
GemStone®
GemStone/S 64 Bit
Topaz Programming

Environment
Version 2.4

September 2009

Topaz Programming Environment
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemStone
Systems, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise
copied in any form or by any means now known or later developed, such as electronic, optical, or mechanical means,
without express written authorization from GemStone Systems, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties.
Any unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in
severe civil and criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemStone Systems, Inc.
under separate license agreement. This software may only be used pursuant to the terms and conditions of such
license agreement. Any other use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software -
Restricted Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the
government agency shall not have the right to disclose this software to support service contractors or their
subcontractors without the prior written consent of GemStone Systems, Inc.
This software is provided by GemStone Systems, Inc. and contributors “as is” and any expressed or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose are disclaimed. In no event shall GemStone Systems, Inc. or any contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory
of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2009 GemStone Systems, Inc. All rights
reserved by GemStone Systems, Inc.

PATENTS
GemStone is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, and Patent Number 6,567,905 “Generational Garbage
Collector”. GemStone may also be covered by one or more pending United States patent applications.

TRADEMARKS
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of
GemStone Systems, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, Solaris, and SunOS are trademarks or registered trademarks of Sun Microsystems, Inc. All
SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
SPARCstation is licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
HP and HP-UX are registered trademarks of Hewlett Packard Company.
Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation in
the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the
United States and other countries.
AIX and POWER4 are trademarks or registered trademarks of International Business Machines Corporation.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective
owners. Trademark specifications are subject to change without notice. All terms mentioned in this documentation
that are known to be trademarks or service marks have been appropriately capitalized to the best of our knowledge;
however, GemStone cannot attest to the accuracy of all trademark information. Use of a term in this documentation
should not be regarded as affecting the validity of any trademark or service mark.
GemStone Systems, Inc.
1260 NW Waterhouse Avenue, Suite 200
Beaverton, OR 97006.
2 GemStone Systems, Inc. September 2009

Preface
About This Manual
This manual describes Topaz, the command-driven GemStone programming
environment. You can use Topaz with the other GemStone development tools such
as GemBuilder for C to build comprehensive database applications.

Topaz is especially useful for database administration tasks and batch-mode
procedures. Because it is command driven and generates ASCII output on
standard output channels, Topaz offers access to GemStone without requiring a
window manager or additional language interfaces.

Assumptions
To make use of the information in this manual, you must be familiar with the
GemStone/S 64 Bit system and the GemStone Smalltalk programming language.
In addition, you should be familiar with your host operating system. This manual
assumes that the GemStone database system has been correctly installed on your
host computer, using the instructions in the GemStone/S 64 Bit Installation Guide.
September 2009 GemStone Systems, Inc. 3

Topaz Programming Environment
How This Manual Is Organized
 • Chapter 1 introduces you to Topaz. You’ll learn how to run Topaz, how to log

in to the GemStone server, how to create and execute GemStone Smalltalk
code, and how to inspect GemStone objects.

 • Chapter 2 shows how to use Topaz to debug your GemStone Smalltalk code.

 • Chapter 3 describes the Topaz commands in alphabetical order.

 • Appendix A lists the Topaz command line syntax.

 • Appendix B lists the syntax for specifying the host machine for a GemStone
file or process.

Terminology Conventions
This document uses the following terminology:

 • The term “GemStone” is used to refer both to the product, GemStone/S 64
Bit, or previous GemStone/S server products; and to the company, GemStone
Systems, Inc.

Typographical Conventions
This document uses the following typographical conventions:

 • Command lines you type are shown in bold type. For example:

% env | grep GEM

 • Topaz commands and UNIX commands and are shown in bold type. For
example:

copyextent

 • Smalltalk methods and instance variables, file names and paths, and screen
dialogue examples are shown in monospace type. For example:

markForCollection

 • Place holders that are meant to be replaced with real values are shown in italic
type. For example:

StoneName.conf
4 GemStone Systems, Inc. September 2009

Topaz Programming Environment
Related GemStone Documentation
For more information about the GemStone/S 64 Bit database system and its
development tools, refer to the following manuals:

 • Release Notes. Describes information specific to a particular release of
GemStone/S 64 Bit.

 • Installation Guide. Describes installation and configuration of your
GemStone/S 64 Bit system.

 • System Administration Guide for GemStone/S 64 Bit. Describes maintenance and
administration of your GemStone/S 64 Bit system.

 • Programming Guide for GemStone/S 64 Bit. A programmer’s guide to GemStone
Smalltalk, GemStone’s object-oriented programming language.

Technical Support
GemStone provides several sources for product information and support. The
product-specific manuals provide extensive documentation, and should be your
first source of information.

GemStone Web Site: http://support.gemstone.com

GemStone’s Technical Support website provides a variety of resources to help you
use GemStone products. Use of this site requires an account, but registration is free
of charge. To get an account, just complete the Registration Form, found in the
same location. You’ll be able to access the site as soon as you submit the web form.

The following types of information are provided at this web site:

Documentation for GemStone/S 64 Bit is provided in PDF format. This is the same
documentation that is included with your GemStone/S 64 Bit product.

Release Notes and Install Guides for your product software are provided in PDF
format in the Documentation section.

Downloads and Patches provide code fixes and enhancements that have been
developed after product release, and past and current versions of GemBuilder for
Smalltalk.

Bugnotes, in the Learning Center section, identify performance issues or error
conditions that you may encounter when using a GemStone product. A bugnote
describes the cause of the condition, and, when possible, provides an alternative
means of accomplishing the task. In addition, bugnotes identify whether or not a
September 2009 GemStone Systems, Inc. 5

Topaz Programming Environment
fix is available, either by upgrading to another version of the product, or by
applying a patch. Bugnotes are updated regularly.

TechTips, also in the Learning Center section, provide information and
instructions for topics that usually relate to more effective or efficient use of
GemStone products.

Community Links provide customer forums for discussion of GemStone product
issues.

Technical information on the GemStone Web site is reviewed and updated
regularly. We recommend that you check this site on a regular basis to obtain the
latest technical information for GemStone products.

Help Requests
You may need to contact Technical Support directly for the following reasons:

 • Your technical question is not answered in the documentation.

 • You receive an error message that directs you to contact GemStone Technical
Support.

 • You want to report a bug.

 • You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

 • Your name, company name, and GemStone/S license number

 • The GemStone product and version you are using

 • The hardware platform and operating system you are using

 • A description of the problem or request

 • Exact error message(s) received, if any

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.
6 GemStone Systems, Inc. September 2009

Topaz Programming Environment
For non-emergency requests, the support website is the preferred way to contact
Technical Support. Only designated support contacts may submit help requests
via the support website. If you are a designated support contact for your company,
or the designated contacts have changed, please contact us to update the
appropriate user accounts.

Website: http://techsupport.gemstone.com
Email: support@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503

Requests for technical assistance may be submitted online, or by email or by
telephone. We recommend you use telephone contact only for more serious
requests that require immediate evaluation, such as a production system that is
non-operational. In these cases, please also submit your request via the web or
email, including pertinent details such error messages and relevant log files.

If you are reporting an emergency by telephone, select the option to transfer your
call to the technical support administrator, who will take down your customer
information and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact GemStone 24 hours a day, 7 days a week, 365
days a year, if they encounter problems that cause their production application to
go down, or that have the potential to bring their production application down.
Contact your GemStone account manager for more details.
September 2009 GemStone Systems, Inc. 7

Topaz Programming Environment
8 GemStone Systems, Inc. September 2009

Contents
Chapter 1. Getting Started with Topaz 15
1.1 Invoking Topaz . 16
1.2 Overview of a GemStone Session . 16
1.3 Remote Versus Linked Versions . 17
1.4 Logging In to GemStone . 18

Setting Up a Login Initialization File . 21
1.5 The Help Command . 23
1.6 Executing GemStone Smalltalk Expressions 24
1.7 Escaping to an Editor . 25
1.8 Controlling the Display of Results . 25

Display Level . 26
Setting Limits on Object Displays . 28
Displaying Variable Names, OOPs, and Hex Byte Values 28

Instance Variable Names . 28
Hexadecimal Byte Values . 29
OOP Values . 29

1.9 Creating and Changing Methods . 30
Editing Methods . 31
September 2009 GemStone Systems, Inc. 9

Topaz Programming Environment
1.10 Listing Methods and Categories. 32
1.11 Committing and Aborting Transactions . 32
1.12 Capturing Your Topaz Session In a File . 33
1.13 Filing Out Classes and Methods. 34
1.14 Creating a Topaz Script for Batch Processing 36
1.15 Taking Topaz Input from a File . 37
1.16 Interrupting Topaz and GemStone . 37
1.17 Multiple Concurrent GemStone Sessions. 38
1.18 Structural Access To Objects . 39

Examining Instance Variables with Structural Access 40
Specifying Objects . 41

Object Identity Specification Formats 41
Literal Object Specification Formats. 41

1.19 Defining Local Variables . 42
Creating Variables . 43
Displaying Current Variable Definitions 44
Clearing Variable Definitions . 44

1.20 Sending Messages . 45
1.21 Logging Out . 45
1.22 Leaving Topaz . 46

Chapter 2. Debugging Your GemStone Smalltalk Code 47
2.1 Step Points and Breakpoints. 48
2.2 Setting, Clearing, and Examining Breakpoints 49
2.3 Examining the GemStone Smalltalk Call Stack 51

Proceeding After a Breakpoint . 52
Examining and Modifying Temporaries and Arguments 53
Select a Context for Examination and Debugging. 54
Redefine the Active Call Stack. 54

Chapter 3. Command Dictionary 57
ABORT. 59
BEGIN . 60
BREAK aSubCommand . 61
10 GemStone Systems, Inc. September 2009

Topaz Programming Environment
Method Breakpoints . 61
Disabling and Enabling Breakpoints . 62

CATEGORY: aCategoryName. 64
CLASSMETHOD[: aClassName] . 65
COMMIT. 66
CONTINUE [anObjectSpec] . 67
DEFINE [aVarName [anObjectSpec [aSelectorOrArg]...]] 68
DISASSEM [aClassParameter] aParamValue . 69
DISPLAY aDisplayFeature. 70
DOIT . 72
DOWN [anInteger] . 73
EDIT aSubCommandOrSelector [aSelector] . 74

Creating or Modifying Blocks of GemStone Smalltalk Code 74
Creating or Modifying GemStone Smalltalk Methods 74

ERRORCOUNT . 76
EXIT [anInteger]. 77
EXPECTBUG bugNumber . 78
EXPECTERROR anErrorCategory anErrorNumber. 79
EXPECTVALUE anObjectSpec [anInt] . 82
FILEOUT aSubCommandOrSelector [TOFILE: aFileName] 84
FRAME [anInteger] . 85
GCITRACE aFileName . 86
HELP [aTopicName] . 87
IFERR bufferNumber [aTopazCommandLine] 88
IFERR_CLEAR . 89
IFERR_LIST . 90
IFERROR [aTopazCommandLine] . 91
INPUT [aFileName | POP] . 92
LEVEL anIntegerLevel . 93
LIMIT [BYTES | OOPS] anInteger . 94
LIST. 95

Browsing Dictionaries and Classes . 95
Listing Methods . 95
Listing Step Points. 96
Listing Breakpoints . 97

LOADUA aFileName. 98
LOGIN . 99
LOGOUT. 101
LOOKUP. 102

Finding and Listing Methods . 102
METHOD[: aClassName] . 103
September 2009 GemStone Systems, Inc. 11

Topaz Programming Environment
NBRUN . 104
NBRESULT . 105
OBJECT anObjectSpec [AT: anIndex [PUT: anObjectSpec]] 106
OMIT aDisplayFeature . 108
OPAL . 109
OUTPUT (PUSH | APPEND | PUSHNEW | POP) aFileName [ONLY] . . . 110
PRINTIT . 112
PROTECTMETHODS . 113
QUIT [anInteger] . 114
RELEASEALL. 115
REMARK commentText . 116
REMOVEALLMETHODS[: aClassName] . 117
REMOVEALLCLASSMETHODS[: aClassName] 118
RUN . 119
SEND anObjectSpec aMessage . 120
SET aTopazParameter [aParamValue] . 121
SHELL [aHostCommand] . 126
SPAWN [aHostCommand] . 127
STACK [aSubCommand] . 128

Display the Active Call Stack . 128
Display or Redefine the Active Context 130
Save or Delete the Active Call Stack During Execution. 131
Display All Call Stacks . 131
Redefine the Active Call Stack . 131
Remove Call Stacks . 132

STATUS . 133
STEP (OVER | INTO) . 134
STK [aSubCommand] . 135
TEMPORARY [aTempName[/anInt] [anObjectSpec]] 136
TIME . 138
UNPROTECTMETHODS . 139
UP [anInteger] . 140
WHERE [anInteger] . 141

Appendix A. Topaz Command-Line Syntax 143
A.1 Command-Line Syntax . 143
A.2 Options . 144
12 GemStone Systems, Inc. September 2009

Topaz Programming Environment
Appendix B. Network Resource String Syntax 147
B.1 Overview . 147
B.2 Defaults . 148
B.3 Notation . 149
B.4 Syntax . 150

Index 153
September 2009 GemStone Systems, Inc. 13

Topaz Programming Environment
14 GemStone Systems, Inc. September 2009

Chapter

1 Getting Started with
Topaz
Topaz is a GemStone programming environment that provides keyboard
command access to the GemStone ODBMS. Topaz does not require a windowing
system and so is the interface of choice for batch work and for many system
administration functions.

This chapter explains how to run Topaz and how to use some of the most
important Topaz commands. Chapter 3 provides descriptions of all Topaz
commands.

To run Topaz, your system administrator or GemStone data curator must first
have installed the GemStone ODBMS on your system. You must have an operating
repository monitor (or Stone process), and, to run the remote version of Topaz, an
accessible network service process (netldi). The GemStone/S 64 Bit Installation Guide
explains how to install these components.

Your environment must contain a definition of the $GEMSTONE variable and your
execution path must include the GemStone binary directory ($GEMSTONE/bin on
UNIX systems, %GEMSTONE%\bin on Windows). Consult your system
administrator or GemStone data curator if you need help with this.

Examples throughout this book were created on a UNIX system. Behavior and
appearance of Topaz on Windows systems is the same, except where noted.
September 2009 GemStone Systems, Inc. 15

Invoking Topaz Topaz Programming Environment
1.1 Invoking Topaz
To invoke Topaz, simply type topaz on the command line. The program responds
by printing its copyright banner and issuing a prompt, as shown in Figure 1.1.

Figure 1.1 Topaz Banner and Prompt

% topaz
 __
| GemStone/S64 Object-Oriented Data Management System |
| Copyright (C) GemStone Systems, Inc. 1986-2007. |
| All rights reserved. |
+--+
| PROGRAM: topaz, Linear GemStone Interface (Remote Session) |
| VERSION: 2.4.0, Thu Aug 20 16:16:14 US/Pacific 2009 |
| BUILD: gss64bit-15 |
| BUILT FOR: SPARC (Solaris) |
| MODE: 64 bit |
| RUNNING ON: 2-CPU handel sun4u (Solaris 2.9 Generic_117171-08) 400MHz |
| sparcv9,2048MB |
| PROCESS ID: 3596 DATE: 08/21/09 15:41:54 PDT |
| USER IDS: REAL=gsuser (531) EFFECTIVE=gsuser (531) |
|__|
topaz>

Type the topaz command and verify that it responds as shown. If you have
problems invoking Topaz, review the requirements listed on the previous page or
consult your system administrator or your GemStone data curator.

1.2 Overview of a GemStone Session
A GemStone session consists of four parts, as shown in Figure 1.2. These are:

 • An application, in this case, Topaz.

 • One repository. An application has one repository to hold its persistent
objects.

 • One repository monitor, or Stone process, to control access to the repository.

 • At least one GemStone session, or Gem process. All applications, including
Topaz, must communicate with the repository through Gem processes. A Gem
provides a work area within which objects can be used and modified. Several
Gem processes can coexist, communicating with the repository through a
single Stone process.
16 GemStone Systems, Inc. September 2009

Getting Started with Topaz Remote Versus Linked Versions
Figure 1.2 GemStone Object Server Components

1.3 Remote Versus Linked Versions
In Figure 1.1, notice that the Topaz startup banner’s PROGRAM line refers to
Remote Session. Two versions of Topaz are available to you: remote procedure
call (or RPC) and linked. Unless you specify otherwise, the topaz command invokes
the RPC version. The RPC version of Topaz allows you to run multiple RPC Topaz
sessions. These run separately from their Gem processes, so you can run Topaz
and the Gem processes on separate nodes.

The topaz -l (for linked) command line invokes the linked version of Topaz. The
linked version allows you to run multiple Topaz sessions, but session number one
is always a linked session, where the Topaz session and a Gem exist as a single
process. Any additional sessions are RPC. The linked Topaz session provides
faster throughput than the RPC version, allows some administrative operations to
report more complete details, and is required for certain system administration
tasks, such as upgrading the repository.

Under Windows, only the RPC version of Topaz is available.

Topaz

Stone
Repository Monitor Process

Repository

Disk I/O

Network
Connections

Gem Session
(GemStone Smalltalk + Data Manager)
September 2009 GemStone Systems, Inc. 17

Logging In to GemStone Topaz Programming Environment
The examples in this chapter can be executed equally well from either linked or
RPC Topaz. For additional command-line options, see Appendix A.

1.4 Logging In to GemStone
The first step in establishing a connection to GemStone and logging in is to give
Topaz some information about the GemStone repository you will be using. To log
in to the repository you must provide a GemStone user name and password. If you
are running the RPC version of Topaz, you also need to provide your operating
system user name and password for the host on which your GemStone session
resides.

Here are the parameters to be established to log in to GemStone through Topaz:

 • The GemStone name (gemstone). This the name of the Stone process to use
and, optionally, the name of the network node on which it resides. The default
name is gs64stone. If your Stone process is named gs64stone and is
running on the local node, and the Gem process will also run on the local node,
you don’t have to set the GemStone name.

Otherwise, specify the name of the Stone. If the node where the Stone is
running is not the one where the Gem will run, you also need the name of the
Stone host and perhaps the type of network connection between the Stone and
Gem hosts. To specify a process named gs64stone running on node
central, you can use a network resource string of the form
!@central!gs64stone. Your GemStone data curator can give you the exact
string to use. Appendix B describes the syntax of network resource strings.

 • Your GemStone user name and password (username). Your GemStone data
curator can give you these.

 • Your host user name and password (hostusername and hostpassword). The
name and password that you use when you log in to the host operating
system. These are needed only for RPC sessions.

 • The GemStone service name (gemnetid). For the RPC version the default is
gemnetobject. You may also use gemnetdebug, if you are debugging
memory issues, or create a custom gemnetobject service.

For the linked version of Topaz, do not set the gemnetid, or set the gemnetid
to '' (null) or gcilinkobj. Do not set it to gemnetobject; if you do, all your
sessions will be RPC, in spite of having invoked the linked version o f topaz.
You can use a network resource string of the form
!@central!gemnetobject to start a Gem process on a remote node.
18 GemStone Systems, Inc. September 2009

Getting Started with Topaz Logging In to GemStone
Your GemStone data curator can assist you if you encounter difficulties.

In general, you can abbreviate any Topaz command to uniqueness. Topaz
commands (such as set gemnetid and login) are case-insensitive. The arguments
you specify, however, must meet your operating system’s requirements for
capitalization and spelling.

Use the Topaz set command to establish these parameters. For example:

topaz> set gemstone gs64stone
topaz> set username 'Isaac Newton'

Whenever a Topaz parameter such as “Isaac Newton” contains white space, it
must be enclosed within single quotes.

This is sufficient for the linked version of Topaz. If you are running the RPC
version, you must also provide the following information:

topaz> set gemnetid gemnetobject
topaz> set hostusername 'newtoni'
topaz> set hostpassword
Host Password? (Type your host password; it won’t be echoed)
September 2009 GemStone Systems, Inc. 19

Logging In to GemStone Topaz Programming Environment
To see your current login settings and other information about your Topaz session,
type status:

topaz> status

Current settings are:
 display level: 1
 omit oops
 omit bytes
 display instance variable names
 omit automatic result checks
 omit interactive pause on errors
EditorName________ vi

Connection Information:
UserName_________ 'Isaac Newton'
Password ________ (set)
HostUserName_____ 'newtoni'
HostPassword ____ (set)
GemStone_________ 'gs64stone'
GemStone NRS_____
'!#encrypted:newtoni@password#server!gs64stone'
GemNetId_________ 'gemnetobject'
GemNetId NRS_____
'!#encrypted:newtoni@password!gemnetobject'
CacheName_________(default)

If you are using the linked version of Topaz, certain login parameters
(HostUserName and HostPassword) have no effect. Setting GemNetId will
result in an RPC login.

If any login settings are incorrect, use the set command to fix them.

You are now ready to issue the login command, connecting your Topaz session to
the GemStone repository:

topaz> login
GemStone password? (type your GemStone password)
successful login
topaz 1>

As this example shows, Topaz displays a session number in its prompt once you
have logged in.
20 GemStone Systems, Inc. September 2009

Getting Started with Topaz Logging In to GemStone
You are also free to supply several of these login parameters on a single command
line in any order, and to abbreviate the parameter names:

topaz> set gemstone gs64stone user 'Isaac Newton'
topaz> set gemnetid gemnetobject hostuser 'newtoni'
topaz> set hostpass <return>
Host Password? (type your host password)
topaz> login
gci login: currSession 1 rpc gem processId 95
successful login
topaz 1>

Because setting the host user name causes Topaz to discard the current host
password, you must set hostusername before hostpassword.

If you are using the linked version of Topaz, you can login with fewer set
commands:

topaz> set gemstone gs64stone user 'Isaac Newton' pass gravity
topaz> login
[Info]: LNK client/gem GCI levels = 830/830
[Info]: User ID: 'Isaac Newton'
[Info]: Repository: gs64stone
[Info]: Session ID: 5
[Info]: GCI Client Host: <Linked>
[Info]: Page server PID: -1
[Info]: Login Time: 08/21/09 16:03:17.187 PDT
gci login: currSession 1 rpc gem processId -1
successful login
topaz 1>

Setting Up a Login Initialization File
You can streamline the login process by creating an initialization file that contains
the set commands needed for logging in. When you invoke Topaz, it automatically
executes those commands for you. If you insert set hostpassword and login
September 2009 GemStone Systems, Inc. 21

Logging In to GemStone Topaz Programming Environment
commands without parameters, Topaz automatically prompts you for the
necessary values.

You may also explicitly specify a path for a topazini file on the command line
where you started up the Topaz executable. Using this option overrides any
topazini files that Topaz would otherwise use.

% topaz -I /gemstone/utils/mylogin.topazini

If you want to run Topaz non-interactively, you must explicitly specify both the
GemStone and host passwords in this initialization file.

CAUTION:
Entering your passwords in a file can pose a security risk.

The Topaz initialization file shown in Figure 1.3 performs most of the same
functions as the interactive commands shown in the previous discussion.

Figure 1.3 Topaz Initialization File

set gemstone gs64stone
set gemnetid gemnetobject
set username 'Isaac Newton'
set password mypassword
set hostusername 'newtoni'
set hostpassword hostpassword
login

If you have an initialization file, to start Topaz without using the initialization file,
use the -i option. See Appendix A.

Table 1.1 Topaz Initialization File Names

Platform

Name of Topaz
Initialization

File Expected Location

UNIX .topazini Current directory, then user’s home directory
Windows topazini.tpz Current directory, then user’s home directory. If

home directory is undefined, uses home directory of
the account that started Windows, if any, or
DRIVE:\users\default where DRIVE is the
local device on which Windows is installed.
22 GemStone Systems, Inc. September 2009

Getting Started with Topaz The Help Command
Once Topaz has read an initialization file like this one, logging in is quite simple:

% topaz

With TCP/IP, you can store user account information in a network initialization
file. If you do not explicitly supply a host username and password, on UNIX hosts
Topaz tries to find a username and password for the designated node in the file
$HOME/.netrc. If that file is properly configured, you won’t need to explicitly
supply a host user name and password each time you log in. For information about
how to configure your network initialization file, see the discussion of set
hostusername in Chapter 3 of this manual.

If you choose not to include your password in an initialization file, Topaz will start
up with the following prompt.

GemStone Password? Type your password. It will not be echoed.
topaz 1>

1.5 The Help Command
You can type help at the Topaz prompt for information about any Topaz
command. For example:

topaz 1> help exit

EXIT [<status>]
Terminates Topaz, returning to the parent process or
operating system. If you are still logged in to GemStone
when you type EXIT, this will abort your transaction and log
out all active sessions. Although you can abbreviate most
other Topaz commands and parameter names, EXIT must be typed
in full.

If an nonzero integer status is given, a nonzero status will
be returned to the operating system. A zero status will
return a zero status to the operating system.

Help is available for:

(list of topics)
Topic? (press Return to exit the help utility)
topaz 1>
September 2009 GemStone Systems, Inc. 23

Executing GemStone Smalltalk Expressions Topaz Programming Environment
1.6 Executing GemStone Smalltalk Expressions
By following the examples in the rest of this chapter, you’ll learn how to create and
execute GemStone Smalltalk code, and how to inspect GemStone objects. If you
need to log out of your session before you finish, you can use the commit
command to save the classes and methods you have created. To start where you
left off in a new session, you will have to reset the current class and category, but
usually not the default screen display settings.

Once you’ve logged in to GemStone, you can execute Smalltalk expressions with
the printit command. The following use of printit, for example, creates a class
named Animal.

topaz 1> printit
Object subclass: 'Animal'

instVarNames: #('name' 'favoriteFood' 'habitat')
inDictionary: UserGlobals

%
Animal class
 superClass Object class
 format 0
 instVars 3
 instVarNames an Array
 constraints an Array
 classVars a SymbolDictionary
 methodDict a GsMethodDictionary
 poolDictionaries an Array
 categories a GsMethodDictionary
 secondarySuperclasses nil
 name Animal
 ...
 classCategory nil
 subclasses nil
topaz 1>

All of the lines after the printit command and before the first line in which % is the
first character are sent to GemStone for execution as GemStone Smalltalk code.
Topaz then displays the result and prompts you for a new command.

If there is an error in your code, Topaz displays an error message instead of a
legitimate result. You can then retype the expression with errors corrected, or use
the Topaz edit function to correct and refine the expression.
24 GemStone Systems, Inc. September 2009

Getting Started with Topaz Escaping to an Editor
1.7 Escaping to an Editor
To use the edit function, you must first have established the name of the host editor
you wish to use. Topaz can read the UNIX environment variable EDITOR, if you
have it set. Otherwise, use the Topaz set editorname command, interactively or
in your Topaz initialization file.

topaz 1> set editorname vi

Then, to edit the text of the last printit command, you need only do this:

topaz 1> edit last

Topaz opens your editor, as a subprocess, on the text of the last printit command.
When you exit the editor, Topaz saves the edited text in a temporary file and asks
you whether you’d like to compile and execute the altered code. If you type yes,
Topaz effectively reissues your printit command with the new text.

To use the editor for creating an entirely new block of code for execution, use edit
new text instead of edit last.

See “Editing Methods” on page 31 for more on edit.

1.8 Controlling the Display of Results
Topaz provides several commands that let you control the amount and kind of
information it displays about results.
September 2009 GemStone Systems, Inc. 25

Controlling the Display of Results Topaz Programming Environment
Display Level
When Topaz displays a result object, it ordinarily prints the name and value of
each of the object’s instance variables.

topaz 1> printit
Animal
%
Animal class
 superClass Object class
 format 0
 instVars 3
 instVarNames an Array
 constraints an Array
 classVars a SymbolDictionary
 methodDict a GsMethodDictionary
 poolDictionaries an Array
 categories a GsMethodDictionary
 secondarySuperclasses nil
 name Animal
 ...
 classCategory nil
 subclasses nil

In other words, the default Topaz result display is one level deep. You can use the
level command to ask for more or less information about results. Setting the level
to 0 would give this view of Animal:

topaz 1> level 0
topaz 1> printit
Animal
%
Animal
26 GemStone Systems, Inc. September 2009

Getting Started with Topaz Controlling the Display of Results
The following example shows part of a two-level display:

topaz 1> level 2
topaz 1> printit
Animal
%
Animal class

superClass Object class
superClass nil
format 0
instVars 0
instVarNames an Array
constraints an Array
classVars a SymbolDictionary
methodDict a GsMethodDictionary
poolDictionaries an Array
categories a GsMethodDictionary
secondarySuperclasses nil
name Object
classHistory a ClassHistory
description a GsClassDocumentation
migrationDestination nil
timeStamp aDateTime
userId SystemUser
extraDict a SymbolDictionary
classCategory nil
subclasses nil

format 0
instVars 3
instVarNames an Array

#1 name
#2 favoriteFood
#3 habitat

...

As you can see, setting the display level to 2 causes Topaz to display each instance
variable within each of class Animal’s instance variables. The maximum display
level is 32767.

If the display level setting is high enough and the object to be displayed is cyclic
(that is, if it contains itself in an instance variable), Topaz will faithfully follow the
circularity, displaying the object repeatedly.
September 2009 GemStone Systems, Inc. 27

Controlling the Display of Results Topaz Programming Environment
Setting Limits on Object Displays
The limit bytes command controls how much Topaz displays of a byte object
(instance of String or one of String’s subclasses) that comes back as a result.
Similarly, limit oops controls how much Topaz displays of pointer or NSC objects
that come back as a result.

By default, Topaz attempts to display all of a result, no matter how long. The
following example shows how you could use limit bytes to make Topaz limit the
display to the first 4 bytes:

topaz 1> limit bytes 4
topaz 1> printit
 'this and that'
%
this

Setting the limit to 0 restores the default condition.

Displaying Variable Names, OOPs, and Hex Byte Values
Two complementary commands, display and omit, control the display of instance
variable names, hexadecimal byte values, and OOPs (the object-oriented pointers
that uniquely identify GemStone objects internally).

Instance Variable Names

As you saw in the display of class Animal, Topaz normally prints the name of each
named instance variable with its value. If you don’t need this information, you can
28 GemStone Systems, Inc. September 2009

Getting Started with Topaz Controlling the Display of Results
speed up the display of results by telling Topaz to omit names, as in the following
example:

topaz 1> omit names
topaz 1> printit
Animal
%
Animal class
 i1 Object class
 i2 0
 i3 3
 i4 an Array
 i5 an Array
 i6 a SymbolDictionary
 i7 a GsMethodDictionary
 i8 an Array
 i9 a GsMethodDictionary
 i10 nil
 i11 Animal
 ...

Entering display names restores Topaz to the default condition.

Hexadecimal Byte Values

Topaz ordinarily displays byte objects such as Strings literally, with no additional
information. If you enter display bytes Topaz includes the hexadecimal value of
each byte. For example:

topaz 1> display bytes
topaz 1> printit
 'this and that'
%
1 'this and that' 74 68 69 73 20 61 6e 64 20 74 68 61 74

Entering omit bytes restores the default byte display mode.

OOP Values

It’s occasionally useful in debugging to examine the numeric object identifiers that
GemStone uses internally. If you tell Topaz to display oops, it prints a bracketed
object header with each object, which looks like this:

[151141 sz:6 cls: 867 Symbol]
September 2009 GemStone Systems, Inc. 29

Creating and Changing Methods Topaz Programming Environment
Each object header contains:

 • The object’s OOP (a 64-bit unsigned integer)

 • the object’s size, calculated by summing all of its named, indexed, and
unordered instance variable fields

 • the OOP of the object’s class

For example:
topaz 1> display oops
topaz 1> printit
Animal
%
[150621 sz:19 cls: 150617 Animal class] Animal class
 superClass [565 sz:19 cls: 1611 Object class] Object class
 format [2 sz:0 cls: 581 SmallInteger] 0
 instVars [14 sz:0 cls: 581 SmallInteger] 3
 instVarNames [150613 sz:3 cls: 523 Array] an Array
 constraints [150593 sz:3 cls: 523 Array] an Array
 classVars [150589 sz:14 cls: 871 SymbolDictionary] a SymbolDictionary
 methodDict [150633 sz:112 cls: 775 GsMethodDictionary] a GsMethodDictionary
 poolDictionaries [150561 sz:0 cls: 523 Array] an Array
 categories [150637 sz:28 cls: 775 GsMethodDictionary] a GsMethodDictionary
 secondarySuperclasses [20 sz:0 cls: 597 UndefinedObject] nil
 name [147877 sz:6 cls: 867 Symbol] Animal
...

You can turn off the display of OOPs by typing omit oops at the Topaz prompt.

1.9 Creating and Changing Methods
The first step in creating or editing a method is to tell Topaz the name of the
method’s class. Do this with the set class command:

topaz 1> set class Animal

This establishes a context for your subsequent work so that you don’t need to
supply the class name each time you create or edit a method.

Similarly, you’ll need to supply the name of the method category in which you
want to work:

topaz 1> set category Updating

If the category you name doesn’t exist, Topaz creates it when you first compile a
method.
30 GemStone Systems, Inc. September 2009

Getting Started with Topaz Creating and Changing Methods
Topaz maintains this information about the current class and category until you
explicitly change it. You can examine your current class and category settings by
typing status.

topaz 1> status

Current settings are:
 (display of current settings and connection information appears here)

browsing information:
Class_____________ Animal
Category__________ Updating

Once you’ve established a class and a category, you can begin an instance method
definition by issuing the method: command at the Topaz prompt:

topaz 1> method: ^
habitat: newValue
"Modify the value of the instance variable 'habitat'."
 habitat := newValue
%

The method: command takes a single argument: the name of the class for which
the method will be compiled. As shown here, wherever Topaz expects the name of
a class, you can simply type a caret (^) to tell Topaz to use the current class (in this
case, Animal).

A class method definition is similarly initiated by the Topaz command
classmethod:. For example:

topaz 1> classmethod: ^
returnAString
 "Returns an empty String"
 ^String new
%

Like the text of a printit command, the text of a method definition is terminated by
the first line that starts with the % character.

As soon as you enter the %, Topaz sends the method’s text to GemStone for
compilation and inclusion in the selected class and category.

Editing Methods
You can debug and refine methods by using Topaz’s edit function in much the
same way you use that function to create and modify printit commands. For
September 2009 GemStone Systems, Inc. 31

Listing Methods and Categories Topaz Programming Environment
example, to edit the existing instance method habitat: in the current class, you
would enter edit as shown below:

topaz 1> edit method habitat:

Here is how you would edit an existing class method:

topaz 1> edit classmethod returnAString

To create an entirely new method with the editor, you can enter edit new method
or edit new classmethod.

If you omit the method and classmethod keywords, you must specify an instance
method to be edited; for example, edit habitat:.

1.10 Listing Methods and Categories
If you need to see which categories and methods are in the current class, use the
Topaz list command. The command list categoriesIn: causes Topaz to list all of the
class and instance method selectors in the selected class by category.

To list the source code of an instance method, type list method: aMethodName as in
the following example:

topaz 1> list method: habitat:
habitat: newValue
"Modify the value of the instance variable 'habitat'."
habitat := newValue

A parallel command, list classmethod:, lists the source of the given class method.
If you omit the keywords method: and classmethod: from your list command, you
must specify an instance method you wish to list.

Other list options allow you to examine the classes in one or all of your symbol list
dictionaries or to examine the methods in some class other than the current class.
For more information, see the description of list in Chapter 3 of this manual.

1.11 Committing and Aborting Transactions
In GemStone, each session’s operations normally exist in a transaction that
maintains a temporary, private workspace. The commit command ends your
current transaction and stores this information in the repository, for use in later
sessions and by other users.
32 GemStone Systems, Inc. September 2009

Getting Started with Topaz Capturing Your Topaz Session In a File
To commit a transaction while using Topaz, you can execute the GemStone
Smalltalk expression System commitTransaction within a printit command,
or you can enter the Topaz commit command:

topaz 1> commit
Successful commit

Similarly, you abort a transaction by executing the GemStone Smalltalk expression
System abortTransaction within a printit command, or by entering abort at
the Topaz command prompt. Entering abort does not reset Topaz system
definitions, such as your current class and category.

Although you can abbreviate most other Topaz commands and parameter names,
commit, abort, logout, and exit (the last two of which implicitly abort your
transaction) must be typed in full.

1.12 Capturing Your Topaz Session In a File
It’s often useful to keep a record of your interactions with GemStone during testing
and debugging. You might also want to record a typical series of GemStone
operations that could be used as a training guide or edited into a batch processing
file.

You can do this with the Topaz command output push. This command causes
Topaz to write all input and output to a named file as well as to standard input and
standard output (your terminal).

The following example causes all subsequent interactions to be captured in a file
called animaltest.log:

topaz 1> output push animaltest.log

If the file you name doesn’t exist, Topaz creates it. Under UNIX, if you name an
existing file, Topaz overwrites it.

To add output to an existing file without losing its current contents, precede the
file name with an ampersand (&). For example:

topaz 1> output push &animaltest.log

The following example stops output to the current file:

topaz 1> output pop

As the command names push and pop imply, Topaz can maintain a stack of up to
20 output files. If you add the keyword only to the push command lines, current
September 2009 GemStone Systems, Inc. 33

Filing Out Classes and Methods Topaz Programming Environment
interactions are captured only in the file on top of the stack. This prevents the
results from showing on your screen, however.

topaz 1> output push animaltest2.log only

Otherwise, the output is duplicated in each file on the stack. For example, the
following sequence would capture one command in the file mathtest.log, and
a second command in mathtest2.log:

topaz 1> remark Capture the next command
topaz 1> remark and result in mathtest.log
topaz 1> output push mathtest.log
topaz 1> printit
5 * 8
%
40
topaz 1> remark Capture the next command
topaz 1> remark and result in mathtest2.log
topaz 1> output push mathtest2.log only
topaz 1> printit
5 * 9
%
topaz 1> remark Close mathtest2.log
topaz 1> remark and resume using mathtest.log
topaz 1> output pop

Notice that the result of the second command, 45, did not appear on the screen. If
the second push command line did not have the only keyword, the entire
sequence would have been recorded in mathtest.log, and the second command
duplicated in mathtest2.log.

Also notice the use of remark in this example—you can use either remark or an
exclamation point in column 1 to begin a comment. Comments are often useful for
annotating Topaz input files created for batch processing or testing.

1.13 Filing Out Classes and Methods
Sometimes you’ll want to create, edit, or archive a class and some large fraction of
its methods as a monolithic chunk of source code. This makes it possible to:

 • transport your code to other GemStone systems,

 • perform global edits and recompilations,
34 GemStone Systems, Inc. September 2009

Getting Started with Topaz Filing Out Classes and Methods
 • produce paper copies of your work, and

 • recover code that would otherwise be lost when you are unable to commit.

The Topaz fileout command can create an executable Topaz script defining a class
and/or any or all of the class’s methods. You can process the script using editors
or other operating system utilities and then execute it with the Topaz input
command. The following command:

topaz 1> fileout class: Animal toFile: animal.gs

would create in the file animal.gs, a Topaz script containing a definition of class
Animal and all of its categories and methods. Here is how animal.gs would
look:

printit
Object subclass: 'Animal'
 instVarNames: #('name' 'favoriteFood' 'habitat')
 classVars: #()
 classInstVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #[]
 instancesInvariant: false
 isModifiable: false
%
category: 'Updating'
method: Animal
habitat: newValue

"Modify the value of the instance variable 'habitat'."
 habitat := newValue
%
...

“Filing in” this script with the input command would create a new class Animal
exactly like the original.

In addition to class:, the fileout command has four other subcommands:

fileout category:
Files out all the methods in the named category.

fileout classcategory:
Files out all the class methods in the named category.
September 2009 GemStone Systems, Inc. 35

Creating a Topaz Script for Batch Processing Topaz Programming Environment
fileout classmethod:
Files out the source code of the method identified in the argument by its
selector.

fileout method:
Files out the specified instance method. You can omit the method: portion of
a fileout command, unless the instance method’s selector is also the name of
one of the other fileout subcommands. For example, to file out a method
named habitat:, you could simply enter

topaz 1> fileout habitat

To file out a method named category:, however, you would need to enter

topaz 1> fileout method: category:

1.14 Creating a Topaz Script for Batch Processing
Just as the fileout command creates an executable Topaz script defining a class,
you can create your own Topaz script that performs any series of GemStone
operations. If you have complicated queries or a long series of repository updates
that you repeat on a regular basis, this is an easy way to do it. You can type the
Topaz commands into a file, test and edit them until they run with no errors, and
then you have a script that will do automatic batch processing for you. If your
procedure changes slightly from day to day, you can easily edit the script. Because
the files duplicate what you would do interactively, they are also useful training
tools.

Another way to produce such a script is to capture a typical Topaz session in a file,
using output push. Edit the output file to remove the prompts and results, leaving
only the Topaz commands and GemStone Smalltalk code. For example, suppose
you wanted to make a script of the mathtest2.log file you created earlier. This
is how it looks:

topaz 1> printit
5 * 9
%
45
topaz 1> remark Close mathtest2.log
topaz 1> remark and resume using mathtest.log
topaz 1> output pop
36 GemStone Systems, Inc. September 2009

Getting Started with Topaz Taking Topaz Input from a File
To make it an executable script, remove the prompts, results, and unnecessary
commands, and make the comments helpful.

remark This multiplies two numbers
printit
5 * 9
%

Do not use the edit command for batch processing. Instead, use the method: and
classmethod: commands to create methods in batch processes, and the printit or
doit commands to execute blocks of code in batch.

1.15 Taking Topaz Input from a File
Although Topaz ordinarily takes its input from standard input (usually your
terminal), you can use the input command to make Topaz take its input from a file.
The following command, for instance, would make Topaz read and execute the
commands in a file called animal.gs in your UNIX $HOME directory:

topaz 1> input $HOME/animal.gs

The UNIX environment variable $HOME is expanded to the full filename before the
input command is carried out.

Batch processing goes very quickly. It is a good idea to use output push to record
the session, so you can check for errors.

1.16 Interrupting Topaz and GemStone
Three kinds of interruption (break) using Control-C are possible when you’re
using Topaz:

 • When Topaz is awaiting input from your terminal, such as when you’re
entering a command, you can enter Control-C to terminate entry of the
command and prepare Topaz for accepting a new command.

 • When GemStone is compiling or executing some GemStone Smalltalk code
sent to it by Topaz, such as in a printit command, typing Control-C sends a
request to GemStone to interrupt its activities as soon as possible. GemStone
stops execution at the conclusion of the current method, and Topaz displays
the message: A soft break was received.

 • Typing Control-C three times immediately halts Topaz. Do this only in an
emergency. All GemStone work performed since you last committed is lost.
September 2009 GemStone Systems, Inc. 37

Multiple Concurrent GemStone Sessions Topaz Programming Environment
1.17 Multiple Concurrent GemStone Sessions
Topaz can keep several independent GemStone sessions alive simultaneously.
This allows you to switch from one session to another, for instance to access more
than one GemStone repository. Both RPC and linked versions of Topaz allow you
to run multiple sessions by using the login and set session commands; however,
you can only have one linked session at a time.

The following example shows how you might create a second session, make the
new session your current session, then return to the original session.

topaz> login
gci login: currSession 1 rpc gem processId 95
successful login
topaz 1> set gemstone !tcp@srv2!gs64stone
topaz 1> set username isaac
Warning: GemStone is clearing previous GemStone password.
GemStone password? <password typed here but not echoed>
topaz 1> login
gci login: currSession 2 rpc gem processId 141
successful login
topaz 2> printit
UserGlobals at: #myVar put: 1
%
1
topaz 2> set session 1
topaz 1>

Notice that the Topaz prompt always shows the number of the current session. To
get a list of current GemStone sessions and the users who own them, you can
execute the GemStone Smalltalk expression System currentSessionNames.
For example:

topaz 1> printit
System currentSessionNames
%

session number: 2 UserId: GcUser
session number: 3 UserId: SymbolUser
session number: 4 UserId: DataCurator
session number: 5 UserId: Isaac Newton
session number: 6 UserId: Isaac Newton
session number: 7 UserId: Gottfried Leibniz
topaz 1>
38 GemStone Systems, Inc. September 2009

Getting Started with Topaz Structural Access To Objects
The GcUser session (or sessions) represent the garbage collection processes that
usually (though not always) operate when GemStone is active. The SymbolUser
session represents the process that administers Symbols to ensure canonicality.

Keep in mind that this list includes all sessions that are currently logged into the
system, not only the sessions within Topaz. The session numbers reported here do
not correspond to the sequential session numbers assigned by your Topaz.

If you use the topaz command to invoke Topaz, you get an RPC session. With
every subsequent login command you get another RPC session.

If you use the topaz -l command to invoke Topaz, your first session is linked. You
may have only one linked session, so you need to enter a gemnetid in order to be
able to log in a second session. All sessions after the first linked session will be
RPC.

The messages displayed during login indicate if you have a linked or RPC session.
In particular note the processId of the gem. If the processId is -1, it indicates a
linked session. A positive value is the operating system processId (pid) of the gem.

topaz> set gemnetid gemnetobject
topaz> login
GemStone password? <password typed here but not echoed>
gci login: currSession 2 rpc gem processId 157
successful login
topaz 2> set gemnetid ''
topaz 2> login
[Info]: LNK client/gem GCI levels = 830/830
[Info]: User ID: DataCurator
[Info]: Repository: gs64stone
[Info]: Session ID: 5
[Info]: GCI Client Host: <Linked>
[Info]: Page server PID: -1
[Info]: Login Time: 08/21/09 16:32:25.591 PDT
gci login: currSession 1 rpc gem processId -1
successful login
topaz 1>

1.18 Structural Access To Objects
In your GemStone Smalltalk programs, you should generally access the values
stored in objects only by sending messages. During debugging, however, it’s
sometimes useful to be able to read an instance variable or store a value in it
September 2009 GemStone Systems, Inc. 39

Structural Access To Objects Topaz Programming Environment
without sending a message. For example, if an instance variable is normally read
only by a message with side effects, it won’t do to examine its value during
debugging by sending that message.

To allow you to “peek” and “poke” at objects without passing messages, Topaz
provides the commands object at: and object at: put:.

Examining Instance Variables with Structural Access
The command object at: returns the value of an instance variable within an object
at some integral offset. Suppose, for example, that you had created an instance of
Animal:

topaz 1> printit
UserGlobals at: #MyAnimal put: Animal new.
%
an Animal
 name nil
 favoriteFood nil
 habitat nil
topaz 1> printit
MyAnimal habitat: 'water'
%
an Animal
 name nil
 favoriteFood nil
 habitat water

The following example shows how you could use object at: to display the value of
MyAnimal’s third instance variable.

topaz 1> object MyAnimal at: 3
water

You can string together at: parameters after object to descend as far as you like into
the object of interest. The following example retrieves the first instance variable of
MyAnimal’s third instance variable.

topaz 1> object MyAnimal at: 3 at: 1
$w

As far as at: is concerned, named, indexed, and unordered instance variables are
all numbered, with named instance variables appearing first, followed by indexed
instance variables, then unordered instance variables. That is, if an indexed object
also had three named instance variables, the first indexable field would be
40 GemStone Systems, Inc. September 2009

Getting Started with Topaz Structural Access To Objects
addressed with object at: 4. Offsets into the unordered portions of NSCs are not
consistent across add: or remove: commands.

Specifying Objects
As you have seen, objects can be identified within an object command by global
GemStone Smalltalk variable names. This is only one of several kinds of object
specification acceptable in such Topaz commands as object at:. The others include
object identity specification formats and literal object specification formats.

Object Identity Specification Formats

@integer
An unsigned 64-bit decimal OOP value that denotes an object.

integer
A 61-bit literal SmallInteger.

$character
A literal Character.

aVariableName
This can be either a GemStone Smalltalk variable name or a local variable
created with the define command.

** The object that was the result of the last execution.

^ The current class (as defined by the most recent set class, list categoriesIn:,
method:, classmethod:, or fileout command).

Literal Object Specification Formats

'text'
A literal String.

#text
A literal Symbol (no white space allowed).

float
A Float object (C double-precision Float). The syntax for literal floating point
numbers in Topaz commands is:

[sign]digits[.[digits][E[sign]digits]]
September 2009 GemStone Systems, Inc. 41

Defining Local Variables Topaz Programming Environment
The OOP specifications and ** (last result) are especially interesting. For example:

topaz 1> display oops
topaz 1> object Animal
[1337089 sz:19 cls: 150617 Animal class] Animal class
 superClass [72193 sz:19 cls: 206081 Object class] Object class
 format [2 sz:0 cls: 74241 SmallInteger] 0
 instVars [26 sz:0 cls: 74241 SmallInteger] 3
 instVarNames [1335297 sz:3 cls: 66817 Array] an Array

...
topaz 1> ! Look at first element of instVarNames array
topaz 1> object @1335297 at: 1
[1248257 sz:4 cls: 110849 Symbol] name
topaz 1> ! Look at first character of first instvarname
topaz 1> omit oops
topaz 1> object ** at: 1
$n

Note that when you look at the first element of the instVarNames array, you need
to use the OOP returned by your own GemStone system, not @1335297.

1.19 Defining Local Variables
As you saw in the last section, Topaz lets you refer to objects via their OOPs.
Because long numerical OOPs are hard to remember, Topaz also provides a facility
for defining local Topaz variables so that you can name those OOPs.
42 GemStone Systems, Inc. September 2009

Getting Started with Topaz Defining Local Variables
Creating Variables
The following example shows the use of the Topaz define command to create a
reasonable name for an object previously known by its OOP.

topaz 1> display oops
topaz 1> object Animal
[1337089 sz:19 cls: 1337601 Animal class] Animal class
 superClass [72193 sz:19 cls: 206081 Object class] Object class
 format [2 sz:0 cls: 74241 SmallInteger] 0
 instVars [26 sz:0 cls: 74241 SmallInteger] 3
 instVarNames[1335297 sz:3 cls: 66817 Array] an Array
...
topaz 1> define animalVars @1335297
topaz 1> omit oops
topaz 1> object animalVars at: 1
name

A local variable must begin with a letter or an underscore, can be up to 255
characters in length, and cannot contain white space.

If additional tokens follow define’s second parameter, Topaz will try to interpret
them as a message to the object represented by the second parameter. For example:

topaz 1> define thirdvar animalVars at: 3
topaz 1> object thirdvar
habitat

Note that Topaz does not parse message expressions exactly as the GemStone
Smalltalk compiler does; Topaz requires you to separate tokens with white space.

As the last example shows, local variables can be used in object commands. When
used in this way, the local definition of a symbol always overrides any definition
of the symbol in GemStone. For example, if “thirdvar” were defined in
UserGlobals, that definition would be ignored in object commands.

All Topaz object specification formats (described above in “Specifying Objects”)
are legal in define commands. For example:

topaz 1> define sum 1.0e1 + 500
topaz 1> define mystring 'this and that'
topaz 1> define mycharacter $z
September 2009 GemStone Systems, Inc. 43

Defining Local Variables Topaz Programming Environment
Displaying Current Variable Definitions
To see all current local variable definitions, just type define with no arguments:

topaz 1> define
 Current definitions are:
 mycharacter = 142538
 mystring = 150133
 sum = 147709
 thirdvar = 114793
 animalVars = 147682

 ErrorCount = nil
 SourceStringClass = 74753
 CurrentCategory = nil
 CurrentClass = nil
 ErrorProcess = nil
 LastResult = 147709
 LastText = nil
 myUserProfile = 13837

Note that define reports most values as OOPs rather than literals.

In this status report the user-defined local variables are listed first. The last seven
items are local variables that Topaz automatically creates for you. They refer,
respectively, to the number of Topaz and GemStone errors made since you started
Topaz, the current category and class, the last GemStone Smalltalk execution error
stack, the last execution result, the text of the last GemStone Smalltalk expression
executed or compiled, and your UserProfile. You cannot modify the definitions of
these predefined variables with define.

Clearing Variable Definitions
To clear a definition, type define aVarName with no second argument.

For example:

topaz 1> define abc 'this string'
topaz 1> object abc
 this string
topaz 1> define abc
topaz 1> object abc
GemStone could not find an object named abc.
44 GemStone Systems, Inc. September 2009

Getting Started with Topaz Sending Messages
1.20 Sending Messages
Usually you’ll send messages only inside methods or within printit commands. If
you can point to an object only via a local Topaz variable or via an OOP, however,
this won’t work.

Therefore, Topaz provides the send command, which lets you send a message to
an object identified by any of the means described in “Specifying Objects” on
page 41. For example:

topaz 1> send @71425 class
a Metaclass
 superClass a Metaclass
 format 1040
 ...
 categories a GsMethodDictionary
 secondarySuperclasses nil
 thisClass UndefinedObject class

The send command’s first argument is an object specification identifying a
receiver. That argument is followed by a message expression built almost as it
would be in GemStone Smalltalk. Here’s another example:

topaz 1> send 2 - 1
1

There are some differences between send syntax and GemStone Smalltalk
expression syntax. Only one message send can be performed at a time with send.
Cascaded messages, parenthetical messages, and the like are not recognized by
this command. Also note that each item must be delimited by one or more spaces
or tabs.

1.21 Logging Out
To log out from your current GemStone session, just type logout.

topaz 1> logout
topaz>

As noted above, logging out implicitly aborts your transaction.
September 2009 GemStone Systems, Inc. 45

Leaving Topaz Topaz Programming Environment
1.22 Leaving Topaz
To leave Topaz and return to your host operating system, just type exit:

topaz> exit

If you are still logged in when you type exit, this will implicitly abort all your
transactions and log out all active sessions.

You can use quit, which has the same effect as exit.
46 GemStone Systems, Inc. September 2009

Chapter

2 Debugging Your
GemStone Smalltalk
Code
Topaz can maintain up to eight simultaneous GemStone Smalltalk call stacks that
provide information about the GemStone state of execution. Each call stack
consists of a linked list of method or block contexts. Topaz provides debugging
commands that enable you to:

 • Step through execution of a method. After each step, you can examine the
values of arguments, temporaries, and instance variables.

 • Inspect or change the values of arguments, temporaries, and receivers in any
context on the call stack, then continue execution. This means that you can find
out what the system was doing at the time a soft break, a breakpoint, or an
error interrupted execution.

 • Set, clear, and examine GemStone Smalltalk breakpoints. When a breakpoint
is encountered during normal execution, you can issue Topaz commands to
explore the contexts on the stack.

This chapter introduces you to the Topaz debugging commands and provides
some examples. For a detailed description of each of these commands, see
Chapter 3.
September 2009 GemStone Systems, Inc. 47

Step Points and Breakpoints Topaz Programming Environment
2.1 Step Points and Breakpoints
For the purpose of determining exactly where a step will go during debugging, a
GemStone Smalltalk method can be decomposed into step points. The locations of
step points also determine where breakpoints can be set.

Generally, step points correspond to the message selector and, within the method,
message-sends, assignments, and returns of nonatomic objects. (However,
compiler optimizations may occasionally result in a different, nonintuitive step
point, particularly in a loop.) The Topaz list steps method: command lists the
source code of a given instance method and displays all step points (allowable
breakpoints) in that source code. For example:

topaz 1> set class String
topaz 1> list steps method: includesValue:
 includesValue: aCharacter
 * ^1 *******

 "Returns true if the receiver contains aCharacter, false
 otherwise. The search is case-sensitive."

 <primitive: 94>

 aCharacter _validateClass: AbstractCharacter .
 * ^2 *******
 ^ self includesValue: aCharacter asCharacter .
 * ^5 ^4 ^3 *******

As shown here, the position of each method step point is marked with a caret (^)
and a number.

If you use the Topaz step command (described below) to step through this
method, the first step halts execution at the beginning of the method. The second
step takes you to the point where _validateClass: is about to be sent to
aCharacter. Stepping again would execute that message-send and halt
execution at the point where asCharacter is about to be sent. Another step
would cause that message to be sent and then halt execution just before the
message includesValue: is sent to self.

The call stack becomes active, and the debugging commands become accessible,
when you execute GemStone Smalltalk code containing a breakpoint (as well as
when you encounter an error). As explained earlier, you can set a breakpoint at any
step point. You can use the break command (described below) to set method
48 GemStone Systems, Inc. September 2009

Debugging Your GemStone Smalltalk Code Setting, Clearing, and Examining Breakpoints
breakpoints that halt execution at a particular step point within a method. In
general, you can choose to set a method break before a message-send, an
assignment, or a method return.

You can set a breakpoint on any method. Some methods, such as
Boolean>>ifTrue: never hit the break points unless you invoke them with
perform: or one of the GciPerform... functions, because sends of special selectors
are optimized by the compiler.

2.2 Setting, Clearing, and Examining Breakpoints
You can use the break method and break classmethod commands to establish
method breakpoints within your GemStone Smalltalk code:

break method aClassName aSelector [@ stepNumber]
break classmethod aClassName aSelector [@ stepNumber]

For example:

topaz 1> break classmethod GsFile openRead: @ 2

Establishes a breakpoint at step point 2 of the class method openRead: for GsFile.

topaz 1> set class String
topaz 1> break method ^ < @ 2

Establishes a breakpoint at step point 2 of the instance method “<” for the current
class (String).

The Topaz list breaks command allows you to display all method breakpoints
currently set in the active method context. By supplying a selector as an argument
to the list breaks command, you can display all breakpoints set in a given instance
or class method for the current class, as shown in the following example.
September 2009 GemStone Systems, Inc. 49

Setting, Clearing, and Examining Breakpoints Topaz Programming Environment
topaz 1> list breaks method: <
 < aCharCollection

 "Returns true if the receiver collates before the
 argument. Returns false otherwise.

 The comparison is case-insensitive unless the receiver
 and argument are equal ignoring case, in which case
 upper case letters collate before lower case letters.
 The default behavior for SortedCollections and for
 the sortAscending method in UnorderedCollection is
 consistent with this method, and collates as follows:

 #(‘c’ ‘MM’ ‘Mm’ ‘mb’ ‘mM’ ‘mm’ ‘x’) asSortedCollection

 yields the following sort order:

 ‘c’ ‘mb’ ‘MM’ ‘Mm’ ‘mM’ ‘mm’ ‘x’
 “

 <primitive: 28>

 aCharCollection _validateClass: CharacterCollection .
 * ^2 *******
 ^ aCharCollection > self

 Alternatively, you can use the break list command to list all currently set method
or message breakpoints:

topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2

In the break list, each breakpoint is identified by a break index. To disable a
breakpoint, supply that break index as the single argument to the break disable
command:

topaz 1> break disable 2

A similar command line reenables the break point:

topaz 1> break enable 2
50 GemStone Systems, Inc. September 2009

Debugging Your GemStone Smalltalk Code Examining the GemStone Smalltalk Call Stack
 To delete a single breakpoint, supply that break index as the argument to the
break delete command:

topaz 1> break delete 2

To delete all currently set breakpoints, type the following command:

topaz 1> break delete all

2.3 Examining the GemStone Smalltalk Call Stack
You can display all of the contexts in the active call stack by issuing the stack
command with no arguments. Using the stack command displays method
arguments and temporaries; the display is controlled by the current level setting.
Use the stk command to display a summary call stack, with one line for each
context.

Here’s an example of the stack display for level 0, when display oops is active:

topaz 1> display oops
topaz 1> stack
1 Behavior >> new @ 1 [GsMethod 10941]
 receiver [208201 sz:19 cls: 208173 Animal class] Animal class
2 Executed Code @ 2 [GsMethod 208709]
 receiver [10 sz:0 cls: 1193 UndefinedObject] nil
 aDog [10 sz:0 cls: 1193 UndefinedObject] nil

Here’s the equivalent display when omit oops is active:

topaz 1> omit oops
topaz 1> stack
1 Behavior >> new @ 1
 receiver Animal class
2 Executed Code @ 2
 receiver nil
 aDog nil

With display oops active, this is the display for the stk command:

topaz 1> stk
1 Behavior >> new @ 1 [GsMethod 10941]
2 Executed Code @ 2 [GsMethod 208709]
September 2009 GemStone Systems, Inc. 51

Examining the GemStone Smalltalk Call Stack Topaz Programming Environment
The display of each context includes:

 • the level number of the context (for subsequent use with the stack scope
command, described later);

 • the OOP of the GsMethod (if display oops is active);

 • the class of the receiver (and its OOP, if display oops is active);

 • the class of the method invoked;

 • the selector of the method;

 • the current step point within the method, if any (an integer); and

 • for the stack command, parameters and temporaries for this context (including
OOPs, if display oops is active).

The display is governed by the setting of other Topaz commands, such as limit,
level, and display or omit.

In the example stack list given above, an invocation of the method new is found at
the top of the stack. The message was sent to the class Animal. Execution of the
method was halted at step point 1.

The next item on the stack is code that was compiled by the printit command; this
has an undefined receiver. Execution of this method halted during the call to the
method new, which was at step point 2.

Proceeding After a Breakpoint
When GemStone Smalltalk encounters a breakpoint during normal execution,
Topaz halts and waits for your reply. Topaz provides commands for continuing
execution, and for stepping into and over message-sends.

continue
Tells GemStone Smalltalk to continue execution from the context at the top of
the stack, if possible. If execution halts because of an authorization error, for
example, then the virtual machine can’t continue. As an option, the continue
command can replaces the value on the top of the stack with another object
before it attempts to continue execution.

step over
Tells GemStone Smalltalk to advance execution to the next step point
(message-send, assignment, etc.) in the active context or its caller, and halt. The
active context is the context specified by the last stack scope, stack up, or stack
down command, or otherwise the top of the stack.
52 GemStone Systems, Inc. September 2009

Debugging Your GemStone Smalltalk Code Examining the GemStone Smalltalk Call Stack
step into
Tells GemStone Smalltalk to advance execution to the next step point
(message-send, assignment, etc.) and halt. If the current step point is a
message-send, then execution will halt at the first step point within the method
invoked by that message-send.

Notice how this differs from step over; if the next message in the context
contains step points itself, execution halts at the first of those step points. That
is, the virtual machine “steps into” the new method instead of silently
executing that method’s instructions and halting after the method has
completed. The next step over command will then take place within the
context of the new method.

Examining and Modifying Temporaries and Arguments
The Topaz temporary command lets you examine or modify the values of
temporaries in the active context. If, for example, the method under inspection had
a temporary variable named count, you could obtain its value by typing
temporary and the variable name:

topaz 1> temporary count
5

which returns a count of 5 in this example. Similarly, you can use the temporary
command to assign a new value to a temporary variable:

topaz 1> temporary count 8

When program execution pauses at a breakpoint, Topaz adds some temporaries to
your local scope. The nature of these temporaries depends on the type of the
current expression:

return
Topaz creates a temporary called _returnValue that shows the value to be
returned.

assignment
Topaz creates _newValue, which holds the value to be assigned.

message-send
Topaz creates _receiver to show the receiver, and argument temporaries
called _arg1, _arg2, and so on, to hold argument values.

The temporary command displays the values of these Topaz-created temporaries,
when they exist.
September 2009 GemStone Systems, Inc. 53

Examining the GemStone Smalltalk Call Stack Topaz Programming Environment
Select a Context for Examination and Debugging
The Topaz commands stack scope, frame, up, and down let you redefine the active
context (used by the temporary, stack, and list commands) within the current call
stack. Recall the stack we examined earlier:

topaz 1> stack
1 Behavior >> new @ 1
 receiver Animal class
2 Executed Code @ 2
 receiver nil
 aDog nil

To show the active context, type:

topaz 1> stack scope
1 Behavior >> new @ 1

The following command selects the caller of this context as the new active context:

topaz 1> stack scope 2
2 Executed Code @ 2

Now confirm that Topaz redefined the active context:

topaz 1> stack scope
2 Executed Code @ 2

Redefine the Active Call Stack
The Topaz command stack all lets you display your list of saved call stacks. That
display includes the top context of every call stack:

topaz 1> stack all
*1 Behavior >> new @ 1
 2 Animal >> habitat @ 3
 3 Executed Code @ 2

The asterisk (*) indicates the active call stack, if one exists. If there are no saved
stacks, a message to that effect is displayed.
54 GemStone Systems, Inc. September 2009

Debugging Your GemStone Smalltalk Code Examining the GemStone Smalltalk Call Stack
When you type the stack change command, Topaz sets the active call stack to the
call stack indicated by the integer in the stack all command output, and displays
the newly selected call stack:

topaz 1> stack change 2
Stack 2 selected
1 Animal >> habitat @ 3
2 Executed Code @ 3
September 2009 GemStone Systems, Inc. 55

Examining the GemStone Smalltalk Call Stack Topaz Programming Environment
56 GemStone Systems, Inc. September 2009

Chapter

3 Command Dictionary
This chapter provides brief descriptions of the Topaz commands for quick
reference. The commands are presented in alphabetical order.

Command Syntax
Most Topaz commands can be abbreviated to uniqueness. For example,
set password: can be shortened to set pass. Exceptions to this rule are a few
commands whose actions can affect the success or failure of your current
transaction and, thus, the integrity of your data: abort, begin, commit, exit, logout,
removeallmethods:, removeallclassmethods:, output push, and output pop.

Topaz commands are case-insensitive. Thus, Time, TIME, and time are regarded
by Topaz as the same command. However, arguments you supply to Topaz
commands may be subject to case-sensitivity constraints. For example, the
commands category: animal and category: Animal specify two different
categories, because GemStone Smalltalk, the language of category names, is case-
sensitive. The same is true of UNIX path names, in commands such as output push
myFile.out, and UNIX user names and passwords.

In general, objects passed as arguments to Topaz commands can be specified using
any of the formats described in “Specifying Objects” on page 41.
September 2009 GemStone Systems, Inc. 57

Topaz Programming Environment
Command lines can have as many as 511 characters. You can stop a command at
any time by typing Control-C. Topaz may take a moment or two before halting the
current operation.
58 GemStone Systems, Inc. September 2009

Command Dictionary
ABORT
Aborts the current GemStone transaction. Your local variables (created with the
define command) may no longer have valid definitions after you abort.

If your session is outside a transaction, use abort to give you a new view of the
repository.

Although you can abbreviate most other Topaz commands and parameter names,
abort must be typed in full.
September 2009 GemStone Systems, Inc. 59

Topaz Programming Environment
BEGIN
Begins a GemStone transaction when your session is outside a transaction.

When you have ended your transaction by invoking the GemStone Smalltalk
method

System transactionMode: #manualBegin

use begin to start a new transaction. For more information, see the protocol for
System Class. Although you can abbreviate most other Topaz commands and
parameter names, begin must be typed in full.
60 GemStone Systems, Inc. September 2009

Command Dictionary
BREAK aSubCommand
Establishes (or displays) a method breakpoint within your GemStone Smalltalk
code. Subcommands are method, classmethod, list, enable, disable, and delete.
For more information about breakpoints, see Chapter 2, “Debugging Your
GemStone Smalltalk Code.”

Method Breakpoints
You can set method breakpoints within an instance method at step points:
assignments, message sends, or method returns. Use the list steps command to
display all valid step points for a method.

In each of the following commands, the optional argument anInt specifies the step
point within that method where the break is to occur. If you do not specify anInt,
the breakpoint is established at step 1 of the method.

You may not set method breakpoints in any method whose sole function is to
perform any of the following actions: return self, return nil, return true, return
false, return or update the value of an instance variable, return the value of a literal,
or return the value of a literal variable (that is, a class variable, a pool variable, or
a variable defined in your symbol list).

You may supply the class name parameter in these four formats:

@integer
An unsigned 64-bit decimal OOP value that denotes an object.

aVariableName
This can be either a GemStone Smalltalk variable name or a local variable
created with the define command.

** The object that was the result of the last execution.

^ The current class (as defined by the most recent set class:, list
categoriesin:, method:, classmethod:, removeallmethods:,
removeallclassmethods:, or fileout class: command).

break method aClassName aSelector [@ anInt]
Establishes a method breakpoint on the given instance method.

break classmethod aClassName aSelector [@ anInt]
Establishes a method breakpoint on the given class method.

break method ^ aSelector [@ anInt]
Establishes a method breakpoint on the given instance method for the current
class.
September 2009 GemStone Systems, Inc. 61

Topaz Programming Environment
break classmethod ^ aSelector [@ anInt]
Establishes a method breakpoint on the given class method for the current
class.

Displaying Breakpoints
break list

Lists all currently set breakpoints. In the display, each breakpoint is identified
by a break index for subsequent use in break disable, break enable, and break
delete commands.

Disabling and Enabling Breakpoints
break disable anIndex

Disables the breakpoint identified by anIndex in the break list command.

break disable all
Disables all currently set breakpoints.

break enable anIndex
Reenables the breakpoint identified by anIndex in the break list command.

break enable all
Reenables all disabled breakpoints.

Deleting Breakpoints
break delete anIndex

Deletes the breakpoint identified by anIndex in the break list command.

break delete all
Deletes all currently set breakpoints.

Examples
topaz 1> break method GsFile nextLine

Establishes a breakpoint at step point 1 of the instance method nextLine for
GsFile.

topaz 1> break classmethod GsFile openRead: @ 2

Establishes a breakpoint at step point 2 of the class method openRead: for GsFile.

topaz 1> set class String
topaz 1> break method ^ < @ 2
62 GemStone Systems, Inc. September 2009

Command Dictionary
Establishes a breakpoint at step point 2 of the instance method “<” for the current
class (String).

topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2
topaz 1> break disable 2
topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2 (disabled)
3: String >> < @ 2
topaz 1> break enable 2
topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2
topaz 1> break delete 1
topaz 1> break list
2: GsFile class >> openRead: @ 2
3: String >> < @ 2
topaz 1> break delete all
topaz 1> break list
No breaks set
September 2009 GemStone Systems, Inc. 63

Topaz Programming Environment
CATEGORY: aCategoryName
Sets the current category, the category for subsequent method compilations. If you
try to compile a method without first selecting a category, the new method is
inserted in the default category “as yet unspecified.” This command has the
same effect as the set category: command.

If the category you name doesn’t already exist, Topaz creates it when you first
compile a method. If you wish to include spaces in the category name you specify,
enclose the category name in single quotes.

Specifying a new class with set class does not change your category. However,
when you edit or fileout a method, that method’s category becomes the current
category.

The current category is cleared by the logout, login, and set session commands.

topaz 1> category: Accessing
topaz 1> category: 'Public Methods'
64 GemStone Systems, Inc. September 2009

Command Dictionary
CLASSMETHOD[: aClassName]
Compiles a class method for the class whose name is given as a parameter. The
class of the method you compile is automatically selected as the current class. If
you don’t supply a class name, the method is compiled for the current class (as
defined by the most recent set class:, list categoriesin:, method:, classmethod:,
removeallmethods:, removeallclassmethods:, or fileout class: command).

Text of the method should follow this command on subsequent lines. The method
text is terminated by the first line that contains a % character in column 1. For
example:

topaz 1> classmethod: Animal
returnAString
 ^String new
%

Topaz sends the method’s text to GemStone for compilation and inclusion in the
current category of the specified class. If you haven’t yet selected a current
category, the new method is inserted in the default category “as yet
unspecified.”
September 2009 GemStone Systems, Inc. 65

Topaz Programming Environment
COMMIT
Ends the current GemStone transaction and stores your changes in the repository.
Although you can abbreviate most other Topaz commands and parameter names,
commit must be typed in full.
66 GemStone Systems, Inc. September 2009

Command Dictionary
CONTINUE [anObjectSpec]
Attempts to continue GemStone Smalltalk execution on the active call stack after
encountering a breakpoint, a pause message, or a user-defined error. The call
stack becomes active, and the continue command becomes accessible, when you
execute GemStone Smalltalk code containing a breakpoint.

continue
Attempts to continue execution.

continue anObjectSpec
Replaces the value on the top of the stack with anObjectSpec and attempts to
continue execution.

The argument anObjectSpec can be specified using any of the formats described in
“Specifying Objects” on page 41.

For more information about breakpoints, see the discussion of the break command
on page 61, or see Chapter 2, “Debugging Your GemStone Smalltalk Code”.

For information about replacing the value on the top of the stack, see the
GciContinueWith function in the GemBuilder for C manual.

For information about Object’s pause method, see the method comments for
Object>>pause.

For information about user-defined errors, see the discussion of error-handling in
the GemStone/S 64 Bit Programming Guide. User manuals for the GemStone
interfaces, such as GemBuilder for Smalltalk, also contain discussions of error-
handling.
September 2009 GemStone Systems, Inc. 67

Topaz Programming Environment
DEFINE [aVarName [anObjectSpec [aSelectorOrArg]...]]
Defines local Topaz variables that allow you to refer to objects in commands such
as send and object.

All Topaz object specification formats (as described in “Specifying Objects” on
page 41) are legal in define commands.

define
Lists all current local variable definitions.

define aVarName
Deletes the definition of the variable aVarName.

define aVarName anObjectSpec aSelectorOrArg ...
Sends a message to the object specified by anObjectSpec, and saves the result as
a local variable with the name aVarName. The variable name aVarName must
begin with a letter (a..z) or an underscore, can be up to 255 characters in length,
and cannot contain white space.

topaz 1> define CurrentSessions System currentSessionNames
topaz 1> define UserId myUserProfile userId

Topaz tries to interpret all command line tokens following anObjectSpec as a
message to the specified object.
68 GemStone Systems, Inc. September 2009

Command Dictionary
DISASSEM [aClassParameter] aParamValue
The disassem command allows you to disassemble the specified GsMethod,
displaying the assembly code instructions.

If the session is remote, the output goes to stdout of the remote Gem, which is the
gem log.

disassem @anOop
Disassemble the method or code object with the specified oop.

disassem method: aSelector
Disassemble the specified instance method for the class previous set by the set
class command.

disassem classmethod: aSelector
Disassemble the specified class method for the class previous set by the set class
command.
September 2009 GemStone Systems, Inc. 69

Topaz Programming Environment
DISPLAY aDisplayFeature
The display and omit commands control the display of instance variable names,
hexadecimal byte values, and OOPs (object-oriented pointers). The display
command turns on these display attributes, and the omit command turns them off.

display oops
For each object, displays a header containing the object’s OOP (a 64-bit
unsigned integer), the object’s size (the sum of its named, indexed, and
unordered instance variable fields), and the OOP of the object’s class.

display bytes
When displaying string objects, includes the hexadecimal value of each byte.

display errorcheck
Allows Topaz programs to automatically record the results of error checking.
Using this command creates the ./topazerrors.log file or opens the file to
append to it, if it already exists.

As long as display errorcheck is set, every time ErrorCount is
incremented, a summary of the error is added to topazerrors.log. The
summary includes the line number in the Topaz output file, if possible. If the
only output file open is stdout, then line numbers are not available. To close
the topazerrors.log file, use the omit errorcheck command.
Subsequent results are not recorded.

display names
For each of an object’s named instance variables, displays the instance variable
name along with its value. (This is the default condition.) To turn off this
display, use the omit names command.

When instance variable name display is off, named instance variables appear
as i1, i2, i3, and so on.

display resultCheck
Allows Topaz programs to check input values and record the results. This
command creates the ./topazerrors.log file or opens the file to append to
it, if it already exists. Specifying display resultCheck is equivalent to
setting expectvalue true, except that it affects the behavior of all printit
commands, not only the next one.

As long as display resultCheck is set, every time ErrorCount is incremented,
a summary of the error is added to topazerrors.log. This includes the line
number in the Topaz output file, if possible. If the only output file open is
stdout, then line numbers are not available. To close the file, use the
omit resultCheck command. Then the results of a successful printit
70 GemStone Systems, Inc. September 2009

Command Dictionary
command will no longer be checked, unless an expectvalue command
precedes the printit command.

display pauseonerror
When an error occurs, if Topaz is receiving input from a terminal, displays the
message:

Execution has been suspended by a "pause" message.
Topaz pausing after error, type <return> to continue,
ctl-C to quit ?

and waits for the user to press the Return key to continue execution. Pressing
Control-C ends the pause and stops the processing of input files altogether.

If display resultCheck is also set, then Topaz only pauses when the result or
error is contrary to the current resultCheck, expectvalue, and expecterror
settings.

When display pauseonerror is set, the status command output includes:

display interactive pause on errors

Use omit pauseonerror to cancel this mode.
September 2009 GemStone Systems, Inc. 71

Topaz Programming Environment
DOIT
Sends the text following the doit command to the object server for execution and
displays the OOP of the resulting object. If there is an error in your code, Topaz
displays an error message instead of a legitimate result. GemStone Smalltalk text
is terminated by the first line that contains a % in column 1. For example:

topaz 1> doit
2 + 1
%
result oop is 26

If you use this command to execute a GemStone Smalltalk host file access method,
such as GsFile class>>openRead: or openWrite:, and you do not supply
an explicit path specification as part of the method argument, the default directory
for the method depends on the version of the Topaz that you are running. With
linked Topaz, the default directory is the directory in which Topaz was started.
With RPC Topaz, the default directory is the $HOME directory of the hostuser
account.
72 GemStone Systems, Inc. September 2009

Command Dictionary
DOWN [anInteger]
Moves the scope down within the currently selected call stack, and displays the
activation selected as a result. The optional argument anInteger specifies how many
activations to move down. If no argument is supplied, the scope will go down one
activation. See also stack down on page 130.

The context displayed includes parameters and temporaries for the context, unlike
the results displayed by stack down.

topaz 1> stk
1 System class >> signal:args:signalDictionary: @8 line 15
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
==> 5 SmallInteger >> / @4 line 6
6 Executed Code @2 line 1
topaz 1> down
4 Number >> _errorDivideByZero @1 line 5
 receiver 5
September 2009 GemStone Systems, Inc. 73

Topaz Programming Environment
EDIT aSubCommandOrSelector [aSelector]
Allows you to edit GemStone Smalltalk source code. You can create or modify
methods or blocks of code to be executed. You can also edit the text of the last
printit, doit, method:, or classmethod: command.

Before you can use this command, you must first establish the name of the host
operating system editor you wish to use. You can do this by setting the host
environment variable EDITOR or by invoking the Topaz set editorname command
interactively or in your Topaz initialization file.

Do not use the edit command for batch processing. Instead, use the method: and
classmethod: commands to create methods in batch processes, and the printit or
doit commands to execute blocks of code in batch.

If you supply any parameter to edit, other than one of its subcommands, Topaz
assumes that you are naming an existing instance method to be edited.

Creating or Modifying Blocks of GemStone Smalltalk Code
edit last

Allows you to edit the text of the last printit, doit, method:, or classmethod:
command. (You can inspect that text before you edit by issuing the Topaz
command object LastText.) Topaz opens, as a subprocess, the editor that
you’ve selected. When you exit the editor, Topaz saves the edited text in its
temporary file and asks you whether you’d like to compile and execute the
altered code. If you tell Topaz to execute the code, it effectively reissues your
printit command with the new text.

edit new text
Allows you to create a new block of GemStone Smalltalk code for compilation
and execution. This is similar to edit last, but with a new text object.

Creating or Modifying GemStone Smalltalk Methods
edit new

If you type edit new with no additional keywords, Topaz assumes that you
want to create a new instance method for the current class.

edit new method
Allows you to create a new instance method for the current class and category.
Before you can use this command, you must first use set class to select the
current class. If you haven’t yet selected a current category, the new method is
inserted in the default category, “as yet unspecified.”
74 GemStone Systems, Inc. September 2009

Command Dictionary
edit new classmethod
Allows you to create a new class method for the current class and category.
Before you can use this command, you must first use set class to select the
current class. If you haven’t yet selected a current category, the new method is
inserted in the default category, “as yet unspecified.”

edit aSelector

edit method: aSelector
Allows you to edit the source code of an existing instance method. Before you
can use this command, you must first use set class to select the current class.
The category of the method you edit is automatically selected as the current
category. For example:

topaz 1> set class Animal
topaz 1> edit habitat

edits the instance method in class Animal whose selector is habitat.

edit classmethod: aSelector
Allows you to edit the source code of an existing class method. Before you can
use this command, you must first use set class to select the current class. The
category of the method you edit is automatically selected as the current
category.
September 2009 GemStone Systems, Inc. 75

Topaz Programming Environment
ERRORCOUNT
Displays the Topaz errorCount variable, which stores the number of errors made
in all sessions since you started Topaz. This includes GemStone Smalltalk errors
generated by compiling or a printit command, as well as errors in Topaz command
processing.

If expecterror is specified immediately before a compile or execute command
(printit, doit, method:, classmethod:, send, or commit) and the expected error
occurs during the compile or execute, the ErrorCount is not incremented. The
ErrorCount is not reset by login, commit, abort, or logout.

You can use the errorCount command at the topaz> prompt before you log in, as
well as after login. It is equivalent to

topaz 1> object ErrorCount

 except that errorCount does not require a valid session.
76 GemStone Systems, Inc. September 2009

Command Dictionary
EXIT [anInteger]
Leaves Topaz, returning to the parent process or operating system. If you are still
logged in to GemStone when you type exit, this aborts your transactions and logs
out all active sessions. Although you can abbreviate most other Topaz commands
and parameter names, exit must be typed in full.

An optional integer argument allows you to indicate an error status. A zero (0)
indicates successful status; other integers indicate an error and will result in a
return code of three (3).
September 2009 GemStone Systems, Inc. 77

Topaz Programming Environment
EXPECTBUG bugNumber
value resultSpec [integer] |
error errCategory errNumber [resultSpec [resultSpec]..]

Specifies that the result of the following execution results in the specified answer
(either a value or an error). If the expected result occurs, Topaz prints a
confirmation message and increments the error count.

The expectbug command is intended for use in self-checking scripts to verify the
existence of a known error. Only one expectbug command (at most) can be in effect
during a given execution. Topaz honors the last expectbug command issued
before the execution occurs. Expectbug can be used in conjunction with the
expecterror and expectvalue commands—an expectbug command does not count
against the maximum of five such expecterror and expectvalue commands
permitted.

bugNumber is a parameter identifying the bug or behavior you expect to see. In
most cases this would be a number, but it can equally well be a character
string. (If it contains white space, enclose the string in single quotes.) The
parameter is included in the confirmation message.

resultSpec is specified as in the expectvalue command (page 82).

errorCategory and errNumber
are specified as in the expecterror command (page 79).

For example, suppose you know that the ‘*’ operator has been reimplemented in a
way that returns the erroneous answer ‘5’ for the expression ‘2 * 3’. You can use the
expectbug command in a script to verify that the bug is present:

topaz 1> expectbug 123 value 5
topaz 1> printit
2 * 3
%
5
BUG EXPECTED: BUG NUMBER 123
topaz 1>

If the expected bug does not occur, Topaz checks for an expecterror or expectvalue
command that matches the answer received. If it finds a match, Topaz displays a
“FIXED BUG” message. If not, the error is reported in the same way the
expecterror or expectvalue command would report it (“ERROR: WRONG
VALUE” for example). If no expecterror or expectvalue commands are in effect,
execution proceeds without comment.
78 GemStone Systems, Inc. September 2009

Command Dictionary
EXPECTERROR anErrorCategory anErrorNumber
[anErrorArg [anErrorArg] ...]
Indicates that the next compilation or execution is expected to result in the
specified error. If the expected result occurs, Topaz reports the error in the
conventional manner but does not increment its error count and allows execution
to proceed without further action or comment.

If the execution returns a result other than the expected error (including
unexpected success), Topaz increments the error count and invokes any iferror
actions that have been established.

Up to five expecterror or expectvalue commands may precede an execution
command. If the result of the execution satisfies any one of them, the error count
variable is not incremented. This mechanism allows you to build self-checking
scripts to check for errors that can’t be caught with GemStone Smalltalk exception
handlers.

Expecterror must be reset for each command; it is only checked against a single
return value. Expecterror is normally used before the commands printit, doit,
method:, classmethod:, commit, and send.

anErrorCategory must be the object identifier of an error category, and
anErrorNumber must be a SmallInteger. For example:

GemStoneError 2010

All Topaz object specification formats (as described in “Specifying Objects” on
page 41) are legal in expecterror commands. In addition, this command takes two
more formats that allow you to specify instances of classes as error arguments:

%className An instance of the class className.

/className An instance of the class className or an instance of any of its
subclasses. (In other words, an instance of a ‘kind of’ className.)

If anErrorArg is a literal object specification (literalObjectSpec), Topaz regards it as
matching the result if the two are equal (=).

If anErrorArg is an object specification (ObjectSpec), Topaz regards it as matching
the result if the two are identical (==).

If you care about the number of error arguments, put that many anErrorArg tokens
on the command line. The error count is incremented if the actual error contains
fewer arguments than were specified in the expecterror command; it is not
incremented if the error contains more arguments than specified. If you don’t care
about the class of the error arguments, specify /Object for each one.
September 2009 GemStone Systems, Inc. 79

Topaz Programming Environment
The following example shows an expecterror command followed by the expected
error. Note that although the error is reported, the error count is not incremented,
nor is any additional annotation returned.

topaz 1> errorcount
0
topaz 1> expecterror GemStoneError 2010 1 /Symbol
topaz 1> printit
1 x
%

GemStone: Error Nonfatal
No method was found for the selector #x when sent to 1
with arguments
contained in anArray().
Error Category: [GemStone] Number: 2010 Arg Count: 3
Arg 1: 1
Arg 2: x
Arg 3: an Array
topaz 1> errorcount
0
topaz 1>

If execution returns unanticipated results, Topaz prints a message (in this example,
“ERROR: WRONG ERROR CATEGORY/NUMBER”), then invokes the actions
established by the iferror command (in this example, a stack dump) and bumps
the error count:
80 GemStone Systems, Inc. September 2009

Command Dictionary
topaz 1> errorcount
0
topaz 1> iferror stack
topaz 1> expecterror GemStoneError 2010 1 /Symbol
topaz 1> printit
'abc' at: 5
%

GemStone: Error Nonfatal
An indexable object or NSC 'abc' was referenced with an
index 5 that was out of range.
Error Category: [GemStone] Number: 2003 Arg Count: 2
Arg 1: abc
Arg 2: 5
ERROR: WRONG ERROR CATEGORY/NUMBER
Now executing the following command saved from "iferror":
 stack
1 System class >> signal:args:signalDictionary: @9 line15
 receiver System
 anInteger 2003
 anArray an Array
 #1 abc
 #2 5
 anErrorDict a SymbolDictionary
...
topaz 1> errorcount
1
topaz 1>
September 2009 GemStone Systems, Inc. 81

Topaz Programming Environment
EXPECTVALUE anObjectSpec [anInt]
Indicates that the result of the following compilation or execution is expected to be
a specified value, denoted by anObjectSpec. If it is not, the error count is
incremented. Up to five expectvalue or expecterror commands may precede an
execution command. If the result of the execution satisfies any one of them, the
error count variable is not incremented.

Expectvalue must be reset for each command; it is only checked against a single
return value. Expectvalue is normally used before the commands printit, doit,
method:, classmethod:, commit, and send.

All Topaz object specification formats (as described in “Specifying Objects” on
page 41) are legal in expectvalue commands. In addition, this command takes
further formats that allow you to specify instances of classes:

%className
An instance of the class className.

%@OOPOfClass
An instance of the class that has the OOP OOPOfClass.

/className
An instance of the class className or an instance of any of its subclasses. (In
other words, an instance of a ‘kind of’ className.)

/@OOPOfClass
An instance of the class that has the OOP OOPOfClass, or an instance of any of
its subclasses.

If the argument is a literal object specification (literalObjectSpec), Topaz regards it
as matching the result if the two are equal (=).

If the argument is an object specification (ObjectSpec), Topaz regards it as matching
the result if the two are identical (==).

If the anInt argument is present, the result of sending the method size to the
result of the following execution must be the integer anInt.

The commit command has an internal result of true for success and false for
failure. All other Topaz commands have an internal result of true for success and
@0 for failure.
82 GemStone Systems, Inc. September 2009

Command Dictionary
The following example uses expectvalue to test that the result of the printit
command is a SmallInteger. The expected result is returned, so execution proceeds
without comment:

topaz 1> expectvalue %SmallInteger
topaz 1> printit
2 * 5
%
10
topaz 1>

If execution returns unanticipated results, Topaz prints a message (in this example,
“ERROR: WRONG VALUE”), then invokes the actions established by the iferror
command (in this example, a stack dump) and bumps the error count:

topaz 1> iferror stack
topaz 1> expectvalue %SmallInteger
topaz 1> errorcount
0
%
topaz 1> expectvalue %SmallInteger
topaz 1> printit
2 * 5.5
%
1.1000000000000000E+01
ERROR: WRONG VALUE
Now executing the following command saved from "iferror":
 stack
Stack is not active
topaz 1> errorcount
1
topaz 1>
September 2009 GemStone Systems, Inc. 83

Topaz Programming Environment
FILEOUT aSubCommandOrSelector [TOFILE: aFileName]
Writes out class-related information in a format that can be fed back into Topaz
with the input command. To send this information to a file, use the toFile:
keyword. For example:

topaz 1> fileout class: Object toFile: object.gs

If you specify a host environment name such as $HOME/foo.bar as the output
file, Topaz expands that name to the full filename. If the output file does not
include an explicit path specification, Topaz writes to the named file in the
directory where you started Topaz.

fileout class: [aClassName]
Writes out the class definition and all the method categories and their
methods. To write out the definition of the current class, type:

topaz 1> fileout class: ^

If you omit the class name parameter, the current class is written out.

The class that you file out becomes the current class for subsequent Topaz
commands.

fileout category: aCategoryName
Writes out all the methods contained in the named category for the current
class.

fileout classcategory: aCategoryName
Writes out all the class methods contained in the named category for the
current class.

fileout classmethod: aSelector
Writes out the specified class method (as defined for the current class). The
category of that method will automatically be selected as the current category.

fileout method: aSelector
Writes out the specified method (as defined for the current class). The category
of that method will automatically be selected as the current category.

fileout aSelector
Writes out the specified method (as defined for the current class). You may use
this form of the fileout command (that is, you may omit the method: keyword)
only if the selector that you specify does not conflict with one of the other
fileout keywords. For example, to file out a method named category:, you
would need to explicitly include the method: keyword as shown here.

topaz 1> fileout method: category:
84 GemStone Systems, Inc. September 2009

Command Dictionary
FRAME [anInteger]
Moves the scope to the context specified by anInteger, within the currently active
call stack, and displays the activation selected as a result. The display includes
parameters and temporaries.

If no argument is supplied, displays the current active context.

See also stack scope on page page 130, the up command on page 140 and the
down command on page 73.

For example,

topaz 1> stk
==> 1 System class >> signal:args:signalDictionary: @8 line 15
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
5 SmallInteger >> / @4 line 6
6 Executed Code @2 line 1
topaz 1> frame 5
5 SmallInteger >> / @4 line 6
 receiver 4
 aNumber 0
topaz 1> stk
1 System class >> signal:args:signalDictionary: @8 line 15
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
==> 5 SmallInteger >> / @4 line 6
6 Executed Code @2 line 1
topaz 1>
September 2009 GemStone Systems, Inc. 85

Topaz Programming Environment
GCITRACE aFileName
Turns GCI tracing on. Subsequent GCI calls are logged to the file aFileName. If
aFileName is '' (empty string), then turns GCI tracing off.
86 GemStone Systems, Inc. September 2009

Command Dictionary
HELP [aTopicName]
Invokes a hierarchically-organized help facility that can provide information
about all Topaz commands. Enter ? at a help prompt for a list of topics available at
that level of the hierarchy. Help topics can be abbreviated to uniqueness.

To display help text for fileout:

topaz 1> help fileout

To display help text for last:

topaz 1> help edit last

Press Return at a help prompt to go up a level in the hierarchy until you exit the
help facility.
September 2009 GemStone Systems, Inc. 87

Topaz Programming Environment
IFERR bufferNumber [aTopazCommandLine]
The iferr command works whenever an error is reported and the ErrorCount
variable is incremented.

This command saves aTopazCommandLine in the post-error buffer specified by
bufferNumber as an unparsed Topaz command line. There are 10 buffers;
bufferNumber must be a number between 1 and 10, inclusive.

The post-error buffer commands apply under any of the following conditions:

 • an error occurs (other than one matching an expecterror command and
other than one during parsing of the iferr command)

 • a result fails to match an expectvalue command

 • a result matches an expectbug command

Whenever any of these conditions arise, any non-empty post-error buffers are
executed. Execution starts with buffer 1, and proceeds to buffer 10, executing each
non-empty post-error buffer in order.

If an error occurs while executing one of post-error buffers, execution proceeds to
the next non-empty post-error buffer. Error and result checking implied by
display resultcheck, display errorcheck, expectvalue, etc., are not
performed while executing from post-error buffers.

If a post-error buffer contains a command that would terminate the topaz process,
then later buffers will have no effect. If a post-error buffer contains a command
that would terminate the session, execution later buffers will be attempted but
they will not have a session, unless one of the contains “login”.

To remove the contents of a specific post-error buffer, enter iferr bufferNumber
without a final argument. The command iferr_clear will clear all buffers.

The iferr_list command will display the contents of all post-error buffers.

The following example uses expecterror to test for an error returned by the
printit command. If Topaz finds one, it displays the active call stack for
debugging. That behavior is specified by making the Topaz stack command an
argument on the iferr command line.

topaz 1> iferr 1 stack
topaz 1> expecterror GemStoneError 2109
topaz 1> printit
...
%

88 GemStone Systems, Inc. September 2009

Command Dictionary
IFERR_CLEAR
The iferr_clear command clears all the post-error command buffers.

For details on the post-error command buffers, see the iferr command on
page 88.
September 2009 GemStone Systems, Inc. 89

Topaz Programming Environment
IFERR_LIST
The iferr_list command prints all the non-empty post-error command
buffers.

For details on the post-error command buffers, see the iferr command on
page 88.
90 GemStone Systems, Inc. September 2009

Command Dictionary
IFERROR [aTopazCommandLine]
The iferror command saves aTopazCommandLine to the post-error command
buffer 1, or when used without an argument, clearing buffer 1.

The command:

topaz 1> iferror stack

has the same effect as:

topaz 1> iferr 1 stack

For details iferr and the post-error command buffers, see page 88.
September 2009 GemStone Systems, Inc. 91

Topaz Programming Environment
INPUT [aFileName | POP]
Controls the source from which Topaz reads input. Normally Topaz reads input
from standard input (stdin). This command causes Topaz to take input from a file
or device of your choice.

If you specify a host environment name such as $HOME/foo.bar as the input file,
Topaz expands that name to the full filename.

If you don’t provide an explicit path specification, Topaz looks for the named input
file in the directory where you started Topaz.

input aFileName
Reads input from the specified file. This pushes the current input file onto a
stack and starts Topaz reading from the given file. There is a limit of 20 nested
input aFileName commands. If you exceed the limit, an error is displayed,
and execution continues in the current file.

input pop
Pops the current input file from the stack of input files and resumes reading
from the previous file. If there is no previous file, or the previous file cannot be
reopened, Topaz once again takes its input from standard input.
92 GemStone Systems, Inc. September 2009

Command Dictionary
LEVEL anIntegerLevel
Sets the Topaz display level; that is, this command tells Topaz how much
information to include in the result display. A level of 1 (the default) means that
the first level of instance variables within a result object will be displayed.
Similarly, a level of 2 means that the variables within those variables will be
displayed. Setting the level to 0 inhibits the display of objects (though object
headers will still be displayed if you specify display oops). The maximum display
level is 32767.
September 2009 GemStone Systems, Inc. 93

Topaz Programming Environment
LIMIT [BYTES | OOPS] anInteger
Tells Topaz how much of any individual object to display in GemStone Smalltalk
results. For example, a limit of 80 would tell Topaz to display no more than 80
bytes (or oops) of any individual object. Setting a limit of 0 tells Topaz not to limit
the size of the output. By default, Topaz attempts to display all of an object, no
matter how long.

limit anInteger

limit bytes anInteger
Tells Topaz how much of any byte object (instance of String or one of String’s
subclasses) to display in GemStone Smalltalk results.

limit oops anInteger
Tells Topaz how much of any pointer or nonsequenceable collection to display
in GemStone Smalltalk results.
94 GemStone Systems, Inc. September 2009

Command Dictionary
LIST
The list command is used in conjunction with the set and edit commands to
browse through dictionaries, classes, and methods in the repository. The list
command is also useful in debugging.

Browsing Dictionaries and Classes
list dictionaries

Lists the SymbolDictionaries in your GemStone symbol list. This executes the
GemStone Smalltalk method UserProfile>>dictionaryNames.

list classesIn: aDictionary
Lists the classes in aDictionary. For example,

topaz 1> list classesIn: UserGlobals

lists all of the classes in your UserGlobals dictionary.

list classes
Lists all of the classes in all of the dictionaries in your symbol list.

list categoriesin: [aClass]
Lists all of the instance and class method selectors for class aClass, by category,
and establishes aClass as the current class for further browsing.

If you omit the class name parameter, method selectors are listed by category
for the current class.

Listing Methods
list aSelector

list method: aSelector
Lists the source code of the specified instance method for the current class.

For any method whose selector is the same as, or is some subset of, one of the
list subcommands (for example, a method with the selector steps) you must
explicitly include the method: keyword. For example:

topaz 1> list method: steps (not list steps)

list classmethod: aSelector
Lists the category and the source code of the specified class method for the
current class.
September 2009 GemStone Systems, Inc. 95

Topaz Programming Environment
list
Lists the source code of the active method context. See Chapter 2, “Debugging
Your GemStone Smalltalk Code.

Listing Step Points
list steps

Lists the source code of the active method context, and displays step points in
that source code.

list steps method: aSelector
Lists the source code of the specified instance method for the current class, and
displays all step points (allowable breakpoints) in that method. For example:

topaz 1> set class String
topaz 1> list steps method: includesValue:
 includesValue: aCharacter
 * ^1 *******

 "Returns true if the receiver contains aCharacter, false
 otherwise. The search is case-sensitive."

 <primitive: 94>

 aCharacter _validateClass: AbstractCharacter .
 * ^2 *******
 ^ self includesValue: aCharacter asCharacter .
 * ^5 ^4 ^3 *******

You can use the break command to set method breakpoints before
assignments, message sends, or method returns. As shown here, the position
of each method step point is marked with a caret and a number. Each line of
step point information is indicated by asterisks (*).

For more information about method step points, see Chapter 2, “Debugging
Your GemStone Smalltalk Code.

list steps classmethod: aSelector
Lists the source code of the specified class method for the current class, and
displays all step points in that method.
96 GemStone Systems, Inc. September 2009

Command Dictionary
Listing Breakpoints
You can use the break list command to list all currently set breakpoints. For more
information about using breakpoints, see Chapter 2, “Debugging Your GemStone
Smalltalk Code”.

list breaks
Lists the source code of the active method context, and displays the step points
for the method breakpoints currently set in that method. Disabled breakpoints
are displayed with negative step point numbers.

list breaks method: aSelector
Lists the source code of the specified instance method for the current class, and
displays the method breakpoints currently set in that method. For example:

topaz 1> list breaks method: <
 < aCharCollection

 "Returns true if the receiver collates before the
 argument. Returns false otherwise.

 The comparison is case-insensitive unless the receiver
 and argument are equal ignoring case, in which case
 upper case letters collate before lower case letters.
 The default behavior for SortedCollections and for
 the sortAscending method in UnorderedCollection is
 consistent with this method, and collates as follows:

 #(‘c’ ‘MM’ ‘Mm’ ‘mb’ ‘mM’ ‘mm’ ‘x’) asSortedCollection

 yields the following sort order:

 ‘c’ ‘mb’ ‘MM’ ‘Mm’ ‘mM’ ‘mm’ ‘x’
 “

 <primitive: 28>

 aCharCollection _validateClass: CharacterCollection .
 * ^2 *******
 ^ aCharCollection > self

list breaks classmethod: aSelector
Lists the source code of the specified class method for the current class, and
displays the method breakpoints currently set in that method.
September 2009 GemStone Systems, Inc. 97

Topaz Programming Environment
LOADUA aFileName
Loads the application user action library specified by aFileName. This command
must be used before login. This command can not be abbreviated.

User action libraries contained user-defined C functions to be called from
GemStone Smalltalk. See the GemBuilder for C manual for information about
dynamically loading user action libraries.
98 GemStone Systems, Inc. September 2009

Command Dictionary
LOGIN
Lets you log in to a GemStone repository. Before you attempt to log in to
GemStone, you’ll need to use the set command—either interactively or in your
Topaz initialization file—to establish certain required login parameters. The
required parameters for network communications are:

set gemnetid:
name of the GemStone service on the host computer (defaults to
gemnetobject for the RPC version (topaz command) or gcilnkobj for the
linked version (topaz -l command)

set gemstone:
name of the Stone (repository monitor) process, including node and protocol
information in the form of a network resource string, if necessary. Appendix B
describes network resource string syntax.

set username:
your GemStone user ID.

set password:
your GemStone password. If you do not specify a password (for security
reasons, for example), Topaz prompts you for it.

set hostusername:
your user account on the host computer. Required for the RPC version of
Topaz or for RPC sessions spawned by the linked version.

set hostpassword:
your password on the host computer. Required for the RPC version of Topaz
or for RPC sessions spawned by the linked version of Topaz. If you enter this
command without a password, Topaz prompts you for it.

Topaz allows you to run your Gem (GemStone session), Stone (repository
monitor), and Topaz processes on separate network nodes. For more information
about this, see the discussion of set gemnetid and set gemstone.

If you are using linked Topaz (topaz -l), also note the following:

 • If the gemnetid is set to anything other than '' (null) or gcilinkobj, Topaz
starts an RPC session instead of a linked one.

 • Topaz can only be linked with a single GemStone session process. If you issue
the login command to create multiple sessions, the new sessions are RPC
rather than linked.
September 2009 GemStone Systems, Inc. 99

Topaz Programming Environment
 • You cannot use the set command to run Gem and Topaz on separate nodes for
the linked session. However, you may still run the Stone process on a separate
node. For any RPC sessions started from the linked version, you may run the
Gems on separate nodes from Topaz.

For more information about logging in to GemStone, see the description of set on
page 121. Also see the section of Chapter 1 entitled “Logging In to GemStone.”
100 GemStone Systems, Inc. September 2009

Command Dictionary
LOGOUT
Logs out the current GemStone session. This command aborts your current
transaction. Your local variables (created with the define command) will no longer
have valid definitions when you log in again.

Although you can abbreviate most other Topaz commands and parameter names,
logout must be typed in full.
September 2009 GemStone Systems, Inc. 101

Topaz Programming Environment
LOOKUP
The lookup command is used in conjunction with the set command to search
upwards through the heirarchy of superclasses to locate the implementation of a
given method.

Finding and Listing Methods
lookup classmethod aSelector

Lists the source code of the specified class method for the current class, or
searching the superclasses, the first superclass that implements this method.

lookup method aSelector
Lists the source code of the specified instance method for the current class, or
searching the superclasses, the first superclass that implements this method.

topaz 1> set class Symbol
topaz 1> lookup method match:

category: 'Comparing'
method: CharacterCollection
match: prefix

"Returns true if the argument prefix is a prefix of the
 receiver, and false if not. The comparison is
 case-sensitive."

self size == 0 ifTrue: [^ prefix size == 0].
^ self at: 1 equals: prefix
% [GsMethod objId 2198273]
topaz 1>
102 GemStone Systems, Inc. September 2009

Command Dictionary
METHOD[: aClassName]
Compiles an instance method for the class whose name is given as a parameter.
The class of the method you compile will automatically be selected as the current
class. If you don’t supply a class name, the method is compiled for the current
class, as defined by the most recent set class:, list categoriesin:, method:,
classmethod:, removeallmethods:, removeallclassmethods:, or fileout class:
command.

Text of the method should follow this command on subsequent lines. The method
text is terminated by the first line that contains a % character in column 1. For
example:

topaz 1> method: Animal
habitat
 ^habitat
%

Topaz sends the method’s text to GemStone for compilation and inclusion in the
current category of the specified class. If you haven’t yet selected a current
category, the new method is inserted in the default category, “as yet
unspecified.”
September 2009 GemStone Systems, Inc. 103

Topaz Programming Environment
NBRUN
Similar to printit, but execution is nonblocking, so the application can proceed
with non-GemStone tasks while the expression is executed. To get the results of the
execution, see nbresult.

The text of this command is not accessible from edit last.

Should not be immediately preceded by expect commands, since this command
has no result. May be followed by a set session and another nbrun to start an
execution in another session.

This command is the equivalent of calling the GemBuilder for C function
GciNbExecute.
104 GemStone Systems, Inc. September 2009

Command Dictionary
NBRESULT
Wait for and display the result of a previous nbrun call. This call must be preceded
by a set session to switch to the session of an outstanding nbrun. May be
immediately preceded by expectvalue or expectbug, provided that the expect
commands contain only Integers or numerically coded OOPS (i.e. @NNN), so that
no GemStone code is executed before the nbresult.

If the nbrun has compilation errors, those will be displayed by the nbresult. If
there is no outstanding nbrun for the session the result is:

 [Oop: 0 Object Does Not Exist]

This command is the equivalent of calling the GemBuilder for C function
GciNbEnd.
September 2009 GemStone Systems, Inc. 105

Topaz Programming Environment
OBJECT anObjectSpec [AT: anIndex [PUT: anObjectSpec]]
Provides structural access to GemStone objects, allowing you to peek and poke at
objects without sending messages. The first anObjectSpec argument is an object
specification in one of the Topaz object specification formats. All formats described
in “Specifying Objects” on page 41 are legal in object commands.

You can use local variables (created with the define command) in object
commands. The local definition of a symbol always overrides any definition of the
symbol in GemStone. For example, if you defined the local variable thirdvar,
and your UserGlobals dictionary also defined a GemStone symbol named
thirdvar, the definition of that GemStone symbol would be ignored in object
commands.

object anObjectSpec at:anIndex
Returns the value of an instance variable within the designated object at the
specified integer offset. You can string together at: parameters after object to
descend as far as you like into the object of interest.

As far as object at: is concerned, named and indexed instance variables are
both numbered, and indexed instance variables follow named instance
variables when an object has both. That is, if an indexable object also had three
named instance variables, the first indexed field would be addressed with
object theIdxObj at:4.

Nonsequenceable collections are also considered indexable via object at:.

object anObjectSpec at: anIndex put: anotherObjectSpec
Lets you store values into instance variables. This command stores the second
anObjectSpec object into the first anObjectSpec object at the specified integer
offset.

You cannot store into an NSC with object at: put:, although you can scrutinize
its elements with object at:.

CAUTION
Because object at: put: bypasses all the protections built into the
GemStone Smalltalk kernel class protocol, you risk corrupting your
repository whenever you permanently modify objects with this
command.
106 GemStone Systems, Inc. September 2009

Command Dictionary
The following example shows how you could use object at: put: to store a new
String in MyAnimal’s habitat instance variable:

topaz 1> object MyAnimal at: 3 put: 'pond'
an Animal
 name nil
 favoriteFood nil
 habitat pond

Like object at:, the object at: put: command can take a long sequence of
parameters. For example:

topaz 1> object MyAnimal at: 3 at: 1 put: $l
liver

This example stores the character “l” into the first instance variable of MyAnimal’s
third instance variable.

With this command you can store Characters or SmallIntegers in the range from
0—255 (inclusive) into a byte object. You can also store other byte objects such as
Strings. For example:

topaz 1> object 'this' at: 5 put: ' and that'
this and that

The object at: put: command behaves differently for objects with byte-array and
pointer-array implementations. You may store the following kinds of objects into
byte-array type objects:

Character. This stores the character ‘9’:

topaz 1> object '123' at: 1 put: $9

SmallInteger. This stores a byte with the value 48:

topaz 1> object '123' at: 1 put: 48

Byte arrays. This stores ’b’ and ’c’ at offsets 2 and 3:

topaz 1> object '1234' at: 2 put: 'bc'
September 2009 GemStone Systems, Inc. 107

Topaz Programming Environment
OMIT aDisplayFeature
The display and omit commands control the display of instance variable names,
hexadecimal byte values, and OOPs (object-oriented pointers). The omit command
turns off these display attributes, and the display command turns them on.

omit oops
Do not display OOP values with displayed results. (This is the default
condition.)

omit bytes
When displaying string objects, do not include the hexadecimal value of each
byte. (This is the default condition.)

omit errorcheck
Disables automatic result recording, stopping the effect of display
errorcheck. Closes the ./topazerrors.log file.

omit names
For each of an object’s named instance variables, do not display the instance
variable’s name along with its value. When you have issued omit names,
named instance variables appear as i1, i2, i3, etc.

omit resultCheck
Disables automatic result checking, stopping the effect of display
resultCheck. Closes the ./topazerrors.log file and stops checking the
results of successful printit commands. You can still check the result of an
individual printit command by entering an expectvalue command just before
it.

omit pauseonerror
Disables pauses in Topaz execution after errors, stopping the effect of
display pauseonerror. When pause-on-error mode is turned off, the
status command output includes:

omit interactive pause on errors
108 GemStone Systems, Inc. September 2009

Command Dictionary
OPAL
Included for compatibility with previous versions. See the doit command on
page 72.
September 2009 GemStone Systems, Inc. 109

Topaz Programming Environment
OUTPUT (PUSH | APPEND | PUSHNEW | POP)
aFileName [ONLY]

Controls where Topaz output is sent. Normally Topaz sends output to standard
output (stdout). This command redirects all Topaz output to a file (or device) of
your choice.

If you specify a host environment name such as $HOME/foo.bar as the output
file, Topaz expands that name to the full filename. If you don’t provide an explicit
path specification, Topaz output is sent to the named file in the directory where
you started Topaz.

As the command names push and pop imply, Topaz can maintain a stack of up to
20 output files, with current interactions captured in the file on top of the stack.

output aFileName

output push aFileName
Sends output to the specified file. If the file you name doesn’t yet exist, Topaz
will create it. If you name an existing file, Topaz overwrites it.

To append output to an existing file, precede the file name with an ampersand
(&).

Although you can abbreviate most other Topaz commands and parameter
names, push must be typed in full.

output append aFileName
Sends output to the specified file. If the file you name doesn’t yet exist, Topaz
will create it. If you name an existing file, Topaz will append to it. This
behavior is the same as output push &aFileName.

Although you can abbreviate most other Topaz commands and parameter
names, append must be typed in full.

output pushnew aFileName
Sends output to the specified file. If the file you name doesn’t exist, Topaz will
create it. If you name an existing file, Topaz will create a new file. For a
filenames of the form foo.out, the new filename will be foo_N.out, where
where N is some integer between 1 and 100 (inclusive), and where foo_N.out
did not previously exist. If more than 100 versions of the file exist, the oldest
version will be overwritten.

Although you can abbreviate most other Topaz commands and parameter
names, pushnew must be typed in full.
110 GemStone Systems, Inc. September 2009

Command Dictionary
output aFileName only

output push aFileName only

output append aFileName only

output pushnew aFileName only
Sends output to the specified file, but does not echo that output to standard
output (usually, your screen).

output pop
Stops output to the current output file (that is, the file most recently named in
an output push command). The file is closed, and output is again sent to the
previously named output file. If there is no previous output file, an error
message is issued and the I/O stacks are reset.

Although you can abbreviate most other Topaz commands and parameter
names, pop must be typed in full.
September 2009 GemStone Systems, Inc. 111

Topaz Programming Environment
PRINTIT
Sends the text following the printit command to GemStone for execution as
GemStone Smalltalk code, and displays the result. If there is an error in your code,
Topaz displays an error message instead of a legitimate result. GemStone
Smalltalk text is terminated by the first line that contains a % in column 1. For
example:

topaz 1> printit
2 + 2
%
4

Executing GemStone Smalltalk Host File Access Methods

If you use this command to execute a GemStone Smalltalk host file access method,
and you do not supply an explicit path specification as part of the method
argument, the default directory for the GemStone Smalltalk method depends on
the version of the Topaz that you are running. With linked Topaz, the default
directory is the directory in which Topaz was started. With the RPC version, the
default directory is the $HOME directory of the hostuser account.
112 GemStone Systems, Inc. September 2009

Command Dictionary
PROTECTMETHODS
After this command, all subsequent method compilations during the current
session must contain either a <protected> or <unprotected> directive.

Used for consistency checking in filein scripts.
September 2009 GemStone Systems, Inc. 113

Topaz Programming Environment
QUIT [anInteger]
Leaves Topaz, returning to the operating system. If you are still logged in to
GemStone when you type quit, this aborts your transactions and logs out all active
sessions. Although you can abbreviate most other Topaz commands and
parameter names, quit must be typed in full.

An optional integer argument allows you to indicate an error status. A zero (0)
indicates successful status; other integers indicate an error and will result in a
return code of three (3).
114 GemStone Systems, Inc. September 2009

Command Dictionary
RELEASEALL
Empty topaz's internal buffer of object identifiers (the export set). Objects are
placed in the export set as a result of object creation and certain other object
operations. releaseall is performed automatically prior to each run, doit, printit,
or send.

For more information, see the GemStone/S 64 Bit GemBuilder for C manual. This is
equivalent to the GemBuilder for C call GciReleaseOops.
September 2009 GemStone Systems, Inc. 115

Topaz Programming Environment
REMARK commentText
Begins a remark (comment) line. Topaz ignores all succeeding characters on the
line. You can also use an exclamation point (!) in column 1 of a line to signal the
beginning of a comment. Comments are often useful in annotating Topaz batch
processing files, such as test scripts.
116 GemStone Systems, Inc. September 2009

Command Dictionary
REMOVEALLMETHODS[: aClassName]
Removes all instance methods from the class whose name you give as a parameter.
The specified class automatically becomes the current class.

If you don’t supply a class name, the methods are removed from the current class,
as defined by the most recent set class:, list categoriesin:, method:, or fileout class:
command.

Although you can abbreviate most other Topaz commands and parameter names,
removeallmethods: must be typed in full.
September 2009 GemStone Systems, Inc. 117

Topaz Programming Environment
REMOVEALLCLASSMETHODS[: aClassName]
Removes all class methods from the class whose name you give as a parameter.
The specified class automatically becomes the current class.

If you don’t supply a class name, the methods are removed from the current class,
as defined by the most recent set class:, list categoriesin:, method:, or
classmethod: command.

Although you can abbreviate most other Topaz commands and parameter names,
removeallclassmethods: must be typed in full.
118 GemStone Systems, Inc. September 2009

Command Dictionary
RUN
Included for compatibility with previous versions. See the printit command on
page 112.
September 2009 GemStone Systems, Inc. 119

Topaz Programming Environment
SEND anObjectSpec aMessage
Sends a message to an object.

The send command’s first argument is an object specification identifying a
receiver. The object specification is followed by a message expression built almost
as it would be in GemStone Smalltalk, by mixing the keywords and arguments. For
example:

topaz 1> level 0
topaz 1> send System myUserProfile
a UserProfile
topaz 1> send 1 + 2
3
topaz 1> send @10443 deleteEntry: @33234

There are some differences between send syntax and GemStone Smalltalk
expression syntax. Only one message send can be performed at a time with send.
Cascaded messages and parenthetical messages are not recognized by this
command. Also, each item must be delimited by one or more spaces or tabs.

All Topaz object specification formats (as described in “Specifying Objects” on
page 41) are legal in send commands.
120 GemStone Systems, Inc. September 2009

Command Dictionary
SET aTopazParameter [aParamValue]
The set command allows you to select a class and category to work with in
examining, modifying, and creating classes with the list and edit commands.
You’ll also use set in establishing your GemStone login parameters.

You can combine two or more set items on one command line, and you can
abbreviate token names to uniqueness. For example:

topaz 1> set gemstone gs64stone user DataCurator

set cachename: aString
This option is valid for linked sessions only, not for RPC sessions.

Sets the name that will be used for this session in cache statistics collected by
statmonitor. Setting the name prior to login allows statistics to be collected and
displayed under a single meaningful name, rather than being split between the
intial default name and a later meaningful name assigned using System
class >> _cacheName:.

set category: aCategory
Sets the current category, the category for subsequent method compilations.
You must be logged in to use this command. If you try to compile a method
without first selecting a category, the new method is inserted in the default
category “as yet unspecified.” The set category: command has the same
effect as the category: command.

If the category you name doesn’t already exist, Topaz will create it when you
first compile a method.

Specifying a new class with set class does not change your category. However,
when you edit or fileout a method, that method’s category becomes the
current category.

The current category is cleared by the logout, login, and set session
commands.

set class: aClassName
Sets the current class. You must be logged in to use this command. After
setting the current class, you can list its categories and methods with the list
categories command. You can select a category to work with through either
the set category: or category: command.

The current class may also be redefined by the list categoriesin:, method:,
classmethod:, removeallmethods:, removeallclassmethods:, and fileout
class: commands.
September 2009 GemStone Systems, Inc. 121

Topaz Programming Environment
 The current class is cleared by the logout, login, and set session commands.

set editorname: aHostEditorName
Sets the name of the editor you want to use in conjunction with the edit
command. For example:

topaz 1> set editorname: vi

The default is set from your $EDITOR environment variable, if it is defined.

set gemnetid: aServiceName
aServiceName is a network resource string specifying the name of the
GemStone service (that is, the host process to which your Topaz session will
be connected) and its host computer.

For the RPC version of Topaz the default gemnetid parameter is
gemnetobject, which is the GemStone service name in most GemStone
installations. However, if you use the UNIX C shell (/bin/csh) on the given
Gem network node, specify the GemStone service name gemnetobjcsh
instead of gemnetobject.

For a linked Topaz session, the default is gcilnkobj. Before you log in, use
the status command to make sure that this parameter is gcilnkobj or '' (null).
This causes topaz -l to make the first session a linked session. If gemnetid is
set to anything else, topaz -l starts RPC sessions. In this case, the prompt for
the first session is topaz 2>, because topaz 1> is reserved for a linked
session. After you start the RPC session you can still start a linked session by
resetting the gemnetid to nil:

set gemnetid: ''

or to gcilnkobj. Once you have a linked session, any additional sessions are
RPC, regardless of the gemnetid setting.

You can run your GemStone session (Gem), repository monitor (Stone)
process, and your Topaz processes on separate nodes in your network. The
one exception is the linked Topaz session, when Topaz and the Gem run as a
single process. Network resource strings allow you to designate the nodes on
which the Gem and Stone processes run. For example, a Gem process called
gemnetobject on node lichen could be described in network resource string
syntax as:

!tcp@lichen!gemnetobject

To specify a Gem running on the current node, omit the protocol@node portion
of the string, and specify only the Gem name: gemnetobject. Appendix B
describes network resource string syntax.
122 GemStone Systems, Inc. September 2009

Command Dictionary
set gemstone: aGemStoneName
Specifies the name of the GemStone you want to log in to. The standard name
is gs64stone; if this doesn’t work for you, see your GemStone data curator.

You can run your GemStone session (Gem), repository monitor (Stone)
process, and your Topaz processes on separate nodes in your network. The
one exception is the linked Topaz session, when Topaz and the Gem run as a
single process. Network resource strings allow you to designate the nodes on
which the Gem and Stone processes run. For example, a Stone process called
gs64stone on node lichen could be described in network resource string
syntax as:

!tcp@lichen!gs64stone

To specify a Stone running on the same node as the Gem, omit the
protocol@node portion of the string, and specify only the Stone name:
gs64stone. Appendix B describes network resource string syntax.

set hostpassword: aPassword
Sets the host password to be used when you next log in. If you don’t include
the password on the command line, Topaz prompts you for it. Prompted input
taken from the terminal is not echoed. This lets you put a set hostpassword:
command in your Topaz initialization file so that Topaz automatically
prompts you for your password. Note, however, that this command must
follow the set hostusername: command.

With TCP/IP, if you do not explicitly supply a host username and password,
Topaz will try to find a username for the designated node in a file in your
home directory. See the following discussion of set hostusername.

For a linked Topaz session, set hostpassword has no effect, because no
separate Gem process is created on the host computer. The password is
required, however, if you spawn new sessions while you are running linked
Topaz, because the additional sessions are always RPC Topaz.

set hostusername: aUsername
Sets the account name you use when you log in to the host computer. When
you run Topaz, a Gem (GemStone session) process is started on the host
computer specified by the set gemnetid: command. The set hostusername:
command tells Topaz which account you want that process to run under.

With TCP/IP, if you do not explicitly supply a host username and password,
Topaz tries to find a username and password for the designated node in a
September 2009 GemStone Systems, Inc. 123

Topaz Programming Environment
network initialization file in your home directory. Under UNIX, that file is
$HOME/.netrc and should contain lines of the form

machine aNode login aUsername password aPassword

For example, $HOME/.netrc under UNIX:

machine alf login joebob password mypassword

Because the network initialization file contains your password, you should
ensure that others — group or world — do not have authorization to read it.

To clear the hostusername field, enter:

topaz 1> set hostusername *

For a linked Topaz session, set hostusername has no effect. (No separate Gem
process is created on the host computer.) It is required, however, if you spawn
new sessions while you are running linked Topaz, because the additional
sessions are always RPC Topaz.

set nrsdefaults: aNRSheader
Sets the default components to be used in network resource string
specifications. The parameter aNRSheader is a network resource string header
that may specify any NRS modifiers’ default values. The initial value of
nrsdefaults is the value of the GEMSTONE_NRS_ALL environment variable.
The Topaz status command shows the value of nrsdefaults unless it is the
empty string.

set password: aGemStonePassword
Sets the GemStone password to be used when you next log in. If you don’t
include the password on the command line, Topaz prompts you for it.
Prompted input is taken from the terminal and not echoed. This lets you put a
set password: command in your Topaz initialization file so that Topaz will
automatically prompt you for your password. Note, however, that this
command must follow the set username: command.

set session: aSessionNumber
Connects Topaz to the session whose ID is aSessionNumber. When you log in to
GemStone, Topaz displays the session ID number for that connection. This
command allows you to switch among multiple sessions. (The Topaz prompt
always shows the number of the current session.)

If you specify an invalid session number, an error message is displayed, and
the current session is retained.
124 GemStone Systems, Inc. September 2009

Command Dictionary
This command clears the current class and category. After you switch sessions
with set session, your local variables (created with the define command) no
longer have valid definitions.

set sourcestringclass: aClass
Sets the class used to instantiate Smalltalk source strings generated by the run,
edit, method, and classmethod commands. For example:

set sourcestringclass String
set sourcestringclass DoubleByteString
set sourcestringclass IsoLatin

The Topaz status command shows the current source class. The default source
class is String. The set session command resets the source string class to the
default.

set username: aGemStoneUsername
Establishes a GemStone user ID for the next login attempt. Your GemStone
data curator can tell you your user name.
September 2009 GemStone Systems, Inc. 125

Topaz Programming Environment
SHELL [aHostCommand]
When issued with no parameters, this command creates a child process in the host
operating system, leaving you at the operating system prompt. To get back into
Topaz, exit the command shell by typing Control-D (from the UNIX Bourne or
Korn shells), typing logout (from the UNIX C shell), or typing exit (from a DOS
shell).

If you supply parameters on the shell command line, they pass to a subprocess as
a command for execution. For example:

topaz 1> shell ls -l /user1/janec.topaz
total 4
-rw-r--r-- 1 janec 196 Jul 1 22:31 animal.gs
-rw-r--r-- 1 janec 139 Jul 1 22:31 animaltest.log
-rw-r--r-- 1 janec 287 Jul 1 22:31 mathtest.log
-rw-r--r-- 1 janec 110 Jul 1 22:32 mathtest2.log
topaz 1>

On UNIX systems, a shell command issued without parameters creates a shell of
whatever type is customary for the user account (C, Bourne, or Korn). When issued
with parameters, shell always creates a shell of the system default type (either
Bourne or Korn).
126 GemStone Systems, Inc. September 2009

Command Dictionary
SPAWN [aHostCommand]
Included for compatibility with previous versions. See the shell command on
page 126.
September 2009 GemStone Systems, Inc. 127

Topaz Programming Environment
STACK [aSubCommand]
Topaz can maintain up to eight simultaneous GemStone Smalltalk call stacks that
provide information about the GemStone state of execution. Each call stack
consists of a linked list of contexts.

The call stack becomes active, and the stack command becomes accessible, when
you execute GemStone Smalltalk code containing a breakpoint. The stack
command allows you to display the contexts in the active call stack; redefine the
active context for debugging commands within the active call stack; reset whether
the active call stack is automatically saved before certain Topaz execution
commands are performed; display the top context of each saved call stacks;
redefine the active call stack; or remove one or all call stacks.

Display the Active Call Stack
stack

Displays all of the contexts in the active call stack, starting with the active
context. For each context in the stack display, the following items are
displayed:

 • the OOP of the GsMethod (if display oops is active)
 • the class of the receiver (and its OOP, if you have specified display oops)
 • the class of the GsMethod
 • selector of the method
 • its level number (as used in the stack scope command)
 • the current step point (that is, assignment, message send, or method

return) within the method (an integer, as in list steps)
 • parameters and temporaries for this context (including OOPs, if you have

specified display oops)

If any context in the display is a block, the display for that context begins with
SimpleBlock or ComplexBlock, as shown in the examples below.

The resulting display is governed by the setting of other Topaz commands
such as limit, level, and display or omit.

The active context resets to 1 whenever any of the following commands is
executed: printit, send, doit, step, edit last, or edit new text.

Here is an example of the stack display when display oops is active:
128 GemStone Systems, Inc. September 2009

Command Dictionary
topaz 1> run
#[1, 2] do:[:x | x / 0]
%

GemStone: Error Nonfatal
An attempt was made to divide 1 by zero.
Error Category: 231169 [GemStone] Number: 2026 Arg Count: 1 Context :
1968897
Arg 1: [10 sz:0 cls: 74241 SmallInteger] 1
topaz 1> lev 0
topaz 1> display oops
topaz 1> stack
1 System class >> signal:args:signalDictionary: @8 line 15
[GsMethod 35394817]
 receiver [76033 sz:19 cls: 1048065 System class] System
 anInteger [16210 sz:0 cls: 74241 SmallInteger] 2026
 anArray [1966593 sz:1 cls: 66817 Array] anArray
 anErrorDict [231169 sz:50 cls: 111361 SymbolDictionary]
aSymbolDictionary
 ex [20 sz:0 cls: 76289 UndefinedObject] nil
 _topOfStack [76033 sz:19 cls: 1048065 System class] System
2 Object >> _error:args: @7 line 10 [GsMethod 13990657]
 receiver [10 sz:0 cls: 74241 SmallInteger] 1
 errorSymbol [4250881 sz:23 cls: 110849 Symbol]
numErrIntDivisionByZero
 argList [233217 sz:0 cls: 66817 Array] anArray
 newArgList [1966593 sz:1 cls: 66817 Array] anArray
 errorNumber [16210 sz:0 cls: 74241 SmallInteger] 2026
3 Object >> _error: @2 line 5 [GsMethod 35717121]
 receiver [10 sz:0 cls: 74241 SmallInteger] 1
 errorSym [4250881 sz:23 cls: 110849 Symbol]
numErrIntDivisionByZero
4 Number >> _errorDivideByZero @1 line 5 [GsMethod 14009089]
 receiver [10 sz:0 cls: 74241 SmallInteger] 1
5 SmallInteger >> / @4 line 6 [GsMethod 35609345]
 receiver [10 sz:0 cls: 74241 SmallInteger] 1
 aNumber [2 sz:0 cls: 74241 SmallInteger] 0
6 SimpleBlock in Executed Code @3 line 1 [GsMethod 1954561]
 self [20 sz:0 cls: 76289 UndefinedObject] nil
 receiver [1953793 sz:9 cls: 84993 SimpleBlock] aSimpleBlock
 x [10 sz:0 cls: 74241 SmallInteger] 1
7 Collection >> do: @5 line 10 [GsMethod 20214273]
September 2009 GemStone Systems, Inc. 129

Topaz Programming Environment
 receiver [1949953 sz:2 cls: 66817 Array] anArray
 aBlock [1953793 sz:9 cls: 84993 SimpleBlock] aSimpleBlock
 i [10 sz:0 cls: 74241 SmallInteger] 1
 _temp1 [10 sz:0 cls: 74241 SmallInteger] 1
 _temp2 [18 sz:0 cls: 74241 SmallInteger] 2
 _temp3 [10 sz:0 cls: 74241 SmallInteger] 1
8 Executed Code @4 line 1 [GsMethod 1954561]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil

stack anInt
Displays contexts in the active call stack, starting with the active context. The
argument anInt indicates how much of the stack to display. For example, if
anInt is 1, this command shows only the active context. If anInt is 2, this
command also shows the caller of the active context, etc.

Display or Redefine the Active Context
stack scope

Displays the current scope, starting with the active context. For example:

topaz 1> stack scope
1 Behavior >> new @ 1

stack scope anInt
Redefines the active context within the active call stack and displays the new
context. The integer 1 represents the currently active context, while the integer
2 represents the caller of the active context.

stack up
Moves the current scope up one level toward the top of the stack and displays
the new context. This is equivalent to the command line:

stack scope <current scope + 1>

stack down
Moves the current scope down one level away from the top of the stack and
displays the new context. This is equivalent to the command line:

stack scope <current scope - 1>

stack trim
Trims the stack so that the current scope becomes the new top of the stack.
Execution resumes at the first instruction in the method at the new top of the
stack. If that method has been recompiled, stack trim installs the new version
130 GemStone Systems, Inc. September 2009

Command Dictionary
of the method. The new top of the stack must not represent the activation of an
ExecutableBlock.

Save or Delete the Active Call Stack During Execution
stack nosave

Causes your active call stack to be deleted before executing any of the
following commands: printit, send, doit, edit last, or edit new text.

This is the default condition.

stack save
Automatically saves the active call stack before executing any of the
commands listed for stack nosave (above).

Display All Call Stacks
stack all

Displays your list of saved call stacks. The list includes the top context of every
call stack (stack 1). For example:

topaz 1> stack all
*1 Behavior >> new @ 1
 2 Animal >> habitat @ 3
 3 Executed Code @ 2

The * indicates the active call stack, if one exists. If there are no saved stacks,
a message to that effect is displayed.

Redefine the Active Call Stack
stack change anInt

Sets the active call stack to the call stack indicated by anInt in the stack all
command output, and displays one frame of the newly selected call stack.
September 2009 GemStone Systems, Inc. 131

Topaz Programming Environment
Remove Call Stacks
stack delete aStackInt

Removes the call stack indicated by aStackInt in the stack all command output.

Topaz maintains up to eight simultaneous call stacks. If all eight call stacks are
in use, you must use this command to delete a call stack before issuing any of
the following commands: printit, send, doit, edit last, or edit new text.

stack delete all
Removes all call stacks.
132 GemStone Systems, Inc. September 2009

Command Dictionary
STATUS
Displays your current login settings and other information about your Topaz
session.

For example:

topaz 1> status
Current settings are:

display level: 1
omit oops
omit bytes
display instance variable names
omit automatic result checks
omit interactive pause on errors

EditorName________ gnumacs -nw
Connection Information:
UserName___________ 'Isaac Newton'
Password __________ (set)
HostUserName_______ 'newtoni'
HostPassword_______ (set)
GemStone___________ 'gs64stone'
GemNetId___________ 'gemnetobject'
GemStone
NRS__________'!#auth:newtoni@password#server!gs64stone'
browsing information:
Class_____________
Category__________ (as yet unclassified)
Source String Class__ String
September 2009 GemStone Systems, Inc. 133

Topaz Programming Environment
STEP (OVER | INTO)
Advances execution to the next step point (assignment, message send, or method
return) and halts. You can use the step command to continue execution of your
GemStone Smalltalk code after an error or breakpoint has been encountered. For
examples and other useful information, see Chapter 2, “Debugging Your
GemStone Smalltalk Code.”

step
Equivalent to step over.

step over
Advances execution to the next step point in the active context or its caller. The
active context is the top of the stack or the context specified by the last stack
scope, stack up, or stack down command.

step into
Advances execution to the next step point in your GemStone Smalltalk code.
134 GemStone Systems, Inc. September 2009

Command Dictionary
STK [aSubCommand]
Similar to stack, but does not display parameters and temporaries for each
context. All contexts for the active call stack are displayed, with the current active
context indicated by an arrow.

For more information on s, see the stack command on page 128.

topaz 1> run
#[1, 2] do:[:x | x / 0]
%

GemStone: Error Nonfatal
An attempt was made to divide 1 by zero.
Error Category: [GemStone] Number: 2026 Arg Count: 1
Arg 1: 1
topaz 1> stk
1 System class >> signal:args:signalDictionary: @8 line 15
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
5 SmallInteger >> / @4 line 6
6 SimpleBlock in Executed Code @3 line 1
7 Collection >> do: @5 line 10
8 Executed Code @4 line 1
topaz 1> up 4
5 SmallInteger >> / @4 line 6
 receiver 1
 aNumber 0
topaz 1> stk
1 System class >> signal:args:signalDictionary: @8 line 15
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
==> 5 SmallInteger >> / @4 line 6
6 SimpleBlock in Executed Code @3 line 1
7 Collection >> do: @5 line 10
8 Executed Code @4 line 1
September 2009 GemStone Systems, Inc. 135

Topaz Programming Environment
TEMPORARY [aTempName[/anInt] [anObjectSpec]]
Displays or redefines the value of one or more temporaries in the active context
previously specified by a stack or stack scope command. The stack 1 command
shows the currently active context. For examples and other useful information, see
Chapter 2, “Debugging Your GemStone Smalltalk Code.”

All Topaz object specification formats (as described in “Specifying Objects” on
page 41) are legal in temporary commands.

temporary
Displays the names and values of all temporary objects in the active context.

temporary aTempName
Displays the value of the first temporary object with the specified name in the
active context.

topaz 1> temporary preferences
preferences an Array

temporary aTempName anObjectSpec
Redefines the specified temporary in the active context to have the value
anObjectSpec.

temporary anInt
Displays the value of the temporary at offset n in the active context. Use this
form of the command to access a temporary with a duplicate name, because
temporary aTempName always displays the first temporary with the specified
name.

temporary anInt anObjectSpec
Redefines the temporary at offset n in the active context to have the value
anObjectSpec.
136 GemStone Systems, Inc. September 2009

Command Dictionary
Temporaries displayed as _temp# are un-named temporaries private to the
virtual machine, like the temporaries used in evaluation of the optimized to:do:,
shown in the example below.

topaz 1> run
| a |
1 to: 25 do:[:j | a := j . a pause]
%
Execution has been suspended by a "pause" message.
Topaz pausing after error, type <return> to continue, ctl-C
to quit ?
topaz 1> stack
1 Object >> pause @2 line 8 [GsMethod 35739393]
 receiver [10 sz:0 cls: 74241 SmallInteger] 1
2 Executed Code @3 line 2 [GsMethod 1328129]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil
 a [10 sz:0 cls: 74241 SmallInteger] 1
 j [10 sz:0 cls: 74241 SmallInteger] 1
 _temp1 [10 sz:0 cls: 74241 SmallInteger] 1
 _temp2 [202 sz:0 cls: 74241 SmallInteger] 25
 _temp3 [10 sz:0 cls: 74241 SmallInteger] 1
September 2009 GemStone Systems, Inc. 137

Topaz Programming Environment
TIME
Displays the current time from the system clock.
138 GemStone Systems, Inc. September 2009

Command Dictionary
UNPROTECTMETHODS
Cancels the effect of protectmethods, which is used for consistency checking in
filein scripts.
September 2009 GemStone Systems, Inc. 139

Topaz Programming Environment
UP [anInteger]
Moves the scope up within the currently selected call stack, and displays the
activation selected as a result. The optional argument anInteger specifies how many
activations to move up. If no argument is supplied, the scope will go up one
activation. See also stack up on page 130.

The context displayed includes parameters and temporaries for the context, unlike
the results displayed by stack up.

topaz 1> stk
1 System class >> signal:args:signalDictionary: @8 line 15
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
==> 4 Number >> _errorDivideByZero @1 line 5
5 SmallInteger >> / @4 line 6
6 Executed Code @2 line 1
topaz 1> up
5 SmallInteger >> / @4 line 6
 receiver 5
 aNumber 0
140 GemStone Systems, Inc. September 2009

Command Dictionary
WHERE [anInteger]
Displays the current call stack, with one line per activation. If no argument is
specified, all lines of the current call stack are displayed, equivalent to stk.

The argument anInteger, if provided, indicates how many contexts of the stack to
display, starting with the current active context.

topaz 1> where
1 System class >> signal:args:signalDictionary: @8 line 15
==> 2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
5 SmallInteger >> / @4 line 6
6 Executed Code @2 line 1
topaz 1> where 3
2 Object >> _error:args: @7 line 10
3 Object >> _error: @2 line 5
4 Number >> _errorDivideByZero @1 line 5
September 2009 GemStone Systems, Inc. 141

Topaz Programming Environment
142 GemStone Systems, Inc. September 2009

Appendix

A Topaz Command-Line
Syntax
When Topaz is invoked with the -l option, it initiates the program with a linked,
as opposed to a remote (RPC) session. Other command-line options give
additional control. This section presents the formal command syntax followed by
a complete list of command-line options.

A.1 Command-Line Syntax
By default the topaz command invokes an RPC executable. This is the same as
specifying the -r option on the topaz command line:

topaz [-r] [-n netLdiName] [-q] [-I topazini] [-i]
[-h]

When invoked with the -l option, Topaz runs in linked mode. The command line
accepts some additional options for the linked version:

topaz -l [-n netLdiName] [-e exeConfig] [-z systemConfig]
[-T tocSizeKB] [-q] [-I topazini] [-i] [-h]
September 2009 GemStone Systems, Inc. 143

Options Topaz Programming Environment
A.2 Options
Arguments are optional. Other than the -l option to specify linked topaz, these
arguments may not be needed for a standard GemStone configuration.

-l Invoke the linked version of Topaz. In this version, Topaz and Gem (the
GemStone session) exist as a single process, which significantly enhances
performance. The linked version can run only one linked session. Any
additional sessions are initiated as remote procedure call sessions. If you don’t
specify this parameter, the remote procedure call version of Topaz is invoked.

If subsequent login parameters set gemnetid to a version of gemnetobject,
topaz will login RPC rather than linked, regardless of the -l option.

-r Invoke the remote procedure call version of Topaz. In this version, Gems exist
as separate processes. If you intend to run multiple GemStone sessions
simultaneously, or if you will be running Topaz and your GemStone session
on separate nodes, then you must use this version. If you don’t specify -l or -r,
Topaz defaults to the remote procedure call version.

-n netLdiName
The name of the network server process. This may be specified as a GemStone
network resource specification. If you don’t explicitly specify this parameter,
Topaz will look for

(1) a name specified by the GEMSTONE_NRS_ALL environment variable

(2) a GemStone network server named gs64ldi

-e exeConfig
Executable-specific configuration file. If this argument is not present, the
Topaz command uses the customary GEMSTONE_EXE_CONF search
sequence described in the “Configuration Files” chapter of your GemStone/S 64
Bit System Administration Guide. Only applies to linked sessions.

-z systemConfig
System configuration file. If this argument is not present, the topaz command
uses the customary GEMSTONE_SYS_CONF search sequence described in the
“Configuration Files” chapter of your GemStone/S 64 Bit System Administration
Guide. Only applies to linked sessions.

-T tocSizeKB
Sets the GEM_TEMPOBJ_CACHE_SIZE that will be used. This overrides any
settings provided in configuration files passed as arguments with the -e or -z
options. Only applies to linked sessions.

-i Ignore the topaz startup file .topazini.
144 GemStone Systems, Inc. September 2009

Options
-I topazini
Specify a complete path and file to a topazini initialization files, and use this
rather then any .topazini in the default location.

-q Start Topaz in quiet mode, suppressing printout of the banner and other
information.

-h Print a usage line and exit.
September 2009 GemStone Systems, Inc. 145

Options Topaz Programming Environment
146 GemStone Systems, Inc. September 2009

Appendix

B Network Resource
String Syntax
This appendix describes the syntax for network resource strings. A network
resource string (NRS) provides a means for uniquely identifying a GemStone file
or process by specifying its location on the network, its type, and authorization
information. GemStone utilities use network resource strings to request services
from a NetLDI.

B.1 Overview
One common application of NRS strings is the specification of login parameters for
a remote process (RPC) GemStone application. An RPC login typically requires
you to specify a GemStone repository monitor and a Gem service on a remote
server, using NRS strings that include the remote server’s hostname. For example,
to log in from Topaz to a Stone process called “gs64stone” running on node
“handel”, you would specify two NRS strings:

topaz> set gemstone !@handel!gs64stone
topaz> set gemnetid !@handel!gemnetobject
September 2009 GemStone Systems, Inc. 147

Defaults Topaz Programming Environment
Many GemStone processes use network resource strings, so the strings show up in
places where command arguments are recorded, such as the GemStone log file.
Looking at log messages will show you the way an NRS works. For example:

Opening transaction log file for read,
filename = !tcp@oboe#dbf!/user1/gemstone/data/tranlog0.dbf

An NRS can contain spaces and special characters. On heterogeneous network
systems, you need to keep in mind that the various UNIX shells have their own
rules for interpreting these characters. If you have a problem getting a command
to work with an NRS as part of the command line, check the syntax of the NRS
recorded in the log file. It may be that the shell didn’t expand the string as you
expected.

NOTE
Before you begin using network resource strings, make sure you
understand the behavior of the software that will process the command.

See each operating system’s documentation for a full discussion of its own rules
about escaping certain characters in NRS strings that are entered at a command
prompt.

If there is a space in the NRS, you can replace the space with a colon (:), or you can
enclose the string in quotes (" "). For example, the following network resource
strings are equivalent:

% waitstone !tcp@oboe#auth:user@password!gs64stone
% waitstone "!tcp@oboe#auth user@password!gs64stone"

B.2 Defaults
The following items uniquely identify a network resource:

 • communications protocol— such as TCP/IP

 • destination node—the host that has the resource

 • authentication of the user—such as a system authorization code

 • resource type—such as server, database extent, or task

 • environment—such as a NetLDI, a directory, or the name of a log file

 • resource name—the name of the specific resource being requested.

A network resource string can include some or all of this information. In most
cases, you need not fill in all of the fields in a network resource string. The
148 GemStone Systems, Inc. September 2009

Notation
information required depends upon the nature of the utility being executed and
the task to be accomplished. Most GemStone utilities provide some context-
sensitive defaults. For example, the Topaz interface prefixes the name of a Stone
process with the #server resource identifier.

When a utility needs a value for which it does not have a built-in default, it relies
on the system-wide defaults described in the syntax productions in “Syntax” on
page 150. You can supply your own default values for NRS modifiers by defining
an environment variable named GEMSTONE_NRS_ALL in the form of the nrs-
header production described in the Syntax section. If GEMSTONE_NRS_ALL
defines a value for the desired field, that value is used in place of the system
default. (There can be no meaningful default value for “resource name.”)

A GemStone utility picks up the value of GEMSTONE_NRS_ALL as it is defined
when the utility is started. Subsequent changes to the environment variable are not
reflected in the behavior of an already-running utility.

When a client utility submits a request to a NetLDI, the utility uses its own defaults
and those gleaned from its environment to build the NRS. After the NRS is
submitted to it, the NetLDI then applies additional defaults if needed. Values
submitted by the client utility take precedence over those provided by the NetLDI.

B.3 Notation
Terminal symbols are printed in boldface. They appear in a network resource
string as written:

#server

Nonterminal symbols are printed in italics. They are defined in terms of terminal
symbols and other nonterminal symbols:

username ::= nrs-identifier

Items enclosed in square brackets are optional. When they appear, they can appear
only one time:

address-modifier ::= [protocol] [@ node]

Items enclosed in curly braces are also optional. When they appear, they can
appear more than once:

nrs-header ::= ! [address-modifier] {keyword-modifier} !

Parentheses and vertical bars denote multiple options. Any single item on the list
can be chosen:
September 2009 GemStone Systems, Inc. 149

Syntax Topaz Programming Environment
protocol ::= (tcp | serial | default)

B.4 Syntax
nrs ::= [nrs-header] nrs-body

where:

nrs-header ::= ! [address-modifier] {keyword-modifier} [resource-modifier]!
All modifiers are optional, and defaults apply if a modifier is omitted. The
value of an environment variable can be placed in an NRS by preceding the
name of the variable with “$”. If the name needs to be followed by
alphanumeric text, then it can be bracketed by “{” and “}”. If an environment
variable named foo exists, then either of the following will cause it to be
expanded: $foo or ${foo}. Environment variables are only expanded in the
nrs-header. The nrs-body is never parsed.

address-modifier ::= [protocol] [@ node]
Specifies where the network resource is.

protocol ::= (tcp | serial | default)
Supports heterogeneous connections by predicating address on a network
type. If no protocol is specified, GCI_NET_DEFAULT_PROTOCOL is used.
On UNIX hosts, this default is tcp.

node ::= nrs-identifier
If no node is specified, the current machine’s network node name is used. The
identifier may also be an Internet-style numeric address. For example:

!tcp@120.0.0.4#server!cornerstone

nrs-identifier ::= identifier
Identifiers are runs of characters; the special characters !, #, $, @, ^ and white
space (blank, tab, newline) must be preceded by a “^”. Identifiers are words in
the UNIX sense.

keyword-modifier ::= (authorization-modifier | environment-modifier)
Keyword modifiers may be given in any order. If a keyword modifier is
specified more than once, the latter replaces the former. If a keyword modifier
takes an argument, then the keyword may be separated from the argument by
a space or a colon.

authorization-modifier ::= ((#auth | #encrypted) [:] username [@ password])
#auth specifies a valid user on the target network. A valid password is needed
only if the resource type requires authentication. #encrypted is used by
150 GemStone Systems, Inc. September 2009

Syntax
GemStone utilities. If no authentication information is specified, the system
will try to get it from the .netrc file. This type of authorization is the default.

username ::= nrs-identifier
If no user name is specified, the default is the current user.
(See the earlier discussion of nrs-identifier.)

password ::= nrs-identifier
If no password is specified, the system will try to obtain it from the user’s
.netrc file. (See the earlier discussion of nrs-identifier.)

environment-modifier ::= (#netldi | #dir | #log) [:] nrs-identifier
#netldi causes the named NetLDI to be used to service the request. If no
NetLDI is specified, the default is gs64ldi. When you specify the #netldi
option, the nrs-identifier is either the name of a NetLDI service or the port
number at which a NetLDI is running.

#dir sets the default directory of the network resource. It has no effect if the
resource already exists. If a directory is not set, the pattern “%H” (defined
below) is used. (See the earlier discussion of nrs-identifier.)

#log sets the name of the log file of the network resource. It has no effect if the
resource already exists. If the log name is a relative path, it is relative to the
working directory. If a log name is not set, the pattern “%N%P%M.log”
(defined below) is used. (See the earlier discussion of nrs-identifier.)

The argument to #dir or #log can contain patterns that are expanded in the
context of the created resource. The following patterns are supported:

%H home directory
%M machine’s network node name
%N executable’s base name
%P process pid
%U user name
%% %

resource-modifier ::= (#server | #spawn | #task | #dbf | #monitor | #file)
Identifies the intended purpose of the string in the nrs-body. An NRS can
contain only one resource modifier. The default resource modifier is context
sensitive. For instance, if the system expects an NRS for a database file, then
the default is #dbf.

#server directs the NetLDI to search for the network address of a server, such
as a Stone or another NetLDI. If successful, it returns the address. The nrs-body
is a network server name. A successful lookup means only that the service has
been defined; it does not indicate whether the service is currently running. A
September 2009 GemStone Systems, Inc. 151

Syntax Topaz Programming Environment
new process will not be started. (Authorization is needed only if the NetLDI is
on a remote node and is running in secure mode.)

#task starts a new Gem. The nrs-body is a NetLDI service name (such as
“gemnetobject”), followed by arguments to the command line. The NetLDI
creates the named service by looking first for an entry in
$GEMSTONE/bin/services.dat, and then in the user’s home directory for
an executable having that name. The NetLDI returns the network address of
the service. (Authorization is needed to create a new process unless the
NetLDI is in guest mode.) The #task resource modifier is also used internally
to create page servers.

#dbf is used to access a database file. The nrs-body is the file spec of a
GemStone database file. The NetLDI creates a page server on the given node
to access the database and returns the network address of the page server.
(Authorization is needed unless the NetLDI is in guest mode).

#spawn is used internally to start the garbage collection and other service Gem
processes.

#monitor is used internally to start up a shared page cache monitor.

#file means the nrs-body is the file spec of a file on the given host (not currently
implemented).

nrs-body ::= unformatted text, to end of string
The nrs-body is interpreted according to the context established by the resource-
modifier. No extended identifier expansion is done in the nrs-body, and no
special escapes are needed.
152 GemStone Systems, Inc. September 2009

Index

September 2009
Index
Symbols
$ (for character literal) 41
@ (for OOP literal) 41, 61
^ (current class) 41, 61
! (remark) 116
** (last result) 41, 61

A
abort command 33, 59
aborting transactions 32
automatic batch processing 36

B
batch processing from an input file 36
begin command 60

break command 61
classmethod 61
clear 51, 62
clear all 51, 62
display 50, 62
message 49
method 49, 61

breakpoints 48, 61
and special methods 61
clearing 51, 62
continuing GemStone Smalltalk execution

after 67
deleting 51
listing 50, 62, 97
method 49, 61
methods that cannot have 61
setting 49, 61

byte objects
limiting display of 28, 94
storing into with structural access 106
structural access 107
GemStone Systems, Inc. 153

Topaz Programming Environment
byte values, displaying 28, 70, 108

C
_cacheName

 System method 121
CacheName (status output) 121
call stack

and GemStone Smalltalk debugging 128
displaying contents of active 128
examining 128
and GemStone Smalltalk debugging 128
redefining 131
removing 132

category
current 30, 31
listing 32
setting the current 121

category command 64
characters, Topaz syntax for 41
class

creating with set class command 121
current 30, 31
filing out 34
modifying with set class command 121
setting the current 121

class instances
Topaz syntax for 79, 82

class methods
changing 31
compiling 65
creating 31, 75
editing 31
modifying 75

classmethod command 31, 65
command-line syntax 143
commands

abbreviation of 57
abort 33, 59
begin 60
break 61
case-sensitivity of 57

category 64
classmethod 65
commit 32, 66
continue 52, 67
define 43, 68
disassem 69
display 28, 70, 108
doit 72
down 73
edit 74
errorcount 76
exit 46, 77, 114
expectbug 78
expecterror 79
expectvalue 82
fileout 34, 84
frame 85
gcitrace 86
help 87
iferr 88
iferr_clear 89
iferr_list 90
iferror 91
input 92
level 26, 93
limit 28, 94
list 95
login 99
logout 45, 101
lookup 102
method 31, 103
nbresult 105
nbrun 104
object 106
omit 28, 70, 108
opal—see doit
output 110
printit 24, 112
protectmethods 113
quit 114
releaseall 115
remark 116
removeallclassmethods 118
154 GemStone Systems, Inc. September 2009

Topaz Programming Environment
removeallmethods 117, 118
run—see printit
send 45, 120
set 19, 121
shell 126
spawn 127
stack 128
status 23, 31, 133
step 48, 134
stk 135
syntax of 57
temporary 53, 136
time 138
unprotectmethods 139
up 140
where 141

comments 116
commit command 32, 66
committing transactions 32
context

and GemStone Smalltalk debugging 128
displaying the active 130
listing method breakpoints 50, 97
listing step points in 96
redefining the active 54, 130
selecting 54

continue command 52, 67
Control-C handling 37
current category, setting 64, 121
current class

and classmethod command 65
and method command 103
setting 121

current time, displaying 138

D
debugging 47–51, 128, 134, 135, 136

and execution context 54, 128
define command 43, 68
disassem command 69
display command 28, 70, 108

oops and stack display 128

display level 26–27
maximum 93

display of results, controlling 25
doit command 72
down command 73

E
edit command 74

and set editorname command 122
classmethod 31, 75
last 25, 74
method 31, 75
new classmethod 32, 75
new method 32, 74
new text 25
used with set command 121

editing GemStone Smalltalk expressions 25
error status 77, 114
errorcount command 76
errors, continuing GemStone Smalltalk

execution after 67
execution, stepping through 48, 96
exit command 46, 77, 114
expectbug command 78
expecterror command 79
expectvalue command 82

F
file

appending to 33
input 36, 37
output 33, 37
redirection 33

fileout command 34, 84
finding method in hierarchy 102
Floats, Topaz syntax for 41
frame command 85
ftplogin. 23, 124
September 2009 GemStone Systems, Inc. 155

Topaz Programming Environment
G
gcitrace command 86
gemnetobjcsh 122
gemnetobject 122
GemStone

aborting a transaction 59
call stack and GemStone Smalltalk

debugging 128
committing a transaction 66
context and error handling 128
examining the call stack 128
interrupting 37
logging in 18
logging out 45
multiple sessions 38, 124
service, setting 122

GemStone name 18, 123
setting 99

GemStone password 18
setting 99, 124

GemStone service name, setting 99
GemStone Smalltalk

breakpoints 61, 97
continuing execution 52, 67
debugging 47–51, 128, 134, 135, 136
editing expressions 25
editing source code 74, 122
executing expressions 24, 72, 112
sending messages 120

GemStone username 18
setting 99, 125

H
help command 23, 87
hexadecimal values, displaying 28, 70, 108
host password 18, 123

setting 99
host username 18, 123

I
iferr command 88
iferr_clear command 89
iferr_list command 90
iferror command 91
initialization file

and set host password command 123
and set password command 124
used to set login parameters 99

input command 37, 92
pop 92

instance methods
compiling 103
creating 74
modifying 75

instance variables
displaying 26, 28, 70, 93, 108
returning the values of 106

instances of a class, Topaz syntax for 79, 82
integers, Topaz syntax for 41
interrupting execution 37

L
level command 26, 93
limit command 28, 94

bytes 94
oops 94

list command 95
breaks 50, 97
breaks classmethod 97
breaks method 97
classmethod 32
method 32
steps 96
steps classmethod 96
steps method 48, 96

logging a session 37
logging in to GemStone 18, 99
login command 99
login initialization file 21
156 GemStone Systems, Inc. September 2009

Topaz Programming Environment
login parameters 18–23
and set command 121
displaying the value of 133

logout command 45, 101
lookup command 102

M
message breakpoints

listing 50, 62
setting 49

method breakpoints 49, 61
listing 50, 62, 97
setting 49, 61

method command 31, 103
method compilations and set category

command 121
methods

compilation 103
compilation and current category 64
creating 30, 74, 122
editing 31
examining and modifying arguments 53
filing out 34
finding in hierarchy 102
listing 32, 102
modifying 30
stepping through execution 96, 134

multiple sessions 38, 124

N
nbresult command 105
nbrun command 104
.netrc 23, 124
network

resource string syntax 147
network communications and login

parameters 99
network initialization file 23, 124
network resource string (NRS) 99
network server process, establishing the name

of 122

nonsequenceable collections (NSCs)
structural access 106

NRS (network resource string)
syntax 147

O
object command 106

at: 40, 106
at:put: 106, 107

object headers 30
objects, syntax for specifying 41
omit command 28, 70, 108

oops, and stack display 51, 128
OOPs

displaying 28, 70, 108
limiting display of 94
Topaz syntax for 41, 61

opal command—see doit
operating system error status 77, 114
output command 110

and host environment names 110
pop 110
push 33, 110

output to a file 33

P
password

GemStone 18, 124
host 18, 123

pause message, continuing GemStone
Smalltalk execution after 67

printit command 24, 112
editing the text of 74

protectmethods command 113

Q
quit command 114
quitting Topaz 46
September 2009 GemStone Systems, Inc. 157

Topaz Programming Environment
R
recording a session 37
releaseall command 115
remark command 116
removeallclassmethods command 118
removeallmethods command 117, 118
run command—see printit

S
send command 45, 120
service name, GemStone 122
session numbers 38, 124
sessions, multiple 38, 124
set command 19, 121

cachename
 121

category 121
class 30, 121

and edit classmethod command 75
and edit method command 75
and edit new classmethod command

75
and edit new method command 74

editorname 25, 74, 122
establishing login parameters 99, 121
gemnetid 122
gemstone 123
hostpassword 123
hostusername 123
password 124
session 38, 124

and local variables 68
sourcestringclass 125
username 125

shell command 126
spawn command 127
special methods

and breakpoints 61

stack command 128
all 54, 131
change 54, 131
delete 132
nosave 131
save 131
scope 54, 130

stack, redefining the active 54
standard input, redirecting 37
standard output, redirecting 33
status command 23, 31, 133
stdin 33
stdout 33
step command 48, 134

into 53, 134
over 52, 134

step points 48
examining 48, 96
methods that have no 61

stk command 135
stopping execution 37
Strings

limiting display of 28, 94
Topaz syntax for 41

structural access 39–106
and object command 106

Symbols, Topaz syntax for 41

T
temporaries, examining and modifying 53,

136
temporary command 53, 136
time command 138
Topaz

command-line syntax 143
exiting 46
initialization file 21
interrupting 37
invoking 16
linked version 17
redirecting input 92
redirecting output 110
158 GemStone Systems, Inc. September 2009

Topaz Programming Environment
RPC version 17
syntax for characters 41
syntax for commands 57
syntax for Floats 41
syntax for instances of a class 79, 82
syntax for integers 41
syntax for literals 41
syntax for OOPs 41, 61
syntax for Strings 41
syntax for Symbols 41
syntax for variable names 41, 61

Topaz initialization file
and set host password command 123
and set password command 124

Topaz variables
and define command 68
and object command 106

topaz.ini 21
topazini.tpz 21
transactions, aborting 33, 59
transactions, committing 33

U
unprotectmethods command 139
up command 140
username

GemStone 18, 125
host 18, 123

V
variable names, Topaz syntax for 41, 61
variables, local 42

and define command 68
and object command 106
clearing definition of 44

variables, predefined
CurrentCategory 44
CurrentClass 44
ErrorContext 44
LastResult 44
LastText 44, 74
myUserProfile 44

W
where command 141
writing to a file 84
September 2009 GemStone Systems, Inc. 159

Topaz Programming Environment
160 GemStone Systems, Inc. September 2009

	1 Getting Started with Topaz
	1.1 Invoking Topaz
	1.2 Overview of a GemStone Session
	1.3 Remote Versus Linked Versions
	1.4 Logging In to GemStone
	Setting Up a Login Initialization File

	1.5 The Help Command
	1.6 Executing GemStone Smalltalk Expressions
	1.7 Escaping to an Editor
	1.8 Controlling the Display of Results
	Display Level
	Setting Limits on Object Displays
	Displaying Variable Names, OOPs, and Hex Byte Values
	Instance Variable Names
	Hexadecimal Byte Values
	OOP Values

	1.9 Creating and Changing Methods
	Editing Methods

	1.10 Listing Methods and Categories
	1.11 Committing and Aborting Transactions
	1.12 Capturing Your Topaz Session In a File
	1.13 Filing Out Classes and Methods
	1.14 Creating a Topaz Script for Batch Processing
	1.15 Taking Topaz Input from a File
	1.16 Interrupting Topaz and GemStone
	1.17 Multiple Concurrent GemStone Sessions
	1.18 Structural Access To Objects
	Examining Instance Variables with Structural Access
	Specifying Objects
	Object Identity Specification Formats
	Literal Object Specification Formats

	1.19 Defining Local Variables
	Creating Variables
	Displaying Current Variable Definitions
	Clearing Variable Definitions

	1.20 Sending Messages
	1.21 Logging Out
	1.22 Leaving Topaz

	2 Debugging Your GemStone Smalltalk Code
	2.1 Step Points and Breakpoints
	2.2 Setting, Clearing, and Examining Breakpoints
	2.3 Examining the GemStone Smalltalk Call Stack
	Proceeding After a Breakpoint
	Examining and Modifying Temporaries and Arguments
	Select a Context for Examination and Debugging
	Redefine the Active Call Stack

	3 Command Dictionary
	ABORT
	BEGIN
	BREAK aSubCommand
	Method Breakpoints
	Disabling and Enabling Breakpoints

	CATEGORY: aCategoryName
	CLASSMETHOD[: aClassName]
	COMMIT
	CONTINUE [anObjectSpec]
	DEFINE [aVarName [anObjectSpec [aSelectorOrArg]...]]
	DISASSEM [aClassParameter] aParamValue
	DISPLAY aDisplayFeature
	DOIT
	DOWN [anInteger]
	EDIT aSubCommandOrSelector [aSelector]
	Creating or Modifying Blocks of GemStone Smalltalk Code
	Creating or Modifying GemStone Smalltalk Methods

	ERRORCOUNT
	EXIT [anInteger]
	EXPECTBUG bugNumber
	EXPECTERROR anErrorCategory anErrorNumber
	EXPECTVALUE anObjectSpec [anInt]
	FILEOUT aSubCommandOrSelector [TOFILE: aFileName]
	FRAME [anInteger]
	GCITRACE aFileName
	HELP [aTopicName]
	IFERR bufferNumber [aTopazCommandLine]
	IFERR_CLEAR
	IFERR_LIST
	IFERROR [aTopazCommandLine]
	INPUT [aFileName | POP]
	LEVEL anIntegerLevel
	LIMIT [BYTES | OOPS] anInteger
	LIST
	Browsing Dictionaries and Classes
	Listing Methods
	Listing Step Points
	Listing Breakpoints

	LOADUA aFileName
	LOGIN
	LOGOUT
	LOOKUP
	Finding and Listing Methods

	METHOD[: aClassName]
	NBRUN
	NBRESULT
	OBJECT anObjectSpec [AT: anIndex [PUT: anObjectSpec]]
	OMIT aDisplayFeature
	OPAL
	OUTPUT (PUSH | APPEND | PUSHNEW | POP) aFileName [ONLY]
	PRINTIT
	PROTECTMETHODS
	QUIT [anInteger]
	RELEASEALL
	REMARK commentText
	REMOVEALLMETHODS[: aClassName]
	REMOVEALLCLASSMETHODS[: aClassName]
	RUN
	SEND anObjectSpec aMessage
	SET aTopazParameter [aParamValue]
	SHELL [aHostCommand]
	SPAWN [aHostCommand]
	STACK [aSubCommand]
	Display the Active Call Stack
	Display or Redefine the Active Context
	Save or Delete the Active Call Stack During Execution
	Display All Call Stacks
	Redefine the Active Call Stack
	Remove Call Stacks

	STATUS
	STEP (OVER | INTO)
	STK [aSubCommand]
	TEMPORARY [aTempName[/anInt] [anObjectSpec]]
	TIME
	UNPROTECTMETHODS
	UP [anInteger]
	WHERE [anInteger]

	A Topaz Command-Line Syntax
	A.1 Command-Line Syntax
	A.2 Options

	B Network Resource String Syntax
	B.1 Overview
	B.2 Defaults
	B.3 Notation
	B.4 Syntax

	Index

