	Getting Rid of Non-Persistent Objects

	13.4 Managing VM Memory
	Large Working Set
	Class Hierarchy
	UserAction Considerations
	Exported Set
	Debugging out of memory errors
	Signal on low memory condition
	Methods for Computing Temporary Object Space
	Example 13.12

	Statistics for monitoring memory use
	Table 13.2 Statistics Related to the Objects Copied into Memory
	Table 13.3 Statistics Related to Mark/Sweeps and Scavenges
	Table 13.4 Statistics Related to Object Memory Regions
	Table 13.5 Statistics Related to Stubbing
	Table 13.6 Statistics Related to Garbage Collection
	Table 13.7 Statistics Related to Symbol Creation
	Table 13.8 Other Statistics

	14 Advanced Class Protocol
	14.1 Adding and Removing Methods
	Defining Simple Accessing and Updating Methods
	Example 14.1
	Example 14.2

	Removing Selectors
	The Basic Compiler Interface
	Example 14.3

	14.2 Examining a Class’s Method Dictionary
	Table 14.1 Method Dictionary Access
	Example 14.4
	Example 14.5

	14.3 Examining, Adding, and Removing Categories
	Table 14.2 Category Manipulation
	Example 14.6
	Example 14.7
	Example 14.8

	14.4 Accessing Variable Names and Pool Dictionaries
	Table 14.3 Access to Variable Names
	Example 14.9

	14.5 Testing a Class’s Storage Format
	Table 14.4 Storage Format Protocol
	Example 14.10
	Example 14.11

	14.6 Session Methods
	Example 14.12
	Example 14.13

	15 The SUnit Framework
	15.1 Why SUnit?
	15.2 Testing and Tests
	15.3 SUnit by Example
	Example 15.1
	Example 15.2
	Example 15.3
	Example 15.4
	Examining the Value of a Tested Expression
	Finding Out If an Exception Was Raised
	Example 15.5
	Example 15.6
	Example 15.7

	15.4 The SUnit Framework
	Figure 15.1 The SUnit Core Classes
	Example 15.8

	15.5 Understanding the SUnit Implementation
	Running a Single Test
	Example 15.9
	Example 15.10
	Example 15.11

	Running a TestSuite
	Example 15.12
	Example 15.13

	15.6 For More Information

	A GemStone Smalltalk Syntax
	A.1 The Smalltalk Class Hierarchy
	How to Create a New Class
	Case-Sensitivity
	Statements
	Comments
	Expressions
	Kinds of Expressions
	Literals
	Numeric Literals
	Character Literals
	Example A.1

	String Literals
	Symbol Literals
	Example A.2

	DoubleByteStrings and DoubleByteSymbols
	Array Literals

	Variables and Variable Names
	Declaring Temporary Variables
	Example A.3
	Example A.4

	Pseudovariables

	Assignment
	Message Expressions
	Messages

	Reserved and Optimized Selectors
	Messages as Expressions
	Example A.5

	Combining Message Expressions
	Summary of Precedence Rules

	Cascaded Messages
	Example A.6
	Example A.7

	Array Constructors
	Example A.8
	Example A.9
	Example A.10
	Example A.11
	Example A.12

	Path Expressions
	Returning Values
	Example A.13
	Example A.14

	A.2 Blocks
	Example A.15
	Example A.16
	Blocks with Arguments
	Example A.17
	Example A.18
	Example A.19
	Example A.20

	Blocks and Conditional Execution
	Conditional Selection
	Example A.21

	Two-Way Conditional Selection
	Example A.22
	Example A.23

	Conditional Repetition
	Example A.24
	Example A.25
	Example A.26

	Formatting Code
	Example A.27

	A.3 GemStone Smalltalk BNF
	Figure A.1 GemStone Smalltalk BNF
	Figure A.2 GemStone Smalltalk Lexical Tokens

	B GemStone Error Messages
	B.1 Compiler Errors
	B.2 Error Descriptions

	Index

