
GemStone®
GemBuilder for C

Version 3.0

June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. VMware, Inc., assumes
no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in
any form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express
written authorization from VMware, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by VMware, Inc. under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of VMware, Inc.
This software is provided by VMware, Inc. and contributors “as is” and any expressed or implied warranties, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall
VMware, Inc. or any contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence
or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2011 VMware, Inc., and GemStone Systems, Inc. All
rights reserved by VMware, Inc.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with
persistent object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”.
GemStone software may also be covered by one or more pending United States patent applications.

TRADEMARKS
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of VMware, Inc.,
previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
HP, HP Integrity, and HP-UX are registered trademarks of Hewlett Packard Company.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows XP, Windows 2003, Windows 7 and Windows Vista are registered trademarks of
Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER5, and POWER6 are trademarks or registered trademarks of International Business Machines Corporation.
Apple, Mac, Mac OS, Macintosh, and Snow Leopard are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. VMware cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
VMware, Inc.
15220 NW Greenbrier Parkway
Suite 150
Beaverton, OR 97006
2 VMware, Inc. June 2011

Preface
About This Manual
This manual describes GemBuilder for C — a set of C functions that provide a
bridge between your application’s C code and the application’s database
controlled by GemStone®. These functions provide your C program with
complete access to a GemStone database of objects, and to a virtual machine on
which to execute GemStone Smalltalk code.

Prerequisites
This manual assumes you are familiar with the GemStone Smalltalk programming
language, as described in the Programming Guide for GemStone/S 64 Bit. In addition,
you must know the C programming language, as described in Kernighan and
Ritchie’s The C Programming Language (Prentice Hall, 1978). Finally, you should be
familiar with your C compiler, as described in its user documentation.

You should have the GemStone system installed correctly on your host computer,
as described in the GemStone/S 64 Bit Installation Guide for your platform.
June 2011 VMware, Inc. 3

Preface GemStone/S 64 Bit 3.0 GemBuilder for C
How This Manual is Organized
 • Chapter 1, “Introduction,” describes the GemBuilder functions in general, and

how they are used in application development with GemStone.

 • Chapter 2, “Building Applications with GemBuilder for C,” introduces the
two versions of GemBuilder and explains how to build applications that bind
to GemBuilder at run time.

 • Chapter 3, “Writing C Functions To Be Called from GemStone,” describes how
to implement “user action” routines that can be called from GemStone
Smalltalk methods.

 • Chapter 4, “Compiling and Linking,” describes how to compile and link your
C applications and user actions, and how to install them in a GemStone
environment prior to execution.

 • Chapter 5, “GemBuilder Files and Data Structures,” describes GemBuilder
include files and the data structures used internally.

 • Chapter 6, “GemBuilder C Functions,” provides a detailed description of each
GemBuilder function, including syntax, parameters, return value, a general
description of what the function does, and including examples of its use.

 • Appendix A, “Reserved OOPs,” lists mnemonics for reserved OOPs.

 • Appendix B, “GemStone C Statistics Interface,” describes the GemStone C
Statistics Interface (GCSI), a library of functions that allow your C application
to collect GemStone statistics directly from the shared page cache.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit
and GemStone/S; the GemStone Smalltalk programming language; and may also
be used to refer to the company, previously GemStone Systems, Inc., now a
division of VMware, Inc.
4 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C Preface
Other GemStone Documentation
You may find it useful to look at other GemStone documentation:

 • Programming Guide — a programmer’s guide to GemStone Smalltalk,
GemStone’s object-oriented programming language.

 • Topaz Programming Environment — describes Topaz, a scriptable command-
line interface to GemStone Smalltalk.

 • System Administration Guide — describes maintenance and administration of
your GemStone/S system.

A description of the behavior of each GemStone kernel class is available in the
class comments in the GemStone Smalltalk repository. Method comments include
a description of the behavior of methods.

Technical Support

GemStone Website
http://support.gemstone.com
GemStone’s Technical Support website provides a variety of resources to help
you use GemStone products:

 • Documentation for released versions of all GemStone products, in PDF
form.

 • Downloads and Patches, including past and current versions of
GemBuilder for Smalltalk.

 • Bugnotes, identifying performance issues or error conditions you should
be aware of.

 • TechTips, providing information and instructions that are not otherwise
included in the documentation.

 • Compatibility matrices, listing supported platforms for GemStone
product versions.

This material is updated regularly; we recommend checking this site on a regular
basis.
June 2011 VMware, Inc. 5

Preface GemStone/S 64 Bit 3.0 GemBuilder for C
Help Requests
You may need to contact Technical Support directly, if your questions are not
answered in the documentation or by other material on the Technical Support
site. Technical Support is available to customers with current support contracts.

Requests for technical support may be submitted online or by telephone. We
recommend you use telephone contact only for serious requests that require
immediate attention, such as a production system down. The support website is
the preferred way to contact Technical Support.

Website: http://techsupport.gemstone.com
Email: techsupport@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503
When submitting a request, please include the following information:

 • Your name, company name, and GemStone server license number.

 • The versions of all related GemStone products, and of any other related
products, such as client Smalltalk products.

 • The operating system and version you are using.

 • A description of the problem or request.

 • Exact error message(s) received, if any, including log files if appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through
Friday, excluding VMware/GemStone holidays.

24x7 Emergency Technical Support
GemStone Technical Support offers, at an additional charge, 24x7 emergency
technical support. This support entitles customers to contact us 24 hours a day, 7
days a week, 365 days a year, for issues impacting a production system. For more
details, contact your GemStone account manager.

Training and Consulting
Consulting is available to help you succeed with GemStone products. Training for
GemStone software is available at your location, and training courses are offered
periodically at our offices in Beaverton, Oregon. Contact your GemStone account
representative for more details or to obtain consulting services.
6 VMware, Inc. June 2011

Contents
Chapter 1. Introduction 19
1.1 GemBuilder Application Overview. 19

Deciding Where to Do the Work. 21
Representing GemStone Objects in C 21
Smalltalk Access to Objects . 22
Calling C Functions from Smalltalk Methods 22

The GemBuilder Functions . 23
1.2 Session Control . 23

Starting and Stopping GemBuilder . 23
Remote Login Setup. 23
Logging In and Out . 24
Transaction Management. 25

Committing a Transaction . 25
Aborting a Transaction . 25
Controlling Transactions Manually 25

1.3 Representing Objects in C . 26
GemStone-Defined Object Mnemonics 27
Converting Between Special Objects and C Values 27
Byte-Swizzling of Binary Floating-Point Values 29
June 2011 VMware, Inc. 7

Table of Contents GemStone/S 64 Bit 3.0 GemBuilder for C
1.4 Manipulating Objects in GemStone . 30
Sending Messages to GemStone Objects 30
Executing Code in GemStone . 31
Interrupting GemStone Execution . 32
Modification of Classes. 33

1.5 Manipulating Objects Through Structural Access 34
Direct Access to Metadata . 35

Byte Objects . 35
Pointer Objects. 36
Nonsequenceable Collections (NSC Objects). 38

1.6 Creating Objects . 40
1.7 Fetching and Storing Objects . 41

Efficient Fetching and Storing with Object Traversal 41
How Object Traversal Works 42
The Object Traversal Functions 43

Efficient Fetching And Storing with Path Access 44
1.8 Nonblocking Functions . 44
1.9 Operating System Considerations . 46

Signal Handling in Your GemBuilder Application 46
Executing Host File Access Methods . 47
Writing Portable Code . 47

1.10 Error Handling and Recovery . 48
Polling for Errors . 48
Error Jump Buffers . 48
The Call Stack . 49
GemStone System Errors. 49

1.11 Garbage Collection . 49
1.12 Preparing to Execute GemStone Applications 51

GemStone Environment Variables . 51

Chapter 2. Building Applications with
GemBuilder for C 53

2.1 GciRpc and GciLnk. 53
Use GciRpc for Debugging. 54
Use GciLnk for Performance. 54
Multiple GemStone Sessions. 54
8 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C Table of Contents
2.2 The GemBuilder Shared Libraries. 54
2.3 Binding to GemBuilder at Run Time . 55

Building the Application . 55
Searching for the Library . 56

How UNIX Matches Search Names with Shared Library Files . 56

Chapter 3. Writing C Functions
To Be Called from GemStone 57

3.1 Shared User Action Libraries . 57
3.2 How User Actions Work . 58
3.3 Developing User Actions. 59

Write the User Action Functions. 59
Create a User Action Library. 60

The gciua.hf Header File . 60
The Initialization and Shutdown Functions 61
Compiling and Linking Shared Libraries 63
Using Existing User Actions in a User Action Library. 63
Using Third-party C Code with a User Action Library 63

Loading User Actions . 63
Loading User Action Libraries At Run Time 63
Specifying the User Action Library 64
Creating User Actions in Your C Application 65
Verify That Required User Actions Have Been Installed 65

Write the Code That Calls Your User Actions 66
Remote User Actions . 66
Limit on Circular Calls Among User Actions and Smalltalk . . 66

Debug the User Action . 67
3.4 Executing User Actions. 67

Choosing Between Session and Application User Actions 67
Running User Actions with Applications. 69

With an RPC Application . 69
With a Linked Application . 70

Running User Actions with Gems . 71
Running User Actions with Applications and Gems 72
June 2011 VMware, Inc. 9

Table of Contents GemStone/S 64 Bit 3.0 GemBuilder for C
Chapter 4. Compiling and Linking 75
4.1 Development Environment and Standard Libraries 76
4.2 Compiling C Source Code for GemStone . 76

The C++ Compiler . 76
Listing the Version of Your Compiler. 77

Compilation Options . 78
Compilation Command Lines . 78

4.3 Linking C/C++ Object Code with GemStone 81
Risk of Database Corruption. 81
Linker . 82
Link Options. 82
Command Line Assumptions . 82

Linking Applications That Bind to GemBuilder at Run Time . 83
Linking User Actions into Shared Libraries 84

Chapter 5. GemBuilder
Files and Data Structures 87

5.1 GemBuilder Include Files . 87
5.2 GemBuilder Data Types . 89

The Structure for Representing the Date and Time 90
The Error Report Structure. 90
The Object Information Structure . 92
The Object Report Structure . 94
The Object Report Header Class . 95
The User Action Information Structure. 99
The Traversal Buffer Type . 100

5.3 Structural Access Functions . 101
5.4 environmentId . 101
5.5 UNIX Signal Handling . 102

Chapter 6. GemBuilder
C Functions 103

6.1 Function Summary Tables . 103
10 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C Table of Contents
GciAbort . 114
GciAddOopToNsc. 115
GciAddOopsToNsc . 117
GCI_ALIGN . 119
GciAllocTravBuf. 120
GciAlteredObjs . 121
GciAppendBytes . 124
GciAppendChars . 125
GciAppendOops. 126
GciBegin . 127
GCI_BOOL_TO_OOP. 128
GciByteArrayToPointer . 130
GciCallInProgress . 131
GciCheckAuth . 132
GCI_CHR_TO_OOP . 134
GciClampedTrav . 135
GciClampedTraverseObjs . 138
GciClassMethodForClass . 141
GciClassNamedSize. 143
GciClearStack . 145
GciCommit . 147
GciCompileMethod . 149
GciCompress. 151
GciContinue . 154
GciContinueWith . 156
GciCreateByteObj . 158
GciCreateOopObj . 160
GciCTimeToDateTime . 162
GciDateTimeToCTime . 163
GciDbgEstablish . 164
GciDbgEstablishToFile . 166
GciDbgLogString . 167
GciDeclareAction . 168
GciDecodeOopArray . 170
GciDecSharedCounter . 172
GciDirtyExportedObjs . 174
GciDirtyObjsInit . 176
GciDirtySaveObjs . 178
GciDirtyTrackedObjs . 180
June 2011 VMware, Inc. 11

Table of Contents GemStone/S 64 Bit 3.0 GemBuilder for C
Gci_doubleToSmallDouble . 182
GciEnableFreeOopEncoding . 183
GciEnableFullCompression . 184
GciEnableSignaledErrors. 185
GciEncodeOopArray . 187
GciErr . 189
GciExecute . 191
GciExecuteFromContext . 193
GciExecuteStr . 195
GciExecuteStrFromContext . 198
GciExecuteStrTrav . 201
GciFetchByte. 204
GciFetchBytes_ . 206
GciFetchChars_ . 209
GciFetchClass . 211
GciFetchDateTime . 213
GciFetchDynamicIv. 214
GciFetchDynamicIvs . 215
GciFetchNamedOop . 216
GciFetchNamedOops. 219
GciFetchNamedSize . 222
GciFetchNameOfClass . 223
GciFetchNumEncodedOops . 224
GciFetchNumSharedCounters . 225
GciFetchObjectInfo . 226
GciFetchObjImpl . 228
GciFetchObjInfo . 229
GciFetchOop. 231
GciFetchOops . 234
GciFetchPaths . 237
GciFetchSharedCounterValuesNoLock 244
GciFetchSize_ . 246
GciFetchVaryingOop . 248
GciFetchVaryingOops . 251
GciFetchVaryingSize_ . 253
GciFindObjRep . 255
GciFloatKind . 257
GciFltToOop . 258
GciGetFreeOop . 260
12 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C Table of Contents
GciGetFreeOops . 262
GciGetFreeOopsEncoded . 264
GciGetSessionId . 265
GciHardBreak . 267
GciHiddenSetIncludesOop. 268
GCI_I64_IS_SMALL_INT. 269
GciI64ToOop. 270
GciIncSharedCounter . 271
GciInit. 273
GciInitAppName . 274
GciInitAppName_. 275
GciInstallUserAction . 276
GciInstMethodForClass. 277
GciInUserAction . 279
GciIsKindOf . 280
GciIsKindOfClass . 281
GciIsRemote . 282
GciIsSubclassOf . 283
GciIsSubclassOfClass . 284
GciIvNameToIdx . 285
GciLoadUserActionLibrary . 287
GciLogin . 289
GciLogout . 291
GciLongJmp . 292
GciMoreTraversal . 293
GciNbAbort . 296
GciNbBegin . 297
GciNbClampedTrav. 298
GciNbClampedTraverseObjs . 299
GciNbCommit . 301
GciNbContinue . 302
GciNbContinueWith . 303
GciNbEnd . 304
GciNbExecute . 306
GciNbExecuteStr . 308
GciNbExecuteStrFromContext. 310
GciNbExecuteStrTrav . 312
GciNbMoreTraversal . 314
GciNbPerform . 315
June 2011 VMware, Inc. 13

Table of Contents GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbPerformNoDebug . 317
GciNbPerformTrav . 319
GciNbStoreTrav . 321
GciNbStoreTravDo_ . 323
GciNbStoreTravDoTrav_ . 324
GciNbStoreTravDoTravRefs_ . 326
GciNbTraverseObjs . 328
GciNewByteObj . 330
GciNewCharObj . 331
GciNewDateTime . 332
GciNewOop . 333
GciNewOops . 335
GciNewOopUsingObjRep . 338
GciNewString . 341
GciNewSymbol . 342
GciNscIncludesOop . 343
GciObjExists . 345
GciObjInCollection . 346
GciObjIsCommitted . 347
GciObjRepSize_ . 348
GciOldOopToNewOop. 350
GCI_OOP_IS_BOOL . 351
GCI_OOP_IS_SMALL_INT . 352
GCI_OOP_IS_SPECIAL . 353
GciOopToBool . 354
GCI_OOP_TO_BOOL . 356
GciOopToChar16 . 357
GciOopToChar32 . 358
GciOopToChr . 359
GCI_OOP_TO_CHR . 361
GciOopToFlt . 362
GciOopToI32 . 364
GciOopToI32_ . 365
GciOopToI64 . 366
GciOopToI64_ . 367
GciPathToStr . 368
GciPerform. 371
GciPerformNoDebug . 373
GciPerformSymDbg . 375
14 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C Table of Contents
GciPerformTrav . 377
GciPerformTraverse . 379
GciPointerToByteArray . 383
GciPollForSignal. 384
GciPopErrJump . 386
GciProcessDeferredUpdates_ . 388
GciProduct . 390
GciPushErrJump. 391
GciRaiseException. 393
GciReadSharedCounter. 394
GciReadSharedCounterNoLock . 395
GciRealloc . 397
GciReleaseAllGlobalOops . 398
GciReleaseAllOops . 399
GciReleaseAllTrackedOops . 400
GciReleaseGlobalOops . 401
GciReleaseOops . 402
GciReleaseTrackedOops . 405
GciRemoveOopFromNsc . 406
GciRemoveOopsFromNsc . 408
GciReplaceOops . 410
GciReplaceVaryingOops . 412
GciResolveSymbol . 413
GciResolveSymbolObj . 414
GciRtlIsLoaded . 415
GciRtlLoad . 416
GciRtlUnload . 418
GciSaveAndTrackObjs . 419
GciSaveGlobalObjs . 421
GciSaveObjs . 422
GciServerIsBigEndian. 423
GciSessionIsRemote . 424
GciSetCacheName_ . 425
GciSetDynLib . 426
GciSetErrJump . 427
GciSetHaltOnError . 430
Gci_SETJMP . 431
GciSetNet. 432
GciSetSessionId . 435
June 2011 VMware, Inc. 15

Table of Contents GemStone/S 64 Bit 3.0 GemBuilder for C
GciSetSharedCounter. 437
GciSetTraversalBufSwizzling . 438
GciSetVaryingSize . 439
GciShutdown . 440
GciSoftBreak . 441
GciStep . 444
GciStoreByte . 445
GciStoreBytes . 447
GciStoreBytesInstanceOf . 449
GciStoreChars . 451
GciStoreDynamicIv . 453
GciStoreIdxOop . 454
GciStoreIdxOops . 456
GciStoreNamedOop . 459
GciStoreNamedOops . 462
GciStoreOop . 465
GciStoreOops . 468
GciStorePaths . 471
GciStoreTrav. 478
GciStoreTravDo_ . 482
GciStoreTravDoTrav_ . 486
GciStoreTravDoTravRefs_ . 488
GciStringToInteger . 492
GciStrKeyValueDictAt . 493
GciStrKeyValueDictAtObj . 494
GciStrKeyValueDictAtObjPut . 495
GciStrKeyValueDictAtPut . 496
GciStrToPath . 497
GciSwapBytesUint . 500
GciSwapBytesUshort . 501
GciSymDictAt . 502
GciSymDictAtObj . 504
GciSymDictAtObjPut . 505
GciSymDictAtPut . 506
GciTrackedObjsFetchAllDirty . 507
GciTrackedObjsInit . 509
GciTraverseObjs. 510
GciUncompress . 515
GciUserActionInit. 517
16 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C Table of Contents
GciUserActionShutdown . 518
GciVersion . 519

Appendix A. Reserved OOPs 521

Appendix B. GemStone C Statistics Interface 523
B.1 Developing a GCSI Application. 523

Required Header Files . 523
The GCSI Shared Library . 524
Compiling and Linking . 524
Connecting to the Shared Page Cache 524
The Sample Program . 525

B.2 GCSI Data Types . 525
The Structure for Representing the GCSI Function Result 526
GcsiAllStatsForMask . 528
GcsiAttachSharedCache . 529
GcsiAttachSharedCacheForStone . 530
GcsiDetachSharedCache . 531
GcsiFetchMaxProcessesInCache . 532
GcsiInit . 533
GcsiShrPcMonStatAtOffset. 534
GcsiStnStatAtOffset . 535
GcsiStatsForGemSessionId . 536
GcsiStatsForGemSessionWithName 537
GcsiStatsForPgsvrSessionId . 538
GcsiStatsForProcessId. 539
GcsiStatsForShrPcMon . 540
GcsiStatsForStone . 541
GCSI Errors . 542

Index 543
June 2011 VMware, Inc. 17

Table of Contents GemStone/S 64 Bit 3.0 GemBuilder for C
18 VMware, Inc. June 2011

Chapter

1 Introduction
GemBuilder for C is a set of C functions that provide your C application with
complete access to a GemStone repository and its programming language,
Smalltalk1. The GemStone object server contains your schema (class definitions)
and objects (instances of those classes), while your C program provides the user
interface for your GemStone application. The GemBuilder functions allow your C
program to access the GemStone repository either through structural access (the C
model) or by sending messages (the Smalltalk model). Both of these approaches
are discussed in detail later in this chapter.

1.1 GemBuilder Application Overview
Figure 1.1 illustrates the role of GemBuilder in developing a GemStone
application. In effect, developing your GemStone application consists of two
separate efforts: creating Smalltalk classes and methods, and writing C code.

1. GemStone embeds a variety of the Smalltalk language within the repository. It is
separate from but similar to other varieties of Smalltalk that are sold commercially.
Smalltalk serves as the data definition and data manipulation language for GemStone, and
provides the repository with its ability to identify, access, and manipulate objects
internally. When this manual mentions Smalltalk, it generally is referring to GemStone’s
internal language.
June 2011 VMware, Inc. 19

GemBuilder Application Overview GemStone/S 64 Bit 3.0 GemBuilder for C
Figure 1.1 The Role of GemBuilder in Application Development

GemBuilder CallsC Application GemStone

GemStone
Objects

C Data
Structures

Repository

Flow of Control
User Input/Output

Transaction Management
Execute Smalltalk code
Send messages to objects
Structural Access

We recommend the following steps for developing your hybrid application:

Step 1. Define the application’s external interface.

Any GemBuilder application must manage its user interface through custom
modules written in C.

Step 2. Decide where to perform the work.

Applications that are a hybrid of C functions and Smalltalk classes pose
interesting problems to the designer: Where is the best place to perform the
application’s work? Is it better to import the representation of an object into
your C program and perform the work there, or to send a message which
invokes a Smalltalk method? In the next section, we’ll examine this question in
more detail.

Step 3. Implement and debug the application.

After you’ve developed a satisfactory design, you can implement and test the
C-based functions using familiar techniques and tools (editor, C compiler, link
editor, debugger). For information about implementing applications, see
Chapter 2, “Building Applications with GemBuilder for C.”

Step 4. Compile and link the application.

For instructions about compiling and linking your application, please see
Chapter 4, “Compiling and Linking.” For full details, see your C compiler user
documentation.
20 VMware, Inc. June 2011

Chapter 1 - Introduction GemBuilder Application Overview
Deciding Where to Do the Work
As mentioned above, you will need to decide how much of the application’s work
to perform in C functions and how much in Smalltalk methods. The following
paragraphs discuss both approaches.

Representing GemStone Objects in C

You may choose to implement C functions that access GemStone objects for
manipulation in your C program. In such cases, a representation of each object
must be imported from GemStone into your C program before the C function is
executed. By import, we mean that memory is allocated within your C program to
contain the C equivalent of the GemStone Smalltalk object. You could also say that
these values are cached in your application; rather than having a reference to the
object by identity (OOP), we have the contents of its instance variables. The object
in its permanent form still exists in the repository, and the cached values in your
application may become obsolete if other sessions commit changes to this object.
Exporting is the reverse of importing - you create a GemStone Smalltalk object that
holds the equivalent to your C data, or update an existing GemStone Smalltalk
object with the C data in your application.

GemBuilder provides functions for importing objects from GemStone to your C
program, creating new GemStone objects, directly accessing and modifying the
internal contents of objects, and exporting objects to the GemStone repository.

Of course, if you import an object to your C program and modify it, or if you create
a new object within your C program, your application must export the new or
modified object to GemStone before it can commit the changes to the repository.

Here are some advantages of using GemBuilder structural access functions to
modify objects:

 • It may be more efficient to perform a function in C than in Smalltalk.

 • The function may need to be closely linked with I/O functions for the user
interface.

 • The function may already exist in a standard library. In this case, the data must
be transported from GemStone to that function.

The section “Manipulating Objects Through Structural Access” on page 34 defines
exactly how objects are represented in C as address space, and defines the
GemBuilder functions for exchanging these structures between GemStone and C.
June 2011 VMware, Inc. 21

GemBuilder Application Overview GemStone/S 64 Bit 3.0 GemBuilder for C
Smalltalk Access to Objects

In many cases, you will choose to perform your GemStone work directly in
Smalltalk. GemBuilder provides C functions for defining and compiling Smalltalk
methods for a class, and for sending a message to an object (invoking a Smalltalk
method). Here are some advantages of writing a function directly in Smalltalk:

 • The integrity of the data encapsulation provided by the object metaphor is
preserved.

 • Functions in Smalltalk are more easily shared among multiple applications.

 • Functions in Smalltalk may be easier to implement. There is no need to worry
about moving objects between C and Smalltalk or about space management.

 • The overhead of transporting objects between C and Smalltalk is avoided.

 • Classes or methods may already exist which exhibit behavior similar to the
desired behavior. Thus, less effort will be required to implement a new
function in Smalltalk.

The section “Manipulating Objects in GemStone” on page 30 defines the
GemBuilder functions that allow C applications to send Smalltalk messages to
objects and execute Smalltalk code.

Calling C Functions from Smalltalk Methods

Even though you may choose to perform your GemStone work in Smalltalk, you
may find that you need to access some functions written in C. GemBuilder allows
you to link your user-written C functions to a GemStone session process, and
subsequently call those functions from Smalltalk. For example, operations that are
computationally intensive or are external to GemStone can be written as C
functions and called from within a Smalltalk method (whose high-level structure
and control is written in Smalltalk). This is similar to the concept of “user-defined
primitives” offered by other object-oriented systems. Here are some advantages of
calling C functions from Smalltalk:

 • For computationally intensive portions of a GemStone operation, C functions
may execute faster than the same functions written in Smalltalk.

 • Operating system services, or services of other software systems, can be
accessed without the overhead of spawning a subprocess. In addition, using C
functions to access such services provides greater flexibility for passing
arguments and returning results.

Chapter 3, “Writing C Functions To Be Called from GemStone,” describes how to
implement “user action” routines that can be called from Smalltalk methods, and
22 VMware, Inc. June 2011

Chapter 1 - Introduction Session Control
how to link those routines into a GemBuilder application or a Gem (GemStone
session) process.

The GemBuilder Functions
The remainder of this chapter introduces you to many of the GemBuilder C
functions.

 • First, we’ll look at functions used in managing GemStone sessions: logging
into (and out of) GemStone, switching between multiple sessions, and
committing and aborting transactions.

 • Next, we’ll look at functions that allow your C program to manipulate objects
by sending Smalltalk messages or executing Smalltalk code fragments.

 • Finally, we’ll examine those functions that perform “structural access” upon
the representation of objects within your C program.

1.2 Session Control
All interactions with the GemStone repository monitor occur within the scope of a
user’s GemStone session, which may encapsulate one or more individual
transactions. GemBuilder provides functions for obtaining and managing
GemStone repository sessions, such as logging in and logging out, committing and
aborting transactions, and connecting to a different session.

Starting and Stopping GemBuilder
The functions GciInitAppName and GciInit initialize GemBuilder. When it is
used, your application should call GciInitAppName before calling GciInit. Your
C application must not call any other GemBuilder functions until it calls GciInit.

The function GciShutdown logs out all sessions that are connected to the Gem and
deactivates GemBuilder. Your C application should call GciShutdown before
exiting, in order to guarantee that the process deallocates its resources.

Remote Login Setup
There are two ways to prepare for remote login to a GemStone repository:

1. First, you use a netldi that is running in guest mode, attached to the Stone
process. Guest mode provides easy access in situations where it is not
June 2011 VMware, Inc. 23

Session Control GemStone/S 64 Bit 3.0 GemBuilder for C
considered necessary to authenticate users in the network environment before
permitting them to log in.

2. Otherwise, you need to have a .netrc file in your $HOME directory. This file
contains remote login data: the name of your host machine, your login name,
and your host machine password, in the following format:

machine host_machine_name username name password passwd

If you will be using more than one host machine, you will need a separate
entry in this file for each machine, with each entry on its own line.

You may also wish to set the GEM_RPCGCI_TIMEOUT configuration parameter
in the GemStone configuration file you use when starting a remote Gem. This
parameter sets a timeout limit for the remote Gem; if the Gem remains inactive too
long, GemStone logs out the session and terminates the Gem process. See the
System Administration Guide for GemStone/S 64 Bit for more details.

Logging In and Out
Before your C application can perform any useful repository work, it must create
a session with the GemStone system by calling GciLogin. That function uses the
network parameters initialized by GciSetNet.

GciInit must be called before the first GciLogin in the lifetime of a
process.

If your application calls GciLogin again after you are already logged in,
GemBuilder will create an additional, independent, GemStone session for you.
Multiple sessions can be attached to the same GemStone repository, or they can be
attached to different repositories. The maximum number of sessions that may be
logged in at one time depends upon your version of GemStone and the terms of
your license agreement.

From the point of view of GemBuilder, only a single session is active at any one
time. It is known as the current session. Any time you execute code that
communicates with the repository, it talks to the current session only. Other
sessions are unaffected.

Each session is assigned a number by GemBuilder as it is created. Your application
can call GciGetSessionId to inquire about the number of the current session, or
GciSetSessionId to make another session the current one. Your application is
responsible for treating each session distinctly.

An application can terminate a session by calling GciLogout. After that call
returns, the current session no longer exists.
24 VMware, Inc. June 2011

Chapter 1 - Introduction Session Control
Transaction Management

Committing a Transaction

The GemStone repository proceeds from one stable state to the next by
continuously committing transactions. In Smalltalk, the message
System commitTransaction attempts to commit changes to the repository.
Similarly, when your C application calls the function GciCommit, GemStone will
attempt to commit any changes to objects occurring within the current session.

A session within a transaction views the repository as it existed when the
transaction started. By the time you are ready to commit a transaction, other
sessions or users may have changed the state of the repository through intervening
commit operations. Your application can call GciAlteredObjs to determine which
objects must be reread from the repository in order to make its view current. Then,
to reread those objects, use whatever kind of GemBuilder fetch or traversal
functions best suits your needs.

If an attempt to commit fails, your application must call GciAbort to discard the
transaction. If it does not do so, subsequent calls to GciCommit will not succeed.

As mentioned earlier, if your C code has created any new objects or has modified
any objects whose representation you have imported, those objects must be
exported to the GemStone repository in their new state before the transaction is
committed. This ensures that the committed repository properly reflects the
intended state.

Aborting a Transaction

By calling GciAbort, an application can discard from its current session all the
changes to persistent objects that were made since the last successful commit or
since the beginning of the session (whichever is later). This has exactly the same
effect as sending the Smalltalk message

System abortTransaction.

After the application aborts a transaction, it must reread any object whose state has
changed.

Controlling Transactions Manually

Under automatic transaction control, a transaction is started when a user logs in to
the repository. The transaction then continues until it is either committed or
aborted. The call to GciAbort or GciCommit automatically starts a new
June 2011 VMware, Inc. 25

Representing Objects in C GemStone/S 64 Bit 3.0 GemBuilder for C
transaction when it finishes processing the previous one. Thus, the user is always
operating within a transaction.

Automatic transaction control is the default control mode in GemStone. However,
there is some overhead associated with transactions that an application can avoid
by changing the transaction mode to manual:

GciExecuteStr(
"System transactionMode: #manualBegin", OOP_NIL);

The transaction mode can also be returned to the automatic default:

GciExecuteStr(
"System transactionMode: #autoBegin", OOP_NIL);

In manual mode, the application starts a new transaction manually by calling the
GciBegin function. The GciAbort and GciCommit functions complete the current
transaction, but do not start a new transaction. Thus, they leave the user session
operating outside of a transaction, without its attendant overhead. The session
views the repository as it was when the last transaction was completed, or when
the mode was last reset, whichever is later.

Since automatic transaction control is the default, a transaction is always started
when a user logs in. To operate outside a transaction initially, an application must
first set the mode to manual, and then either abort or commit the transaction.

1.3 Representing Objects in C
An important feature of the GemStone data model is its ability to preserve an
object’s identity distinct from its state. Within GemStone, each object is identified
by a unique 32-bit object-oriented pointer, or OOP. Whenever your C program
attempts to access or modify the state of a GemStone object, GemStone uses its
OOP to identify it. Both the OOP and a representation of the object’s state may be
imported into an application’s C address space.

Within your C program, object identity is represented in variables of type
OopType (object-oriented pointer). The GemBuilder include file gci.ht defines
type OopType, along with other types used by GemBuilder functions. For more
information, see “GciAbort” on page 114.
26 VMware, Inc. June 2011

Chapter 1 - Introduction Representing Objects in C
GemStone-Defined Object Mnemonics
The GemBuilder include file gcioop.ht defines C mnemonics for all of the kernel
classes in the GemStone repository, as well as the GemStone objects nil, true, and
false, and the GemStone error dictionary.

In addition to the predefined objects mentioned above, the GemBuilder include
file gcioop.ht also defines the C mnemonic OOP_ILLEGAL. That mnemonic
represents a value that will never be used to represent any object in the repository.
You can thus initialize the state of an OOP variable to OOP_ILLEGAL, and test
later in your program to see if that variable contains valid information.

NOTE
Bear in mind that your C program can only use predefined OOPs, or
OOPs that it has received from the GemStone. Your C program cannot
create new OOPs directly — it must ask GemStone to create new OOPs
for it.

Converting Between Special Objects and C Values
Some Smalltalk classes encode their objects’ states directly in their OOPs:

 • SmallInteger objects (for example, the number 5)

 • Character (for example, the letter ‘b’)

 • Boolean values (true and false)

 • Instances of class UndefinedObject (such as nil)

The following GemBuilder functions and macros allow conversion between
Character, Integer, or Boolean objects and the equivalent C values:

GCI_BOOL_TO_OOP — (MACRO) Convert a C Boolean value to a GemStone
Boolean object.

GciByteArrayToPointer — Given a result from GciPointerToByteArray, return a
C pointer.

GCI_CHR_TO_OOP — (MACRO) Convert a C character value to a GemStone
Character object.

GciI64ToOop — Convert a C 64-bit integer value to a GemStone object.

GciOopToBool — Convert a Boolean object to a C Boolean value.
June 2011 VMware, Inc. 27

Representing Objects in C GemStone/S 64 Bit 3.0 GemBuilder for C
GCI_OOP_TO_BOOL — (MACRO) Convert a Boolean object to a C Boolean
value.

GciOopToChar16 — Convert a Character object to a 16-bit C character value.

GciOopToChr — Convert a Character object to a C character value.

GCI_OOP_TO_CHR — (MACRO) Convert a Character object to a C character
value.

GciOopToI32, GciOopToI32_ — Convert a GemStone object to a C 32-bit integer
value.

GciOopToI64, GciOopToI64_ — Convert a GemStone object to a C 64-bit integer
value.

GciPointerToByteArray — Given a C pointer, return a SmallInteger or ByteArray
containing the value of the pointer.

GciStringToInteger — Convert a C string to a GemStone SmallInteger,
LargePositiveInteger or LargeNegativeInteger object.

In addition, the following functions allow conversion between Float objects and
their equivalent C values. Although a Float’s OOP does not encode its state, these
functions are listed here for your convenience.

GciFltToOop — Convert a C double value to a SmallDouble or Float object.

GciOopToFlt — Convert a SmallDouble, Float, or SmallFloat object to a C double.

The following macros are for testing OOPs:

GCI_OOP_IS_BOOL — (MACRO) Determine whether or not a GemStone object
represents a Boolean value.

GCI_OOP_IS_SMALL_INT — (MACRO) Determine whether or not a GemStone
object represents a SmallInteger.

GCI_OOP_IS_SPECIAL — (MACRO) Determine whether or not a GemStone
object has a special representation.

The GemBuilder include file gcioop.ht uses the C mnemonics OOP_TRUE,
OOP_FALSE, and OOP_NIL to represent the GemStone objects true, false, and nil,
respectively.

In Example 1.1, assume that you have defined a Smalltalk class called Address that
represents a mailing address. If the class has five instance variables, the OOPs of
28 VMware, Inc. June 2011

Chapter 1 - Introduction Representing Objects in C
one instance of Address can be imported into a C array called address. Finally,
assume that the fifth instance variable represents the zip code of the address.

The fifth element of address is the OOP of the SmallInteger object that represents
the zip code, not the zip code itself. Example 1.1 imports the value of the zip code
object to the C variable zip.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).

Example 1.1

int64 example1_1(OopType addressId)
{
 // returns the zipcode or -1 if an error occurred,

 enum { addr_num_instVars = 5 };

 OopType instVars[addr_num_instVars];

 int numRet = GciFetchOops(addressId, 1, instVars,
addr_num_instVars);
 if (numRet != (int)addr_num_instVars)
 return -1;

 BoolType conversionError = FALSE;
 int64 zip = GciOopToI64_(instVars[4], &conversionError);
 if (! conversionError)
 return -1;

 // zip now contains an integer that has the same
 // value as the GemStone object represented by address[4]

 return zip;
}

Byte-Swizzling of Binary Floating-Point Values
If an application is running on a different machine than its Gem, the byte ordering
of binary floating-point values may differ on the two machines. To ensure the
correct interpretation of non-special floating-point objects when they are
June 2011 VMware, Inc. 29

Manipulating Objects in GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
transferred between such machines, the bytes need to be reordered (swizzled) to
match the machine to which they are transferred.

In GemStone, a binary float is an instance of class Float (eight bytes) or SmallFloat
(four bytes), or an instance of SmallDouble (a special object identifier that has no
body). Instances of Float and SmallFloat have byte-format bodies whose size is
fixed by GemStone and cannot be changed. The programmer must supply all the
bytes, or provide a C double, for a binary floating object when creating or storing it.

Most GemBuilder functions provide automatic byte swizzling for instances of
Float and SmallFloat. The following GemBuilder functions raise an error if you
pass a Float or SmallFloat object to them:

GciAppendBytes — Append bytes to a byte object. (page 124)

GciStoreByte — Store one byte in a byte object. (page 445)

GciStoreBytes — (MACRO) Store multiple bytes in a byte object. (page 447)

GciStoreChars — Store multiple ASCII characters in a byte object. (page 451)

The GciFetchBytes_ function does not raise an error if you pass an instance of
Float or SmallFloat to it, but it also does not provide automatic byte swizzling. It is
intended primarily for use with other kinds of byte objects, such as strings. If you
wish to use it with Floats or SmallFloats, you must perform your own byte
swizzling as needed.

1.4 Manipulating Objects in GemStone
GemBuilder provides functions that allow C applications to execute Smalltalk
code in the repository and to send messages directly to GemStone objects. This
section describes these functions in more detail.

Sending Messages to GemStone Objects
GemBuilder provides the function GciPerform, which sends a message to a
GemStone object. When GemStone receives a message, it invokes and executes the
method associated with that message. Thus, the code execution occurs in the
repository, not in the application. Example 1.2 illustrates this function.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).
30 VMware, Inc. June 2011

Chapter 1 - Introduction Manipulating Objects in GemStone
Example 1.2

void example_1_2(void)
{
 OopType userGlobals = GciResolveSymbol(“UserGlobals”, OOP_NIL);
 OopType aKey = GciNewSymbol(“myNumber”);
 OopType aValue = GciI32ToOop(55);

 OopType argList[2];
 argList[0] = aKey;
 argList[1] = aValue;

 /* Two statements that have the same effect when executed */
 OopType result = GciSendMsg(userGlobals, 4, “at:”, aKey, “put:”,
aValue);

 result = GciPerform(userGlobals, “at:put:”, argList, 2);
}

Executing Code in GemStone
Your C application can execute Smalltalk code by calling any of the following
GemBuilder functions:

GciExecute — Execute a Smalltalk expression contained in a String object.
(page 191)

GciExecuteFromContext — Execute a Smalltalk expression contained in a String
object as if it were a message sent to another object. (page 193)

GciExecuteStr — Execute a Smalltalk expression contained in a C string.
(page 195)

GciExecuteFromContext — Execute a Smalltalk expression contained in a C string
as if it were a message sent to an object. (page 198)

The GemBuilder function GciExecuteStr allows your application to send a C string
containing Smalltalk code to GemStone for compilation and execution. The
Smalltalk code may be a message expression, a statement, or a series of statements;
in sum, any self-contained unit of code that you could execute within a Topaz
PrintIt command.

GemStone uses the specified symbol list argument to bind any symbols contained
in the Smalltalk source. If the symbol list is OOP_NIL, GemStone uses the symbol
June 2011 VMware, Inc. 31

Manipulating Objects in GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
list associated with the currently logged-in user. Example 1.3 demonstrates the use
of this GemBuilder function.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).

Example 1.3

OopType example_1_3(void)
{
 // Pass the String to GemStone for compilation and execution.
 // If it succeeds, return the result of the expression shown
 // otherwise OOP_NIL will be returned.

 OopType objSize = GciExecuteStr(“ ^ myObject size “,
OOP_NIL/*use default symbolList*/);

 return objSize;
}

Your Smalltalk code has the same format as a method, and may include
temporaries. In addition, although the circumflex (^) character is used in the above
example to return a value after GemStone has executed Smalltalk code (myObject
size), the circumflex is not required. GemStone returns the result of the last
Smalltalk statement executed.

The other functions work similarly, with variations. Before you call GciExecute or
GciExecuteFromContext, you must create or modify a GemStone String object to
contain the Smalltalk text to be executed. The GciExecuteFromContext and
GciExecuteStrFromContext functions execute the Smalltalk code within the
context (scope) of a specified GemStone object, which implies that the code can
access the object’s instance variables.

Interrupting GemStone Execution
GemBuilder provides two ways for your application to handle repository
interrupts:

 • A soft break interrupts the Smalltalk virtual machine only. The only
GemBuilder functions that can recognize a soft break are GciPerform,
GciContinue, GciExecute, GciExecuteFromContext, GciExecuteStr, and
GciExecuteStrFromContext.
32 VMware, Inc. June 2011

Chapter 1 - Introduction Manipulating Objects in GemStone
 • A hard break interrupts the Gem process itself, and is not trappable through
Smalltalk exceptions.

Issuing a soft break may be desirable if, for example, your application sends a
message to an object (via GciPerform), and for some reason the invoked Smalltalk
method enters an infinite loop.

In order for GemBuilder functions in your program to recognize interrupts, your
program usually needs a signal handler that can call the functions GciSoftBreak
and GciHardBreak. Since GemBuilder generally does not relinquish control to an
application until it has finished its processing, soft and hard breaks are then
initiated from an interrupt service routine. Alternatively, if you are calling the non-
blocking GemBuilder functions, you can service interrupts directly within your
event loop, while awaiting the completion of a function.

If GemStone is executing when it receives the break, it replies with an error
message. If it is not executing, it ignores the break.

Modification of Classes
Some class definitions are more flexible than others. With respect to modification,
classes fall into three categories:

kernel classes — Predefined kernel classes cannot be modified. You can, however,
create a subclass of a kernel class and redefine your subclass’s behavior.

invariant classes — Once a class has been fully developed, it is normally invariant.
Class invariance does not imply that it is impervious to all change. You can
add or remove methods, method categories, class variables, or pool variables
to any class except a predefined kernel class. You can also create instances of
an invariant class.

modifiable classes — You can also create specially modifiable classes, a feature
that can be useful (for example) while you are defining schema or
implementing the classes. You can modify these classes in the same ways as
invariant classes, but you can also add or remove named instance variables.
However, you cannot create an instance of a modifiable class. To create an
instance, you must first change the class to invariant.

The GemStone Behavior class provides several methods for changing the
characteristics of modifiable classes. Use only these predefined methods — do
not use structural access to modify classes.
June 2011 VMware, Inc. 33

Manipulating Objects Through Structural Access GemStone/S 64 Bit 3.0 GemBuilder for C
1.5 Manipulating Objects Through Structural Access
As mentioned earlier in this chapter, GemBuilder provides a set of C functions that
enable you to do the following:

 • Import objects from GemStone to your C program

 • Create new GemStone objects

 • Directly access and modify the internal contents of objects through their C
representations

 • Export objects from your C program to the GemStone repository

You may need to use GemBuilder’s “structural access” functions for either of two
reasons:

 • Speed

Because they call on GemStone’s internal object manager without using the
Smalltalk virtual machine, the structural access functions provide the most
efficient possible access to individual objects.

 • Generality

If your C application must handle GemStone objects that it did not create,
using the structural access functions may be the only way you can be sure that
the components of those objects will be accessible to the application. A user
might, for example, define a subclass of Array in which at: and at:put: were
disallowed or given new meanings. In that case, your C application could not
rely on the standard GemStone kernel class methods to read and manipulate
the contents of such a collection.

Despite their advantages, you should use these structural access functions only if
you’ve determined that Smalltalk message-passing won’t do the job at hand.
GemBuilder’s structural access functions violate the principles of abstract data
types and encapsulation, and they bypass the consistency checks encoded in the
Smalltalk kernel class methods. If your C application unwisely alters the structure
of a GemStone object (by, for example, storing bytes directly into a floating-point
number), the object will behave badly and your application will break.

For the same reason, do not use structural access to change the characteristics of
modifiable classes. Use GciPerform to invoke the Smalltalk methods defined
under class Behavior for this specific purpose.

For security reasons, the GemStone object AllUsers cannot be modified using
structural access. If you attempt to do so, GemStone raises the
RT_ERR_OBJECT_PROTECTED error.
34 VMware, Inc. June 2011

Chapter 1 - Introduction Manipulating Objects Through Structural Access
Direct Access to Metadata
Your C program can use GemBuilder’s structural access functions to request
certain data about an object:

 • Class

Each object is an instance of some class. The class defines the behavior of its
instances. To find an object’s class, call GciFetchClass.

 • Format

GemStone represents the state of an object in one of four different
implementations (formats): byte, pointer, NSC (non-sequenceable collection),
or special. These implementations are described in greater detail in the
Programming Guide for GemStone/S 64 Bit. To find an object’s implementation,
call GciFetchObjImpl.

 • Size

The function GciFetchNamedSize returns the number of named instance
variables in an object, while GciFetchVaryingSize_ returns the number of
unnamed instance variables in an object. GciFetchSize_ returns the object’s
complete size (the sum of its named and unnamed variables).

The result of GciFetchSize_ depends on the object’s implementation
(“format”). For byte objects (such as instances of String or Float),
GciFetchSize_ returns the number of bytes in the object’s representation. For
pointer and NSC objects, this function returns the number of OOPs that
represent the object. For “special” objects (such as nil, or instances of
SmallInteger, Character, and Boolean), the size is always 0.

Byte Objects

GemStone byte objects (for example, instances of class String or Symbol) can be
manipulated in C as arrays of characters. The following GemBuilder functions
enable your C program to store into, or fetch from, GemStone byte objects such as
Strings:

GciAppendBytes — Append bytes to a byte object. (page 124)

GciAppendChars — Append a C string to a byte object. (page 125)

GciFetchByte — Fetch one byte from an indexed byte object. (page 204)

GciFetchBytes_ — Fetch multiple bytes from an indexed byte object. (page 206)
June 2011 VMware, Inc. 35

Manipulating Objects Through Structural Access GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchChars_ — Fetch multiple ASCII characters from an indexed byte object.
(page 209)

GciStoreByte — Store one byte in a byte object. (page 445)

GciStoreBytes — (MACRO) Store multiple bytes in a byte object. (page 447)

GciStoreChars — Store multiple ASCII characters in a byte object. (page 451)

Although instances of Float are implemented within GemStone as byte objects, use
the functions GciOopToFlt and GciFltToOop to convert between Float objects and
their equivalent C values.

Assume that the C variable suppId contains an OOP representing an object of class
String. Example 1.4 imports that String into the C variable suppName.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).

Example 1.4

void example_1_4(OopType suppId)
{
 char suppName[1025];
 int64 size = GciFetchBytes_(suppId, 1L, (ByteType*)suppName,

sizeof(suppName) - 1);
 suppName[size] = ‘\0’;

 // suppName now contains the bytes of the GemStone object
referenced
 // by suppId , or the first 1024 bytes whichever is less
}

Pointer Objects

In your C program, a GemStone pointer object is represented as an array of OOPs.
The order of the OOPs within the GemStone pointer object is preserved in the C
array. GemStone represents the following kinds of objects as arrays of OOPs:

Objects with Named Instance Variables

Any object with one or more named instance variables is represented as an array
of OOPs. You can determine the positional mapping of instance variables to
indexes within the OOP array by calling the GemBuilder function
36 VMware, Inc. June 2011

Chapter 1 - Introduction Manipulating Objects Through Structural Access
GciIvNameToIdx. The following GemBuilder functions allow your C program to
store into, or fetch from, GemStone pointer objects with named instance variables:

GciFetchNamedOop — Fetch the OOP of one of an object’s named instance
variables. (page 216)

GciFetchNamedOops — Fetch the OOPs of one or more of an object’s named
instance variables. (page 219)

GciStoreNamedOop — Store one OOP into an object’s named instance variable.
(page 459)

GciStoreNamedOops — Store one or more OOPs into an object’s named instance
variables. (page 462)

Indexable Objects

Any indexable object not implemented as a byte object is represented as an array
of OOPs. The following GemBuilder functions allow your C program to store into,
or fetch from, indexable pointer objects:

GciFetchVaryingOop — Fetch the OOP of one unnamed instance variable from an
indexable pointer object or NSC. (page 248).

GciFetchVaryingOops — Fetch the OOPs of one or more unnamed instance
variables from an indexable pointer object or NSC. (page 251).

GciStoreIdxOop — Store one OOP in an indexable pointer object’s unnamed
instance variable. (page 454).

GciStoreIdxOops — Store one or more OOPs in an indexable pointer object’s
unnamed instance variables. (page 456).
June 2011 VMware, Inc. 37

Manipulating Objects Through Structural Access GemStone/S 64 Bit 3.0 GemBuilder for C
In each of the following functions, if the indexable object contains named instance
variables, pointers to the named instance variables precede pointers to the
indexable instance variables.

GciFetchOop — Fetch the OOP of one instance variable of an object. (page 231)

GciFetchOops — Fetch the OOPs of one or more instance variables of an object.
(page 234)

GciStoreOop — Store one OOP into an object’s instance variable. (page 465)

GciStoreOops — Store one or more OOPs into an object’s instance variables.
(page 468)

Assume that the C variable currSup contains an OOP representing an object of class
Supplier (which defines seven named instance variables). Example 1.5 imports the
state of the Supplier object (that is, the OOPs of its component instance variables)
into the C variable instVar.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).

Example 1.5

void example_1_5(OopType currSup)
{
 enum { num_ivs = 7 };
 OopType instVars[num_ivs];

 int numRet = GciFetchNamedOops(currSup, 1L, instVars, num_ivs);
 if (numRet == 7) {
 // instVars now contains the OOPs of the seven instance
 // variables of the GemStone object referenced by currSup
 } else {
 // error occurred or currSup is not of expected class or size
 }
}

Nonsequenceable Collections (NSC Objects)

In addition to byte objects and pointer objects, GemStone exports objects
implemented as nonsequenceable collections (NSCs). NSC objects (for example,
instances of class IdentityBag and IdentitySet) reference other objects in a manner
38 VMware, Inc. June 2011

Chapter 1 - Introduction Manipulating Objects Through Structural Access
similar to pointer objects, except that the notion of order is not preserved when
objects are added to or removed from the collection.

The following GemBuilder functions allow your C program to store into, or fetch
from, GemStone NSC objects:

GciAddOopToNsc — Add an OOP to the unordered variables of a
nonsequenceable collection. (page 115)

GciAddOopsToNsc — Add multiple OOPs to the unordered variables of a
nonsequenceable collection. (page 117)

GciFetchOop — Fetch the OOP of one instance variable of an object. (page 231)

GciFetchOops — Fetch the OOPs of one or more instance variables of an object.
(page 234)

GciRemoveOopFromNsc — Remove an OOP from an NSC. (page 406)

GciRemoveOopsFromNsc — Remove one or more OOPs from an NSC. (page 408)

GciReplaceVaryingOops — Replace all unnamed instance variables in an NSC
object. (page 412)

Note that GemStone preserves the position of objects in an NSC only until the NSC
is modified, or until the session is terminated (whichever comes first). Although
you may use the functions GciFetchOops or GciFetchOop (defined for pointer
objects) to retrieve the OOPs of an NSC’s elements, you must use one of the
GciAddOopToNsc functions to modify the unnamed instance variables of an
NSC. (You can use the GciStoreOop, GciStoreOops, GciStoreNamedOop, and
GciStoreNamedOops functions to modify user-defined named instance variables
of an NSC. You cannot, however, use these functions to modify the named instance
variables defined in class IdentityBag.)

Assume that the C variable mySuppSet contains an OOP representing an object of
class SupplierSet (a large set of Supplier objects). Example 1.6 exports the contents
of the C variable newSupp (a Supplier object) into that SupplierSet.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).
June 2011 VMware, Inc. 39

Creating Objects GemStone/S 64 Bit 3.0 GemBuilder for C
Example 1.6

void example_1_6(OopType mySuppSet, OopType newSupp)
{
 GciAddOopToNsc(mySuppSet, newSupp);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // an error occurred
 } else {
 // The instance of SupplierSet referenced by mySuppSet now
contains
 // the OOP of the object newSupp.
 }
}

1.6 Creating Objects
The following GemBuilder functions allow your C program to create instances of
Smalltalk classes:

GciNewOop — Create a new GemStone object.

GciNewOops — Create multiple new GemStone objects.

GciNewOopUsingObjRep — Create a new GemStone object from an existing
object report.

Your C application may also create a new object by executing some Smalltalk code
that creates new objects as a side-effect.

Once your application has created a new object, it can export the object to the
repository by performing the following steps:

Step 1. Modify a previously committed object in the repository so that it
references the new object. This may be accomplished with a call to one of the
GciStore... functions, or by sending a Smalltalk message with the new object
as an argument, where the invoked method changes a committed object to
reference the new object.

Step 2. Give the new object some meaningful state.
40 VMware, Inc. June 2011

Chapter 1 - Introduction Fetching and Storing Objects
Step 3. Commit a transaction. (As mentioned earlier in this chapter, your C
program must first export the object to the GemStone repository before
attempting to commit the transaction.)

1.7 Fetching and Storing Objects

Efficient Fetching and Storing with Object Traversal
The functions described in the preceding sections allow your C program to import
and export the components of a single GemStone object. When your application
needs to obtain information about multiple objects in the repository, it can
minimize the number of network calls by using GemBuilder’s object traversal
functions.

NOTE:
If you are using GciLnk (the “linkable” GemBuilder), object traversal
will be of little benefit to you. For details, see “GciRpc and GciLnk” on
page 53.

Suppose, for example, that you had created a GemStone Employee class like the
one in Example 1.7.

This example assumes that you already have a valid session (obtained
from the successful execution of GciLogin).

Example 1.7

 Object subclass: ‘Employee’
 instVarNames: #(‘name’ ‘empNum’ ‘jobTitle’
 ‘department’ ‘address’ ‘favoriteTune’)
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals

Imagine that you needed to write C code to make a two-column display of job titles
and favorite tunes. By using GemBuilder’s “object traversal” functions, you can
minimize the number of network fetches and avoid running the Smalltalk virtual
machine.
June 2011 VMware, Inc. 41

Fetching and Storing Objects GemStone/S 64 Bit 3.0 GemBuilder for C
How Object Traversal Works

To understand the object traversal mechanism, think of each GemStone pointer
object as the root of a tree (for now, ignore the possibility of objects containing
themselves). The branches at the first level go to the object’s instance variables,
which in turn are connected to their own instance variables, and so on.

Figure 1.2 illustrates a piece of the tree formed by an instance of Employee.

Figure 1.2 Object Traversal and Paths

departmentname address

myEmp

'Bob'

first

'Jones'

last

'welding'

deptName

'3333'

phone

'Elm'

street

'97333'

zip

'Am I Blue'

favoriteTune

'welder'

jobTitle

'255'

empNum

In a single call, GemStone’s internal object traversal function walks such a tree
post-depth-first to some specified level, building up a “traversal buffer” that is an
array of “object reports” describing the classes of the objects encountered and the
values of their contents. It then returns that traversal buffer to your application for
selective extraction and processing of the contents.

Thus, to make your list of job titles and favorite tunes with the smallest possible
amount of network traffic per employee processed, you could ask GemStone to
traverse each employee to two levels (the first level is the Employee object itself
and the second level is that object’s instance variables). You could then pick out the
object reports describing jobTitle and favoriteTune, and extract the values stored by
those reports (welder and Am I Blue respectively).

This approach would minimize network traffic to a single round trip.

One further optimization is possible: instead of fetching each employee and
traversing it individually to level two, you could ask GemStone to begin traversal
42 VMware, Inc. June 2011

Chapter 1 - Introduction Fetching and Storing Objects
at the collection of employees and to descend three levels. That way, you would get
information about the whole collection of employees with just a single call over the
network.

The Object Traversal Functions

The function GciTraverseObjs traverses object trees rooted at a collection of one
or more GemStone objects, gathering object reports on the specified objects into a
traversal buffer.

 • Traversal buffers are instances of the C++ class GciTravBufType, which is
defined in $GEMSTONE/include/gcicmn.ht. (For details about
GciTravBufType, see page 100.)

 • Object reports within the traversal buffer are described by the C++ classes
GciObjRepSType and GciObjRepHdrSType, which are defined in
$GEMSTONE/include/gci.ht. (For details about these classes, see page 94.)

Each object report provides information about an object’s identity (its OOP), class,
size (the number of instance variables, named plus unnamed), object security
policy id, implementation (byte, pointer, NSC, or special), and the values stored in
its instance variables.

When the amount of information obtained in a traversal exceeds the amount of
available memory, your application can break the traversal into manageable
amounts of information by issuing repeated calls to GciMoreTraversal. Generally
speaking, an application can continue to call GciMoreTraversal until it has
obtained all requested information.

Your application can call GciFindObjRep to scan a traversal buffer for an
individual object report. Before it allocates memory for a copy of the object report,
your program can call GciObjRepSize_ to obtain the size of the report.

The function GciStoreTrav allows you to store values into any number of existing
GemStone objects in a single network round trip. That function takes a traversal
buffer of object reports as its argument.

The function GciStoreTravDo is even more parsimonious of network resources. In
a single network round trip, you can store values into any number of existing
GemStone objects, then execute some code; the function returns a pointer to the
resulting object. That function takes a structure as its argument, which defines
traversal buffer of object reports and an execution string or message. After the
function has completed, the structure also contains information describing the
GemStone objects that have changed.
June 2011 VMware, Inc. 43

Nonblocking Functions GemStone/S 64 Bit 3.0 GemBuilder for C
Efficient Fetching And Storing with Path Access
As you’ve seen, object traversal is a powerful tool for fetching information about
multiple objects efficiently. But writing the code for parsing traversal buffers and
object reports may not always be simple. And even if you can afford the memory
for importing unwanted information, the processing time spent in parsing that
information into object reports may be unacceptable.

Consider the Employee object illustrated in the Figure 1.2. If your job were to
extract a list of job titles and favorite tunes from a set of such Employees, it would
be reasonable to use GemBuilder’s object traversal functions (as described above)
to get the needed information. The time spent in building up object reports for the
unwanted portions would probably be negligible. Suppose, however, that there
were an additional 200 instance variables in each Employee. Then the time used in
processing wasted object reports would far exceed the time spent in useful work.

Therefore, GemBuilder provides a set of path access functions that can fetch or
store multiple objects at selected positions in an object tree with a single call across
the network, bringing only the desired information back. The function
GciFetchPaths lets you fetch selected components from a large set of objects with
only a single network round trip. Similarly, your program can call GciStorePaths
to store new values into disparate locations within a large number of GemStone
objects.

1.8 Nonblocking Functions
Under most circumstances, when an application calls a GemBuilder function, the
operation that the function specifies is completed before the function returns
control to the application. That is, the GemBuilder function blocks the application
from proceeding until the operation is finished. This effect guarantees a strict
sequence of execution.

Nevertheless, in most cases a GemBuilder function calls upon GemStone (that is,
the Gem) to perform some work. If the Gem and the application are running in
different processes, especially on different machines, blocking implies that only
one process can accomplish work at a time. GemBuilder’s nonblocking functions
were designed to take advantage of the opportunity for concurrent execution in
separate Gem and application processes.

The results of performing an operation through a blocking function or through its
nonblocking twin are always the same. The difference is that the nonblocking
function does not wait for the operation to complete before it returns control to the
session. Since the results of the operation are probably not ready when a
44 VMware, Inc. June 2011

Chapter 1 - Introduction Nonblocking Functions
nonblocking function returns, all nonblocking functions but one (GciNbEnd)
return void.

While a nonblocking operation is in progress an application can do any kind of
work that does not require GemBuilder. In fact, it can also call a limited set of
GemBuilder functions, listed as follows:

GciCallInProgress
GciErr
GciGetSessionId
GciHardBreak
GciNbEnd
GciSetSessionId
GciShutdown
GciSoftBreak

If the application first changes sessions, and that session has no nonblocking
operation in progress, then the application can call any GemBuilder function,
including a nonblocking function. GemBuilder supports one repository request at
a time, per session. However, nonblocking functions do not implement threads,
meaning that you cannot have multiple concurrent repository requests in progress
within a single session. If an application calls any GemBuilder function besides
those listed here while a nonblocking operation is in progress in the current
session, the error GCI_ERR_OP_IN_PROGRESS is generated.

Once a nonblocking operation is in progress, an application must call GciNbEnd
at least once to determine the operation’s status. Repeated calls are made if
necessary, until the operation is complete. When it is complete, GciNbEnd hands
the application a pointer to the result of the operation, the same value that the
corresponding blocking call would have returned directly.

Nonblocking functions are not truly nonblocking if they are called from a linkable
GemBuilder session, because the Gem and GemBuilder are part of the same
process. However, those functions can still be used in linkable sessions. If they are,
GciNbEnd must still be called at least once per nonblocking call, and it always
indicates that the operation is complete.

All error-handling features are supported while nonblocking functions are used.
Errors may be signalled either when the nonblocking function is called or later
when GciNbEnd is called.
June 2011 VMware, Inc. 45

Operating System Considerations GemStone/S 64 Bit 3.0 GemBuilder for C
1.9 Operating System Considerations
Like your C application, GemBuilder for C is, in itself, a body of C code. Some
aspects of the interface must interact with the surrounding operating system. The
purpose of this section is to point out a few places where you must code with
caution in order to avoid conflicts.

Signal Handling in Your GemBuilder Application
Under UNIX, it is important that signals be enabled when your code calls
GemBuilder functions. Disabling signals has the effect of disabling much of the
error handling within GemBuilder. Because signal handlers can execute at
arbitrary points during execution of your application, your signal handling code
should not call any GemBuilder functions other than GciSoftBreak,
GciHardBreak, or GciCallInProgress.

GciInit always installs a signal handler for SIGIO. This handler chains to any
previous handler.

In the linkable (GciLnk) configuration, GciInit also does the following:

 • Installs handlers to service and ignore these signals (if no previous handler is
found): SIGPIPE, SIGHUP, SIGDANGER

 • Installs handlers to treat the following signals as fatal errors if they are defined
by the operating system: SIGTERM, SIGXCPU, SIGABRT, SIGXFSZ,
SIGXCPU, SIGEMT, SIGLOST

 • Installs a handler for SIGUSR1. If you have a valid linkable session, SIGUSR1
will cause the Smalltalk interpreter to print the current Smalltalk stack to
stdout or to the Topaz output file. This handler chains to any previous handler.

 • Installs a handler for SIGUSR2, which is used internally by a Gemstone
session. This handler chains to any previous handler.

 • Installs a handler to gracefully handle SIGCHLD if no previous handler is
found.

 • Installs a handler to treat SIGFPE as a fatal error if no previous handler is
found.

 • Installs handlers for SIGILL and SIGBUS. If the program counter is found to be
in libgci*.so code, or if no previous handler is available to chain to, these are
fatal errors.

 • Installs a handler for SIGSEGV. A Smalltalk stack overflow produces a
SIGSEGV, which is translated to a Smalltalk stack overflow error. If the
46 VMware, Inc. June 2011

Chapter 1 - Introduction Operating System Considerations
program counter is found to be in libgci*.so code, or if no previous handler is
available to chain to, SEGV is a fatal error.

If your application installs a handler for SIGIO after calling GciInit, your handler
must chain to the previously existing handler.

If your application uses Linkable GCI and installs any signal handlers after calling
GciInit, you must chain to the previously existing handlers. If you install handlers
for SIGSEGV, SIGILL or SIGBUS, your handler must determine if the program
counter at the point of the signal is in your own C or C++ code and if not, must
chain to the previously existing handler. You must only treat these signals as fatal
if the program counter is in your own code.

If you are linking with other shared libraries, it is recommended that GciInit be
called after all other libraries are loaded.

Executing Host File Access Methods
If you use GciPerform or any of the GciExecute... functions to execute a Smalltalk
host file access method (as listed below), and you do not supply a full file
pathname as part of the method argument, the default directory for the Smalltalk
method depends on the version of GemBuilder that you are running. With GciLnk,
the default directory is the directory in which the Gem (GemStone session) process
was started. With GciRpc, the default directory is the home directory of the host
user account, or the #dir specification of the network resource string. The
Smalltalk methods that are affected include
System class>>performOnServer: and the file accessing methods
implemented in GsFile. See the file I/O information in the Programming Guide for
GemStone/S 64 Bit.

Writing Portable Code
If you want to produce code that can run in both 32-bit and 64-bit environments,
observe the following guidelines:

 • Don’t hard-code size computations. Instead, use sizeof operations, so that if
some structure changes, your code will still return the correct values.

 • If you are using printf strings to print 64-bit integers, you might find it
convenient to use the FMT_* macros in $GEMSTONE/include/gcicmn.ht.
Those macros help you to compose a format string for a printf that will be
portable. In particular, use of the FMT_ macros make the printing of 64-bit
integers portable between Windows and UNIX.
June 2011 VMware, Inc. 47

Error Handling and Recovery GemStone/S 64 Bit 3.0 GemBuilder for C
 • To avoid discrepancies between 32-bit and 64-bit environments, avoid the use
of long or unsigned long in your code. Instead, you can use the type
intptr_t, which makes the variable the same size as a pointer, regardless
whether your application is running in 32-bit or 64-bit. Alternatively, you can
use int64 or int to fix the size of the variable explicitly.

1.10 Error Handling and Recovery
Your C program is responsible for processing any errors generated by GemBuilder
function calls.

The GemBuilder include file gcierr.ht documents and defines mnemonics for
all GemStone errors. Search the file for the mnemonic name or error number to
locate an error in the file. The errors are divided into five groups: compiler, run-
time (virtual machine), aborting, fatal, and event.

GemBuilder provides functions that allow you to poll for errors or to use error
jump buffers. The following paragraphs describe both of these techniques.

Polling for Errors
Each call to GemBuilder can potentially fail for a number of reasons. Your program
can call GciErr to determine whether the previous GemBuilder call resulted in an
error. If so, GciErr will obtain full information about the error. If an error occurs
while Smalltalk code is executing (in response to GciPerform or one of the
GciExecute... functions), your program may be able to continue Smalltalk
execution by calling GciContinue.

Error Jump Buffers
When your program makes three or more GemBuilder calls in sequence, jump
buffers provide significantly faster performance than polling for errors.

When your C program calls Gci_SETJMP, the context of the current C
environment is saved in a jump buffer designated by your program. GemBuilder
maintains a stack of up to 20 error jump buffers. A buffer is pushed onto the stack
when GciPushErrJump is called, and popped when GciPopErrJump is called.
When an error occurs during a GemBuilder call, the GemBuilder implementation
calls GciLongJmp using the buffer currently at the top of GemBuilder’s error jump
stack, and pops that buffer from the stack.

For functions with local error recovery, your program can call GciSetErrJump to
temporarily disable the GciLongJmp mechanism (and to re-enable it afterwards).
48 VMware, Inc. June 2011

Chapter 1 - Introduction Garbage Collection
Whenever the jump stack is empty, the application must use GciErr to poll for any
GemBuilder errors.

The Call Stack
The Smalltalk virtual machine creates and maintains a call stack that provides
information about the state of execution of the current Smalltalk expression or
sequence of expressions. The call stack includes an ordered list of activation
records related to the methods and blocks that are currently being executed. The
virtual machine ordinarily clears the call stack before each new expression is
executed.

If a soft break or an unexpected error occurs, the virtual machine suspends
execution, creates a Process object, and raises an error. The Process object
represents both the Smalltalk call stack when execution was suspended and any
information that the virtual machine needs to resume execution. If there was no
fatal error, your program can call GciContinue to resume execution. Call
GciClearStack instead if there was a fatal error, or if you do not want your
program to resume the suspended execution.

GemStone System Errors
If your application receives a GemStone system error while linked with GciLnk,
relink your application with GciRpc and run it again with an uncorrupted copy of
your repository. Your GemStone system administrator can refer to the repository
backup and recovery procedures in the System Administration Guide for GemStone/S
64 Bit.

If the error can be reproduced, contact GemStone Customer Support. Otherwise,
the error is in your application, and you need to debug your application before
using GciLnk again.

1.11 Garbage Collection
GemStone performs automatic garbage collection via several mechanisms, which
are discussed more fully in the chapter “GemStone Garbage Collection” in the
System Administration Guide for GemStone/S 64 Bit.

In-memory garbage collection of non-persistent temporary objects occurs
regularly, to avoid low and out of memory issues. If newly created or temporary
objects are not referenced, they run the risk of being garbage collected and
disappearing prematurely during in-memory garbage collection. To avoid this
June 2011 VMware, Inc. 49

Garbage Collection GemStone/S 64 Bit 3.0 GemBuilder for C
problem GemStone uses several internal sets: the PureExportSet, the GciTrackedObjs
set, and the user action’s export set.

Before removing any objects, the GemStone in-memory garbage collector checks
the PureExportSet and the GciTrackedObjs set in the user session’s workspace, and
if in a user action, the user action’s export set. Any object in these sets is considered
to be referenced. The garbage collector does not remove objects that are in these
sets, or objects that are referenced by a persistent object. It also does not remove
any additional objects that they refer to, or more objects that those additional
objects refer to, and so on.

Some functions will automatically add the objects which they return to the export
sets. Objects may also be added and removed explicitly. Objects are automatically
added to an export set in these cases:

 • The results of GciNew*, GciCreate*, GciSend*, GciPerform*, GciExecute* and
GciResolve* calls are automatically added to the applicable export set - either
the PureExportSet, or if the function is called from within a user action, to the
user action’s export set.

 • Objects returned in the report buffer of a GciFetchObjectInfo or
GciClampedTrav when GCI_RETRIEVE_EXPORT flag is set will be added to
the PureExportSet or the user action’s export set.

 • When the function

 GciErr(GciErrSType *errorReport);

returns TRUE, values of type OopType in the *errorReport are added to the
applicable export set.

All of these functions return their results to the C application in the form of one or
more OOPs (objects), through either return values or output parameters. To
protect these result objects from premature garbage collection, GemBuilder
automatically adds all of them to the applicable export set. GemBuilder does not
automatically add other objects to the export sets; the application should be careful
to explicitly call the GciSaveObjs or GciSaveGlobalObjs function when it needs
to be sure to retain an object that is not already in an export set.

Objects that are the contents of instance variables, such as objects returned from a
call to GciFetchOops, are not added to the export sets. These are already referenced
from the object whose instance variable references them. Note however that these
objects are cached in your C code, and the values may no longer be valid if the
referencing object becomes dirty due to an abort or commit.
50 VMware, Inc. June 2011

Chapter 1 - Introduction Preparing to Execute GemStone Applications
Persistent objects may be added to any of the three sets, in which case they are
protected from garbage collection on persistent objects, such as
markForCollection.

In a user action, some of these functions behave differently. When these functions
are called from within a user action, the objects are added to the user action’s
export set to prevent them from being garbage collected, rather than to the
PureExportSet. When the user action comes to an end, the user action’s export set
ceases to exist and the objects it contained may be garbage collected. This avoids
the risk of objects not being released and consuming excess memory, for example
if the user action exits with an unexpected error. In order to prevent objects saved
from within a user action from being released prematurely, the user action can
explicitly call GciSaveGlobalObjs, which will save them to the PureExportSet
regardless of the user action context.

Once the objects in the GciTrackedObjs or in the export sets are no longer needed,
the application can improve performance and avoid out of memory issues by
calling the GciRelease... functions, to reduce the size of the set and permit garbage
collection of obsolete temporaries.

1.12 Preparing to Execute GemStone Applications
The following information includes the requirements and recommendations for
preparing your environment to execute C applications for GemStone. Your
application may have additional requirements, such as environment variables that
it uses.

GemStone Environment Variables
Anyone who runs a GemStone application or process is responsible for setting the
following environment variables:

GEMSTONE — A full pathname to your GemStone installation directory.

PATH — Add the GemStone bin directory to your path.

The following environment variables influence the behavior of GemStone and
GemBuilder. You may wish to supply values or defaults for them when you or
your users run your application or a Gem.

GEMSTONE_EXE_CONF — (not for RPC applications) A full path to a special
GemStone configuration file for an executable, if any. See the System Administration
Guide for GemStone/S 64 Bit for details.
June 2011 VMware, Inc. 51

Preparing to Execute GemStone Applications GemStone/S 64 Bit 3.0 GemBuilder for C
GEMSTONE_SYS_CONF — (not for RPC applications) a full path to a special
GemStone configuration file for your system, if any. See the System Administration
Guide for GemStone/S 64 Bit for details.

GEMSTONE_NRS_ALL — A network resource string — a means for identifying
certain GemStone file and process information. It can identify the name of the
script to run to start an RPC Gem. See the System Administration Guide for GemStone/S
64 Bit for details.
52 VMware, Inc. June 2011

Chapter

2 Building Applications
with
GemBuilder for C
This chapter explains how to use GemBuilder to build your C application. Two
versions of GemBuilder for C are available to you: GciLnk (the linked version) and
GciRpc (the RPC version).

2.1 GciRpc and GciLnk
With GciRpc, your application exists in a process separate from the Gem. The two
processes communicate through remote procedure calls. With GciLnk, your
application and default Gem (the GemStone session) exist as a single process. Your
application is expected to provide the main entry point. You can also run RPC
Gems when you use GciLnk.

With GciRpc, because networking software is used for the remote procedure call
to the Gem process, there’s a fixed overhead (many milliseconds) associated with
each GemBuilder call, independent of whatever object access is performed or
Smalltalk code is executed.

The function GciIsRemote reports whether your application was linked with
GciRpc — the “remote procedure call” version of GemBuilder — or GciLnk. The
following paragraphs explain some of the differences between these two versions
of GemBuilder.
June 2011 VMware, Inc. 53

The GemBuilder Shared Libraries GemStone/S 64 Bit 3.0 GemBuilder for C
Use GciRpc for Debugging
When debugging a new application, you must use GciRpc. You should use GciLnk
only after your application has been properly debugged.

When using an RPC Gem, you usually achieve the best performance by using
functions such as GciTraverseObjs, GciStoreTrav, and GciFetchPaths. Those
functions are designed to reduce the number of network round-trips through
remote procedure calls.

Use GciLnk for Performance
You can use the linked, single-Gem configuration to enhance performance
significantly. With GciLnk, a GemBuilder function call is a machine-instruction
procedure call (with overhead measured in microseconds) rather than a remote
call over the network to a different process.

WARNING!
Before using GciLnk, debug your C code in a process that does not
include a Gem! For more information, see section “Risk of Database
Corruption” on page 81.

With GciLnk, you usually achieve the best performance by using the simple
GciFetch... and GciStore... functions instead of the complex object traversal
functions. This makes the application easier to write.

However, you can also run RPC Gems under GciLnk, when you login to GemStone
multiple times. The complex traversal functions should perform better in those
sessions.

Multiple GemStone Sessions
If your application will be running multiple GemStone sessions simultaneously, or
if you will need to run your application and the GemStone session on separate
machines, then you will need to use either the GciRpc (remote procedure call)
version of GemBuilder, or a non-default login session from GciLnk.

2.2 The GemBuilder Shared Libraries
The two versions of GemBuilder are provided as a set of shared libraries. A shared
library is a collection of object modules that can be bound to an executable, usually
at run time. The contents of a shared library are not copied into the executable.
54 VMware, Inc. June 2011

Chapter 2 - Building Applications with GemBuilder for C Binding to GemBuilder at Run Time
Instead, the library’s main function loads all of its functions. Only one copy is
loaded into memory, even if multiple client processes use the library at the same
time. Thus, they “share” the library.

The GemBuilder library files libgcilnk.* and libgcirpc.* reside in
$GEMSTONE/lib.

2.3 Binding to GemBuilder at Run Time
Shared libraries are generally bound to their application at run time. The binding
is done by code that is part of the application. If that code is not executed, the
shared library is not loaded. With this type of binding, applications can decide at
run time which GemBuilder library to use. They can also unbind at run time and
rebind to the same or different shared libraries. The code is free to handle a run-
time-bind error however it sees fit.

Building the Application
To build an application that run-time-binds to GemBuilder:

1. Include gcirtl.hf (not gci.hf) in the C source code.

However, applications are free to use their own run-time-bind interface
instead of gcirtl, which is meant to be used from C. For example, a Smalltalk
application would use the mechanism provided by the Smalltalk vendor to call
a shared library.

2. Call GciRtlLoad(useRpc, ...) to load the RPC GemBuilder (if useRpc)
or the linked GemBuilder (if not useRpc).

Call GciRtlLoad before any other GemBuilder calls. Call GciRtlUnload to
unload the current version of GemBuilder.

3. Link with gcirtlobj.o, not one of the GemBuilder libraries
(libgcirpc.* and libgcilnk.*).

Chapter 4, “Compiling and Linking,” tells how to compile and link your
application.
June 2011 VMware, Inc. 55

Binding to GemBuilder at Run Time GemStone/S 64 Bit 3.0 GemBuilder for C
Searching for the Library
At run time the gcirtl code searches for the GemBuilder library in the following
places:

1. Any directories specified by the application with GciRtlLoad.

2. The $GEMSTONE/lib directory.

3. The normal operating system search, as described in the following sections.

How UNIX Matches Search Names with Shared Library Files

The UNIX operating system loader searches the following directories for matching
file names, in this order:

1. Any path specified by an environment variable:

LD_LIBRARY_PATH Solaris, Linux or AIX

LD_LIBRARY_PATH or SHLIB_PATH HP-UX

2. Any path recorded in the executable when it was built.

3. The global directory /usr/lib.
56 VMware, Inc. June 2011

Chapter

3 Writing C Functions
To Be Called from
GemStone
For certain operations, you may choose to write a C function rather than to
perform the work in GemStone. For example, operations that are computationally
intensive or are external to GemStone can be written as C functions and called from
within a Smalltalk method (whose high-level structure and control is written in
Smalltalk). This approach is similar to the concept of “user-defined primitives”
offered by some other object-oriented systems.

This chapter describes how to implement C user action functions that can be called
from GemStone, and how to call those functions from a GemBuilder application or
a Gem (GemStone session) process.

3.1 Shared User Action Libraries
Although user actions can be linked directly into an application, they are usually
placed in shared libraries so they can be loaded dynamically. The contents of a
library are not copied into the executable. Instead, the library’s main function loads
all of its user actions. Only one copy is loaded into memory, even if multiple client
processes use the library at the same time. See Chapter 2, “Building Applications
with GemBuilder for C,” for more information.
June 2011 VMware, Inc. 57

How User Actions Work GemStone/S 64 Bit 3.0 GemBuilder for C
User action libraries are used in two ways: They can be application user actions,
which are loaded by the application process, or session user actions, which are
loaded by the session process. The operation that is used to load the library
determines which type it is, not any quality of the library itself. Application and
Gem executables can load any library.

Application user actions are the traditional GemStone user actions. They are used
by the application for communication with the Gem or for an interactive interface
to the user.

Session user actions add new functionality to the Gem, something like the
traditional custom Gem. The difference here is that you only need one Gem, which
can customize itself at run time. It loads the appropriate libraries for the code it is
running. The decisions are made automatically within GemStone Smalltalk, rather
than requiring the users to decide what Gem they need before they start their
session.

3.2 How User Actions Work
Here’s a quick overview of the sequence of events when a user action function is
executed:

1. The Gem or your C application program initiates GemStone Smalltalk
execution by calling one of the following functions: GciExecute,
GciExecuteStr, GciExecuteStrFromContext, GciPerform, or GciContinue.

2. Your GemStone Smalltalk code invokes a user action function (written in C) by
sending a message of the form:
System userAction: aSymbol with: args

The args arguments are passed to the C user action function named aSymbol.
(You must have already initialized that function before logging in to
GemStone. See “Loading User Actions” on page 63.)

3. The C user action function can call any GemBuilder functions and any C
functions provided in the application or the libraries loaded by the application
(for application user actions), or provided in the libraries loaded by the Gem
(for session user actions).

Specifically, the C user action function can call GemBuilder’s structural access
functions (GciFetch... and GciStore..., etc.) to read or modify, respectively, any
objects that were passed as arguments to the user action.

If a GemBuilder or other GemStone error is encountered during execution of
the user action, control is returned to the Gem or your GemBuilder application
58 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
as if the error had occurred during the call to GciExecute (or whichever
GemBuilder function executed the GemStone Smalltalk code in step 1).

4. The C user action function must return an OopType as the function result, and
must return control directly to the Smalltalk method from which it was called.

NOTE:
Results are unpredictable if the C function uses GCI_LONGJMP
instead of returning control to the GemStone Smalltalk virtual machine.

3.3 Developing User Actions
For your GemStone application to take advantage of user action functions, you do
the following:

Step 1. Determine which operations to perform in C user action functions rather
than in Smalltalk. Then write the user action functions.

Step 2. Create a user action library to package the functions.

Step 3. Provide the code to load the user action library.

 • If the application is to load the library, add the loading code to your
application.

 • If the session is to load the library, use the GemStone Smalltalk method
System class>>loadUserActionLibrary: for loading.

Step 4. Write the Smalltalk code that calls your user action. Commit it to your
GemStone repository.

Step 5. Debug your user action.

The following sections describe each of these steps.

Write the User Action Functions
Writing a C function to install as a user action called from Smalltalk is little
different from writing other C functions. However, one important difference
exists: user actions cannot reliably retain references to objects they create. The
application that called the user action (whether written in C, Java, or Smalltalk)
controls the export set—the set of OOPs to save after execution completes.
Therefore, make sure your C application treats all argument and result objects of a
user action as temporary objects. Don’t save the OOPs in static C variables for use
by a subsequent invocation of the user action or by another C function.
June 2011 VMware, Inc. 59

Developing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
Don’t rely on GciSaveObjs to make the objects persistent. The application that
called the user action can still call GciReleaseOops on the object that the user
action needs to retain (or GciReleaseAllOops to release all objects at once).

To make a newly created object a permanent part of the GemStone repository, the
user action has two options:

 • Store the OOP of the new object into an object known to be permanent, such as
a collection created by the calling application (for example, a collection created
in Smalltalk and committed to the repository).

 • Return the OOP of the object as the function result.

After a user action returns, the persistence of the new object is determined by the
normal semantics of the calling application.

If you are working in GemBuilder for Smalltalk, you can also explicitly save these
user action objects by populating a collection in the user-definable portion of
System sessionState using System > sessionStateAt:put:. Your user
action can retain references to objects that you add to this collection in this way.

Create a User Action Library
Whether you have one user action or many, the way in which you prepare and
package the source code for execution has significant effects upon what uses you
can make of user actions at run time. It is important to visualize your intended
execution configurations as you design the way in which you package your user
actions.

To build a user action library:

1. Include gciua.hf in your C source code.

2. Define the initialization and shutdown functions.

3. Compile with shared library switches.

4. Link with gciualib.o and shared library switches.

5. Install the library in the $GEMSTONE/ualib directory.

The gciua.hf Header File

User action libraries must always include the gciua.hf file, rather than the
gci.hf or gcirtl.hf file. Using the wrong file causes unpredictable results.
60 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
The Initialization and Shutdown Functions

A user action library must define the initialization function GciUserActionInit
and the shutdown function GciUserActionShutdown.

Do not call GciInit, GciLogin, or GciLogout within a user action.

Defining the Initialization Function

Example 3.1 shows how the initialization function GciUserActionInit is defined,
using the macro GCIUSER_ACTION_INIT_DEF. This macro must call
GciDeclareAction once for each function in the set of user actions.

Example 3.1

static OopType doParse(void)
{
 return OOP_NIL;
}
static OopType doFetch(void)
{
 return OOP_NIL;
}

GCIUSER_ACTION_INIT_DEF()
{
 GciDeclareAction(“doParse”, doParse, 1, 0, TRUE);
 GciDeclareAction(“doFetch”, doFetch, 1, 0, TRUE);
 // ...
}

GciDeclareAction associates the Smalltalk name of the user action function
userActionName (a C string) with the C address of that function, userActionFunction,
and declares the number of arguments that the function takes. A call to
GciDeclareAction looks similar to this:

GciDeclareAction("userActionName", userActionFunction, 1, 0, TRUE)

The function installs the user action into a table of such functions that GemBuilder
maintains. Once a user action is installed, it can be called from GemStone.

The name of the user action, “userActionName”, is a case-sensitive, null-terminated
string that corresponds to the symbolic name by which the function is called from
June 2011 VMware, Inc. 61

Developing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
Smalltalk. The name is significant to 31 characters. It is recommended that the
name of the user action be the same as the C source code name for the function,
userActionFunction.

The third argument to GciDeclareAction indicates how many arguments the C
function accepts. This value should correspond to the number of arguments
specified in the Smalltalk message. When it is 0, the function argument is void.
Similarly, a value of 1 means one argument. The maximum number of arguments
is 8. Each argument is of type OopType.

The fourth argument to GciDeclareAction is rarely used. The final argument
indicates whether to return an error if there is already a user action with the
specified name.

Your user action library may call GciDeclareAction repeatedly to install multiple
C functions. Each invocation of GciDeclareAction must specify a unique
userActionName. However, the same userActionFunction argument may be used in
multiple calls to GciDeclareAction.

Defining the Shutdown Function

The shutdown function GciUserActionShutdown is defined by the
GCIUSER_ACTION_SHUTDOWN_DEF macro. GciUserActionShutdown is
called when the user action library is unloaded. It is provided so the user action
library can clean up any system resources it has allocated. Do not make
GemBuilder C calls from this function, because the session may no longer exist. In
fact, GciUserActionShutdown can be left empty. Example 3.2 shows a shutdown
definition that does nothing but report that it has been called.

Example 3.2

#include “gciuser.hf”

GCIUSER_ACTION_SHUTDOWN_DEF()
{
 /* Nothing needs to be done. */
 fprintf(stderr, “GciUserActionShutdown called.\n”);
}

62 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
Compiling and Linking Shared Libraries

Shared user actions are compiled for and linked into a shared library. See
Chapter 4, “Compiling and Linking,” for instructions.

Be sure to check the output from your link program carefully. Linking with shared
libraries does not require that all entry points be resolved at link time. Those that
are outside of each shared library await resolution until application execution
time, or even until function invocation time. You may not find out about incorrect
external references until run time.

Using Existing User Actions in a User Action Library

With slight modifications, existing user action code can be used in a user action
library. You need to include gciua.hf instead of gci.hf or gcirtl.hf. Define
a GciUserActionShutdown, and a GciUserActionInit, if it is not already present.
Compile, link, and install according to the instructions for user action libraries.

Using Third-party C Code with a User Action Library

Third-party C code has to reside in the same process as the C user action code. Link
the third-party code into the user action library itself, and then you can call that
code. It doesn’t matter where you call it from.

Loading User Actions
GemBuilder does not support the loading of any default user action library.
Applications and Gems must include code that specifically loads the libraries they
require.

Loading User Action Libraries At Run Time

Dynamic run-time loading of user action libraries requires some planning to avoid
name conflicts. If an executable tries to load a library with the same name as a
library that has already been loaded, the operation fails.

When user actions are installed in a process, they are given a name by which
GemBuilder refers to them. These names must be unique. If a user action that was
already loaded has the same name as one of the user actions in the library the
executable is attempting to load, the load operation fails. On the other hand, if the
two libraries contain functions with the same implementation but different names,
the operation succeeds.
June 2011 VMware, Inc. 63

Developing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
Application User Actions

If the application is to load a user action library, implement an application feature
to load it. The GemStone interfaces provide a way to load user actions from your
application.

 • GemBuilder for C applications: the GciLoadUserActionLibrary call

 • Smalltalk applications using GemBuilder for Smalltalk:

GBSM loadUserActionLibrary: ualib

 • Topaz applications: the loadua command

The application must load application user actions after it initializes GemBuilder
(GciInit) and before the user logs into GemStone (GciLogin). If the application
attempts to install user actions after logging in, an error is returned.

Session User Actions

A linked or RPC Gem process can install and execute its own user action libraries.
To cause the Gem to do this, use the
System class>>loadUserActionLibrary: method in your GemStone
Smalltalk application code. A session user action library stays loaded until the
session logs out.

The session must load its user actions after the user logs into GemStone
(GciLogin). At that time, any application user actions are already loaded. If a
session tries to load a library that the application has already defined, it gets an
error. The loading code can be written to handle the error appropriately. Two
sessions can load the same user action library without conflict.

Specifying the User Action Library

When writing scripts or committing to the database, you can specify the user
action library as a full path or a simple base name. Always use the base name when
you need portability. The code that GemBuilder uses to load a user action library
expands the base name ua to a valid shared library name for the current platform:

 • Solaris: libua.so

 • HP-UX: libua.sl

 • AIX: libua.so

 • Linux (x86_64): libua.so

 • Darwin: libua.dylib
64 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
and searches for the file in the following places in the specified order:

1. The current directory of the application or Gem.

2. The directory the executable is in, if it can be determined.

3. The $GEMSTONE/ualib directory.

4. The normal operating system search, as described in “Searching for the
Library” on page 56.

Creating User Actions in Your C Application

Loading user action libraries at run time is the preferred behavior for GemBuilder
applications. For application user actions, however, you have the option to create
the user actions directly in your C application, not as part of a library. When you
implement user actions this way, include gcirtl.hf or gci.hf in your C source
code, instead of gciua.hf. (Your C source code should include exactly one of
these three include files.)

The GciUserActionInit and GciUserActionShutdown functions are not required,
but the application must call GciDeclareAction once for each function in the set of
user actions.

After your application has successfully logged in to GemStone (via GciLogin), it
may not call GciDeclareAction. If your application attempts to install user actions
after logging in, an error will be returned.

Verify That Required User Actions Have Been Installed

After logging in to GemStone, your application can test for the presence of specific
user actions by sending the following Smalltalk message:

System hasUserAction: aSymbol

This method returns true if your C application has loaded the user action named
aSymbol, false otherwise.

For a list of all the currently available user actions, send this message:

System userActionReport
June 2011 VMware, Inc. 65

Developing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
Write the Code That Calls Your User Actions
Once your application or Gem has a way to access the user action library, your
GemStone Smalltalk code invokes a user action function by sending a message to
the GemStone system. The message can take one of the following forms:

System userAction: aSymbol
System userAction: aSymbol with:arg1 [with:arg2] ...
System userAction: aSymbol withArgs:anArrayOfUpTo8Args

You can use the with keyword from zero to seven times in a message. The aSymbol
argument is the name of the user action function, significant to 31 characters. Each
method returns the function result.

Notice that these methods allow you to pass up to eight arguments to the C user
action function. If you need to pass more than eight objects to a user action, you
can create a Collection (for example, an instance of Array), store the objects into the
Collection, and then pass the Collection as a single argument object to the C user
action function:

| myArray |
myArray := Array new: 10.

"populate myArray, then send the following message"

System userAction: #doSomething with: myArray.

NOTE
You can also call a user action function directly from your C code, as you
would any other C function.

Remote User Actions

The user action code that is called can be remote (on a different machine) from the
Gem that invokes this method.

Limit on Circular Calls Among User Actions and Smalltalk

From Smalltalk you can invoke a user action, and within the user action you can
do a GciSend, GciPerform, or GciExecute, that may in turn invoke another user
action. This kind of circular function calling is limited in that no more than 47 user
actions may be active at any one time on the current Smalltalk stack. If the limit is
exceeded, GemStone raises an error.
66 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
Debug the User Action
Even if you intend to use your library only as session user actions, test them first
as application user actions with an RPC Gem. As with applications, never debug
user actions with linked versions.

CAUTION
Debug your C code in a process that does not include a Gem.
For more information, see “Risk of Database Corruption” on page 81.

Use the instructions for user actions in Chapter 4, “Compiling and Linking,” to
compile and link the user action library. Then load the user actions from the RPC
version of your application or Topaz. To load from Topaz, use the loadua
command.

3.4 Executing User Actions
User actions can be executed either in the GemBuilder application (client) process
or in a Gem (server) process, or in both.

Choosing Between Session and Application User Actions
The distinction between application user actions that execute in the application
and session user actions that execute in the Gem is interesting primarily when the
two processes are running remotely, or when the application has more than one
Gem process.

Remote Application and Gem Processes

When the application and Gem run on different machines and the Gem calls an
application user action, the call is made over the network. Computation is done by
the application where the application user action is running, and the result is
returned across the network. Using a session user action eliminates this network
traffic.

On the other hand, for overall efficiency you also need to consider which machine
is more suitable for execution of the user action. For example, assume that your
application acquires data from somewhere and wishes to store it in GemStone.
You could write a user action to create GemStone objects from the data and then
store the objects. It might make more sense to execute the user action in the
application process rather than transport the raw data to the Gem.
June 2011 VMware, Inc. 67

Executing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
Alternatively, assume there is a GemStone object that could require processing
before the application could use it, like a matrix on which you need to perform a
Fast Fourier Transform (FFT). If the Gem runs on a more powerful machine than
the client, you may wish to run an FFT user action in the Gem process and send the
result to your application.

Applications With Multiple Gems

In most situations, session user actions are preferable, because the Gem does not
have to make calls to the application. In the case of a linked application, however,
an application user action is just as efficient for the linked Gem, because the Gem
and application run as one process. Using an application user action guarantees
that if any new sessions are created, they will have access to the same user action
functions as the first session.

Every Gem can access its own session user actions and the application user actions
loaded by its application. A Gem cannot access another Gem’s session user actions,
however, even when the Gems belong to the same application.

Although a linked application and its first Gem run in the same process, that
process can have session and application user actions, as in Figure 3.1. Application
user actions, loaded by the application’s loading function, are accessible to all the
Gems. Session user actions in the same process, loaded by the
System class>>loadUserActionLibrary: method, are not accessible to
the RPC Gem. Conversely, the RPC Gem’s user actions are not accessible to the
linked Gem.

Figure 3.1 Access to Application and Session User Actions

Linked
Application

application
user actions

Linked Gem

session
user actions

RPC Gem

session
user actions

Starting a second Gem

Calling user actions

The following sections discuss the various possible configurations in detail.
68 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
Running User Actions with Applications
User actions can be executed in the user application process under two
configurations of GemStone processes. The configurations differ depending upon
whether the application is linked or RPC.

With an RPC Application

Figure 3.2 illustrates how various architectural components are distributed among
three GemStone processes when a set of user actions executes with an RPC
application.

Figure 3.2 Application User Actions and RPC Applications in GemStone Processes

Gem StoneC App + GciRpc + AppUserActions

In this configuration, the application runs in a separate process from any Gem.
Each time the application calls a GemBuilder C function, the function uses remote
procedure calls to communicate with a Gem. The remote procedure calls are used
whether the Gem is running on the same machine as the application, or on another
machine across the network.

The user actions run in the same process as the application. If they call GemBuilder
functions, those functions also use remote procedure calls to communicate with
the Gem.

In this configuration, all your code executes as a GemStone client (on the
application side). It can thus execute on any GemStone client platform; it is not
restricted to GemStone server platforms. Care should be taken in coding to
minimize remote procedure call overhead and to avoid excessive transportation of
GemStone data across the network. The following list enumerates some of the
conditions in which you may find occasion to use this configuration:

 • The application and/or the user action needs to be debugged or tested.

 • The user action depends on facilities or implement capabilities for the
application environment. Screen management, GUI operations, and control of
specialized hardware are possibilities.
June 2011 VMware, Inc. 69

Executing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
 • The application acquires data from somewhere and wishes to store it in
GemStone. The user action creates the requisite GemStone objects from the
data and then commits them to the repository.

NOTE:
You can run RPC Topaz as the C application in this configuration for
debugging to perform unit testing of user action libraries. Apply a
source-level debugger to the Topaz executable, load the libraries with the
Topaz loadua command, then call the user actions directly from
GemStone Smalltalk.

With a Linked Application

Figure 3.3 illustrates how various architectural components are distributed
between two GemStone processes when a set of user actions executes with a linked
application.

Figure 3.3 Session User Actions and Linked Applications in GemStone Processes

C App + GciLnk + SessUserActions + Gem Stone

In this configuration, the application, the user actions, and one Gem all run in the
same process (on the same machine). All function calls, from the application to
GemBuilder and between GemBuilder and the Gem, are resolved by ordinary C-
language linkage, not by remote procedure calls.

Since a Gem is required for each GemStone session, the first session uses the
(linked) Gem that runs in your application process. This Gem has the advantages
that it does not incur the overhead of remote procedure calls, and may not incur as
much network traffic. It has the disadvantage that it must run in the same process
as the Gem, so that work cannot be distributed between separate client and server
processes. Since the application cannot continue processing while the Gem is at
work, the non-blocking GemBuilder functions provide no benefit here.

If a linked application user logs in to GemStone more than once, GemStone creates
a new RPC Gem process for each new session. (These sessions would be additions
to the configuration of Figure 3.3.) If one of these sessions invokes a user action, the
user action executes in the same process as the application. If the user action then
calls a GemBuilder function, that call is serviced by the linked Gem, not by the
Gem from which the user action was invoked.

In this configuration, your code executes only on GemStone server platforms. It
cannot execute on client-only platforms because a Gem is part of the same process.
The occasions for using this configuration are much the same as those for running
70 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
user actions with an RPC application, except that you should not use this one for
debugging.

CAUTION
Debug your user actions in a process that does not include a Gem.
For more information, see “Risk of Database Corruption” on page 81.

Running User Actions with Gems
Just as with applications, there are two forms of Gems: linked and RPC. The linked
Gem is embedded in the gcilnk library and is only used with linked applications.

Figure 3.4 illustrates how various architectural components are distributed among
three GemStone processes when a set of user actions executes with an RPC Gem.

Figure 3.4 Session User Actions and RPC Gems in GemStone Processes

C App + GciRpc

or

StoneGem + SessUserActionsSmalltalk App

StoneGem + SessUserActions

An RPC Gem executes in a separate process that can install and execute its own
user actions. The RPC Gem is RPC because it communicates by means of remote
procedure calls, through an RPC GemBuilder, with an application in another
process.

However, it is also a separate C program. The Gem itself also uses GemBuilder
directly, to interact with the database. That is the reason why the RPC Gem is
linked with the gcilnk library. The user action in this configuration executes in
the same process as the Gem, with the GemBuilder that does not use remote
procedure calls.

CAUTION
Debug your user actions in a process that does not include a Gem.
For more information, see “Risk of Database Corruption” on page 81.

The following list enumerates some of the conditions in which you may find
occasion to use this configuration:

 • You wish to execute the user action from a Smalltalk application using
GemBuilder for Smalltalk. This configuration is required for that purpose.

 • You wish the user action to be available to all or many other C applications.
June 2011 VMware, Inc. 71

Executing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
 • The user action is called frequently from GemStone. This configuration
eliminates network traffic between GemBuilder and GemStone.

 • The user action makes many calls to GemBuilder. This configuration avoids
remote procedure call overhead.

 • You have a GemStone object or objects that you wish to process first, and your
application needs the result. The processing may be substantial. Your
GemStone server machine may be more powerful than your client machine
and could do it more quickly, or it might have specialized software the user
action needs. Also, the result might be smaller and could reduce network
traffic.

For example, the user action might retrieve a data matrix and a filter from
GemStone, perform a Fast Fourier Transform, and send the result to the
application.

Running User Actions with Applications and Gems
Figure 3.5 illustrates how various architectural components are distributed among
three GemStone processes when one set of user actions executes with an RPC
application and another set of user actions executes with an RPC Gem.

Figure 3.5 RPC Applications and Gems with User Actions in GemStone Processes

StoneGem + SessUserActionsC App + GciRpc + AppUserActions

This configuration is a combination of previous configurations. The application
and the Gem run in separate processes. User actions in the first set execute in the
application process, and user actions in the second set execute in the Gem process.

When user actions are installed in a process, they are given a name by which
GemBuilder refers to them. If a user action in the application has the same name as
a user action in the Gem, then the one in the Gem is always used, and the one in
the application is ignored.

The two types of user actions could also exist in one linked process, as shown in
Figure 3.6.

Figure 3.6 Application and Session User Actions in GemStone Processes

C App + GciLnk + AppUserActions + Gem + SessUserActions Stone
72 VMware, Inc. June 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
In this configuration, the user actions can be loaded as either application or session
user actions; it would be the same from the point of view of the linked Gem.
Application user actions would be just as efficient as session user actions, because
they are part of the Gem process. If a linked application user logs in to GemStone
more than once, GemStone creates a new RPC Gem process for each new session,
additions to the configuration of Figure 3.6. The RPC Gems do not have access to
the linked Gem’s session user actions. So it is generally better to load them as
application user actions, just in case.
June 2011 VMware, Inc. 73

Executing User Actions GemStone/S 64 Bit 3.0 GemBuilder for C
74 VMware, Inc. June 2011

Chapter

4 Compiling and
Linking
This chapter describes how to compile and link your C/C++ applications and user
actions.

The focus is directly on operations for each compiling or linking alternative on
each GemStone server platform. It is assumed that you already know which
alternatives you want to use, and why, and when. Those topics are part of the
application design and code implementation, which are described in other
chapters of this manual.

All operations are illustrated as though you are issuing commands at a
command-line prompt. You may choose to take advantage of your system’s
programming aids, such as the UNIX make utility and predefined environment
variables, to simplify compilation and linking. Whatever you choose, be sure that
you designate options and operations that are equivalent to those shown here.

NOTE
Much of the material in this chapter is system-specific and, therefore,
subject to change by compiler vendors and hardware manufacturers.
Please check your GemStone/S 64 Bit Release Notes, Installation Guide,
and vendor publications for possible updates.
June 2011 VMware, Inc. 75

Development Environment and Standard Libraries GemStone/S 64 Bit 3.0 GemBuilder for C
4.1 Development Environment and Standard Libraries
For simplicity, set the GEMSTONE environment variable to your GemStone
installation directory. The command lines shown in this chapter assume that this
has been done. No other environment variables are required to find the GemStone
C++ libraries.

GemStone requires linking with certain architecture-specific “standard” C and
C++ libraries on some platforms.1 The order in which these libraries are specified
can be significant; be sure to retain the ordering given in the command lines to
follow in this section.

The environment of the supported Unix platforms is System V. On these
platforms, the /usr/bin directory should be present in the PATH environment
variable. If /usr/ucb is also present in PATH, then it should come after
/usr/bin. The System V “standard” C/C++ libraries (not Berkeley) should be
used in linking.

4.2 Compiling C Source Code for GemStone
The following information includes the requirements and recommendations for
compiling C applications or user actions for GemStone. Your C code may have
additional requirements, such as compile options or environment variables.

The C++ Compiler
C applications and user actions must be compiled and linked with a compiler that
is compatible with GemStone libraries and object code.

The example compiler and linker command lines in this chapter assume that a
compatible compiler has been installed and is in your path.

The following C++ compilers were used to produce the GemStone product, and
have been tested for producing C/C++ applications and user action libraries.

 • Solaris (SPARC) — Sun C++ 5.8 Patch 121017-05 2006/08/30

 • Solaris (x86) — Sun C++ 5.10 SunOS_i386 128229-09 2010/06/24

 • HP-UX (Itanium) — HP C/aC++ B3910B A.06.25.02 [Nov 5 2010]

1. The socket library in particular contains operating system calls that support TCP/IP
sockets. The functions for this purpose sometimes also require functions that are found in
yet other system libraries.
76 VMware, Inc. June 2011

Chapter 4 - Compiling and Linking Compiling C Source Code for GemStone
 • AIX — IBM XL C/C++ for AIX, V11.1 (5724-X13)
Version: 11.01.0000.0004

 • Linux — g++ (GCC) 4.1.2 20070115 (prerelease) (SUSE Linux)

 • Darwin — g++: i686-apple-darwin10-g++-4.2.1 (GCC) 4.2.1 (Apple Inc. build
5664)

 • Windows — Microsoft Visual C++ 2008 9160-270-6514982-60495
Microsoft Visual Studio 2008 Version 9.0.21022.8 RTM

Other compilers, such as ANSI C++ compilers, are assumed to work, but have not
been tested.

Listing the Version of Your Compiler
To list the version of your compiler, execute the appropriate command line.

Solaris (SPARC):
% CC -V
CC: Sun C++ 5.8 Patch 121017-05 2006/08/30

Solaris (x86):
% CC -V
CC: Sun C++ 5.10 SunOS_i386 128229-09 2010/06/24

HP-UX (Itanium):
% aCC -V
aCC: HP C/aC++ B3910B A.06.25.02 [Nov 25 2010]

AIX (IBM):
% /usr/vacpp/bin/xlC_r -qversion
IBM XL C/C++ for AIX, V11.1 (5724-X13)
Version: 11.01.0000.0004

Linux:
% g++ --version
g++ (GCC) 4.1.2 20070115 (prerelease) (SUSE Linux)

Darwin:
% g++ --version
g++: i686-apple-darwin10-g++-4.2.1 (GCC) 4.2.1 (Apple Inc.
build 5664)
June 2011 VMware, Inc. 77

Compiling C Source Code for GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
Compilation Options
When you compile, specify each directory that is to be searched for include files
separately by repeating the -I option. At a minimum, you should specify the
GemStone include directory.

The -c option inhibits the “load and go” operation, so compilation ends when the
compiler has produced an object file.

For more information and details on the listed complier options and other
compiler flags, please consult your compiler documentation.

Compilation Command Lines
This section presents simple example command lines for compiling C source code
on each platform.

The command lines for each platform illustrates how to compile a simple
application program or user action file named usercode, whose source contains one
code file, usercode.c. Its result is one object file, usercode.o.

For simplicity in compling code for user actions, this file is assumed to be a library
containing both the source code for one set of user actions and the implementation
of the function that installs them all with GemStone.

If you have multiple application or user action files, they should all be compiled
under these same basic conditions.

Solaris (SPARC):
$ CC -xO4 -xcode=pic32 -m64 -mt -xchip=ultra2 -D_REENTRANT

-D_POSIX_PTHREAD_SEMANTICS -I$GEMSTONE/include -c userCode.c
-o userCode.o

To allow debugging of the resulting library, include the optional -g flag and omit
the optimization flag -xO4.

Solaris (x86):
$ CC -xO4 -m64 -Kpic -mt -D_REENTRANT -D_POSIX_PTHREAD_SEMANTICS

-I$GEMSTONE/include -c userCode.c -o userCode.o

To allow debugging of the resulting library, include the optional -g flag and omit
the optimization flag -xO4.
78 VMware, Inc. June 2011

Chapter 4 - Compiling and Linking Compiling C Source Code for GemStone
HP-UX (Itanium):
$ /opt/aCC/bin/aCC +O2 +Onolimit +Z +DD64 +DSitanium2 -Aa

-D_PSTAT64 -D_LARGEFILE64_SOURCE -mt -Wl,+vnocompatwarnings
+W212,749,740,863,2225,2175,2177,4232,4189,4070,20011,20009,2368
-D_HPUX -D_POSIX_C_SOURCE=199506L -D_HPUX_SOURCE
-D_INCLUDE_LONGLONG -D_XOPEN_SOURCE=600
-D_XOPEN_SOURCE_EXTENDED=1 +We -I$GEMSTONE/include -c
-S userCode.c -o userCode.o

The -Aa switch is required; it designates the ANSI C mode. The +Z switch is
required for user action library code. To allow debugging of the resulting library,
also include the optional -g flag and omit the optimization flag +O2.

AIX (IBM):
$ /usr/vacpp/bin/xlC_r -O3 -qstrict -qalias=noansi -q64 -+

-D_REENTRANT -D_THREAD_SAFE -qpic -qthreaded
-qarch=pwr5 -qtune=balanced -qminimaltoc -qmaxmem=-1
-qsuppress=1500-010:1500-029:1540-1103:1540-2907:1540-0804:1540-
1281:1540-1090 -qnoeh -I$GEMSTONE/include -c userCode.c
-o userCode.o

Note that there is no space in the -qsuppress arguments that are continued on
the following line.

To allow debugging of the resulting library, also include the optional -g,
-qdbxextra and -qfullpath flags, and omit the optimization flag -O3.

Linux:
$ /usr/bin/g++ -fmessage-length=0 -fcheck-new -O3 -ggdb -m64

-pipe -D_REENTRANT -D_GNU_SOURCE -pthread -fPIC -m64
-fno-strict-aliasing -fno-exceptions
-I$GEMSTONE/include -x c++ -c userCode.c -o userCode.o

The following warn flags are recommended for compilation:

-Wformat -Wtrigraphs -Wcomment -Wsystem-headers -Wtrigraphs
-Wno-aggregate-return -Wswitch -Wshadow -Wunused-value
-Wunused-variable -Wunused-label -Wno-unused-function
-Wchar-subscripts -Wmissing-braces -Wmultichar -Wparentheses
-Wsign-compare -Wsign-promo -Wwrite-strings -Wreturn-type
-Wuninitialized
June 2011 VMware, Inc. 79

Compiling C Source Code for GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
If you want to stop the compilation process when any of the above warnings are
encountered, use the following flag:

-Werror

To allow debugging of the resulting library, also include the optional -g
flag and omit the optimization flag -O3.

Darwin:
$ /usr/bin/g++ -fmessage-length=0 -fcheck-new -O3 -ggdb

-DFLG_FAST=1 -m64 -pipe -D_XOPEN_SOURCE -D_REENTRANT
-D_GNU_SOURCE -fPIC -m64 -fno-strict-aliasing
-I$GEMSTONE/include -x c++ -c userCode.c -o userCode.o

The following warn flags are recommended for compilation:

-Wformat -Wtrigraphs -Wcomment -Wsystem-headers -Wtrigraphs
-Wno-aggregate-return -Wswitch -Wshadow -Wunused-value
-Wunused-variable -Wunused-label -Wno-unused-function
-Wchar-subscripts -Wconversion -Wmissing-braces -Wmultichar
-Wparentheses -Wsign-compare -Wsign-promo -Wwrite-strings
-Wreturn-type

To allow debugging of the resulting library, also include the optional -g
flag and omit the optimization flag -O3.

Windows:
$ cl /W3 /MD /Zi /TP /nologo /DWIN32 /D_CONSOLE /D_DLL /DNATIVE

/I 'VisualStudioInstallPath\VC\atlmfc\include'
/I 'VisualStudioInstallPath\VC\include' /I
'C:\Program Files\Microsoft SDKs\Windows\v6.0A\Include'
/I%GEMSTONE%\include -c userCode.c -FouserCode.obj
80 VMware, Inc. June 2011

Chapter 4 - Compiling and Linking Linking C/C++ Object Code with GemStone
4.3 Linking C/C++ Object Code with GemStone
The following information includes the requirements and recommendations for
linking C/C++ applications or user actions with GemStone. Your code may have
additional requirements, such as link options or libraries.

Run-time binding is done by code that is part of the application. The same
application can use either the RPC or linked GemBuilder libraries with this type of
binding.

Linking with shared libraries does not require that all entry points be resolved at
link time. Those that are outside of each shared library await resolution until
application execution time, or even until function invocation time.

NOTE
When you link a user action shared library, be aware of the dangers of
incorrect unresolved external references. If you misspell a function call,
you may not find out about it until run-time, when your process dies
with an unresolved external reference error. Be sure to check your link
program’s output carefully.

Risk of Database Corruption
CAUTION

Debug your C/C++ code in a process that does not include a Gem.

Do not log into GemStone in a linked application or run a Gem
with your user actions until your C/C++ code has been properly
debugged.

When your C/C++ code executes in the same process as a Gem, it shares the same
address space as the GemStone database buffers and object caches that are part of
the Gem. If that C code has not yet been debugged, there is a danger that it might
use a C pointer erroneously. Such an error could overwrite the Gem code or its
data, with unpredictable and disastrous results. It is conceivable that such
corruption of the Gem could lead it to perform undesired GemStone operations
that might then leave your database irretrievably corrupt. The only remedy then is
to restore the database from a backup.

There are three circumstances under which this risk arises:

 • You are running your linked application and you have logged into GemStone.

 • You are running any linked application and you are executing one of your user
actions from the application.
June 2011 VMware, Inc. 81

Linking C/C++ Object Code with GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
 • You are running any Gem, even a remote Gem, and you are executing one of
your user actions from the Gem.

To avoid the risk, you must run your C code in some process that does not include
a Gem. If the Gem is in a separate process, it has a separate address space that your
C code should not be able to access. Use the RPC version of an application, and run
any user actions from the application.

Linker
Use the same C++ compiler to link your GemStone C/C++ code as you use to
compile it.

Link Options
The -o option designates the path of the executable file produced by the link
operation.

Be sure to employ at the appropriate times the link option that designates symbolic
debugging (often -g).

For information on most options, please consult your linker (compiler)
documentation.

Command Line Assumptions
This section presents simple example command lines for linking object code on
each platform. Each command line illustrates how to link a simple application
program with one application object file, userCode.o. Its result is one executable
file, userAppl or userAppl.exe, depending on your platform.

In addition, this section illustrates how to link a user action object file named
userCode.o with GemStone libraries to produce a user action library named
libuserAct.so, libuserAct.sl, or libuserAct.dylib, depending on your platform.

If you have multiple application or user action files, they should all be linked
under the same basic conditions.

Use the same C++ compiler to link your GemStone C/C++ code as you used to
compile it.
82 VMware, Inc. June 2011

Chapter 4 - Compiling and Linking Linking C/C++ Object Code with GemStone
Linking Applications That Bind to GemBuilder at Run Time
Solaris (SPARC):
$ CC -xildoff -xarch=v9 -i userCode.o

$GEMSTONE/lib/gcirtlobj.o -z nodefs -Bdynamic -lc
-lpthread -ldl -lrt -lsocket -lnsl -lm -lCrun -o userAppl

Solaris (x86):
$ CC -xildoff -m64 -i appl.o $GEMSTONE/lib/gcirtlobj.o

-z nodefs -Bdynamic -lc -lpthread -ldl -lrt -lsocket
-lnsl -lm -lCrun -o appl

HP-UX (Itanium):
$ /opt/aCC/bin/aCC -v +DD64 +DSitanium2

-Wl,+allowdups,+k,+n,+pd4M,+pi64K -z userCode.o
$GEMSTONE/lib/gcirtlobj.o
-Wl,+allowunsats,+vnoshlibunsats -lxnet -lrt -lsec
-ldld -lm -l:libcres.a -lcl -lpthread -o userAppl

On HP-UX, to enable debugging of your application, issue the pxdb command on
the application that loads the DLL:

$ /opt/langtools/bin/pxdb -s enable userAppl

AIX (IBM):
$ /usr/vacpp/bin/xlC_r -Wl,-bdatapsize:64K -q64 userCode.o

$GEMSTONE/lib/gcirtlobj.o -Wl,-berok -L/usr/vacpp/lib
-lpthreads -lc_r -lC_r -lm -ldl -lbsd -Wl,-brtllib
-q64 -o userAppl

Linux:
$ /usr/bin/g++ userCode.o $GEMSTONE/lib/gcirtlobj.o -m64

-lpthread -lcrypt -ldl -lc -lm -lrt -Wl,-z,muldefs
-o userAppl -Wl,--warn-unresolved-symbols

Darwin:
$ /usr/bin/g++ userCode.o $GEMSTONE/lib/gcirtlobj.o -m64

-lpthread -ldl -lc -lm -o userAppl -undefined
dynamic_lookup
June 2011 VMware, Inc. 83

Linking C/C++ Object Code with GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
Windows:
$ link /LIBPATH:'VisualStudioInstallPath\VC\lib'

/LIBPATH:'VisualStudioInstallPath\VC\atlmfc\lib'
/LIBPATH:'C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib'
-INCREMENTAL:NO -nologo 'userCode.obj'
'%GEMSTONE%\lib\gcirpc.lib' wsock32.lib netapi32.lib
advapi32.lib comdlg32.lib user32.lib gdi32.lib
kernel32.lib winspool.lib -out:userAppl.exe

Linking User Actions into Shared Libraries
Solaris (SPARC):
$ CC -xarch=v9 -G -Bsymbolic -h libuserAct.so -i userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so -Bdynamic -lc
-lpthread -ldl -lrt -lsocket -lnsl -lm -lCrun -z nodefs

Solaris (x86):
$ CC -m64 -G -Bsymbolic -h libuserAct.so -i userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so -Bdynamic -lc
-lpthread -ldl -lrt -lsocket -lnsl -lm -lCrun -z nodefs

HP-UX (Itanium):
$ /opt/aCC/bin/aCC -v +DD64 +DSitanium2

-Wl,+allowdups,+k,+n,+pd4M,+pi64K -v -b
-Wl,-B,symbolic -z userCode.o $GEMSTONE/lib/gciualib.o
-o libuserAct.sl -Wl,+e,GciUserActionLibraryMain -lxnet
-lrt -lsec -ldld -lm -l:libcres.a -lc -lCsup -lunwind
-Wl,+allowunsats,+vnoshlibunsats

On HP-UX, to enable debugging of your user action code, issue the pxdb
command with whichever application will load the user action, Gem or Topaz:

$ /opt/langtools/bin/pxdb -s enable $GEMSTONE/sys/gem

or

$ /opt/langtools/bin/pxdb -s enable $GEMSTONE/bin/topaz

AIX (IBM):
$ /usr/vacpp/bin/xlC_r -G -q64 userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so
-e GciUserActionLibraryMain -L/usr/vacpp/lib
-lpthreads -lc_r -lC_r -lm -ldl -lbsd -Wl,-berok
84 VMware, Inc. June 2011

Chapter 4 - Compiling and Linking Linking C/C++ Object Code with GemStone
Linux:
$ /usr/bin/g++ -shared -Wl,-Bdynamic,-hlibuserAct.so userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so -m64 -lpthread
-lcrypt -ldl -lc -lm -Wl,-z,muldefs
-Wl,--warn-unresolved-symbols

Darwin:
$ /usr/bin/g++ -dynamiclib userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.dylib -m64
-lpthread -ldl -lc -lm -undefined dynamic_lookup
June 2011 VMware, Inc. 85

Linking C/C++ Object Code with GemStone GemStone/S 64 Bit 3.0 GemBuilder for C
86 VMware, Inc. June 2011

Chapter

5 GemBuilder
Files and Data
Structures
This chapter describes the GemBuilder include files, data structures, and other
refernece information that may be useful when writing your application.

5.1 GemBuilder Include Files
The following include files are provided for use with GemBuilder C functions.
These files are in the $GEMSTONE/include directory.

Your C source code should include exactly one of these three include files:

gcirtl.hf Forward references to the GemBuilder functions, to be included in
code that will bind to GemBuilder at run time. For a discussion of
how to load a library that was compiled against gcirtl.hf, see
“Binding to GemBuilder at Run Time” on page 55.

For modules that define user actions, use gciua.hf instead of
this file.

gciua.hf Used instead of gcirtl.hf in modules that define user actions.

gci.hf Forward references to the GemBuilder functions; indirectly
included by gcirtl.hf and gciua.hf.
June 2011 VMware, Inc. 87

GemBuilder Include Files GemStone/S 64 Bit 3.0 GemBuilder for C
Used for a C application that will call GciInit and GciLogin, on
platforms that allow shared libraries to be built containing
references to unresolved symbols (which are defined in gci.hf
and resolved at run time).

In addition, your code can include these files:

gcifloat.hf Macros, constants and functions for accessing the bodies of
instances of GemStone classes Float and SmallFloat. Optional for
code that includes gci.hf and gciua.hf, not used with
gcirtl.hf.

gcisend.hf Inline implementations of deprecated GciSendMsg, which no
longer uses variable arguments. New code should use
GciPerform. For convenience, if you are using GciSendMsg in
your GemBuilder application, include this file after the include of
gcirtl.hf.

You do not include the following files explicitly; they are listed here for your
information.

flag.ht Contains host-specific C definitions for compilation.

gci.ht Defines C types for use by GemBuilder functions. See
“GemBuilder Data Types” on page 89.

gcicmn.ht Defines common C types and macros used by gcirtl.hf,
gci.hf, and gciua.hf.

gcierr.ht Defines mnemonics for all GemStone errors.

gcioc.ht Defines C mnemonics for sizes and offsets into objects.

gcioop.ht Defines C mnemonics for predefined GemStone objects. See
Appendix A, “Reserved OOPs,” for a list of constants defined in
this file.

gcirtl.ht Defines C types specific to shared libraries for use by GemBuilder
functions. Used by gcirtl.hf.

gcirtlm.hf Macros used by gcirtl.hf.

gciuser.hf Defines a macro to be used to install user actions. Include
gciua.hf instead of this file.

version.ht Defines C mnemonics for version-dependent strings.
88 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures GemBuilder Data Types
5.2 GemBuilder Data Types
The following C types are used by GemBuilder functions. The file gci.ht defines
each of the GemBuilder types (shown in capital letters below). That file is in the
$GEMSTONE/include directory.

BoolType An int.

ByteType An unsigned 8-bit integer.

OopType Object-oriented pointer, an unsigned 32-bit integer.

FloatKindEType
Enumerated type that defines the possible kinds of an IEEE binary
float.

GciClampedTravArgsSType
A C++ class for clamped traversal arguments.

GciDateTimeSType
A structure for representing GemStone dates and times.

GciDbgFuncType
The type of C function called by GciDbgEstablish.

GciErrSType A GemStone error report (see “The Error Report Structure” on
page 90).

GciJumpBufSType
Jump buffer, defined in the setjmp.h file.

GciObjInfoSType
A C++ class for a GemStone object information report (see “The
Object Information Structure” on page 92).

GciObjRepHdrSType
A C++ class for an object report header (see “The Object Report
Header Class” on page 95).

GciObjRepSType
A C++ class for an object report (see “The Object Report
Structure” on page 94).

GciSessionIdType
A signed 32-bit integer.

GciStoreTravDoArgsSType
A C++ class for store traversal arguments.
June 2011 VMware, Inc. 89

GemBuilder Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GciTravBufType
A traversal buffer. See “The Traversal Buffer Type” on page 100.

GciUserActionSType
A structure for describing a user action (see “The User Action
Information Structure” on page 99.

The Structure for Representing the Date and Time
GemBuilder includes some functions to facilitate access to objects of type
DateTime. (These functions also make use of the C representation for time, time_t.)

The structured type GciDateTimeSType, which provides a C representation of an
instance of class DateTime, contains the following fields:

#if !defined(GCICMN_HT)

typedef struct {
int year;
int dayOfYear;
int milliseconds;
OopType timeZone;

} GciDateTimeSType;

#endif

The year value must be less than 1,000,000.

In addition, a C mnemonic supports representation of DateTime objects.

#define GCI_SECONDS_PER_DAY 86400
/* conversion constant */

NOTE:
The OOP of the Smalltalk DateTime class is
OOP_CLASS_DATE_TIME.

The Error Report Structure
An error report is a C structured type named GciErrSType. This structure contains
the following fields:
90 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures GemBuilder Data Types
OopType category
Deprecated. The value is always
OOP_GEMSTONE_ERROR_CAT.

OopType context
The OOP of a GsProcess that provides the state of the virtual
machine for use in debugging. This GsProcess can be used as the
argument to GciContinue or GciClearStack. If the virtual machine
was not running, then context is OOP_NIL. If you are not
interested in debugging or in continuing from an error, your
program can ignore this value.

OopType exceptionObj
Either an instance of Exception or nil (if the error was not signaled
from Smalltalk execution).

OopType args[GCI_MAX_ERR_ARGS]
An optional array of error arguments. In this release,
GCI_MAX_ERR_ARGS is defined to be 10.

int number
The GemStone error number (a positive integer).

int argCount
The number of arguments in the args array.

unsigned char fatal
Nonzero if this error is fatal.

char message[GCI_ERR_STR_SIZE + 1]
The null-terminated string which contains the text of the error
message. In this release, GCI_ERR_STR_SIZE is defined to be 300.

The arguments (args) are specific to the error encountered. In the case of a compiler
error, this is a single argument — the OOP of an array of error identifiers. Each
identifier is an Array with three elements: (1) the error number (a SmallInteger); (2)
the offset into the source string at which the error occurred (also a SmallInteger);
and (3) the text of the error message (a String). See the gcierr.ht file for a full list
of errors and their arguments.

In the case of a fatal error, fatal is set to nonzero (TRUE). Your connection to
GemStone is lost, and the current session ID (from GciGetSessionId) is reset to
GCI_INVALID_SESSION_ID.
June 2011 VMware, Inc. 91

GemBuilder Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
The Object Information Structure
Object information is placed in a C++ class named GciObjInfoSType. Object
information access functions provide information about objects in the database.
These functions offer C-style access to much information that would otherwise be
available only through calls to GemStone. For more information about the
GciObjInfoSType structured type, refer to GciFetchObjImpl (page 228).

OopType objId
OOP of the object.

OopType objClass
Class of the object; see GciFetchClass (page 211).

int64 objSize
Object's total size in bytes or OOPs; see GciFetchSize_ (page 246).

int namedSize
Number of named instance variables in the object.

unsigned short objectSecurityPolicyId
The ID of the object’s security policy.

Functions

The object information class GciObjInfoSType provides the following functions:

enum { implem_mask = 0x03,
indexable_mask = 0x04,
invariant_mask = 0x08,
partial_mask = 0x10,
overlay_mask = 0x20
};
Defines bits to use in evaluating whether this instance is
invariable, indexable, partial, or overlayed.

unsigned char isInvariant();
Returns non-zero if this object is invariant. Returns zero
otherwise.

unsigned char isIndexable();
Returns non-zero if this object is indexable. Returns zero
otherwise.

unsigned char isPartial();
Returns non-zero if the value buffer does not contain the entire
92 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures GemBuilder Data Types
object; that is, the operation truncated the object’s instance
variables. Returns zero otherwise.

unsigned char isOverlayed();
Returns non-zero if overlay semantics were used on this
operation. Returns zero otherwise.

When the traversal is overlayed, you can use OOP_ILLEGAL to
mask out instance variables that you don’t want to modify, and
then store into the remaining instance variables.

unsigned char objImpl();
Returns an unsigned char in the range 0..3 that corresponds to the
object’s implementation format. See the description on page 93.

void clearBits();
Sets the invariant, indexable, partial, and overlayed bits to FALSE.

void setBits(unsigned char bits);
Sets the invariant, indexable, partial, and overlayed bits.

void setObjImpl(unsigned char impl);
Defines the object’s implementation format. The argument must
be an integer in the range 0..3 corresponding to the
implementation format. See the description on page 93.

void setInvariant(unsigned char val);
If val is non-zero, make this object invariant.

void setIndexable(unsigned char val);
If val is non-zero, make this object indexable.

void setPartial(unsigned char val);
This function has no practical effect.

void setOverlayed(unsigned char val);
If val is non-zero, use overlay semantics on this store traversal.

Description

The gcioc.ht include file defines four mnemonics that can be of assistance when
you are handling the object implementation field: GC_FORMAT_OOP,
GC_FORMAT_BYTE, GC_FORMAT_NSC, and GC_FORMAT_SPECIAL. These
mnemonics, and no other values, should be used to supply values for the objImpl
field, or to test its contents.
June 2011 VMware, Inc. 93

GemBuilder Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
The Object Report Structure
Each object report has two parts: a fixed-size header (as defined in the C++ class
GciObjRepHdrSType) and a variable-size value buffer (an array of the values of
the object’s instance variables):

#if !defined(GCI_HT)
class GciObjRepSType { /* object report struct */
 public:
 GciObjRepHdrSType hdr; /* object report header */
 union {
 ByteType bytes[1]; /* Byte obj impl. obj’s
value buff */
 OopType oops[1]; /* Pointer obj impl. obj’s
value buff*/
 } u;

 inline int64 usedBytes() const {
 return this->hdr.usedBytes();
 }

 inline GciObjRepSType* nextReport() const {
 return (GciObjRepSType*) this->hdr.nextReport();
 }

 inline ByteType* valueBufferBytes() const {
 return (ByteType*)this->u.bytes;
 }

 inline OopType* valueBufferOops() const {
 return (OopType*)this->u.oops;
 }
};
#endif

Functions

The object report class GciObjRepSType provides these functions:

int64 usedBytes() ;
When constructing an object report buffer, returns the size of the
object report, including any alignment considerations.
94 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures GemBuilder Data Types
GciObjRepHdrSType * nextReport() ;
Given a pointer to an object report in a traversal buffer, this
function increments the pointer by usedBytes (the size of the object
report).

ByteType* valueBufferBytes() ;
Returns a pointer to the start of the body, as bytes.

OopType* valueBufferOops()
Returns a pointer to the start of the body, as OOPs.

The Object Report Header Class
An object report header is a C++ class named GciObjRepHdrSType. This class
holds a general description of an object, and contains the following fields:

int valueBuffSize
Size (in bytes) of the object's value buffer.

short namedSize
Number of named instance variables in the object.

unsigned short objectSecurityPolicyId
The ID of the object’s security policy.

OopType objId
OOP of the object.

OopType oclass
Class of the object; see GciFetchClass (page 211).

int64 firstOffset
Offset of first value to fetch or store.

Functions

The object report header class GciObjRepHdrSType provides the following
functions:

enum { implem_mask = 0x03,
indexable_mask = 0x04,
invariant_mask = 0x08,
partial_mask = 0x10,
overlay_mask = 0x20,
no_read_auth_mask = 0x40,
clamped_mask = 0x80,
unused_mask = 0xFF00
June 2011 VMware, Inc. 95

GemBuilder Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
all_bits_mask = 0xFFFF
};
Defines bits to use in evaluating this instance’s implementation
format, and whether this instance is indexable, invariable, partial,
overlayed, readable, or clamped.

int64 idxSize();
Returns the number of indexable or varying instance variables.

void setIdxSize(int64 size);
Sets the number of indexable or varying instance variables.

void setIdxSizeBits(int64 size, unsigned char bits);
Sets both the indexable size and the eight bits defined by the enum
of the mask values. Intended for GemStone use only.

int objImpl();
Returns an integer in the range 0..3 that corresponds to the object’s
implementation format. See the description on page 98.

int setObjImpl(int impl);
Defines the object’s implementation format. The argument must
be an integer in the range 0..3 corresponding to the
implementation format. See the description on page 98.

int64 objSize();
Returns the total number of instance variables in the object (both
indexable and named). See GciFetchSize_ (page 246).

void clearBits();
Sets indexable, invariable, partial, overlayed, non-readable, and
clamped to FALSE.

unsigned char isClamped();
Returns non-zero if this object report is clamped. Returns zero
otherwise.

unsigned char noReadAuthorization();
Returns non-zero if this object report is not readable. Returns zero
otherwise.

unsigned char isInvariant();
Returns non-zero if this object report is invariant. Returns zero
otherwise.
96 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures GemBuilder Data Types
unsigned char isIndexable();
Returns non-zero if this object report is indexable. Returns zero
otherwise.

unsigned char isPartial();
Returns non-zero if the value buffer does not contain the entire
object; that is, the traversal operation truncated the object’s
instance variables. Returns zero otherwise.

unsigned char isOverlayed();
Returns non-zero if overlay semantics were used on this store
traversal operation. Returns zero otherwise.

When the traversal is overlayed, you can use OOP_ILLEGAL to
mask out instance variables that you don’t want to modify, and
then store into the remaining instance variables.

void setIsClamped(unsigned char val);
If val is non-zero, make this object report clamped.

void setNoReadAuth(unsigned char val);
If val is non-zero, make this object report non-readable.

void setInvariant(unsigned char val);
If val is non-zero, make this object report invariant.

void setIndexable(unsigned char val);
If val is non-zero, make this object report indexable.

void setPartial(unsigned char val);
This function has no practical effect.

void clearPartial(unsigned char val);
This function has no practical effect.

void setOverlayed(unsigned char val);
If val is non-zero, use overlay semantics on this store traversal.

ByteType* valueBufferBytes() ;
Returns a pointer to the start of the body, as bytes.

OopType* valueBufferOops()
Returns a pointer to the start of the body, as OOPs.

int64 usedBytes() ;
Returns the size (in bytes) of this object report, including the size
of the header, value buffer, and any padding bytes needed at the
June 2011 VMware, Inc. 97

GemBuilder Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
end of the report so that the next report in the buffer begins on an
address that is a multiple of 8.

GciObjRepHdrSType * nextReport() ;
Given a pointer to an object report in a traversal buffer, this
function increments the pointer by usedBytes (the size of the object
report).

Description

During a store traversal operation, if the specified idxSize is inadequate to
accommodate the contents of the value buffer (the values in u.bytes or u.oops), the
store operation will automatically increase idxSize (the number of the object’s
indexed variables) as needed. If the specified objClass is not indexable, then the
idxSize is ignored; in addition, if there are more OOPs in the value buffer than there
are named instance variables, and the object is not an NSC, an error will be
generated.

During a store traversal operation, the firstOffset indicates where to begin storing
values into the object’s array of instance variables. In that array, the object’s named
instance variables are followed by its unnamed variables. If firstOffset is not 1, all
instance variables (named or indexed) up to the firstOffset will be initialized to nil
or 0. The firstOffset must be in the range (1, objSize+1).

The gcioc.ht include file defines four mnemonics that can be of assistance when
you are handling the object implementation field (objImpl): GC_FORMAT_OOP,
GC_FORMAT_BYTE, GC_FORMAT_NSC, and GC_FORMAT_SPECIAL. These
mnemonics, and no other values, should be used to supply values for objImpl, or to
test its contents. However, the gcioc.ht file also defines other mnemonics that
can be used in other contexts related to object implementations, indexability, and
invariance.

An object’s implementation may restrict the number of its named instance
variables (namedSize) and its indexed instance variables (idxSize), as contained in
the object report header.

 • If the object implementation is GC_FORMAT_OOP, the object can have both
named and unnamed instance variables.

 • If the object implementation is GC_FORMAT_BYTE, the object can only have
indexed instance variables, and its namedSize is always zero.

 • If the object implementation is GC_FORMAT_NSC, the object can have both
named and unnamed instance variables. (The NSC’s idxSize reports the
number of unnamed instance variables, even though they are unordered, not
indexed.)
98 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures GemBuilder Data Types
 • If the object implementation is GC_FORMAT_SPECIAL, the object cannot
have any instance variables, and the number of both its named and unnamed
variables is always zero.

The isInvariant() value is true if the object itself is invariant. This can happen
in one of three ways:

 • The application program sends the message immediateInvariant to the
object.

 • The application program explicitly executes setInvariant() in the report
header and then uses that report header in a call to GciStoreTrav.

 • The object’s class was created with instancesInvariant: true and the
object has been committed.

Table 5.1 Object Implementation Restrictions on Instance Variables

Object
Implementation

Named Instance
Variables OK?

Unnamed Instance Variables
OK?

0=Pointer YES YES (always indexed)
1=Byte NO YES (always indexed)
2=NSC YES YES (always unordered)
3=Special NO NO

For more information about object implementation types, see “Manipulating
Objects Through Structural Access” on page 34.

The User Action Information Structure
The structured type GciUserActionSType describes a user action function. It
defines the following fields:

char userActionName[GCI_MAX_ACTION_NAME+1]
The user action name (a case-insensitive, null-terminated string).
In this release, GCI_MAX_ACTION_NAME is defined to be 31.

int userActionNumArgs
The number of arguments in the C function.

GciUserActionFType
userAction
A pointer to the C user action function.
June 2011 VMware, Inc. 99

GemBuilder Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
unsigned int userActionFlags
Mainly for internal use. If you use it, set it to 0 before passing a
pointer to it.

The Traversal Buffer Type
The C++ class GciTravBufType describes a traversal buffer, and defines the
following fields:

int64 allocatedBytes
The allocated size of the body.

int64 usedBytes
The used bytes of the body.

ByteType body[8]
The actual body size is variable, with a minimum of
GCI_MIN_TRAV_BUFF_SIZE.

Functions

The following function call is used to create an instance of GciTravBufType:

static GciTravBufType* malloc(size_t allocationSize);
Returns an instance obtained from ::malloc initialized with
allocatedBytes equal to allocationSize and usedBytes== 0. (If
allocationSize is not a multiple of 8 bytes, allocatedBytes is rounded
up to the next 8-byte multiple.) Returns NULL if malloc fails.

The traversal buffer class GciTravBufType provides these functions:

GciObjRepSType* firstReport() ;
Returns a pointer to the first object report in the buffer.

GciObjRepSType* readLimit() ;
Used when reading object reports out of a buffer. Returns a
pointer past the end of last object report in the buffer.

If readLimit()==firstReport(), the buffer is empty.

GciObjRepSType* writeLimit() ;
Used when composing a buffer. Returns a pointer one byte past
the end of the allocated buffer.

GciObjRepHdrSType* firstReportHdr() ;
Returns a pointer to the first object report in the buffer.
100 VMware, Inc. June 2011

Chapter 5 - GemBuilder Files and Data Structures Structural Access Functions
GciObjRepHdrSType* readLimitHdr() ;
Used when reading object reports out of a buffer. Returns a
pointer past the end of last object report in the buffer.

GciObjRepHdrSType* writeLimitHdr() ;
Used when composing a buffer. Returns a pointer one byte past
the end of the allocated buffer.

5.3 Structural Access Functions
A number of functions access Smalltalk objects structurally, rather than via
executing message sends. A list of these functions is in Table 6.8 on page 111.

Exercise caution when using structural access functions. Although they can
improve the speed of GemStone database operations, these functions bypass
GemStone’s message-sending metaphor. That is, structural access functions may
bypass any checking that might be coded into your application’s methods.

Structural access functions do not bypass authorization checks or other checks that
are not done in Smalltalk code.

5.4 environmentId
In GemStone/S 64 Bit 3.0, many new GCI functions are identical to existing GCI
functions, but with two key differences:

 • The new function takes an environmentId argument.

 • The name of the new function includes a trailing underscore.

The environmentId argument allows a GCI function to specify one of up to 256
execution environments, for use in Ruby applications.

Smalltalk applications do not need to know anything about environmentId. With
Smalltalk applications, it is preferable to use the existing GCI function (without
the trailing underscore).

For an example of this, see GciExecute (page 191). The syntax section on that page
shows both variants: GciExecute (used with Smalltalk applications)and
GciExecute_ (used with Ruby applications).
June 2011 VMware, Inc. 101

UNIX Signal Handling GemStone/S 64 Bit 3.0 GemBuilder for C
5.5 UNIX Signal Handling
Both versions of GemBuilder (GciLnk and GciRpc) use the SIGIO signal handler.
GciLnk also uses the signals SIGSEGV and SIGVTALRM. SIGVTALRM is used by
the ProfMonitor class.

If you must install your own signal handler (using signal or sigvec) for any of these
signals, be sure that your application signal handler chains to the previous handler
when done. Similar chaining is required for SIGVTALRM, if you intend to use
ProfMonitor.

SIGSEGV occurs normally when a Smalltalk stack overflow occurs, and is
translated to a Smalltalk stack overflow error by the GemStone SIGSEGV handler.
If you use GciLnk and install handlers for this signal after calling GciLogin, your
own SIGSEGV handler must determine whether the SIGSEGV was produced by
your own C code, and if not, chain to the GemStone handler.

CAUTION
Do not, under any circumstances, turn off SIGIO.
102 VMware, Inc. June 2011

Chapter

6 GemBuilder
C Functions
This chapter describes the GemBuilder functions that may be called by your C
application program.

6.1 Function Summary Tables
Tables 6.1 through 6.9 summarize the GemBuilder C functions and the services
that they provide to your application.

Table 6.1 Functions for Controlling Sessions and Transactions

GciAbort Abort the current transaction.
GciAlteredObjs Find all exported or dirty objects that have changed and are

therefore in the ExportedDirtyObjs or TrackedDirtyObjs sets.
GciBegin Begin a new transaction.
GciCommit Write the current transaction to the database.
GciDeclareAction An alternative way to associate a C function with a Smalltalk user

action.
GciDirtyExportedObjs Find all objects in the ExportedDirtyObjs set.
GciDirtyObjsInit Begin tracking which objects in the session workspace change.
June 2011 VMware, Inc. 103

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDirtySaveObjs Find all exported or tracked objects that have changed and are
therefore in the ExportedDirtyObjs or TrackedDirtyObjs sets.

GciDirtyTrackedObjs Find all tracked objects that have changed and are therefore in the
TrackedDirtyObjs set.

GciGetSessionId Find the ID number of the current user session.
GciHardBreak Interrupt GemStone and abort the current transaction.
GciInit Initialize GemBuilder.
GciInitAppName Override the default application configuration file name.
GciInitAppName_ Override the default application configuration file name and the

size of temporary object memory.
GciInstallUserAction Associate a C function with a Smalltalk user action.
GciIsRemote Determine whether the application is running linked or remotely.
GciLogin Load an application user action library.
GciLogin Start a user session.
GciLogout End the current user session.
GciNbAbort Abort the current transaction (nonblocking).
GciNbBegin Begin a new transaction (nonblocking).
GciNbCommit Write the current transaction to the database (nonblocking).
GciNbEnd Test the status of nonblocking call in progress for completion.
GciProcessDeferredUpdates_ Process deferred updates to objects that do not allow direct

structural update.
GciReleaseAllGlobalOops Remove all OOPS from the PureExportSet, making these objects

eligible for garbage collection.
GciReleaseAllOops Remove all OOPS from the PureExportSet, or if in a user action,

from the user action’s export set, making these objects eligible for
garbage collection.

GciReleaseAllTrackedOops Clear the GciTrackedObjs set, making all tracked OOPs eligible for
garbage collection.

GciReleaseGlobalOops Remove an array of GemStone OOPs from the PureExportSet,
making them eligible for garbage collection.

GciReleaseOops Remove an array of GemStone OOPs from the PureExportSet, or if
in a user action, remove them from the user action’s export set,
making them eligible for garbage collection.

GciReleaseTrackedOops Remove an array of OOPs from the GciTrackedObjs set, making
them eligible for garbage collection.

Table 6.1 Functions for Controlling Sessions and Transactions (Continued)
104 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciRtlIsLoaded Report whether a GemBuilder library is loaded.
GciRtlLoad Load a GemBuilder library.
GciRtlUnload Unload a GemBuilder library.
GciSaveAndTrackObjs Add objects to GemStone’s internal GciTrackedObjs set to prevent

them from being garbage collected.
GciSaveGlobalObjs Add an array of OOPs to the PureExportSet, making them ineligible

for garbage collection.
GciSaveObjs Add an array of OOPs to the PureExportSet, or if in a user action to

the user action’s export set, making them ineligible for garbage
collection.

GciServerIsBigEndian Determine whether or not the server process is big-endian.
GciSessionIsRemote Determine whether or not the current session is using a Gem on

another machine.
GciSetCacheName_ Set the name that a linked application will be known by in the

shared cache.
GciSetNet Set network parameters for connecting the user to the Gem and

Stone processes.
GciSetSessionId Set an active session to be the current one.
GciShutdown Logout from all sessions and deactivate GemBuilder.
GciStep Continue code execution in GemStone with specified single-step

semantics.
GciTrackedObjsFetchAllDirty Find all exported or tracked objects that have changed and are

therefore in the ExportedDirtyObjs or TrackedDirtyObjs sets.
GciTrackedObjsInit Reinitialize the set of tracked objects maintained by GemStone.
GciUserActionInit Declare user actions for GemStone.
GciUserActionShutdown Enable user-defined clean-up for user actions.

Table 6.1 Functions for Controlling Sessions and Transactions (Continued)

Table 6.2 Functions for Handling Errors and Interrupts and for Debugging

GciCallInProgress Determine if a GemBuilder call is currently in progress.
GciClearStack Clear the Smalltalk call stack.
GciContinue Continue code execution in GemStone after an error.
GciContinueWith Continue code execution in GemStone after an error.
GciDbgEstablish Specify the debugging function for GemBuilder to execute before most

calls to GemBuilder functions.
June 2011 VMware, Inc. 105

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDbgEstablishToFile Write trace information for most GemBuilder functions to a file.
GciDbgLogString Pass a message to a trace function.
GciEnableSignaledErrors Establish or remove GemBuilder visibility to signaled errors from

GemStone.
GciErr Prepare a report describing the most recent GemBuilder error.
GciInUserAction Determine whether or not the current process is executing a user action.
GciLongJmp Provides equivalent functionality to the corresponding longjmp() or

_longjmp() function.
GciNbContinue Continue code execution in GemStone after an error (nonblocking).
GciNbContinueWith Continue code execution in GemStone after an error (nonblocking).
GciPollForSignal Poll GemStone for signal errors without executing any Smalltalk

methods.
GciPopErrJump Discard a previously saved error jump buffer.
GciPushErrJump Associate GemBuilder error handling with a jump buffer by pushing a

jump buffer onto the stack.
GciRaiseException Signal an error, synchronously, within a user action.
GciSetErrJump Enable or disable the current error handler.
GciSetHaltOnError Halt the current session when a specified error occurs.
Gci_SETJMP (MACRO) Save a jump buffer in GemBuilder’s error jump stack.
GciSoftBreak Interrupt the execution of Smalltalk code, but permit it to be restarted.

Table 6.2 Functions for Handling Errors and Interrupts and for Debugging (Continued)

Table 6.3 Functions for Compiling and Executing Smalltalk Code in the Database

GciClassMethodForClass Compile a class method for a class.
GciCompileMethod Compile a method.
GciExecute Execute a Smalltalk expression contained in a String object.
GciExecuteFromContext Execute a Smalltalk expression contained in a String object as if it

were a message sent to another object.
GciExecuteStr Execute a Smalltalk expression contained in a C string.
GciExecuteStrFromContext Execute a Smalltalk expression contained in a C string as if it were a

message sent to an object.
GciInstMethodForClass Compile an instance method for a class.
GciNbExecute Execute a Smalltalk expression contained in a String object

(nonblocking).
106 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbExecuteStr Execute a Smalltalk expression contained in a C string
(nonblocking).

GciNbExecuteStrFromContext Execute a Smalltalk expression contained in a C string as if it were a
message sent to an object (nonblocking).

GciNbPerform Send a message to a GemStone object (nonblocking).
GciNbPerformNoDebug Send a message to a GemStone object, and temporarily disable

debugging (nonblocking).
GciPerform Send a message to a GemStone object.
GciPerformNoDebug Send a message to a GemStone object, and temporarily disable

debugging.
GciPerformSymDbg Send a message to a GemStone object, using a String object as a

selector.
GciPerformTraverse First send a message to a GemStone object, then traverse the result

of the message.

Table 6.4 Functions for Accessing Symbol Dictionaries

GciResolveSymbol Find the OOP of the object to which a symbol name refers, in the context
of the current session’s user profile.

GciResolveSymbolObj Find the OOP of the object to which a symbol object refers, in the
context of the current session’s user profile.

GciStrKeyValueDictAt Find the value in a symbol KeyValue dictionary at the corresponding
string key.

GciStrKeyValueDictAtObj Find the value in a symbol KeyValue dictionary at the corresponding
object key.

GciStrKeyValueDictAtObj
Put

Store a value into a symbol KeyValue dictionary at the corresponding
object key.

GciStrKeyValueDictAtPut Store a value into a symbol KeyValue dictionary at the corresponding
string key.

GciSymDictAt Find the value in a symbol dictionary at the corresponding string key.
GciSymDictAtObj Find the value in a symbol dictionary corresponding to the key object.
GciSymDictAtObjPut Store a value into a symbol dictionary at the corresponding object key.
GciSymDictAtPut Store a value into a symbol dictionary at the corresponding string key.
GciTraverseObjs Traverse an array of GemStone objects.

Table 6.3 Functions for Compiling and Executing Smalltalk Code in the Database
June 2011 VMware, Inc. 107

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Table 6.5 Functions for Creating and Initializing Objects

GciCreateByteObj Create a new byte-format object.
GciCreateOopObj Create a new pointer-format object.
GciGetFreeOop Allocate an OOP.
GciGetFreeOops Allocate multiple OOPs.
GciGetFreeOopsEncoded Allocate multiple OOPs.
GciNewByteObj Create and initialize a new byte object.
GciNewCharObj Create and initialize a new character object.
GciNewDateTime Create and initialize a new date-time object.
GciNewOop Create a new GemStone object.
GciNewOops Create multiple new GemStone objects.
GciNewOopUsingObjRep Create a new GemStone object from an existing object report.
GciNewString Create a new String object from a C character string.
GciNewSymbol Create a new Symbol object from a C character string.

Table 6.6 Functions and Macros for Converting Objects and Values

GCI_BOOL_TO_OOP (MACRO) Convert a C Boolean value to a GemStone Boolean
object.

GciByteArrayToPointer Given a result from GciPointerToByteArray, return a C pointer.
GCI_CHR_TO_OOP (MACRO) Convert a C character value to a GemStone Character

object.
GciCTimeToDateTime Convert a C date-time representation to the equivalent GemStone

representation.
GciDateTimeToCTime Convert a GemStone date-time representation to the equivalent C

representation.
Gci_doubleToSmallDouble Convert a C double to a SmallDouble object.
GciFetchDateTime Convert the contents of a DateTime object and place the results in a

C structure.
GciFloatKind Obtain the float kind corresponding to a C double value.
GciFltToOop Convert a C double value to a SmallDouble or Float object.
GCI_I64_IS_SMALL_INT Determine whether or not a C 64-bit integer value can be translated

into a SmallInteger object.
GciI64ToOop Convert a C 64-bit integer value to a GemStone object.
108 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GCI_OOP_IS_BOOL (MACRO) Determine whether or not a GemStone object represents
a Boolean value.

GCI_OOP_IS_SMALL_INT (MACRO) Determine whether or not a GemStone object represents
a SmallInteger.

GCI_OOP_IS_SPECIAL (MACRO) Determine whether or not a GemStone object has a
special representation.

GciOopToBool Convert a Boolean object to a C Boolean value.
GCI_OOP_TO_BOOL (MACRO) Convert a Boolean object to a C Boolean value.
GciOopToChar16 Convert a Character object to a 16-bit C character value.
GciOopToChar32 Convert a Character object to a 32-bit C character value.
GciOopToChr Convert a Character object to a C character value.
GCI_OOP_TO_CHR (MACRO) Convert a Character object to a C character value.
GciOopToFlt Convert a SmallDouble, Float, or SmallFloat object to a C double.
GciOopToI32 Convert a GemStone object to a C 32-bit integer value.
GciOopToI32_ Convert a GemStone object to a C 32-bit integer value, with error

handling.
GciOopToI64 Convert a GemStone object to a C 64-bit integer value.
GciOopToI64_ Convert a GemStone object to a C 64-bit integer value, with error

handling.
GciPointerToByteArray Given a C pointer, return a SmallInteger or ByteArray containing

the value of the pointer.
GciStringToInteger Convert a C string to a GemStone SmallInteger,

LargePositiveInteger or LargeNegativeInteger object.

Table 6.6 Functions and Macros for Converting Objects and Values (Continued)

Table 6.7 Object Traversal and Path Functions and Macros

GCI_ALIGN (MACRO) Align an address to a word boundary.
GciClampedTrav Traverse an array of objects, subject to clamps.
GciClampedTraverseObjs Traverse an array of objects, subject to clamps.
GciExecuteStrTrav Execute a string and traverse the result of the execution.
GciFetchPaths Fetch selected multiple OOPs from an object tree.
GciFindObjRep Fetch an object report in a traversal buffer.
GciMoreTraversal Continue object traversal, reusing a given buffer.
GciNbClampedTrav Traverse an array of objects, subject to clamps (nonblocking).
June 2011 VMware, Inc. 109

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbClampedTraverseObjs Traverse an array of objects, subject to clamps (nonblocking).
GciNbExecuteStrTrav Execute a string and traverse the result of the execution

(nonblocking).
GciNbMoreTraversal Continue object traversal, reusing a given buffer (nonblocking).
GciNbPerformTrav First send a message to a GemStone object, then traverse the result

of the message (nonblocking).
GciNbStoreTrav Store multiple traversal buffer values in objects (nonblocking).
GciNbStoreTravDo_ Store multiple traversal buffer values in objects, execute the

specified code, and return the resulting object (non-blocking).
GciNbStoreTravDoTrav_ Combine in a single function the calls to GciNbStoreTravDo_ and

GciNbClampedTrav, to store multiple traversal buffer values in
objects, execute the specified code, and traverse the result object
(non-blocking).

GciNbStoreTravDoTravRefs_ Combine in a single function modifications to session sets, traversal
of objects to the server, optional Smalltalk execution, and traversal
to the client of changed objects and (optionally) the result object
(non blocking).

GciNbTraverseObjs Traverse an array of GemStone objects (nonblocking).
GciObjRepSize_ Find the number of bytes in an object report.
GciPathToStr Convert a path representation from numeric to string.
GciPerformTrav First send a message to a GemStone object, then traverse the result

of the message.
GciPerformTraverse First send a message to a GemStone object, then traverse the result

of the message.
GciSetTraversalBufSwizzling Control swizzling of the traversal buffers.
GciStorePaths Store selected multiple OOPs into an object tree.
GciStoreTrav Store multiple traversal buffer values in objects.
GciStoreTravDo_ Store multiple traversal buffer values in objects, execute the

specified code, and return the resulting object.
GciStoreTravDoTrav_ Combine in a single function the calls to GciStoreTravDo_ and

GciClampedTrav, to store multiple traversal buffer values in
objects, execute the specified code, and traverse the result object.

GciStoreTravDoTravRefs_ Combine in a single function modifications to session sets, traversal
of objects to the server, optional Smalltalk execution, and traversal
to the client of changed objects and (optionally) the result object.

GciStrToPath Convert a path representation from string to numeric.

Table 6.7 Object Traversal and Path Functions and Macros (Continued)
110 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
CAUTION
Exercise caution when using the following structural access functions.
Although they can improve the speed of GemStone database operations,
these functions bypass GemStone’s message-sending metaphor. That is,
structural access functions may bypass any checking that might be coded
into your application’s methods. In using structural access functions,
you implicitly assume full responsibility for safeguarding the integrity of
your system.

Note, however, that structural access functions do not bypass checks on
authorization violations or concurrency conflicts.

GciTraverseObjs Traverse an array of GemStone objects.

Table 6.7 Object Traversal and Path Functions and Macros (Continued)

Table 6.8 Structural Access Functions and Macros

GciAddOopToNsc Add an OOP to the unordered variables of a nonsequenceable
collection.

GciAddOopsToNsc Add multiple OOPs to the unordered variables of a nonsequenceable
collection.

GciAppendBytes Append bytes to a byte object.
GciAppendChars Append a C string to a byte object.
GciAppendOops Append OOPs to the unnamed variables of a collection.
GciClassNamedSize Find the number of named instance variables in a class.
GciFetchByte Fetch one byte from an indexed byte object.
GciFetchBytes_ Fetch multiple bytes from an indexed byte object.
GciFetchChars_ Fetch multiple ASCII characters from an indexed byte object.
GciFetchClass Fetch the class of an object.
GciFetchNamedOop Fetch the OOP of one of an object’s named instance variables.
GciFetchNamedOops Fetch the OOPs of one or more of an object’s named instance

variables.
GciFetchNamedSize Fetch the number of named instance variables in an object.
GciFetchNameOfClass Fetch the class name object for a given class.
GciFetchObjectInfo Fetch information and values from an object.
GciFetchObjImpl Fetch the implementation of an object.
GciFetchObjInfo Fetch information and values from an object.
June 2011 VMware, Inc. 111

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchOop Fetch the OOP of one instance variable of an object.
GciFetchOops Fetch the OOPs of one or more instance variables of an object.
GciFetchSize_ Fetch the size of an object.
GciFetchVaryingOop Fetch the OOP of one unnamed instance variable from an indexable

pointer object or NSC.
GciFetchVaryingOops Fetch the OOPs of one or more unnamed instance variables from an

indexable pointer object or NSC.
GciFetchVaryingSize_ Fetch the number of unnamed instance variables in a pointer object or

NSC.
GciHiddenSetIncludesOop Determines whether the given OOP is present in the specified hidden

set.
GciIsKindOf Determine whether or not an object is some kind of a given class or

class history.
GciIsKindOfClass Determine whether or not an object is some kind of a given class.
GciIsSubclassOf Determine whether or not a class is a subclass of a given class or class

history.
GciIsSubclassOfClass Determine whether or not a class is a subclass of a given class.
GciIvNameToIdx Fetch the index of an instance variable name.
GciNscIncludesOop Determines whether the given OOP is present in the specified

unordered collection.
GciObjExists Determine whether or not a GemStone object exists.
GciObjInCollection Determine whether or not a GemStone object is in a Collection.
GciObjIsCommitted Determine whether or not an object is committed.
GciRemoveOopFromNsc Remove an OOP from an NSC.
GciRemoveOopsFromNsc Remove one or more OOPs from an NSC.
GciReplaceOops Replace all instance variables in a GemStone object.
GciReplaceVaryingOops Replace all unnamed instance variables in an NSC object.
GciSetVaryingSize Set the size of a collection.
GciStoreByte Store one byte in a byte object.
GciStoreBytes (MACRO) Store multiple bytes in a byte object.
GciStoreBytesInstanceOf Store multiple bytes in a byte object.
GciStoreChars Store multiple ASCII characters in a byte object.
GciStoreIdxOop Store one OOP in an indexable pointer object’s unnamed instance

variable.

Table 6.8 Structural Access Functions and Macros (Continued)
112 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Table 6.9 Utility Functions

GciCompress Compress the supplied data, which can be uncompressed with
GciUncompress.

GciDecodeOopArray Decode an OOP array that was previously run-length encoded.
GciDecSharedCounter Decrement the value of a shared counter.
GciEnableFreeOopEncoding Enable run-length encoding of free OOPs.
GciEnableFullCompression Enable full compression between the client and the RPC version of

GemBuilder.
GciEncodeOopArray Encode an array of OOPs, using run-length encoding.
GciFetchNumEncodedOops Obtain the size of an encoded OOP array.
GciFetchNumSharedCounte
rs

Obtain the number of shared counters available on the shared page
cache used by this session.

GciFetchSharedCounterVal
uesNoLock

Fetch the value of multiple shared counters without locking them.

GciIncSharedCounter Increment the value of a shared counter.
GciProduct Return an 8-bit unsigned integer that indicates the GemStone/S

product.
GciReadSharedCounter Lock and fetch the value of a shared counter.
GciReadSharedCounterNoL
ock

Fetch the value of a shared counter without locking it.

GciSetSharedCounter Set the value of a shared counter.
GciUncompress Uncompress the supplied data, assumed to have been compressed

with GciCompress.
GciVersion Return a string that describes the GemBuilder version.

GciStoreIdxOops Store one or more OOPs in an indexable pointer object’s unnamed
instance variables.

GciStoreNamedOop Store one OOP into an object’s named instance variable.
GciStoreNamedOops Store one or more OOPs into an object’s named instance variables.
GciStoreOop Store one OOP into an object’s instance variable.
GciStoreOops Store one or more OOPs into an object’s instance variables.

Table 6.8 Structural Access Functions and Macros (Continued)
June 2011 VMware, Inc. 113

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciAbort

Abort the current transaction.

Syntax

void GciAbort()

Description

This function causes the GemStone system to abort the current transaction. All changes to
persistent objects that were made since the last committed transaction are lost, and the
application is connected to the most recent version of the database. Your application must
fetch again from GemStone any changed persistent objects, to refresh the copies of these
objects in your C program. Use the GciDirtySaveObjs function to determine which of the
fetched objects were also changed.

This function has the same effect as issuing a hard break, or the function call
GciExecuteStr("System abortTransaction", OOP_NIL). For more information,
see “Interrupting GemStone Execution” on page 32.

See Also

GCI_CHR_TO_OOP, page 134
GciCommit, page 147
GciNbAbort, page 296
GciNbCommit, page 301
114 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciAddOopToNsc

Add an OOP to the unordered variables of a nonsequenceable collection.

Syntax

void GciAddOopToNsc(
OopType theNsc,
OopType theOop);

Input Arguments

theNsc The OOP of the NSC.
theOop The OOP to be added.

Description

This function adds an OOP to the unordered variables of an NSC, using structural access.

Example

OopType GciAddOopToNsc_example(void)
{
 // return an IdentityBag containing the SmallIntegers with value
0..99

 OopType oNsc = GciNewOop(OOP_CLASS_IDENTITY_BAG);
 for (int i = 0; i < 100; i ++) {
 OopType oNum = GciI32ToOop(i);
 GciAddOopToNsc(oNsc, oNum);
 }
 return oNsc;
}

June 2011 VMware, Inc. 115

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciAddOopsToNsc, page 117
GciNscIncludesOop, page 343
GciRemoveOopFromNsc, page 406
GciRemoveOopsFromNsc, page 408
116 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciAddOopsToNsc

Add multiple OOPs to the unordered variables of a nonsequenceable collection.

Syntax

void GciAddOopsToNsc(
OopType theNsc,
const OopType theOops[],
int numOops);

Input Arguments

theNsc The OOP of the NSC.
theOops An array of OOPs to be added.
numOops The number of OOPs to add.

Description

This function adds multiple OOPs to the unordered variables of an NSC, using structural
access.
June 2011 VMware, Inc. 117

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

OopType GciAddOopsToNsc_example(void)
{
 // return an IdentityBag containing the SmallIntegers with value
0..99

 enum { AddOopsToNsc_SIZE = 100 };

 OopType oNsc = GciNewOop(OOP_CLASS_IDENTITY_BAG);

 OopType values[AddOopsToNsc_SIZE];
 for (int i = 0; i < AddOopsToNsc_SIZE; i ++) {
 values[i] = GciI32ToOop(i);
 }
 GciAddOopsToNsc(oNsc, values, AddOopsToNsc_SIZE);
 return oNsc;
}

See Also

GciAddOopToNsc, page 115
GciNscIncludesOop, page 343
GciRemoveOopFromNsc, page 406
GciRemoveOopsFromNsc, page 408
118 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GCI_ALIGN

(MACRO) Align an address to a word boundary.

Syntax
uintptr_t * GCI_ALIGN(argument)

Input Arguments

argument The pointer or integer to be aligned.

Result Value

The first multiple of 8 that is greater than or equal to the input argument.

Description

This macro can be used to round up a pointer or size to be a multiple of
sizeOf(OopType).

Provided for compatibility. New code should use the accessor functions in
GciObjRepHdrSType (page 94).

See Also

GciMoreTraversal, page 293
GciNewOopUsingObjRep, page 338
GciTraverseObjs, page 510
June 2011 VMware, Inc. 119

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciAllocTravBuf

Allocate and initialize a new GciTravBufType structure.

Syntax

(GciTravBufType *) GciAllocTravBuf(
size_t allocationSize);

Input Arguments

allocationSize The size of the traversal buffer.

Description

This function allocates and initializes a new GciTravBufType structure.

See Also

“The Traversal Buffer Type” on page 100
120 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciAlteredObjs

Find all exported or dirty objects that have changed and are therefore in the
ExportedDirtyObjs or TrackedDirtyObjs sets.

Syntax

BoolType GciAlteredObjs(
OopType theOops[],
int * numOops);

Input Arguments

theOops An array that will contain the of OOPs of the objects in the
ExportedDirtyObjs or TrackedDirtyObjs sets.

numOops Pointer to the maximum number of OOPs that can be returned in
this call, that is, the size (in OOPs) of the buffer specified by theOops.

Result Arguments

theOops The resulting array of OOPs of objects that are in either the
ExportedDirtyObjs or TrackedDirtyObjs sets.

* numOops The number of actual OOPs in the result array theOops.

Return Value

The function result indicates whether all dirty objects have been returned. If the operation
is not complete, GciAlteredObjs returns FALSE, and it is expected that the application will
make repeated calls to this function until it returns TRUE, indicating that all of the dirty
objects have been returned. If repeated calls are not made, then the unreturned objects
persist in the list until the next time GciAlteredObjs, or another call that destructively
accesses the ExportedDirtyObjs or TrackedDirtyObjs sets, is called.

Description

Typically, a GemStone C application program caches some database objects in its local
object space, generally in the PureExportSet or if in a user action, in the user action’s export
June 2011 VMware, Inc. 121

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
set (see GciSaveObjs). It may also track them by storing them in the GciTrackedObjs set
(see GciSaveAndTrackObjs). After an abort or a successful commit, the user’s session is
resynchronized with the most recent version of the database. The values of instance
variables cached in your C program may no longer accurately represent the corresponding
GemStone objects. In such cases, your C program must update its representation of those
objects. The function GciAlteredObjs permits you to determine which objects your
application needs to reread from the database.

This function returns a list of all objects that are in the PureExportSet and are “dirty”. An
object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.
 • The object was changed by a call from this session to any GemBuilder function from

within a user action.
 • The object was changed by a call from this session to one or more of the following

functions: GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by
another session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling
back the Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and
GciCreate... do not put the modified object into the set of dirty objects (unless the call is
from within a user action). The assumption is that the client does not want the dirty set to
include modifications that the client has explicitly made.

You must call GciDirtyObjsInit once after GciLogin before you can use GciAlteredObjs.

Note that GciAlteredObjs removes OOPs from the ExportedDirtyObjs set and
TrackedDirtyObjs sets as it enumerates.

See Also

GciAbort, page 114
GciCommit, page 147
GciDirtyObjsInit, page 176
GciReleaseAllOops, page 399
GciReleaseOops, page 402
GciSaveAndTrackObjs, page 419
122 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSaveGlobalObjs, page 421
GciSaveObjs, page 422
June 2011 VMware, Inc. 123

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciAppendBytes

Append bytes to a byte object.

Syntax

void GciAppendBytes(
OopType theObject,
int64 numBytes,
const ByteType * theBytes);

Input Arguments

theObject A byte object to which bytes are to be appended.
numBytes The number of bytes to be appended.
theBytes A pointer to the bytes to be appended.

Result Arguments

theObject The resulting byte object, with the appended bytes.

Description

The GciAppendBytes function appends numBytes bytes to byte object theObject. Its effect
is equivalent to GciStoreBytes(x, GciFetchSize_(x)+1, theBytes, numBytes).

GciAppendBytes raises an error if theObject is a Float or SmallFloat. Float and SmallFloat
objects are of a fixed and unchangeable size.

See Also

GciAppendChars, page 125
124 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciAppendChars

Append a C string to a byte object.

Syntax

void GciAppendChars(
OopType theObject,
const char * aString);

Input Arguments

theObject A byte object to which the string is to be appended.
aString A pointer to the string to be appended.

Result Arguments

theObject The resulting byte object, with the appended string.

Description

This function appends the characters of aString to byte object theObject.

See Also

GciAppendBytes, page 124
June 2011 VMware, Inc. 125

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciAppendOops

Append OOPs to the unnamed variables of a collection.

Syntax

void GciAppendOops(
OopType theObject,
int numOops,
const OopType* theOops);

Input Arguments

theObject A collection to which additional OOPs are to be added.
numOops The number of OOPs to be added.
theOops A pointer to the OOPs to be added.

Result Arguments

theObject The resulting collection, with the added OOPs.

Description

Appends numOops OOPs to the unnamed variables of the collection theObject. If the
collection is indexable, this is equivalent to:

GciStoreOops(theObject, GciFetchSize_(theObject)+1, theOops, numOops);

If the collection is an NSC, this is equivalent to:

GciAddOopsToNsc(theObject, theOops, numOops);

If the object is neither indexable nor an NSC, an error is generated.
126 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciBegin

Begin a new transaction.

Syntax

void GciBegin()

Description

This function begins a new transaction. If there is a transaction currently in progress, it
aborts that transaction. Calling GciBegin is equivalent to the function call
GciExecuteStr("System beginTransaction", OOP_NIL).

See Also

GciAbort, page 114
GciExecuteStr, page 195
GciNbAbort, page 296
GciNbBegin, page 297
GciNbExecuteStr, page 308
June 2011 VMware, Inc. 127

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GCI_BOOL_TO_OOP

(MACRO) Convert a C Boolean value to a GemStone Boolean object.

Syntax

OopType GCI_BOOL_TO_OOP(aBoolean)

Input Arguments

aBoolean The C Boolean value to be translated into a GemStone object.

Result Value

The OOP of the GemStone Boolean object that is equivalent to aBoolean.

Description

This macro translates a C Boolean value into the equivalent GemStone Boolean object. A C
value of 0 translates to the GemStone Boolean object false (represented in your C program
as OOP_FALSE). Any other C value translates to the GemStone Boolean object true
(represented as OOP_TRUE). For more information, see Appendix A, “Reserved OOPs,”
128 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

int GCI_BOOL_TO_OOP_example(void)
{
 int z = 0;
 int nonZ = 99;

 OopType Fa = GCI_BOOL_TO_OOP(z);

 // any non-zero argument will produce a result of OOP_TRUE
 OopType Tr = GCI_BOOL_TO_OOP(nonZ);

 // the following will always be true
 return Fa == OOP_FALSE && Tr == OOP_TRUE;
}

See Also

GciOopToBool, page 354
June 2011 VMware, Inc. 129

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciByteArrayToPointer

Given a result from GciPointerToByteArray, return a C pointer.

Syntax

void * GciByteArrayToPointer(
OopType arg);

Input Arguments

arg A GemStone SmallInteger or ByteArray that was returned by
GciPointerToByteArray.

Description

Given an argument that was the result of GciPointerToByteArray, this function returns the
corresponding C pointer.

See Also

GciPointerToByteArray, page 383
130 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciCallInProgress

Determine if a GemBuilder call is currently in progress.

Syntax

BoolType GciCallInProgress()

Return Value

This function returns TRUE if a GemBuilder call is in progress, and FALSE otherwise.

Description

This function is intended for use within signal handlers. It can be called any time after
GciInit.

GciCallInProgress returns FALSE if the process is currently executing within a user action
and the user action’s code is not within a GemBuilder call. It considers the highest (most
recent) call context only.

See Also

GciInUserAction, page 279
June 2011 VMware, Inc. 131

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciCheckAuth

Gather the current authorizations for an array of database objects.

Syntax

void GciCheckAuth(
const OopType oopArray[];
ArraySizeType arraySize;
unsigned char authCodeArray[]);

Input Arguments

oopArray An array of OOPs of objects for which the user’s authorization level.
is to be ascertained. The caller must provide these values.

arraySize The number of OOPs in oopArray.

Result Arguments

authCodeArray The resulting array, having at least arraySize elements, in which the
authorization values of the objects in oopArray are returned as 1-byte
integer values.

Description

GciCheckAuth checks the current user’s authorization for each object in oopArray up to
arraySize, returning each authorization code in the corresponding element of
authCodeArray. The calling context is responsible for allocating enough space to hold the
results.

Authorization levels are:

1. No authorization

2. Read authorization

3. Write authorization

Special objects, such as instances of SmallInteger, are reported as having read
authorization.
132 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Authorization values returned are those that have been committed to the database; they do
not reflect changes you might have made in your local workspace. To query the local
workspace, send an authorization query message to a particular object security policy
using the GciPerform function.

If any member of oopArray is not a legal OOP, GciCheckAuth generates the error
OBJ_ERR_DOES_NOT_EXIST. In that case, the contents of authCodeArray are undefined.
June 2011 VMware, Inc. 133

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GCI_CHR_TO_OOP

(MACRO) Convert a C character value to a GemStone Character object.

Syntax

OopType GCI_CHR_TO_OOP(aChar)

Input Arguments

aChar The C character value to be translated into a GemStone object.

Result Value

The OOP of the GemStone Character object that is equivalent to aChar.

Description

This macro translates a C character value into the equivalent GemStone Character object.
For more information, see Appendix A, “Reserved OOPs”.

Example

OopType GCI_CHR_TO_OOP_example(void)
{
 // return the OOP for the ASCII character ‘a’
 OopType theOop = GCI_CHR_TO_OOP(‘a’);
 return theOop;
}

See Also

GciOopToChr, page 359
134 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciClampedTrav

Traverse an array of objects, subject to clamps.

Syntax

BoolType GciClampedTrav(
const OopType * theOops,
int numOops,
GciClampedTravArgsSType *travArgs);

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travArgs Pointer to an instance of GciClampedTravArgsSType containing

the following input argument fields:

OopType clampSpec
The OOP of the Smalltalk ClampSpecification to
be used, or OOP_NIL, if the traversal is to operate
without clamping.

int level
Maximum traversal depth. When the level is 1, an
object report is written to the traversal buffer for
each element in theOops. When the level is 2, an
object report is also obtained for the instance
variables of each level-1 object. When the level is
0, the number of levels in the traversal is not
restricted.

GciTravBufType * travBuff
A pointer to the traversal buffer.

int retrievalFlags
If (retrievalFlags & GCI_RETRIEVE_EXPORT != 0)
then OOPs of non-special objects for which an
object report header is returned in the traversal
buffer are automatically added to the
PureExportSet or the user action’s export set (see
GciSaveObjs). The value of retrievalFlags should
June 2011 VMware, Inc. 135

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
be given by using the following GemBuilder
mnemonics:
GCI_RETRIEVE_DEFAULT
GCI_RETRIEVE_EXPORT
GCI_CLEAR_EXPORT causes the traversal to
clear the PureExportSet or the user action’s
export set before it adds any OOPs to the traverse
buffer.

Result Arguments

travArgs Pointer to an instance of GciClampedTravArgsSType containing
the following result argument field:

GciTravBufType * travBuff
The buffer for the results of the traversal. The first
element placed in the buffer is the
actualBufferSize, an integer that indicates how
many bytes were actually stored in the buffer by
this function. The remainder of the traversal
buffer consists of a series of object reports, each of
which is of type GciObjRepSType.

Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more
objects to be returned by subsequent calls to GciMoreTraversal (that is, an object report
was constructed for each object, minus the special objects).

Description

The GciClampedTrav function initiates a traversal of the specified objects, subject to the
clamps in the specified ClampSpecification. In order to guarantee that the root object of the
traversal will always have an entry in the traversal buffer, the root object is not subject to
the specified clamps. Refer to “GciTraverseObjs” on page 510 for a detailed discussion of
object traversal.

GemBuilder clamped traversal functions are used by the GemBuilder for Smalltalk
implementation of object replication and are intended for similar sophisticated client
applications.
136 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciMoreTraversal, page 293
GciSaveObjs, page 422
June 2011 VMware, Inc. 137

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciClampedTraverseObjs

Traverse an array of objects, subject to clamps.

This function is provided for compatibility with prior releases. New code should use
GciClampedTrav.

Syntax

BoolType GciClampedTraverseObjs(
OopType clampSpec,
const OopType theOops[],
int numOops,
GciTravBufType * travBuff,
int level);

Input Arguments

clampSpec The OOP of the Smalltalk ClampSpecification to be used.
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
level Maximum traversal depth. When the level is 1, an object report is

written to the traversal buffer for each element in theOops. When
level is 2, an object report is also obtained for the instance variables
of each level-1 object. When level is 0, the number of levels in the
traversal is not restricted.
138 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Result Arguments

travBuff The buffer for the results of the traversal. The first element placed in
the buffer is the actualBufferSize, an integer that indicates how many
bytes were actually stored in the buffer by this function. The
remainder of the traversal buffer consists of a series of object reports,
each of which is of type GciObjRepSType.
If a given object report represents a clamped object, the valueBuffSize
of the report is zero. The idxSize of the report is filled in with the
varyingSize for simple objects such as Array, String, IdentityBag,
IdentitySet, and some kinds of ObjectDictionary. For details about
the object information and object report structures, see the
discussion beginning on page 94.
If the report array would otherwise be empty, a single object report
is created for the object nil.

Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more
objects to be returned by subsequent calls to GciMoreTraversal (that is, an object report
was constructed for each object, minus the special objects).

Description

The GciClampedTraverseObjs function initiates a traversal of the specified objects, subject
to the clamps in the specified ClampSpecification. If you specify OOP_NIL as the clampSpec
parameter, the function behaves identically to GciTraverseObjs. In order to guarantee that
the root object of the traversal will always have an entry in the traversal buffer, the root
object is not subject to the specified clamps. Refer to the GciTraverseObjs function for a
detailed discussion of object traversal.

GciClampedTraverseObjs provides automatic byte swizzling for Float and SmallFloat
objects. (For more about byte swizzling, see page 29.)

GemBuilder clamped traversal functions are intended primarily for GemStone internal
use.
June 2011 VMware, Inc. 139

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciTraverseObjs, page 510
GciNbClampedTraverseObjs, page 299
GciNbTraverseObjs, page 328
140 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciClassMethodForClass

Compile a class method for a class.

Syntax

OopType GciClassMethodForClass(
OopType source,
OopType oclass,
OopType category,
OopType symbolList);

Input Arguments

source The OOP of a Smalltalk string to be compiled as a class method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string, which contains the name of the

category to which the method is added. If the category is nil
(OOP_NIL), the compiler adds this method to the category
“(as yet unclassified)”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in
source code by using symbols that are available from symbolList. A
value of OOP_NIL means to use the default symbol list for the
current GemStone session (that is,
System myUserProfile symbolList).

Return Value

Returns OOP_NIL, unless there were compiler warnings (such as variables declared but
not used, etc.), in which case the return will be the OOP of a string containing the warning
messages.

Description

This function compiles a class method for the given class. You may not compile any
method whose selector begins with an underscore (_) character. Such selectors are reserved
for use by the GemStone development team as private methods.
June 2011 VMware, Inc. 141

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may
not compile any methods with any of those selectors. See the Programming Guide for
GemStone/S 64 Bit for a list of the optimized selectors.

To remove a class method, use GciExecuteStr instead.

Example

void GciClassMethodForClass_example(void)
{
 // Assumes the topaz code for GciFetchVaryingOop example
 // has been executed.

 OopType theClass = GciResolveSymbol(“Component”, OOP_NIL);
 OopType oCateg = GciNewString(“instance creation”);
 // method to create a new instance with a specified part number
 OopType oMethodSrc = GciNewString(
“newWithNumber: aNum . | o | o := self new . o partNumber: aNum. ^
o”);

 GciClassMethodForClass(oMethodSrc, theClass, oCateg, OOP_NIL);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
}

See Also

GciInstMethodForClass, page 277
142 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciClassNamedSize

Find the number of named instance variables in a class.

Syntax

int GciClassNamedSize(
OopType oclass);

Input Arguments

oclass The OOP of the class from which to obtain information about
instance variables. Appendix A, “Reserved OOPs,” lists the OOP of
each Smalltalk kernel class.

Return Value

Returns the number of named instance variables in the class. In case of error, this function
returns zero.

Description

This function returns the number of named instance variables for the specified class,
including those inherited from superclasses.
June 2011 VMware, Inc. 143

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

int namedSizeExample(void)
{
 // find the class named Employee in the current symbolList
 OopType empClass = GciResolveSymbol(“Employee”, OOP_NIL);
 if (empClass == OOP_NIL) {
 return -1; // class not found or other error.
 }

 int numIvs = GciClassNamedSize(empClass);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 return -1; // error occurred
 }

 // return the number of named instance variables which will
 // be >= 0
 return numIvs;
}

See Also

GciIvNameToIdx, page 285
144 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciClearStack

Clear the Smalltalk call stack.

Syntax

void GciClearStack(
OopType process);

Input Arguments

process The OOP of a GsProcess object (obtained as the value of the context
field of an error report returned by GciErr).

Description

Whenever a session executes a Smalltalk expression or sequence of expressions, the virtual
machine creates and maintains a call stack that provides information about its state of
execution. The call stack includes an ordered list of activation records related to the
methods and blocks that are currently being executed.

If a soft break or an unexpected error occurs, the virtual machine suspends execution,
creates a GsProcess object, and raises an error. The GsProcess object represents both the call
stack when execution was suspended and any information that the virtual machine needs
to resume execution. If there was no fatal error, your program can call GciContinue to
resume execution. Call GciClearStack instead if there was a fatal error, or if you do not
want your program to resume the suspended execution.

Example

The following example shows how an application can handle an error and either continue
or terminate Smalltalk execution.

void clearStackExample(void)
{
 OopType result = GciExecuteStr(
 “| a | a := 10 + 10. nil halt . ^ a + 100”,
 OOP_NIL/*use default symbolList for execution*/);
June 2011 VMware, Inc. 145

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
 // halt method is expected to generate error number
RT_ERR_GENERIC_ERROR
 GciErrSType errInfo;
 if (! GciErr(&errInfo)) {
 printf(“expected an error but none found\n”);
 return;
 }
 if (errInfo.number == ERR_Halt) {
 // now continue the execution to finish the computation
 result = GciContinue(errInfo.context);
 } else {
 // FMT_OID format string is defined in gci.ht
 printf(“unexpected error category “FMT_OID” number %d, %s\n”,

 errInfo.category, errInfo.number, errInfo.message);
 // terminate the execution
 GciClearStack(errInfo.context);
 return;
 }
 int val = GciOopToI32(result);
 if (GciErr(&errInfo)) {
 printf(“unexpected error category “FMT_OID” number %d, %s\n”,

 errInfo.category, errInfo.number, errInfo.message);
 } else {
 if (val != 120) {
 printf(“Wrong answer = %d\n”, val);
 } else {
 printf(“result = %d\n”, val);
 }
 }
}

See Also

GciContinue, page 154
GciSoftBreak, page 441
146 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciCommit

Write the current transaction to the database.

Syntax

BoolType GciCommit()

Return Value

Returns TRUE if the transaction committed successfully. Returns FALSE if the transaction
fails to commit due to a concurrency conflict or in case of error.

Description

The GciCommit function attempts to commit the current transaction to the GemStone
database.

GciCommit ignores any commit pending action that may be defined in the current
GemStone session state.

Example

void GciCommit_example(void)
{
 // Call GciCommit and see if there was an error
 if (! GciCommit()) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“commit failed with error %d , %s \n”,
 errInfo.number, errInfo.message);
 } else {
 printf(“commit failed due to transaction conflicts\n”);
 }
 }
}

June 2011 VMware, Inc. 147

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciAbort, page 114
GCI_CHR_TO_OOP, page 134
GciNbAbort, page 296
GciNbCommit, page 301
148 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciCompileMethod

Compile a method.

Syntax

OopType GciCompileMethod(
OopType source,
OopType oclass,
OopType category,
OopType symbolList,
OopType overrideSelector,
int compileFlags,
ushort environmentId);

Input Arguments

source The OOP of a Smalltalk string to be compiled as a class method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string, which contains the name of the

category to which the method is added. If the category is nil
(OOP_NIL), the compiler adds this method to the category
“(as yet unclassified)”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in
source code by using symbols that are available from symbolList. A
value of OOP_NIL means to use the default symbol list for the
current GemStone session (that is,
System myUserProfile symbolList).

overrideSelector If not nil, this is a string that is converted to a symbol and used in
precedence to the selector pattern in the method source when
installing the method in the method dictionary. Sending 'selector' to
the resulting method will also reflect the overrideSelector argument.

compileFlags Compiler flags used for bootstrapping the Ruby environment.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.
June 2011 VMware, Inc. 149

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Return Value

Returns OOP_NIL, unless there were compiler warnings (such as variables declared but
not used, etc.), in which case the return will be the OOP of a string containing the warning
messages.

Description

This function is used for compiling a method. Replaces both GciInstMethodForClass and
GciClassMethodForClass, and adds the environmentId argument.

This function compiles a method for the given class. You may not compile any method
whose selector begins with an underscore (_) character. Such selectors are reserved for use
by the GemStone development team as private methods.

In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may
not compile any methods with any of those selectors. See the Programming Guide for
GemStone/S 64 Bit for a list of the optimized selectors.

To remove a method, use GciExecuteStr instead.

See Also

GciClassMethodForClass, page 141
GciInstMethodForClass, page 277
150 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciCompress

Compress the supplied data, which can be uncompressed with GciUncompress.

Syntax

int GciCompress(
char * dest,
uint * destLen,
const char * source,
uint sourceLen);

Input Arguments

dest Pointer to the buffer intended to hold the resulting compressed data.
destLen Length, in bytes, of the buffer intended to hold the compressed data.
source Pointer to the source data to compress.
sourceLen Length, in bytes, of the source data.

Result Arguments

dest The resulting compressed data.

Return Value

GciCompress returns Z_OK (equal to 0) if the compression succeeded, or various error
values if it failed; see the documentation for the compress function in the GNU zlib library
at http://www.gzip.org.

Description

GciCompress passes the supplied inputs unchanged to the compress function in the
GNU zlib library Version 1.2.3, and returns the result exactly as the GNU compress
function returns it.
June 2011 VMware, Inc. 151

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

#include <limits.h>

OopType compressByteArray(OopType byteArray)
{
 // given an input ByteArray , return a new ByteArray with
 // the contents of the input compressed .

 if (!GciIsKindOfClass(byteArray, OOP_CLASS_BYTE_ARRAY))
 return OOP_NIL; /* error: input arg is not a ByteArray */

 int64 inputSize = GciFetchSize_(byteArray);
 if (inputSize > INT_MAX) {
 return OOP_NIL; // GciCompress supports max 2G bytes input
 }

 int64 outputSize = inputSize;

 ByteType *inputBuffer = (ByteType*)malloc(inputSize);
 if (inputBuffer == NULL) {
 return OOP_NIL; // malloc failure
 }
 ByteType *outputBuffer = (ByteType*)malloc(outputSize);
 if (outputBuffer == NULL) {
 free(inputBuffer);
 return OOP_NIL; // malloc failure
 }

 OopType resultOop = OOP_NIL;

 int64 numRet = GciFetchBytes_(byteArray, 1/* start at first element
*/,

 inputBuffer, inputSize /* max bytes to fetch */);
 if (numRet == inputSize) {
 uint compressedSize;
 int status = GciCompress((char *)outputBuffer,

 &compressedSize,
 (char *) inputBuffer, inputSize);

 if (status == 0) {
 // compress ok
152 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
 resultOop = GciNewByteObj(OOP_CLASS_BYTE_ARRAY,
outputBuffer, (int64)compressedSize);

 } else {
 // compress failed
 }
 } else {
 // error during FetchBytes
 }
 free(inputBuffer);
 free(outputBuffer);
 return resultOop;
}

See Also

GciUncompress, page 515
June 2011 VMware, Inc. 153

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciContinue

Continue code execution in GemStone after an error.

Syntax

OopType GciContinue(
OopType process);

Input Arguments

process The OOP of a GsProcess object (obtained as the value of the context
field of an error report returned by GciErr).

Return Value

Returns the OOP of the result of the Smalltalk code that was executed. Returns OOP_NIL
in case of error.

Description

The GciContinue function attempts to continue Smalltalk execution sometime after it was
suspended. It is most useful for proceeding after GemStone encounters a pause message, a
soft break (GciSoftBreak), or an application-defined error, since continuation is always
possible after these events. Because GciContinue calls the virtual machine, the application
user can also issue a soft break while this function is executing. For more information, see
“Interrupting GemStone Execution” on page 32.

It may also be possible to continue Smalltalk execution if the virtual machine detects a
nonfatal error during a GciExecute... or GciPerform call. You may then want to use
structural access functions to investigate (or modify) the state of the database before you
call GciContinue.

Example

See the example for the GciClearStack function on page 145.
154 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciClearStack, page 145
GciErr, page 189
GciExecute, page 191
GciNbContinue, page 302
GciNbExecute, page 306
June 2011 VMware, Inc. 155

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciContinueWith

Continue code execution in GemStone after an error.

Syntax

OopType GciContinueWith (
OopType process,
OopType replaceTopOfStack,
int flags,
GciErrSType * error);

Input Arguments

process The OOP of a GsProcess object (obtained as the value of the context
field of an error report returned by GciErr).

replaceTopOfStack If not OOP_ILLEGAL, replace the top of the Smalltalk evaluation
stack with this value before continuing. If OOP_ILLEGAL, the
evaluation stack is not changed.

flags Flags to disable or permit asynchronous events and debugging in
Smalltalk, as defined for GciPerformNoDebug.

error If not NULL, continue with an error. This argument takes
precedence over replaceTopOfStack.

Return Value

Returns the OOP of the result of the Smalltalk code that was executed. In case of error, this
function returns OOP_NIL.

Description

This function is a variant of the GciContinue function, except that it allows you to modify
the call stack and the state of the database before attempting to continue the suspended
Smalltalk execution. This feature is typically used while implementing a Smalltalk
debugger.
156 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciNbContinueWith, page 303
GciNbExecute, page 306
GciPerformNoDebug, page 373
June 2011 VMware, Inc. 157

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciCreateByteObj

Create a new byte-format object.

Syntax

OopType GciCreateByteObj(
OopType oclass,
OopType objId,
const ByteType * values,
int64 numValues,
int clusterId,
BoolType makePermanent);

Input Arguments

oclass The OOP of the class of the new object.
objId The new object’s OOP (obtained from GciGetFreeOop), or

OOP_ILLEGAL.
If you are trying to create a Symbol or DoubleByteSymbol, objId
must be OOP_ILLEGAL. You cannot use the result of
GciGetFreeOop to create a type of Symbol object.

values Array of instance variable values.
numValues Number of elements in values.
clusterId ID of the cluster bucket in which to place the object. If clusterId is 0,

use the cluster bucket (System currentClusterId). Otherwise,
clusterId must be a positive integer <=
GciFetchSize_(OOP_ALL_CLUSTER_BUCKETS).

makePermanent Has no effect.

Return Value

GciCreateByteObj returns the OOP of the object it creates. The return value is the
same as objId unless that value is OOP_ILLEGAL, in which case
GciCreateByteObj assigns and returns a new OOP itself.
158 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

Creates a new object using an object identifier (objId) previously obtained from
GciGetFreeOop or GciGetFreeOops. For more about the semantics of such object
identifiers, see the GciGetFreeOop function on page 260.

The object is created in temporary object space, and the garbage collector makes it
permanent if the object is referenced, or becomes referenced, by another permanent object.

Values are stored into the object starting at the first named instance variable (if any) and
continuing to the indexable (or NSC) instance variables if oclass is indexable or NSC. The
caller must initialize any unused elements of *values to OOP_NIL.

If oclass is an indexable or NSC class, then numValues may be as large or as small as desired.
If oclass is neither indexable nor NSC, numValues must not exceed the number of named
instance variables in the class. If numValues is less than number of named instance
variables, then the size of the newly-created object is the number of named instance
variables and any instance variables beyond numValues are initialized to OOP_NIL.

For certain classes of byte format, namely DateTime, Float, LargePositiveInteger, and
LargeNegativeInteger, additional size restrictions apply.

For an indexable object, if numValues is greater than zero and values is NULL, then the
object is created of size numValues, and is initialized to logical size numValues. (This is
equivalent to new: aSize for classes Array or String.)

If GciCreateByteObj is being used to create an instance of OOP_CLASS_FLOAT or
OOP_CLASS_SMALL_FLOAT, then the correct number of value bytes must be supplied at
the time of creation.

If you are trying to create a Symbol or DoubleByteSymbol, objId must be OOP_ILLEGAL.

See Also

GciCreateOopObj, page 160
GciGetFreeOop, page 260
GciGetFreeOops, page 262
June 2011 VMware, Inc. 159

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciCreateOopObj

Create a new pointer-format object.

Syntax

OopType GciCreateOopObj(
OopType oclass,
OopType objId,
const OopType * values,
int numValues,
int clusterId,
BoolType makePermanent);

Input Arguments

oclass The OOP of the class of the new object.
objId The new object’s OOP (obtained from GciGetFreeOop), or

OOP_ILLEGAL.
values Array of instance variable values.
numValues Number of elements in values.
clusterId ID of the cluster bucket in which to place the object. If clusterId is 0,

use the cluster bucket (System currentClusterId). Otherwise,
clusterId must be a positive integer <=
GciFetchSize_(OOP_ALL_CLUSTER_BUCKETS).

makePermanent Has no effect.

Return Value

GciCreateOopObj returns the OOP of the object it creates. The return value is the same as
objId unless that value is OOP_ILLEGAL, in which case GciCreateOopObj assigns and
returns a new OOP itself.

Description

Creates a new object using an object identifier (objId) previously obtained from
GciGetFreeOop or GciGetFreeOops. For more about the semantics of such object
identifiers, see the GciGetFreeOop function on page 260.
160 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
The object is created in temporary object space, and the garbage collector makes it
permanent if the object is referenced, or becomes referenced, by another permanent object.

Values are stored into the object starting at the first named instance variable (if any) and
continuing to the indexable (or NSC) instance variables if oclass is indexable or NSC. Values
may be forward references to objects whose identifier has been allocated with
GciGetFreeOop, but for which the object has not yet been created with GciCreate.... The
caller must initialize any unused elements of *values to OOP_NIL.

Because it is illegal to create a forward reference to a Symbol, any GciCreate... call that
creates a Symbol will fail if the client’s objId of the created object was already used as a
forward reference.

If oclass is an indexable or NSC class, then numValues may be as large or as small as desired.
If oclass is neither indexable nor NSC, numValues must not exceed the number of named
instance variables in the class. If numValues is less than number of named instance
variables, then the size of the newly-created object is the number of named instance
variables and any instance variables beyond numValues are initialized to OOP_NIL.

For an indexable object, if numValues is greater than zero and values is NULL, then the
object is created of size numValues, and is initialized to logical size numValues. (This is
equivalent to new: aSize for classes Array or String.)

See Also

GciCreateByteObj, page 158
GciGetFreeOop, page 260
GciGetFreeOops, page 262
June 2011 VMware, Inc. 161

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciCTimeToDateTime

Convert a C date-time representation to the equivalent GemStone representation.

Syntax

BoolType GciCTimeToDateTime(
time_t arg,
GciDateTimeSType * result);

Input Arguments

arg The C time value to be converted.

Result Arguments

result A pointer to the C struct in which to place the converted value.

Return Value

Returns TRUE if the conversion succeeds; otherwise returns FALSE.

Description

Converts a time_t value to GciDateTimeSType. On systems where time_t is a signed
value, GciCTimeToDateTime generates an error if arg is negative.
162 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciDateTimeToCTime

Convert a GemStone date-time representation to the equivalent C representation.

Syntax

time_t GciDateTimeToCTime(
const GciDateTimeSType *arg);

Input Arguments

arg An instance of GciDateTimeSType to be converted.

Return Value

A C time value of type time_t.

Description

Converts an instance of GciDateTimeSType to the equivalent time_t value.
June 2011 VMware, Inc. 163

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDbgEstablish

Specify the debugging function for GemBuilder to execute before most calls to GemBuilder
functions.

Syntax

GciDbgFuncType * GciDbgEstablish(
GciDbgFuncType * newDebugFunc);

Input Arguments

newDebugFunc A pointer to a C function that will be called before each subsequent
GemBuilder call. Note that this function will not be called before any
of the following GemBuilder functions or macros: GCI_ALIGN,
GCI_BOOL_TO_OOP, GCI_CHR_TO_OOP, GciErr, or
GciDbgEstablish itself.

The newDebugFunc function is passed a single null-terminated string argument, (of type
const char []), the name of the GemBuilder function about to be called.

Return Value

Returns a pointer to the newDebugFunc specified in the previous GciDbgEstablish call (if
any).

Description

This function establishes the name of a C function (most likely a debugging routine) to be
called before your program calls any GemBuilder function or macro (except those named
above). Before each GemBuilder call, a single argument, a null-terminated string that
names the GemBuilder function about to be executed, is passed to the specified
newDebugFunc.

To disable previous debugging routines, your program can use the following statement:

GciDbgEstablish(NULL);
164 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

void traceGciFunct(const char* gciFname)
{
 printf(“trace gci call %s \n”, gciFname);
}

void debugEstablishExample(void)
{
 GciDbgEstablish(traceGciFunct); // enable tracing

 GciFetchSize_(OOP_CLASS_STRING); // this call will be traced

 GciDbgEstablish(NULL); // shut off tracing
}

See Also

GciDbgEstablishToFile, page 166
GciErr, page 189
June 2011 VMware, Inc. 165

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDbgEstablishToFile

Write trace information for most GemBuilder functions to a file.

Syntax

BoolType GciDbgEstablishToFile(
const char * fileName);

Input Arguments

fileName The file to which trace information is to be written.

Return Value

Returns TRUE if the file operation was successful.

Description

This function causes trace information for most GemBuilder functions to be written to a
file. If the file already exists, it is opened in append mode. If fileName is NULL and tracing
to a file is not currently active, trace information will be written to stdout.

Calling GciDbgEstablishToFile supersedes the effect of any previous calls to
GciDbgEstablish or GciDbgEstablishToFile.

To terminate tracing to an active file, your program can use the following statement:

GciDbgEstablishToFile(NULL);

Alternatively, your program can callGciShutdown.

For details about the trace information generated, see GciDbgEstablish.

See Also

GciDbgEstablish, page 164
GciErr, page 189
166 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciDbgLogString

Pass a message to a trace function.

Syntax

void GciDbgLogString(
const char * message);

Input Arguments

message A message to be passed to GciDbgEstablish or
GciDbgEstablishToFile.

Description

If either GciDbgEstablish or GciDbgEstablishToFile has been called to activate tracing of
GemBuilder calls, this function passes the argument to the trace function.

If tracing is not active, this function has no effect.

See Also

GciDbgEstablish, page 164
GciDbgEstablishToFile, page 166
June 2011 VMware, Inc. 167

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDeclareAction

An alternative way to associate a C function with a Smalltalk user action.

NOTE
In previous GemStone/S 64 Bit releases, similar behavior was provided by the macro
GCI_DECLARE_USER_ACTION.

Syntax

void GciDeclareAction(
const char* name,
void* func,
int nargs,
uint flags,
BoolType errorIfDuplicate);

Input Arguments

name The user action name (a case-insensitive, null-terminated string).
func A pointer to the C user action function.
nargs The number of arguments in the C function.
flags Flags that are rarely used. Mainly for internal use.
errorIfDuplicate If True, return an error if there is already a user action with the

specified name. If False, leave the existing user action in place and
ignore the current call.

Description

This function associates a user action name (declared in Smalltalk) with a user-written C
function. GciDeclareAction allows you to declare a user action by passing each field of the
user action structure to the function as a separate argument. Because the user action
structure is encapsulated within the function itself, there’s no need to explicitly allocate
and free memory, as is required with GciInstallUserAction (which uses the data structure
defined by GciUserActionSType).
168 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

“The User Action Information Structure” on page 99
“GciInstallUserAction” on page 276
June 2011 VMware, Inc. 169

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDecodeOopArray

Decode an OOP array that was previously run-length encoded.

Syntax

int GciDecodeOopArray(
OopType * encodedOopArray,
const int numEncodedOops,
OopType * decodedOopArray,
const int decodedOopArraySize);

Input Arguments

encodedOopArray An OOP array that was encoded by a call to GciEncodeOopArray.
numEncodedOops The number of OOPs in encodedOopArray.
decodedOopArraySize The maximum number of OOPs in decodedOopArray.

Result Arguments

decodedOopArray The decoded OOP array that had been run-length encoded.

Return Value

Returns the number of OOPs placed in decodedOopArray.

Description

This function decodes the OOPs in encodedOopArray that were run-length encoded using
GciEncodeOopArray and places the result in decodedOopArray.

The decodedOopArraySize must be large enough to hold all decoded OOPs. If it is not, no
decode is performed and *decodedOopArraySize is set to -1.
170 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciFetchNumEncodedOops, page 224
GciEnableFreeOopEncoding, page 183
GciEncodeOopArray, page 187
GciGetFreeOopsEncoded, page 264
June 2011 VMware, Inc. 171

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDecSharedCounter

Decrement the value of a shared counter.

Syntax

BoolType GciDecSharedCounter(
int64_t counterIdx,
int64_t * value,
int64_t * floor);

Input Arguments

counterIdx The offset into the shared counters array of the value to decrement.
value Pointer to a value that indicates how much to decrement the shared

counter by.
floor The minimum possible value for the shared counter. The counter

cannot be decremented below this value. If floor is NULL, then a floor
value of INT_MIN (-2147483647) will be used.

Result Arguments

value Pointer to a value that indicates the new value of the shared counter,
after the decrement.

Return Value

Returns a C Boolean value indicating if the shared counter was successfully decremented
by the given amount. Returns TRUE if successful, FALSE if an error occurred.

Description

This function decrements the value of a particular shared counter by a specified amount.
The shared counter is specified by index. The value of this shared counter cannot be
decremented to a value lower than floor.

This function is not supported for remote GCI interfaces, and will always return FALSE.
172 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciFetchNumSharedCounters, page 225
GciIncSharedCounter, page 271
GciSetSharedCounter, page 437
GciReadSharedCounter, page 394
GciReadSharedCounterNoLock, page 395
GciFetchSharedCounterValuesNoLock, page 244
June 2011 VMware, Inc. 173

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDirtyExportedObjs

Find all objects in the ExportedDirtyObjs set.

Syntax

BoolType GciDirtyExportedObjs(
OopType theOops[],
int * numOops);

Input Arguments

numOops The maximum number of objects that can be put into theOops buffer.

Result Arguments

theOops An array of the dirty exported objects found.
numOops The number of dirty exported objects found.

Return Value

This function returns a C Boolean value indicating whether or not the complete set of dirty
objects has been returned in theOops in one or more calls. TRUE indicates that the complete
set has been returned, and FALSE indicates that it has not.

Description

This function returns a list of all objects that are in the ExportedDirtyObjs set, which
includes all objects in the PureExportSet that have been made “dirty” since the
ExportedDirtyObjs set was last initialized or retrieved using GciDirtyAlteredObjs,
GciDirtyExportedObjs, GciDirtyObjsInit, GciDirtySaveObjs, or
GciTrackedObjsFetchAllDirty. Object are added to the PureExportSet using
174 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSaveObjs or by other functions that invoke GciSaveObjs. An object is considered dirty
(changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.
 • The object was changed by a call from this session to any GemBuilder function from

within a user action.
 • The object was changed by a call from this session to one or more of the following

functions: GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by
another session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling
back the Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and
GciCreate... do not put the modified object into the set of dirty objects (unless the call is
from within a user action). The assumption is that the client does not want the dirty set to
include modifications that the client has explicitly made.

The function GciDirtyObjsInit must be executed once after GciLogin before this function
can be called, because it depends upon GemStone’s set of dirty objects.

The user is expected to call this function repeatedly while it returns FALSE, until it finally
returns TRUE. When this function returns TRUE, it first clears the set of dirty objects.

Note that GciDirtyExportedObjs removes OOPs from the ExportedDirtyObjs set as they
are enumerated.

See Also

“Garbage Collection” on page 49
“GciDirtyObjsInit” on page 176
“GciDirtySaveObjs” on page 178
“GciDirtyTrackedObjs” on page 180
“GciTrackedObjsFetchAllDirty” on page 507
“GciHiddenSetIncludesOop” on page 268
“GciReleaseAllGlobalOops” on page 398
“GciSaveGlobalObjs” on page 421
“GciSaveObjs” on page 422
June 2011 VMware, Inc. 175

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDirtyObjsInit

Begin tracking which objects in the session workspace change.

Syntax

void GciDirtyObjsInit()

Description

GemStone can track which objects in a session change, but doing so has a measurable cost.
By default, GemStone does not do it. The GciDirtyObjsInit function permits an
application to request GemStone to maintain that set of dirty objects, the
ExportedDirtyObjects, when it is needed. Once initialized, GemStone tracks dirty objects
until GciLogout is executed.

GciDirtyObjsInit must be called once after GciLogin before GciDirtyExportedObjs,
GciDirtySaveObjs, or GciTrackedObjsFetchAllDirty in order for those functions to
operate properly, because they depend upon GemStone’s set of dirty objects.

An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.
 • The object was changed by a call from this session to any GemBuilder function from

within a user action.
 • The object was changed by a call from this session to one or more of the following

functions: GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by
another session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling
back the Smalltalk in-memory state to the previously committed state.

See Also

GciDirtyExportedObjs, page 174
GciDirtySaveObjs, page 178
176 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciTrackedObjsFetchAllDirty, page 507
GciHiddenSetIncludesOop, page 268
June 2011 VMware, Inc. 177

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDirtySaveObjs

Find all exported or tracked objects that have changed and are therefore in the
ExportedDirtyObjs or TrackedDirtyObjs sets.

Syntax

BoolType GciDirtySaveObjs(
OopType theOops[],
int * numOops);

Input Arguments

numOops The number of objects that can be put into theOops buffer.

Result Arguments

theOops An array of the dirty cached objects found.
numOops The number of dirty cached objects found.

Return Value

This function returns a C Boolean value indicating whether or not the complete set of dirty
objects has been returned in theOops in one or more calls. TRUE indicates that the complete
set has been returned, and FALSE indicates that it has not.

Description

GciDirtySaveObjs finds all objects that are in the ExportedDirtyObjs or TrackedDirtyObjs
sets. The ExportedDirtyObjs set includes all objects in PureExportSet that have been made
“dirty” since the ExportedDirtyObjs set was last reset, and the TrackedDirtyObjs set
includes all objects in the GciTrackedObjs set that have been made “dirty” since the
TrackedDirtyObjs set was last reset.

The ExportedDirtyObjs set is initialized by GciDirtyObjsInit; it is cleared by calls to
GciDirtyAlteredObjs, GciDirtyExportedObjs, GciDirtySaveObjs (this function), or
GciTrackedObjsFetchAllDirty. The TrackedDirtyObjs set is initialized by
178 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciTrackedObjsInit and cleared by calls to GciDirtyAlteredObjs, GciDirtySaveObjs
(this function), GciDirtyTrackedObjs, or GciTrackedObjsFetchAllDirty.

An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.
 • The object was changed by a call from this session to any GemBuilder function from

within a user action.
 • The object was changed by a call from this session to one or more of the following

functions: GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by
another session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling
back the Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and
GciCreate... do not put the modified object into the set of dirty objects (unless the call is
from within a user action). The assumption is that the client does not want the dirty set to
include modifications that the client has explicitly made.

GciDirtyObjsInit must be called once after GciLogin before GciDirtySaveObjs can be
executed, because it depends upon GemStone’s set of dirty objects.

The user is expected to call GciDirtySaveObjs repeatedly while it returns FALSE, until it
finally returns TRUE. When GciDirtySaveObjs returns TRUE, it first clears the set of dirty
objects.

For details about the PureExportSet, see GciSaveObjs. For details about the
GciTrackedObjs set, see GciSaveAndTrackObjs.

Note that GciDirtySaveObjs removes OOPs from the ExportedDirtyObjs and
TrackedDirtyObjs sets.

See Also

“Garbage Collection” on page 49
“GciDirtyExportedObjs” on page 174
“GciDirtyObjsInit” on page 176
“GciDirtyTrackedObjs” on page 180
“GciTrackedObjsFetchAllDirty” on page 507
“GciSaveObjs” on page 422
June 2011 VMware, Inc. 179

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciDirtyTrackedObjs

Find all tracked objects that have changed and are therefore in the TrackedDirtyObjs set.

Syntax

BoolType GciDirtyTrackedObjs(
OopType theOops[],
int * numOops);

Input Arguments

numOops The maximum number of objects that can be put into theOops buffer.

Result Arguments

theOops An array of the dirty tracked objects found.
numOops The number of dirty tracked objects found.

Return Value

This function returns a C Boolean value indicating whether or not the complete set of dirty
tracked objects has been returned in theOops in one or more calls. TRUE indicates that the
complete set has been returned, and FALSE indicates that it has not.

Description

This function returns a list of all objects that are in the TrackedDirtyObjs set, which
includes all objects that are in the GciTrackedObjs set and have been made “dirty” since the
GciTrackedObjs set was initialized or cleared. Functions that initialize or remove objects
from the TrackedDirtyObjs set are GciDirtyAlteredObjs, GciDirtySaveObjs,
GciDirtyTrackedObjs (this function), GciTrackedObjsFetchAllDirty and
GciTrackedObjsInit.
180 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.
 • The object was changed by a call from this session to any GemBuilder function from

within a user action.
 • The object was changed by a call from this session to one or more of the following

functions: GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by
another session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling
back the Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and
GciCreate... do not put the modified object into the set of dirty objects (unless the call is
from within a user action). The assumption is that the client does not want the dirty set to
include modifications that the client has explicitly made.

This function may only be called after GciTrackedObjsInit has been executed, because it
depends upon GemStone’s set of tracked objects. The user is expected to call this function
repeatedly while it returns FALSE, until it finally returns TRUE. When this function
returns TRUE, it first clears the set of dirty objects.

Note that GciDirtyTrackedObjs removes OOPs from the TrackedDirtyObjs set.

See Also

“Garbage Collection” on page 49
“GciDirtySaveObjs” on page 178
“GciHiddenSetIncludesOop” on page 268
“GciReleaseAllTrackedOops” on page 400
“GciSaveAndTrackObjs” on page 419
“GciTrackedObjsFetchAllDirty” on page 507
“GciTrackedObjsInit” on page 509
June 2011 VMware, Inc. 181

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Gci_doubleToSmallDouble

Convert a C double to a SmallDouble object.

Syntax

OopType Gci_doubleToSmallDouble(
double aFloat);

Return Value

Returns the OOP of the GemStone SmallDouble object that corresponds to the C value. If
the C value is not representable as a GemStone SmallDouble, return OOP_ILLEGAL.

Description

This function translates a C double into the equivalent GemStone SmallDouble object.

See Also

GciFltToOop, page 258
182 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciEnableFreeOopEncoding

Enable run-length encoding of free OOPs.

Syntax

void GciEnableFreeOopEncoding()

Description

This function enables run-length encoding of free OOPs sent between the Gem and the
GemBuilder client. This function increases CPU consumption on both the client and the
Gem, and decreases the number of bytes passed on the network.

See Also

GciDecodeOopArray, page 170
GciEncodeOopArray, page 187
GciFetchNumEncodedOops, page 224
GciGetFreeOopsEncoded, page 264
June 2011 VMware, Inc. 183

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciEnableFullCompression

Enable full compression between the client and the RPC version of GemBuilder.

Syntax

void GciEnableFullCompression()

Description

This function enables full compression (in both directions) between the client and GciRpc
(the “remote procedure call” version of GemBuilder). This function has no effect for linked
sessions.

See Also

GciIsRemote, page 282
184 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciEnableSignaledErrors

Establish or remove GemBuilder visibility to signaled errors from GemStone.

Syntax

BoolType GciEnableSignaledErrors(
BoolType newState);

Input Arguments

newState The new state of signaled error visibility: TRUE for visible.

Return Value

This function returns TRUE if signaled errors are already visible when it is called.

Description

GemStone permits selective response to signal errors: RT_ERR_SIGNAL_ABORT,
RT_ERR_SIGNAL_COMMIT, and RT_ERR_SIGNAL_GEMSTONE_SESSION. The default
condition is to leave them all invisible. GemStone responds to each single kind of signal
error only after an associated method of class System has been executed:
enableSignaledAbortError, enableSignaledObjectsError, and
enableSignaledGemStoneSessionError respectively.

After GciInit executes successfully, the GemBuilder default condition also leaves all signal
errors invisible. The GciEnableSignaledErrors function permits GemBuilder to respond
automatically to signal errors. However, GemStone must respond to each kind of error in
order for GemBuilder to respond to it. Thus, if an application calls
GciEnableSignaledErrors with newState equal to TRUE, then GemBuilder responds
automatically to exactly the same kinds of signal errors as GemStone. If GemStone has not
executed any of the appropriate System methods, then this call has no effect until it does.

When enabled, GemBuilder checks for signal errors at the start of each function that
accesses the database. It treats any that it finds just like any other errors, through GciErr or
the GciLongJmp mechanism, as appropriate.
June 2011 VMware, Inc. 185

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Automatic checking for signalled errors incurs no extra runtime cost. The check is
optimized into the check for a valid session. However, instead of checking automatically,
these errors can be polled by calling the GciPollForSignal function.

GciEnableSignaledErrors may be called before calling GciLogin.

See Also

GciErr, page 189
GciPollForSignal, page 384
186 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciEncodeOopArray

Encode an array of OOPs, using run-length encoding.

Syntax

int GciEncodeOopArray(
OopType * oopArray,
const int numOops,
OopType * encodedOopArray,
BoolType needsSorting);

Input Arguments

oopArray An OOP array to be encoded.
numOops The number of OOPs in oopArray.
needsSorting If oopArray is known to be in ascending order, set this to FALSE;

otherwise set it to TRUE.

Result Arguments

encodedOopArray The encoded OOP array.

Return Value

Returns the number of elements in the encoded array. Returns -1 indicating an error if the
input array was found to be out of sequence and needsSorting was set to FALSE.

Description

This function encodes the OOPs in oopArray using run-length encoding and places the
result in encodedOopArray. Both oopArray and encodedOopArray must have the size
numOops.
June 2011 VMware, Inc. 187

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciDecodeOopArray, page 170
GciEnableFreeOopEncoding, page 183
GciFetchNumEncodedOops, page 224
GciGetFreeOopsEncoded, page 264
188 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciErr

Prepare a report describing the most recent GemBuilder error.

Syntax

BoolType GciErr(
GciErrSType * errorReport);

Result Arguments

errorReport Address of a GemBuilder error report structure.

Return Value

TRUE indicates that an error has occurred. The errorReport parameter has been modified to
contain the latest error information, and the internal error buffer in GemBuilder has been
cleared. You can only call GciErr once for a given error. If GciErr is called a second time,
the function returns FALSE.

If the result is TRUE, all objects referenced from errorReport have been added to the
PureExportSet, unless the error occurred during a GciStoreTravDoTravRefs_, in which
case all objects referenced from errorReport have been added to the ReferencedSet rather
than the PureExportSet.

FALSE indicates no error occurred, and the contents of errorReport are unchanged.

Description

Your application program can call GciErr to determine whether or not the previous
GemBuilder function call resulted in an error. If an error has occurred, this function
provides information about the error and about the state of the GemStone system. In the
case of a fatal error, your connection to GemStone is lost, and the current session ID (from
GciGetSessionId) is reset to GCI_INVALID_SESSION_ID.

The GciErr function is especially useful when error traps are disabled or are not present.
See “GciPopErrJump” on page 386 for information about using general-purpose error
traps in GemBuilder. The section “The Error Report Structure” on page 90 describes the C
structure for error reports.
June 2011 VMware, Inc. 189

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciClearStack, page 145
GciContinue, page 154
GciExecute, page 191
GciPopErrJump, page 386
190 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciExecute

Execute a Smalltalk expression contained in a String object.

Syntax

OopType GciExecute(
OopType source,
OopType symbolList);

OopType GciExecute_(
OopType source,
OopType symbolList,
ushort environmentId);

Input Arguments

source The OOP of a String containing a sequence of one or more
statements to be executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description

This function sends an expression (or sequence of expressions) to GemStone for execution.
This is roughly equivalent to executing the body of a nameless procedure (method).

In most cases, you may find it more efficient to use GciExecuteStr. That function takes a C
string as its argument, thus reducing the number of network round-trips required to
June 2011 VMware, Inc. 191

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
execute the code. With GciExecute, you must first convert the source to a String object (see
the following example.) If the source is already a String object, however, GciExecute will
be more efficient.

Because GciExecute calls the virtual machine, the user can issue a soft break while this
function is executing. For more information, see “Interrupting GemStone Execution” on
page 32.

Example

void executeExample(void)
{
 OopType oString = GciNewString(“ ^ 3 + 4 “);

 OopType result = GciExecute(oString, OOP_NIL);
 if (result == OOP_NIL) {
 printf(“error from execution\n”);
 } else {
 BoolType conversionErr = FALSE;
 int val = GciOopToI32_(result, &conversionErr);
 if (conversionErr) {
 printf(“Error converting result to C int\n”);
 } else {
 printf(“result = %d\n”, val);
 }
 }
}

See Also

GciContinue, page 154
GciErr, page 189
GciExecuteFromContext, page 193
GciExecuteStr, page 195
GciExecuteStrFromContext, page 198
GciNbContinue, page 302
GciNbExecute, page 306
GciNbExecuteStr, page 308
GciNbExecuteStrFromContext, page 310
192 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciExecuteFromContext

Execute a Smalltalk expression contained in a String object as if it were a message sent to
another object.

Syntax

OopType GciExecuteFromContext(
OopType source,
OopType contextObject,
OopType symbolList);

OopType GciExecuteFromContext_(
OopType source,
OopType contextObject,
OopType symbolList,
ushort environmentId);

Input Arguments

source The OOP of a String containing a sequence of one or more
statements to be executed.

contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.
June 2011 VMware, Inc. 193

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

This function sends an expression (or sequence of expressions) to GemStone for execution.
The source is executed as though contextObject were the receiver. That is, the pseudo-
variable self will have the value contextObject during the execution. Messages in the source
are executed as defined for contextObject.

For example, if contextObject is an instance of Association, the source can reference the
pseudo-variables key and value (referring to the instance variables of the Association
contextObject). If any pool dictionaries were available to Association, the source could
reference them too.

In most cases, you may find it more efficient to use GciExecuteStrFromContext. That
function takes a C string as its argument, thus reducing the number of network round-trips
required to execute the code. With GciExecuteFromContext, you must first convert the
source to a String object (see the following example.) If the source is already a String object,
however, GciExecuteFromContext will be more efficient.

Because GciExecuteFromContext calls the virtual machine, the user can issue a soft break
while this function is executing. For more information, see “Interrupting GemStone
Execution” on page 32.

See Also

“GciContinue” on page 154
“GciErr” on page 189
“GciExecute” on page 191
“GciExecuteStr” on page 195
“GciExecuteStrFromContext” on page 198
“GciNbContinue” on page 302
“GciNbExecute” on page 306
“GciNbExecuteStr” on page 308
“GciNbExecuteStrFromContext” on page 310
194 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciExecuteStr

Execute a Smalltalk expression contained in a C string.

Syntax

OopType GciExecuteStr(
const char source[],
OopType symbolList);

OopType GciExecuteStr_(
const char source[],
OopType symbolList,
ushort environmentId);

Input Arguments

source A null-terminated string containing a sequence of one or more
statements to be executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description

This function sends an expression (or sequence of expressions) to GemStone for execution.

If the source is already a String object, you may find it more efficient to use GciExecute.
That function takes the OOP of a String as its argument.
June 2011 VMware, Inc. 195

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Because GciExecuteStr calls the virtual machine, the user can issue a soft break while this
function is executing. For more information, see “Interrupting GemStone Execution” on
page 32.

Example

void executeStrExample(void)
{
 // get the symbolList for UserProfile named ‘romeo’
 OopType symbolList = GciExecuteStr(
“(AllUsers userWithId: ‘romeo’) symbolList”, OOP_NIL);

 // get the value associated with key “nativeLanguage” in that
 // symbolList ; values expected to be a kind of String
 OopType lang = GciExecuteStr(“nativeLanguage”, symbolList);

 // fetch characters of the String
 char buf[1024];
 GciFetchChars_(lang, 1, buf, sizeof(buf));

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // FMT_OID format string is defined in gci.ht
 printf(“unexpected error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf(“nativeLanuage is %s \n”, buf);
 }
}

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciExecuteFromContext, page 193
GciExecuteStrFromContext, page 198
GciNbContinue, page 302
GciNbExecute, page 306
196 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbExecuteStr, page 308
GciNbExecuteStrFromContext, page 310
June 2011 VMware, Inc. 197

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciExecuteStrFromContext

Execute a Smalltalk expression contained in a C string as if it were a message sent to an
object.

Syntax

OopType GciExecuteStrFromContext(
const char source[],
OopType contextObject,
OopType symbolList);

OopType GciExecuteStrFromContext_(
const char source[],
OopType contextObject,
OopType symbolList,
ushort environmentId);

Input Arguments

source A null-terminated string containing a sequence of one or more
statements to be executed.

contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.
198 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

This function sends an expression (or sequence of expressions) to GemStone for execution.
The source is executed as though contextObject were the receiver. That is, the pseudo-
variable self will have the value contextObject during the execution. Messages in the source
are executed as defined for contextObject.

For example, if contextObject is an instance of Association, the source can reference the
pseudo-variables key and value (referring to the instance variables of the Association
contextObject). If any pool dictionaries were available to Association, the source could
reference them too.

Because GciExecuteStrFromContext calls the virtual machine, the user can issue a soft
break while this function is executing. For more information, see “Interrupting GemStone
Execution” on page 32.

Example

void executeFromContextExample(void)
{
 // get the Assocation with key UserProfileSet in dictionary
Globals
 OopType oAssoc = GciExecuteStr(“Globals associationAt:
#UserProfileSet”,

OOP_NIL);

 OopType oResult = GciExecuteStrFromContext(“ ^ value “, oAssoc,
OOP_NIL);

 if (oResult != OOP_CLASS_USERPROFILE_SET) {
 printf(“unexpected result”FMT_OID” \n”, oResult);
 }
}

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciExecuteFromContext, page 193
June 2011 VMware, Inc. 199

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciExecuteStr, page 195
GciNbContinue, page 302
GciNbExecute, page 306
GciNbExecuteStr, page 308
GciNbExecuteStrFromContext, page 310
200 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciExecuteStrTrav

First execute a Smalltalk expression contained in a C string as if it were a message sent to
an object, then traverse the result of the execution.

Syntax

BoolType GciExecuteStrTrav(
const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs);

BoolType GciExecuteStrTrav_(
const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments

source A null-terminated string containing a sequence of one or more
statements to be executed.

contextObject The OOP of any GemStone object. A value of OOP_ILLEGAL means
no context.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

travArgs Pointer to an instance of GciClampedTravArgsSType containing
the following input argument fields:

OopType clampSpec
The OOP of the Smalltalk ClampSpecification to
be used, or OOP_NIL, if the traversal is to operate
without clamping.

int level
Maximum traversal depth. When the level is 1, an
June 2011 VMware, Inc. 201

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
object report is written to the traversal buffer for
each element in the array of OOPs representing
the objects to traverse. When level is 2, an object
report is also obtained for the instance variables
of each level-1 object. When level is 0, the number
of levels in the traversal is not restricted.

int retrievalFlags
Flags to control object retrieval. The value of
retrievalFlags should be given by using the
following GemBuilder mnemonics:
GCI_RETRIEVE_DEFAULT
GCI_RETRIEVE_EXPORT
 GCI_CLEAR_EXPORT causes the traversal to
clear the PureExportSet or the user action’s
export set before it adds any OOPs to the traverse
buffer.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Result Arguments

travArgs Pointer to an instance of GciClampedTravArgsSType containing
the following result argument field:

ByteType * travBuff
The buffer for the results of the traversal. The first
element placed in the buffer is the
actualBufferSize, an integer that indicates how
many bytes were actually stored in the buffer by
this function. The remainder of the traversal
buffer consists of a series of object reports, each of
which is of type GciObjRepSType.

Return Value

Returns FALSE if the traversal is not yet completed. You can then call GciMoreTraversal
to proceed. Returns TRUE if there are no more objects to be returned by subsequent calls
to GciMoreTraversal.
202 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

This function is like GciPerformTrav, except that it first does a GciExecuteStr instead of a
GciPerform.

See Also

GciExecuteStr, page 195
GciMoreTraversal, page 293
GciPerformTrav, page 377
June 2011 VMware, Inc. 203

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchByte

Fetch one byte from an indexed byte object.

Syntax

ByteType GciFetchByte(
OopType theObject,
int64 atIndex);

Input Arguments

theObject The OOP of the GemStone byte object.
atIndex The index into theObject of the element to be fetched. The index of the

first element is 1.

Return Value

Returns the byte value at the specified index. In case of error, this function returns zero.

Description

This function fetches a single element from a byte object at the specified index, using
structural access.

Example

void fetchByteExample(void)
{
 OopType oString = GciNewString(“abc”);

 ByteType theChar = GciFetchByte(oString, 2);
 if (theChar != ‘b’) {
 printf(“unexpected result %d \n”, theChar);
 }
}

204 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciFetchBytes_, page 206
GciStoreByte, page 445
GciStoreBytes, page 447
June 2011 VMware, Inc. 205

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchBytes_

Fetch multiple bytes from an indexed byte object.

Syntax

int64 GciFetchBytes_(
OopType theObject,
int64 startIndex,
ByteType theBytes[],
int64 numBytes);

Input Arguments

theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin fetching bytes. (The index

of the first element is 1.) Note that if startIndex is 1 greater than the
size of the object, this function returns a byte array of size 0, but no
error is generated.

numBytes The maximum number of bytes to return.

Result Arguments

theBytes The array of fetched bytes

Return Value

Returns the number of bytes fetched. (This may be less than numBytes, depending upon the
size of theObject.) In case of error, this function returns zero.

Description

NOTE
In previous GemStone/S 64 Bit releases, this function was named GciFetchBytes
(without the underscore). Customers must ensure that the variables that receive this
function’s result are large enough to accommodate an int64 value.
206 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
This function fetches multiple elements from a byte object starting at the specified index,
using structural access. A common application of GciFetchBytes_ would be to fetch a text
string.

GciFetchBytes_ permits theObject to be a Float or SmallFloat, but it does not provide
automatic byte swizzling. In that case, you must provide your own byte swizzling as
needed. Alternatively, you can call GciFetchObjInfo instead, and that function will
provide any necessary byte swizzling. (For more about byte swizzling, see page 29.)

Example

This example illustrates a C function that incrementally processes a GemStone String of
arbitrary size, while using a limited amount of C memory space.

void displayByteObject(OopType oObject)
{
 enum { BUF_SIZE = 5000 };
 char displayBuff[BUF_SIZE];

 BoolType done = FALSE;
 int idx = 1;
 while (! done) {
 int64 numRet = GciFetchBytes_(oObject, idx,
(ByteType*)displayBuff,

BUF_SIZE - 1);
 if (numRet == 0) {
 done = TRUE; // hit end of object or error
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“unexpected error category “FMT_OID” number %d,
%s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
 } else {
 displayBuff[numRet] = ‘\0’;
 printf(“%s\n”, displayBuff);
 idx += numRet;
 }
 }
}

June 2011 VMware, Inc. 207

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciFetchByte, page 204
GciFetchObjInfo, page 229
GciStoreByte, page 445
GciStoreBytes, page 447
208 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchChars_

Fetch multiple ASCII characters from an indexed byte object.

Syntax

int64 GciFetchChars_(
OopType theObject,
int64 startIndex,
char * cString,
int64 maxSize);

Input Arguments

theObject The OOP of a text object.
startIndex The index of the first character to retrieve.
maxSize Maximum number of characters to fetch.

Result Arguments

cString Pointer to the location in which to store the returned string.

Return Value

Returns the number of characters fetched.

Description

NOTE
In previous GemStone/S 64 Bit releases, this function was named GciFetchChars
(without the underscore). Customers must ensure that the variables that receive this
function’s result are large enough to accommodate an int64 value.

Equivalent to GciFetchBytes_, except that it is assumed that theObject contains ASCII text.
The bytes fetched are stored in memory starting at cString. At most maxSize - 1 bytes will
be fetched from the object, and a \0 character will be stored in memory following the bytes
fetched. The function returns the number of characters fetched, excluding the null
terminator character, which is equivalent to strlen(cString) if the object does not
June 2011 VMware, Inc. 209

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
contain any null characters. If an error occurs, the function result is 0, and the contents of
cString are undefined.

See Also

GciFetchBytes_, page 206
210 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchClass

Fetch the class of an object.

Syntax

OopType GciFetchClass(
OopType theObject);

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the OOP of the object’s class. In case of error, this function returns OOP_NIL.

The GemBuilder include file gcioop.ht defines a C constant for each of the Smalltalk
kernel classes. Those C constants are listed in Appendix A, “Reserved OOPs”.

Description

The GciFetchClass function obtains the class of an object from GemStone. The GemBuilder
session must be valid when GciFetchClass is called, unless theObject is an instance of one
of the following classes: Boolean, Character, JisCharacter, SmallInteger, SmallDouble, or
UndefinedObject.
June 2011 VMware, Inc. 211

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

#include <stdlib.h>

void fetchClassExample(void)
{
 // random double to Oop conversion producing a Float or
SmallFloat
 double rand = drand48() * 1.0e38 ;
 OopType oFltObj = GciFltToOop(rand);

 OopType oClass = GciFetchClass(oFltObj);
 const char* kind;
 if (oClass == OOP_CLASS_SMALL_DOUBLE) {
 kind = “SmallDouble”;
 } else if (oClass == OOP_CLASS_FLOAT) {
 kind = “Float”;
 } else {
 kind = “Unexpected”;
 }
 printf(“result is a %s, class oop = “FMT_OID”\n”, kind, oClass);
}

See Also

GciFetchNamedSize, page 222
GciFetchObjImpl, page 228
GciFetchSize_, page 246
GciFetchVaryingSize_, page 253
212 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchDateTime

Convert the contents of a DateTime object and place the results in a C structure.

Syntax

void GciFetchDateTime(
OopType datetimeObj,
GciDateTimeSType * result);

Input Arguments

datetimeObj OOP of the object to fetch.

Result Arguments

result C pointer to the structure for the returned object.

Description

Fetches the contents of a DateTime object into the specified C result. Generates an error if
datetimeObj is not an instance of DateTime. The value that result points to is undefined if an
error occurs.
June 2011 VMware, Inc. 213

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchDynamicIv

Fetch the OOP of one of an object’s dynamic instance variables.

Syntax

OopType GciFetchDynamicIv(
OopType theObject,
OopType aSymbol);

Input Arguments

theObject The OOP of the GemStone object.
aSymbol Specifies the dynamic instance variable to fetch.

Return Value

Returns the OOP of the specified dynamic instance variable. If no such dynamic instance
variable exists in the object, this function returns OOP_NIL.

Description

This function fetches the contents of an object’s dynamic instance variable, as specified by
aSymbol.

See Also

GciFetchDynamicIvs, page 215
GciStoreDynamicIv, page 453
214 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchDynamicIvs

Fetches the OOPs of one or more of an object’s dynamic instance variables.

Syntax

int GciFetchDynamicIvs(
OopType theObject,
OopType * buf,
int numOops);

Input Arguments

theObject The OOP of the source GemStone object.
numOops The maximum number of elements to return.

Result Arguments

buf C pointer to the buffer that will contain the object’s dynamic
instance variables.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the
size of theObject.)

Description

The number of dynamic instance variable pairs returned is (function result / 2). To obtain
all dynamic instance variables in one call, use a buffer.

See Also

GciFetchDynamicIv, page 214
GciStoreDynamicIv, page 453
June 2011 VMware, Inc. 215

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchNamedOop

Fetch the OOP of one of an object’s named instance variables.

Syntax

OopType GciFetchNamedOop(
OopType theObject,
int atIndex);

Input Arguments

theObject The OOP of the GemStone object.
atIndex The index into theObject’s named instance variables of the element to

be fetched. The index of the first named instance variable is 1.

Return Value

Returns the OOP of the specified named instance variable. In case of error, this function
returns OOP_NIL.

Description

This function fetches the contents of an object’s named instance variable at the specified
index, using structural access.
216 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void fetchNamedOopExample(void)
{
 // C constants to match Smalltalk class definition
 enum { COMPONENT_OFF_PARTNUMBER = 1,
 COMPONENT_OFF_NAME = 2,
 COMPONENT_OFF_COST = 3 };

 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution or detect found nothing
 return;
 }

 // fetch the name instance variable of aComponent
 OopType oName = GciFetchNamedOop(aComponent,
COMPONENT_OFF_NAME);

 // fetch nameinstance variable without fixing its offset at C
compile time
 int ivOffset = GciIvNameToIdx(GciFetchClass(aComponent),
“name”);
 oName = GciFetchNamedOop(aComponent, ivOffset);
}

See Also

GciFetchNamedOops, page 219
GciFetchVaryingOop, page 248
GciFetchVaryingOops, page 251
GciIvNameToIdx, page 285
GciStoreIdxOop, page 454
GciStoreIdxOops, page 456
June 2011 VMware, Inc. 217

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreNamedOop, page 459
GciStoreNamedOops, page 462
218 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchNamedOops

Fetch the OOPs of one or more of an object’s named instance variables.

Syntax

int GciFetchNamedOops(
OopType theObject,
int startIndex,
OopType theOops[],
int numOops);

Input Arguments

theObject The OOP of the source GemStone object.
startIndex The index into theObject’s named instance variables at which to

begin fetching. (The index of the first named instance variable is 1.)
Note that if startIndex is 1 greater than the number of the object’s
named instance variables, this function returns an array of size 0, but
no error is generated.

numOops The maximum number of elements to return.

Result Arguments

theOops The array of fetched OOPs.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the
size of theObject.) In case of error, this function returns zero.

Description

This function uses structural access to fetch multiple values from an object’s named
instance variables, starting at the specified index.
June 2011 VMware, Inc. 219

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void fetchNamedOops_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 // execution error, or detect: found nothing
 return;
 }

 // fetch name instance variables without knowing offset at C
compile time
 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0) {
 // error during fetch
 return;
 }
 OopType *oBuffer = (OopType*) malloc(sizeof(OopType) *
namedSize);
 if (oBuffer != NULL) {
 int numRet = GciFetchNamedOops(aComponent, 1, oBuffer,
namedSize);
 if (numRet != namedSize) {
 // error during fetch
 } else {
 // do something with contents of oBuffer
 }
 free(oBuffer);
 } else {
 // malloc failure
 }
}

220 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciFetchNamedOop, page 216
GciFetchVaryingOop, page 248
GciIvNameToIdx, page 285
GciStoreIdxOop, page 454
GciStoreNamedOop, page 459
June 2011 VMware, Inc. 221

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchNamedSize

Fetch the number of named instance variables in an object.

Syntax

int GciFetchNamedSize(
OopType theObject);

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the number of named instance variables in theObject. In case of error, this function
returns zero.

Description

This function returns the number of named instance variables in a GemStone object. See the
example for the GciFetchNamedOops function on page 219.
222 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchNameOfClass

Fetch the class name object for a given class.

Syntax

OopType GciFetchNameOfClass(
OopType aClass);

Input Arguments

aClass The OOP of a class.

Return Value

The OOP of the class’s name, or OOP_NIL if an error occurred.

Description

Given the OOP of a class, this function returns the object identifier of the String object that
is the name of the class.
June 2011 VMware, Inc. 223

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchNumEncodedOops

Obtain the size of an encoded OOP array.

Syntax

int GciFetchNumEncodedOops(
OopType * encodedOopArray,
const int numEncodedOops);

Input Arguments

encodedOopArray An OOP array that was encoded by a call to GciEncodeOopArray.

Result Arguments

numEncodedOops The number of OOPs in encodedOopArray.

Return Value

Returns the number of OOPs that will be decoded by a call to GciDecodeOopArray.

Description

This function returns the total number of OOPs in an OOP array that was encoded by a call
to GciEncodeOopArray.

See Also

GciDecodeOopArray, page 170
GciEnableFreeOopEncoding, page 183
GciEncodeOopArray, page 187
GciGetFreeOopsEncoded, page 264
224 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchNumSharedCounters

Obtain the number of shared counters available on the shared page cache used by this
session.

Syntax

int GciFetchNumSharedCounters();

Return Value

Returns the number of shared counters available on the shared page cache used by this
session, or -1 if the session is not logged in.

Description

This function returns the total number of shared counters available on the shared page
cache used by this session.

Not supported for remote GCI interfaces.

See Also

GciDecSharedCounter, page 172
GciIncSharedCounter, page 271
GciSetSharedCounter, page 437
GciReadSharedCounter, page 394
GciReadSharedCounterNoLock, page 395
GciFetchSharedCounterValuesNoLock, page 244
June 2011 VMware, Inc. 225

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchObjectInfo

Fetch information and values from an object.

Syntax

BoolType GciFetchObjInfo(
OopType theObject,
GciFetchObjInfoArgsSType *args);

Input Arguments

theObject OOP of any object with byte, pointer, or NSC format.
args Pointer to an instance of GciFetchObjInfoArgsSType with the

following input argument fields:

int64 startIndex
The offset in the object at which to start fetching,
using GciFetchOops or GciFetchBytes_
semantics. startIndex is ignored if bufSize == 0 or
buffer == NULL.

int64 bufSize
The size in bytes of the buffer, maximum number
of elements fetched for a byte object. For an OOP
object, the maximum number of elements fetched
for an OOP object will be bufSize/8. If greater
than zero, and if a Float or BinaryFloat is being
fetched, it must be large enough to fetch the
complete object.

int retrievalFlags
If (retrievalFlags & GCI_RETRIEVE_EXPORT) != 0
then if theObject is non-special, theObject is
automatically added to the PureExportSet or the
user action’s export set (see the GciSaveObjs
function).

Result Arguments

args Pointer to an instance of GciFetchObjInfoArgsSType with the
following result argument fields:
226 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciObjInfoSType *info
Pointer to an instance of GciObjInfoSType; may
be NULL.

ByteType * buffer
Pointer to an area where byte or OOP values will
be returned; may be NULL.

int64 numReturned
Number of logical elements (bytes or OOPs)
returned in buffer. Remember that the size of
(OopType) is 8 bytes.

If either info or buffer is NULL, that portion of the result is not filled in.

Return Value

TRUE if successful, FALSE if an error occurs.

Description

This function fetches information and values from an object starting at the specified index
using structural access. If either info or buffer is NULL, then that part of the result is not
filled in. If numReturned is NULL, then buffer will not be filled in.

See Also

GciFetchOops, page 234
GciFetchBytes_, page 206
GciFetchObjInfo, page 229
GciSaveObjs, page 422
June 2011 VMware, Inc. 227

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchObjImpl

Fetch the implementation of an object.

Syntax

int GciFetchObjImpl(
OopType theObject);

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns an integer representing the implementation type of theObject (0=pointer, 1=byte,
2=NSC, or 3=special). In case of error, the return value is undefined.

Description

This function obtains the implementation of an object (pointer, byte, NSC, special) from
GemStone. For more information about implementation types, see “Direct Access to
Metadata” on page 35.

See Also

GciFetchClass, page 211
GciFetchNamedSize, page 222
GciFetchSize_, page 246
GciFetchVaryingSize_, page 253
228 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchObjInfo

Fetch information and values from an object.

Syntax

BoolType GciFetchObjInfo(
OopType theObject,
int64 startIndex,
int64 bufSize,
GciObjInfoSType * info,
ByteType * buffer,
int64 * numReturned);

Input Arguments

theObject OOP of any object with byte, pointer, or NSC format.
startIndex The index into theObject at which to begin fetching elements. (The

index of the first element is 1.) If the start index is 1 greater than the
size of the object, this function returns an array of size 0, but no error
is generated.

bufSize The size in bytes of the buffer, maximum number of elements
fetched for a byte object. For an OOP object, the maximum number
of elements fetched for an OOP object will be bufSize/4.

Result Arguments

info Pointer to an instance of GciObjInfoSType; may be NULL.
buffer Pointer to an area where byte or OOP values will be returned; may

be NULL.
numReturned Number of logical elements (bytes or OOPs) returned in buffer.

Remember that the sizeof(OopType) is 4 bytes.

Return Value

TRUE if successful, FALSE if an error occurs. If an error occurs, info, buffer, and
numReturned are undefined.
June 2011 VMware, Inc. 229

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

This function fetches information and values from an object starting at the specified index
using structural access. If either info or buffer is NULL, then that part of the result is not
filled in. If numReturned is NULL, then buffer will not be filled in.

GciFetchObjInfo provides automatic byte swizzling for Float and SmallFloat objects. (For
more about byte swizzling, see page 29.) If theObject is a Float or SmallFloat, then startIndex
must be one and bufSize must be the actual size for the class of theObject. If either of these
conditions are not met, then GciFetchObjInfo raises an error as a safety check.
230 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchOop

Fetch the OOP of one instance variable of an object.

Syntax

OopType GciFetchOop(
OopType theObject,
 int64 atIndex);

Input Arguments

theObject The OOP of the source object.
atIndex The index into theObject of the OOP to be fetched. The index of the

first OOP is 1.

Return Value

Returns the OOP at the specified index of the source object. In case of error, this function
returns OOP_NIL.

Description

This function fetches the OOP of a single instance variable from any object at the specified
index, using structural access. It does not distinguish between named and unnamed
instance variables. Indices are based at the beginning of the object’s array of instance
variables. In that array, any existing named instance variables are followed by any existing
unnamed instance variables.
June 2011 VMware, Inc. 231

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void fetchOop_example(void)
{
 // C constant to match Smalltalk class definition
 enum { COMPONENT_OFF_NAME = 2 };

 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution, select: found nothing
 return ;
 }

 // Two ways to fetch the name instance variable of aComponent */
 OopType oName = GciFetchOop(aComponent, COMPONENT_OFF_NAME);
 oName = GciFetchNamedOop(aComponent, COMPONENT_OFF_NAME);

 // Fetch the 3rd element of aComponent’s partsList,
 // without knowing exactly how many named instance variables
exist.
 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0) {
 // error during fetch
 return ;
 }
 OopType aSubComponent = GciFetchOop(aComponent, namedSize + 3);

 // alternate way to Fetch the 3rd element of aComponent’s
partsList
 aSubComponent = GciFetchVaryingOop(aComponent, 3);
}

232 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciFetchOops, page 234
GciStoreOop, page 465
GciStoreOops, page 468
June 2011 VMware, Inc. 233

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchOops

Fetch the OOPs of one or more instance variables of an object.

Syntax

int GciFetchOops(
OopType theObject,
int64 startIndex,
OopType theOops[],
int numOops);

Input Arguments

theObject The OOP of the source object.
startIndex The index into theObject at which to begin fetching OOPs. The index

of the first OOP is 1. If startIndex is 1 greater than the size of the
object, this function returns an array of size 0, but no error is
generated.

numOops The maximum number of OOPs to return.

Result Arguments

theOops The array of fetched OOPs.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the
size of theObject.) In case of error, this function returns zero.

Description

This function fetches the OOPs of multiple instance variables from any object starting at the
specified index, using structural access. It does not distinguish between named and
unnamed instance variables. Indices are based at the beginning of the object’s array of
instance variables. In that array, any existing named instance variables are followed by any
existing unnamed instance variables.
234 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void fetchOops_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution, or detect: found nothing
 return ;
 }

 enum { BUF_SIZE = 60 };
 OopType oBuf[BUF_SIZE];

 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0 || namedSize > 50) {
 // error during fetch, or too many named instVars for buffer
 return;
 }

 // Two ways to fetch first 5 elements of aComponent’s partsList
 GciFetchOops(aComponent, namedSize + 1, oBuf, 5);
 GciFetchVaryingOops(aComponent, 1, oBuf, 5);

 // Fetch the named instance variables PLUS
 // the first 5 elements of partsList
 GciFetchOops(aComponent, 1, oBuf, namedSize + 5);
 // oBuf[0..namedSize-1] are named instVar values,
 // oBuf[namedSize] is first varying instVar value
}

See Also

GciFetchOop, page 231
GciFetchVaryingOop, page 248
June 2011 VMware, Inc. 235

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreOop, page 465
GciStoreOops, page 468
236 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchPaths

Fetch selected multiple OOPs from an object tree.

Syntax

BoolType GciFetchPaths(
const OopType theOops[],
int numOops,
const int paths[],
const int pathSizes[],
int numPaths,
OopType results[]);

Input Arguments

theOops A collection of OOPs from which you want to fetch.
numOops The size of theOops.
paths An array of integers. This one-dimensional array contains the

elements of all constituent paths, laid end to end.
pathSizes An array of integers. Each element of this array is the length of the

corresponding path in the paths array (that is, the number of
elements in each constituent path).

numPaths The number of paths in the paths array. This should be the same as
the number of integers in the pathSizes array.

Result Arguments

results An array containing the OOPs that were fetched.

Return Value

Returns TRUE if all desired objects were successfully fetched. Returns FALSE if the fetch
on any path fails for any reason.
June 2011 VMware, Inc. 237

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

This function allows you to fetch multiple OOPs from selected positions in an object tree
with a single GemBuilder call, importing only the desired information from the database.

This function is most useful with applications that are linked with GciRpc (the
"remote procedure call" version of GemBuilder). If your application will be linked
with GciLnk (the "linkable" GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions instead. For more
information, see “GciRpc and GciLnk” on page 53.

Each path in the paths array is itself an array of integers. Those integers are offsets that
specify a path from which to fetch objects. In each path, a positive integer x refers to an
offset within an object’s named instance variables (see GciFetchNamedOop), while a
negative integer -x refers to an offset within an object’s indexed instance variables (see
GciFetchVaryingOop).

From each object in theOops, this function fetches the object pointed to by each element of
the paths array, and stores the fetched object into the results array. The results array
contains (numOops * numPaths) elements, stored in the following order:

[0,0]..[0,numPaths-1]..
[1,0]..[1,numPaths-1]..
[numOops-1,0]..[numOops-1,numPaths-1]

That is, all paths are first applied in order to the first element of theOops. This step is
repeated for each subsequent object, until all paths have been applied to all elements of
theOops. The result for object i and path j is represented as:

results[((i-1) * numPaths) + (j-1)]

If the fetch on any path fails for any reason, the result of that fetch is reported in the results
array as OOP_ILLEGAL. Because some path-fetching errors do not necessarily invalidate
the remainder of the information fetched, the system will then attempt to continue its
fetching with the remaining paths and objects.

This ability to complete a fetching sequence despite errors means that your application
won’t be slowed by a round-trip to GemStone on each fetch to check for errors. Instead,
after a fetch is complete, you can cycle through the result and deal selectively at that time
with any errors you find.
238 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
The appropriate response to an error in path fetching depends both upon the error itself
and on your application. Here are some of the reasons why a fetch might not succeed:

 • The user had no read authorization for some object in the path. The seriousness of this
depends on your application. In some applications, you may simply wish to ignore the
inaccessible data.

 • The path was invalid for the object to which it was applied. This can happen if the
object from which you’re fetching is not of the correct class, or if the path itself is faulty
for the class of the object.

 • The path was valid but simply not filled out for the object being processed. This would
be the case, for example, if you attempted to access address.zip when an Employee’s
Address instance variable contained only nil. This is probably the most common path
fetching error, and may require only that the application program detect the condition
and display some suitable indication to the user that a field is not yet filled in with
meaningful data.

Examples

Example 1: Calling sequence for a single object and a single path

void fetchPath1(void)
{
 enum { path_size = 5 };
 int aPath[path_size]; /* the path itself */
 int aSize = path_size; /* the size of the path */

 for (int j = 0; j < path_size; j++) {
 aPath[j] = j + 1; // arbitrary offsets
 }
 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr(“AllComponents detect:[:i|i partNumber =
1234]”, OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during resolve
 }

 OopType result;
 GciFetchPaths(&anOop, 1, aPath, &aSize, 1, &result);
}

June 2011 VMware, Inc. 239

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example 2: Calling sequence for multiple objects with a single path

void fetchPath2(void)
{
 OopType coll = GciResolveSymbol(“AllComponents”, OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }
 enum { num_roots = 3 ,
 path_size = 5 };
 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int aPath[path_size];
 int aSize = path_size;
 for (int j = 0; j < path_size; j++) {
 aPath[j] = 1; // arbitrary offsets
 }
 OopType results[num_roots];
 GciFetchPaths(oops, num_roots, aPath, &aSize, 1, results);
}

240 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example 3: Calling sequence for a single object with multiple paths

void fetchPath3(void)
{
 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr(“AllComponents detect:[:i|i partNumber =
1234]”, OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during execution
 }

 enum { num_paths = 10,
 path_size = 5 };

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }
 OopType results[num_paths];
 GciFetchPaths (&anOop, 1, paths, pathSizes, num_paths, results);
}

June 2011 VMware, Inc. 241

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example 4: Calling sequence for multiple objects with multiple paths

void fetchPath4(void)
{
 OopType coll = GciResolveSymbol(“AllComponents”, OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }

 enum { num_roots = 10,
 num_paths = 3,
 path_size = 5 };

 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }

 OopType results[num_roots * num_paths];
 GciFetchPaths(oops, num_roots, paths, pathSizes, num_paths,
results);
}

242 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example 5: Integrated Code

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void fetchPath5(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 return; // error in execute, or detect: found nothing
 }

 // fetch name instVar of 5th element of aComponent’s partsList
*/
 enum { path_size = 2 };
 int path[path_size];
 path[0] = -5; // 5th varying instVar
 path[1] = GciIvNameToIdx(GciFetchClass(aComponent), “name”);
 int pathSizes = path_size;

 OopType oName;
 GciFetchPaths(&aComponent, 1, path, &pathSizes, 1, &oName);
};

See Also

GciStorePaths, page 471
June 2011 VMware, Inc. 243

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchSharedCounterValuesNoLock

Fetch the value of multiple shared counters without locking them.

Syntax

int GciFetchSharedCounterValuesNoLock(
int startIndex,
int64_t buffer[],
size_t * maxReturn);

Input Arguments

startIndex The offset into the shared counters array of the first shared counter
value to fetch.

maxReturn Pointer to a value that indicates the maximum number of shared
counters to fetch.

Result Arguments

buffer Pointer to a buffer where the shared counter values will be stored.
The buffer must be at least 8 * maxReturn bytes and the address must
be aligned on an 8-byte boundary.

Return Value

Returns an int indicating the number of shared counter values successfully stored in the
buffer. Returns -1 if a bad argument is detected.

Description

Fetch the values of multiple shared counters in a single call, without locking any of them.
The values of the maxReturn count of shared counters starting at the offset indicated by
counterIdx (0-based) are put into the buffer buffer. buffer must be large enough to
accommodate maxReturn 8-byte values, and be aligned on an 8-byte boundary.

Not supported for remote GCI interfaces.
244 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciFetchNumSharedCounters, page 225
GciDecSharedCounter, page 172
GciIncSharedCounter, page 271
GciSetSharedCounter, page 437
GciReadSharedCounter, page 394
GciReadSharedCounterNoLock, page 395
June 2011 VMware, Inc. 245

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchSize_

Fetch the size of an object.

Syntax

int64 GciFetchSize_(
OopType theObject);

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the size of theObject. In case of error, this function returns zero.

Description

This function obtains the size of an object from GemStone.

NOTE
In previous GemStone/S 64 Bit releases, this function was named GciFetchSize
(without the underscore). Customers must ensure that the variables that receive this
function’s result are large enough to accommodate an int64 value.

The result of this function depends on the object’s implementation (see GciFetchObjImpl).
For byte objects, this function returns the number of bytes in the object. (For Strings, this is
the number of Characters in the String; for Floats, the size is 23.) For pointer objects, this
function returns the number of named instance variables (GciFetchNamedSize) plus the
number of indexed instance variables, if any (GciFetchVaryingSize_). For NSC objects,
this function returns the cardinality of the collection. For special objects, the size is always
zero.

This differs somewhat from the result of executing the Smalltalk method Object>>size,
as shown in Table 6.10:
246 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Table 6.10 Differences in Reported Object Size

Implementation Object>>size (Smalltalk) GciFetchSize_

0=Pointer Number of indexed
elements in the object
(0 if not indexed)

Number of indexed elements
PLUS number of named
instance variables

1=Byte Number of indexed
elements in the object

Same as Smalltalk message
“size”

2=NSC Number of elements in
the object

Same as Smalltalk message
“size”

3=Special 0 0

Example

void fetchSize_example(void)
{
 const char* str = “abcdef”;
 OopType oString = GciNewString(str);

 int64 itsSize = GciFetchSize_(oString);
 if (itsSize != (int64)strlen(str)) {
 printf(“error during fetch size\n”);
 }
}

See Also

GciFetchClass, page 211
GciFetchNamedSize, page 222
GciFetchObjImpl, page 228
GciFetchVaryingOop, page 248
June 2011 VMware, Inc. 247

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchVaryingOop

Fetch the OOP of one unnamed instance variable from an indexable pointer object or NSC.

Syntax

OopType GciFetchVaryingOop(
OopType theObject,
int64 atIndex);

Input Arguments

theObject The OOP of the pointer object or NSC.
atIndex The index of the OOP to be fetched. The index of the first unnamed

instance variable’s OOP is 1.

Return Value

Returns the OOP of the unnamed instance variable at index atIndex. In case of error, this
function returns OOP_NIL.

Description

This function fetches the OOP of a single unnamed instance variable at the specified index,
using structural access. The numerical index of any unordered variable of an NSC can
change whenever the NSC is modified.
248 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve executed the following Smalltalk code to
define the class Component and to populate the set AllComponents:

run
“ define the class Component and compile accessor methods”
| cls |
cls := Array subclass: #Component
 instVarNames: #(#partNumber #name #cost
 “varying instVars form the partsList”)
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals.
cls compileAccessingMethodsFor: cls instVarNames .
^ cls
%
run
“create and populate the set of all Components”
| allC |
allC := IdentitySet new .
UserGlobals at: #AllComponents put: allC .
1 to: 100 do:[:j || aComp |
 aComp := Component new .
 aComp partNumber: 1200 + j .
 aComp name: ‘part’ + j asString .
 aComp cost: j asFloat .
 allC add: aComp .
] .
^ allC size
%
run
“build a parts list for each part.”
| allC idx |
allC := Array withAll: AllComponents .
idx := 1 .
AllComponents do:[:aComp | | list |
 list := Array new: (idx \\ 10) . “list size varies from 0 to
9”
 idx > 75 ifTrue:[idx := 1].
 1 to: list size do:[:k |
June 2011 VMware, Inc. 249

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
 list at: k put: (allC at: idx + (k * 2)).
].
 aComp addAll: list .
 idx := idx + 1.
].
%

Now execute this C code:

OopType fetchVaryingOopExample(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 return OOP_NIL; // error in execute, or detect: found nothing
 }

 /* fetch 3rd element of aComponent’s parts list */
 OopType aSubComponent = GciFetchVaryingOop(aComponent, 3);
 return aSubComponent;
}

See Also

GciFetchNamedOop, page 216
GciFetchNamedOops, page 219
GciFetchVaryingOops, page 251
GciStoreIdxOop, page 454
GciStoreIdxOops, page 456
GciStoreNamedOop, page 459
GciStoreNamedOops, page 462
250 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchVaryingOops

Fetch the OOPs of one or more unnamed instance variables from an indexable pointer
object or NSC.

Syntax

int GciFetchVaryingOops(
OopType theObject,
 int64 startIndex,
OopType theOops[],
int numOops);

Input Arguments

theObject The OOP of the pointer object or NSC.
startIndex The index of the first OOP to be fetched. The index of the first

unnamed instance variable’s OOP is 1. Note that if startIndex is 1
greater than the number of theObject’s unnamed instance variables,
this function returns an array of size 0, but no error is generated.

numOops Maximum number of elements to return.

Result Arguments

theOops The array of fetched OOPs.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the
size of theObject.) In case of error, this function returns zero.

Description

This function fetches the OOPs of multiple unnamed instance variables beginning at the
specified index, using structural access. The numerical index of any unordered variable of
an NSC can change whenever the NSC is modified.
June 2011 VMware, Inc. 251

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

int fetchVaryingOopsExample(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 return -1; // error in execute, or detect: found nothing
 }

 /* fetch the up to the first 5 elements of aComponent’s parts
list */
 enum { num_oops = 5 };
 OopType oBuf[num_oops];

 int numRet = GciFetchVaryingOops(aComponent, 1, oBuf, num_oops);
 // at this point we have 0 <= numRet <= 5
 return numRet;
}

See Also

GciFetchNamedOop, page 216
GciFetchNamedOops, page 219
GciFetchVaryingOop, page 248
GciStoreIdxOop, page 454
GciStoreIdxOops, page 456
GciStoreNamedOop, page 459
GciStoreNamedOops, page 462
252 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchVaryingSize_

Fetch the number of unnamed instance variables in a pointer object or NSC.

Syntax

int64 GciFetchVaryingSize_(
OopType theObject);

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the number of unnamed instance variables in theObject. In case of error, this
function returns zero.

Description

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciFetchVaryingSize (without the underscore). Customers must ensure that the
variables that receive this function’s result are large enough to accommodate an int64
value.

The GciFetchVaryingSize_ function obtains from GemStone the number of indexed
variables in an indexable object or the number of unordered variables in an NSC.
June 2011 VMware, Inc. 253

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

int64 fetchVaryingSizeExample(void)
{

 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 return -1; // error in execute, or detect: found nothing
 }

 /* fetch the size of aComponent’s partsList */
 int64 theSize = GciFetchVaryingSize_(aComponent);
 return theSize;
}

See Also

GciFetchClass, page 211
GciFetchNamedSize, page 222
GciFetchObjImpl, page 228
GciFetchSize_, page 246
GciSetVaryingSize, page 439
254 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFindObjRep

Fetch an object report in a traversal buffer.

Syntax

GciObjRepHdrSType * GciFindObjRep(
GciTravBufType * travBuff,
OopType theObject);

Input Arguments

travBuff A traversal buffer returned by a call to GciTraverseObjs.
theObject The OOP of the object to find.

Return Value

Returns a pointer to an object report within the traversal buffer. In case of error, this
function returns NULL.

Description

This function locates an object report within a traversal buffer that was previously returned
by GciTraverseObjs. If the report is not found within the buffer, this function generates
the error GCI_ERR_TRAV_OBJ_NOT_FOUND.

NOTE
This function is most useful with applications that are linked with GciRpc (the
"remote procedure call" version of GemBuilder). If your application will be linked
with GciLnk (the "linkable" GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.
June 2011 VMware, Inc. 255

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

GciObjRepHdrSType* findObjRepExample(GciTravBufType *buf, OopType
objId)
{
 GciObjRepHdrSType *theReport = GciFindObjRep(buf, objId);
 if (theReport == NULL) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
 }
 return theReport;
}

See Also

GciMoreTraversal, page 293
GciObjRepSize_, page 348
GciTraverseObjs, page 510
256 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFloatKind

Obtain the float kind corresponding to a C double value.

Syntax

GciFloatKindEType GciFloatKind(
double aReal);

Input Arguments

aReal A floating point value.

Return Value

Returns the type of GemStone Float object that corresponds to the C value.

Description

This function obtains the kind of GemStone Float object that corresponds to the C floating
point value aReal.

See Also

GciFltToOop, page 258
GciOopToFlt, page 362
June 2011 VMware, Inc. 257

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciFltToOop

Convert a C double value to a SmallDouble or Float object.

Syntax

OopType GciFltToOop(
double aReal);

Input Arguments

aReal The floating point value to be translated into an object.

Return Value

Returns the OOP of the GemStone SmallDouble or Float object that corresponds to the C
value. In case of error, this function returns OOP_NIL.

Description

This function translates a C double precision value into the equivalent GemStone Float
object.
258 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

#include <stdlib.h>

void fltToOopExample(void)
{
 // random double to Oop conversion producing a Float or
SmallFloat
 double rand = drand48() * 1.0e38 ;
 OopType oFltObj = GciFltToOop(rand);

 OopType oClass = GciFetchClass(oFltObj);
 const char* kind;
 if (oClass == OOP_CLASS_SMALL_DOUBLE) {
 kind = “SmallDouble”;
 } else if (oClass == OOP_CLASS_FLOAT) {
 kind = “Float”;
 } else {
 kind = “Unexpected”;
 }
 printf(“result is a %s, class oop = “FMT_OID”\n”, kind, oClass);
}

See Also

GciOopToFlt, page 362
GciGetFreeOopsEncoded, page 264
June 2011 VMware, Inc. 259

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciGetFreeOop

Allocate an OOP.

Syntax

OopType GciGetFreeOop()

Return Value

Returns an unused object identifier (OOP).

You cannot use the result of GciGetFreeOop to create a Symbol object.

Description

Allocates an object identifier without creating an object.

The object identifier returned from this function remains allocated to the Gci session until
the session calls GciLogout or until the identifier is used as an argument to a function call.

If an object identifier returned from GciGetFreeOop is used as a value in a GciStore... call
before it is used as the objId argument of a GciCreate... call, then an unresolved forward
reference is created in object memory. This is a reference to an object that does not yet exist.
This forward reference must be satisfied by using the identifier as the objId argument to a
GciCreate... call before a GciCommit can be successfully executed.

If GciCommit is attempted prior to satisfying all unresolved forward references, an error
is generated and GciCommit returns FALSE. In this case, GciCreate can be used to satisfy
the forward references and GciCommit can be attempted again. GciAbort removes all
unsatisfied forward references from the session’s object space, just as it removes any other
uncommitted modifications.
260 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
As long as it remains an unresolved forward reference, the identifier returned by
GciGetFreeOop can be used only as a parameter to the following function calls, under the
given restrictions:

 • As the objID of the object to be created
GciCreateByteObj

 • As the objID of the object to be created, or as an element of the value buffer
GciCreateOopObj

 • As an element of the value buffer only
GciStoreOop
GciStoreOops
GciStoreIdxOop
GciStoreIdxOops
GciStoreNamedOop
GciStoreNamedOops
GciStoreTrav
GciAppendOops
GciAddOopToNsc
GciAddOopsToNsc
GciNewOopUsingObjRep

 • As an element of newValues only
GciStorePaths

See Also

GciCreateByteObj, page 158
GciCreateOopObj, page 160
GciGetFreeOops, page 262
GciGetFreeOopsEncoded, page 264
June 2011 VMware, Inc. 261

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciGetFreeOops

Allocate multiple OOPs.

Syntax

void GciGetFreeOops(
int count,
OopType * resultOops);

Input Arguments

count The number of OOPs to allocate.

Result Arguments

resultOops An array to hold the returned OOPs.

Return Value

Returns an unused object identifier (OOP).

Description

Allocates object identifiers without creating objects.

If an object identifier returned from GciGetFreeOops is used as a value in a GciStore... call
before it is used as the objId argument of a GciCreate... call, then an unresolved forward
reference is created in object memory. This is a reference to an object that does not yet exist.
This forward reference must be satisfied by using the identifier as the objId argument to a
GciCreate... call before a GciCommit can be successfully executed.

If GciCommit is attempted prior to satisfying all unresolved forward references, an error
is generated and GciCommit returns false. In this case, GciCreate can be used to satisfy the
forward references and GciCommit can be attempted again. GciAbort removes all
unsatisfied forward references from the session’s object space, just as it removes any other
uncommitted modifications.
262 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
As long as it remains an unresolved forward reference, the identifier returned by
GciGetFreeOops can be used only as a parameter to the following function calls, under the
given restrictions:

 • As the objID of the object to be created
GciCreateByteObj

 • As the objID of the object to be created, or as an element of the value buffer
GciCreateOopObj

 • As an element of the value buffer, only
GciStoreOop
GciStoreOops
GciStoreIdxOop
GciStoreIdxOops
GciStoreNamedOop
GciStoreNamedOops
GciStoreTrav
GciAppendOops
GciAddOopToNsc
GciAddOopsToNsc
GciNewOopUsingObjRep

 • As an element of newValues, only
GciStorePaths

See Also

GciCreateByteObj, page 158
GciCreateOopObj, page 160
GciGetFreeOop, page 260
GciGetFreeOopsEncoded, page 264
June 2011 VMware, Inc. 263

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciGetFreeOopsEncoded

Allocate multiple OOPs.

Syntax

void GciGetFreeOopsEncoded(
int * count,
OopType * encodedOops);

Input Arguments

count The number of OOPs to allocate.
encodedOops A pointer to memory for holding encoded oops. Must be large

enough to hold at least the input value of count.

Result Arguments

count The number of OOPs returned in the encoded OOP array.
encodedOops An array to hold the returned encoded oops. Must be large enough

to hold at least the input value of count.

Description

This function is identical to GciGetFreeOops, except that it returns OOPs in an encoded
array that is more compact for less network I/O. Before the OOPs can be used, the encoded
array must be decoded by calling GciDecodeOopArray().

See Also

GciGetFreeOop, page 260
GciGetFreeOops, page 262
GciFetchNumEncodedOops, page 224
GciEnableFreeOopEncoding, page 183
GciEncodeOopArray, page 187
GciDecodeOopArray, page 170
264 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciGetSessionId

Find the ID number of the current user session.

Syntax

GciSessionIdType GciGetSessionId()

Return Value

Returns the session ID currently being used for communication with GemStone. Returns
GCI_INVALID_SESSION_ID if there is no session ID (that is, if the application is not
logged in).

Description

This function obtains the unique session ID number that identifies the current user session
to GemStone. An application can have more than one active session, but only one current
session.

The ID numbers assigned to your application’s sessions are unique within your
application, but bear no meaningful relationship to the session IDs assigned to other
GemStone applications that may be executing at the same time or accessing the same
database.

Example

void getSessionExample(const char* userId, const char* password)
{
 if (GciLogin(userId, password)) {
 GciSessionIdType sessId = GciGetSessionId();
 printf(“sessionId is %d \n”, sessId);
 }
 GciLogout();
 GciSessionIdType sessId = GciGetSessionId();
 if (sessId != GCI_INVALID_SESSION_ID) {
 printf(“unexpected sessionId %d after logout \n”, sessId);
 }
}

June 2011 VMware, Inc. 265

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciLogin, page 289
GciSetSessionId, page 435
266 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciHardBreak

Interrupt GemStone and abort the current transaction.

Syntax

void GciHardBreak()

Description

GciHardBreak sends a hard break to the current user session (set by the last GciLogin or
GciSetSessionId), which interrupts Smalltalk execution.

All GemBuilder functions can recognize a hard break, so the users of your application can
terminate Smalltalk execution. For example, if your application sends a message to an
object (via GciPerform), and for some reason the invoked Smalltalk method enters an
infinite loop, the user can interrupt the application.

In order for GemBuilder functions in your program to recognize interrupts, your program
will need a signal handler that can call the functions GciSoftBreak and GciHardBreak.
Since GemBuilder does not relinquish control to an application until it has finished its
processing, soft and hard breaks must be initiated from a signal handler

If GemStone is executing when it receives the break, it replies with the error message
RT_ERR_HARD_BREAK. Otherwise, it ignores the break.

If GemStone is executing any of the following methods of class Repository, then a hard
break terminates the entire session, not just Smalltalk execution:

fullBackupTo:
restoreFromBackup(s):
markForCollection
objectAudit
auditWithLimit:
repairWithLimit:
pagesWithPercentFree

See Also

GciSoftBreak, page 441
June 2011 VMware, Inc. 267

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciHiddenSetIncludesOop

Determines whether the given OOP is present in the specified hidden set.

Syntax

BoolType GciHiddenSetIncludesOop(
OopType theOop,
int hiddenSetId);

Input Arguments

theOop The OOP to search for.
hiddenSetId The index to the hidden set to search.

Return Value

True if the OOP was found; false otherwise.

Description

The Gem holds objects in a number of sets ordinarily hidden from the user.
GciHiddenSetIncludesOop allows you to pass in an index to a specified hidden set to
determine if the set includes an specific object. For indexes of available hidden sets, see the
GemStone Smalltalk method System Class >> HiddenSetSpecifiers.

Example

OopType TrackedSetContainsOop(OopType anOop)
{
 if (GciHiddenSetIncludesOop(anOop, 40/* GciTrackedObjs */))
 return OOP_TRUE;
 else
 return OOP_FALSE;
}

268 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GCI_I64_IS_SMALL_INT

Determine whether or not a C 64-bit integer value can be translated into a SmallInteger
object.

Syntax

static inline BoolType GCI_I64_IS_SMALL_INT(anInt)

Input Arguments

anInt A C 64-bit signed integer.

Result Value

A C Boolean value. Returns TRUE if anInt is within SmallInteger range, FALSE otherwise.
A SmallInteger has a 61-bit two’s-complement integer and three tag bits.

For a positive argument to be within the range of the GemStone SmallInteger class, its top
four bits must be 2r0000. For a negative argument, the top four bits must be 2r1111.

Description

This macro tests to see if anInt can be represented as a SmallInteger.

See Also

GCI_OOP_IS_SMALL_INT, page 352
June 2011 VMware, Inc. 269

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciI64ToOop

Convert a C 64-bit integer value to a GemStone object.

Syntax

OopType GciI64ToOop(
int64 anInt);

Input Arguments

anInt A C 64-bit signed integer.

Return Value

The GciI64ToOop function returns the OOP of a GemStone object whose value is
equivalent to anInt.

Description

The GciI64ToOop function translates a C 64-bit integer (int64_t) value into the equivalent
GemStone object. If the result is not a SmallInteger, the result is automatically saved by a
GciSaveObjs() call.

See Also

GciOopToI64, page 366
GciOopToI64_, page 367
GciSaveObjs, page 422
270 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciIncSharedCounter

Increment the value of a shared counter.

Syntax

BoolType GciIncSharedCounter(
int64_t counterIdx,
int64_t * value);

Input Arguments

counterIdx The offset into the shared counters array of the value to increment.
value Pointer to a value that indicates how much to increment the shared

counter by. Shared counters cannot be incremented to a value
greater than INT_MAX (2147483647). Attempt to do so will not
cause an error, but will set the counter to a value of INT_MAX.

Result Arguments

value Pointer to a value that indicates the new value of the shared counter,
after incrementing.

Return Value

Returns a C Boolean value indicating if the shared counter was successfully incremented.
Returns TRUE if successful, FALSE if an error occurred.

Description

This function increments the value of a particular shared counter by a specified amount.
The shared counter is specified by index. The maximum value of this shared counter is
INT_MAX (2147483647), attempts to increase a shared counter to higher values is not an
error, but does not cause the value to increase further.

This function is not supported for remote GCI interfaces, and will always return FALSE.
June 2011 VMware, Inc. 271

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciFetchNumSharedCounters, page 225
GciDecSharedCounter, page 172
GciSetSharedCounter, page 437
GciReadSharedCounter, page 394
GciReadSharedCounterNoLock, page 395
GciFetchSharedCounterValuesNoLock, page 244
272 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciInit

Initialize GemBuilder.

Syntax

BoolType GciInit()

Return Value

The function GciInit returns TRUE or FALSE to indicate successful or unsuccessful
initialization of GemBuilder.

Description

The GciInit function initializes GemBuilder. Among other things, it establishes the default
GemStone login parameters.

If your C application program is linkable, you may wish to call the GciInitAppName
function, which you must do before you call GciInit. After GciInitAppName, you must call
GciInit before calling any other GemBuilder functions. Otherwise, GemBuilder behavior
will be unpredictable.

(Note that when doing run-time binding, you would call GciRtlLoad before calling
GciInit. For details, see “Building the Application” on page 55.)

When GemBuilder is initialized on UNIX platforms, it establishes its own handler for
SIGIO interrupts. See “Signal Handling in Your GemBuilder Application” on page 46 for
information on GciInit’s handling of interrupts and pointers on making GemBuilder,
application, and third-party handlers work together.

See Also

GciInitAppName, page 274
June 2011 VMware, Inc. 273

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciInitAppName

Override the default application configuration file name.

Syntax

void GciInitAppName(
const char * applicationName,
BoolType logWarnings);

Input Arguments

applicationName The application’s name, as a character string.
logWarnings If TRUE, causes the configuration file parser to print any warnings

to standard output at executable startup.

Description

The GciInitAppName function affects only linkable applications. It has no effect on RPC
applications. If you do not call this function before you call GciInit, it will have no effect.

A linkable GemBuilder application reads a configuration file called applicationName.conf
when GciInit is called. This file can alter the behavior of the underlying GemStone session.
For complete information, please see the System Administration Guide for GemStone/S 64 Bit.

A linkable GemBuilder application uses defaults until it calls this function (if it does) and
reads the configuration file (which it always does). For linkable GemBuilder applications,
the default application name is gci, so the default executable configuration file is
gci.conf. The applicationName argument overrides the default application name with one
of your choice, which causes your linkable GemBuilder application to read its own
executable configuration file.

The logWarnings argument determines whether or not warnings that are generated while
reading the configuration file are written to standard output. If your application does not
call GciInitAppName, the default log warnings setting is FALSE. The logWarnings
argument resets the default for your application, which is used in the absence of a
LOG_WARNINGS entry in the configuration file, or until that entry is read.
274 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciInitAppName_

Override the default application configuration file name and the size of temporary object
memory.

Syntax

void GciInitAppName_(
const char * applicationName,
BoolType logWarnings,
unsigned int gemTempObjCacheOverrideKB);

Input Arguments

applicationName The application’s name, as a character string.
logWarnings If TRUE, causes the configuration file parser to print any warnings

to standard output at executable startup.
gemTempObjCacheOverrideKBIf non-zero, defines the maximum size (in KB) of temporary

object memory for this application. This value overrides any
GEM_TEMPOBJ_CACHE_SIZE settings in configuration files read
by GciInit.

Description

This function is similar to the GciInitAppName function (page 274), but with one
exception: you can override any GEM_TEMPOBJ_CACHE_SIZE settings in configuration
files read by GciInit.

If your application calls this function, it must not call GciInitAppName.
June 2011 VMware, Inc. 275

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciInstallUserAction

Associate a C function with a Smalltalk user action.

Syntax

void GciInstallUserAction(
GciUserActionSType * userAction);

void GciInstallUserAction_(
GciUserActionSType * userAction,
BoolType errorIfDuplicate);

Input Arguments

userAction A pointer to a C structure that describes the user-written C function.
errorIfDuplicate If True, return an error if there is already a user action with the

specified name. If False, leave the existing user action in place and
ignore the current call.

Description

This function associates a user action name (declared in Smalltalk) with a user-written C
function. Your application must call GciInstallUserAction before beginning any
GemStone sessions with GciLogin. This function is typically called from
GciUserActionInit. For more information, see Chapter 3, “Writing C Functions To Be
Called from GemStone,”

See Also

“The User Action Information Structure” on page 99
“GciUserActionShutdown” on page 518
276 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciInstMethodForClass

Compile an instance method for a class.

Syntax

OopType GciInstMethodForClass(
OopType source,
OopType oclass,
OopType category,
OopType symbolList);

Input Arguments

source The OOP of a Smalltalk string to be compiled as an instance method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string which contains the name of the

category to which the method is added. If the category is nil
(OOP_NIL), the compiler will add this method to the category “as
yet unclassified”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in
source code using symbols that are available from symbolList. A
value of OOP_NIL means to use the default symbol list for the
current GemStone session (that is,
System myUserProfile symbolList).

Return Value

Returns OOP_NIL, unless there were compiler warnings (such as variables declared but
not used, etc.), in which case the return will be the OOP of a string containing the warning
messages.

Description

This function compiles an instance method for the given class.
June 2011 VMware, Inc. 277

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may
not compile any methods with any of those selectors. See the Programming Guide for
GemStone/S 64 Bit for a list of the optimized selectors.

To remove a class method, use GciExecuteStr instead.

Example

void instanceMethodExample(void)
{
 // Assumes the topaz code for GciFetchVaryingOop example
 // has been executed.

 OopType theClass = GciResolveSymbol(“Component”, OOP_NIL);
 OopType oCateg = GciNewString(“printing”);
 // method to return the part number as a String
 OopType oMethodSrc = GciNewString(“partNumString ^ partNumber
asString “) ;

 GciInstMethodForClass(oMethodSrc, theClass, oCateg, OOP_NIL);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
}

See Also

GciClassMethodForClass, page 141
278 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciInUserAction

Determine whether or not the current process is executing a user action.

Syntax

BoolType GciInUserAction()

Return Value

This function returns TRUE if it is called from within a user action, and FALSE otherwise.

Description

This function is intended for use within signal handlers. It can be called any time after
GciInit.

GciInUserAction returns FALSE if the process is currently executing within a GemBuilder
call that was made from a user action. It considers the highest (most recent) call context
only.

See Also

GciCallInProgress, page 131
June 2011 VMware, Inc. 279

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciIsKindOf

Determine whether or not an object is some kind of a given class or class history.

Syntax

BoolType GciIsKindOf(
OopType anObj,
OopType givenClass);

Input Arguments

anObj The object whose kind is to be checked.
givenClass A class or class history to compare with the object’s kind.

Return Value

GciIsKindOf returns TRUE when the class of anObj or any of its superclasses is in the class
history of givenClass. It returns FALSE otherwise.

Description

GciIsKindOf performs structural access that is equivalent to the isKindOf: method of
the Smalltalk class Object. It compares anObj’s class and superclasses to see if any of them
are in a given class history. When givenClass is simply a class (which is typical),
GciIsKindOf uses givenClass’s class history. When givenClass is itself a class history,
GciIsKindOf uses givenClass directly.

Since GciIsKindOf does consider class histories, it can help to support schema
modification by simplifying checks on the relationship of types when they can change over
time. To accomplish a similar operation without seeing the effects of class histories, use the
GciIsKindOfClass function.

See Also

GciIsKindOfClass, page 281
GciIsSubclassOf, page 283
GciIsSubclassOfClass, page 284
280 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciIsKindOfClass

Determine whether or not an object is some kind of a given class.

Syntax

BoolType GciIsKindOfClass(
OopType anObj,
OopType givenClass);

Input Arguments

anObj The object whose kind is to be checked.
givenClass A class to compare with the object’s kind.

Return Value

GciIsKindOfClass returns TRUE when the class of anObj or any of its superclasses is
givenClass. It returns FALSE otherwise.

Description

GciIsKindOfClass performs structural access that is equivalent to the isKindOf: method
of the Smalltalk class Object. It compares anObj’s class and superclasses to see if any of
them are the givenClass.

Since GciIsKindOfClass does not consider class histories, it cannot help to support schema
modification. To accomplish a similar operation when the relationship of types can change
over time, use the GciIsKindOf function.

See Also

GciIsKindOf, page 280
GciIsSubclassOf, page 283
GciIsSubclassOfClass, page 284
June 2011 VMware, Inc. 281

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciIsRemote

Determine whether the application is running linked or remotely.

Syntax

BoolType GciIsRemote()

Return Value

Returns TRUE if this application is running with GciRpc (the remote procedure call version
of GemBuilder). Returns FALSE if this application is running with GciLnk (that is, if
GemBuilder is linked with your GemStone session).

Description

This function reports whether the current application is using the GciRpc (remote
procedure call) or GciLnk (linkable) version of GemBuilder.
282 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciIsSubclassOf

Determine whether or not a class is a subclass of a given class or class history.

Syntax

BoolType GciIsSubclassOf(
OopType aClass,
OopType givenClass);

Input Arguments

aClass The class that is to be checked.
givenClass A class or class history to compare with the first class.

Return Value

GciIsSubclassOf returns TRUE when aClass or any of its superclasses is in the class history
of givenClass. It returns FALSE otherwise.

Description

GciIsSubclassOf performs structural access that is equivalent to the isSubclassOf:
method of the Smalltalk class Behavior. It compares aClass and aClass’s superclasses to see
if any of them are in a given class history. When givenClass is simply a class (which is
typical), GciIsSubclassOf uses givenClass’s class history. When givenClass is itself a class
history, GciIsSubclassOf uses givenClass directly.

Since GciIsSubclassOf does consider class histories, it can help to support schema
modification by simplifying checks on the relationship of types when they can change over
time. To accomplish a similar operation without seeing the effects of class histories, use the
GciIsSubclassOfClass function.

See Also

GciIsKindOf, page 280
GciIsKindOfClass, page 281
GciIsSubclassOfClass, page 284
June 2011 VMware, Inc. 283

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciIsSubclassOfClass

Determine whether or not a class is a subclass of a given class.

Syntax

BoolType GciIsSubclassOf(
OopType aClass,
OopType givenClass);

Input Arguments

aClass The class that is to be checked.
givenClass A class to compare with the first class.

Return Value

GciIsSubclassOf returns TRUE when aClass or any of its superclasses is givenClass. It
returns FALSE otherwise.

Description

GciIsSubclassOfClass performs structural access that is equivalent to the
isSubclassOf: method of the Smalltalk class Behavior. It compares aClass and aClass’s
superclasses to see if any of them are the givenClass.

Since GciIsSubclassOfClass does not consider class histories, it cannot help to support
schema modification. To accomplish a similar operation when the relationship of types can
change over time, use the GciIsSubclassOf function.

See Also

GciIsKindOf, page 280
GciIsKindOfClass, page 281
GciIsSubclassOf, page 283
284 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciIvNameToIdx

Fetch the index of an instance variable name.

Syntax

int GciIvNameToIdx(
OopType oclass,
const char instVarName[]);

Input Arguments

oclass The OOP of the class from which to obtain information about
instance variables.

instVarName The instance variable name to search for.

Return Value

Returns the index of instVarName into the array of named instance variables for the
specified class. Returns 0 if the name is not found or if an error is encountered.

Description

This function searches the array of instance variable names for the specified class
(including those inherited from superclasses), and returns the index of the specified
instance variable name. This index could then be used as the atIndex parameter in the
GciFetchNamedOop or GciStoreNamedOop function call.
June 2011 VMware, Inc. 285

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

int nameToIdx_example(void)
{
 // Assumes topaz code for GciFetchVaryingOop example has run

 OopType theClass = GciResolveSymbol(“Component”, OOP_NIL);
 int idx = GciIvNameToIdx(theClass, “cost”);
 if (idx < 1) {
 printf(“error during GciIvNameToIdx\n”);
 }
 return idx;
}

See Also

GciClassNamedSize, page 143
GciFetchNamedOop, page 216
GciFetchNamedOops, page 219
GciStoreNamedOop, page 459
GciStoreNamedOops, page 462
286 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciLoadUserActionLibrary

Load an application user action library.

Syntax

BoolType GciLoadUserActionLibrary(
const char * uaLibraryName[],
BoolType mustExist,
void ** libHandlePtr,
char infoBuf[],
int64 infoBufSize);

Input Arguments

uaLibraryName The name and location of the user action library file (a null-
terminated string).

mustExist A flag to make the library required or optional.
libHandlePtr A variable to store the status of the loading operation.
infoBuf A buffer to store the name of the user action library or an error

message.
infoBufSize The size of infoBuf.

Return Value

A C Boolean value. If an error occurs, the return value is FALSE, and the error message is
stored in infoBuf, unless infoBuf is NULL. Otherwise, the return value is TRUE, and the
name of the user action library is stored in infoBuf.

Description

This function loads a user action shared library at run time. If uaLibraryName does not
contain a path, then a standard user action library search is done. The proper prefix and
suffix for the current platform are added to the basename if necessary. For more
information, see Chapter 3, “Writing C Functions To Be Called from GemStone,”

If a library is loaded, libHandlePtr is set to a value that represents the loaded library, if
libHandlePtr is not NULL. If mustExist is TRUE, then an error is generated if the library can
not be found. If mustExist is FALSE, then the library does not need to exist. In this case,
June 2011 VMware, Inc. 287

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
TRUE is returned and libHandlePtr is NULL if the library does not exist and non-NULL if
it exists.

See Also

GciInstallUserAction, page 276
GciInUserAction, page 279
GciUserActionShutdown, page 518
288 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciLogin

Start a user session.

Syntax

BoolType GciLogin(
const char gemstoneUsername[],
const char gemstonePassword[]);

Input Arguments

gemstoneUsername The user’s GemStone user name (a null-terminated string).
gemstonePassword The user’s GemStone password (a null-terminated string).

Description

The GemStone system is much like a time-shared computer system in that the user must
log in before any work may be performed. This function creates a user session and its
corresponding transaction workspace.

This function uses the current network parameters (as specified by GciSetNet) to establish
the user’s GemStone session.
June 2011 VMware, Inc. 289

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

BoolType login_example(void)
{
 // assume the netldi on machine lichen been started with -a -g
 // so that host userId and host password are not required.
 const char* StoneName = “!tcp@lichen!gs64stone”;
 const char* HostUserId = “”;
 const char* HostPassword = “”;
 const char* GemService = “!tcp@lichen!gemnetobject”;
 const char* gsUserName = “isaacNewton”;
 const char* gsPassword = “pomme”;

 // GciInit required before first login
 if (!GciInit()) {
 printf(“GciInit failed\n”);
 return FALSE;
 }
 GciSetNet(StoneName, HostUserId, HostPassword, GemService);
 BoolType success = GciLogin(gsUserName, gsPassword);
 if (! success) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
 }
 return success;
}

See Also

GciGetSessionId, page 265
GciLogout, page 291
GciSetNet, page 432
GciSetSessionId, page 435
290 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciLogout

End the current user session.

Syntax

void GciLogout()

Description

This function terminates the current user session (set by the last GciLogin or
GciSetSessionId), and allows GemStone to release all uncommitted objects created by the
application program in the corresponding transaction workspace. The current session ID
is reset to GCI_INVALID_SESSION_ID, indicating that the application is no longer logged
in. (See “GciGetSessionId” on page 265 for more information.)

See Also

GciGetSessionId, page 265
GciLogin, page 289
GciSetSessionId, page 435
June 2011 VMware, Inc. 291

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciLongJmp

Provides equivalent functionality to the corresponding longjmp() or _longjmp() function.

Syntax

void GciLongJmp(
GciJmpBufSType * jumpBuffer,
int val);

Input Arguments

jumpBuffer A pointer to a jump buffer.

Description

Except for the difference in the first argument type, the semantics of this function are the
same as for longjmp() on Solaris and _longjmp() on HP-UX.

See Also

GciErr, page 189
GciPopErrJump, page 386
GciPushErrJump, page 391
GciSetErrJump, page 427
Gci_SETJMP, page 431
292 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciMoreTraversal

Continue object traversal, reusing a given buffer.

Syntax

BoolType GciMoreTraversal(
GciTravBufType * travBuff);

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

Returns FALSE if the traversal is not yet completed, but further traversal would cause the
travBuffSize to be exceeded. If the travBuffSize is reached before the traversal is complete,
you can continue to call GciMoreTraversal to proceed from the point where travBuffSize
was exceeded.

Returns TRUE if there are no more objects to be returned by subsequent calls to
GciMoreTraversal.

Description

When the amount of information obtained in a traversal exceeds the amount of memory
available to the buffer (as specified with travBuffSize), your application can call
GciMoreTraversal repeatedly to break the traversal into manageable amounts of
information. The information returned by this function begins with the object report
following where the previous unfinished traversal left off. The level value is retained from
the initial GciTraverseObjs call.

NOTE
This function is most useful with applications that are linked with GciRpc (the
“remote procedure call” version of GemBuilder). If your application will be linked
with GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.
June 2011 VMware, Inc. 293

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Generally speaking, an application can continue to call GciMoreTraversal until it has
obtained all requested information.

Naturally, GemStone will not continue an incomplete traversal if there is any chance that
changes to the database in the intervening period might have invalidated the previous
report or changed the connectivity of the objects in the path of the traversal. Specifically,
GemStone will refuse to continue a traversal if, in the interval before attempting to
continue, you:

 • Modify the objects in the database directly by calling any of the GciStore... or
GciAdd... functions;

 • Call one of the Smalltalk message-sending functions GciPerform, GciContinue, or any
of the GciExecute... functions.

 • Abort your transaction, thus invalidating any subsequent information from that
traversal.

Any attempt to call GciMoreTraversal after one of these events will generate an error.

Note that this holds true across multiple GemBuilder applications sharing the same
GemStone session. Suppose, for example, that you were holding on to an incomplete
traversal buffer and the user moved from the current application to another, did some
work that required executing Smalltalk code, and then returned to the original application.
You would be unable to continue the interrupted traversal.

If you attempt to call GciMoreTraversal when no traversal is underway, this function will
generate the error GCI_ERR_TRAV_COMPLETED.

During the entire sequence of GciTraverseObjs and GciMoreTraversal calls that
constitute a traversal, any single object report will be returned exactly once. Regardless of
the connectivity of objects in the GemStone database, only one report will be generated for
any non-special object.

The section “Organization of the Traversal Buffer” on page 511 describes the organization
of traversal buffers in detail.

GciMoreTraversal provides automatic byte swizzling for Float and SmallFloat objects.
(For more about byte swizzling, see page 29.)
294 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

void moreTraversalExample(void)
{
 // Assumes topaz code for GciFetchVaryingOops example has run

 OopType rootObj = GciResolveSymbol(“AllComponents”, OOP_NIL);
 GciTravBufType *buf = GciTravBufType::malloc(8000);

 int totalCount = 0;
 // traverse the AllComponents collection to 10 levels deep
 BoolType done = GciTraverseObjs(&rootObj, 1, buf, 10);
 while (! done) {
 int objCount = 0;
 GciObjRepHdrSType *rpt = buf->firstReportHdr();
 GciObjRepHdrSType *limit = buf->readLimitHdr();
 while (rpt < limit) {
 objCount++ ;
 rpt = rpt->nextReport();
 }
 totalCount += objCount;
 done = GciMoreTraversal(buf);
 }
 buf->free();
 printf(“traversal returned %d total objects\n”, totalCount);
}

See Also

GCI_ALIGN, page 119
GciFindObjRep, page 255
GciNbMoreTraversal, page 314
GciNbTraverseObjs, page 328
GciObjRepSize_, page 348
GciTraverseObjs, page 510
June 2011 VMware, Inc. 295

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbAbort

Abort the current transaction (nonblocking).

Syntax

void GciNbAbort()

Description

The GciNbAbort function is equivalent in effect to GciAbort. However, GciNbAbort
permits the application to proceed with non-GemStone tasks while the transaction is
aborted, and GciAbort does not.

See Also

GciAbort, page 114
GCI_CHR_TO_OOP, page 134
GciCommit, page 147
GciNbCommit, page 301
296 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbBegin

Begin a new transaction (nonblocking).

Syntax

void GciNbBegin()

Description

The GciNbBegin function is equivalent in effect to GciBegin. However, GciNbBegin
permits the application to proceed with non-GemStone tasks while a new transaction is
started, and GciBegin does not.

See Also

GciAbort, page 114
GciBegin, page 127
GciExecuteStr, page 195
GciNbAbort, page 296
GciNbExecuteStr, page 308
June 2011 VMware, Inc. 297

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbClampedTrav

Traverse an array of objects, subject to clamps (nonblocking).

Syntax

void GciNbClampedTrav(
const OopType * theOops,
int numOops,
GciClampedTravArgsSType *travArgs);

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travArgs Pointer to an instance of GciClampedTravArgsSType. See

GciClampedTrav (page 135) for documentation on the fields in
travArgs.

Result Arguments

travArgs Pointer to an instance of GciClampedTravArgsSType containing
the result argument field travBuff.

Return Value

The GciNbClampedTrav function, unlike GciClampedTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in
meaning to the return value of GciClampedTrav by using the argument to GciNbEnd.

Description

The GciNbClampedTrav function is equivalent in effect to GciClampedTrav. However,
GciClampedTrav permits the application to proceed with non-GemStone tasks while a
traversal is carried out, and GciClampedTrav does not.

See Also

GciClampedTrav, page 135
298 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbClampedTraverseObjs

Traverse an array of objects, subject to clamps (nonblocking).

Syntax

void GciNbClampedTraverseObjs(
OopType clampSpec,
const OopType theOops[],
int numOops,
GciTravBufType * travBuff,
int level);

Input Arguments

clampSpec The OOP of the Smalltalk ClampSpecification to be used.
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
level Maximum traversal depth. When the level is 1, an object report is

written to the traversal buffer for each element in theOops. When
level is 2, an object report is also obtained for the instance variables
of each level-1 object. When level is 0, the number of levels in the
traversal is not restricted.

Result Arguments

travBuff The buffer for the results of the traversal. The first element placed in
the buffer is the actualBufferSize, an integer that indicates how many
bytes were actually stored in the buffer by this function. The
remainder of the traversal buffer consists of a series of object reports,
each of which is of type GciObjRepSType.

Return Value

The GciNbClampedTraverseObjs function, unlike GciClampedTraverseObjs, does not
have a return value. However, when the traversal operation is complete, you can access a
value identical in meaning to the return value of GciClampedTraverseObjs by using the
argument to GciNbEnd.
June 2011 VMware, Inc. 299

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

The GciNbClampedTraverseObjs function is equivalent in effect to
GciClampedTraverseObjs. However, GciNbClampedTraverseObjs permits the
application to proceed with non-GemStone tasks while the traversal is completed, and
GciClampedTraverseObjs does not.

GciNbClampedTraverseObjs provides automatic byte swizzling for Float and SmallFloat
objects. (For more about byte swizzling, see page 29.)

GemBuilder clamped traversal functions are intended primarily for GemStone internal
use.

See Also

GciClampedTraverseObjs, page 138
GciNbTraverseObjs, page 328
GciTraverseObjs, page 510
300 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbCommit

Write the current transaction to the database (nonblocking).

Syntax

void GciNbCommit()

Return Value

The GciNbCommit function, unlike GciCommit, does not have a return value. However,
when the commit operation is complete, you can access a value identical in meaning to the
return value of GciCommit by using the argument to GciNbEnd.

Description

The GciNbCommit function is equivalent in effect to GciCommit. However,
GciNbCommit permits the application to proceed with non-GemStone tasks while the
transaction is committed, and GciCommit does not.

See Also

GciAbort, page 114
GCI_CHR_TO_OOP, page 134
GciCommit, page 147
GciNbAbort, page 296
June 2011 VMware, Inc. 301

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbContinue

Continue code execution in GemStone after an error (nonblocking).

Syntax

void GciNbContinue(
OopType process);

Input Arguments

process The OOP of a GsProcess object (obtained as the value of the context
field of an error report returned by GciErr).

Return Value

The GciNbContinue function, unlike GciContinue, does not have a return value.
However, when the continued operation is complete, you can access a value identical in
meaning to the return value of GciContinue by using the argument to GciNbEnd.

Description

The GciNbContinue function is equivalent in effect to GciContinue. However,
GciNbContinue permits the application to proceed with non-GemStone tasks while the
operation continues, and GciContinue does not.

See Also

GciClearStack, page 145
GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciNbExecute, page 306
302 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbContinueWith

Continue code execution in GemStone after an error (nonblocking).

Syntax

void GciNbContinueWith (
OopType process,
OopType replaceTopOfStack,
int flags,
GciErrSType * error);

Input Arguments

process The OOP of a GsProcess object (obtained as the value of the context
field of an error report returned by GciErr).

replaceTopOfStack If not OOP_ILLEGAL, replace the top of the Smalltalk evaluation
stack with this value before continuing. If OOP_ILLEGAL, the
evaluation stack is not changed.

flags Flags to disable or permit asynchronous events and debugging in
Smalltalk, as defined for GciPerformNoDebug.

error If not NULL, continue with an error. This argument takes
precedence over replaceTopOfStack.

Description

The GciNbContinueWith function is equivalent in effect to GciContinueWith. However,
GciNbContinueWith permits the application to proceed with non-GemStone tasks while
the operation continues, and GciContinueWith does not.

See Also

GciContinue, page 154
GciContinueWith, page 156
GciErr, page 189
GciExecute, page 191
GciNbExecute, page 306
GciPerformNoDebug, page 373
June 2011 VMware, Inc. 303

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbEnd

Test the status of nonblocking call in progress for completion.

Syntax

GciNbProgressEType GciNbEnd(
void ** result);

Input Arguments

result The address at which GciNbEnd should place a pointer to the result
of the nonblocking call when it is complete.

Return Value

The GciNbEnd function returns an enumerated type. Its value is GCI_RESULT_READY if
the outstanding nonblocking call has completed execution and its result is ready,
GCI_RESULT_NOT_READY if the call is not complete and there has been no change since
the last inquiry, and GCI_RESULT_PROGRESSED if the call is not complete but progress
has been made towards its completion.

Description

Once an application calls a nonblocking function, it must call GciNbEnd at least once, and
must continue to do so until that nonblocking function has completed execution. The intent
of the return values is to give the scheduler a hint about whether it is calling GciNbEnd too
often or not often enough.

Once an operation is complete, you are permitted to call GciNbEnd repeatedly. It returns
GCI_RESULT_READY and a pointer to the same result each time, until you call a
nonblocking function again. It is an error to call GciNbEnd before you call any
nonblocking functions at all. Use the GciCallInProgress function to determine whether or
not there is a GemBuilder call currently in progress.
304 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

void nbEnd_example(void)
{
 void *resultPtr;
 GciNbExecuteStr(“Globals size”, OOP_NIL);
 do {
 // wait for non-blocking result
 GciHostMilliSleep(1);
 } while (GciNbEnd(&resultPtr) != GCI_RESULT_READY);

 OopType result = *(OopType*)resultPtr;
 BoolType conversionErr = FALSE;
 int gSize = GciOopToI32_(result, &conversionErr);
 if (conversionErr) {
 printf(“error in execution\n”);
 } else {
 printf(“Globals size = %d \n”, gSize);
 }
}

See Also

GciCallInProgress, page 131
June 2011 VMware, Inc. 305

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbExecute

Execute a Smalltalk expression contained in a String object (nonblocking).

Syntax

void GciNbExecute(
OopType source,
OopType symbolList);

void GciNbExecute_(
OopType source,
OopType symbolList,
ushort environmentId);

Input Arguments

source The OOP of a String containing a sequence of one or more
statements to be executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

The GciNbExecute function, unlike GciExecute, does not have a return value. However,
when the executed operation is complete, you can access a value identical in meaning to
the return value of GciExecute by using the argument to GciNbEnd.
306 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

The GciNbExecute function is equivalent in effect to GciExecute. However,
GciNbExecute permits the application to proceed with non-GemStone tasks while the
Smalltalk expression is executed, and GciExecute does not.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciExecuteFromContext, page 193
GciExecuteStr, page 195
GciExecuteStrFromContext, page 198
GciNbContinue, page 302
GciNbExecuteStr, page 308
GciNbExecuteStrFromContext, page 310
June 2011 VMware, Inc. 307

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbExecuteStr

Execute a Smalltalk expression contained in a C string (nonblocking).

Syntax

void GciNbExecuteStr(
const char source[],
OopType symbolList);

void GciNbExecuteStr_(
const char source[],
OopType symbolList,
ushort environmentId);

Input Arguments

source A null-terminated string containing a sequence of one or more
statements to be executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

The GciNbExecuteStr function, unlike GciExecuteStr, does not have a return value.
However, when the executed operation is complete, you can access a value identical in
meaning to the return value of GciExecuteStr by using the argument to GciNbEnd.
308 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

The GciNbExecuteStr function is equivalent in effect to GciExecuteStr. However,
GciNbExecuteStr permits the application to proceed with non-GemStone tasks while the
Smalltalk expression is executed, and GciExecuteStr does not.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciExecuteFromContext, page 193
GciExecuteStr, page 195
GciExecuteStrFromContext, page 198
GciNbContinue, page 302
GciNbExecute, page 306
GciNbExecuteStrFromContext, page 310
June 2011 VMware, Inc. 309

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbExecuteStrFromContext

Execute a Smalltalk expression contained in a C string as if it were a message sent to an
object (nonblocking).

Syntax

void GciNbExecuteStrFromContext(
const char source[],
OopType contextObject,
OopType symbolList);

void GciNbExecuteStrFromContext_(
const char source[],
OopType contextObject,
OopType symbolList,
ushort environmentId);

Input Arguments

source A null-terminated string containing a sequence of one or more
statements to be executed.

contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

The GciNbExecuteStrFromContext function, unlike GciExecuteStrFromContext, does not
have a return value. However, when the executed operation is complete, you can access a
value identical in meaning to the return value of GciExecuteStrFromContext by using the
argument to GciNbEnd.
310 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

The GciNbExecuteStrFromContext function is equivalent in effect to
GciExecuteStrFromContext. However, GciNbExecuteStrFromContext permits the
application to proceed with non-GemStone tasks while the Smalltalk expression is
executed, and GciExecuteStrFromContext does not.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciExecuteFromContext, page 193
GciExecuteStr, page 195
GciExecuteStrFromContext, page 198
GciNbContinue, page 302
GciNbExecute, page 306
GciNbExecuteStr, page 308
June 2011 VMware, Inc. 311

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbExecuteStrTrav

First execute a Smalltalk expression contained in a C string as if it were a message sent to
an object, then traverse the result of the execution (nonblocking).

Syntax

void GciNbExecuteStrTrav(
const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs);

void GciNbExecuteStrTrav_(
const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments

source A null-terminated string containing a sequence of one or more
statements to be executed.

contextObject The OOP of any GemStone object. A value of OOP_ILLEGAL means
no context.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL
means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

travArgs Pointer to an instance of GciClampedTravArgsSType. See the
GciExecuteStrTrav function (page 201) for field definitions.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.
312 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Return Value

The GciNbExecuteStrTrav function, unlike GciExecuteStrTrav, does not have a return
value. However, when the traversal operation is complete, you can access a value identical
in meaning to the return value of GciExecuteStrTrav by using the argument to GciNbEnd.

Description

The GciNbExecuteStrTrav function is equivalent in effect to GciExecuteStrTrav.
However, GciNbExecuteStrTrav permits the application to proceed with non-GemStone
tasks while the traversal is completed, and GciExecuteStrTrav does not.

See Also

GciExecuteStrTrav, page 201
GciExecuteStr, page 195
GciMoreTraversal, page 293
GciPerformTraverse, page 379
June 2011 VMware, Inc. 313

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbMoreTraversal

Continue object traversal, reusing a given buffer (nonblocking).

Syntax

void GciNbMoreTraversal(
GciTravBufType * travBuff);

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

The GciNbMoreTraversal function, unlike GciMoreTraversal, does not have a return
value. However, when the traversal operation is complete, you can access a value identical
in meaning to the return value of GciMoreTraversal by using the argument to GciNbEnd.

Description

The GciNbMoreTraversal function is equivalent in effect to GciMoreTraversal. However,
GciNbMoreTraversal permits the application to proceed with non-GemStone tasks while
the traversal is completed, and GciMoreTraversal does not.

GciNbMoreTraversal provides automatic byte swizzling for Float and SmallFloat objects.
(For more about byte swizzling, see page 29.)

See Also

GCI_ALIGN, page 119
GciFindObjRep, page 255
GciMoreTraversal, page 293
GciNbTraverseObjs, page 328
GciObjRepSize_, page 348
GciTraverseObjs, page 510
314 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbPerform

Send a message to a GemStone object (nonblocking).

Syntax

void GciNbPerform(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs);

void GciNbPerform_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an

argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

The GciNbPerform function, unlike GciPerform, does not have a return value. However,
when the performed operation is complete, you can access a value identical in meaning to
the return value of GciPerform by using the argument to GciNbEnd.
June 2011 VMware, Inc. 315

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

The GciNbPerform function is equivalent in effect to GciPerform. However,
GciNbPerform permits the application to proceed with non-GemStone tasks while the
message is executed, and GciPerform does not.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciNbContinue, page 302
GciNbExecute, page 306
GciNbPerformNoDebug, page 317
GciPerform, page 371
GciPerformNoDebug, page 373
GciPerformSymDbg, page 375
316 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbPerformNoDebug

Send a message to a GemStone object, and temporarily disable debugging (nonblocking).

Syntax

void GciNbPerformNoDebug(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags);

void GciNbPerformNoDebug_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an

argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

flags Flags to disable or permit asynchronous events and debugging in
Smalltalk.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.
June 2011 VMware, Inc. 317

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Return Value

The GciNbPerformNoDebug function, unlike GciPerformNoDebug, does not have a
return value. However, when the performed operation is complete, you can access a value
identical in meaning to the return value of GciPerformNoDebug by using the argument to
GciNbEnd.

Description

The GciNbPerformNoDebug function is equivalent in effect to GciPerformNoDebug.
However, GciNbPerformNoDebug permits the application to proceed with non-
GemStone tasks while the message is executed, and GciPerformNoDebug does not.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciNbContinue, page 302
GciNbExecute, page 306
GciNbPerform, page 315
GciPerform, page 371
GciPerformNoDebug, page 373
GciPerformSymDbg, page 375
318 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbPerformTrav

First send a message to a GemStone object, then traverse the result of the message
(nonblocking).

Syntax

BoolType GciNbPerformTrav(
OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs);

BoolType GciNbPerformTrav_(
OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector A pointer to a character collection containing the message selector.

For keyword selectors, all keywords are concatenated in the String.
(For example, at:put:).

args An array of OOPs. Each element in the array corresponds to an
argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

travArgs Pointer to an instance of GciClampedTravArgsSType. See the
GciClampedTrav function (page 135) for documentation of the
fields in travArgs.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101
June 2011 VMware, Inc. 319

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Result Arguments

The result of the GciNbPerformTrav is the first object in the resulting travBuffs field in
travArgs.

Return Value

The GciNbPerformTrav function, unlike GciPerformTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in
meaning to the return value of GciPerformTrav by using the argument to GciNbEnd.

Description

The GciNbPerformTrav function is equivalent in effect to GciPerformTrav. However,
GciNbStoreTrav permits the application to proceed with non-GemStone tasks while the
traversal is done, and GciPerformTrav does not.

See Also

GciPerformTrav, page 377
GciPerform, page 371
GciClampedTrav, page 135
320 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbStoreTrav

Store multiple traversal buffer values in objects (nonblocking).

Syntax

void GciNbStoreTrav(
GciTravBufType * travBuff,
int behaviorFlag);

Input Arguments

travBuff A buffer that contains the object reports to be stored. The first
element in the buffer is an integer that indicates how many bytes are
stored in the buffer. The remainder of the traversal buffer consists of
a series of object reports, each of which is of type GciObjRepSType.

behaviorFlag A flag specifying whether the values returned by GciStoreTrav
should be added to the values in the traversal buffer or should
replace the values in the traversal buffer. Flag values, predefined in
the gci.ht header file, are GCI_STORE_TRAV_NSC_ADD (add to
the traversal buffer) and GCI_STORE_TRAV_NSC_REP (replace
traversal buffer contents).

Description

The GciNbStoreTrav function is equivalent in effect to GciStoreTrav. However,
GciNbStoreTrav permits the application to proceed with non-GemStone tasks while the
traversals are stored, and GciStoreTrav does not.

GciNbStoreTrav provides automatic byte swizzling for Float and SmallFloat objects. (For
more about byte swizzling, see page 29.)

See Also

GciMoreTraversal, page 293
GciNbMoreTraversal, page 314
GciNbTraverseObjs, page 328
GciNewOopUsingObjRep, page 338
June 2011 VMware, Inc. 321

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreTrav, page 478
GciTraverseObjs, page 510
322 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNbStoreTravDo_

Store multiple traversal buffer values in objects, execute the specified code, and return the
resulting object (non-blocking).

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciNbStoreTravDo (without the underscore).

Syntax

void GciNbStoreTravDo_(
GciStoreTravDoArgsSType *stdArgs);

Input Arguments

stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the
discussion of GciStoreTravDo_ on page 482.

Return Value

Unlike GciStoreTravDo_, the GciNbStoreTravDo_ function does not have a return value.
However, when the traversal operation is complete, you can access a value identical in
meaning to the return value of GciStoreTravDo_ by using the argument to GciNbEnd.

Description

The GciNbStoreTravDo_ function is equivalent in effect to GciStoreTravDo_. However,
GciNbStoreTravDo_ permits the application to proceed with non-GemStone tasks while
the traversal is done, and GciStoreTravDo_ does not.

See Also

GciNbClampedTrav, page 298
GciNbEnd, page 304
GciNbStoreTrav, page 321
GciNbStoreTravDoTrav_, page 324
GciStoreTravDo_, page 482
June 2011 VMware, Inc. 323

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbStoreTravDoTrav_

Combine in a single function the calls to GciNbStoreTravDo_ and GciNbClampedTrav,
to store multiple traversal buffer values in objects, execute the specified code, and traverse
the result object (non-blocking).

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciNbStoreTravDoTrav (without the underscore).

Syntax

void GciNbStoreTravDoTrav_(
GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments

stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the
discussion of GciStoreTravDo_ on page 482.

ctArgs An instance of GciClampedTravArgsSType. For details, see the
discussion of GciClampedTrav on page 135.

Return Value

The GciNbStoreTravDoTrav_ function, unlike GciStoreTravDoTrav_, does not have a
return value. However, when the traversal operation is complete, you can access a value
identical in meaning to the return value of GciStoreTravDoTrav_ by using the argument
to GciNbEnd.

Description

This function allows the client to execute behavior on the Gem and return the traversal of
the result object in a single network round-trip.

The GciNbStoreTravDoTrav_ function is equivalent in effect to GciStoreTravDoTrav_.
However, GciNbStoreTravDoTrav_ permits the application to proceed with non-
GemStone tasks while the traversals are stored, and GciStoreTravDoTrav_ does not.
324 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciNbClampedTrav, page 298
GciNbEnd, page 304
GciNbStoreTrav, page 321
GciStoreTravDoTrav_, page 486
June 2011 VMware, Inc. 325

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbStoreTravDoTravRefs_

Combine in a single function modifications to session sets, traversal of objects to the server,
optional Smalltalk execution, and traversal to the client of changed objects and (optionally)
the result object (non blocking).

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciNbStoreTravDoTravRefs (without the underscore).

Syntax

void GciNbStoreTravDoTravRefs_(
const OopType * oopsNoLongerReplicated,
int numNotReplicated,
const OopType * oopsGcedOnClient,
int numGced,
GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments

oopsNoLongerReplicatedAn Array of objects to be removed from the PureExportSet and
added to the ReferencedSet.

numNotReplicated The number of elements in oopsNoLongerReplicated.
oopsGcedOnClient An Array of objects to be removed from both the PureExportSet and

ReferencedSet.
numGced The number of elements in oopsGcedOnClient.
stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the

discussion of GciStoreTravDo_ on page 478.
ctArgs An instance of GciClampedTravArgsSType. For details, see the

discussion of GciClampedTrav on page 135.

Return Value

The GciNbStoreTravDoTravRefs_ function, unlike GciStoreTravDoTravRefs_, does not
have a return value. However, when the traversal operation is complete, you can access a
value identical in meaning to the return value of GciStoreTravDoTravRefs_ by using the
argument to GciNbEnd
326 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

This function allows the client to modify the PureExportSet and ReferencedSet, modify or
create any number of objects on the server, execute behavior on the Gem, and return the
traversal of the result object, all in a single network round-trip.

The GciNbStoreTravDoTravRefs_ function is equivalent in effect to
GciStoreTravDoTravRefs_. However, GciNbStoreTravDoTravRefs_ permits the
application to proceed with non-GemStone tasks while the traversals are stored, and
GciStoreTravDoTravRefs_ does not.

See Also

GciNbClampedTrav, page 298
GciNbEnd, page 304
GciStoreTravDoTrav_, page 486
GciStoreTravDoTravRefs_, page 488
June 2011 VMware, Inc. 327

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNbTraverseObjs

Traverse an array of GemStone objects (nonblocking).

Syntax

void GciNbTraverseObjs(
const OopType theOops[],
int numOops,
GciTravBufType * travBuff,
int level);

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travBuffSize The number of bytes allocated to the traversal buffer.
level Maximum traversal depth. When the level is 1, an object report is

written to the traversal buffer for each element in theOops. When
level is 2, an object report is also obtained for the instance variables
of each level-1 object. When level is 0, the number of levels in the
traversal is not restricted.

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

The GciNbTraverseObjs function, unlike GciTraverseObjs, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in
meaning to the return value of GciTraverseObjs by using the argument to GciNbEnd.
328 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

The GciNbTraverseObjs function is equivalent in effect to GciTraverseObjs. However,
GciNbTraverseObjs permits the application to proceed with non-GemStone tasks while
the traversal is completed, and GciTraverseObjs does not.

GciNbTraverseObjs provides automatic byte swizzling for Float and SmallFloat objects.
(For more about byte swizzling, see page 29.)

See Also

GciFindObjRep, page 255
GciMoreTraversal, page 293
GciNbMoreTraversal, page 314
GciNbStoreTrav, page 321
GciNewOopUsingObjRep, page 338
GciObjRepSize_, page 348
GciStoreTrav, page 478
GciTraverseObjs, page 510
June 2011 VMware, Inc. 329

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNewByteObj

Create and initialize a new byte object.

Syntax

OopType GciNewByteObj(
OopType aClass,
const ByteType * value,
int64 valueSize);

Input Arguments

aClass The OOP of the class of which an instance is to be created.
value Pointer to an array of byte values to be stored in the newly-created

object.
valueSize The number of byte values in value.

Return Value

The OOP of the newly created object.

Description

Returns a new instance of aClass, of size valueSize, and containing a copy of the bytes
located at value. Equivalent to GciNewOop followed by GciStoreBytes. aClass must be a
class whose format is Bytes.
330 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNewCharObj

Create and initialize a new character object.

Syntax

OopType GciNewCharObj(
OopType aClass,
const char * cString);

Input Arguments

aClass The OOP of the class of which an instance is to be created. aClass
must be a class whose format is BYTE.

cString Pointer to an array of characters to be stored in the newly-created
object. The terminating '\0' character is not stored.

Return Value

The OOP of the newly-created object.

Description

Returns a new instance of aClass which has been initialized to contain the bytes of cString,
excluding the null terminator.
June 2011 VMware, Inc. 331

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNewDateTime

Create and initialize a new date-time object.

Syntax

OopType GciNewDateTime(
OopType theClass,
const GciDateTimeSType *timeVal);

Input Arguments

theClass The class of the object to be created. theClass must be
OOP_CLASS_DATE_TIME or a subclass thereof.

timeVal The time value to be assigned to the newly-created object.

Return Value

Returns the OOP of the newly-created object. If an error occurs, returns OOP_ILLEGAL.

Description

Creates a new instance of theClass having the value that timeVal points to.
332 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNewOop

Create a new GemStone object.

Syntax

OopType GciNewOop(
OopType oclass);

Input Arguments

oclass The OOP of the class of which the new object is an instance. This may
be the OOP of a class that you have created, or it may be one of the
Smalltalk kernel classes, such as OOP_CLASS_STRING for an object
of class String. It may not be Symbol or DoubleByteSymbol.
Appendix A, “Reserved OOPs,” lists the C constants that are
defined for each of the Smalltalk kernel classes.

Return Value

Returns the OOP of the new object. In case of error, this function returns OOP_NIL.

Description

This function creates a new object of the specified class and returns the object’s OOP. It
cannot be used to create instances of Symbol or DoubleByteSymbol.

Example

OopType newOop_example(void)
{
 // create a new instance of String
 OopType result = GciNewOop(OOP_CLASS_STRING);
 return result;
}

June 2011 VMware, Inc. 333

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciNewOops, page 335
GciNewOopUsingObjRep, page 338
GciReleaseAllOops, page 399
GciReleaseGlobalOops, page 401
334 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNewOops

Create multiple new GemStone objects.

Syntax

void GciNewOops(
int numOops,
const OopType oclass[],
const int64 idxSize[],
OopType result[]);

Input Arguments

numOops The number of new objects to be created.
oclass For each new object, the OOP of its class. This should not be the OOP

of Symbol or DoubleByteSymbol.
idxSize For each new object, the number of its indexed variables. If the

specified oclass of an object is not indexable, its idxSize is ignored.

Result Arguments

result An array of the OOPs of the new objects created with this function.

Return Value

If an error is encountered, this function will stop at the first error and the contents of the
result array will be undefined.

Description

This function creates multiple objects of the specified classes and sizes, and returns the
OOPs of the new objects.

Each OOP in oclass may be the OOP of a class that you have created, or it may be one of the
Smalltalk kernel classes, such as OOP_CLASS_STRING for an object of class String. This
function cannot be used to create instances of Symbol or DoubleByteSymbol. If oclass
contains the OOP of a class with special implementation (such as Boolean), then the
June 2011 VMware, Inc. 335

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
corresponding element in result is OOP_NIL. Appendix A, “Reserved OOPs,” lists the C
constants that are defined for each of the Smalltalk kernel classes.

GciNewOops generates an error when either of the following conditions is TRUE for any
object:

 • idxSize < 0
 • (idxSize + number_of_named_instance_variables) > maxSmallInt

Example

void newOops_example(void)
{
 enum { num_objs = 3 };
 OopType classes[num_objs];
 classes[0] = OOP_CLASS_STRING;
 classes[1] = OOP_CLASS_IDENTITY_SET;
 classes[2] = OOP_CLASS_ARRAY;

 int64 sizes[num_objs];
 sizes[0] = 50;
 sizes[1] = 0; /* ignored for NSCs anyway */
 sizes[2] = 3;

 OopType newObjs[num_objs];

 GciNewOops(num_objs, classes, sizes, newObjs);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf(“objIds of new objects are “FMT_OID” “FMT_OID”
“FMT_OID”\n”,
 newObjs[0], newObjs[1], newObjs[2]);
 }
}

336 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciNewOop, page 333
GciNewOopUsingObjRep, page 338
GciReleaseAllOops, page 399
GciReleaseGlobalOops, page 401
GciStoreTrav, page 478
June 2011 VMware, Inc. 337

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNewOopUsingObjRep

Create a new GemStone object from an existing object report.

Syntax

void GciNewOopUsingObjRep(
GciObjRepSType * anObjectReport);

Input Arguments

anObjectReport A pointer to an object report.

Result Arguments

anObjectReport A modified object report that contains the OOP of the new object
(hdr.objId), the ID of the object’s security policy
(hdr.objectSecurityPolicyId), the number of named instance variables
in the object (hdr.namedSize), the updated number of the object’s
indexed variables (hdr.idxSize), and the object’s complete size (the
sum of its named and unnamed variables, hdr.objSize).

Description

This function allows you to submit an object report that creates a GemStone object and
specifies the values of its instance variables. You can use this function to define a String,
pointer, or NSC object with known OOPs.

The object report consists of two parts: a header (a GciObjRepHdrSType structure)
followed by a value buffer (an array of values of the object’s instance variables). For more
information on object reports, see “The Object Report Structure” on page 94.

NOTE:
This function is most useful with applications that are linked with GciRpc (the
“remote procedure call” version of GemBuilder). If your application will be linked
with GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.
338 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNewOopUsingObjRep provides automatic byte swizzling for Float and SmallFloat
objects. (For more about byte swizzling, see page 29.)

Error Conditions

In addition to general GemBuilder error conditions, this function generates an error if any
of the following conditions exist:

 • If (idxSize < 0)
 • If (idxSize + namedSize) > maxSmallInt
 • If firstOffset > (objSize + 1)
 • For pointer objects and NSCs, if valueBuffSize is not divisible by 4
 • If the specified oclass is not the OOP of a Smalltalk class object
 • If the specified oclass and implementation (objImpl) do not agree
 • If objId is a Float or SmallFloat, then startIndex must be one and valueBuffSize must be

the actual size for the class of objId.

Note that you cannot use this function to create new special objects (instances of
SmallInteger, Character, Boolean, SmallDouble, or UndefinedObject).
June 2011 VMware, Inc. 339

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

void newOopUsingObjRep_example(void)
{
 int arrSize = 100;
 size_t bodySize = sizeof(OopType) * arrSize ;
 size_t rptSize = GCI_ALIGN(sizeof(GciObjRepSType) + bodySize);
 GciObjRepSType *rpt = (GciObjRepSType*) malloc(rptSize);
 if (rpt == NULL) {
 printf(“malloc failure\n”);
 return;
 }
 rpt->hdr.objId = OOP_NIL; // ignored by GciNewOopUsingObjRep
 rpt->hdr.oclass = OOP_CLASS_ARRAY;
 rpt->hdr.setObjImpl(GC_FORMAT_OOP);
 rpt->hdr.segmentId = WORLD_RW_SEGMENT_ID ;
 rpt->hdr.firstOffset = 1;
 rpt->hdr.namedSize = 0; // ignored by GciNewOopUsingObjRep
 rpt->hdr.setIdxSize(arrSize);
 rpt->hdr.valueBuffSize = bodySize ;

 OopType *body = rpt->valueBufferOops();
 for (int i = 0; i < arrSize; i += 1) {
 body[i] = GciI32ToOop(i);
 }
 GciNewOopUsingObjRep(rpt);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
}

See Also

GciNewOop, page 333
GciReleaseAllOops, page 399
GciReleaseGlobalOops, page 401
GciTraverseObjs, page 510
340 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNewString

Create a new String object from a C character string.

Syntax

OopType GciNewString(
const char * cString);

Input Arguments

cString Pointer to a character string.

Return Value

The OOP of the newly created object.

Description

Returns a new instance of OOP_CLASS_STRING with the value that cString points to.
June 2011 VMware, Inc. 341

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciNewSymbol

Create a new Symbol object from a C character string.

Syntax

OopType GciNewSymbol(
const char * cString);

Input Arguments

cString Pointer to a character string.

Return Value

The OOP of the newly-created object.

Description

Returns a new instance of OOP_CLASS_SYMBOL with the value that cString points to.
342 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciNscIncludesOop

Determines whether the given OOP is present in the specified unordered collection.

Syntax

BoolType GciNscIncludesOop(
OopType theNsc,
OopType theOop);

Input Arguments

theNsc The unordered collection in which to search.
theOop The OOP to search for.

Return Value

True if the OOP was found; false otherwise.

Description

GciNscIncludesOop searches the specified unordered collection to determine if it includes
the specified object. It is equivalent to the GemStone Smalltalk method
UnorderedCollection >> includesIdentical:.

Example

BoolType nscIncludesOop_example(OopType nscOop, OopType anOop)
{
 if (!GciIsKindOfClass(nscOop, OOP_CLASS_IDENTITY_BAG)) {
 printf(“first argument is not an Nsc\n”);
 return FALSE; /* error: nscOop is not an NSC */
 }

 return GciNscIncludesOop(nscOop, anOop);
}

June 2011 VMware, Inc. 343

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciAddOopToNsc, page 115
GciAddOopsToNsc, page 117
GciRemoveOopFromNsc, page 406
GciRemoveOopsFromNsc, page 408
344 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciObjExists

Determine whether or not a GemStone object exists.

Syntax

BoolType GciObjExists(
OopType theObject);

Input Arguments

theObject The OOP of an object.

Return Value

Returns TRUE if theObject exists, FALSE otherwise.

Description

This function tests an OOP to see if the object to which it points is a valid object.
June 2011 VMware, Inc. 345

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciObjInCollection

Determine whether or not a GemStone object is in a Collection.

Syntax

BoolType GciObjInCollection(
OopType anObj,
OopType aCollection);

Input Arguments

anObj The OOP of an object for which to check.
aCollection The OOP of a collection.

Return Value

Returns TRUE if anObj exists in aCollection, FALSE otherwise.

Description

Searches the specified collection for the specified object. If aCollection is an NSC (such as a
Bag or Set), this is a tree lookup. If aCollection is a kind of Array or String, this is a sequential
scan. This function is equivalent to the GemStone Smalltalk method Object >> in:.
346 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciObjIsCommitted

Determine whether or not an object is committed.

Syntax

BoolType GciObjIsCommitted(
OopType oop);

Input Arguments

oop The OOP of an object.

Return Value

GciObjIsCommitted returns TRUE if the object is committed, FALSE otherwise.

Description

The GciObjIsCommitted function determines if the given object is committed or not.

See Also

GciObjExists, page 345
June 2011 VMware, Inc. 347

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciObjRepSize_

Find the number of bytes in an object report.

Syntax

size_t GciObjRepSize_(anObjectReport)
const GciObjRepHdrSType *anObjectReport;

Input Arguments

anObjectReport A pointer to an object report returned by GciFindObjRep.

Return Value

Returns the size of the specified object report.

Description

NOTE
In previous GemStone/S 64 Bit releases, this function was named GciObjRepSize
(without the underscore). Customers must ensure that the variables that receive this
function’s result are large enough to accommodate a 64-bit value.

This function calculates the number of bytes in an object report. Before your application
allocates memory for a copy of the object report, it can call this function to obtain the size
of the report.

NOTE
This function is most useful with applications that are linked with GciRpc (the
“remote procedure call” version of GemBuilder). If your application will be linked
with GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.
348 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

void objRepSize_example(void)
{

 // Assumes topaz code for GciFetchVaryingOops example has run

 OopType rootObj = GciResolveSymbol(“AllComponents”, OOP_NIL);
 GciTravBufType *buf = GciTravBufType::malloc(8000);

 GciTraverseObjs(&rootObj, 1, buf, 10);
 GciObjRepHdrSType *rpt = buf->firstReportHdr();
 GciObjRepHdrSType *limit = buf->readLimitHdr();
 if (rpt < limit) {
 size_t reportSize = GciObjRepSize_(rpt);
 printf(“size of first report is %ld bytes\n”, reportSize);
 } else {
 printf(“error, GciTraverseObjs returned empty buffer\n”);
 }
}

See Also

GciFindObjRep, page 255
GciMoreTraversal, page 293
GciTraverseObjs, page 510
June 2011 VMware, Inc. 349

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciOldOopToNewOop

Return a GemStone/S 64 Bit v2.0 OopType corresponding to a GemStone/S 64 Bit v1.1
OOP.

Syntax

OopType GciOldOopToNewOop(
unsigned int oldOop);

Input Arguments

oldOop The GemStone/S 64 Bit v1.1.1 OOP.

Return Value

Returns an OopType that corresponds to the GemStone/S 64 Bit v1.1 OOP. Returns
OOP_ILLEGAL if the argument is not a valid GemStone/S 64 Bit v1.1 OopType.

Description

This function converts a v1.1 OOP into the equivalent v2.0 OopType. If the result is not a
special OOP, this function does not check for the existence of the object.

This function returns OOP_ILLEGAL if the argument is not a legal special OOP or if the
current session is not valid.

This function does not convert LargeIntegers to new SmallIntegers.
350 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GCI_OOP_IS_BOOL

(MACRO) Determine whether or not a GemStone object represents a Boolean value.

Syntax

GCI_OOP_IS_BOOL(theOop)

Input Arguments

theOop The OOP of the object to test.

Result Value

A C Boolean value. Returns TRUE if the object represents a Boolean, FALSE otherwise.

Description

This macro tests to see if theOop represents a Boolean value.

See Also

GCI_OOP_IS_SMALL_INT, page 352
GCI_OOP_IS_SPECIAL, page 353
June 2011 VMware, Inc. 351

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GCI_OOP_IS_SMALL_INT

(MACRO) Determine whether or not a GemStone object represents a SmallInteger.

Syntax

GCI_OOP_IS_SMALL_INT(theOop)

Input Arguments

theOop The OOP of the object to test.

Result Value

A C Boolean value. Returns TRUE if the object represents a SmallInteger, FALSE otherwise.

Description

This macro tests to see if theOop represents a SmallInteger.

See Also

GCI_OOP_IS_BOOL, page 351
GCI_OOP_IS_SPECIAL, page 353
352 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GCI_OOP_IS_SPECIAL

(MACRO) Determine whether or not a GemStone object has a special representation.

Syntax

GCI_OOP_IS_SPECIAL(theOop)

Input Arguments

theOop The OOP of the object to test.

Result Value

A C Boolean value. Returns TRUE if the object has a special representation, FALSE
otherwise.

Description

This macro tests to see if theOop has a special representation.

See Also

GCI_OOP_IS_BOOL, page 351
GCI_OOP_IS_SMALL_INT, page 352
June 2011 VMware, Inc. 353

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciOopToBool

Convert a Boolean object to a C Boolean value.

Syntax

BoolType GciOopToBool(
OopType theObject);

Input Arguments

theObject The OOP of the Boolean object to be translated into a C Boolean
value.

Return Value

Returns the C Boolean value that corresponds to the GemStone object. In case of error, this
function returns FALSE.

Description

This function translates a GemStone Boolean object into the equivalent C Boolean value.
354 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

BoolType oopToBoolExample(OopType anObj)
{
 BoolType aBool = GciOopToBool(anObj);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // argument was not a Boolean
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 return 0;
 }
 return aBool;
}

See Also

GCI_BOOL_TO_OOP, page 128
June 2011 VMware, Inc. 355

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GCI_OOP_TO_BOOL

(MACRO) Convert a Boolean object to a C Boolean value.

Syntax

GCI_OOP_TO_BOOL(theObject)

Input Arguments

theObject The OOP of the Boolean object to be translated into a C Boolean
value.

Result Value

A C Boolean value. Returns the C Boolean value that corresponds to the GemStone object.
In case of error, this macro returns FALSE.

Description

This macro translates a GemStone Boolean object into the equivalent C Boolean value.

Provided for compatibility only. New code should use GciOopToBool (page 354). For the
definition of GCI_OOP_TO_BOOL, see $GEMSTONE/include/gcicmn.ht

See Also

GCI_BOOL_TO_OOP, page 128
356 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciOopToChar16

Convert a Character object to a 16-bit C character value.

Syntax

unsigned int GciOopToChar16(
OopType theObject);

Input Arguments

theObject The OOP of theCharacter or JisCharacter object to be translated into
a 16-bit C character value.

Return Value

Returns the 16-bit C character value that corresponds to the GemStone object. In case of
error, this function returns zero.

Description

This function translates a GemStone Character object into the equivalent 16-bit C character
value.

See Also

GciOopToChar32, page 358
GciOopToChr, page 359
June 2011 VMware, Inc. 357

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciOopToChar32

Convert a Character object to a 32-bit C character value.

Syntax

unsigned int GciOopToChar32(
OopType theObject);

Input Arguments

theObject The OOP of the Character or JisCharacter object to be translated into
a 32-bit C character value.

Return Value

Returns the 32-bit C character value that corresponds to the GemStone object. In case of
error, this function returns zero.

Description

This function translates a GemStone Character object into the equivalent 32-bit C character
value.

See Also

GciOopToChar16, page 357
GciOopToChr, page 359
358 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciOopToChr

Convert a Character object to a C character value.

Syntax

char GciOopToChr(
OopType theObject);

Input Arguments

theObject The OOP of the Character object to be translated into a C character
value.

Return Value

Returns the C character value that corresponds to the GemStone object. In case of error, this
function returns zero.

Description

This function translates a GemStone Character object into the equivalent C character value.
June 2011 VMware, Inc. 359

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

char oopToChar_example(OopType arg)
{
 char aChar = GciOopToChr(arg);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // argument was not a Character
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 return 0;
 }
 return aChar;
}

See Also

GCI_CHR_TO_OOP, page 134
GciOopToChar16, page 357
360 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GCI_OOP_TO_CHR

(MACRO) Convert a Character object to a C character value.

Syntax

GCI_OOP_TO_CHR(theObject)

Input Arguments

theObject The OOP of the Character object to be translated into a C character
value.

Result Value

The GCI_OOP_TO_CHR macro returns the C character value that corresponds to the
GemStone object. In case of error, it returns zero.

Description

Provided for compatibility only. New code should use GciOopToChr or
GciOopToChar16.

See Also

GciOopToChar16, page 357
GciOopToChr, page 359
June 2011 VMware, Inc. 361

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciOopToFlt

Convert a SmallDouble, Float, or SmallFloat object to a C double.

Syntax

double GciOopToFlt(
OopType theObject);

Input Arguments

theObject The OOP of the SmallDouble, Float, or SmallFloat object to be
translated into a C floating point value.

Return Value

Returns the C double precision value that corresponds to the GemStone object. In case of
any error other than HOST_ERR_INEXACT_PRECISION, this function returns a
PlusQuietNaN.

Description

This function translates a GemStone Float object into the equivalent C double precision
value.

If your C compiler’s floating point package doesn’t have a representation that corresponds
to one of the values listed below, GciOopToFlt may generate the following errors when
converting GemStone Float objects into C values:

HOST_ERR_INEXACT_PRECISION
when called to convert a number whose precision exceeds that of the C double type

HOST_ERR_MAGNITUDE_OUT_OF_RANGE
when called to convert a number whose exponent is too large (or small) to be held in a
C double precision value

HOST_ERR_NO_PLUS_INFINITY
when called to convert a value of positive infinity

HOST_ERR_NO_MINUS_INFINITY
when called to convert a value of negative infinity
362 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
HOST_ERR_NO_PLUS_QUIET_NAN
when called to convert a positive quiet NaN

HOST_ERR_NO_MINUS_QUIET_NAN
when called to convert a negative quiet NaN

HOST_ERR_NO_PLUS_SIGNALING_NAN
when called to convert a positive signaling NaN

HOST_ERR_NO_MINUS_SIGNALING_NAN
when called to convert a negative signaling NaN

Example

double oopToFlt_example(OopType arg)
{
 double d = GciOopToFlt(arg);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // argument was not a Float, SmallFloat or SmallDouble
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 return 0.0 ;
 }
 return d;
}

See Also

GciFltToOop, page 258
GciGetFreeOopsEncoded, page 264
June 2011 VMware, Inc. 363

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciOopToI32

Convert a GemStone object to a C 32-bit integer value.

Syntax

int GciOopToI32(
OopType theObject);

Input Arguments

theObject The OOP of the object to be translated into a C 32-bit integer value.

Return Value

The GciOopToI32 function returns the C 32-bit integer value that is equivalent to the value
of theObject.

Description

The GciOopToI32 function translates a GemStone object into the equivalent C 32-bit
integer value. The GemStone object must be a SmallInteger within the range of C integers.
Otherwise, GciOopToI32 generates an error.

See Also

GciOopToI32_, page 365
GciOopToI64, page 366
GciOopToI64_, page 367
364 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciOopToI32_

Convert a GemStone object to a C 32-bit integer value, with error handling.

Syntax

int GciOopToI32_(
OopType theObject,
BoolType * error);

Input Arguments

theObject The OOP of the object to be translated into a C 32-bit integer value.

Result Arguments

error TRUE if theObject does not fit in the result type or is not an Integer.
Otherwise unchanged.

Return Value

The GciOopToI32_ function returns the C 32-bit integer value that is equivalent to the
value of theObject.

Description

The GciOopToI32_ function translates a GemStone object into the equivalent C 32-bit
integer value. The GemStone object must be a SmallInteger within the range of C integers.
GciOopToI32_ provides for error handling if theObject does not fit in the result type or is
not an Integer. Compare with GciOopToI32, which does not provide for error handling.

See Also

GciOopToI32, page 364
GciOopToI64, page 366
GciOopToI64_, page 367
June 2011 VMware, Inc. 365

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciOopToI64

Convert a GemStone object to a C 64-bit integer value.

Syntax

int64 GciOopToI64(
OopType theObject);

Input Arguments

theObject The OOP of the object to be translated into a C 64-bit integer value.

Return Value

The GciOopToI64 function returns the C int64_t value that is equivalent to the value of
theObject.

Description

NOTE
In previous GemStone/S 64 Bit releases, this function was named GciOopToInt64.
Customers must ensure that the variables that receive this function’s result are large
enough to accommodate an int64 value.

The GciOopToI64 function translates a GemStone object into the equivalent C 64-bit
integer value.

The object identified by theObject must be a SmallInteger, a LargePositiveInteger, or a
LargeNegativeInteger. If the object is not one of these kinds, GciOopToI64 generates an
error.

See Also

GciOopToI32, page 364
GciOopToI32_, page 365
GciOopToI64_, page 367
366 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciOopToI64_

Convert a GemStone object to a C 64-bit integer value, with error handling.

Syntax

int64 GciOopToI64_(
OopType theObject,
BoolType * error);

Input Arguments

theObject The OOP of the object to be translated into a C 64-bit integer value.

Result Arguments

error TRUE if theObject does not fit in the result type or is not an Integer.
Otherwise unchanged.

Return Value

The GciOopToI64_ function returns the C int64_t value that is equivalent to the value of
theObject.

Description

The GciOopToI64_ function translates a GemStone object into the equivalent C 64-bit
integer (int64_t) value. The GemStone object must be a SmallInteger, a
LargePositiveInteger, or a LargeNegativeInteger. GciOopToI64_ provides for error
handling if theObject does not fit in the result type or is not an Integer. Compare with
GciOopToI64, which does not provide for error handling.

See Also

GciOopToI32, page 364
GciOopToI32_, page 365
GciOopToI64, page 366
June 2011 VMware, Inc. 367

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciPathToStr

Convert a path representation from numeric to string.

This function is deprecated and may be removed from future releases.

Syntax

BoolType GciPathToStr(
OopType aClass,
const int path[],
int pathSize,
int64 maxResultSize,
char result[]);

Input Arguments

aClass The class of the object for which this path will apply. That is, for each
instance of this class, store or fetch objects along the designated path.

path The path array to be converted to string format.
pathSize The number of integers in the path array.
maxResultSize The maximum allowable length of the resulting path string,

excluding the null terminator.

Result Arguments

result The resulting path string, terminated with a null character. The
resulting string is of the form foo.bar.name. Each element of the
path string is the name of an instance variable (that is, bar is an
instance variable of foo, and name is an instance variable of bar).

Return Value

Returns TRUE if the path array was successfully converted to a string. Returns FALSE
otherwise.
368 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

The GciPathToStr function converts the numeric representation of a path to its equivalent
string representation.

The functions GciFetchPaths and GciStorePaths allow you to specify paths along which
to fetch from, or store into, objects within an object tree.

A path may be represented as an array of integers, in which each step along the path is
represented by an integral offset from the beginning of an object. For example, an array
containing the integers 5 and 2 would represent the offsets of the fifth and second instance
variables, respectively. Alternatively, a path may be represented as a string in which each
element is the name of the corresponding instance variable. For example, address.zip, in
which zip is an instance variable of address.

For more information about paths, see the discussion of the GciFetchPaths function on
page 237.

NOTE
This function is most useful with applications that are linked with
GciRpc (the “remote procedure call” version of GemBuilder). If your
application will be linked with GciLnk (the “linkable” GemBuilder),
you’ll usually achieve best performance by using the simple GciFetch...
and GciStore... functions rather than object traversal. For more
information, see “GciRpc and GciLnk” on page 53.

Restrictions

Note that GciPathToStr can convert a numeric path only if:

 • The instance variables of the specified Smalltalk class (aClass) are guaranteed to be the
same valid for all instances along all paths.

 • The path touches only named instance variables. If a path leads through the indexed
variables of some object, then no symbolic representation can be used.

Error Conditions

The following errors may be generated by this function:

GCI_ERR_RESULT_PATH_TOO_LARGE
The result was larger than the specified maxResultSize.

RT_ERR_PATH_TO_STR_IVNAME
One of the instance variable offsets in the path array was invalid.
June 2011 VMware, Inc. 369

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
RT_ERR_STR_TO_PATH_CONSTRAINT
One of the instance variables in the path string was not sufficiently constrained.

Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void pathToString_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 int ofs = 3; // offset of cost instVar
 int pathSize = 1;
 char result[1024];
 GciPathToStr(GciFetchClass(aComponent), &ofs, pathSize,
 sizeof(result), result);

 printf(“result = %s\n”, result);
}

See Also

GciFetchPaths, page 237
GciStorePaths, page 471
GciStrToPath, page 497
370 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPerform

Send a message to a GemStone object.

Syntax

OopType GciPerform(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs);

OopType GciPerform_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an

argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Return Value

Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.
June 2011 VMware, Inc. 371

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

This function sends a message (that is, the selector along with any keyword arguments and
their corresponding values) to the specified receiver (an object in the GemStone database).
Because GciPerform calls the virtual machine, you can issue a soft break while this
function is executing. For more information, see “Interrupting GemStone Execution” on
page 32.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciNbContinue, page 302
GciNbExecute, page 306
GciNbPerform, page 315
GciNbPerformNoDebug, page 317
GciPerformNoDebug, page 373
GciPerformSymDbg, page 375
372 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPerformNoDebug

Send a message to a GemStone object, and temporarily disable debugging.

Syntax

OopType GciPerformNoDebug(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags);

OopType GciPerformNoDebug_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an

argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

flags Flags to disable or permit asynchronous events and debugging in
Smalltalk.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.
June 2011 VMware, Inc. 373

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Return Value

Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description

This function is a variant of GciPerform that is identical to it except for just one difference.
GciPerformNoDebug disables any breakpoints and single step points that currently exist
in GemStone while the message is executing. This feature is typically used while
implementing a Smalltalk debugger.

The value of flags may be 0 for default behavior, or can be given by using one or more of
these GemBuilder mnemonics:

 • GCI_PERFORM_FLAG_ENABLE_DEBUG makes GciPerformNoDebug behave like
GciPerform with respect to debugging.

 • GCI_PERFORM_FLAG_DISABLE_ASYNC_EVENTS disables asynchronous events.
 • GCI_PERFORM_FLAG_SINGLE_STEP places a single-step breakpoint at the start of

the method to be performed, and then executes to hit that breakpoint.

These flags can either be used alone or logically “or”ed together.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciNbContinue, page 302
GciNbExecute, page 306
GciNbPerform, page 315
GciNbPerformNoDebug, page 317
GciPerform, page 371
GciPerformSymDbg, page 375
374 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPerformSymDbg

Send a message to a GemStone object, using a String object as a selector.

Syntax

OopType GciPerformSymDbg(
OopType receiver,
OopType selector,
const OopType args[],
int numArgs,
int flags);

OopType GciPerformSymDbg_(
OopType receiver,
OopType selector,
const OopType args[],
int numArgs,
int flags,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector The OOP of a String object that defines the message selector. For

keyword selectors, all keywords are concatenated in the String. (For
example, at:put:).

args An array of OOPs. Each element in the array corresponds to an
argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

flags Flags to disable or permit asynchronous events and debugging in
Smalltalk.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.
June 2011 VMware, Inc. 375

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Return Value

Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description

If the isNoDebug flag is FALSE, this function is a variant of GciPerform; if the flag is TRUE,
this function is a variant of GciPerformNoDebug. In either case, its operation is identical
to the other function. The difference is that GciPerformSymDbg takes an OOP as its
selector instead of a C string.

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciPerform, page 371
GciPerformNoDebug, page 373
376 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPerformTrav

First send a message to a GemStone object, then traverse the result of the message.

Syntax

BoolType GciPerformTrav(
OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs);

BoolType GciPerformTrav_(
OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments

receiver The OOP of the receiver of the message.
selector A pointer to a character collection that defines the message selector.

For keyword selectors, all keywords are concatenated in the String.
(For example, at:put:).

args An array of OOPs. Each element in the array corresponds to an
argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

travArgs Pointer to an instance of GciClampedTravArgsSType. See the
GciClampedTrav function (page 135) for documentation of the
fields in travArgs.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.
June 2011 VMware, Inc. 377

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Result Arguments

The result of the GciPerform is the first object in the resulting travBuff field in travArgs.

Return Value

Returns TRUE if the result is complete and no errors occurred. Returns FALSE if the
traversal is not yet completed. You can then call GciMoreTraversal to proceed, if there is
no GciError.

Description

This function is does the equivalent of a GciPerform using the first four arguments, and
then performs a GciClampedTrav, starting from the result of the perform, and doing a
traversal as specified by travArgs. In all GemBuilder traversals, objects are traversed post
depth first.

See Also

GciPerform, page 371
GciClampedTrav, page 135
378 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPerformTraverse

First send a message to a GemStone object, then traverse the result of the message.

Syntax

BoolType GciPerformTraverse(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
GciTravBufType * travBuff,
int level);

BoolType GciPerformTraverse_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
GciTravBufType * travBuff,
int level,
ushort environmentId);
June 2011 VMware, Inc. 379

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Input Arguments

receiver The OOP of the receiver of the message.
selector A pointer to a character collection that defines the message selector.

For keyword selectors, all keywords are concatenated in the String.
(For example, at:put:).

args An array of OOPs. Each element in the array corresponds to an
argument for the message. If there are no message arguments, use a
dummy OOP here.

numArgs The number of arguments to the message. For unary selectors
(messages with no arguments), numArgs is zero.

level Maximum traversal depth. When the level is 1, an object report is
written to the traversal buffer for each element in theOops. When
level is 2, an object report is also obtained for the instance variables
of each level-1 object. When level is 0, the number of levels in the
traversal is not restricted.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 101.

Result Arguments

travBuff A buffer in which the results of the traversal are placed.

Return Value

Returns FALSE if the traversal is not yet completed, but further traversal would cause the
travBuffSize to be exceeded. If the travBuffSize is reached before the traversal is complete,
you can then call GciMoreTraversal to proceed from the point where travBuffSize was
exceeded.

Returns TRUE if there are no more objects to be returned by subsequent calls to
GciMoreTraversal.
380 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

Consider the following function call:

BoolType performTrav_1(void)
{
 OopType receiver = GciResolveSymbol(“AllComponents”, OOP_NIL);
 OopType arg = GciI32ToOop(1);
 GciTravBufType *buf = GciTravBufType::malloc(8000);

 BoolType atEnd = GciPerformTraverse(receiver, “at:”, &arg, 1,
buf, 10);
 return atEnd;
}

It is equivalent to the following code:

BoolType performTrav_2(void)
{
 OopType receiver = GciResolveSymbol(“AllComponents”, OOP_NIL);
 OopType arg = GciI32ToOop(1);
 OopType obj = GciPerform(receiver, “at:”, &arg, 1);

 GciTravBufType *buf = GciTravBufType::malloc(8000);
 BoolType atEnd = GciTraverseObjs(&obj, 1, buf, 10);
 return atEnd;
}

GciPerformTraverse provides automatic byte swizzling for Float and SmallFloat objects.
(For more about byte swizzling, see page 29.)

See Also

GciContinue, page 154
GciErr, page 189
GciExecute, page 191
GciFindObjRep, page 255
GciMoreTraversal, page 293
GciNewOopUsingObjRep, page 338
GciObjRepSize_, page 348
June 2011 VMware, Inc. 381

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciPerform, page 371
GciPerformNoDebug, page 373
GciPerformSymDbg, page 375
GciStoreTrav, page 478
GciTraverseObjs, page 510
382 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPointerToByteArray

Given a C pointer, return a SmallInteger or ByteArray containing the value of the pointer.

Syntax

OopType GciPointerToByteArray(
void * pointer);

Input Arguments

pointer A C pointer.

Return Value

Returns a GemStone SmallInteger or ByteArray containing the value of the pointer.

If the argument is a 64-bit pointer aligned on an 8-byte boundary, or is a 32-bit pointer, the
result is a SmallInteger. Otherwise, the result is a ByteArray.

Description

The result has a machine-dependent byte order and is not intended to be committed.

See Also

GciByteArrayToPointer, page 130
June 2011 VMware, Inc. 383

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciPollForSignal

Poll GemStone for signal errors without executing any Smalltalk methods.

Syntax

BoolType GciPollForSignal()

Return Value

This function returns TRUE if a signal error or an asynchronous error exists, and FALSE
otherwise.

Description

GemStone permits selective response to signal errors: RT_ERR_SIGNAL_ABORT,
RT_ERR_SIGNAL_COMMIT, and RT_ERR_SIGNAL_GEMSTONE_SESSION. The default
condition is to leave them all invisible. GemStone responds to each single kind of signal
error only after an associated method of class System has been executed:
enableSignaledAbortError, enableSignaledObjectsError, and
enableSignaledGemStoneSessionError respectively.

After GciInit executes successfully, the GemBuilder default condition also leaves all signal
errors invisible. The GciPollForSignal function permits GemBuilder to check signal errors
manually. However, GemStone must respond to each kind of error in order for
GemBuilder to respond to it. Thus, if an application calls GciPollForSignal, then
GemBuilder can check exactly the same kinds of signal errors as GemStone responds to. If
GemStone has not executed any of the appropriate System methods, then this call has no
effect until it does.

GemBuilder treats any signal errors that it finds just like any other errors, through GciErr
or the GciLongJmp mechanism, as appropriate. Instead of checking manually, these errors
can be checked automatically by calling the GciEnableSignaledErrors function.

GciPollForSignal also detects any asynchronous errors whenever they occur, including
but not limited to the following errors: ABORT_ERR_LOST_OT_ROOT,
GS_ERR_SHRPC_CONNECTION_FAILURE, GS_ERR_STN_NET_LOST,
GS_ERR_STN_SHUTDOWN, and GS_ERR_SESSION_SHUTDOWN.
384 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciEnableSignaledErrors, page 185
GciErr, page 189
June 2011 VMware, Inc. 385

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciPopErrJump

Discard a previously saved error jump buffer.

Syntax

void GciPopErrJump(
GciJmpBufSType * jumpBuffer);

Input Arguments

jumpBuffer A pointer to a jump buffer specified in an earlier call to
GciPushErrJump.

Description

This function discards one or more jump buffers that were saved with earlier calls to
GciPushErrJump. Your program must call this function when a saved execution
environment is no longer useful for error handling.

GemBuilder maintains a stack of error jump buffers. After your program calls
GciPopErrJump, the jump buffer at the top of the stack will be used for subsequent
GemBuilder error handling. If no jump buffers remain, your program will need to call
GciErr and test for errors locally.

To pop multiple jump buffers in a single call to GciPopErrJump, specify the jumpBuffer
argument from an earlier call to GciPushErrJump. See the following example.
386 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

void popErr_example(void)
{
 GciJmpBufSType jumpBuff1, jumpBuff2, jumpBuff3, jumpBuff4;

 GciPushErrJump(&jumpBuff1);

 GciPushErrJump(&jumpBuff2);

 GciPushErrJump(&jumpBuff3);

 GciPushErrJump(&jumpBuff4);

 GciPopErrJump(&jumpBuff1); /* pops buffers 1-4 */
}

See Also

GciErr, page 189
GciPushErrJump, page 391
GciSetErrJump, page 427
GciLongJmp, page 292
June 2011 VMware, Inc. 387

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciProcessDeferredUpdates_

Process deferred updates to objects that do not allow direct structural update.

Syntax

int64 GciProcessDeferredUpdates_()

Return Value

Returns the number of objects that had deferred updates.

Description

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciProcessDeferredUpdates (without the underscore). Customers must ensure
that the variables that receive this function’s result are large enough to accommodate
an int64 value.

This function processes updates to instances of classes that have the noStructuralUpdate
bit set, including AbstractDictionary, Bag, Set, and their subclasses. After operations that
modify an instance of once of these classes, either GciProcessDeferredUpdates_ must be
called, or the final GciStoreTrav must have GCI_STORE_TRAV_FINISH_UPDATES set.

The following GemBuilder calls operate on instances whose classes have
noStructuralUpdate set: GciCreateOopObj, GciStoreTrav, GciStore...Oops,
GciAdd...Oops, GciReplace...Oops. Behavior of other GemBuilder update calls on such
instances is undefined.

An attempt to commit automatically executes a deferred update.

Executing a deferred update before all forward references are resolved can produce errors
that require the application to recover by doing a GciAbort or GciLogout.
388 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
An OOP buffer used to update the varying portion of an object with noStructuralUpdate
must contain the OOPs to be added to the varying portion of the object, with two
exceptions:

 • If the object is a kind of KeyValueDictionary that does not store Associations, the
buffer must contain (key, value) pairs.

 • If the object is a kind of AbstractDictionary that stores Associations or (key,
Association) pairs, the value buffer must contain Associations.

See Also

GciStoreTrav, page 478
June 2011 VMware, Inc. 389

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciProduct

Return an 8-bit unsigned integer that indicates the GemStone/S product.

Syntax

unsigned char GciProduct();

Return Value

Returns an 8-bit unsigned integer indicating the GemStone/S product to which the client
library belongs. Currently-defined integers are:

1 — GemStone/S

2 — GemStone/S 2G

3 — GemStone/S 64 Bit

Description

GciProduct allows a GemBuilder client to determine which GemStone/S product it is
talking to. Combined with GciVersion, it allows the client to adapt to differences between
GemBuilder features across different products and versions.

Although GciProduct can be used by any GemBuilder client, it is specifically provided for
the use of GemBuilder for Smalltalk.

Future products in the GemStone/S line will be assigned integers beginning with 4.

The integer zero is reserved, and will never be assigned to any product.

See Also

GciVersion, page 519
390 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPushErrJump

Associate GemBuilder error handling with a jump buffer by pushing a jump buffer onto
the stack.

Syntax

void GciPushErrJump(
GciJmpBufSType * jumpBuffer);

Result Arguments

jumpBuffer A pointer to a jump buffer, as described below. The jumpBuffer must
have been initialized by passing it as the argument to the macro
Gci_SETJMP.

Description

Associate GemBuilder error handling with a jump buffer by pushing a jump buffer onto
the stack.

This function allows your application program to take advantage of the setjmp/longjmp
style of error-handling mechanism from within any GemBuilder function call. However,
you cannot use this mechanism to handle errors within GciPushErrJump itself, or within
the related functions GciPopErrJump and GciSetErrJump.

Rather than using setjmp and longjmp directly, this style of error handling in GemBuilder
requires you to use Gci_SETJMP and GciLongJmp.

When your program calls Gci_SETJMP, the context of the C environment is saved in a
jump buffer that you designate. To associate subsequent GemBuilder error handling with
that jump buffer, you would then call GciPushErrJump.

GemBuilder maintains a stack of up to 20 error jump buffers. A buffer is pushed onto the
stack when GciPushErrJump is called, and popped when GciPopErrJump is called. When
an error occurs during a GemBuilder call, the GemBuilder implementation calls
GciLongJmp using the buffer currently at the top of GemBuilder’s error jump stack, and
pops that buffer from the stack.

For functions with local error recovery, your program can call GciSetErrJump to
temporarily disable the GciLongJmp mechanism (and to re-enable it afterwards).
June 2011 VMware, Inc. 391

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Whenever the jump stack is empty, the application must use GciErr to poll for any
GemBuilder errors.

Example

For an example of how GciPushErrJump is used, see the GciPopErrJump function on
page 386.

See Also

GciErr, page 189
GciPopErrJump, page 386
GciSetErrJump, page 427
392 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciRaiseException

Signal an error, synchronously, within a user action.

Syntax

void GciRaiseException(
const GciErrSType * err);

Input Arguments

err A pointer to the error type to raise.

Description

When executed from within a user action, this function raises an exception and passes the
given error to the error signaling mechanism, causing control to return to Smalltalk.

This function has no effect when executed outside of a user action.
June 2011 VMware, Inc. 393

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReadSharedCounter

Lock and fetch the value of a shared counter.

Syntax

BoolType GciReadSharedCounter(
int counterIdx,
int64_t * value);

Input Arguments

counterIdx The offset into the shared counters array of the value to fetch.

Result Arguments

value Pointer to a value that indicates the value at this shared counter.

Return Value

Returns a C Boolean value indicating whether the value was successfully read. Returns
TRUE if successful, FALSE if an error occurred.

Description

Lock the shared counter indicated by counterIdx, and fetch its value. The contents of the
value pointer will be set to the value of the shared counter.

Not supported for remote GCI interfaces.

See Also

GciFetchNumSharedCounters, page 225
GciDecSharedCounter, page 172
GciIncSharedCounter, page 271
GciSetSharedCounter, page 437
GciReadSharedCounterNoLock, page 395
GciFetchSharedCounterValuesNoLock, page 244
394 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciReadSharedCounterNoLock

Fetch the value of a shared counter without locking it.

Syntax

BoolType GciReadSharedCounterNoLock(
int counterIdx,
int64_t * value);

Input Arguments

counterIdx The offset into the shared counters array of the value to fetch.

Result Arguments

value Pointer to a value at this shared counter.

Return Value

Returns a C Boolean value indicating whether the value was successfully read. Returns
TRUE if successful, FALSE if an error occurred.

Description

Fetch the value of the shared counter indicated by counterIdx. The contents of the value
pointer will be set to the value of the shared counter. This function is faster than
GciReadSharedCounter, but may be less accurate.

Not supported for remote GCI interfaces.

See Also

GciFetchNumSharedCounters, page 225
GciDecSharedCounter, page 172
GciIncSharedCounter, page 271
GciSetSharedCounter, page 437
June 2011 VMware, Inc. 395

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReadSharedCounter, page 394
GciFetchSharedCounterValuesNoLock, page 244
396 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciRealloc

Reallocates memory.

Syntax

void* GciRealloc(
void * p,
size_t length,
int lineNumber,
const char * fileName,
);

Description

Return NULL if the underlying realloc() fails.
June 2011 VMware, Inc. 397

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReleaseAllGlobalOops

Remove all OOPS from the PureExportSet, making these objects eligible for garbage
collection.

Syntax

void GciReleaseAllGlobalOops()

Description

The GciReleaseAllGlobalOops function removes all OOPs from the PureExportSet, thus
permitting GemStone to consider removing them as a result of garbage collection. Objects
that are referenced from persistent objects are not removed during garbage collection, even
if they are not in PureExportSet. If invoked from a user action, this function does not affect
the user action’s export set.

GciReleaseAllGlobalOops is similar to GciReleaseAllOops, with the exception that
OOPs are removed from the PureExportSet regardless of whether it is called from within
a user action or not.

The GciSaveGlobalObjs or GciSaveGlobalObjs functions may be used to make objects
ineligible for garbage collection. Note that results of the GciNew..., GciCreate...,
GciPerform..., and GciExecute... functions are automatically added to the PureExportSet.
You must release those objects explicitly if they are to be eligible for garbage collection.

CAUTION
Before releasing all objects, be sure that you do not need to retain any of them for any
reason.

See Also

Garbage Collection, page 49
GciReleaseAllOops, page 399
GciReleaseGlobalOops, page 401
GciSaveGlobalObjs, page 421
GciSaveObjs, page 422
398 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciReleaseAllOops

Remove all OOPS from the PureExportSet, or if in a user action, from the user action’s
export set, making these objects eligible for garbage collection.

Syntax

void GciReleaseAllOops()

Description

The GciReleaseAllOops function removes all OOPs from the applicable export set, thus
permitting GemStone to consider removing them as a result of garbage collection. If called
from within a user action, GciReleaseAllOops releases only those objects that have been
saved since the beginning of the user action and are therefore in the user action’s export
set. If not called from within a user action, GciReleaseAllOops removes all OOPs from the
PureExportSet. To remove all objects from the PureExportSet, regardless of user action
context, use GciReleaseAllGlobalOops.

Objects that are referenced by persistent objects are not removed during garbage collection,
even if they are not in an export set. It is typical usage to call GciReleaseAllOops after
successfully committing a transaction.

The GciSaveObjs or GciSaveGlobalObjs functions may be used to make objects ineligible
for garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically ineligible. You must release those objects
explicitly if they are to be eligible.

CAUTION
Before releasing all objects, be sure that you do not need to retain any of them for any
reason.

See Also

“Garbage Collection” on page 49
GciReleaseAllGlobalOops, page 398
GciReleaseGlobalOops, page 401
GciReleaseOops, page 402
GciSaveGlobalObjs, page 421
GciSaveObjs, page 422
June 2011 VMware, Inc. 399

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReleaseAllTrackedOops

Clear the GciTrackedObjs set, making all tracked OOPs eligible for garbage collection.

Syntax

void GciReleaseAllTrackedOops()

Description

The GciReleaseAllTrackedOops function removes all OOPs from the user session’s
GciTrackedObjs set, thus making them eligible to be garbage collected. This function does
not affect the export sets; objects that are also in an export set will remain protected from
garbage collection.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them for any
reason.

See Also

GciHiddenSetIncludesOop, page 268
GciReleaseAllGlobalOops, page 398
GciReleaseAllOops, page 399
GciReleaseTrackedOops, page 405
GciSaveAndTrackObjs, page 419
400 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciReleaseGlobalOops

Remove an array of GemStone OOPs from the PureExportSet, making them eligible for
garbage collection.

Syntax

void GciReleaseGlobalOops(
const OopType theOops[],
int numOops);

Input Arguments

theOops An array of OOPs. Each element of the array corresponds to an
object to be released.

numOops The number of elements in theOops.

Description

The GciReleaseGlobalOops function removes the specified OOPs from the
PureExportSet, thus making them eligible to be garbage collected.

This function differs from GciReleaseOops in that it operates the same if invoked from
within a user action or not.

The GciSaveObjs or GciSaveGlobalObjs functions may be used to make objects ineligible
for garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically ineligible. You must release those objects
explicitly if they are to be eligible.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them for any
reason.

See Also

“Garbage Collection” on page 49
GciReleaseAllGlobalOops, page 398
GciReleaseOops, page 402
GciSaveGlobalObjs, page 421
June 2011 VMware, Inc. 401

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReleaseOops

Remove an array of GemStone OOPs from the PureExportSet, or if in a user action, remove
them from the user action’s export set, making them eligible for garbage collection.

Syntax

void GciReleaseOops(
const OopType theOops[],
int numOops);

Input Arguments

theOops An array of OOPs. Each element of the array corresponds to an
object to be released.

numOops The number of elements in theOops.

Description

The GciReleaseOops function removes the specified OOPs from the applicable export set,
thus making them eligible to be garbage collected. If invoked from within a user action, the
specified OOPs are removed from the user action’s export set, otherwise the OOPs are
removed from the PureExportSet.

To remove OOPs from the PureExportSet, regardless of user action context, use
GciReleaseGlobalOops.

The GciSaveObjs or GciSaveGlobalObjs functions may be used to make objects ineligible
for garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically ineligible. You must release those objects
explicitly if they are to be eligible.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them for any
reason.
402 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

void releaseOops_example(void)
{
 // assumes topaz code for GciFetchVaryingOops example has run.

 OopType oClass = GciResolveSymbol(“Component”, OOP_NIL);

 OopType namedIvs[3];
 namedIvs[0] = GciI32ToOop(5699); // a SmallInteger , don’t need
to release
 namedIvs[1] = GciNewString(“cfm56-99”);
 namedIvs[2] = GciFltToOop(9.0e6); // a Float or SmallDouble

 OopType newComp = GciNewOop(oClass);
 GciStoreOops(newComp, 1, namedIvs, 3);

 OopType oColl = GciResolveSymbol(“AllComponents”, OOP_NIL);
 GciAddOopToNsc(oColl, newComp); // new objects now reachable
from AllComponents

 // release newly created objects so that if aComp is removed
from
 // AllComponents by other application code, these new objects
can
 // be garbage collected.
 OopType releaseBuf[3];
 releaseBuf[0] = namedIvs[1]; // a String
 releaseBuf[1] = namedIvs[1]; // might be a Float
 releaseBuf[2] = newComp; // a Component
 GciReleaseOops(releaseBuf, 3);
}

See Also

“Garbage Collection” on page 49
GciReleaseAllGlobalOops, page 398
GciReleaseAllOops, page 399
GciReleaseGlobalOops, page 401
June 2011 VMware, Inc. 403

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSaveGlobalObjs, page 421
GciSaveObjs, page 422
404 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciReleaseTrackedOops

Remove an array of OOPs from the GciTrackedObjs set, making them eligible for garbage
collection.

Syntax

void GciReleaseTrackedOops(
const OopType theOops[],
int numOops);

Input Arguments

theOops An array of OOPs. Each element of the array corresponds to an
object to be released.

numOops The number of elements in theOops.

Description

The GciReleaseTrackedOops function removes the specified OOPs from the user session’s
GciTrackedObjs set, thus making them eligible to be garbage collected. This function does
not affect the export sets; objects that also appear in an export set will remain protected
from garbage collection.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them for any
reason.

See Also

GciHiddenSetIncludesOop, page 268
GciReleaseAllTrackedOops, page 400
GciSaveAndTrackObjs, page 419
GciTrackedObjsInit, page 509
June 2011 VMware, Inc. 405

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciRemoveOopFromNsc

Remove an OOP from an NSC.

Syntax

BoolType GciRemoveOopFromNsc(
OopType theNsc,
OopType theOop);

Input Arguments

theNsc The OOP of the NSC from which to remove an OOP.
theOop The OOP of the object to be removed.

Result Arguments

theNsc The OOP of the modified NSC.

Return Value

Returns FALSE if theOop was not present in the NSC. Returns TRUE if theOop was present
in the NSC.

Description

This function removes an OOP from the unordered variables of an NSC, using structural
access.
406 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

BoolType removeOop_example(void)
{
 // assumes topaz code for GciFetchVaryingOop has run
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 OopType aColl = GciResolveSymbol(“AllComponents”, OOP_NIL);

 BoolType wasPresent = GciRemoveOopFromNsc(aColl, aComponent);

 GciReleaseOops(&aComponent, 1); // release because it was a
result

 // from an execute
 return wasPresent;
}

See Also

GciAddOopToNsc, page 115
GciAddOopsToNsc, page 117
GciNscIncludesOop, page 343
GciRemoveOopsFromNsc, page 408
June 2011 VMware, Inc. 407

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciRemoveOopsFromNsc

Remove one or more OOPs from an NSC.

Syntax

BoolType GciRemoveOopsFromNsc(
OopType theNsc,
const OopType theOops[],
int numOops);

Input Arguments

theNsc The OOP of the NSC from which to remove the OOPs.
theOops The array of OOPs to be removed from the NSC.
numOops The number of OOPs to remove.

Result Arguments

theNsc The OOP of the modified NSC.

Return Value

Returns FALSE if any element of theOops was not present in the NSC. Returns TRUE if all
elements of theOops were present in the NSC.

Description

This function removes multiple OOPs from the unordered variables of an NSC, using
structural access. If any individual OOP is not present in the NSC, this function returns
FALSE, but it still removes all OOPs that it finds in the NSC.
408 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

BoolType removeOops_example(void)
{
 // assumes topaz code for GciFetchVaryingOop has run
 OopType subColl = GciExecuteStr(
 “AllComponents select:[i|i partNumber > 1000]”, OOP_NIL);

 OopType buf[10];
 int numRet = GciFetchVaryingOops(subColl, 1, buf, 10);
 // buf contains at most 10 components with partNumber > 1000 .

 OopType aColl = GciResolveSymbol(“AllComponents”, OOP_NIL);
 BoolType allPresent = GciRemoveOopsFromNsc(aColl, buf, numRet);

 GciReleaseOops(&subColl, 1);// release because it was result of
an execute
 return allPresent;
}

See Also

GciAddOopToNsc, page 115
GciAddOopsToNsc, page 117
GciNscIncludesOop, page 343
GciRemoveOopFromNsc, page 406
June 2011 VMware, Inc. 409

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReplaceOops

Replace all instance variables in a GemStone object.

Syntax

void GciReplaceOops(
OopType theObj,
const OopType theOops[],
int numOops);

Input Arguments

theOops The array of OOPs used as the replacements.
numOops The number of OOPs in theOops.

Result Arguments

theObj The object whose instance variables are replaced.

Description

GciReplaceOops uses structural access to replace all the instance variables in the object.
However, it does so in a context that is external to the object. Hence, it completely ignores
private named instance variables in its operation.

If theObj is of fixed size, then it is an error for numOops to be of a different size. If theObj is
of a variable size, then it is an error for numOops to be of a size smaller than the number of
named instance variables (namedSize) of the object. For variable-sized objects,
GciReplaceOops resets the number of unnamed variables to numOops - namedSize.

GciReplaceOops is not recommended for use with variable-sized objects unless they are
indexable or are NSCs. Other variable-sized objects, such as KeyValue dictionaries, do not
store values at fixed offsets.
410 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciReplaceVaryingOops, page 412
GciStoreIdxOops, page 456
GciStoreNamedOops, page 462
GciStoreOops, page 468
June 2011 VMware, Inc. 411

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReplaceVaryingOops

Replace all unnamed instance variables in an NSC object.

Syntax

void GciReplaceVaryingOops(
OopType theNsc,
const OopType theOops[],
int numOops);

Input Arguments

theOops The array of objects used as the replacements.
numOops The number of objects in theOops.

Result Arguments

theNsc The NSC object whose unnamed instance variables are replaced.

Description

GciReplaceVaryingOops uses structural access to replace all unnamed instance variables
in the NSC object.

See Also

GciReplaceOops, page 410
GciStoreIdxOops, page 456
GciStoreNamedOops, page 462
GciStoreOops, page 468
412 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciResolveSymbol

Find the OOP of the object to which a symbol name refers, in the context of the current
session’s user profile.

Syntax

OopType GciResolveSymbol(
const char * cString,
OopType symbolList);

Input Arguments

cString The name of a symbol as a character string.
symbolList The OOP of an instance of OOP_CLASS_SYMBOL_LIST or

OOP_NIL.

Return Value

The OOP of the object that corresponds to the specified symbol.

Description

Attempts to resolve the symbol name cString using symbol list symbolList. If symbolList is
OOP_NIL, this function searches the symbol list in the user’s UserProfile. If the symbol is
not found or an error is generated, the result is OOP_ILLEGAL. If result is OOP_ILLEGAL
and GciErr reports no error, then the symbol could not be resolved using the given
symbolList. If an error such as an authorization error occurs, the result is OOP_ILLEGAL
and the error is accessible by GciErr.

This function is similar to GciResolveSymbolObj, except that the symbol argument is a C
string instead of an object identifier.

See Also

GciResolveSymbolObj, page 414
June 2011 VMware, Inc. 413

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciResolveSymbolObj

Find the OOP of the object to which a symbol object refers, in the context of the current
session’s user profile.

Syntax

OopType GciResolveSymbolObj(
OopType aSymbolObj,
OopType symbolList);

Input Arguments

aSymbolObj The OOP of a kind of String. That is, this object’s class must be
OOP_CLASS_STRING or a subclass thereof.

symbolList The OOP of an instance of OOP_CLASS_SYMBOL_LIST or
OOP_NIL.

Return Value

The OOP of the object that corresponds to the specified symbol.

Description

Attempts to resolve aSymbolObj using symbol list symbolList. If symbolList is OOP_NIL, this
function searches the symbol list in the user’s UserProfile. If the symbol is not found or an
error is generated, the result is OOP_ILLEGAL. If the result is OOP_ILLEGAL and GciErr
reports no error, then the symbol could not be resolved using the given symbolList. If an
error such as an authorization error occurs, the result is OOP_ILLEGAL and the error is
accessible by GciErr.

This function is similar to GciResolveSymbol, except that the symbol argument is an
object identifier instead of a C string.

See Also

GciResolveSymbol, page 413
414 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciRtlIsLoaded

Report whether a GemBuilder library is loaded.

Syntax

BoolType GciRtlIsLoaded()

Return Value

Returns TRUE if a GemBuilder library is loaded and FALSE if not.

Description

The GciRtlIsLoaded function reports whether an executable has loaded one of the versions
of GemBuilder. The GemBuilder library files are dynamically loaded at run time. See “The
GemBuilder Shared Libraries” on page 54 for more information.

See Also

GciRtlLoad, page 416
GciRtlUnload, page 418
June 2011 VMware, Inc. 415

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciRtlLoad

Load a GemBuilder library.

Syntax

BoolType GciRtlLoad(
BoolType useRpc,
const char * path,
char errBuf[],
size_t errBufSize);

Input Arguments

useRpc A flag to specify the RPC or linked version of GemBuilder.
path A list of directories (separated by ;) to search for the GemBuilder

library.
errBuf A buffer to store any error message.
errBufSize The size of errBuf.

Return Value

Returns TRUE if a GemBuilder library loads successfully. If the load fails, the return value
is FALSE, and a null-terminated error message is stored in errBuf, unless errBuf is NULL.

Description

The GciRtlLoad function attempts to load one of the GemBuilder libraries. If useRpc is
TRUE, the RPC version of GemBuilder is loaded. If useRpc is FALSE, the linked version of
GemBuilder is loaded. See “The GemBuilder Shared Libraries” on page 54 for more
information.

If path is not NULL, it must point to a list of directories to search for the library to load. If
path is NULL, then a default path is searched.

If a GemBuilder library is already loaded, the call fails.
416 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciRtlIsLoaded, page 415
GciRtlUnload, page 418
June 2011 VMware, Inc. 417

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciRtlUnload

Unload a GemBuilder library.

Syntax

void GciRtlUnload()

Description

The GciRtlUnload function causes the library loaded by GciRtlLoad to be unloaded. Once
the current library is unloaded, GciRtlLoad can be called again to load a different
GemBuilder library. See “The GemBuilder Shared Libraries” on page 54 for more
information.

See Also

GciRtlLoad, page 416
GciRtlIsLoaded, page 415
418 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSaveAndTrackObjs

Add objects to GemStone’s internal GciTrackedObjs set to prevent them from being
garbage collected.

Syntax

void GciSaveAndTrackObjs(
const OopType theOops[],
int numOops);

Input Arguments

theOops An array of OOPs.
numOops The number of elements in theOops.

Description

The GciSaveAndTrackOops function adds the specified OOPS to GemStone’s
GciTrackedObjs set. This prevents the GemStone garbage collector from causing the objects
to disappear during a session if they become unreferenced, and enables changes to these
objects to show up in the TrackedDirtyObjs set.

This function does not cause the objects to be referenced from a permanent object; there is
no guarantee that they will be saved to disk at commit.

The results of GciNew..., GciCreate..., GciSend..., GciPerform..., and GciExecute... calls
are automatically added to the export set, which also prevents them from being garbage
collected.

This function may only be called after GciTrackedObjsInit has been executed.

You can use GciReleaseTrackedOops or GciReleaseAllTrackedOops calls to cancel the
effect of a GciSaveAndTrackOops call, thereby making objects eligible for garbage
collection. Objects that have been added to the GciTrackedObjs set and have been modified
can be retrieved using GciTrackedDirtyObjs, GciDirtySaveObjs, or
GciTrackedObjsFetchAllDirty.
June 2011 VMware, Inc. 419

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciHiddenSetIncludesOop, page 268
GciDirtySaveObjs, page 178
GciDirtyTrackedObjs, page 180
GciReleaseAllTrackedOops, page 400
GciReleaseTrackedOops, page 405
GciTrackedObjsInit, page 509
GciTrackedObjsFetchAllDirty, page 507
420 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSaveGlobalObjs

Add an array of OOPs to the PureExportSet, making them ineligible for garbage collection.

Syntax

void GciSaveGlobalObjs(
const OopType theOops[],
int numOops);

Input Arguments

theOops An array of OOPs.
numOops The number of elements in theOops.

Description

The GciSaveGlobalObjs function places the specified OOPs in the PureExportSet, thus
preventing GemStone from removing them as a result of garbage collection.
GciSaveGlobalObjs can add any OOP to the PureExportSet. It differs from GciSaveObjs
in that OOPs are placed in the PureExportSet regardless of user action context.

The GciSaveGlobalObjs function does not itself make objects persistent, and it does not
create a reference to them from a persistent object so that the next commit operation will
try to do so either. It only protects them from garbage collection.

Note that results of the GciNew..., GciCreate..., GciPerform..., GciExecute..., and
GciResolve... functions are automatically added to the export set. The GciRelease...
functions may be used to make objects eligible for garbage collection.

See Also

“Garbage Collection” on page 49
GciReleaseAllGlobalOops, page 398
GciReleaseAllOops, page 399
GciReleaseGlobalOops, page 401
GciReleaseOops, page 402
GciSaveObjs, page 422
June 2011 VMware, Inc. 421

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSaveObjs

Add an array of OOPs to the PureExportSet, or if in a user action to the user action’s export
set, making them ineligible for garbage collection.

Syntax

void GciSaveObjs(
const OopType theOops[],
int numOops);

Input Arguments

theOops An array of OOPs.
numOops The number of elements in theOops.

Description

The GciSaveObjs function places the specified OOPs in the applicable export set, thus
preventing GemStone from removing them as a result of garbage collection. If invoked
from within a user action, the OOPs are added to the user action’s export set; otherwise the
OOPs are added to the PureExportSet. To add OOPS to the PureExportSet, regardless of
the user action context, use GciSaveGlobalObjs. GciSaveObjs can add any OOP to the
export set.

The GciSaveObjs function does not itself make objects persistent, and it does not create a
reference to them from a persistent object so that the next commit operation will try to do
so either. It only protects them from garbage collection.

Note that results of the GciNew..., GciCreate..., GciPerform..., GciExecute..., and
GciResolve... functions are automatically added to the export set. The GciRelease...
functions may be used to make objects eligible for garbage collection.

See Also

“Garbage Collection” on page 49
GciReleaseGlobalOops, page 401
GciReleaseOops, page 402
GciSaveGlobalObjs, page 421
422 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciServerIsBigEndian

Determine whether or not the server process is big-endian.

Syntax

BoolType GciServerIsBigEndian();

Return Value

Returns TRUE if the session is RPC and the server process is big-endian, or if the session is
linked and this process is big-endian. Returns FALSE otherwise.

Description

This function determines whether the server process is big-endian. If the current session is
invalid, this generates an error.
June 2011 VMware, Inc. 423

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSessionIsRemote

Determine whether or not the current session is using a Gem on another machine.

Syntax

BoolType GciSessionIsRemote()

Return Value

The GciSessionIsRemote function returns TRUE if the current GemBuilder session is
connected to a remote Gem. It returns FALSE if the current GemBuilder session is
connected to a linked Gem.

GciSessionIsRemote raises an error if the current session is invalid.
424 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSetCacheName_

Set the name that a linked application will be known by in the shared cache.

Syntax

BoolType GciSetCacheName_(
const char * name);

Input Arguments

name The processName reported by System cacheStatistics.

Return Value

Returns FALSE if called before GciInit and GciIsRemote returns FALSE.

Description

This function sets the name that a linked application will be known by in the shared cache.
This function has no effect if GciIsRemote returns TRUE.
June 2011 VMware, Inc. 425

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSetDynLib

Swap the byte order of an array of uint.

Syntax

void GciSetDynLib(
void * handle);

Description

Used by the topaz.c main program to save the result of dlopen() which loaded the
GCI shared library.
426 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSetErrJump

Enable or disable the current error handler.

Syntax

BoolType GciSetErrJump(
BoolType aBoolean);

Input Arguments

aBoolean TRUE enables error jumps to the execution environment saved by
the most recent GciPushErrJump; FALSE disables error jumps.

Return Value

Returns TRUE if error handling was previously enabled for the jump buffer at the top of
the error jump stack. Returns FALSE if error handling was previously disabled. If your
program has no buffers saved in its error jump stack, this function returns FALSE. (This
function cannot generate an error.)

For most GemBuilder functions, calling GciErr after a successful function call will return
zero (that is, false). In such cases, the GciErrSType error report structure will contain some
default values. (See the GciErr function on page 189 for details.) However, a successful call
to GciSetErrJump does not alter any previously existing error report information. That is,
calling GciErr after a successful call to GciSetErrJump will return the same error
information that was present before this function was called.

Description

This function enables or disables the error handler at the top of GemBuilder’s error jump
stack.
June 2011 VMware, Inc. 427

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

void setErrJump_example(void)
{
 GciJmpBufSType jumpBuf1;
 GciPushErrJump(&jumpBuf1);

 if (Gci_SETJMP(&jumpBuf1)) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“LONGJMP, error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf(“GCI longjmp, but no error found\n”); // should not
happen
 }
 GciPopErrJump(&jumpBuf1);
 return;
 }
 BoolType prevVal = GciSetErrJump(FALSE); // disable error jumps
 printf(“error jumps previously %s\n”, prevVal ? “enabled” :
“disabled”);

 OopType oRcvr = GciI32ToOop(3);
 GciPerform(oRcvr, “frob”, NULL, 0); // expect does-not-
understand error
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf(“expected error but found none\n”);
 }

 GciSetErrJump(TRUE);
 GciPerform(oRcvr, “frob”, NULL, 0); // expect a longjmp

 printf(“GCI longjmp did not happen\n”); // should not reach
here
}

428 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciErr, page 189
GciPopErrJump, page 386
GciPushErrJump, page 391
June 2011 VMware, Inc. 429

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSetHaltOnError

Halt the current session when a specified error occurs.

Syntax

int GciSetHaltOnError(
int errNum);

Input Arguments

errNum When this error occurs, halt the current session.

Return Value

Returns the previous error number on which the session was to halt.

Description

The GciSetHaltOnError function causes the current session to halt for internal debugging
when the specified GemBuilder error occurs. When errNum is zero, halt on error is
disabled.

See Also

GciErr, page 189
430 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Gci_SETJMP

(MACRO) Save a jump buffer in GemBuilder’s error jump stack.

Syntax

void Gci_SETJMP(
GciJmpBufSType * jumpBuffer);

Input Arguments

jumpBuffer A pointer to a jump buffer.

Description

When your program calls this macro, the context of the C environment is saved in a jump
buffer that you designate. GemBuilder maintains a stack of up to 20 error jump buffers.

Except for the difference in argument type, the semantics of this function are the same as
for setjmp() on Solaris and _setjmp() on HP-UX.

See Also

GciErr, page 189
GciLongJmp, page 292
GciPopErrJump, page 386
GciPushErrJump, page 391
GciSetErrJump, page 427
June 2011 VMware, Inc. 431

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSetNet

Set network parameters for connecting the user to the Gem and Stone processes.

Syntax

void GciSetNet(
const char StoneName[],
const char HostUserId[],
const char HostPassword[],
const char GemService[]);

Input Arguments

StoneName Network resource string for the database monitor process.
HostUserId Login name.
HostPassword Password of the user.
GemService Network resource string for the GemStone service.

Description

Your application, your GemStone session (Gem), and the database monitor (Stone) can all
run in separate processes, on separate machines in your network. The GciSetNet function
specifies the network parameters that are used to connect the current user to GemStone on
the host, whenever GciLogin is called. Network resource strings specify the information
needed to establish communications between these processes . See the System
Administration Guide for GemStone/S 64 Bit for complete information on NRS Syntax and the
network environment.

StoneName identifies the name and network location of the database monitor process
(Stone), which is the final arbiter of all sessions that access a specific database. Every
session must communicate with a Stone, in both linked and remote applications. Hence,
StoneName is a required argument.

A Stone process called “gs64stone” on node “lichen” could be described in a network
resource string as:

!@lichen!gs64stone
432 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
A Stone of the same name that is running on the same machine as the application could be
described in shortened form simply as:

gs64stone

GemService identifies the name and network location of the GemStone service that creates
a session process (Gem), which then arbitrates data access between the database and the
application. Every GemStone session requires a Gem. In linked applications, one Gem is
present within the same process as the application; in remote applications the Gem is a
separate process specific to that login session. Therefore, each time an application user logs
in to GemStone (after the first time in linked applications), the GemStone service must
create a new Gem. Hence, GemService is a required argument, except in the special case of
a linked application that limits itself to one GemStone login per application process. In this
special case, specify GemService as an empty string.

For most installations, the GemStone service name is gemnetobject. Specify, for example:

!@lichen!gemnetobject

HostUserId and HostPassword are your login name and password, respectively, on the
machines that host the Gem and Stone processes. Do not confuse these values with your
GemStone username and password. These arguments provide authentication for such
tasks as creating a Gem and establishing communications with a Stone. When such
authentication is required, an application user cannot login to GemStone until the host
login is verified for the machine running the Stone or Gem, in addition to the GemStone
login itself.

Authentication is always required if the netldi process that is related to the Stone is running
in secure mode. In this case, it makes no difference whether the application is linked or
remote. Authentication is also required to create a remote Gem, unless the netldi process is
running in guest mode. Remote applications must always create a Gem, but linked
applications may also do so.

With TCP/IP, GemBuilder can also try to find a username and password for authentication
on a host machine in your network initialization file. Because this file contains your
password, you should ensure that other users do not have authorization to read it. Under
UNIX, the file is named .netrc and it should contain lines of the form:

machine machine_name login user_name password passwd

For example:

machine alf login joebob password mypassword
June 2011 VMware, Inc. 433

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
To prevent GemBuilder from looking for authentication information in the network
initialization file, supply a valid non-empty C string for the HostUserId argument. Also
supply a non-empty string for the HostPassword argument to provide a password. An
empty string and a NULL pointer both mean that no password will be used for
authentication.

Alternatively, to direct GemBuilder to look in the network initialization file at need, supply
an empty C string or a NULL pointer for the HostUserId argument. In this case, supply a
NULL pointer for the HostPassword argument as well. Any valid string that you supply for
a password is ignored in favor of the information that is present in the network
initialization file.

Example

For an example of how GciSetNet is used, see the GciLogin function on page 289.

See Also

“GciLogin” on page 289
434 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSetSessionId

Set an active session to be the current one.

Syntax

void GciSetSessionId(
GciSessionIdType sessionId);

Input Arguments

sessionId The session ID of an active (logged-in) GemStone session.

Description

This function can be used to switch between multiple GemStone sessions in an application
program with multiple logins.
June 2011 VMware, Inc. 435

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

void setSession_example(void)
{
 // assume topaz code for GciFetchVaryingOop has run
 // see GciLogin for login_example()
 if (! login_example())
 return;
 GciSessionIdType sess1 = GciGetSessionId();

 if (! login_example())
 return;
 GciSessionIdType sess2 = GciGetSessionId();

 { OopType aColl = GciResolveSymbol(“AllComponents”, OOP_NIL);
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 GciRemoveOopFromNsc(aColl, aComponent);
 GciReleaseOops(&aComponent, 1);
 printf(“session %d , size after removal “FMT_I64”\n”,

sess2, GciFetchVaryingSize_(aColl));
 }
 // other session will still see the original size before removal
 // because it has an independent transactional view of the
repository.
 GciSetSessionId(sess1);
 { OopType aColl = GciResolveSymbol(“AllComponents”, OOP_NIL);
 printf(“session %d , current size “FMT_I64”\n”,
 sess1, GciFetchVaryingSize_(aColl));
 }
}

See Also

GciGetSessionId, page 265
GciLogin, page 289
436 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSetSharedCounter

Set the value of a shared counter.

Syntax

BoolType GciSetSharedCounter(
int counterIdx,
int64_t * value);

Input Arguments

counterIdx The offset into the shared counters array of the value to modify.
value Pointer to a value that containing the new value for this shared

counter.

Return Value

Returns a C Boolean value indicating whether the value was successfully changed. Returns
TRUE if the modification succeeded, FALSE if it failed.

Description

Set the value of the shared counter indicated by counterIdx. The contents of the value pointer
indicate the new value of the shared counter.

Not supported for remote GCI interfaces.

See Also

GciFetchNumSharedCounters, page 225
GciDecSharedCounter, page 172
GciIncSharedCounter, page 271
GciReadSharedCounter, page 394
GciReadSharedCounterNoLock, page 395
GciFetchSharedCounterValuesNoLock, page 244
June 2011 VMware, Inc. 437

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSetTraversalBufSwizzling

Control swizzling of the traversal buffers.

Syntax

BoolType GciSetTraversalBufSwizzling(
BoolType enabled);

Input Arguments

enabled If TRUE, enable normal byte-order swizzling of traversal buffers for
the current RPC session. This is the default state for a session created
by successful GciLogin().
If FALSE, the application program (for example, GemBuilder for
Smalltalk) is responsible for subsequent swizzling of traversal
buffers if needed.

Return Value

Returns the previous value of swizzling of traversal buffers. When called on a linkable
session, returns FALSE and has no effect. If the current session is invalid, generates an error
and returns FALSE.

Description

GciSetTraversalBufSwizzling controls swizzling of the traversal buffers used by these
calls in an RPC session:

GciStoreTrav, GciNbStoreTrav
GciStoreTravDo_, GciNbStoreTravDo_
GciStoreTravDoTrav_, GciNbStoreTravDoTrav_
GciClampedTrav, GciNbClampedTrav
GciMoreTraversal, GciNbMoreTraversal
GciPerformTrav, GciNbPerformTrav
GciExecuteStrTrav, GciNbExecuteStrTrav
438 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSetVaryingSize

Set the size of a collection.

Syntax

void GciSetVaryingSize(
OopType collection,
int64 size);

Input Arguments

collection The OOP of the collection whose size you are specifying.
size The desired number of elements in the collection.

Description

GciSetVaryingSize changes the size of a collection, adding nils to grow it, or truncating it,
as necessary. It is equivalent to the Smalltalk method Object >> size:. It does not
change the number of any named instance variables.

Example

void setVaryingSize_example(void)
{
 OopType oArr = GciNewOop(OOP_CLASS_ARRAY); // create new Array of
size 0

 GciSetVaryingSize(oArr, 1000000);
 // logical size now 1 million

 GciStoreOop(oArr, 500000, GciI32ToOop(5678));
}

See Also

GciFetchVaryingSize_, page 253
June 2011 VMware, Inc. 439

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciShutdown

Logout from all sessions and deactivate GemBuilder.

Syntax

void GciShutdown()

Description

This function is intended to be called by image exit routines, such as the on_exit system
call. In the linkable GemBuilder, GciShutdown calls GciLogout. In the RPC version, it logs
out all sessions connected to the Gem process and shuts down the networking layer, thus
releasing all memory allocated by GemBuilder.

It is especially important to call this function explicitly on any computer whose operating
system does not automatically deallocate resources when a process quits. This effect is
found on certain small, single-user systems.
440 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSoftBreak

Interrupt the execution of Smalltalk code, but permit it to be restarted.

Syntax

void GciSoftBreak()

Description

This function sends a soft break to the current user session (set by the last GciLogin or
GciSetSessionId).

GemBuilder allows users of your application to terminate Smalltalk execution. For
example, if your application sends a message to an object (via GciSendMessage or
GciPerform), and for some reason the invoked Smalltalk method enters an infinite loop,
the user can interrupt the application.

GciSoftBreak interrupts only the Smalltalk virtual machine (if it is running), and does so
in such a way that the it can be restarted. The only GemBuilder functions that can recognize
a soft break include GciSendMessage, GciPerform, and GciContinue, and the
GciExecute... functions.

In order for GemBuilder functions in your program to recognize interrupts, your program
will need a signal handler that can call the functions GciSoftBreak and GciHardBreak.
Since GemBuilder does not relinquish control to an application until it has finished its
processing, soft and hard breaks must be initiated from another thread.

If GemStone is executing when it receives the break, it replies with the error message
RT_ERR_SOFT_BREAK. Otherwise, it ignores the break.

Example

#include “signal.h”

extern “C” {
 static void doSoftBreak(int sigNum, siginfo_t* info, void* ucArg)
 {
 GciSoftBreak();
 }
June 2011 VMware, Inc. 441

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
}

void softBreakExample(void)
{
 // save previous SIGINT handler and install ours
 struct sigaction oldHandler;
 struct sigaction newHandler;
 newHandler.sa_handler = SIG_DFL;
 newHandler.sa_sigaction = doSoftBreak;
 newHandler.sa_flags = SA_SIGINFO | SA_RESTART ;
 sigaction(SIGINT, &newHandler, &oldHandler);

 // execute a loop that will take 120 seconds to execute and
 // return the SmallInteger with value 11 .
 OopType result = GciExecuteStr(
 “| a | a := 1 . 10 timesRepeat:[System sleep:10. a := a + 1]. ^
a”,
 OOP_NIL/*use default symbolList for execution*/);

 BoolType done = FALSE;
 int breakCount = 0;
 do {
 // assume the user may type ctl-C or issue kill -INT from
 // another shell process during the 120 seconds .
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 if (errInfo.category == OOP_GEMSTONE_ERROR_CAT &&
 errInfo.number == RT_ERR_SOFT_BREAK) {
 // GciExecuteStr was interrupted by a GciSoftBreak .
 breakCount++ ;
 // now continue the execution to finish the computation
 result = GciContinue(errInfo.context);
 } else {
 // FMT_OID format string is defined in gci.ht
 printf(“unexpected error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 // terminate the execution
 GciClearStack(errInfo.context);
 done = TRUE;
 }
 } else {
 // GciExecuteStr or GciContinue completed without error
442 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
 done = TRUE;
 BoolType conversionErr = FALSE;
 int val = GciOopToI32_(result, &conversionErr);
 if (conversionErr) {
 printf(“Error converting result to C int\n”);
 } else {
 printf(“Got %d interrupts, result = %d\n”, breakCount, val);
 }
 }
 } while (! done);

 // restore previous SIGINT handler
 sigaction(SIGINT, &oldHandler, NULL);
}

See Also

GciClearStack, page 145
GciContinue, page 154
GciExecute, page 191
GciHardBreak, page 267
GciPerform, page 371
June 2011 VMware, Inc. 443

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStep

Continue code execution in GemStone with specified single-step semantics.

Syntax

OopType GciStep(
OopType process,
int level);

Input Arguments

process The OOP of a GsProcess object (obtained as the value of the context
field of an error report returned by GciErr).

level One of the following values:
0 — step-into semantics starting from top of stack
1 — step-over semantics starting from top of stack
> 1 — step-over semantics from specified level on stack

Return Value

Returns the OOP of the result of the Smalltalk execution. Returns OOP_ILLEGAL in case
of error.

Description

The GciStep function continues code execution in GemStone using the specified single-
step semantics. This function is intended for use by debuggers.

If you specify a level that is either less than zero or greater than the value represented by
GciPerform(process, "stackDepth", NULL, 0), GciStep generates an error.

See Also

GciPerform, page 371
444 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreByte

Store one byte in a byte object.

Syntax

void GciStoreByte(
OopType theObject,
int64 atIndex,
ByteType theByte);

Input Arguments

theObject The OOP of the GemStone byte object.
atIndex The index into theObject at which to store the byte.
theByte The 8-bit value to be stored.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreByte function stores a single element in a byte object at a specified index,
using structural access.

GciStoreByte raises an error if theObject is a Float or SmallFloat. You must store all the
bytes of a Float or SmallFloat if you store any.
June 2011 VMware, Inc. 445

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

void storeByte_example(void)
{
 OopType oString = GciNewOop(OOP_CLASS_STRING);

 for (int j = 0; j < 200; j++) {
 ByteType val = j;
 GciStoreByte(oString, j + 1 , val);
 }
}

See Also

GciFetchByte, page 204
GciFetchBytes_, page 206
GciStoreBytes, page 447
446 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreBytes

(MACRO) Store multiple bytes in a byte object.

Syntax

void GciStoreBytes(
OopType theObject,
int64 startIndex,
const ByteType theBytes[],
int64 numBytes);

Input Arguments

theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing bytes.
theBytes The array of bytes to be stored.
numBytes The number of elements to store.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreBytes macro uses structural access to store multiple elements from a C array
in a byte object, beginning at a specified index. A common application of GciStoreBytes
would be to store a text string.

Error Conditions

GciStoreBytes raises an error if theObject is a Float or SmallFloat. Use
GciStoreBytesInstanceOf instead for Float or SmallFloat objects.
June 2011 VMware, Inc. 447

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

void storeBytes_example(void)
{
 OopType oString = GciNewOop(OOP_CLASS_STRING);

 enum { buf_size = 2000 };
 ByteType buf[buf_size];
 for (int j = 0; j < buf_size; j++) {
 buf[j] = (ByteType)j;
 }
 GciStoreBytes(oString, 1, buf, buf_size);
}

See Also

GciFetchByte, page 204
GciFetchBytes_, page 206
GciStoreByte, page 445
GciStoreBytesInstanceOf, page 449
GciStoreChars, page 451
448 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreBytesInstanceOf

Store multiple bytes in a byte object.

Syntax

void GciStoreBytesInstanceOf(
OopType theClass,
OopType theObject,
int64 startIndex,
const ByteType theBytes[],
int64 numBytes);

Input Arguments

theClass The OOP of the class of the GemStone byte object.
theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing bytes.
theBytes The array of bytes to be stored.
numBytes The number of elements to store.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreBytesInstanceOf function uses structural access to store multiple elements
from a C array in a byte object, beginning at a specified index. A common application of
GciStoreBytesInstanceOf would be to store a Float or SmallFloat object.

GciStoreBytesInstanceOf provides automatic byte swizzling for Float and SmallFloat
objects. (For more about byte swizzling, see page 29.) The presence of the argument
theClass enables the swizzling to be implemented more efficiently. If theObject is a Float or
SmallFloat, then theClass must match the actual class of theObject, startIndex must be one,
and numBytes must be the actual size for theClass. If any of these conditions are not met,
then GciStoreBytesInstanceOf raises an error as a safety check.
June 2011 VMware, Inc. 449

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
If theObject is not a Float or SmallFloat, then theClass is ignored. Hence, you must supply
the correct class for theClass if theObject is a Float or SmallFloat, but you can use OOP_NIL
otherwise.

Example

void storeBytesInstof_example(void)
{
 double pi = 3.1415926;
 OopType oFloat = GciNewOop(OOP_CLASS_FLOAT);
 GciStoreBytesInstanceOf(OOP_CLASS_FLOAT, oFloat, 1,
 (ByteType *)&pi, sizeof(pi));
}

See Also

GciFetchByte, page 204
GciFetchBytes_, page 206
GciStoreByte, page 445
GciStoreBytes, page 447
GciStoreChars, page 451
450 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreChars

Store multiple ASCII characters in a byte object.

Syntax

void GciStoreChars(
OopType theObject,
int64 startIndex,
const char * aString);

Input Arguments

theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing the string.
aString The string to be stored.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreChars function uses structural access to store a C string in a byte object,
beginning at a specified index.

GciStoreChars raises an error if theObject is a Float or SmallFloat. ASCII characters have no
meaning as bytes in a Float or SmallFloat object.

Example

void storeChars_example(void)
{
 OopType oString = GciNewOop(OOP_CLASS_STRING);

 GciStoreChars(oString, 1, “some string data”);
}

June 2011 VMware, Inc. 451

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciFetchByte, page 204
GciFetchBytes_, page 206
GciStoreByte, page 445
GciStoreBytes, page 447
452 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreDynamicIv

Create or change the value of an object’s dynamic instance variable.

Syntax

void GciStoreDynamicIv(
OopType theObject,
OopType aSymbol,
OopType value);

Input Arguments

theObject The OOP of the GemStone object.
aSymbol Specifies the dynamic instance variable of the object.
value The value to store in the dynamic instance variable.

Return Value

Creates or changes the value of the dynamic instance variable specified by aSymbol within
theObject.

Description

This function stores a value into the dynamic instance variable specified by aSymbol.

Dynamic instance variables are not allowed in instances of ExecBlock, Behavior,
GsNMethod, or special objects.

To delete a dynamic instance variable, pass OOP_REMOTE_NIL as the value.

See Also

GciFetchDynamicIv, page 214
GciFetchDynamicIvs, page 215
June 2011 VMware, Inc. 453

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreIdxOop

Store one OOP in an indexable pointer object’s unnamed instance variable.

Syntax

void GciStoreIdxOop(
OopType theObject,
int64 atIndex,
OopType theOop);

Input Arguments

theObject The pointer object.
atIndex The index into theObject at which to store the object.
theOop The OOP to be stored.

Result Arguments

theObject The resulting pointer object.

Description

This function stores a single OOP into an indexed variable of a pointer object at the
specified index, using structural access. Note that this function cannot be used for NSCs.
(To add an OOP to an NSC, use the GciAddOopToNsc function on page 115.)
454 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storeIdxOop_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 OopType otherComp = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1333]”, OOP_NIL);

 // store new value into 3rd element of aComponent’s parts list
 GciStoreIdxOop(aComponent, 3, otherComp);

 GciReleaseOops(&aComponent, 1); // release results of
execution
 GciReleaseOops(&otherComp, 1);
}

See Also

GciAddOopToNsc, page 115
GciFetchVaryingOop, page 248
GciFetchVaryingOops, page 251
GciStoreIdxOops, page 456
June 2011 VMware, Inc. 455

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreIdxOops

Store one or more OOPs in an indexable pointer object’s unnamed instance variables.

Syntax

void GciStoreIdxOops(
OopType theObject,
int64 startIndex,
const OopType theOops[],
int numOops);

Input Arguments

theObject The pointer object.
startIndex The index into theObject at which to begin storing OOPs.
theOops The array of OOPs to be stored.
numOops The number of OOPs to store.

Result Arguments

theObject The resulting pointer object.

Description

This function uses structural access to store multiple OOPs from a C array into the indexed
variables of a pointer object, beginning at the specified index. Note that this call cannot be
used with NSCs. (To add multiple OOPs to an NSC, use the GciAddOopsToNsc function
on page 117.)
456 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storeIdxOops_example(void)
{
 // retrieve a random instance of class Component
 OopType firstC = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 OopType secondC = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1333]”, OOP_NIL);

 // make first component’s parts list be identical to second
component’s list
 enum { buf_size = 100 };
 OopType buf[buf_size];
 int64 firstSize = GciFetchVaryingSize_(firstC);
 int64 idx = 1;
 while (idx <= firstSize) {
 int numRet = GciFetchVaryingOops(firstC, idx, buf, buf_size);
 GciStoreIdxOops(secondC, idx, buf, numRet);
 idx += numRet;
 }
 // truncate second component’s parts list if it was larger than
first’s
 GciSetVaryingSize(secondC, firstSize);

 GciReleaseOops(&firstC, 1); // release results of executions
 GciReleaseOops(&secondC, 1);
}

See Also

GciAddOopsToNsc, page 117
GciFetchVaryingOop, page 248
GciFetchVaryingOops, page 251
GciReplaceOops, page 410
June 2011 VMware, Inc. 457

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciReplaceVaryingOops, page 412
GciStoreIdxOop, page 454
GciStoreIdxOops, page 456
GciStoreNamedOops, page 462
GciStoreOops, page 468
458 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreNamedOop

Store one OOP into an object’s named instance variable.

Syntax

void GciStoreNamedOop(
OopType theObject,
int64 atIndex,
OopType theOop);

Input Arguments

theObject The object in which to store the OOP.
atIndex The index into theObject’s named instance variables at which to store

the OOP.
theOop The OOP to be stored.

Result Arguments

theObject The resulting object with the new OOP.

Description

This function stores a single OOP into an object’s named instance variable at the specified
index, using structural access.
June 2011 VMware, Inc. 459

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storeNamedOop_example(void)
{
 // C constants to match Smalltalk class definition
 enum { COMPONENT_OFF_PARTNUMBER = 1,
 COMPONENT_OFF_NAME = 2,
 COMPONENT_OFF_COST = 3 };

 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution or detect found nothing
 return;
 }

 // assign a new value to the name instance variable of
aComponent
 OopType newName = GciNewString(“compressor blade”);
 GciStoreNamedOop(aComponent, COMPONENT_OFF_NAME, newName);

 // alternate approach: assign a new value to a named instance
 //variable without knowing its offset at compile time
 GciStoreNamedOop(aComponent,
GciIvNameToIdx(GciFetchClass(aComponent), “name”), newName);

 GciReleaseOops(&newName, 1);
 GciReleaseOops(&aComponent, 1);
}

See Also

GciFetchNamedOop, page 216
GciFetchNamedOops, page 219
460 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreIdxOop, page 454
GciStoreNamedOops, page 462
June 2011 VMware, Inc. 461

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreNamedOops

Store one or more OOPs into an object’s named instance variables.

Syntax

void GciStoreNamedOops(
OopType theObject,
int64 startIndex,
const OopType theOops[],
int numOops);

Input Arguments

theObject The object in which to store the OOPs.
startIndex The index into theObject’s named instance variables at which to

begin storing OOPs.
theOops The array of OOPs to be stored.
numOops The number of OOPs to store. If (numOops+startIndex) exceeds

the number of named instance variables in theObject, an error is
generated.

Result Arguments

theObject The resulting object with the new OOPs.

Description

This function uses structural access to store multiple OOPs from a C array into an object’s
named instance variables, beginning at the specified index.
462 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storeNamedOops_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 // execution error, or detect: found nothing
 return;
 }

 // fetch name instance variables without knowing offset at C
compile time
 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0) {
 // error during fetch
 return;
 }
 OopType *oBuffer = (OopType*) malloc(sizeof(OopType) *
namedSize);
 if (oBuffer == NULL) {
 printf(“malloc failure\n”);
 return;
 }
 int numRet = GciFetchNamedOops(aComponent, 1, oBuffer,
namedSize);
 if (numRet != namedSize) {
 printf(“error during fetch\n”);
 return;
 }

 // alter one of the instVars and then store them all
 OopType newName = GciNewString(“compressor blade”);
 int ivOffset = GciIvNameToIdx(GciFetchClass(aComponent),
“name”);
 if (ivOffset <= 0) {
 printf(“error during GciIvNameToIdx\n”);
June 2011 VMware, Inc. 463

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
 return;
 }
 oBuffer[ivOffset - 1] = newName;
 GciStoreNamedOops(aComponent, 1, oBuffer, namedSize);

 GciReleaseOops(&newName, 1);
 GciReleaseOops(&aComponent, 1);
}

See Also

GciFetchNamedOop, page 216
GciFetchNamedOops, page 219
GciReplaceOops, page 410
GciReplaceVaryingOops, page 412
GciStoreIdxOop, page 454
GciStoreIdxOops, page 456
GciStoreNamedOop, page 459
GciStoreNamedOops, page 462
GciStoreOops, page 468
464 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStoreOop

Store one OOP into an object’s instance variable.

Syntax

void GciStoreOop(
OopType theObject,
int64 atIndex,
OopType theOop);

Input Arguments

theObject The object in which to store the OOP.
atIndex The index into theObject at which to store the OOP. This function

does not distinguish between named and unnamed instance
variables. Indices are based at the beginning of an object’s array of
instance variables. In that array, the object’s named instance
variables are followed by its unnamed instance variables.

theOop The OOP to be stored.

Result Arguments

theObject The resulting object.

Description

This function stores a single OOP into an object at the specified index, using structural
access. Note that this function cannot be used for NSCs. To add an object to an NSC, use
the GciAddOopToNsc function on page 115.
June 2011 VMware, Inc. 465

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storeOop_example(void)
{
 /* C constants to match Smalltalk class definition */
 enum { COMPONENT_OFF_NAME = 2 };

 /* retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 OopType newName = GciNewString(“vane”);

 /* Two ways to assign new value to name instance variable of
aComponent */
 GciStoreOop(aComponent, COMPONENT_OFF_NAME, newName);
 GciStoreNamedOop(aComponent, COMPONENT_OFF_NAME, newName);

 OopType subPart = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1333]”, OOP_NIL);

 /* Two ways to assign a new value to the 3rd element of
 aComponent’s parts list without knowing exactly how many named
 instance variables exist */

 GciStoreOop(aComponent, GciFetchNamedSize(aComponent) + 3,
subPart);
 GciStoreIdxOop(aComponent, 3, subPart);
}

See Also

GciAddOopToNsc, page 115
GciFetchVaryingOop, page 248
GciFetchVaryingOops, page 251
466 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciFetchOops, page 234
GciStoreOops, page 468
June 2011 VMware, Inc. 467

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreOops

Store one or more OOPs into an object’s instance variables.

Syntax

void GciStoreOops(
OopType theObject,
int64 startIndex,
const OopType theOops[],
int numOops);

Input Arguments

theObject The object in which to store the OOPs.
startIndex The index into theObject at which to begin storing OOPs. This

function does not distinguish between named and unnamed
instance variables. Indices are based at the beginning of an object’s
array of instance variables. In that array, the object’s named instance
variables are followed by its unnamed instance variables.

theOops The array of OOPs to be stored.
numOops The number of OOPs to store.

Result Arguments

theObject The resulting object.

Description

This function uses structural access to store multiple OOPs from a C array into a pointer
object, beginning at the specified index. Note that this call cannot be used with NSCs. To
add multiple OOPs to an NSC, use the GciAddOopsToNsc function on page 117.
468 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storeOops_example(void)
{
 /* retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 int namedSize = GciFetchNamedSize(aComponent);
 int64 instSize = GciFetchSize_(aComponent);
 // allow space in buffer for storing into first varying instVar
plus
 // appending a new varying instVar
 int64 bufVaryingSize = instSize - namedSize + 1;
 if (bufVaryingSize < 2)
 bufVaryingSize = 2;

 int64 bufSize = namedSize + bufVaryingSize;
 OopType *buf = (OopType*) malloc(sizeof(OopType) * bufSize);
 if (buf == NULL) {
 printf(“malloc failure”);
 return;
 }
 GciFetchOops(aComponent, 1, buf, instSize);

 OopType newName = GciNewString(“strut”);
 int nameOfs = GciIvNameToIdx(GciFetchClass(aComponent), “name”);
 buf[nameOfs - 1] = newName;

 OopType firstSubPart = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1333]”, OOP_NIL);

 OopType lastSubPart = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1555]”, OOP_NIL);

 // assign first element of parts list
 buf[namedSize] = firstSubPart;
June 2011 VMware, Inc. 469

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
 // append lastSubPart to aComponent’s parts list
 int64 newSize = instSize + 1;
 buf[newSize - 1] = lastSubPart;

 // now store all the instVars back to the repository
 GciStoreOops(aComponent, 1, buf, newSize);
}

See Also

GciAddOopsToNsc, page 117
GciFetchNamedOops, page 219
GciFetchOop, page 231
GciFetchOops, page 234
GciFetchVaryingOop, page 248
GciReplaceOops, page 410
GciReplaceVaryingOops, page 412
GciStoreIdxOops, page 456
GciStoreNamedOops, page 462
GciStoreOop, page 465
GciStoreOops, page 468
470 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStorePaths

Store selected multiple OOPs into an object tree.

Syntax

BoolType GciStorePaths(
const OopType theOops[],
int numOops,
const int paths[],
const int pathSizes[],
int numPaths,
const OopType newValues[],
int * failCount);

Input Arguments

theOops A collection of OOPs into which you want to store new values.
numOops The size of theOops.
paths An array of integers. This one-dimensional array contains the

elements of all constituent paths, laid end to end.
pathSizes An array of integers. Each element of this array is the length of the

corresponding path in the paths array (that is, the number of
elements in each constituent path).

numPaths The number of paths in the paths array. This should be the same as
the number of integers in the pathSizes array.

newValues An array containing the new values to be stored into theOops.

Result Arguments

failCount A pointer to an integer that indicates which element of the newValues
array could not be successfully stored. If all values were successfully
stored, failCount is 0. If the ith store failed, failCount is i. If any of the
objects in newValues does not exist, or is not an OOP allocated to
GemBuilder, failCount is 1.
June 2011 VMware, Inc. 471

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Return Value

Returns TRUE if all values were successfully stored. Returns FALSE if the store on any path
fails for any reason.

Description

This function allows you to store multiple objects at selected positions in an object tree with
a single GemBuilder call, exporting only the desired information to the database.

NOTE
This function is most useful with applications that are linked with GciRpc (the
“remote procedure call” version of GemBuilder). If your application will be linked
with GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

Each path in the paths array is itself an array of longs. Those longs are offsets that specify a
path along which to store objects. In each path, a positive integer x refers to an offset within
an object’s named instance variables, while a negative integer -x refers to an offset within
an object’s indexed instance variables.

The newValues array contains (numOops * numPaths) elements, stored in the following
order:

[0,0]..[0,numPaths-1]..[1,0]..[1,numPaths-1]..
[numOops-1,0]..[numOops-1,numPaths-1]

The first element of this newValues array is stored along the first path into the first element
of theOops. New values are then stored into the first element of theOops along each
remaining element of the paths array. Similarly, new values are stored into each
subsequent element of theOops, until all paths have been applied to all its elements.

The new value to be stored into object i along path j is thus represented as:

newValues[((i-1) * numPaths) + (j-1)]

The expressions i-1 and j-1 are used because C has zero-based arrays.

If the store on any path fails for any reason, this function stops and generates a GemBuilder
error. Any objects that were successfully stored before the error occurred will remain
stored.
472 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Examples

Example 1: Calling sequence for a single object and a single path

void storePath1(void)
{
 enum { path_size = 5 };
 int aPath[path_size]; /* the path itself */
 int aSize = path_size; /* the size of the path */

 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr(“AllComponents detect:[:i|i partNumber =
1234]”, OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during resolve
 }

 OopType newValue = GciNewString(“a new value”);
 int failCount;

 GciStorePaths(&anOop, 1, aPath, &aSize, 1, &newValue,
&failCount);
}

June 2011 VMware, Inc. 473

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example 2: Calling sequence for multiple objects with a single path

void storePath2(void)
{
 OopType coll = GciResolveSymbol(“AllComponents”, OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }
 enum { num_roots = 3 ,
 path_size = 5 };
 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int aPath[path_size];
 int aSize = path_size;
 for (int j = 0; j < path_size; j++) {
 aPath[j] = 1; // arbitrary offsets
 }

 OopType newValues[num_roots];
 for (int j = 0; j < num_roots; j++) {
 newValues[j] = GciI32ToOop(1345600 + j);
 }
 int failCount;
 GciStorePaths(oops, num_roots, aPath, &aSize, 1, newValues,
&failCount);
}

474 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example 3: Calling sequence for a single object with multiple paths

void storePath3(void)
{
 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr(“AllComponents detect:[:i|i partNumber =
1234]”, OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during execution
 }

 enum { num_paths = 10,
 path_size = 5 };

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }
 OopType newValues[num_paths];
 for (int j = 0; j < num_paths; j++) {
 newValues[j] = GciI32ToOop(1345600 + j);
 }
 int failCount;

 GciStorePaths(&anOop, 1, paths, pathSizes, num_paths, newValues,
&failCount);
}

June 2011 VMware, Inc. 475

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Example 4: Calling sequence for multiple objects with multiple paths

void storePaths4(void)
{
 OopType coll = GciResolveSymbol(“AllComponents”, OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }

 enum { num_roots = 10,
 num_paths = 3,
 path_size = 5 ,
 num_new_values = num_roots * num_paths
 };
 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }

 OopType newValues[num_new_values];
 for (int j = 0; j < num_new_values; j++) {
 newValues[j] = GciI32ToOop(1345600 + j);
 }
 int failCount;
 GciStorePaths(oops, num_roots, paths, pathSizes, num_paths,
newValues,

&failCount);
}

476 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Example 5: Integrated Code

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void storePaths5(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 “AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 return; // error in execute, or detect: found nothing
 }

 // assign a new value to the name instVar of 5th element of
 // aComponent’s parts list
 enum { path_size = 2 };
 int path[path_size];
 path[0] = -5; // 5th varying instVar
 path[1] = GciIvNameToIdx(GciFetchClass(aComponent), “name”);
 int pathSizes = path_size;

 OopType newValue = GciNewString(“pump”);
 int failCount;
 GciStorePaths(&aComponent, 1, path, &pathSizes, 1, &newValue,
&failCount);
}

See Also

GciFetchPaths, page 237
June 2011 VMware, Inc. 477

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreTrav

Store multiple traversal buffer values in objects.

Syntax

void GciStoreTrav(
GciTravBufType * travBuff,
int behaviorFlag);

Input Arguments

travBuff A traversal buffer, which contains object data to be stored.
behaviorFlag A flag that determines how the objects should be handled.

Description

The GciStoreTrav function stores data from the traversal buffer travBuff (a C-language
structural description) into multiple GemStone objects. The first element in the traversal
buffer is an integer that indicates how many bytes are stored in the buffer. The remainder
of the traversal buffer consists of a series of object reports. Each object report is a C structure
of type GciObjRepSType, which includes a variable-length data area. GciStoreTrav stores
data object by object, using one object report at a time. GciStoreTrav raises an error if the
traversal buffer contains a report for any object of special implementation format.

GciStoreTrav allows you to reduce the number of GemBuilder calls that are required for
your application program to store complex objects in the database.

NOTE
This function is most useful with applications that are linked with GciRpc (the
“remote procedure call” version of GemBuilder). If your application will be linked
with GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

The value of behaviorFlag should be given by using one or more of the following
GemBuilder mnemonics: GCI_STORE_TRAV_DEFAULT, GCI_STORE_TRAV_NSC_REP,
GCI_STORE_TRAV_CREATE, and GCI_STORE_TRAV_FINISH_UPDATES. The first of
these must be used alone. The others can either be used alone or can be logically “or”ed
478 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
together. The effect of the mnemonics depends somewhat upon the implementation format
of the objects that are stored.

GciStoreTrav can create new objects and store data into them, or it can modify existing
objects with the data in their object reports, or a combination of the two. By default
(GCI_STORE_TRAV_DEFAULT), it can only modify existing objects, and it raises an error
if an object does not already exist.

When GCI_STORE_TRAV_CREATE is used, it modifies any object that already exists and
creates a new object when an object does not exist. Naturally, any new object is initialized
with the data in its object report.

When GCI_STORE_TRAV_FINISH_UPDATES is used, GciStoreTrav automatically
executes GciProcessDeferredUpdates_ after processing the last object report in the
traversal buffer.

When GciStoreTrav modifies an existing object of byte or pointer format, it replaces that
object’s data with the data in its object report, regardless of behaviorFlag. All instance
variables, named (if any) or indexed (if any), receive new values. Named instance variables
for which values are not given in the object report are initialized to nil or to zero. Indexable
objects may change in size; the object report determines the new number of indexed
variables.

Contrast byte and pointer object handling with the default when GciStoreTrav modifies
an existing NSC. It replaces all named instance variables of the NSC (if any), but adds
further data in its object report to the unordered variables, increasing its size. If behaviorFlag
indicates GCI_STORE_TRAV_NSC_REP, then it removes all existing unordered variables
and adds new unordered variables with values from the object report.

GciStoreTrav provides automatic byte swizzling for Float and SmallFloat objects. (For
more about byte swizzling, see page 29.)

Use of Object Reports

The GciStoreTrav function stores values in GemStone objects according to the object
reports contained in travBuff. Each object report is an instance of the C++ class
GciObjRepSType (described in “The Object Report Structure” on page 94). GciStoreTrav
uses the fields in each object report as follows:

rpt->hdr.valueBuffSize
The size (in bytes) of the value buffer, where object data is stored. If objId is a Float or
SmallFloat and valueBuffSize differs from the actual size for objects of objId’s class, then
GciStoreTrav raises an error.

rpt->hdr.namedSize
Ignored by this function.
June 2011 VMware, Inc. 479

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
rpt->hdr.setIdxSize()
Only needs to be called if the object is indexable. The number of indexed variables in
the object stored by GciStoreTrav is never less than this quantity. It may be more if the
value buffer contains enough data. GciStoreTrav stores all the indexed variables that
it finds in the value buffer. If an existing object has more indexed variables, then it also
retains the extras, up to a total of idxSize, and removes any beyond idxSize. If idxSize is
larger than the number of indexed variables in both the current object and the value
buffer, then GciStoreTrav creates slots for elements in the stored object up to index
idxSize and initializes any added elements to nil.

rpt->hdr.firstOffset
Ignored for NSC objects. The absolute offset into the target object at which to begin
storing values from the value buffer. The absolute offset of the object’s first named
instance variable (if any) is one; the offset of its first indexed variable (if any) is one
more than the number of its named instance variables. Values are stored into the object
in the order that they appear in the value buffer, ignoring the boundary between
named and indexed variables. Variables whose offset is less than firstOffset (if any) are
initialized to nil or zero. For nonindexable objects, GciStoreTrav raises an error if
valueBuffSize and firstOffset imply a size that exceeds the actual size of the object. If objId
is a Float or SmallFloat and firstOffset is not one, then GciStoreTrav raises an error.

rpt->hdr.objId
The OOP of the object to be stored.

rpt->hdr.oclass
Used only when creating a new object, to identify its intended class.

rpt->hdr.objectSecurityPolicyId
The ID of the object’s security policy.

rpt->hdr.clearBits()
Must be called before any of the following:

rpt->hdr.setObjImpl()
You must call rpt->hdr.setObjImpl to set this field to be consistent with the object’s
implementation.

rpt->hdr.setInvariant()
Boolean value. Call rpt->hdr.setInvariant(TRUE) if you want this object to be made
invariant after the store specified by rpt* is completed.

rpt->hdr.setIndexable()
Ignored by this function.

rpt->valueBufferBytes()
The value buffer of an object of byte format.
480 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
rpt->valueBufferOops()
The value buffer of an object of pointer or NSC format.

Handling Error Conditions

If you get a runtime error while executing GciStoreTrav, the recommended course of
action is to abort the current transaction.

See Also

GciMoreTraversal, page 293
GciNbMoreTraversal, page 314
GciNbStoreTrav, page 321
GciNbTraverseObjs, page 328
GciNewOopUsingObjRep, page 338
GciProcessDeferredUpdates_, page 388
GciStoreTravDo_, page 482
GciTraverseObjs, page 510
June 2011 VMware, Inc. 481

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreTravDo_

Store multiple traversal buffer values in objects, execute the specified code, and return the
resulting object.

NOTE
In previous GemStone/S 64 Bit releases, this function was named GciStoreTravDo
(without the underscore).

Syntax

OopType GciStoreTravDo_(
GciStoreTravDoArgsSType *args);

Input Arguments

args An instance of GciStoreTravDoArgsSType (as described in
$GEMSTONE/include/gcicmn.ht) containing the following
fields:

GciTravBufType* storeTravBuff
The traversal buffer. For details, see
“GciStoreTrav” on page 478.

int storeTravFlags
A flag that determines how the objects should be
handled. For details, see “GciStoreTrav” on
page 478.

int doPerform
If this field is 0, this function executes a string
using args->u.executesr, with the semantics of
“GciExecuteStrFromContext” on page 198.
If this field is 1, then executes a perform using
args->u.perform, with the semantics of
“GciPerformNoDebug” on page 373. Other
values of this field are only for use with
GciStoreTravDoTravRefs_ or
GciNbStoreTravDoTravRefs_

int doFlags
Flags to disable or permit asynchronous events
482 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
and debugging in Smalltalk, as described in
“GciPerformNoDebug” on page 373. These flags
apply whatever the value of doPerform.

union u
One of two structures containing appropriate
input fields for the specified operation. The
structure u.perform should be used when
doPerform is set to 1, and u.executestr should be
used when doPerform is set to 0. For more
information on these structs and how to use
them, see gcicmn.ht.

OopType* alteredTheOops
An array allocating memory for OOPs of objects
that will be modified as a consequence of
executing the specified code. For more
information, see “GciAlteredObjs” on page 121.

int alteredNumOops
The number of OOPs in the previous array. On
input, the caller must set this to the maximum
number of OOPs that will fit in alteredTheOops.
Upon completion, this field indicates the number
of OOPs actually written to alteredTheOops.

BoolType alteredCompleted
Upon output, TRUE if the alteredTheOops contains
the complete set of objects modified as a result of
executing the specified code; false otherwise. If
FALSE, call GciAlteredObjs for the rest of the
modified objects.

const OopType* execBlock_args
This field is ignored.

int execBlock_numArgs
This field is ignored.

Return Value

Returns the OOP of the result of executing the specified code. In case of error, this function
returns OOP_NIL.
June 2011 VMware, Inc. 483

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Description

The GciStoreTravDo_ function works exactly as “GciStoreTrav” on page 478, and also
executes the supplied code in the same network round-trip.

The description of “GciStoreTrav” on page 478 explains the first two arguments. If the
value of the third argument is 1, see “GciPerformNoDebug” on page 373 for details of the
next five arguments—flags to enable or disable asynchronous events, and the first nested
structure.

If the value of the third argument is 2, see “GciExecuteStrFromContext” on page 198 for
details on next set of arguments—flags to enable or disable asynchronous events, and the
second nested structure of five arguments.

If the value of the third argument is 3, the arguments are similar to those for
GciExecuteStrFromContext, but source must be a String that when compiled will return a
Block. In this case, the last two arguments also are used, which provide the arguments, and
the count of arguments, to be used to execute the compiled block.

The next five input arguments supply needed output after the function has completed.
Read alteredTheOops to get the OOPs of the objects that were modified; read
alteredSymbolBuf to get the pairs of symbols and symbol dictionaries for symbol
canonicalization; finally, read alteredCompleted to determine if the array as originally
allocated was large enough to hold all the modified objects. If the value is false, the array
was too small and holds only some of the modified objects; in this case, call GciAlteredObjs
for the rest.

Handling Error Conditions

If you get a run time error while executing GciStoreTravDo_, we recommend that you
abort the current transaction.

See Also

GciAlteredObjs, page 121
GciExecuteStrFromContext, page 198
GciMoreTraversal, page 293
GciNbMoreTraversal, page 314
GciNbStoreTrav, page 321
GciNbTraverseObjs, page 328
GciNewOopUsingObjRep, page 338
484 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciPerformNoDebug, page 373
GciProcessDeferredUpdates_, page 388
GciStoreTrav, page 478
GciTraverseObjs, page 510
June 2011 VMware, Inc. 485

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreTravDoTrav_

Combine in a single function the calls to GciStoreTravDo_ and GciClampedTrav, to store
multiple traversal buffer values in objects, execute the specified code, and traverse the
result object.

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciStoreTravDoTrav (without the underscore).

Syntax

BoolType GciStoreTravDoTrav_(
GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments

stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the
discussion of GciStoreTravDo_ on page 482.

ctArgs An instance of GciClampedTravArgsSType. For details, see the
discussion of GciClampedTrav on page 135.

Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more
objects to be returned by subsequent calls to GciMoreTraversal (that is, an object report
was constructed for each object, minus the special objects).

Description

This function allows the client to execute behavior on the Gem and return the traversal of
the result object in a single network round-trip.
486 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciClampedTrav, page 135
GciStoreTrav, page 478
GciStoreTravDo_, page 482
June 2011 VMware, Inc. 487

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreTravDoTravRefs_

Combine in a single function modifications to session sets, traversal of objects to the server,
optional Smalltalk execution, and traversal to the client of changed objects and (optionally)
the result object.

NOTE
In previous GemStone/S 64 Bit releases, this function was named
GciStoreTravDoTravRefs (without the underscore).

Syntax

int GciStoreTravDoTravRefs_(
const OopType * oopsNoLongerReplicated,
int numNotReplicated,
const OopType * oopsGcedOnClient,
int numGced,
GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments

oopsNoLongerReplicatedAn Array of objects to be removed from the PureExportSet and
added to the ReferencedSet.

numNotReplicated The number of elements in oopsNoLongerReplicated.
oopsGcedOnClient An Array of objects to be removed from both the PureExportSet and

ReferencedSet.
numGced The number of elements in oopsGcedOnClient.
stdArgs An instance of GciStoreTravDoArgsSType (as described in

$GEMSTONE/include/gcicmn.ht) containing the following
fields:

GciTravBufType* storeTravBuff
The traversal buffer. For details, see
“GciStoreTrav” on page 478.

int storeTravFlags
A flag that determines how the objects should be
handled. For details, see “GciStoreTrav” on
page 478.
488 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
int doPerform
If this field is 0, this function executes a string
using args->u.executestr, with the semantics of
“GciExecuteStrFromContext” on page 198.
If this field is 1, then executes a perform using
args->u.perform, with the semantics of
“GciPerformNoDebug” on page 373. If this field
is 2, execute a string that is the source code for a
Smalltalk block using stdArgs->u.executestr,
passing the block arguments in execBlock_args. If
this field is 3, perform no server Smalltalk
execution, but traverse the object specified in
stdArgs->u.perform.receiver as if it was the results
of execution. If this field is 4, resume execution of
a suspended Smalltalk Process using stdArgs-
>u.continueArgs, with the semantics of
“GciContinueWith” on page 156.

int doFlags
Flags to disable or permit asynchronous events
and debugging in Smalltalk, as described in
“GciPerformNoDebug” on page 373. These flags
apply whatever the value of doPerform.

union u
One of three structures containing appropriate
input fields for the specified operation. The
structure u.perform should be used when
doPerform is set to 1 or 3, u.executestr should be
used when doPerform is set to 0 or 2, and
u.continueArgs should be used when doPerform is
set to 4. For more information on these structs
and how to use them, see gcicmn.ht.

OopType* alteredTheOops
This field is ignored.

int alteredNumOops
This field is ignored.

BoolType alteredCompleted
This field is not used.

const OopType* execBlock_args
An array of the arguments to the block to be
June 2011 VMware, Inc. 489

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
executed. Only applies if doPerform is 2, ignored
otherwise.

int execBlock_numArgs
The number of the arguments provided in
execBlock_args. This must match the declared
number of arguments in the block source string.
Only applies if doPerform is 2, ignored otherwise.

ctArgs An instance of GciClampedTravArgsSType. For details, see the
discussion of GciClampedTrav on page 135, with one exception. The
valid retrievalFlags are limited to:
GCI_RETRIEVE_DEFAULT
GCI_TRAV_REFS_EXCLUDE_RESULT_OBJ will suppress
traversal of the result object. The altered objects will still be
traversed to the specified level.
No other retrievalFlags values should be used with this function.

Return Value

Returns an int with the following meaning:

0 —traversal of both altered objects and execution result completed.

1 —traversal buffer became full. You must call GciMoreTraversal to finish
traversal of the altered and result objects.

Description

This function allows the client to modify the PureExportSet and ReferencedSet, modify or
create any number of objects on the server, execute behavior on the Gem, and return the
traversal of the changed objects and the result object, all in a single network round-trip.

The elements in oopsGcedOnClient are removed from both PureExportSet and
ReferencedSet, and the elements in oopsNoLongerReplicated are removed from the
PureExportSet and added to the ReferencedSet.

Objects in the ReferencedSet are protected from garbage collection, but may be faulted out
of memory. Dirty tracking is not done on objects in the ReferencedSet.

Then per the stdArgs, a GciStoreTrav is done, which may modify or create any number of
objects on the server. Newly created objects are added to the PureExportSet.
490 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Then, if specified, Smalltalk execution is performed as in GciPerformNoDebug,
GciExecuteStrFromContext, or executing the block code with the given arguments.

Finally, this function does a special GciClampedTrav starting with altered objects,
followed by the execution result from the previous step. If no execution was specified, the
specified object is traversed as if it was an execution result. Altered objects are those that
would be returned from a GciAlteredObjs after the code execution step. This traversal
both relies on the contents of the PureExportSet and ReferencedSet does not, and also
modifies those sets in ways that GciClampedTrav does not. For details, see the comments
in gci.hf.

GciStoreTravDoTravRefs_ is not intended for use within a user action.

See Also

GciClampedTrav, page 135
GciStoreTrav, page 478
GciStoreTravDo_, page 482
GciStoreTravDoTrav_, page 486
June 2011 VMware, Inc. 491

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStringToInteger

Convert a C string to a GemStone SmallInteger, LargePositiveInteger or
LargeNegativeInteger object.

Syntax

OopType GciStringToInteger(
const char* string,
int64 stringSize);

Input Arguments

string The C string to be translated into a GemStone SmallInteger,
LargePositiveInteger or LargeNegativeInteger object.

stringSize The length of string.

Return Value

Returns the OOP of the GemStone SmallInteger, LargePositiveInteger or
LargeNegativeInteger object. If string has an invalid format, this function returns
OOP_NIL without an error.

Description

The GciStringToInteger function translates a C string to a GemStone SmallInteger,
LargePositiveInteger or LargeNegativeInteger object that has the same value.

Leading blanks are ignored. Trailing non-digits are ignored.

See Also
492 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStrKeyValueDictAt

Find the value in a symbol KeyValue dictionary at the corresponding string key.

Syntax

void GciStrKeyValueDictAt(
OopType theDict,
const char * keyString,
OopType * value);

Input Arguments

theDict The OOP of a SymbolKeyValueDictionary.
keyString The OOP of a key in the SymbolKeyValueDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned
value.

Description

Returns the value in symbol KeyValue dictionary theDict that corresponds to key keyString.
If an error occurs or keyString is not found, value is OOP_ILLEGAL. KeyValue dictionaries
do not have associations, so no association is returned. GciStrKeyValueDictAt is
equivalent to GciStrKeyValueDictAtObj except that the key is a character string, not an
object.

See Also

GciStrKeyValueDictAtObj, page 494
GciStrKeyValueDictAtObjPut, page 495
GciStrKeyValueDictAtPut, page 496
June 2011 VMware, Inc. 493

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStrKeyValueDictAtObj

Find the value in a symbol KeyValue dictionary at the corresponding object key.

Syntax

void GciStrKeyValueDictAtObj(
OopType theDict,
OopType keyObj,
OopType * value);

Input Arguments

theDict The OOP of a SymbolKeyValueDictionary.
keyObj The OOP of a key in the SymbolKeyValueDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned
value.

Description

Returns the value in symbol KeyValue dictionary theDict that corresponds to key keyObj. If
an error occurs or keyObj is not found, value is OOP_ILLEGAL. KeyValue dictionaries do
not have associations, so no association is returned. Equivalent to the GemStone Smalltalk
expression:

^ { theDict at:keyObj }

See Also

GciStrKeyValueDictAt, page 493
GciStrKeyValueDictAtObjPut, page 495
GciStrKeyValueDictAtPut, page 496
494 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStrKeyValueDictAtObjPut

Store a value into a symbol KeyValue dictionary at the corresponding object key.

Syntax

void GciStrKeyValueDictAtObjPut(
OopType theDict,
OopType keyObj,
OopType theValue);

Input Arguments

theDict The OOP of the SymbolKeyValueDictionary into which the object is
to be stored.

keyObj The OOP of the key under which the object is to be stored.
theValue The OOP of the object to be stored in the

SymbolKeyValueDictionary.

Description

Adds object theValue to symbol KeyValue dictionary theDict with key keyObj. Equivalent to
the Smalltalk expression:

theDict at: keyObj put: theValue

See Also

GciStrKeyValueDictAt, page 493
GciStrKeyValueDictAtObj, page 494
GciStrKeyValueDictAtPut, page 496
June 2011 VMware, Inc. 495

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciStrKeyValueDictAtPut

Store a value into a symbol KeyValue dictionary at the corresponding string key.

Syntax

void GciStrKeyValueDictAtPut(
OopType theDict,
const char * keyString,
OopType theValue);

Input Arguments

theDict The OOP of the SymbolKeyValueDictionary into which the object is
to be stored.

keyString The string key under which the object is to be stored.
theValue The OOP of the object to be stored in the

SymbolKeyValueDictionary.

Description

Adds object theValue to symbol KeyValue dictionary theDict with key keyString.
GciStrKeyValueDictAtPut is equivalent to GciStrKeyValueDictAtObjPut, except the
key is a character string, not an object.

See Also

GciStrKeyValueDictAt, page 493
GciStrKeyValueDictAtObj, page 494
GciStrKeyValueDictAtObjPut, page 495
496 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciStrToPath

Convert a path representation from string to numeric.

This function is deprecated and may be removed from future releases.

Syntax

BoolType GciStrToPath(
OopType aClass,
const char pathString[],
int64 maxPathSize,
int * resultPathSize,
int resultPath[]);

Input Arguments

aClass The class of the object for which this path will apply. That is, for each
instance of this class, store or fetch objects along the designated path.

pathString The (null-terminated) path string to be converted to the equivalent
numeric array.

maxPathSize The maximum allowable size of the resulting path array (the
number of elements). This is the size of the buffer that will be
allocated for the resulting path array.

Result Arguments

resultPathSize A pointer to the actual size of resultPath.
resultPath The resulting array of integers. Those integers are offsets that specify

a path from which to fetch objects. A positive integer x refers to an
object’s xth named instance variable. When a path goes through an
indexed instance variable (an Array element, for example), the
position of that object must be represented by a negative integer. The
third element of an Array, for example, would be denoted in a path
by -3.
June 2011 VMware, Inc. 497

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
Return Value

Returns TRUE if the path string was successfully translated to an array of integer offsets.
Returns FALSE otherwise.

Description

The functions GciFetchPaths and GciStorePaths allow you to specify paths along which
to fetch from, or store into, objects within an object tree.

NOTE:
This function is most useful with applications that are linked with
GciRpc (the “remote procedure call” version of GemBuilder). If your
application will be linked with GciLnk (the “linkable” GemBuilder),
you’ll usually achieve best performance by using the simple GciFetch...
and GciStore... functions rather than object traversal. For more
information, see “GciRpc and GciLnk” on page 53.

A path may be represented as a string, in which each element is the name of an instance
variable (for example, ‘address.zip’, in which zip is an instance variable of address.)
Alternatively, a path may be represented as an array of integers, in which each step along
the path is represented by the corresponding integral offset from the beginning of an object
(for example, an array containing the integers 5 and 2 would represent the offsets of the
fifth and second instance variables, respectively).

This function (GciStrToPath) converts the string representation of a path to its equivalent
numeric representation, for use with GciFetchPaths or GciStorePaths.

For more information about paths, see the description of the GciFetchPaths function on
page 237.

Restrictions

Note that GciStrToPath can convert a numeric path only if the instance variables of the
specified Smalltalk class (aClass) are guaranteed to have the same valid path for all
instances.

Error Conditions

The following errors may be generated by this function:

GCI_ERR_RESULT_PATH_TOO_LARGE
The resultPath was larger than the specified maxPathSize
498 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
RT_ERR_STR_TO_PATH_IVNAME
One of the instance variable names in the path string was invalid

RT_ERR_STR_TO_PATH_CONSTRAINT
One of the instance variables in the path string was not sufficiently constrained

Example

In the following example, assume that you’ve defined the class Component and populated
the set AllComponents, as shown in the example for the GciFetchVaryingOop function on
page 248.

void strToPath_example(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);

 // fetch name instVar of the first 10 elements of aComponent’s
part list */

 OopType oClass = GciFetchClass(aComponent);
 enum { buf_size = 10 };
 OopType subParts[buf_size];
 int64 numSubParts = GciFetchVaryingOops(aComponent, 1, subParts,
buf_size);

 enum { path_array_size = 3 };
 int path[path_array_size];
 int pathSize; // actual number of terms in path , expect 1
 GciStrToPath(oClass, “name”, path_array_size, &pathSize, path);

 int numPaths = 1;
 OopType nameIvs[buf_size];
 GciFetchPaths(subParts, numSubParts, path, &pathSize, numPaths,
nameIvs);
}

GciFetchPaths, page 237
GciPathToStr, page 368
GciStorePaths, page 471
June 2011 VMware, Inc. 499

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSwapBytesUint

Swap the byte order of an array of uint.

Syntax

void GciSwapBytesUint(
uint * buf,
intptr_t numChars);

Input Arguments

buf An array of uint.
numChars The size of the array.

Description

Swaps the byte order of the specified array of uint.

See Also

GciSwapBytesUshort, page 501
500 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSwapBytesUshort

Swap the byte order of an array of ushort.

Syntax

void GciSwapBytesUshort(
ushort * buf,
intptr_t numChars);

Input Arguments

buf An array of ushort.
numChars The size of the array.

Description

Swaps the byte order of the specified array of ushort.

See Also

GciSwapBytesUint, page 500
June 2011 VMware, Inc. 501

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSymDictAt

Find the value in a symbol dictionary at the corresponding string key.

Syntax

void GciSymDictAt(
OopType theDict,
const char * keyString,
OopType * value,
OopType * association);

Input Arguments

theDict The OOP of a SymbolDictionary.
keyString The OOP of a key in the SymbolDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned
value.

association A pointer to the variable that is to receive the OOP of the association.

Description

Returns the value in symbol dictionary theDict that corresponds to key keyString. If an error
occurs or keyString is not found, value is OOP_ILLEGAL. If association is not NULL and an
error does not occur, stores the OOP of the association for keyString at *association, or stores
OOP_ILLEGAL if keyString was not found. Equivalent to GciSymDictAtObj except that
the key is a character string, not an object.

To operate on kinds of Dictionary other than SymbolDictionary, such as
KeyValueDictionary, use GciPerform, since the KeyValueDictionary class is implemented
in Smalltalk. If your dictionary will be large (greater than 20 elements) a
KeyValueDictionary is more efficient than a SymbolDictionary.
502 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
See Also

GciSymDictAtObj, page 504
GciSymDictAtObjPut, page 505
GciSymDictAtPut, page 506
June 2011 VMware, Inc. 503

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSymDictAtObj

Find the value in a symbol dictionary corresponding to the key object.

Syntax

void GciSymDictAtObj(
OopType theDict,
OopType keyObj,
OopType * value,
OopType * association);

Input Arguments

theDict The OOP of a SymbolDictionary.
keyObj The OOP of a key in the SymbolDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned
value.

association A pointer to the variable that is to receive the OOP of the association.

Description

Fetches the value in symbol dictionary theDict that corresponds to key keyObj. If an error
occurs or keyObj is not found, value is OOP_ILLEGAL. If association is not NULL and an
error does not occur, stores the OOP of the association for keyObj at *association, or stores
OOP_ILLEGAL if keyObj was not found. Similar to the GemStone Smalltalk expression:

^ { theDict at: keyObj . theDict associationAt: keyObj }

See Also

GciSymDictAt, page 502
GciSymDictAtObjPut, page 505
GciSymDictAtPut, page 506
504 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciSymDictAtObjPut

Store a value into a symbol dictionary at the corresponding object key.

Syntax

void GciSymDictAtObjPut(
OopType theDict,
OopType keyObj,
OopType theValue);

Input Arguments

theDict The OOP of the SymbolDictionary into which the value is to be
stored.

keyObj The OOP of the key under which the value is to be stored.
theValue The OOP of the object to be stored in the SymbolDictionary.

Description

Adds object theValue to symbol dictionary theDict with key keyObj. Equivalent to the
Smalltalk expression:

theDict at: keyObj put: theValue

See Also

GciSymDictAt, page 502
GciSymDictAtObj, page 504
GciSymDictAtPut, page 506
June 2011 VMware, Inc. 505

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciSymDictAtPut

Store a value into a symbol dictionary at the corresponding string key.

Syntax

void GciSymDictAtPut(
OopType theDict,
const char * keyString,
OopType theValue);

Input Arguments

theDict The OOP of the SymbolDictionary into which the object is to be
stored.

keyString The string key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolDictionary.

Description

Adds object theValue to symbol dictionary theDict with key keyString. Equivalent to
GciSymDictAtObjPut, except the key is a character string, not an object.

See Also

GciSymDictAt, page 502
GciSymDictAtObj, page 504
GciSymDictAtObjPut, page 505
506 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciTrackedObjsFetchAllDirty

Find all exported or tracked objects that have changed and are therefore in the
ExportedDirtyObjs or TrackedDirtyObjs sets.

Syntax

void GciTrackedObjsFetchAllDirty(
OopType exportedDirty,
int64 * numExportedDirty,
OopType trackedDirty,
int64 * numTrackedDirty);

Input Arguments

exportedDirty OOP of the collection (an instance of either IdentitySet or
IdentityBag) that will contain the objects in the ExportedDirtyObjs
set.

trackedDirty OOP of the collection (an instance of either IdentitySet or
IdentityBag) that will contain the objects in the TrackedDirtyObjs
set.

Result Arguments

numExportedDirty Pointer to an integer that returns the number of objects in the
exportedDirty collection.

numTrackedDirty Pointer to an integer that returns the number of objects in the
trackedDirty collection.

Description

GciTrackedObjsFetchAllDirty fetches all dirty objects and sorts them into two categories:

 • Objects in the ExportedDirtyObjs set - objects in the PureExportSet that have
been changed since the ExportedDirtyObjs set was initialized or cleared.

 • Objects in the TrackedDirtyObjs set - objects in the GciTrackedObjs set that
have been changed since the TrackedDirtyObjs set was initialized or cleared.
June 2011 VMware, Inc. 507

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
The ExportedDirtyObjs set is initialized by GciDirtyObjsInit; it is cleared by calls to
GciDirtyAlteredObjs, GciDirtyExportedObjs, GciDirtySaveObjs, or
GciTrackedObjsFetchAllDirty (this function). The TrackedDirtyObjs set is initialized by
GciTrackedObjsInit and cleared by calls to GciDirtyAlteredObjs, GciDirtySaveObjs,
GciDirtyTrackedObjs, or GciTrackedObjsFetchAllDirty (this function).

An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution.

 • The object was changed by a call to any GemBuilder function from within a
user action.

 • The object was changed by a call to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.

 • A change to the object was committed by another transaction since it was read
by this one.

 • The object is persistent, but was modified in the current session before the
session aborted the transaction. (When the transaction is aborted, the
modifications are destroyed, thus changing the state of the object in memory).

You must call both GciDirtyObjsInit and GciTrackedObjsInit once after GciLogin before
calling GciTrackedObjsFetchAllDirty.

Note that the ExportedDirtyObjs and TrackedDirtyObjs sets are cleared when this function
is executed.

See Also

“Garbage Collection” on page 49
“GciDirtyExportedObjs” on page 174
“GciDirtyObjsInit” on page 176
“GciDirtySaveObjs” on page 178
“GciDirtyTrackedObjs” on page 180
“GciTrackedObjsInit” on page 509
508 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciTrackedObjsInit

Reinitialize the set of tracked objects maintained by GemStone.

Syntax

void GciTrackedObjsInit();

Description

The GciTrackedObjsInit function permits an application to request GemStone to maintain
a set of tracked objects. GciTrackedObjsInit must be called once after GciLogin before
other tracked objects functions in order for those functions to operate properly, because
they depend upon GemStone’s set of tracked objects.

See Also

GciDirtySaveObjs, page 178
GciDirtyTrackedObjs, page 180
GciHiddenSetIncludesOop, page 268
GciTrackedObjsFetchAllDirty, page 507
June 2011 VMware, Inc. 509

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciTraverseObjs

Traverse an array of GemStone objects.

Syntax

BoolType GciTraverseObjs(
const OopType theOops[],
int numOops,
GciTravBufType * travBuff,
int level);

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travBuffSize The number of bytes in travBuff.
level Maximum traversal depth. When the level is 1, an object report is

written to the traversal buffer for each element in theOops. When
level is 2, an object report is also obtained for the instance variables
of each level-1 object. When level is 0, the number of levels in the
traversal is not restricted.

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more
objects to be returned by subsequent calls to GciMoreTraversal.
510 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Description

This function allows you to reduce the number of GemBuilder calls that are required for
your application program to obtain information about complex objects in the database.

NOTE
This function is most useful with applications that are linked with GciRpc (the
“remote procedure call” version of GemBuilder). If your application will be linked
with GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

There are no built-in limits on how much information can be obtained in the traversal. You
can use the level argument to restrict the size of the traversal.

GciTraverseObjs provides automatic byte swizzling for Float and SmallFloat objects. (For
more about byte swizzling, see page 29.)

Organization of the Traversal Buffer

The first element placed in a traversal buffer is an integer that indicates how many bytes
were actually stored in the buffer by this function. The remainder of the traversal buffer
consists of a series of object reports, each of which is of type GciObjRepSType, as
described on page 479.

In order for the traversal buffer to accommodate m objects, each of which is of size n bytes,
your application should allocate at least enough memory so that the traversal buffer’s size
can be assigned according to the following formula:

GciTravBufType* travBufAllocation_example(void)
{
 int numObjs = 100;
 int bodyBytesPerObj = 1000;
 size_t allocationSize =
numObjs * GCI_ALIGN(sizeof(GciObjRepHdrSType) + bodyBytesPerObj);

 GciTravBufType *buf = GciTravBufType::malloc(allocationSize);
 return buf;
}

The macro GCI_ALIGN ensures that the value buffer portion of each object report begins
at a word boundary.
June 2011 VMware, Inc. 511

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
This function ensures that each object report header and value buffer begins on a word
boundary. To provide proper alignment, 0 to 7 bytes may be inserted between each header
and value buffer.

The Value Buffer

The object report’s value buffer begins at the first byte following the object report header.
For byte objects, the value buffer rpt->valueBufferBytes() is an array of type ByteType; for
pointer objects and NSCs, the buffer rpt->valueBufferOops() is an array of type OopType.
The size of the report’s value buffer (rpt->hdr.valueBuffSize) is the number of bytes of the
object’s value returned by this traversal. That number is no greater than the size of the
object.

How This Function Works

This section explains how GciTraverseObjs stores object reports in the traversal buffer and
values in the value buffer.

1. First, GciTraverseObjs verifies that the traversal buffer is large enough to
accommodate at least one object report header (GciObjRepHdrSType). If the buffer is
too small, GemBuilder returns an error.

2. For each object in the traversal, GciTraverseObjs discovers if there is enough space left
in the traversal buffer to store both the object report header and the object’s values. If
there isn’t enough space remaining, the function returns 0, and your program can call
GciMoreTraversal to continue the traversal. Otherwise (if there is enough space), the
object’s values are stored in the traversal buffer.

3. When there are no more objects left to traverse, GciTraverseObjs returns a nonzero
value to indicate that the traversal is complete.

Special Objects

For each occurrence of an object with a special implementation (that is, an instance of
SmallInteger, Character, Boolean, or UndefinedObject) contained in theOops, this function
will return an accurate object report. For any special object encountered at some deeper
point in the traversal, no object report will be generated.
512 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
Authorization Violations

If the user is not authorized to read some object encountered during the traversal, the
traversal will continue. No value will be placed in the object report’s value buffer, but the
report for the forbidden object will contain the following values:

hdr.valueBuffSize 0
hdr.namedSize 0
hdr.idxSize 0
hdr.firstOffset 1
hdr.objId theOop
hdr.oclass OOP_NIL
hdr.objectSecurityPolicyId 0
hdr.objImpl GC_FORMAT_SPECIAL
hdr.isInvariant 0

Incomplete Object Reports

It is possible for an object report to not contain all the instance variables of an object, due
to traversal specifications or buffer size limitations. The value buffer is incomplete when
hdr.isPartial() returns non-zero.

Continuing the Traversal

When the amount of information obtained in a traversal exceeds the amount of available
memory (as specified with travBuffSize), your application can break the traversal into
manageable amounts of information by issuing repeated calls to GciMoreTraversal.
Generally speaking, an application can continue to call GciMoreTraversal until it has
obtained all requested information.

During the entire sequence of GciTraverseObjs and GciMoreTraversal calls that
constitute a traversal, any single object report will be returned exactly once. Regardless of
the connectivity of objects in the GemStone database, only one report will be generated for
any non-special object.

When Traversal Can’t Be Continued

Naturally, GemStone will not continue an incomplete traversal if there is any chance that
changes to the database in the intervening period might have invalidated the previous
report or changed the connectivity of the objects in the path of the traversal. Specifically,
June 2011 VMware, Inc. 513

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GemStone will refuse to continue a traversal if, in the interval before attempting to
continue, you:

 • Modify the objects in the database directly, by calling any of the GciStore... or
GciAdd... functions;

 • Call one of the Smalltalk message-sending functions GciPerform, GciContinue, or any
of the GciExecute... functions;

 • Abort your transaction, thus invalidating any subsequent information from that
traversal.

Any attempt to call GciMoreTraversal after one of these actions will generate an error.

Note that this holds true across multiple GemBuilder applications sharing the same
GemStone session. Suppose, for example, that you were holding on to an incomplete
traversal buffer and the user moved from the current application to another, did some
work that required executing Smalltalk code, and then returned to the original application.
You would be unable to continue the interrupted traversal.

Example

For an example of how GciTraverseObjs is used, see the GciMoreTraversal function on
page 293.

See Also

GciFindObjRep, page 255
GciMoreTraversal, page 293
GciNbMoreTraversal, page 314
GciNbStoreTrav, page 321
GciNbTraverseObjs, page 328
GciNewOopUsingObjRep, page 338
GciObjRepSize_, page 348
GciStoreTrav, page 478
514 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciUncompress

Uncompress the supplied data, assumed to have been compressed with GciCompress.

Syntax

int GciUncompress(
char * dest,
uint * destLen,
const char * source,
uint sourceLen);

Input Arguments

dest Pointer to the buffer intended to hold the resulting uncompressed
data.

destLen Length, in bytes, of the buffer intended to hold the uncompressed
data.

source Pointer to the source data to uncompress.
sourceLen Length, in bytes, of the source data.

Result Arguments

dest The resulting uncompressed data.

Return Value

GciUncompress returns Z_OK (equal to 0) if the decompression succeeded, or various
error values if it failed; see the documentation for the uncompress function in the GNU
zlib library at http://www.gzip.org.

Description

GciUncompress passes the supplied inputs unchanged to the uncompress function in the
GNU zlib library Version 1.2.3, and returns the result exactly as the GNU uncompress
function returns it.
June 2011 VMware, Inc. 515

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
See Also

GciCompress, page 151
516 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciUserActionInit

Declare user actions for GemStone.

Syntax

void GciUserActionInit()

Description

GciUserActionInit is implemented by the application developer, but it is called by GciInit.
It enables Smalltalk to find the entry points for the application’s user actions, so that they
can be executed from the database.
June 2011 VMware, Inc. 517

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
GciUserActionShutdown

Enable user-defined clean-up for user actions.

Syntax

void GciUserActionShutdown()

Description

GciUserActionShutdown is implemented by the application developer, and is called
when a session user action library is unloaded. It enables user-defined clean-up for the
application’s user actions.
518 VMware, Inc. June 2011

Chapter 6 - GemBuilder C Functions Function Summary Tables
GciVersion

Return a string that describes the GemBuilder version.

Syntax

const char* GciVersion()

Description

GciVersion returns a string terminated by 0, containing fields that describe the specific
release of GemBuilder. Fields in the string are delimited by a period (.).

For more version information, use the methods in class System in the Version Management
category.

See Also

GciProduct, page 390
June 2011 VMware, Inc. 519

Function Summary Tables GemStone/S 64 Bit 3.0 GemBuilder for C
520 VMware, Inc. June 2011

Appendix

A Reserved OOPs
The GemBuilder for C include file gcioop.ht defines C mnemonics for the OOPs
of certain GemStone objects that are already defined in your GemStone software
package. Your C application can compare all these mnemonics with any value of
type OopType. However, the value of any mnemonic is subject to change without
notice in future software releases. Your C application should refer to the OOPs of
predefined GemStone objects by mnemonic name only.

The following mnemonic names for predefined GemStone objects are available to
C programs:

 • A value that, strictly speaking, is not an object at all, but that represents a value
that is never used to represent any object in the database. You can use this
mnemonic to test whether or not an OOP is valid, that is, whether or not it
actually points to any GemStone object.

 • OOP_ILLEGAL

 • Special objects

 • OOP_NIL (nil)
 • OOP_FALSE (FALSE)
 • OOP_TRUE (true)
June 2011 VMware, Inc. 521

GemStone/S 64 Bit 3.0 GemBuilder for C
 • Instances of SmallInteger

 • OOP_MinusOne
 • OOP_Zero
 • OOP_One
 • OOP_Two

 • Instances of Character

 • OOP_ASCII_NUL represents the first ASCII character OOP
 • 255 other OOPs represent the remaining ASCII characters, but they have

no mnemonics

 • Instances of JISCharacter

 • OOP_FIRST_JIS_CHAR

 • The GemStone Smalltalk kernel classes

 • OOP_CLASS_className (in this case, the class name is in capital letters,
with words separated by underscore characters)

 • OOP_LAST_KERNEL_OOP (which has the same value as the last class)
 • OOP_CLASS_EXCEPTION

 • The GemStone error dictionary

 • OOP_GEMSTONE_ERROR_CAT

 • The cluster bucket category

 • OOP_ALL_CLUSTER_BUCKETS
522 VMware, Inc. June 2011

Appendix

B GemStone C Statistics
Interface
This appendix describes the GemStone C Statistics Interface (GCSI), a library of
functions that allow your C application to collect GemStone statistics directly from
the shared page cache without starting a database session.

B.1 Developing a GCSI Application
The command lines in this appendix assume that you have set the GEMSTONE
environment variable to your GemStone installation directory.

Required Header Files
Your GCSI program must include the following header files:

● $GEMSTONE/include/shrpcstats.ht — Defines all cache statistics. (For
a list of cache statistics, refer to the “Monitoring GemStone” chapter of the
System Administration Guide for GemStone/S.)

● $GEMSTONE/include/gcsi.hf — Prototypes for all GCSI functions.

● $GEMSTONE/include/gcsierr.ht — GCSI error numbers.

Your program must define a main() function somewhere.
June 2011 VMware, Inc. 523

Developing a GCSI Application GemStone/S 64 Bit 3.0 GemBuilder for C
The GCSI Shared Library
GemStone provides a shared library, $GEMSTONE/lib/libgcsi30.so, that
your program will load at runtime.

● Make sure that $GEMSTONE/lib is included in your LD_LIBRARY_PATH
environment variable, so that the runtime loader can find the GCSI library. For
example:

export LD_LIBRARY_PATH=$GEMSTONE/lib:$LD_LIBRARY_PATH

● $GEMSTONE/lib/libgcsi30.so is a multi-threaded library, so your
program must also be compiled and linked as a multi-threaded program.

Compiling and Linking
The $GEMSTONE/examples directory includes the sample GCSI program
gsstat.cc, along with a set of sample makefiles that show how to compile the
sample GCSI program, using the compilers that are used to build the GemStone
product.

NOTE
It may still be possible to build your program with another compiler, as
long as you specify the appropriate flags to enable multi-threading.

Whenever you upgrade to a new GemStone version, you must re-compile and re-
link all your GCSI programs. This is because the internal structure of the shared
cache may change from version to version. Assuming you’ve created a makefile,
all you should need to do is change $GEMSTONE and rebuild.

Connecting to the Shared Page Cache
The GCSI library allows your program to connect to a single GemStone shared
page cache. Once the connection is made, a thread is started to monitor the cache
and disconnect from it if the cache monitor process dies. This thread is needed to
prevent your program from "holding on" to the shared cache after all other
processes have detached from it. In this way, your program can safely sleep for a
long time without preventing the operating system from freeing and recycling
shared memory should the Stone be unexpectedly shut down.
524 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
The Sample Program
The sample program gsstat.cc (in $GEMSTONE/examples) monitors a
running GemStone repository by printing out a set of statistics at a regular interval
that you specify. The program prints the following statistics:

● Sess — TotalSessionsCount; the total number of sessions currently logged in
to the system.

● CR — CommitRecordCount; the number of outstanding commit records that
are currently being maintained by the system.

● PNR — PagesNeedReclaimSize; the amount of reclamation work that is
pending, that is, the backlog waiting for the GcGem reclaim task.

● PD — PossibleDeadSize; the number of objects previously marked as
dereferenced in the repository, but for which sessions currently in a
transaction might have created a reference in their object space.

● DNR — DeadNotReclaimedSize; the number of objects that have been
determined to be dead (current sessions have indicated they do not have a
reference to these objects) but have not yet been reclaimed.

● FP — The number of free pages in the Stone.

● OCS — OldestCrSession; the session ID of the session referencing the oldest
commit record. Prints 0 if the oldest commit record is not referenced by any
session, or if there is only one commit record.

● FF — FreeFrameCount; the number of unused page frames in the shared page
cache.

To invoke gsstat, supply the name of a running Stone (or shared page cache, if
running on a Gem server) and a time interval in seconds. For example:

% gsstat myStone 2

To stop the gsstat program and detach from the cache, issue a CTRL-C.

B.2 GCSI Data Types
The following C types are used by GCSI functions. The file shrpcstats.ht
defines each of the GCSI types (shown in capital letters below). That file is in the
$GEMSTONE/include directory.

ShrPcMonStatSType
Shared page cache monitor statistics.
June 2011 VMware, Inc. 525

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
ShrPcStnStatSType
Stone statistics.

ShrPcPgsvrStatSType
Page server statistics.

ShrPcGemStatSType
Gem session statistics.

ShrPcStatUnion
The union of all four statistics structured types: shared page cache
monitor, page server, Stone, and Gem.

ShrPcCommonStatSType
Common statistics collected for all processes attached to the
shared cache.

The Structure for Representing the GCSI Function Result
The structured type GcsiResultSType provides a C representation of the result of
executing a GCSI function. This structure contains the following fields:

typedef struct {

 signed int processId;

 signed int sessionId;

 ShrPcCommonStatSType cmn;

 union ShrPcStatUnion u;

} ShrPcStatsSType;

class GcsiResultSType {

public:

 char vsdName[SHRPC_PROC_NAME_SIZE + 1];

 unsigned int statType;

 ShrPcStatsSType stats;

};
526 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
In addition, a set of C mnemonics support representation of the count of each
process-specific structured type.

#define COMMON_STAT_COUNT
(sizeof(ShrPcCommonStatSType)/sizeof(int))

#define SHRPC_STAT_COUNT
(sizeof(ShrPcMonStatSType)/sizeof(int) + \

 COMMON_STAT_COUNT)

#define GEM_STAT_COUNT
(sizeof(ShrPcGemStatSType)/sizeof(int) + \

 COMMON_STAT_COUNT)

#define PGSVR_STAT_COUNT
(sizeof(ShrPcPgsvrStatSType)/sizeof(int) + \

 COMMON_STAT_COUNT)

#define STN_STAT_COUNT
(sizeof(ShrPcStnStatSType)/sizeof(int) + \

COMMON_STAT_COUNT)
June 2011 VMware, Inc. 527

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiAllStatsForMask

Get all cache statistics for a specified set of processes.

Syntax

int GcsiAllStatsForMask(mask, result, resultSize);
unsigned int mask;
GcsiResultSType * result;
int * resultSize;

Input Arguments

mask Indicates what types of processes to collect statistics for.
result Address of an array of kind GcsiResultSType where statistics will be

stored.
resultSize Pointer to an integer that indicates the size of the result in elements

(not bytes). On return, indicates the number of that were stored into
result. Indicates the maximum number of processes for which
statistics can be returned.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

Example

Mask bits should be set by a bitwise OR of the desired process types. For example, to get
statistics for the stone and Shared Page Cache Monitor:

unsigned int mask = SHRPC_MONITOR | SHRPC_STONE;
528 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiAttachSharedCache

Attach to the specified shared page cache.

Syntax

int GcsiAttachSharedCache(fullCacheName, errBuf, errBufSize);
const char * fullCacheName;
char * errBuf;
size_t errBufSize;

Input Arguments

fullCacheName Full name of the shared page cache, in the format
stoneName@stoneHostIpAddress. To determine the full name of the
shared cache, use the gslist -x utility.

errBuf A buffer that will contain a string describing an error.
errBufSize Size (in bytes) of errBuf.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiAttachSharedCacheForStone, page 530
GcsiDetachSharedCache, page 531
June 2011 VMware, Inc. 529

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiAttachSharedCacheForStone

Attaches this process to the specified shared page cache.

Syntax

int GcsiAttachSharedCacheForStone(stoneName, errBuf, errBufSize);
const char * stoneName;
char * errBuf;
size_t errBufSize;

Input Arguments

stoneName Name of the Stone process.
errBuf A buffer that will contain a string describing an error.
errBufSize Size (in bytes) of errBuf.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

Description

This function assumes that the cache name is <stoneName>@<thisIpAddress> where
thisIpAddress is the IP address of the local machine. This function may fail if the host
is multi-homed (has more than one network interface). In that case, use
GcsiAttachSharedCache (page 529) to specify the full name of the shared cache.

See Also

GcsiAttachSharedCache, page 529
GcsiDetachSharedCache, page 531
530 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiDetachSharedCache

Detach from the shared page cache.

Syntax

int GcsiDetachSharedCache (void);

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiAttachSharedCache, page 529
GcsiAttachSharedCacheForStone, page 530
June 2011 VMware, Inc. 531

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiFetchMaxProcessesInCache

Return the maximum number of processes that can be attached to this shared cache at any
instant. The result may be used to allocate memory for a calls to the GcsiFetchStatsForAll*
family of functions.

Syntax

int GcsiFetchMaxProcessesInCache(maxProcesses);
int * maxProcesses;

Input Arguments

maxProcesses The maximum number of processes that can be attached to this
shared cache at any instant.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.
532 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiInit

Initialize the library. This function must be called before all other GCSI functions.

Syntax

GcsiInit(void);
June 2011 VMware, Inc. 533

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiShrPcMonStatAtOffset

Get the SPC monitor cache statistic at the given byte offset within the ShrPcMonStatSType
structure type.

Syntax

int GcsiShrPcMonStatAtOffset(byteOffset, stat);
size_t byteOffset;
unsigned int * stat;

Input Arguments

byteOffset Offset (in bytes) of the desired statistic in the ShrPcStatUnion type.
stat Value of the requested statistic.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStnStatAtOffset, page 535
534 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStnStatAtOffset

Get the Stone cache statistic at the given byte offset within the ShrPcStnStatSType structure
type.

Syntax

int GcsiStnStatAtOffset(byteOffset, stat);
size_t byteOffset;
unsigned int * stat;

Input Arguments

byteOffset Offset (in bytes) of the desired statistic in the ShrPcStatUnion type.
stat Value of the requested statistic.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiInit, page 533
June 2011 VMware, Inc. 535

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiStatsForGemSessionId

Get the cache statistics for the given Gem session id.

Syntax

int GcsiStatsForGemSessionId(sessionId, result);
int sessionId;
GcsiResultSType * result;

Input Arguments

sessionId Session ID of the Gem for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStatsForGemSessionWithName, page 537
GcsiStatsForPgsvrSessionId, page 538
GcsiStatsForProcessId, page 539
GcsiStatsForShrPcMon, page 540
GcsiStatsForStone, page 541
536 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStatsForGemSessionWithName

Get the cache statistics for the first Gem in the cache with the given cache name.

Syntax

int GcsiStatsForGemSessionWithName(gemName, result);
char * gemName;
GcsiResultSType * result;

Input Arguments

gemName The case-sensitive name of the Gem for which statistics are
requested.

result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStnStatAtOffset, page 535
GcsiStatsForPgsvrSessionId, page 538
GcsiStatsForProcessId, page 539
GcsiStatsForShrPcMon, page 540
GcsiStatsForStone, page 541
June 2011 VMware, Inc. 537

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiStatsForPgsvrSessionId

Get the cache statistics for the given page server with the given session id. Remote Gems
have page servers on the Stone’s cache that assume the same session ID as the remote Gem.

Syntax

int GcsiStatsForPgsvrSessionId(sessionId, result);
int sessionId;
GcsiResultSType * result;

Input Arguments

sessionId Session ID of the page server for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStatsForGemSessionId, page 536
GcsiStatsForGemSessionWithName, page 537
GcsiStatsForProcessId, page 539
GcsiStatsForShrPcMon, page 540
GcsiStatsForStone, page 541
538 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStatsForProcessId

Get the cache statistics for the given process ID.

Syntax

int GcsiStatsForProcessId(pid, result);
int pid;
GcsiResultSType * result;

Input Arguments

pid Process ID for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStatsForGemSessionId, page 536
GcsiStatsForGemSessionWithName, page 537
GcsiStatsForPgsvrSessionId, page 538
GcsiStatsForShrPcMon, page 540
GcsiStatsForStone, page 541
June 2011 VMware, Inc. 539

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GcsiStatsForShrPcMon

Get the cache statistics for the shared page cache monitor process for this shared page
cache.

Syntax

int GcsiStatsForShrPcMon(result);
GcsiResultSType * result;

Input Arguments

result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiInit, page 533
GcsiStatsForGemSessionId, page 536
GcsiStatsForGemSessionWithName, page 537
GcsiStatsForPgsvrSessionId, page 538
GcsiStatsForProcessId, page 539
GcsiStatsForStone, page 541
540 VMware, Inc. June 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStatsForStone

Get the cache statistics for the Stone if there is a Stone attached to this shared page cache.

Syntax

int GcsiStatsForStone(result);
GcsiResultSType * result;

Input Arguments

result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStnStatAtOffset, page 535
GcsiStatsForGemSessionId, page 536
GcsiStatsForGemSessionWithName, page 537
GcsiStatsForPgsvrSessionId, page 538
GcsiStatsForProcessId, page 539
GcsiStatsForStone, page 541
June 2011 VMware, Inc. 541

GCSI Data Types GemStone/S 64 Bit 3.0 GemBuilder for C
GCSI Errors

The following errors are defined for the GemStone C Statistics Interface.

Table 1 GCSI Errors

Error Name Definition
GCSI_SUCCESS The requested operation was successful.

GCSI_ERR_NO_INIT GcsiInit() must be called before any
other Gcsi functions.

GCSI_ERR_CACHE_ALREADY_ATTACHED The requested shared cache is already
attached.

GCSI_ERR_NOT_FOUND The requested session or process was
not found.

GCSI_ERR_BAD_ARG An invalid argument was passed to a
Gcsi function.

GCSI_ERR_CACHE_CONNECTION_SEVERED The connection to the shared cache was
lost.

GCSI_ERR_NO_STONE Stone statistics were requested on a
cache with no stone process.

GCSI_ERR_CACHE_NOT_ATTACHED No shared page cache is currently
attached.

GCSI_ERR_NO_MORE_HANDLES The maximum number of shared caches
are attached.

GCSI_ERR_CACHE_ATTACH_FAILED The attempt to attach the shared cache
has failed.

GCSI_ERR_WATCHER_THREAD_FAILED The cache watcher thread could not be
started.

GCSI_ERR_CACHE_WRONG_VERSION The shared cache version does not
match that of the libgcsixx.so library.
542 VMware, Inc. June 2011

Index

June 2011
Index
A
aborting transactions 25
adding

OOPs to an indexable object (Collection)
38, 465, 468

OOPs to an NSC 39, 115, 117
alignment of traversal buffer 119
allocating

multiple OOPs 262, 264
OOPs 260

altered objects
finding 121

appending
to a byte object 124, 125
to a collection 126

application
binding 55, 81
compiling 78
improving performance 41, 44, 237, 293,

314, 321, 323, 328, 398, 399, 400,
401, 405, 471, 478, 482, 486, 510

linking 20
application user action 67
application user actions 58
authorization

traversal 513
violation, what to do 25

B
beginning

a transaction 127
binding to GemBuilder 55, 81
boolean

converting to an object 128
represented as a special object 27

byte array
converting to a C pointer 130

byte object
creating 330
fetching bytes from 35, 204, 206
fetching characters from 209
fetching the size 222, 246
VMware, Inc. 543

GemStone/S 64 Bit 3.0 GemBuilder for C
implementation type 35, 228
initializing 330
storing bytes in 36, 445, 447, 449

bytes
appending 124

C
C mnemonic

sizes and offsets into objects 88
C types defined for GemBuilder functions 88,

89
call

determining if in progress 131
call stack

clearing 49, 145
calling

the virtual machine 154, 191, 195, 198,
302, 306, 308, 310, 315, 371, 373,
375, 377, 379

user actions
from GemStone 66

changed object, and re-reading 132
changing class definitions 33
character

converting to an object 134
instance defined in GemStone 522
represented as a special object 27

character object
creating 331
initializing 331

characters
converting to objects 134

checking for GemBuilder errors 48, 189
clamped object traversal 135, 138, 299, 324,

486, 488
structured type 135, 202

class
compiling methods 22, 141, 149
fetching an object’s 35, 211
modifying 33
object report 255

clearing the call stack 49

cluster bucket
mnemonic for category 522

committing transactions 25, 147, 301
compiling

applications 78
C code 76
class methods 22, 141, 149
instance methods 22, 277
methods 22, 277
user actions 78

compressing objects 151, 515
concurrency conflict 147, 301

what to do 25
configuration files 274, 275
constraint violation, what to do 25
context

call stack 145
error handling 49
of GemStone system 154, 156, 302, 303

continuable error 154, 156, 302, 303
continuing

after an error 48, 154, 156, 302, 303
traversal 294, 513

controlling
sessions 147, 289, 291, 301, 432
transactions 114, 147, 296, 301

converting between
byte arrays and pointers 130, 383
objects and booleans 128, 354, 356
objects and characters 134, 357, 358, 359,

361
objects and floating point numbers 182,

258, 362
objects and integers 270, 364, 365, 366, 367
special objects and C values 27
strings and integers 492
v1.1.1 oops and OopTypes 350

creating
byte object 330
character object 331
class methods 141, 149
database objects 21
DateTime object 332
544 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
GemStone sessions 24, 289, 432
instances of a GemStone class 34
objects 40, 333, 335, 338
OOPs 333, 335

current session, defined 24

D
date, time

structured type 90
DateTime object

creating 332
fetching contents of 213
initializing 332

debugging 430
function, enabling 164, 166, 167
information, finding 391, 423, 425, 427
use GciRpc 54, 81
user action 67

decoding
an OOP array 170

decrementing shared counter 172
default

directory, host file access 47
login parameter value 273, 432

defining
new methods 22

deprecated functions
GciPathToStr 368
GciStrToPath 497

developing a user action 59
dirty objects 121, 174, 176, 178, 180, 507, 509
disabling

error handlers 423, 425, 427
dynamic instance variable

fetching contents of 214, 215, 453

E
enabling

debugging functions 164, 166, 167
error handlers 423, 425, 427
full compression 184

run-length encoding 183
signaled errors 185

encoding
an OOP array 187
free OOPs 183

enumerating named instance variables 143,
285

environmentId 101
error

checking 48, 189, 430
continuing execution after 154, 156, 302,

303
dictionary 27, 522
handling 386, 391, 423, 425, 427
jump buffer 48, 386, 391, 423, 425, 427
mnemonics 88
polling 48, 189, 384

error report
structured type 90

errors 292, 430, 431
signaled 185

executing code in
GemBuilder, advantages over GemStone

21
GemStone 22, 31, 191, 193, 195, 198, 201,

306, 308, 310, 312, 319, 377
advantages over GemBuilder 22

host file access method 47
executing user action 67
execution environment

and Ruby 101
export set 121, 174, 176, 178, 180, 419, 421,

422, 507, 509
exporting objects to GemStone 21, 34

F
false, GemStone special object 27, 28, 128, 521
fetching

bytes from a byte object 35, 204, 206
characters from a byte object 209
class 35, 211
DateTime 213
June 2011 VMware, Inc. 545

GemStone/S 64 Bit 3.0 GemBuilder for C
dynamic instance variables 214, 215
number of shared counters 225
object implementation format 35, 228
object information 226, 229
object size 222, 246, 253
objects by using paths 44, 237
OOPs from a pointer object 37, 216, 219,

248, 251
OOPs from an indexable object

(Collection) 38, 231, 234
OOPs from an NSC 39, 231, 234
shared counter value 244, 394, 395

finding
debugging information 391, 423, 425, 427
object reports in a traversal buffer 255
objects in a traversal buffer 43

float kind 257
floating point number

as a byte object 36
converting to an object 258

format of an object
fetching 228

format of an object, fetching 35
free OOPs

run-length encoding 183
full compression

enabling 184

G
garbage collection 398, 399, 400, 401, 405, 419,

421, 422
saving and releasing objects 49

GciAbort 114
GciAddOopsToNsc 39, 117
GciAddOopToNsc 39, 115
GCI_ALIGN 119
GciAllocTravBuf 120
GciAlteredObjs 121
GciAppendBytes 30, 124
GciAppendChars 125
GciAppendOops 126
GciBegin 127

GCI_BOOL_TO_OOP 128
GciByteArrayToPointer 130
GciCallInProgress 46
GciCheckAuth 132
GCI_CHR_TO_OOP 134
GciClampedTrav 135
GciClampedTravArgsSType 135, 202
GciClampedTraverseObjs 138
GciClassMethodForClass 141
GciClassNamedSize 143
GciClearStack 145
GciCommit 147
GciCompileMethod 149
GciCompress 151
GciContinue 154
GciContinueWith 156
GciCreateByteObj 158
GciCreateOopObj 160
GciCTimeToDateTime 162
GciDateTimeSType 90
GciDateTimeToCTime 163
GciDbgEstablish 164
GciDbgEstablishToFile 166
GciDbgLogString 167
GciDeclareAction 61, 168
GciDecodeOopArray 170
GciDecSharedCounter 172
GciDirtyExportedObjs 174
GciDirtyObjsInit 176
GciDirtySaveObjs 178
GciDirtyTrackedObjs 180
Gci_doubleToSmallDouble 182
GciEnableFreeOopEncoding 183
GciEnableFullCompression 184
GciEnableSignaledErrors 185
GciEncodeOopArray 187
GciErr 189
GciErrSType 90
GciExecute 31, 191
GciExecuteFromContext 31, 193
GciExecuteStr 31, 195
GciExecuteStrFromContext 198
GciExecuteStrTrav 201
546 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
GciFetchByte 204
GciFetchBytes_ 206
GciFetchChars_ 209
GciFetchClass 211
GciFetchDateTime 213
GciFetchDynamicIv 214
GciFetchDynamicIvs 215
GciFetchNamedOop 37, 216
GciFetchNamedOops 37, 219
GciFetchNamedSize 222
GciFetchNameOfClass 223
GciFetchNumEncodedOops 224
GciFetchNumSharedCounters 225
GciFetchObjectInfo 226
GciFetchObjImpl 228
GciFetchObjInfo 229
GciFetchObjInfoArgsSType 226
GciFetchOop 38, 39, 231
GciFetchOops 38, 39, 234
GciFetchPaths 237
GciFetchSharedCounterValuesNoLock 244
GciFetchSize_ 246
GciFetchVaryingOop 248
GciFetchVaryingOops 251
GciFetchVaryingSize_ 253
GciFindObjRep 255
GciFloatKind 257
GciFloatKindEType 257
GciFltToOop 258
GciGetFreeOop 260
GciGetFreeOops 262
GciGetFreeOopsEncoded 264
GciGetSessionId 265
GciHardBreak 46, 267
GciHiddenSetIncludesOop 268
GCI_I64_IS_SMALL_INT 269
GciI64ToOop 270
GciIncSharedCounter 271
GciInit 46, 273
GciInstallUserAction 276
GciInstMethodForClass 277
GciInUserAction 279
GciIsKindOf 280

GciIsKindOfClass 281
GciIsRemote 282
GciIsSubclassOf 283
GciIsSubclassOfClass 284
GciIvNameToIdx 285
GciLnk

configuration file 274
GciIsRemote 282
Loading 415, 416, 418
object traversal function 54
path access function 54
use only with debugged applications 81
use to enhance performance 54
user action 70

GciLoadUserActionLibrary 287
GciLogin 289
GciLogout 291
GciLongJmp 48, 391
GciMoreTraversal 293
GciNbAbort 296
GciNbBegin 297
GciNbClampedTrav 298
GciNbClampedTraverseObjs 299
GciNbCommit 301
GciNbContinue 302
GciNbContinueWith 303
GciNbEnd 304
GciNbExecute 306
GciNbExecuteStr 308
GciNbExecuteStrFromContext 310
GciNbExecuteStrTrav 312
GciNbMoreTraversal 314
GciNbPerform 315
GciNbPerformNoDebug 317
GciNbPerformTrav 319
GciNbStoreTrav 321
GciNbStoreTravDoTrav 324
GciNbStoreTravDoTravRefs 326
GciNbTraverseObjs 328
GciNewByteObj 330
GciNewCharObj 331
GciNewDateTime 332
GciNewOop 333
June 2011 VMware, Inc. 547

GemStone/S 64 Bit 3.0 GemBuilder for C
GciNewOops 335
GciNewOopUsingObjRep 338
GciNewString 341
GciNewSymbol 342
GciNscIncludesOop 343
GciObjExists 345
GciObjInCollection 346
GciObjInfoSType 92
GciObjIsCommitted 347
GciObjRepHdrSType 95
GciObjRepSize_ 348
GciObjRepSType 94, 202
GciOldOopToNewOop 350
GCI_OOP_IS_BOOL 351
GCI_OOP_IS_SMALL_INT 352
GCI_OOP_IS_SPECIAL 353
GCI_OOP_TO_BOOL 356
GciOopToBool 354
GciOopToChar16 357
GciOopToChar32 358
GCI_OOP_TO_CHR 361
GciOopToChr 359
GciOopToFlt 362
GciOopToI32 364
GciOopToI32_ 365
GciOopToI64 366
GciOopToI64_ 367
GciPathToStr 368
GciPerform 371
GciPerformNoDebug 373
GciPerformSymDbg 375
GciPerformTrav 377
GciPerformTraverse 379
GciPointerToByteArray 383
GciPollForSignal 384
GciPopErrJump 386
GciProcessDeferredUpdates_ 388
GciProduct 390
GciPushErrJump 391
GciRaiseException 393
GciReadSharedCounter 394
GciReadSharedCounterNoLock 395
GciRealloc 397

GciReleaseAllGlobalOops 398
GciReleaseAllOops 399
GciReleaseAllTrackedOops 400
GciReleaseGlobalOops 401
GciReleaseOops 402
GciReleaseTrackedOops 405
GciRemoveOopFromNsc 39, 406
GciRemoveOopsFromNsc 39, 408
GciReplaceOops 410
GciReplaceVaryingOops 39, 412
GciResolveSymbol 413
GciResolveSymbolObj 414
GciRpc 184

GciIsRemote 282
loading 415, 416, 418
multiple GemStone sessions 54
object traversal function 54
path access function 54
use in debugging your application 54

GciRtlIsLoaded 415
GciRtlLoad 416
GciRtlUnLoad 418
GciSaveAndTrackObjs 419
GciSaveGlobalObjs 421
GciSaveObjs 422

in user actions 60
GciServerIsBigEndian 423
GciSessionIsRemote 424
GciSetCacheName_ 425
GciSetDynLib 426
GciSetErrJump 427
GciSetHaltOnError 430
Gci_SETJMP 48, 391
GciSetNet 432
GciSetSessionId 435
GciSetSharedCounter 437
GciSetTraversalBufSwizzling 438
GciSetVaryingSize 439
GciShutdown 440
GciSoftBreak 46, 441
GciStep 444
GciStoreByte 30, 445
GciStoreBytes 30, 447
548 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
GciStoreBytesInstanceOf 449
GciStoreChars 30, 451
GciStoreDynamicIv 453
GciStoreIdxOop 454
GciStoreIdxOops 456
GciStoreNamedOop 37, 459
GciStoreNamedOops 37, 462
GciStoreOop 38, 465
GciStoreOops 38, 468
GciStorePaths 471
GciStoreTrav 478
GciStoreTravDo_ 482
GciStoreTravDoTrav_ 486
GciStoreTravDoTravRefs 488
GciStringToInteger 492
GciStrKeyValueDictAt 493
GciStrKeyValueDictAtObj 494
GciStrKeyValueDictAtObjPut 495
GciStrKeyValueDictAtPut 496
GciStrToPath 497
GciSwapBytesUint 500
GciSwapBytesUshort 501
GciSymDictAt 502
GciSymDictAtObj 504
GciSymDictAtObjPut 505
GciSymDictAtPut 506
GciTrackedObjs

and garbage collection 400, 405
GciTrackedObjsFetchAllDirty 507
GciTrackedObjsInit 509
GciTravBufType 100

allocating 120
GciTraverseObjs 510
GciUncompress 515
GciUserActionInit 61
GCIUSER_ACTION_INIT_DEF 61
GciUserActionShutdown 61, 62
GCIUSER_ACTION_SHUTDOWN_DEF 62
GciUserActionSType 99
GciVersion 519
GCSI

compiling and linking 524
connecting to shared page cache 524

data types 525
errors 542
function library 523
sample program

explained 525
introduced 524

shared library 524
GcsiAllStatsForMask 528
GcsiAttachSharedCache 529
GcsiDetachSharedCache 531
GcsiFetchMaxProcessesInCache 532
GcsiInit 533
GcsiResultSType 526
GcsiResultSType (structured type) 526
GcsiShrPcMonStatAtOffset 534
GcsiStatsForGemSessionId 536
GcsiStatsForGemSessionWithName 537
GcsiStatsForPgsvrSessionId 538
GcsiStatsForProcessId 539
GcsiStatsForShrPcMon 540
GcsiStatsForStone 541
GcsiStnStatAtOffset 535
GemBuilder

initializing 273
libraries 54
library file

gcirpc50.* 55
libgcklnk.* 55

loading 415, 416, 418
run-time binding 55, 81
starting 273
stopping 440

GemBuilder errors 292, 430, 431
GemRpc, user action 71
GemStone C Statistics Interface, see GCSI 523
GemStone service name 432
GemStone-defined object, making available to

applications 27
gssstat.cc, sample GCSI program 524
June 2011 VMware, Inc. 549

GemStone/S 64 Bit 3.0 GemBuilder for C
H
handling errors 386, 391, 423, 425, 427
hard break 114, 267, 296

defined 33
hidden set 268
host

file access, default directory 47
password 432
username 432

host-specific C definition 88

I
implementation of an object

fetching 35, 228
object report 138, 255, 299, 324, 379

implementing a user action 59
importing objects

from GemStone 21, 34
improving application performance 41, 44,

237, 293, 314, 321, 323, 328, 398, 399,
400, 401, 405, 471, 478, 482, 486, 510

include file (GCI)
gci.ht 88
gcioop.ht 521

include file (GemBuilder)
flag.ht 88
gci.hf 87
gci.ht 26, 89
gcicmn.ht 88
gcierr.ht 88
gcifloat.hf 88
gcioc.ht 88
gcioop.ht 27, 28, 88
gcirtl.hf 87, 88
gcirtl.ht 88
gcirtlm.hf 88
gcisend.hf 88
gciua.hf 87
gciuser.hf 88
version.ht 88

incomplete
object report 513

incrementing shared counter 271
indexable instance variable, fetching the value

of an object’s 251
indexable object (Collection)

adding OOPs to 38, 465, 468
fetching OOPs from 38, 231, 234

initializing
byte object 330
character object 331
DateTime object 332
objects 333, 335
OOPs 333, 335

initializing GemBuilder 23, 273
initiating a GemStone session 289
installing a user action 168, 276
instance

GemStone-defined 521
method, compiling 22, 277
variable 36

enumerating for a class 143, 285
interrupt

GemStone (hard break) 33
handling 32, 46
issuing 33, 114, 267, 296, 441
virtual machine (soft break) 32, 154, 302,

441
interrupts 131

J
jump buffer, error handling in GemBuilder 48,

386, 391, 423, 425, 427

K
kernel class 333, 335

mnemonics 27, 522
kind

of a class 280, 281
550 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
L
level traversal 42, 293, 314, 328, 510
library

GemBuilder 54
run-time loading 63
search 56
user action 60

linkable GemBuilder (GciLnk)
GciIsRemote 282
use to enhance performance 54

linking
applications 20
applications and user actions 69, 70

loading
user action 63

loading GemBuilder 415, 416, 418
logging in to GemStone 24, 289, 432
logging out from GemStone 24, 291
logical access to objects 22, 30
login parameter 289
longjmp, setjmp

equivalent functionality 48, 292, 391, 423,
425, 427, 431

M
macros defined 88
manual, organization of 4
memory

reallocating 397
message

GemBuilder function 31
sending 30, 315, 371, 373, 375, 377, 379

method
calling C functions from 168, 276
compiling 22, 141, 149, 277

mnemonic
GemStone error 48, 88

modifying
objects directly in C 21, 34

caution 34
multiple GemStone sessions 70

GciRpc 54
switching among 265, 435, 438

multiple objects
defining 338
exporting 255, 293, 314, 321, 323, 324,

328, 471, 478, 482, 486, 488, 510
importing 237, 255, 293, 314, 321, 323,

324, 328, 478, 482, 486, 488, 510

N
named instance variable

fetching 216, 219
number of 143, 222, 285
pointer object 36

network 432
minimizing traffic 41, 44, 237, 293, 314,

321, 323, 328, 471, 478, 482, 486,
510

node 432
parameter 289, 432
traffic, minimizing 44

nil, GemStone special object 27, 28, 521
node name, network 432
nonblocking functions 44
non-sequenceable collection

searching 343
non-sequenceable collection (NSC) 38

adding OOPs to 39, 115, 117
fetching OOPs from 39, 231, 234
fetching the size 222, 246
implementation type 35, 38, 228
removing OOPs from 39, 406, 408

number of an object’s instance variables
object report 138, 255, 299, 324, 379

number of named instance variables in a class
143

number, converting to an object 258
numeric representation of a path 237, 471
June 2011 VMware, Inc. 551

GemStone/S 64 Bit 3.0 GemBuilder for C
O
object

byte implementation type 35
control function 398, 399, 400, 401, 405,

419, 421, 422
converting to

boolean 354, 356
character 357, 358, 359, 361
floating-point number 362
integer 270, 364, 365, 366, 367

creating 40, 338
identity 26
importing or exporting multiple 41
mnemonic 27
NSC implementation type 38
pointer implementation type 36
releasing 49, 291, 398, 399, 400, 401, 405
report 138, 255, 293, 299, 314, 321, 323,

324, 328, 338, 379, 478, 482, 510
finding in a traversal buffer 255
incomplete 513
size 348
special objects 512
structure summary 43
traversal buffer 42
word alignment 119

representation in C 21, 34
saving 49
sending messages 315, 371, 373, 375, 377,

379
object information

fetching 226, 229
structured type 92, 226

object report
structured type 94, 202

object report header
structured type 95

object traversal 377
objects

creating 333, 335
initializing 333, 335
saving from garbage collection 419, 421,

422
objectSecurityPolicyId, in

GciObjRepHdrSType 95
OOP (object-oriented pointer)

adding to an indexable object (Collection)
38, 465, 468

adding to an NSC 39, 115, 117
defined 26
fetching from an indexable object

(Collection) 38, 231, 234
fetching from an NSC 39, 231, 234, 248,

251
removing from an NSC 39, 406, 408
searching an NSC for 343
searching for 268

OOP array
decoding 170
encoding 187
obtaining the size of 224

OOPs
allocating 260, 262, 264
appending 126
creating 333, 335
initializing 333, 335

operating system considerations 46

P
password

GemStone 289, 432
host 432

path access
function, GciLnk 54
function, GciRpc 54
to objects 44, 237, 471

pause message 154, 156, 302, 303
performance, improving application 41, 44,

237, 293, 314, 321, 323, 328, 398, 399,
400, 401, 405, 471, 478, 482, 486, 510

persistence and user action results 59
pointer

converting to a byte array 383
552 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
pointer object
fetching OOPs from 37, 216, 219, 248, 251
fetching the size 222, 246
implementation type 35, 36, 228
storing OOPs in 37, 454, 456, 459, 462,

465, 468
polling for GemBuilder errors 48, 189
polling for signal errors 384
prerequisites 3
primitive, user-defined 168, 276
private method, compilation restrictions 141,

149, 277
ProfMonitor

and signals 102

R
reallocating

memory 397
reclaiming storage 398, 399, 400, 401, 405
ReferencedSet 490
releasing objects 49, 291, 398, 399, 400, 401,

405
remote procedure call GemBuilder (GciRpc)

282
use in debugging your application 54

removing OOPs from an NSC 39, 406, 408
report, of an object 138, 255, 293, 299, 314, 321,

323, 324, 328, 338, 348, 379, 478, 482,
510

re-reading objects from the database 25
reserved OOP 27
resolving symbols 31, 141, 149, 191, 195, 198,

201, 277, 306, 308, 310, 312
Ruby

and GCI execution environment 101
run-length encoding 170, 187, 224

enabling 183
run-time binding

GemBuilder 55, 81
run-time loading 63

S
saving objects 49

export set 50
schema 20
security policy

GciCheckAuth function 132
security policy ID in Object Information

Structure 92
security policy, in data structure 95
sending messages to GemStone objects 22, 30,

315, 371, 373, 375, 377, 379
service name, GemStone 432
session

control 23, 289, 291, 432
creating (logging in) 24, 432
current 24
defined 23
finding the current ID number 265
halting on error 430
setting the current ID number 435, 438
switching among multiple 265, 435, 438
terminating (logging out) 24, 291

session user action 67
session user actions 58
setjmp, longjmp

equivalent functionality 48, 292, 391, 423,
425, 427, 431

shared counter
decrementing 172
fetching value 244, 394, 395
finding how many 225
incrementing 271
setting value 437

shared libraries
GemBuilder 54
user action 57

SIGIO 46
signal

handling 46
signal (system function) 46
signal errors 384
signal handling

UNIX 102
June 2011 VMware, Inc. 553

GemStone/S 64 Bit 3.0 GemBuilder for C
signaled errors 185
single-step execution 444
size of an object

fetching 222, 246
object report 255

size of an object report, calculating 348
size of an OOP array 224
SmallInteger

represented as a special object 27
soft break 154, 302, 441

defined 32
special object

implementation type 35, 228
object report 512
traversal of 512

stack
clearing the call 145

starting GemBuilder 23, 273
statistics, collecting directly from shared page

cache 523
stopping GemBuilder 23, 440
storing

bytes in a byte object 36, 445, 447, 449
dynamic instance variables 453
objects by using paths 44, 471
OOPs in a pointer object 37, 454, 456, 459,

462, 465, 468
string

appending 125
as a byte object 35
converting to an integer 492
fetching 36, 204, 206, 209
storing 36, 445, 447, 451

structural access 34, 115, 117, 143, 204, 206,
209, 211, 216, 219, 222, 228, 231, 234,
246, 248, 251, 280, 281, 285, 333, 335,
338, 406, 408, 445, 447, 449, 451, 454,
456, 459, 462, 465, 468

function 101
caution when using 101, 111

structured types
GciClampedTravArgsSType 135, 202
GciDateTimeSType 90
GciErrSType 90

GciFetchObjInfoArgsSType 226
GciObjInfoSType 92
GciObjRepHdrSType 95
GciObjRepSType 94, 202
GciTravBufType 100
GciUserActionSType 99

subclass
determining 283, 284

switching among multiple GemStone sessions
265, 435, 438

symbol
as a byte object 35
creating 342
resolution 31, 141, 149, 191, 193, 195, 198,

201, 277, 306, 308, 310, 312

T
terminating GemStone sessions 291
testing an application

use GciRpc 81
tracing a GemBuilder call while debugging

164, 166, 167
tracked objects 507, 509
transaction

aborting 25, 114, 296
beginning a 127
committing 25, 147, 301
control 114, 147, 296, 301
management 132
workspace, creating 289, 432
workspace, terminating 291

traversal 41, 135, 138, 255, 293, 299, 312, 314,
319, 321, 323, 324, 328, 377, 379, 478,
482, 486, 488, 510

buffer 42, 293, 314, 321, 323, 324, 328, 478,
482, 486, 488, 510

finding object reports 43, 255
word alignment 119

function
GciLnk 54
GciRpc 54

inability to continue 294, 513
level 42, 293, 314, 328, 510
554 VMware, Inc. June 2011

GemStone/S 64 Bit 3.0 GemBuilder for C
special object 512
structured type 135, 202
threshold 138, 293, 299, 314, 321, 323, 324,

328, 377, 478, 482, 486, 488, 510
word alignment 119

traversal buffer
allocating 120
structured type 100

true, GemStone special object 27, 28, 128, 521

U
uncommitted object, releasing 49, 291, 398,

399, 400, 401, 405
uncompressing objects 515
underscore character, private method 141,

149, 277
UNIX signal handling 102
unnamed instance variable, fetching 248, 251
updating the C representation of database

objects 120, 121, 132, 134
user action 279

application 58, 67
calling from GemStone 66
compiling 78
configurations 67
debugging 67
defined 57
executing 67
implementing 59
include file 88, 89
installation macro defined 88, 89
installation verified 65
installing 168, 276
library 60

loading 287
linked application 70
loading 63
making results persistent 59
RPC application 69
run-time loading 63
session 58, 67
structured type 99

userAction instance method 66
user action libraries 57
user actions

GciUserActionInit 517
GciUserActionShutdown 518

user name
GemStone 289, 432
host 432

user profile, searching the symbol list in 141,
149, 191, 195, 198, 277, 306, 308, 310

user session
creating 289, 432
terminating 291

user, searching the symbol list for 31

V
value buffer

object report 255, 293, 314, 321, 323, 324,
328, 338, 478, 482, 510

word alignment 119
value of an instance variable, object report

138, 255, 299, 324, 379
version

GemBuilder 519
virtual machine

call stack 49
clearing 49, 145

control function 154, 156, 191, 195, 198,
302, 303, 306, 308, 310, 315, 371,
373, 375, 377, 379

W
word alignment 119
June 2011 VMware, Inc. 555

GemStone/S 64 Bit 3.0 GemBuilder for C
556 VMware, Inc. June 2011

	1 Introduction
	1.1 GemBuilder Application Overview
	Figure 1.1 The Role of GemBuilder in Application Development
	Deciding Where to Do the Work
	Representing GemStone Objects in C
	Smalltalk Access to Objects
	Calling C Functions from Smalltalk Methods

	The GemBuilder Functions

	1.2 Session Control
	Starting and Stopping GemBuilder
	Remote Login Setup
	Logging In and Out
	Transaction Management
	Committing a Transaction
	Aborting a Transaction
	Controlling Transactions Manually

	1.3 Representing Objects in C
	GemStone-Defined Object Mnemonics
	Converting Between Special Objects and C Values
	Example 1.1

	Byte-Swizzling of Binary Floating-Point Values

	1.4 Manipulating Objects in GemStone
	Sending Messages to GemStone Objects
	Example 1.2

	Executing Code in GemStone
	Example 1.3

	Interrupting GemStone Execution
	Modification of Classes

	1.5 Manipulating Objects Through Structural Access
	Direct Access to Metadata
	Byte Objects
	Example 1.4

	Pointer Objects
	Example 1.5

	Nonsequenceable Collections (NSC Objects)
	Example 1.6

	1.6 Creating Objects
	1.7 Fetching and Storing Objects
	Efficient Fetching and Storing with Object Traversal
	Example 1.7
	How Object Traversal Works
	Figure 1.2 Object Traversal and Paths

	The Object Traversal Functions

	Efficient Fetching And Storing with Path Access

	1.8 Nonblocking Functions
	1.9 Operating System Considerations
	Signal Handling in Your GemBuilder Application
	Executing Host File Access Methods
	Writing Portable Code

	1.10 Error Handling and Recovery
	Polling for Errors
	Error Jump Buffers
	The Call Stack
	GemStone System Errors

	1.11 Garbage Collection
	1.12 Preparing to Execute GemStone Applications
	GemStone Environment Variables

	2 Building Applications with GemBuilder for C
	2.1 GciRpc and GciLnk
	Use GciRpc for Debugging
	Use GciLnk for Performance
	Multiple GemStone Sessions

	2.2 The GemBuilder Shared Libraries
	2.3 Binding to GemBuilder at Run Time
	Building the Application
	Searching for the Library
	How UNIX Matches Search Names with Shared Library Files

	3 Writing C Functions To Be Called from GemStone
	3.1 Shared User Action Libraries
	3.2 How User Actions Work
	3.3 Developing User Actions
	Write the User Action Functions
	Create a User Action Library
	The gciua.hf Header File
	The Initialization and Shutdown Functions
	Example 3.1
	Example 3.2

	Compiling and Linking Shared Libraries
	Using Existing User Actions in a User Action Library
	Using Third-party C Code with a User Action Library

	Loading User Actions
	Loading User Action Libraries At Run Time
	Specifying the User Action Library
	Creating User Actions in Your C Application
	Verify That Required User Actions Have Been Installed

	Write the Code That Calls Your User Actions
	Remote User Actions
	Limit on Circular Calls Among User Actions and Smalltalk

	Debug the User Action

	3.4 Executing User Actions
	Choosing Between Session and Application User Actions
	Figure 3.1 Access to Application and Session User Actions

	Running User Actions with Applications
	With an RPC Application
	Figure 3.2 Application User Actions and RPC Applications in GemStone Processes

	With a Linked Application
	Figure 3.3 Session User Actions and Linked Applications in GemStone Processes

	Running User Actions with Gems
	Figure 3.4 Session User Actions and RPC Gems in GemStone Processes

	Running User Actions with Applications and Gems
	Figure 3.5 RPC Applications and Gems with User Actions in GemStone Processes
	Figure 3.6 Application and Session User Actions in GemStone Processes

	4 Compiling and Linking
	4.1 Development Environment and Standard Libraries
	4.2 Compiling C Source Code for GemStone
	The C++ Compiler
	Listing the Version of Your Compiler

	Compilation Options
	Compilation Command Lines

	4.3 Linking C/C++ Object Code with GemStone
	Risk of Database Corruption
	Linker
	Link Options
	Command Line Assumptions
	Linking Applications That Bind to GemBuilder at Run Time
	Linking User Actions into Shared Libraries

	5 GemBuilder Files and Data Structures
	5.1 GemBuilder Include Files
	5.2 GemBuilder Data Types
	The Structure for Representing the Date and Time
	The Error Report Structure
	The Object Information Structure
	The Object Report Structure
	The Object Report Header Class
	Table 5.1 Object Implementation Restrictions on Instance Variables

	The User Action Information Structure
	The Traversal Buffer Type

	5.3 Structural Access Functions
	5.4 environmentId
	5.5 UNIX Signal Handling

	6 GemBuilder C Functions
	6.1 Function Summary Tables
	Table 6.1 Functions for Controlling Sessions and Transactions
	Table 6.2 Functions for Handling Errors and Interrupts and for Debugging
	Table 6.3 Functions for Compiling and Executing Smalltalk Code in the Database
	Table 6.4 Functions for Accessing Symbol Dictionaries
	Table 6.5 Functions for Creating and Initializing Objects
	Table 6.6 Functions and Macros for Converting Objects and Values
	Table 6.7 Object Traversal and Path Functions and Macros
	Table 6.8 Structural Access Functions and Macros
	Table 6.9 Utility Functions

	GciAbort
	GciAddOopToNsc
	GciAddOopsToNsc
	GCI_ALIGN
	GciAllocTravBuf
	GciAlteredObjs
	GciAppendBytes
	GciAppendChars
	GciAppendOops
	GciBegin
	GCI_BOOL_TO_OOP
	GciByteArrayToPointer
	GciCallInProgress
	GciCheckAuth
	GCI_CHR_TO_OOP
	GciClampedTrav
	GciClampedTraverseObjs
	GciClassMethodForClass
	GciClassNamedSize
	GciClearStack
	GciCommit
	GciCompileMethod
	GciCompress
	GciContinue
	GciContinueWith
	GciCreateByteObj
	GciCreateOopObj
	GciCTimeToDateTime
	GciDateTimeToCTime
	GciDbgEstablish
	GciDbgEstablishToFile
	GciDbgLogString
	GciDeclareAction
	GciDecodeOopArray
	GciDecSharedCounter
	GciDirtyExportedObjs
	GciDirtyObjsInit
	GciDirtySaveObjs
	GciDirtyTrackedObjs
	Gci_doubleToSmallDouble
	GciEnableFreeOopEncoding
	GciEnableFullCompression
	GciEnableSignaledErrors
	GciEncodeOopArray
	GciErr
	GciExecute
	GciExecuteFromContext
	GciExecuteStr
	GciExecuteStrFromContext
	GciExecuteStrTrav
	GciFetchByte
	GciFetchBytes_
	GciFetchChars_
	GciFetchClass
	GciFetchDateTime
	GciFetchDynamicIv
	GciFetchDynamicIvs
	GciFetchNamedOop
	GciFetchNamedOops
	GciFetchNamedSize
	GciFetchNameOfClass
	GciFetchNumEncodedOops
	GciFetchNumSharedCounters
	GciFetchObjectInfo
	GciFetchObjImpl
	GciFetchObjInfo
	GciFetchOop
	GciFetchOops
	GciFetchPaths
	GciFetchSharedCounterValuesNoLock
	GciFetchSize_
	Table 6.10 Differences in Reported Object Size

	GciFetchVaryingOop
	GciFetchVaryingOops
	GciFetchVaryingSize_
	GciFindObjRep
	GciFloatKind
	GciFltToOop
	GciGetFreeOop
	GciGetFreeOops
	GciGetFreeOopsEncoded
	GciGetSessionId
	GciHardBreak
	GciHiddenSetIncludesOop
	GCI_I64_IS_SMALL_INT
	GciI64ToOop
	GciIncSharedCounter
	GciInit
	GciInitAppName
	GciInitAppName_
	GciInstallUserAction
	GciInstMethodForClass
	GciInUserAction
	GciIsKindOf
	GciIsKindOfClass
	GciIsRemote
	GciIsSubclassOf
	GciIsSubclassOfClass
	GciIvNameToIdx
	GciLoadUserActionLibrary
	GciLogin
	GciLogout
	GciLongJmp
	GciMoreTraversal
	GciNbAbort
	GciNbBegin
	GciNbClampedTrav
	GciNbClampedTraverseObjs
	GciNbCommit
	GciNbContinue
	GciNbContinueWith
	GciNbEnd
	GciNbExecute
	GciNbExecuteStr
	GciNbExecuteStrFromContext
	GciNbExecuteStrTrav
	GciNbMoreTraversal
	GciNbPerform
	GciNbPerformNoDebug
	GciNbPerformTrav
	GciNbStoreTrav
	GciNbStoreTravDo_
	GciNbStoreTravDoTrav_
	GciNbStoreTravDoTravRefs_
	GciNbTraverseObjs
	GciNewByteObj
	GciNewCharObj
	GciNewDateTime
	GciNewOop
	GciNewOops
	GciNewOopUsingObjRep
	GciNewString
	GciNewSymbol
	GciNscIncludesOop
	GciObjExists
	GciObjInCollection
	GciObjIsCommitted
	GciObjRepSize_
	GciOldOopToNewOop
	GCI_OOP_IS_BOOL
	GCI_OOP_IS_SMALL_INT
	GCI_OOP_IS_SPECIAL
	GciOopToBool
	GCI_OOP_TO_BOOL
	GciOopToChar16
	GciOopToChar32
	GciOopToChr
	GCI_OOP_TO_CHR
	GciOopToFlt
	GciOopToI32
	GciOopToI32_
	GciOopToI64
	GciOopToI64_
	GciPathToStr
	GciPerform
	GciPerformNoDebug
	GciPerformSymDbg
	GciPerformTrav
	GciPerformTraverse
	GciPointerToByteArray
	GciPollForSignal
	GciPopErrJump
	GciProcessDeferredUpdates_
	GciProduct
	GciPushErrJump
	GciRaiseException
	GciReadSharedCounter
	GciReadSharedCounterNoLock
	GciRealloc
	GciReleaseAllGlobalOops
	GciReleaseAllOops
	GciReleaseAllTrackedOops
	GciReleaseGlobalOops
	GciReleaseOops
	GciReleaseTrackedOops
	GciRemoveOopFromNsc
	GciRemoveOopsFromNsc
	GciReplaceOops
	GciReplaceVaryingOops
	GciResolveSymbol
	GciResolveSymbolObj
	GciRtlIsLoaded
	GciRtlLoad
	GciRtlUnload
	GciSaveAndTrackObjs
	GciSaveGlobalObjs
	GciSaveObjs
	GciServerIsBigEndian
	GciSessionIsRemote
	GciSetCacheName_
	GciSetDynLib
	GciSetErrJump
	GciSetHaltOnError
	Gci_SETJMP
	GciSetNet
	GciSetSessionId
	GciSetSharedCounter
	GciSetTraversalBufSwizzling
	GciSetVaryingSize
	GciShutdown
	GciSoftBreak
	GciStep
	GciStoreByte
	GciStoreBytes
	GciStoreBytesInstanceOf
	GciStoreChars
	GciStoreDynamicIv
	GciStoreIdxOop
	GciStoreIdxOops
	GciStoreNamedOop
	GciStoreNamedOops
	GciStoreOop
	GciStoreOops
	GciStorePaths
	GciStoreTrav
	GciStoreTravDo_
	GciStoreTravDoTrav_
	GciStoreTravDoTravRefs_
	GciStringToInteger
	GciStrKeyValueDictAt
	GciStrKeyValueDictAtObj
	GciStrKeyValueDictAtObjPut
	GciStrKeyValueDictAtPut
	GciStrToPath
	GciSwapBytesUint
	GciSwapBytesUshort
	GciSymDictAt
	GciSymDictAtObj
	GciSymDictAtObjPut
	GciSymDictAtPut
	GciTrackedObjsFetchAllDirty
	GciTrackedObjsInit
	GciTraverseObjs
	GciUncompress
	GciUserActionInit
	GciUserActionShutdown
	GciVersion

	A Reserved OOPs
	B GemStone C Statistics Interface
	B.1 Developing a GCSI Application
	Required Header Files
	The GCSI Shared Library
	Compiling and Linking
	Connecting to the Shared Page Cache
	The Sample Program

	B.2 GCSI Data Types
	The Structure for Representing the GCSI Function Result

	GcsiAllStatsForMask
	GcsiAttachSharedCache
	GcsiAttachSharedCacheForStone
	GcsiDetachSharedCache
	GcsiFetchMaxProcessesInCache
	GcsiInit
	GcsiShrPcMonStatAtOffset
	GcsiStnStatAtOffset
	GcsiStatsForGemSessionId
	GcsiStatsForGemSessionWithName
	GcsiStatsForPgsvrSessionId
	GcsiStatsForProcessId
	GcsiStatsForShrPcMon
	GcsiStatsForStone
	GCSI Errors
	Table 1 GCSI Errors

	Index

