
GemStone®
Programming Guide
for GemStone/S 64 Bit
Version 3.2

April 2014

GemStone/S 64 Bit 3.2 Programming Guide
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems, LLC,
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in any
form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express written
authorization from GemTalk Systems.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.
This software is provided by GemTalk Systems, LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems, LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2014 GemTalk Systems, LLC. All rights reserved by
GemTalk Systems.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with persistent
object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”. GemStone
software may also be covered by one or more pending United States patent applications.

TRADEMARKS
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of GemTalk Systems,
LLC., or of VMware, Inc., previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
HP, HP Integrity, and HP-UX are registered trademarks of Hewlett Packard Company.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows XP, Windows 2003, Windows 7, Windows Vista and Windows 2008 are registered
trademarks of Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER5, POWER6, and POWER7 are trademarks or registered trademarks of International Business Machines
Corporation.
Apple, Mac, Mac OS, Macintosh, and Snow Leopard are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
GemTalk Systems
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems April 2014

Preface
About This Manual
This manual describes the GemStone Smalltalk language and programming environment
— a bridge between your application’s Smalltalk code and the GemStone database.

Prerequisites
This manual is intended for users that are at least somewhat familiar with the Smalltalk
programming language and with its programming environment.

You should have the GemStone system installed correctly on your host computer, as
described in the GemStone/S 64 Bit Installation Guide for your platform.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit and
GemStone/S, and the GemStone family of products; the GemStone Smalltalk
programming language; and may also be used to refer to the company, now GemTalk
Systems, previously GemStone Systems, Inc. and a division of VMware, Inc.

Typographical Conventions
This document uses the following typographical conventions:

Smalltalk methods, GemStone environment variables, operating system file names
and paths, listings, and prompts are shown in monospace typeface.

Responses from GemStone commands are shown in an underlined typeface.
April 2014 GemTalk Systems 3

GemStone/S 64 Bit 3.2 Programming Guide
Executing the Examples
This manual includes many examples, which are provided in the form of Topaz
commands. These examples can be executed using either the Topaz command-line
interface, or using tools such as GemBuilder for Smalltalk (GBS) or another graphical
interface to the GemStone/S server.

GBS or other IDE tools provide browsers and related tools that make it easier to define
classes and methods. The text of the GemStone Smalltalk code examples themselves
(excluding the Topaz commands) is the same whichever way you enter it.

When using Topaz, you must include extra commands to begin and end an example. If
needed, refer to the Topaz manual for instructions about entering and executing the text
of the examples.

Other GemStone Documentation
You will find it useful to look at documents that describe other GemStone system
components:

Topaz Programming Environment — describes Topaz, a scriptable command-line
interface to GemStone Smalltalk. Topaz is most commonly used for performing
repository maintenance operations.

GemBuilder for Smalltalk Users’s Guide — describes GemBuilder for Smalltalk, a
programming interface that provides a rich set of features for building and running
client Smalltalk applications that interact transparently with GemStone Smalltalk.

GemBuilder for C — describes GemBuilder for C, a set of C functions that provide a
bridge between your application’s C code and the application’s database controlled
by GemStone.

System Administration Guide — describes maintenance and administration of your
GemStone/S system.

VSD User’s Guide — describes VSD, a graphical tool to examine statistics data files
generated by the GemStone/S server

In addition, each release of GemStone/S 64 Bit includes Release Notes, describing changes
in that release, and platform-specific Installation Guides, providing system requirements
and installation and upgrade instructions.

A description of the behavior of each GemStone kernel class is available in the class
comments in the GemStone Smalltalk repository. Method comments include a description
of the behavior of methods.
4 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide
Technical Support

Support Website

http://gemtalksystems.com/techsupport

GemTalk’s Technical Support website provides a variety of resources to help you use
GemTalk products:

Documentation for released versions of all GemTalk products, in PDF form.

Downloads, including current and recent versions of GemTalk products.

Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

TechTips, providing information and instructions that are not in the documentation.

Compatibility matrices, listing supported platforms for GemTalk product versions.

This material is updated regularly; we recommend checking this site on a regular basis.

Help Requests
You may need to contact Technical Support directly, if your questions are not answered in
the documentation or by other material on the Technical Support site. Technical Support
is available to customers with current support contracts.

Requests for technical assistance may be submitted online, by email, or by telephone. We
recommend you use telephone contact only for more serious requests that require
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: http://techsupport.gemtalksystems.com

Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702

When submitting a request, please include the following information:

Your name and company name.

The versions of GemStone/S 64 Bit and of all related GemTalk products, and of any
other related products, such as client Smalltalk products.

The operating system and version you are using.

A description of the problem or request.

Exact error message(s) received, if any, including log files if appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.

24x7 Emergency Technical Support
GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.
April 2014 GemTalk Systems 5

GemStone/S 64 Bit 3.2 Programming Guide
Training and Consulting
GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.
6 GemTalk Systems April 2014

Contents
Chapter 1. Introduction to GemStone 21

1.1 GemStone Overview. 21
Multi-User . 21
Programmable . 21
Scalable . 22
Object Database . 22
Partition Between Client and Server . 22
Connect to Outside Data Sources . 23

1.2 GemStone Services . 24
Transactions and Concurrency Control . 24
Login Security and Account Management. 24
Services To Manage the GemStone Repository 25

1.3 GemStone Smalltalk . 25
No User Interface . 25

GemStone Sessions . 25
System Management Classes . 26

Monitoring your application . 26
File In and File Out . 26

Interapplication Communications . 27
1.4 Process Architecture . 27

Gem Process. 27
Stone Process . 27
NetLDI . 27
Shared Page Cache . 27
Extents and Repositories. 28
Transaction Log. 28
April 2014 GemTalk Systems 7

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
Chapter 2. Class Creation 29

2.1 Subclass Creation . 29
Implementation Formats . 30
Class Variables and Other Types of Variables . 31

Dynamic Instance Variables . 32
Additional Class Creation Protocol . 33

2.2 Creating Classes With Invariant Instances . 34
Per-Object Invariance . 34
Invariance for All Instances of a Class . 34

2.3 Creating Classes with Special Cases of Persistence . 35
Non-Persistent Classes . 35
DbTransient . 36

Chapter 3. Resolving Names and Sharing Objects 39

3.1 Sharing Objects . 39
3.2 UserProfile and Session-Based Symbol Lists. . 40

What’s In Your Symbol List? . 40
Examining Your Symbol List. . 41
Inserting and Removing Dictionaries from Your Symbol List 42
Updating Symbol Lists . 44
Finding Out Which Dictionary Names an Object 45

3.3 Using Your Symbol Dictionaries . 46
Publishers, Subscribers and the Published Dictionary 46

Chapter 4. Collection and Stream Classes 49

4.1 An Introduction to Collections . 49
Protocol Common to All Collections . 50

Creating Instances . 50
Adding Elements . 51
Removing Elements . 51
Enumerating . 51

4.2 Collection Subclasses . 52
Dictionaries . 52

Dictionary . 53
KeyValueDictionary . 53
KeySoftValueDictionary . 53

SequenceableCollection. . 54
Adding and Removing Objects for SequenceableCollection 54
Comparing SequenceableCollection . 54
Copying SequenceableCollection . 54
Enumeration and Searching Protocol . 55

Array . 55
8 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Table of Contents
Literal Array and Array Constructors 56
SortedCollection . 56
UnorderedCollection. 57

Bag and Set . 57
IdentityBag . 57
IdentitySet . 60

4.3 Stream Classes . 60
PositionableStream and Position . 61

4.4 Sorting . 62
Default Sort . 62

Sorting Large Collections . 64
 . 65

Chapter 5. String Classes and Collation 67

5.1 Characters and Unicode . 67
Unicode and the Unicode Database . 68
Character Data Tables . 68

Installing Character Data Tables . 69
5.2 CharacterCollection and String classes . 69

CharacterCollection and String classes. 69
Strings . 70
Unicode Strings . 70
Symbol . 70
ByteArray . 71
Utf8 . 71

String equality, ordering, and interoperation . 71
String protocol . 72

Creating Strings . 72
Concatenating Strings . 72
Converting Strings . 73
Equality and Identity . 73
Searching and Pattern matching . 74

5.3 String Sorting and Collation . 75
Traditional String Legacy Collation . 75
Unicode String Collation using ICU libraries . 76

IcuLocale . 77
IcuCollator . 77
Customizing Sort . 78
IcuSortedCollection . 81

Unicode Comparison Mode . 81
5.4 Encrypting Strings . 81
April 2014 GemTalk Systems 9

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
Chapter 6. Numeric Classes 83

6.1 Integers. . 83
SmallInteger . 83
LargeInteger . 84
Printing Integers. . 84

6.2 Binary Floating Point . 84
SmallDouble . 85
Float. . 85
Literal Floats . 86
Printing Binary Floating Points . 86

6.3 Other Rational Numbers . 87
Fraction . 87
FixedPoint . 87
ScaledDecimal . 87
DecimalFloat . 88

6.4 Internationalizing Decimal Points using Locale . 89
6.5 Random Number Generator . 90

Chapter 7. Indexes and Querying 93

7.1 Overview . 93
GemStone Indexes. . 94

Managing Indexes . 95
Indexing trade-offs . 95
Special Syntax for Indexing . 96

7.2 Defining and Executing Queries . 97
Query Predicate Syntax. . 97

Predicate Terms . 98
Combining Predicates using Boolean Logic 99
Combining Range Predicates . 100

Selection Block Queries . 100
Selection Blocks . 100
Executing Selection Block Queries . 100
Return values. . 101

Queries using GsQuery . 101
Creating and Executing a GsQuery . 101
Query Variables . 102
GsQuery’s Collection protocol . 102
Return values. . 104

Query results as Streams . 105
Limitations on streamable queries . 106

7.3 Creating Indexes . 107
Equality and Identity Indexes . 107
Specialized subtypes of Indexes . 107

Unicode Indexes . 107
10 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Table of Contents
Reduced-conflict Equality Indexes .107
Implicit Indexes . .108

Creating indexes using GsIndexSpec. .108
GsIndexOptions . .109

Creating indexes using UnorderedCollection protocol 110
Reduced-Conflict Indexes . .110
Optional pathTerms .110
While Indexes are Being Created . .111

Queries during index creation. .111
Auto-commit .111

7.4 Special Kinds of Queries and Indexes .113
Unicode String Indexes and Queries . .113

Creating Unicode Indexes .113
GsIndexSpec . .114
UnorderedCollection protocol. .114
Example .114

Enumerated path terms in indexes and queries. 115
Restrictions on predicates with enumerated pathTerms115

Collection path Indexes and Queries . .115
Set-valued query results .115
Restrictions on predicates in set-valued queries. 116

Redefined Comparison Messages .116
7.5 Managing Indexes .118

Indexes on temporary collections. .118
Inquiring About Indexes. .118
Removing Indexes .119

To remove indexes based on a GsIndexSpec. 119
To remove indexes using IndexManager. 119
To remove indexes using UnorderedCollection protocol 120
Rebuilding Indexes . .120

Indexing and Performance .121
Formulating queries and performance121

Indexing Errors . .122
Auditing Indexes . .122

7.6 Query Formulas and Optimization .124
Query Formulas .124
Invariance and Formula reuse .125
Disabling auto-optimize . .126
Query Formula Optimizations .126

Remove "not" using boolean logic .126
Convert predicates with equal operands into boolean constants 126
Convert constant-path reversed to path-constant126
Eliminate redundant predicates . .127
Combine path-constants into range predicate127
Combine path-constants to enumerated predicate 127
Simplify (true) and (false) predicates127
Reorder predicates .127
April 2014 GemTalk Systems 11

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
Chapter 8. Transactions and Concurrency Control 129

8.1 GemStone’s Conflict Management . 129
Views and Transactions . 129
Transaction State and Transaction Modes . 131
Reading and Writing in Transactions . 132
Reading and Writing Outside of Transactions 133
When Should You Commit a Transaction? . 133
Nested In-memory Transactions. . 133

8.2 How GemStone Detects and Manages Conflict . 134
Concurrency Management . 134
Committing Transactions. . 135
Handling Commit Failure in a Transaction . 137
Indexes and Concurrency Control. . 137
Aborting Transactions . 137

Updating the View Without Committing or Aborting 138
Being Signaled To Abort . 138
Being Signaled to continueTransaction 139

Handlers for abort or continueTransaction notifications 140
8.3 Controlling Concurrent Access with Locks . 140

Locking and Manual Transaction Mode . 140
Lock Types . 141

Read Locks . 141
Write Locks . 141

Acquiring Locks . 142
Lock Denial . 142
Dead Locks . 143
Dirty Locks . 143
Locking Collections of Objects Efficiently. 144
Upgrading Locks . 146

Locking and Indexed Collections . 146
Removing or Releasing Locks . 147

Releasing Locks Upon Aborting or Committing 147
Inquiring About Locks . 148
Application Write Locks . 149

8.4 Classes That Reduce the Chance of Conflict . 150
RcCounter . 151
RcIdentityBag . 152
RcQueue . 153
RcKeyValueDictionary . 154

Chapter 9. Object Security and Authorization 155

9.1 How GemStone Security Works. . 155
Login Authorization . 155

The UserProfile. . 156
12 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Table of Contents
System Privileges . .156
Object-level Security .156

GsObjectSecurityPolicy. .157
9.2 Assigning Objects to Security Policies . .158

Default Security Policy and Current Security Policy 158
Objects and Security Policies .159
Configuring Authorization for an Object Security Policy 160

How GemStone Responds to Unauthorized Access 161
Owner, Group, and World Authorization161

Predefined GsObjectSecurityPolicies . .163
Changing the Security Policy for an Object 164
Revoking Your Own Authorization: a Side Effect. 166
Finding Out Which Objects Are Protected by a Security Policy166

9.3 An Application Example .167
9.4 A Development Example .170

Planning Security Policies for User Access .171
Protecting the Application Classes .171
CodeModification privilege .171
Planning Authorization for Data Objects. 172
Planning Groups .173
Planning Security Policies .175

Developing the Application . .175
Setting Up Security Policies for Joint Development. 176
Making the Application Accessible for Testing 177
Moving the Application into a Production Environment 178

Security Policy Assignment for User-created Objects 178
9.5 Privileged Protocol for Class GsObjectSecurityPolicy179

Chapter 10. Class versions and Instance Migration 181

10.1 Versions of Classes . .181
Defining a New Version . .182
New Versions and Subclasses . .182
New Versions and References in Methods .182
Class Variable and Class Instance Variables. .183

10.2 ClassHistory . .183
Defining a Class as a new version of an existing Class183
Accessing a Class History . .184
Assigning a Class History . .185

10.3 Migrating Objects . .185
Migration Destinations. .185
Migrating Instances .186

Finding Instances and References . .186
Using the Migration Destination .188
Bypassing the Migration Destination188
Migration Errors .190
April 2014 GemTalk Systems 13

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
Instance Variable Mappings . 191
Default Instance Variable Mappings 191
Customizing Instance Variable Mappings 192

Chapter 11. File I/O and Operating System Access 197

11.1 Accessing Files . 197
Specifying Files . 198
Creating a File . 198
Opening a File . 199
Closing a File or Files . 200
Writing to a File . 200

Writing Extended Characters To a File 201
Reading from a File . 201

Positioning . 202
Testing Files . 202
Renaming Files . 202
Removing Files . 203
Examining a Directory . 203
GsFile Errors . 204

11.2 Executing Operating System Commands . 205
Simple Commands . 205
More complex interactions . 205

11.3 File In and File Out . 206
Fileout . 206
Filein . 206
Handling strings with extended characters . 206

11.4 PassiveObject. . 207
11.5 Creating and Using Sockets . 208

GsSocket . 208
GsSecureSocket . 210

Set up certificates and private keys . 210
Error handling . 214

Chapter 12. Signals and Notifiers 217

12.1 Communicating Between Sessions . 217
12.2 Object Change Notification. . 218

Setting Up a Notify Set . 218
Adding an Object to a Notify Set. . 218
Adding a Collection to a Notify Set . 220
Listing Your Notify Set . 221
Removing Objects From Your Notify Set 221

Notification of New Objects . 221
Receiving Object Change Notification. 222
14 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Table of Contents
Reading the Set of Signaled Objects. .223
Polling for Changes to Objects .224
Troubleshooting .224

Frequently Changing Objects .224
Special Classes. .225

Methods for Object Notification .226
12.3 Gem-to-Gem Signaling . .226

Sending a Signal .227
Receiving a Signal. .229

12.4 Other Signal-Related Issues .231
Inactive Gem .231

Dealing With Signal Overflow .231
Sending Large Amounts of Data .232

Maintaining Signals and Notification When Users Log Out. 232

Chapter 13. Handling Exceptions 233

13.1 The Exception Class Hierarchy .233
13.2 Signaling Exceptions . .235
13.3 Handling Exceptions . .236

Dynamic (Stack-Based) Handlers . .236
Selecting a Handler. .237
Flow of Control . .239
Default Handlers . .240
Default Actions . .241

13.4 The Legacy Exception Handling Framework .242
Dynamic (Stack-Based) Exception Handler .242

Installing a Dynamic (Stack-Based) Exception Handler 242
Default (Static) Exception Handlers .243

Installing a Default (Static) Exception Handler 243
GemStone Event Exceptions . .244

Flow of Control . .246
Signaling Other Exception Handlers .247
Removing Exception Handlers .247
Recursive Errors. .248

Raising Exceptions . .248
ANSI Integration . .249

Chapter 14. Performance and Optimization 251

14.1 Clustering Objects for Faster Retrieval . .251
Will Clustering Solve the Problem? .252
Cluster Buckets . .252

Using Existing Cluster Buckets .253
Creating New Cluster Buckets .253
April 2014 GemTalk Systems 15

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
Cluster Buckets and Concurrency . 254
Cluster Buckets and Indexing . 255

Clustering Objects . 255
The Basic Clustering Message . 255
Depth-First Clustering . 257
Assigning Cluster Buckets . 257
Clustering and Memory Use . 257
Using Several Cluster Buckets . 257
Clustering Class Objects . 258

Maintaining Clusters . 259
Determining an Object’s Location . 259
Why Do Objects Move? . 259

14.2 Profiling Smalltalk Execution . 261
Classes ProfMonitor and ProfMonitorTree . 261
Profiling Your Code. . 262
The Profile Report . 264

14.3 Modifying Cache Sizes for Better Performance . 268
GemStone Caches . 268

Temporary Object Space . 268
Gem Private Page Cache . 269
Stone Private Page Cache . 269
Shared Page Cache . 269

Getting Rid of Non-Persistent Objects . 270
14.4 Managing VM Memory . 270

Large Working Set . 271
Class Hierarchy . 271
UserAction Considerations . 271
Exported Set . 271

Debugging out of memory errors . 272
Signal on low memory condition . 272
Methods for Computing Temporary Object Space 273
Statistics for monitoring memory use . 274

14.5 NotTranloggedGlobals . 276
14.6 Other Optimization Hints . 277

Chapter 15. Working with Classes and Methods 279

15.1 Creating and Removing Methods . 279
Defining Simple Accessing and Updating Methods. 279
Compiling Methods . 280
Removing Methods . 281

15.2 Information about Class and Methods . 282
Information about the Class . 282
Information about Instance, Class, and Shared Pool variables 282
Information about Method Selectors . 282
Accessing and Managing Method Categories 283
16 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Table of Contents
Specific Methods .283
15.3 ClassOrganizer .283
15.4 Handling Deprecated Methods . .285

Deprecated handling . .285
Deprecation log . .286
Listing deprecated methods . .286
Determining senders of deprecated methods286

Chapter 16. System Sets 287

16.1 Hidden Sets .287
Methods to work with Hidden Sets .288

16.2 SessionTemps and access to Session State .290
SessionState .290

16.3 Shared Counters .291
AppStat Shared Counters .291
Persistent Shared Counters .292

Chapter 17. The Foreign Function Interface 293

17.1 FFI Core Classes. .294
CLibrary . .294
CCallout . .294
C type symbols .295
Limitations with native code disabled . .297
CCallin . .297
CByteArray .297
CFunction . .297
CPointer . .297

17.2 FFI Wrapper Utilities . .298
Creating a Smalltalk class .303

Chapter 18. External Sessions 305

18.1 Specifying NRS with GsNetworkResourceString305
Gem NRS methods . .306
Stone NRS methods .306
GsNetworkResourceString direct protocol .306

18.2 Using ExternalSessions. .307
Setup the External Session. .307

Creating the External Session .307
Log in the External Session .308
Executing Code . .308
Managing Remote Sessions .310

Managing transaction state .310
April 2014 GemTalk Systems 17

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
Logging . 310
Breaking remote execution . 310

Important caution on Export Set of remote session 310
Exceptions . 311

Chapter 19. The SUnit Framework 313

19.1 Why SUnit?. . 313
19.2 Testing and Tests . 314
19.3 SUnit by Example . 315

Examining the Value of a Tested Expression. 317
Finding Out If an Exception Was Raised . 317

19.4 The SUnit Framework. . 318
19.5 Understanding the SUnit Implementation . 320

Running a Single Test . 320
Running a TestSuite . 321

19.6 For More Information . 322

Appendix A. GemStone Smalltalk Syntax 323

A.1 GemStone and ANSI Smalltalk . 323
A.2 GemStone Smalltalk . 324

How to Create a New Class . 324
Case-Sensitivity . 324
Statements . 325
Comments . 325
Expressions . 325

Kinds of Expressions . 325
Literals . 326
Numeric Literals . 326
Character Literals . 327
String Literals . 327
Symbol Literals. . 328
Array Literals . 328

Variables and Variable Names. . 329
Declaring Temporary Variables . 329
Pseudovariables . 330

Assignment . 330
Message Expressions . 330

Messages . 331
Reserved and Optimized Selectors . 331

Messages as Expressions . 332
Combining Message Expressions . 333

Summary of Precedence Rules . 334
Cascaded Messages . 334
18 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Table of Contents
Array Constructors . .335
Path Expressions .336
Returning Values . .337

A.3 Blocks . .338
Blocks with Arguments .339
Blocks and Conditional Execution .340

Conditional Selection . .340
Two-Way Conditional Selection. .341
Conditional Repetition . .341

Formatting Code .342
A.4 GemStone Smalltalk BNF. .344

Index 347
April 2014 GemTalk Systems 19

Table of Contents GemStone/S 64 Bit 3.2 Programming Guide
20 GemTalk Systems April 2014

Chapter

1 Introduction to
GemStone
This chapter introduces you to the GemStone system. GemStone provides a distributed,
server-based, multi-user, transactional Smalltalk runtime system, with the ability to
partition the application between client and server. GemStone provides enterprise-quality
security, scalability, availability, and services for managing and monitoring the repository.

1.1 GemStone Overview

Multi-User

GemStone can support thousands of concurrent users, object repositories of hundreds of
gigabytes, and sustained object transaction rates of hundreds of transactions per second.
Server processes manage the system, while user sessions support individual user
activities. Repository and server processes can be distributed among multiple machines,
leveraging shared memory and SMP.

Multiple user sessions can be active at the same time, and each user may have multiple
sessions open. A flexible naming scheme allows separate or shared namespaces for
individual users. Changes that users make to objects are committed in transactions, with
concurrency controls and locks ensuring that multi-user changes to objects are
coordinated. Security is provided at several levels, from login authorization to method
execution privileges and object access privileges.

Programmable

GemStone provides data definition, data manipulation, and query facilities in a single,
computationally complete language — GemStone Smalltalk. The GemStone Smalltalk
language offers built-in data types (classes), operators, and control structures comparable
in scope and power to those provided by languages such as C or Java, in addition to
multi-user concurrency and repository management services. All system-level facilities,
such as transaction control, user authorization, and so on, are accessible from GemStone
Smalltalk.
April 2014 GemTalk Systems 21

GemStone Overview GemStone/S 64 Bit 3.2 Programming Guide
Scalable

Object programming languages such as Smalltalk have proven to be highly efficient
development tools. Smalltalk exploits inheritance and code reuse and provides the
flexibility of modeling real world objects with self-contained software modules. Most
Smalltalk implementations, however, are memory based, and objects exist only in a single
user’s image.

GemStone is based on the Smalltalk object model. Like a single-user Smalltalk image, it
consists of classes, methods, instances and meta objects. Persistence is established by
attaching new objects to other persistent objects. All objects are derived from a named
root (AllUsers). Objects that have been attached and committed to the repository are
visible to all other authorized users.

However, since the GemStone repository is accessed through disk caches, it is not limited
in size by available memory. A GemStone repository can contain billions of objects, each
with a unique object identifier (known as an OOP—object-oriented pointer).

Object Database

GemStone lets you model information in structures as simple or complex as application
data requires. You can represent data objects in tables, hierarchies, networks, queues, or
any other structure or nested combination of structures that is appropriate.

Because you can represent information in forms that mirror the information’s natural
structure, the translation of user requests into executable queries can be much easier in
GemStone. You do not need to translate users’ keystrokes or menu selections into
relational algebra formulas, calculus expressions and procedural statements before the
query can be executed. See Chapter 7, "Indexes and Querying."

Partition Between Client and Server

GemStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, Java, or any language that makes C calls. Objects
created from any of these languages are interoperable with objects created from the other
languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk classes,
Java classes, and C functions. These language interfaces allow you to move objects
between an application program and the GemStone repository, and to connect client
objects to GemStone objects. GemBuilder also provides remote messaging capabilities,
client replicates, and synchronization of changes.

GemStone’s interfaces include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone programming tools,
and a programming interface between the client application code and GemStone.
GemBuilder for Smalltalk contains a set of classes installed in a client Smalltalk image
that provides access to objects in a GemStone repository. Many of the client Smalltalk
kernel classes are mapped to equivalent GemStone classes, and additional class
mappings can be created by the application developer. GemBuilder for Smalltalk is a
separate product, and includes documentation describing installation and use.

GemBuilder for Java
GemBuilder for Java also has two parts: a set of GemStone programming tools, and a
22 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Overview
programming interface between the client application code and GemStone.
GemBuilder for Java is a Java runtime package that provides a message-forwarding
interface between a Java client and a GemStone server, allowing access to objects in a
GemStone repository. GemBuilder for Java is distributed as a separate product, and
includes documentation describing installation and use.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows programmers
to work with GemStone objects by importing them into the C program using structural
access, or by sending messages to objects in the repository through GemStone
Smalltalk. GemBuilder for C is distributed with the server product. For more
information on GemBuilder for C, see the GemBuilder for C Guide.

GLASS/Seaside
GLASS – GemStone, Linux, Apache, Seaside, and Smalltalk – provides a Pharo-
compatible GemStone Smalltalk framework to create and deploy desktop-like web
applications. A GemStone Seaside image is a base GemStone image with additional
classes and tools loaded. For more information, see seaside.gemtalksystems.com.

Your GemStone system includes one or more of these interfaces. Separate manuals
available for each of the GemBuilder products provide documentation.

In addition to these interfaces, GemStone provides a command-line tool that allows you to
interact with server objects, execute code, and perform limited scripting.

Topaz
Topaz is a GemStone programming environment that provides a scriptable command-
line interface to GemStone Smalltalk. Topaz is most commonly used for performing
repository maintenance operations. Topaz offers access to GemStone without
requiring a window manager or additional language interfaces. You can use Topaz in
conjunction with other GemStone development tools such as GemBuilder for C to
build comprehensive applications. For more information on Topaz, see the Topaz
Programming Guide.

Connect to Outside Data Sources

While GemStone methods are all written in Smalltalk (except for a limited number of
primitives), you may often want to call out to other logic written in C. GemStone provides
server al ways to access external code from a GemStone session.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks. You can use
GemBuilder for C to write these user actions, and add them to and execute them from
GemStone Smalltalk. The tools supporting user actions are part of the GemStone
kernel, and are documented in the GemBuilder for C manual.

Foreign Function Interface (FFI)
FFI classes with GemStone allow you to invoke functions in existing C libraries. The
argument and return data types are defined within GemStone Smalltalk to conform to
the C function definition. The FFI interface is part of the GemStone kernel, and is
documented in this Programming Guide.
April 2014 GemTalk Systems 23

GemStone Services GemStone/S 64 Bit 3.2 Programming Guide
GemConnect (Access to Oracle database)
GemStone uses the User Action mechanism to build the GemConnect product, which
provides access to relational database information from GemStone objects.
GemConnect is fully encapsulated and maintained in the GemStone object server.
GemConnect is distributed as a separate product, and includes documentation
describing installation and use.

1.2 GemStone Services

Transactions and Concurrency Control

Each GemStone session defines and maintains a consistent working environment for its
application program, presenting the user with a consistent view of the object repository.
The user works in an environment in which only his or her changes to objects are visible.
These changes are private to the user until the transaction is committed. The effects of
updates to the object repository by other users are minimized or invisible during the
transaction. GemStone then checks for consistency with other users’ changes before
committing the transaction, or refusing to commit conflicting changes.

GemStone provides both optimistic and pessimistic approaches to managing concurrent
transactions, and supports explicit object locking for read or write. To allow users to
modify the same object in ways that do not actually conflict, such as two users adding to a
collection, GemStone extents the Collection class hierarchy by providing reduced-conflict
(Rc) classes that can be used

For more on transactions and reduced-conflict classes, See Chapter 8, "Transactions and
Concurrency Control."

Login Security and Account Management

Compared to a single-user Smalltalk system, GemStone requires substantially more
security mechanisms and controls. As a tool for server implementation, multi-user
Smalltalk must handle requests from many users running a variety of applications, each
of which can require different accessibility of objects. Authentication and authorization
are the cornerstones of GemStone Smalltalk security.

Login Authentication
Before users can access system resources, they must be authenticated. Logins can be
done from any of the interfaces; in each case, GemStone requires a user ID and a
password, and a corresponding UserProfile must exist in GemStone. Authentication of
the user ID and password can be done using GemStone’s encryption or by Lightweight
Directory Access Protocol (LDAP). GemStone uses SRP and SSL to establish secure
logins and certain types of interprocess connections. Authentication and login security
features are described in the System Administration Guide.

Object-level Authorization
To control access to individual objects, GemStone provides object-level authorization.
Authorization enforcement is implemented at the lowest level of basic object access to
prevent users from circumventing the authorization checking. Read and write
authorization can be granted to single objects or groups of objects, for single users or
groups of users. See Chapter 9, "Object Security and Authorization."
24 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
User Privileges
GemStone defines a set of privileges for controlling the use of certain system services.
Privileges determine whether the specific user is allowed to execute certain system
functions, usually ones only performed by the system administrator. Privileges are
described in the System Administration Guide.

Services To Manage the GemStone Repository

GemStone is capable of managing objects shared by thousands of users, running methods
that access billions of objects, and handling queries over large collections of objects by
using indexes. It can support large-scale deployments on multiple machines in a variety of
network configurations. All of this functionality requires a wide array of services for
management of the repository, the system processes, and user sessions. These services are
described in the System Administration Guide.

1.3 GemStone Smalltalk
GemStone Smalltalk is tailored to operate in a multi-user environment, with transaction
throughput and client communication as chief considerations. GemStone’s class library is
designed for multi-user access to objects. At the same time, its common characteristics
with other Smalltalks allow you to implement shared business objects with the same
language you use to build client applications. Since the same code can execute either on
the client or on the object server, you can easily move behavior from the client to the
server for application partitioning.

With a limited number of exceptions, GemStone Smalltalk supports the ANSI Smalltalk
standard.

No User Interface

Because GemStone is an object server, GemStone Smalltalk does not provide any classes
for screen presentation or user interface development. Graphical user interfaces,
including those for developing classes and methods as well as runtime user interfaces, are
provided by the client application. The client application uses a GemBuilder interface or a
web interface such as Seaside to communicate and interact with the GemStone server.

A significant part of programming with GemStone is designing the interactions between
various client runtime systems and the GemStone classes, methods, and objects on the
server.

GemStone Sessions

The GemStone interfaces provide access to GemStone objects and mechanisms for
running GemStone methods in the server. This access is accomplished by establishing a
session with the GemStone object server. The process for establishing a session is tailored
to the language or user of each interface. In all cases, however, this process requires
identification of the GemStone object server to be used, the user ID for the login, and other
information required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of that
session, be it low-level object access and creation, or invocation of GemStone Smalltalk
methods.
April 2014 GemTalk Systems 25

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
Sessions allow multiple users to share objects. In fact, different sessions can access the
same repository in different ways, depending on the needs of the applications or users
they are supporting. For example, an employee may only be able to access employee
names, telephone extensions and department names through the human resources
application, while a manager may be able to access and change salary information as well.

Sessions also control transactions, which are the only way changes to the repository can
be committed. However, a passive session can run outside a transaction for better
performance and lower overhead. For example, a stock portfolio application that reports
the current value of a collection of stocks may run in a session outside a transaction until
notified that a price has changed in a stock object. The application would then start a
transaction, commit the change, and recalculate the portfolio value. It would then return
to a passive session state until the next change notification.

A session can be integrated with the application into a single process, called a linked
application. Each application can have only one linked session.

Alternatively, the session can run as a separate process and respond to remote procedure
calls (RPCs) from the application. These sessions are called RPC applications. An
application may have multiple RPC sessions running simultaneously with each other and
a linked session.

System Management Classes

GemStone Smalltalk provides a number of classes that offer system management
functionality.

The class System, which has no instances, provides class protocol to manage the
repository.

The class Repository, which has a single instance named SystemRepository, provides
protocol for data management functions, such as extent creation and access, backup
and restore, and garbage collection.

The class UserProfileSet, which has a single instance named AllUsers, provides
protocol to create and manage users.

Monitoring your application

GemStone includes statmonitor and Visual Stat Display (SD) utilities, which allow you to
monitor and record, and view statistics about your application performance. This allows
precise tuning as well as detecting potential problems before they occur. GemStone also
includes profiling classes that allow you to optimize and tune your Smalltalk code for
maximum performance.

File In and File Out

GemStone Smalltalk allows you to file out source code for classes and methods, save the
resulting text file, and file it in to another repository. The GemStone class PassiveObject
also allows you to create a text representations of the binary objects, which can be written
to a file and read into another repository.
26 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Process Architecture
Interapplication Communications

GemStone Smalltalk provides two ways to send information from one currently logged-in
session to another:

GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for the
application to repeatedly query the Gem for this information. Notification is optional,
and can be enabled for only those objects in which you are interested.

Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

1.4 Process Architecture
GemStone provides the technology to build and execute applications that are designed to
be partitioned for execution over a distributed network. GemStone’s architecture provides
both scalability and maintainability. The following sections describe the main aspects of
GemStone architecture.

Gem Process

For each login, a GemStone session is established with a Gem process. The Gem runs
GemStone Smalltalk and processes messages from the client session. It provides the user
with a consistent view of the repository, and it manages the user’s session, keeping track
of the objects the users has accessed, paging objects in and out of memory as needed, and
performing dynamic garbage collection of temporary objects. A user application is always
connected to at least one Gem, and may have connections to many Gems. Gems can be
distributed on multiple, heterogeneous servers.

In addition to Gem Processes for user sessions, a running GemStone system includes a
number of maintenance Gem processes. These system Gems include the GcGems, which
handle the tasks of collecting objects that are no longer referenced and the SymbolGem,
which centralizes the creation of unique, canonical symbols.

Stone Process

The Stone process is the resource coordinator. One Stone process manages one repository.
The Stone synchronizes activities and ensures consistency as it processes requests to
commit transactions. Individual Gem processes communicate with the Stone through
interprocess channels.

NetLDI

Most GemStone configurations will includes a network server process, known as a
NetLDI (Network Long Distance Information). The NetLDI is responsible for starting up
GemStone processes such as Gems, and coordinates startup when GemStone processes
are needed on a node other than the one the Stone is running on.

Shared Page Cache

The shared page cache (SPC) provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. The SPC is a large, contiguous area of
April 2014 GemTalk Systems 27

Process Architecture GemStone/S 64 Bit 3.2 Programming Guide
shared memory that is shared by the Stone and each Gem process on that host. Memory is
managed and allocated on pages within this shared memory. A cache is started on each
machine that runs a Stone monitor, Gem session process, or linked application.

The SPC also contains buffers for communications between Gems and the Stone. The
Shared Cache Monitor process initializes the shared memory cache, manages allocation to
the sessions, and dynamically adjusts this allocation to fit the workload. It also makes sure
that frequently accessed objects remain in memory, and that large objects queries do not
flush data from the cache. These controls allow complex applications to be run on the
same repository by multiple users without performance degradation.

Extents and Repositories

Extents are composed of multiple disk files or raw partitions. A repository, which is the
logical storage unit in which GemStone stores objects, is actually an ordered collection of
one or more extents.

Transaction Log

GemStone’s transaction log provides complete point-in-time roll-forward recovery. The
transaction log contents are composed by the Gem, and the Stone writes the tranlog using
asynchronous I/O. Commit performance is improved through I/O reduction, because
only log records need to be written, not many object pages. In addition, the object pages
stay in memory to be reused. Transaction logs may be on file systems or on raw devices.
28 GemTalk Systems April 2014

Chapter

2 Class Creation
The first thing you will want to do is create the classes that will implement your
application. This chapter describes class creation protocol, including some special features
that can apply to all instances of a class.

Subclass Creation
explains how to define new GemStone classes, class implementation formats and other
ways classes can store data.

Creating Classes With Invariant Instances
describes how to make objects invariant.

Creating Classes with Special Cases of Persistence
explains how classes can be defined so that their instances or instance variables are not
stored in the repository.

2.1 Subclass Creation
Almost every class in the GemStone system understands a message that causes it to create
a subclass of itself.

Example 2.1

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #('AllAnimals')
classInstVars: #('AllOfSpecies')
poolDictionaries: #()
inDictionary: UserGlobals

This subclass creation message establishes a name ('Animal') for the new class and
provides for three named instance variables ('habitat', 'name', and 'predator'), a
class variable ('AllAnimals'), and a class instance variable ('AllOfSpecies'). The
new class in installed in the symbolDictionary UserGlobals of the user who executes this
April 2014 GemTalk Systems 29

Subclass Creation GemStone/S 64 Bit 3.2 Programming Guide
code. You may also include reference to poolDictionaries, if this is useful for your
application. Pool dictionaries are included by value, not by name; in other words, you use
the reference to the pool dictionary, not a String.

The String used for the new class’s name must follow the general rule for variable names
— that is, it must begin with an alphabetic character and its length must not exceed 1024
characters.

There are a number of subclass creation methods. The first keyword (in the example
above, subclass:) defines the implementation format — more on this in the next
section. Subclass creation methods with additional keywords are provided to provide
other information to use when creating the class.

Some GemStone server classes cannot be subclassed. This is an attribute of the class.
Execute class subclassesDisallowed to determine if a specific class can be subclassed.

Implementation Formats

Objects typically encapsulate data and behavior. The behavior is defined as methods on a
class and the data is stored in the object. The data may be stored in named instance
variables, indexed instance variables (Collection elements), or by value in specialized
internal structures.

The implementation format refers to how the basic structure of the objects are defined by
the class, which is done when the class is created. Implementation may be inherited from
the superclass, or by using specific subclass creation methods you can specify the
implementation format of the class.

Non-Indexable objects

Many types of objects have named instance variables, but no indexable variables. Objects
may have up to 255 named instance variables, which are referred to by name in the code
for that class. This is the default format; subclass creation methods that begin with the
subclass: keyword will create classes of this format, if another format is not inherited.

Indexable Objects

Indexable objects have a variable number of instance variables that are referenced by an
Integer index. The number of an object’s indexed instance variables can increase
dynamically at run time, up to 240-1 (about a trillion). There are two general cases of
indexable objects:

Pointer-format
Pointer-format indexable objects allow the instance variables to refer to any other
object. Pointer-format objects may also have up to 255 named instance variables.

Subclass creation methods that create indexed classes with pointer objects begin with
the keyword indexableSubclass:.

Byte-format
This format is used for objects with indexed instance variables that are specialized for
storing byte values, SmallIntegers in the range 0...255. Byte-format objects may not
have named instance variables.

Subclass creation methods that create byte indexable classes begin with byteSub-
class:.
30 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Subclass Creation
You may not create byte-indexable subclasses of pointer-indexable classes, nor vice-versa,
nor can you create indexable subclasses of NSCs.

NonSequencableCollection (NSC)

These classes store data with neither names nor indexes. They are suited to applications in
which access is by value, rather than by name or position. Classes with this format are
subclasses of UnorderedCollection, and are the classes for which Indexes are
implemented.

You cannot directly define classes with this format, although you can subclass from
existing kernel classes. Subclasses of NSC classes may have named instance variables, but
not indexed instance variables.

Special

Instances of a few small, self-contained, kernel classes, including Character, SmallInteger,
SmallDouble, Boolean, and UndefinedObject, are encoded entirely in the object identifier.
Special objects do not use up an object ID (i.e., are not in the object table), do not take up
separate space in the repository (beyond the original reference itself), and equal values
always compare as identical.

You may not create your own specials nor may you subclass existing special classes.

Class Variables and Other Types of Variables

The implementation formats defined in the last section define several types of instance
variables. Class definitions also include the following variable types:

Class variables
A class variable is a variable whose name and value are shared by a class, all of its
instances, its subclasses, and all of their instances. Both class and instance methods of
the class and its subclasses can refer to the variable. You can think of these variables as
falling somewhere between local and global in their scope.

Class instance variables
A class instance variable is a variable whose name and value are shared by a class, but
not by its instances. Subclasses inherit the variable’s name but not its value. Only class
methods of a class and its subclasses can refer to class instance variables. Class instance
variables are useful when a class and its subclasses need to share the same structure,
but not the same value, for a variable.

Pool variables
The pool variables are an Array of SymbolDictionary instances that are searched when
attempting to bind a variable name during instance method compilation. Pool
variables come after class variables and before globals in precedence. They are
typically used when methods in a number of classes share values.

For example, one could define a SymbolDictionary with a key of #'CR' and a value of
(Character codePoint: 13). If this SymbolDictionary were included in the class defini-
tion as a pool dictionary, then instance methods in the class could use CR as a way to
reference the value and make the code more readable.

Global variables
Global variables are not tied to a class. They may be entries in a SymbolDictionary
referenced in the UserProfile’s SymbolList.
April 2014 GemTalk Systems 31

Subclass Creation GemStone/S 64 Bit 3.2 Programming Guide
Dynamic Instance Variables

In addition to the fixed instance variables, which are the same for every instance of that
class, you may also add dynamic instance variables to most instances.

Dynamic instance variables are key/value pairs that are stored with the instance like
other instance variables, but may be added to specific instances of a class an not to other
instances, without changing the class definition.

You cannot add dynamic instance variables to invariant objects, nor to Specials, nor to
classes or metaclasses.

The maximum number of dynamic instance variables that can be added to an object is 255.
However, the maximum may be lower for classes with many instance variables, since an
object cannot be changed to a large object by adding dynamic instance variables. so, more
exactly, the actual limit for the number of dynamic instance variables is calculated:

(255 min: ((2034 - self class instSize) / 2)

To add a dynamic instance variable, set the value using:

anObject dynamicInstVarAt: nameSymbol put: value

For example, say you have an instance of Animal representing the Bald Eagle. Bald Eagles
are an endangered species, so you might want to add the legal and conservation
information to this instance, but not to other instances of Animals.

theBaldEagle dynamicInstVarAt: #legalStatus
put: 'Bald and Golden Eagle Protection Act'.

You can check what dynamic instance variables have been defined for an object:

topaz 1> printit
theBaldEagle dynamicInstanceVariables
%
an Array
 #1 legalStatus

and retrieve the stored value for a dynamic instance variable:

topaz 1> printit
theBaldEagle dynamicInstVarAt: #legalStatus
%
Bald and Golden Eagle Protection Act

If the Bald Eagle was no longer protected and this information was no longer needed, you
could remove the dynamic instance variable

theBaldEagle removeDynamicInstVar: #legalStatus

The name and data for dynamic instance variables are persisted in the repository like any
other instance variable data. Dynamic instance variables allow you to add instance
variables to instance of a class, without the need to migrate. However, dynamic instance
variables are less efficient than named instance variables, and make for code that is more
difficult to maintain.
32 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Subclass Creation
Additional Class Creation Protocol

In addition to implementation format and variables, there are other features of classes that
can be, or must be, defined when the class is created. These are provided via subclass
creation methods with additional keywords.

The subclass creation methods follow the form in example Example 2.2.

Example 2.2

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #('AllOfSpecies')
classInstVars: #('AllAnimals')
poolDictionaries: #()
inDictionary: UserGlobals
newVersionOf: Animal
description: 'Class describing Animals'
options: #()

The newVersionOf: allows you to create a new class that has the same classsHistory as
an existing class; this will be covered in detail in Chapter 10.

The description: keyword allows you to provide documentation as part of the class
definition. You can also explicitly set the comment after the class has been created by
using the comment: method. For example:

Animal comment: 'Class describing Animal, created for the Program-
mers Guide'.

The options: keyword allows you to specify a collection of symbols to defined specific
features of the new subclass. The options can include any of these:

#dbTransient See page 36 for details. This option cannot be used
in combination with
#instancesNonPersistent or
#instancesInvariant

#disallowGciStore For internal use

#instancesInvariant All instances of this class will be made invariant
as soon as they are committed. If any class is
defined with instancesInvariant, all its subclasses
must also have instancesInvariant.

Cannot be used in combination with
#instancesNonPersistent or
#dbTransient

#instancesNonPersistent See page 35 for details. This option cannot be used
in combination with #dbTransient or
#instancesInvariant
April 2014 GemTalk Systems 33

Creating Classes With Invariant Instances GemStone/S 64 Bit 3.2 Programming Guide
For more details on class creation protocol, refer to methods in the image.

Note that subclasses creation protocol including the keywords inClassHistory:,
isInvariant:, constraints:, isModifiable:, and instancesInvariant: may
still appear, but are deprecated. Methods including these keywords should not be used.

2.2 Creating Classes With Invariant Instances
For data that must not ever be changed, GemStone provides two ways to make objects
invariant or unchangeable. These are object-level invariance, and class-level invariance.

Per-Object Invariance

Any object can be made invariant by sending it the message immediateInvariant (a
method defined by class Object). This mechanism provides a form of write-protecting
objects that is useful for maintaining the integrity of your database. Once
immediateInvariant is sent to an object, no modifications can be made to any of the
object’s instance variables, nor can the size or class of the object be changed. The
immediateInvariant message takes effect immediately, but can be reversed by
aborting the transaction in which it was sent. Once the transaction has been committed,
you cannot reverse the effect of this message. The message isInvariant returns true if
the receiver is invariant; false otherwise.

Invariance for All Instances of a Class

In class-level invariance, the definition of the class specifies that all instances of the class
are invariant. Such an instance can be modified only during the transaction in which it is
created. When the transaction is committed, the instance becomes invariant and no
further modifications can be made to any of its instance variables, nor can the size or class

#logCreation Log class creation, including expressions that are
the same as an existing class and do not create a
new class instance or version, to the gem log or
linked topaz output using GsFile
class>>gciLogServer:

#modifiable If this symbol is included, the class remains is
modifiable after creation. No instances can be cre-
ated until you make the class unmodifiable by
sending it the message immediateInvariant.

#noInheritOptions If this symbol is included, it must be first, and in
this case options are not inherited from the super-
class nor from an existing version of the class.
This applies to the options #subclassesDisal-
lowed, #disallowGciStore, #traverseBy-
Callback, #dbTransient,
#instancesNonPersistent, and #instanc-
esInvariant

#subclassesDisallowed No subclasses of the newly created class are per-
mitted.

#traverseByCallback For internal use.
34 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating Classes with Special Cases of Persistence
of the object be changed. This mechanism is useful for supporting literals in methods and
in other limited situations, but is generally more cumbersome than object-level invariance.

Class-level invariance can be specified during class creation by including the
#instancesInvariant symbol in the options: keyword argument. You cannot also
define the class with non-persistent instances (#instancesNonPersistent), nor with
non-persistent instances variable data (#dbTransient).

The following example creates a subclass of Animal whose instances are invariant:

Example 2.3

Animal subclass: 'InvariantAnimal'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
options: (#instancesInvariant)

2.3 Creating Classes with Special Cases of Persistence
In some cases, you may want either objects or the instance variables of objects to not be
persistent, that is, not be written to disk. For example, you may want to include session-
dependent information that shouldn’t be read by another session, or data that is bulky
and can be recreated easily. There are several ways to handle this.

Non-Persistent Classes

You can define a class as having only non-persistent instances. This means that instances
of this class cannot be committed, so you cannot include references to instances of non-
persistent classes within a persistent data structure.

To create a class with non-persistent instances, in the options: keyword argument,
include the symbol #instancesNonPersistent. You cannot also define the class with
non-persistent instances variables (#dbTransient), nor with invariant instances
(#instancesInvariant).

As discussed in Chapter 4, GemStone provides a class called KeySoftValueDictionary,
which allows you to manage non-persistent objects that are large and take time to create,
but can be recreated whenever needed from small, readily available objects (tokens).

You cannot commit instances of a non-persistent class. If you attempt to do so, GemStone
issues an error that indicates whether the object’s class or a superclass is non-persistent.
(The non-persistent status of a class is inherited by all of its subclasses.)

To determine whether a class’s instances are non-persistent, you can send the following
message:

theClass instancesNonPersistent

This message returns true if the class is non-persistent, false otherwise.
April 2014 GemTalk Systems 35

Creating Classes with Special Cases of Persistence GemStone/S 64 Bit 3.2 Programming Guide
To make all instances of a class non-persistent, send the message:

theClass makeInstancesNonPersistent

Similarly, send this message to make all instances of a class persistent:

theClass makeInstancesPersistent

To make all instances of a class (and all of its subclasses) non-persistent, even if the class is
non-modifiable:

ClassOrganizer makeInstancesNonPersistent: theClass

Similarly, you can send this message to make all instances of a class persistent, even if the
class is non-modifiable:

ClassOrganizer makeInstancesPersistent: theClass

DbTransient

Classes can also be defined as DbTransient. Instances of classes that are DbTransient can
be committed — that is, there is no error if they are committed — but their instance
variables are not written to disk. This is useful if you need to encapsulate objects that
should not be persistent, such as semaphores, within object structures that do need to be
persistent and shared.

To create a class with DbTransient instances, in the options: keyword argument,
include the symbol #dbTransient. You cannot also define the class with non-persistent
instances (#instancesNonPersistent), nor with invariant instances
(#instancesInvariant).

When a data structure containing an instance of a DbTransient class is committed, the
instance variables of the DbTransient object are written to the repository as nil. Whenever
a DbTransient object is read into a session, all of its instance variables are nil.

Since DbTransient instances are stored only in memory, they are affected by the in-
memory GC operations. (See “Managing VM Memory” on page 270. Also see Chapter 11
of the System Administration Guide.)

If memory becomes low, the transient objects may be stubbed out of memory. When
needed, it is re-read from the repository. However, all the instance variables will be nil
after a re-read. To prevent losing non-nil instance variable values, you should keep a
reference to DbTransient instances in session state.

Since the DbTransient object will remain in memory while referenced from session state,
the reference from session state should be removed when the DbTransient object is no
longer needed, to avoid filling up memory and causing an out of memory error.

Note that while DbTransient objects are only committed once (on creation), and so do not
normally cause concurrency conflicts, if they are clustered the object will be written (still
with all instance variables nil), and could potentially cause a concurrency conflict.

To set a class so all instances are DbTransient, send:

aClass makeInstancesDbTransient

aClass must be a non-indexable pointer class. This will cause any instance of aClass to be
DbTransient. The change takes place immediately.
36 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating Classes with Special Cases of Persistence
The following message:

aClass makeInstancesNotDbTransient

will cause instances to be non-DbTransient, that is, allow instance variables to be written
to disk.
April 2014 GemTalk Systems 37

Creating Classes with Special Cases of Persistence GemStone/S 64 Bit 3.2 Programming Guide
38 GemTalk Systems April 2014

Chapter

3 Resolving Names and
Sharing Objects
This chapter describes how GemStone Smalltalk finds the objects to which your programs
refer and explains how you can arrange to share (or not to share) objects with other
GemStone users.

Sharing Objects
 explains how GemStone Smalltalk allows users to share objects of any kind.

The Session-Based and UserProfile Symbol Lists
describes the mechanism that the GemStone Smalltalk compiler uses to find objects
referred to in your programs.

 Specifying Who Can Share Which Objects
discusses how you can enable other users of your application to share information.

3.1 Sharing Objects
GemStone Smalltalk permits concurrent access by many users to the same data objects.
For example, all GemStone Smalltalk programmers can make references to the kernel
class Object. These references point directly to the single class Object—not to copies of
Object.

GemStone allows shared access to objects without regard for whether those objects are
files, scalar variables, or collections representing entire databases. This ability to share
data facilitates the development of multi-user applications.

To find the object referred to by a variable, GemStone follows a well-defined search path:

1. The local variable definitions: temporary variables and arguments.

2. Those variables defined by the class of the current method definition: instance, class,
class instance, or pool variables.

3. The symbol list assigned to your current session (see the following discussion).

If GemStone cannot find a match for a name in one of these areas, you are given an error
message.
April 2014 GemTalk Systems 39

UserProfile and Session-Based Symbol Lists GemStone/S 64 Bit 3.2 Programming Guide
3.2 UserProfile and Session-Based Symbol Lists
The GemStone system administrator assigns each GemStone user an object of class
UserProfile. Your UserProfile stores such information as your name, your encrypted
password, and access privileges. Your UserProfile also contains the instance variable
symbolList.

When you log in to GemStone, the system creates your current session (which is an
instance of GsSession object) and initializes it with a copy of the UserProfile symbolList
object. GemStone Smalltalk refers to this copy of the symbol list to find objects you name
in your application. See Figure 3.1.

Figure 3.1

Persistent UserProfile:

userId: aFriend
...

symbolList

GsSession data

Transient data:

symbolList

At login, GsSession creates a copy of
the symbolList in your UserProfile

The GsSession symbolList — a copy of the UserProfile symbolList

This instance of GsSession is not copied into any client interface nor committed as a
persistent object. Since the symbolList is transient, changes to it cannot incur concurrency
conflicts, nor are they subject to rollback after an abort.

Changes to the current session’s symbolList do not affect the UserProfile symbolList.
Thus, the UserProfile symbolList can continue to serve as a default list for other logins. At
the same time, methods are provided to synchronize your session and UserProfile
symbolLists.

What’s In Your Symbol List?

In creating your UserProfile symbol list, the data curator adds SymbolDictionaries
containing associations that define the names of all objects that the data curator thinks you
might need. Although the decision about which objects to include is entirely up to the
data curator, your symbol list contains at least two dictionaries:

A “system globals” dictionary called Globals. This dictionary contains some or all of
the GemStone Smalltalk kernel classes (Object, Class, Collection, etc.) and any other
objects to which all of your GemStone users need to refer. Although you can read the
objects in Globals, you are probably not permitted to modify them.
40 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide UserProfile and Session-Based Symbol Lists
A private dictionary in which you can store objects for your own use and new classes
you do not need to share with other GemStone users. That private dictionary is
usually named UserGlobals.

The symbol list may also include special-purpose dictionaries that are shared with other
users, so that you can all read and modify the objects they contain. The data curator can
arrange for a dictionary to be shared by inserting a reference to that dictionary in each
user’s UserProfile symbol list.

Except for the dictionaries Globals and UserGlobals, the contents of each user’s
SymbolList are likely to be different.

Examining Your Symbol List

To get a list of the dictionaries in your persistent symbol list, send your UserProfile the
message dictionaryNames. For example:

Example 3.1

topaz 1> printit
System myUserProfile dictionaryNames
%
 1 UserGlobals
 2 UserClasses
 3 ClassesForTesting
 4 Globals
 5 Published

The SymbolDictionaries listed in the example have the following function:

UserGlobals
Contains per-user application and application service objects.

UserClasses
Contains per-user class definitions, and is created by GemBuilder for Smalltalk to
replicate classes when necessary. Putting this dictionary before the Globals dictionary
allows an application or user to override kernel classes without changing them.
Keeping it separate from UserGlobals allows a distinction between classes and
application objects.

ClassesForTesting
A user-defined dictionary.

Globals
Provides access for the GemStone kernel classes.

Published
Provides space for globally visible shared objects created by a user.

To list the contents of a symbol dictionary:

If you are using Topaz, execute some expression that returns the dictionary.
Example 3.2 lists the dictionary keys. Alternatively, you could execute UserGlobals
to examine all keys and values.
April 2014 GemTalk Systems 41

UserProfile and Session-Based Symbol Lists GemStone/S 64 Bit 3.2 Programming Guide
If you are running GemBuilder for Smalltalk (GBS), select the expression
UserGlobals in a GemStone workspace and execute GS-Inspect it.

Example 3.2

topaz 1> printit
UserGlobals keys
%
a SymbolSet
 ...
 #1 GcUser
 #2 UserGlobals
 #3 GsPackagePolicy_Current
 #4 PackageLibrary
 ...

If you examine all of your symbol list dictionaries, you’ll see that most of the kernel
classes are listed. In addition, there are global variables, both public and for internal use.
For a detailed description of GemStone kernel objects, see Appendix D of the System
Administration Guide.

You’ll discover that most of the dictionaries refer to themselves. Since the symbol list must
contain all source code symbols that are not defined locally nor by the class of a method,
the symbol list dictionaries need to define names for themselves so that you can refer to
them in your code. Figure 3.2 illustrates that the dictionary named UserGlobals contains
an association for which the key is UserGlobals and the value is the dictionary itself.

The object server searches symbol lists sequentially, taking the first definition of a symbol
it encounters. Therefore, if a name, say “#BillOfMaterials,” is defined in the first
dictionary and in the last, GemStone Smalltalk finds only the first definition.

Figure 3.2

UserGlobals Dictionary

#Object aClass
#Collection aClass
#UserGlobals
 . .
 . .

Self-Referencing Symbol Dictionary

Inserting and Removing Dictionaries from Your Symbol List

NOTE
To insert or remove a SymbolDictionary to/from your symbol list, you must have
42 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide UserProfile and Session-Based Symbol Lists
the necessary system privilege. For details, see "User Accounts and Security" in
the System Administration Guide.

Creating a dictionary is like creating any other object, as the following example shows.
Once you’ve created the new dictionary, you can add it to your symbol list by sending
your UserProfile the message insertDictionary: aSymbolDict at: anInt.

Example 3.3

| newDict |
 newDict := SymbolDictionary new.
 newDict at: #NewDict put: newDict.
 System myUserProfile insertDictionary: newDict at: 1.

As you might expect, insertDictionary: at: shifts existing symbol list dictionaries
as needed to accommodate the new dictionary. In Example 3.3, the new dictionary is
inserted into the UserProfile symbolList and then updated in the current session.

Because the GemStone Smalltalk compiler searches symbol lists sequentially, taking the
first definition of a symbol it encounters, your choice of the index at which to insert a new
dictionary is significant.

The following example places the object MyCollection (a class) in the user’s private
dictionary named MyClassDict. Then it inserts MyClassDict in the first position of the
current Session’s symbolList, which causes the object server to search MyClassDict
prior to UserGlobals. This means that the GemStone object server will always find
MyCollection in MyClassDict, not in UserGlobals.

Example 3.4

| myClassDict |
(System myUserProfile resolveSymbol:#MyClassDict) isNil
 ifTrue:[myClassDict := (System myUserProfile createDictionary:

#MyClassDict)]
 ifFalse:[myClassDict := (System myUserProfile resolveSymbol:

#MyClassDict) value].
Object subclass: 'MyCollection'

instVarNames: #('this' 'that' 'theOther')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: myClassDict.

GsSession currentSession userProfile insertDictionary: myClassDict at: 1.

Object subclass: 'MyCollection'
instVarNames: #('snakes' 'snails' 'tails')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals
April 2014 GemTalk Systems 43

UserProfile and Session-Based Symbol Lists GemStone/S 64 Bit 3.2 Programming Guide
Recall that the object server returns only the first occurrence found when searching the
dictionaries listed by the current session’s symbol list. When you subsequently refer to
MyCollection, the object server returns only the version in MyClassDict (which you
inserted in the first position of the symbol list) and ignores the version in UserGlobals.
If you had inserted MyClassDict after UserGlobals, the object server would only find
the version of MyCollection in UserGlobals.

You may redefine any object by creating a new object of the same name and placing it in a
dictionary that is searched before the dictionary in which the matching object resides.
Therefore, inserting, reordering, or deleting a dictionary from the symbol list may cause
the GemStone object server to return a different object than you may expect.

This situation also happens when you create a class with a name identical to one of the
kernel class names.

CAUTION
Avoid redefining any kernel classes. Their implementation may change from one
version of GemStone to the next. Creating a subclass of a kernel class to redefine
or extend that functionality is usually more appropriate.

To remove a symbol dictionary, send your UserProfile the message
removeDictionaryAt: anInteger, passing in the index of the dictionary you want to
remove.

Updating Symbol Lists

There are many ways that the current session’s symbol list can get out of sync with the
UserProfile symbol list. As some of the examples in this chapter show, updates can made
to the current session symbol list that exist only as long as you are logged in. By changing
only the symbol list for the current session, you can dynamically change the session
namespace without causing concurrency conflict. For example, if you are developing a
new class, you can purposely set your current session symbol list to include new objects
for testing.

Three UserProfile methods help synchronize the persistent and transient symbol lists:

insertDictionary: aDictionary at: anIndex
This method inserts a Dictionary into the UserProfile symbol list at the specified index.

removeDictionaryAt: anIndex
This method removes the specified dictionary from the UserProfile symbol list.

symbolList: aSymbolList
This method replaces the UserProfile symbol list with the specified symbol list.

Each of these methods modifies the UserProfile symbol list. If the receiver is identical to
“GsSession currentSession userProfile”, the current session’s symbol list is
updated. If a problem occurs during one of these methods, the persistent symbol list is
updated, but the transient current session symbol list is left in its old state.

In Example 3.5, the transient symbol list is copied into the persistent UserProfile symbol
list. The example continues with adding a new dictionary to the current session and
finally resets the current session’s symbol list back to the UserProfile symbol list.
44 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide UserProfile and Session-Based Symbol Lists
Example 3.5

"Copy the GsSession symbol list to the UserProfile"
System myUserProfile symbolList:

(GsSession currentSession symbolList copy).

"Check that the symbol lists are the same"
GsSession currentSession symbolList =

System myUserProfile symbolList.

"Add a new dictionary to the current session"
GsSession currentSession symbolList add: SymbolDictionary new.

"Compare the two symbol lists; they should differ"
GsSession currentSession symbolList =

System myUserProfile symbolList.

"Update the UserProfile symbolList to current session"
GsSession currentSession symbolList replaceElementsFrom:

(System myUserProfile symbolList).

Finding Out Which Dictionary Names an Object

To find out which dictionary defines a particular object name, send your UserProfile the
message symbolResolutionOf: aSymbol. If aSymbol is in your symbol list, the result is a
string giving the symbol list position of the dictionary defining aSymbol, the name of that
dictionary, and a description of the association for which aSymbol is a key. For example:

Example 3.6

topaz 1> printit
System myUserProfile symbolResolutionOf: #Bag
%
2 Globals
 Bag Bag

If aSymbol is defined in more than one dictionary, symbolResolutionOf: finds only the
first reference.

To find out which dictionaries stores a name for an object and what that name is, send
your UserProfile the message dictionariesAndSymbolsOf: anObject. This message
returns an array of arrays containing the dictionaries in which anObject is stored, and the
symbols which name that object in that dictionary.

Example 3.7 uses dictionariesAndSymbolsOf: to find out which dictionaries in the
symbol list stores a reference to class DateTime.
April 2014 GemTalk Systems 45

Using Your Symbol Dictionaries GemStone/S 64 Bit 3.2 Programming Guide
Example 3.7

| anArray myUserPro |
myUserPro := System myUserProfile.

"Find first Dictionary containing DateTime"
anArray := (myUserPro dictionariesAndSymbolsOf: DateTime) first.
anArray at: 1.
aSymbolDictionary

"Get the name of the SymbolDictionary"
(anArray at: 1) keyAtValue: (anArray at: 1)
Globals

Note that dictionariesAndSymbolsOf: may return zero, one, or multiple
dictionaries.

3.3 Using Your Symbol Dictionaries
As you know, all GemStone users have access to such objects as the kernel classes Integer
and Collection because those objects are referred to by a dictionary (usually called
Globals) that is present in every user’s symbol list.

If you want GemStone users to share other objects as well, you need to arrange for
references to those objects to be added to the users’ symbol lists.

NOTE
To insert or remove a SymbolDictionary to/from your symbol list, or to make any
changes to a UserProfile that is not your own, you must have the necessary system
privilege. For details, see "User Accounts and Security" in the System
Administration Guide.

Publishers, Subscribers and the Published Dictionary

The Published Dictionary, PublishedObjectSecurityPolicy, and the groups Subscribers
and Publishers together provide an example of how to set up a system for sharing objects.

The Published Dictionary is an initially empty dictionary referred to by your UserProfile.
You can use the Published dictionary to "publish" application objects to all users — for
example, symbols that most users might need to access. The Published Dictionary is not
used by GemStone classes; rather, it is available for application use.

The PublishedObjectSecurityPolicy is owned by the Data Curator and has World access
set to none. Two groups have access to the PublishedObjectSecurityPolicy:

Subscribers have read-only access.

Publishers have read-write access.

Publishers can create objects in the PublishedObjectSecurityPolicy and enter them in the
Published Dictionary. Then members of the Subscribers group can access the objects.
46 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Using Your Symbol Dictionaries
For example, your system administrator might add each member of a programming team
to the group Publishers. After completing the definition of a new class, a programmer
could make the class available to colleagues by adding it to the Published dictionary.
Because this dictionary is already in each user’s symbol list, whatever you add becomes
visible to users the next time they obtain a fresh transaction view of the repository. Using
the Published dictionary lets you share these objects without having to put them in
Globals, which contains the GemStone kernel classes, and without the necessity of adding
a special dictionary to each user’s symbol list.
April 2014 GemTalk Systems 47

Using Your Symbol Dictionaries GemStone/S 64 Bit 3.2 Programming Guide
48 GemTalk Systems April 2014

Chapter

4 Collection and Stream
Classes
The Collection classes are a key group of classes in GemStone Smalltalk. This chapter
describes the common functionality available for Collection classes.

An Introduction to Collections
introduces the GemStone Smalltalk objects that store groups of other objects.

Collection Subclasses
describes several kinds of ready-made data structures that are central to GemStone
Smalltalk data description and manipulation.

Stream Classes
describes classes that add functionality to access or modify data stored as a Collection.

Sorting
describes the ways to sort elements in collections.

4.1 An Introduction to Collections
Instances of the Collection classes are specialized to manage an indeterminate number of
objects as a group using unnamed instance variables. All instances of Collection
subclasses support protocols for adding and removing elements (as long as the collection
is not invariant), for iterating over the elements, and for testing the presence of an object.
Collections can be classified by whether or not they maintain a specified order for their
elements, whether or not key-based lookup is supported, and the kinds of objects they can
reference.

Collections can be broadly classified into three categories:

Access by Key — the Dictionary Classes

Instances of AbstractDictionary subclasses do not support a specific order for their
elements but do support storage and retrieval via the at:put: and at: messages,
using arbitrary objects for an element's key. Subclasses of AbstractDictionary are spe-
cialized based on whether key-based lookup uses equality comparison or identity
comparison, the type of key, and the type of value.
April 2014 GemTalk Systems 49

An Introduction to Collections GemStone/S 64 Bit 3.2 Programming Guide
Dictionaries can have named instance variables, if you choose to define them.

Access by Position — the SequenceableCollection Classes

Instances of SequenceableCollection classes maintain a specific order for their ele-
ments and support storage and retrieval via the at:put: and at: messages using an
integer key (the one-based offset into the elements), analogous to an array with a
numeric subscript in other programming languages.

Byte-format classes such as ByteArray and String cannot have named instance vari-
ables. The other sequenceable collections can have named instance variables if you
choose to define them.

Access by Value — the UnorderedCollection Classes

Instances of UnorderedCollection classes—also referred to as Non-Sequenceable Col-
lections or NSCs—do not have a specific order for their elements, and do not support
storage or retrieval via the at:put: and at: messages. Objects in these collections
are accessed by iterating the collection. UnorderedCollections support indexes, which
allow ordered iteration and fast key-based lookup.

UnorderedCollections may have named instance variables.

Efficient Implementations of Large Collections

When you create a collection of more than about 2K pointer object or more than 16K
byte objects, GemStone internally uses a sparse tree implementation to make more
efficient use of resources. These are referred to as "Large Objects", and use internal
classes such as LargeObjectNode. This behavior occurs in a manner that is transparent
to you, and you handle Large Objects no differently than objects that are not large.

Protocol Common to All Collections

Collection classes understand common protocol, inherited from the abstract superclass
Collection. Collection defines methods that enable you to:

Create instances of its subclasses

Add and remove elements in collections

Convert from one kind of class to another

Enumerate (loop through), compare, and sort the content of collections

Select or reject certain elements on the collection based on specified criteria

The examples that follow provide a starting point for using Collections; review the
methods and method comments in the image for more details.

Creating Instances

Collection classes respond to the instance creation message new. When sent to a
Collection class, this message causes a new instance of the class with no elements (size
zero) to be created. Most kinds of collections can expand as you add additional objects.

Another instance creation message, new: anInteger, causes many Collection subclasses to
create an instance that is pre-sized to hold anInteger elements. It’s often more efficient to
use new: than new, because a Collection created with new: need not expand repeatedly
as you add new elements. This is particularly significant for large key-based Collections
50 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide An Introduction to Collections
where the hash must be computed for each element in the collection when the Collection
base size changes. For very large collections, growing may require a large amount of
temporary object memory to complete, with the risk of running out of memory.

Collections also define the instance creation message, withAll: aCollection, that creates a
new instance of the receiver containing all of the objects stored in aCollection, and with:,
with:with:, with:with:with:, and with:with:with:with:, which create a new
instance of the receiver with 1, 2, 3 or 4 (respectively) specific elements.

Adding Elements

Collection defines for its subclasses two basic methods for adding elements: add:, which
adds one element to the Collection, and addAll:, which adds several elements to the
Collection at once.

Collection subclasses override these methods in order to control access to elements or to
enforce an ordering scheme. Certain subclasses of Collection provide additional methods
that add an element at a numbered positions or based on an arbitrary key.

Removing Elements

Collection defines for its subclasses several methods for removing elements: remove:,
which removes one element to the Collection, and removeAll:, which removes a
collection of elements from the Collection at once.

While it is an error to remove objects that are not in the collection, the methods
removeIfPresent: and removeAllPresent: perform the same removals, but do not
error if the specified objects or objects are not in the collection.

Enumerating

Collection defines several methods that enable you to loop through a collection’s
elements. The most general enumeration message is do: aBlock. When you send a
Collection this message, the receiver evaluates the block repeatedly, using each of its
elements in turn as the block’s argument.

Suppose that you made an instance of Array in this way:

UserGlobals
at: #Virtues
put: { 'humility' . 'generosity' . 'patience' }.

This defines a Array constructor - an Array that is created containing the three given
literal strings.

To create a single String to which each virtue has been appended, you could use the
message do: aBlock like this:
April 2014 GemTalk Systems 51

Collection Subclasses GemStone/S 64 Bit 3.2 Programming Guide
Example 4.1

| aString |
aString := String new. "Make a new, empty String."
"Append a virtue, followed by a space, to the new String"
(Virtues sortAscending) do: [:aVirtue |

aString := aString , ' ' , aVirtue].
^ aString
%
' generosity humility patience'

In addition to do:, Collection provides several specialized enumeration methods; the
most common ones are collect:, select:, detect:, and reject:.

When sent to SequenceableCollections, those messages that return collections (such as
select:) always preserve the ordering of the receiver in the result. That is, if element a
comes before element b in the receiver, then element a is guaranteed to come before b in
the result.

NOTE
To avoid unpredictable consequences, do not add elements to or remove them from
a collection while you are enumerating it.

4.2 Collection Subclasses
This section describes the properties of Collection’s concrete subclasses, and gives some
guidance about choosing places for new classes that you might want to add to the
Collection hierarchy.

Subclasses of Collection can be grouped by the kinds of access methods they provide and
the kinds of objects their instances can store. Let’s first consider those collection classes
that don’t provide access to elements through external numeric indexes.

Dictionaries

Dictionary classes are subclasses of AbstractDictionary. The elements in a Dictionary
collection are stored and accessed via a key; each key must be unique within that
Dictionary. Depending on the specific subclass, the keys may be compared using equality
or identity.

Dictionaries provide their special facilities by storing key-value pairs instead of simple,
linear lists of objects. While some types of dictionaries are implemented as “a collection of
Associations”, the interface methods return results based on the logical contents, which
are the values. Other, specialized protocol allows you to refer to the key or the value
portions of the logical associations.

Internal Dictionary Structure

For performance reasons, the internal implementation of Dictionary classes varies.
Instance of Dictionary itself consist of a collection of Association objects.
KeyValueDictionary subclasses are implemented differently, as a sequence of keys and
values, which may use CollisionBuckets to hold the actual values. IdentityDictionary is a
52 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Collection Subclasses
sequence of keys and Associations. All these dictionaries understand common protocol,
regardless of implementation.

Dictionary

Dictionary class uses Associations to store the key/value pair. Dictionaries compare keys
by equality, not by identity. If you need a dictionary that compares keys by identity, use
IdentityDictionary, which is a subclass of KeyValueDictionary.

KeyValueDictionary

KeyValueDictionary has several subclasses, divided according to the type of key used to
access the information:

IdentityKeyValueDictionary

IntegerKeyValueDictionary

StringKeyValueDictionary

SymbolKeyValueDictionary

IdentityDictionary

SymbolDictionary

KeySoftValueDictionary

A KeySoftValueDictionary is a subclass of KeyValueDictionary that allows the virtual
machine to remove entries as needed to free up memory.

Typically, you might use a KeySoftValueDictionary to manage non-persistent objects that
are large and take time to create, but that can be recreated whenever needed from small,
readily available objects (tokens). For example, you might create a
KeySoftValueDictionary to serve as a cache to hold large, expensive objects that are
needed repeatedly. Within that dictionary, the values would be the large calculated
objects, and the keys would be the corresponding tokens. If your application needs a
large, expensive object but does not find it in the KeySoftValueDictionary, you can create
the object and add it to the cache so that it might be available the next time it is needed.

As memory fills up, the virtual machine might remove some objects from the cache.
(Remember, the contents of the cache are non-persistent and can be recreated.) The virtual
machine may remove keys and values from the KeySoftValueDictionary until adequate
memory is available. For details about how to manage the number of
KeySoftValueDictionary entries, see “Getting Rid of Non-Persistent Objects” on page 270.

Bear in mind the following:

Entries are removed from a KeySoftValueDictionary only if there are no strong
references to the entry’s value.

If an entry in a KeySoftValueDictionary is cleared, all other entries that reference this
value directly or indirectly will also have been cleared.

Before generating an OutOfMemory error, the virtual machine removes all
KeySoftValueDictionary entries that are eligible for removal.
April 2014 GemTalk Systems 53

Collection Subclasses GemStone/S 64 Bit 3.2 Programming Guide
KeySoftValueDictionary entries are cleared during a mark/sweep operation, but are
not cleared during a scavenge. For more about mark/sweep and scavenge operations,
see the “Managing Growth” chapter of the System Administration Guide.

A corresponding subclass, IdentityKeySoftValueDictionary, uses identity (rather than
equality) comparison on keys. For details, see the image.

A KeySoftValueDictionary frequently contains instances of SoftReference. Do not be
tempted to confuse this with the notion of WeakReference found in many Smalltalk
dialects; the two mechanisms are quite different.

SequenceableCollection

SequenceableCollections let you refer to their elements with integer indexes, and they
understand messages such as first and last that refer to the order of those indexed
elements. SequenceableCollection is an abstract superclass. The methods it establishes for
its concrete subclasses let you read, write, copy, and enumerate collections in ways that
depend on ordering.

Adding and Removing Objects for SequenceableCollection

SequenceableCollection redefines add: so it puts the added object at the end of the
receiver.There are additional methods for adding one or more objects to its instances at
particular locations, and for removing one or more objects according to position, equality,
or identity.

Comparing SequenceableCollection

SequenceableCollection redefines the comparison methods inherited from Object so that
those methods take into account the classes of the collections to be compared and the
number and order of their elements. In order for two SequenceableCollections to be
considered equal, the following conditions must be met:

The classes of the two SequenceableCollections must be the same.

The two SequenceableCollections must be of the same size.

Corresponding elements of the two objects must be equal.

Copying SequenceableCollection

SequenceableCollection understands several copying message, including those that:

return a sequence of the receiver’s elements as a new collection

copy a sequence of the receiver’s elements into an existing SequenceableCollection

copy elements from one SequenceableCollection into another, without faulting the
contents into memory.

The following example copies the first two elements of an literal Array to a new Array:

#('bear' 'tiger' 'turtle') copyFrom: 1 to: 2
%
an Array
#1 bear
#2 tiger
54 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Collection Subclasses
This example copies two elements of an array into a different array, overwriting the target
array’s original contents:

| numericArray |
numericArray := Array with: 55; with: 66 with: 77 with: 88.
numericArray replaceFrom: 2 to: 3 with: #(1 2 3 4 5)

startingAt: 4.
numericArray
%
an Array
 #1 55
 #2 4
 #3 5
 #4 88

The advantage of using the method replaceFrom:to:with: startingAt: is that it
does not fault the contents into memory, which can improve performance when working
with very large collections. Of course, displaying the results as in the example also faults
the objects into memory.

Also keep in mind that copies of SequenceableCollection, like most GemStone Smalltalk
copies, are “shallow.” In other words, the elements of the copy are not simply equal to the
elements of the receiver—they are the same objects.

Enumeration and Searching Protocol

Class SequenceableCollection redefines the enumeration and searching messages
inherited from Collection in order to guarantee that they process elements in order,
starting with the element at index 1 and finishing with the element at the last index.

SequenceableCollection also defines a new enumeration message, reverseDo:, which
acts like do: except that it processes the receiver’s elements in the opposite order.

SequenceableCollections understand findFirst: aBlock and findLast: aBlock. The
message findFirst: returns the index of the first element that makes aBlock true, while
findLast: returns the index of the last.

Array

As you have seen in previous examples, instances of Array and of its subclasses contain
elements that you can address with integer keys that describe the positions of Array
elements.

One of the most important differences between client Smalltalk arrays and a GemStone
Smalltalk array is that GemStone arrays are extensible; you can increase the size of an
array at any time. Sending at:put: will increase the size of the array, as long as the
index is only one more than the current array size. Other protocol such as addAll: also
increase the size while adding elements.

It’s also possible for you to change the size without explicitly storing or removing
elements, using the message size: inherited from class Object. When you lengthen an
array with size:, the new elements are set to nil.
April 2014 GemTalk Systems 55

Collection Subclasses GemStone/S 64 Bit 3.2 Programming Guide
Creating Arrays

You are free to create an array with the inherited message new and let the array lengthen
automatically as you add elements.

Arrays created with the new message initially allocate no space for elements. As you add
objects to such an array, it must lengthen itself to accommodate the new objects. It’s
usually more efficient to create your arrays with the message new: aSize (inherited from
class Behavior), which makes a new instance of the specified size:

| tenElementArray |
tenElementArray := Array new: 100.

The selector new: stores nil in the indexed instance variables of the empty array. Having
created an array with enough storage for the elements you intend to add, you can proceed
to fill it quickly.

Literal Array and Array Constructors

Arrays can also be created in code without sending instance creation messages, by using
literal array or array constructor syntax.

An Array literal is created with the following syntax:

#(element1 element2 element3)

When your code includes a statement like this, at compile time an invariant instance of
Array is created.

An Array constructor is created at runtime, rather than at compile time, and it not
invariant - it can be modified by later code. The syntax for Array constructors is:

{ element1 . element2 . element3 }

Array constructors are not part of the ANSI standard.

SortedCollection

SortedCollection is a type of SequenceableCollection in which the elements are ordered by
a specific sort order, not by the order in which they were added or by the method used to
add the element. You are not permitted to send at:put:, addLast:, or similar methods
to a SortedCollection.

Each instance of SortedCollection is associated with its own sortBlock. The default block
will sort elements that have a known sort order, such as alphabetic or numeric; the
elements must be able to be compared using <=.

You can also define your own sortBlock, if you want elements ordered by some other
criteria, such as the value of an instance variable.

For more on comparison, sorting, and sort blocks, see “Sorting” on page 62.
56 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Collection Subclasses
Example 4.2

| scrabbleWords |
scrabbleWords := SortedCollection sortBlock:

[:a :b | a size < b size].
scrabbleWords add: 'able'; add: 'zebra'; add: 'jumper';

add: 'yet'.
scrabbleWords
%
aSortedCollection('yet', 'able', 'zebra', 'jumper')

There is overhead in always keeping the collection sorted, so it usually more efficient to
sort the elements only when you need them to be sorted for presentation. There are
advantages to using a type of collection that is more suitable for managing the elements,
then using methods such as sortWithBlock: to create a new Array with the original
collection’s elements in sorted order.

UnorderedCollection

Instances of UnorderedCollection store their elements in a private, implementation-
defined order and explicit key-based access such as at: and at:put: are disallowed.

In all subclasses of UnorderedCollection, nil elements are disallowed. An
UnorderedCollection will silently ignore attempts to add a nil element.

UnorderedCollection implements protocol for indexing, which allows for large collections
to be queried and sorted efficiently. Chapter 7, “Indexes and Querying,” describes the
querying/sorting functions in detail. The following section describes the protocol
implemented in UnorderedCollection’s subclasses.

The most efficient way to handle very large collections is using UnorderedCollections and
access the contents using GemStone indexes.

UnorderedCollections may also be referred to as Non-Sequenceable Collections (NSCs).

Bag and Set

The classes Bag and Set are some of the simplest UnorderedCollections. In these classes
duplicate checking is done based on equality (rather than identity), and a Set will ignore
attempts to add a equal element. A Bag will accept an equal item but will do so by
increasing the count of the existing element. Thus, adding two equal but not identical
objects will be treated as if the first object is present twice.

If the Bag or Set contains elements that are themselves complex objects, determining the
equality is complex and therefore slower than you might have hoped. GemStone
recommends using IdentityBag or IdentitySet for anything but the most simple unordered
collections.

IdentityBag

IdentityBag has faster duplicate checking than Bag. Like a Bag, an IdentityBag is elastic
and can hold objects of any kind.
April 2014 GemTalk Systems 57

Collection Subclasses GemStone/S 64 Bit 3.2 Programming Guide
To compare an object that is in an IdentityBag, you rely on the identity (OOP) of the
object. This is a much less time-consuming task than an equality comparison, and in most
cases it should be sufficient for your design.

The inherited messages add: and addAll: work much as they do with other kinds of
collection, except, of course, that they are not guaranteed to insert objects at any particular
positions. There’s one other significant difference: if the argument to addAll: is an Array
or OrderedCollection, the elements in the collection are not faulted into memory.

IdentityBag also defines a method that allow you to copy elements into a Collection
(which must be a kind of Array or OrderedCollection) without faulting the contents into
memory, using the message:

replaceFrom: startIndex to: stopIndex with: aCollection startingAt: repIndex

Example 4.3

| bagOfRodents |
bagOfRodents := IdentityBag withAll: #('beaver' 'rat'

'agouti' 'chipmunk' 'guinea pig').
(Array new: 5) replaceFrom: 3 to: 5 with: bagOfRodents

startingAt: 1.
 anArray(nil, nil, 'beaver', 'rat', 'agouti')

Accessing an IdentityBag’s Elements

You’ll generally use Collection’s enumeration protocol to get at a particular element of a
IdentityBag. The following example uses detect: to find a IdentityBag element equal to
'agouti':

Example 4.4

| bagOfRodents myRodent |
 bagOfRodents := IdentityBag withAll: #('beaver' 'rat' 'agouti').
 myRodent := bagOfRodents detect: [:aRodent | aRodent = 'agouti'].
 myRodent

 agouti

Removing Objects from an IdentityBag

Class IdentityBag provides several messages for removing objects from an identity
collection. The message remove:ifAbsent: lets you execute some code of your choice if
the specified object cannot be found. In this example, the message returns false if it cannot
find “2” in the IdentityBag:

Example 4.5

| myBag |
myBag := IdentityBag withAll: #(2 3 4 5).
myBag remove: 3 ifAbsent: [^false].
myBag sortAscending.
%

58 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Collection Subclasses
anArray(2, 4, 5)

Similarly, removeAllPresent: aCollection is safer than removeAll: aCollection,
because the former method does not halt your program if some members of aCollection are
absent from the receiver.

All the removal messages act to delete specific objects from an IdentityBag by identity;
they do not delete objects that are merely equal to the objects given as arguments.
Example 4.5 works correctly because the SmallInteger 2 has a unique identity throughout
the system. By way of contrast, consider Example 4.6.

Example 4.6

| myBag array1 array2 |
"Create two objects that are equal but not identical,
 and add one of them to a new IdentityBag."
array1 := Array new add: 'stuff'; add:'nonsense' ; yourself.
array2 := Array new add: 'stuff'; add:'nonsense' ; yourself.

"Create an IdentityBag containing array1."
myBag := IdentityBag new add: array1.
UserGlobals at: #MyBag put: myBag.

"Now try to remove one of the objects from the IdentityBag by
referring to its equal twin in the argument to remove:ifAbsent"
myBag remove: array2 ifAbsent: ['Sorry, can''t find it'].
%
Sorry, can’t find it

Comparing IdentityBags

Class IdentityBag redefines the selector = in such a way that it returns true only if the
receiver and the argument:

are of the same class,

have the same number of elements,

contain only identical (==) elements, and

contain the same number of occurrences of each object.

Union, Intersection, and Difference

Class IdentityBag provides three messages that perform set union, set intersection, and set
difference operators.

+ union, returning elements that are in either one, the other, or both.

- difference, returning elements that are in the receiver but not the argument.

* intersection, returning elements that are in both
April 2014 GemTalk Systems 59

Stream Classes GemStone/S 64 Bit 3.2 Programming Guide
Example 4.7

| pets rodents |
pets := IdentityBag with: 'dog' with: 'cat' with: 'gerbil'.
rodents := IdentityBag with: 'rat' with: 'gerbil' with: 'beaver'.
pets * rodents
%
 anIdentityBag('gerbil')

pets + rodents
%
 anIdentityBag('beaver', 'rat', 'gerbil', 'gerbil', 'cat', 'dog')

pets - rodents
%
 anIdentityBag('cat', 'dog')

There is one significant difference between these messages and set operators —
IdentityBag’s messages consider that either the receiver or the argument can contain
duplicate elements. The method comment in the image provide more information about
how these messages behave when the receiver’s class is not the same as the class of the
argument.

IdentitySet

IdentitySet is similar to IdentityBag, except that IdentitySet cannot contain duplicate (that
is, identical) elements.

4.3 Stream Classes
Reading or writing a SequenceableCollection’s elements in sequence entails some extra
effort — you need to maintain an index variable so that you can keep track of which
element you last processed. A Stream acts like a SequenceableCollection that keeps track
of the index most recently accessed.

There are several concrete Stream classes. Class ReadStream is specialized for reading
SequenceableCollections and class WriteStream for writing them; ReadWriteStream is
also provided, for ANSI compatibility.

A stream provides its special kind of access to a collection by keeping two instance
variables, one of which refers to the collection you wish to read or write, and the other to a
position (an index) that determines which element is to be read or written next. A stream
automatically updates its position variable each time you use one of Stream’s accessing
messages to read or write an element.

Streams are often used for reading characters from strings or files, but any kind of
collection can be used with a Stream, and any type of object can be in that collection.
60 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Stream Classes
PositionableStream and Position

PositionableStream, with its subclasses ReadStream and WriteStream, was traditionally
implemented in GemStone with the position indicating an offset from 1; that is, the first
position in the stream was 1.

ANSI specifies, and other Smalltalk dialects use, an offset of 0, so the first position in the
stream is 0.

To allow legacy code and new code to coexist, GemStone includes sets of classes
implementing both interfaces. There are four sets of classes, which all exist in the image
(and therefore, may have instances), with only three sets being visible at any time. The
following two sets are always visible:

Legacy-style PositionableStream classes, compatible with previous GemStone
version’s PositionableStream classes:

PositionableStreamLegacy

ReadStreamLegacy

WriteStreamLegacy

ANSI-compliant and portable PositionableStream classes:

PositionableStreamPortable

ReadStreamPortable

WriteStreamPortable

ReadWriteStreamPortable

In addition, only one of the following sets is visible, depending on how your system is
configured. These are two distinct sets of instances of Class, with the same name, but
different implementations.

PositionableStream (with legacy definition and methods)
ReadStream

WriteStream

PositionableStream (with portable definition and methods)
ReadStream

WriteStream

The legacy versions are stored in Globals at: #GemStone_Legacy_Streams. The portable,
ANSI-compatible versions are stored in Globals at: #GemStone_Portable_Streams.

To check what is currently installed, use the following methods:

PositionableStream class >> isLegacyImplementation
PositionableStream class >> isPortableImplementation

To install the portable version, use the method:

Stream class >> installPortableStreamImplementation

To install the legacy version, use the method:

Stream class >> installLegacyStreamImplementation
April 2014 GemTalk Systems 61

Sorting GemStone/S 64 Bit 3.2 Programming Guide
4.4 Sorting
You are likely at some point to want to present the contents of your Collection in a sorted
order. There are a number of options, depending on the type of data you need to sort and
the desired ordering.

Some objects, such as Strings, Integers, and DateTimes, have an inherent sort
ordering, and GemStone provides default sorts for Collections that contain only
objects that can be compared using <=.

sortBlocks allow you to specify expressions that can order any type of object according
to your specific requirements.

String data has special sorting requirements; for different applications, you may need
sorting to consider case, accented characters, and language-specific sorting issues.
When the simple default string sorting is not sufficient, specialized classes allow more
control.

Default Sort

Objects representing numbers, dates and times, and strings have a natural sort order. If
the collection contains objects that can be compared using <=, you can easily order the
collection with the default sort.

Messages such as sortAscending and sortDescending can be sent to any collection
that contain only these types of objects. For example:

Example 4.8

(Array with: 123 with: 3 with: 99 with: 10) sortDescending
%
 anArray(123, 99, 10, 3)

(Array with: '123' with: '3' with: '99' with: '10')
sortAscending

%
anArray('10', '123', '3', '99')

It’s more likely that you will want to sort more complex objects in your collection, such as
Customers by name or Addresses by zip code. If the instance variables in your complex
objects are objects that have a defined sort order, you can take advantage of
sortAscending:, sortDescending:, and sortWith:, to provide a specification for
the desired sort order.

For example, say we have a class for Employee, and define AllEmployees as a collection
that contains instances of Employee:
62 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Sorting
Example 4.9

Object subclass: 'Employee'
instVarNames: #('firstName' 'lastName' 'job' 'age')
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals

%
Employee compileAccessingMethodsFor:

#('firstName' 'lastName' 'job' 'age').
%

"Make some Employees and store them in a AllEmployees."
| Lee Kay Al myEmployees |
Lee := (Employee new) firstName: 'Lee'; lastName: 'Smith';
 job: #librarian; age: 40.
Kay := (Employee new) firstName: 'Kay'; lastName: 'Adams';
 job: #clerk; age: 24.
Al := (Employee new) firstName: 'Al'; lastName: 'Jones';
 job: #busdriver; age: 40.

myEmployees := IdentityBag new.
myEmployees add: Lee; add: Kay; add: Al.
UserGlobals at: #AllEmployees put: myEmployees.
%

To sort Employees by age and lastName, we can use the sortAscending: method, passing
in the instance variables against which the ascending sort should be done:

Example 4.10

| returnArray tempString |
tempString := String new.
returnArray := AllEmployees sortAscending: #('age' 'lastName').
"Build a printable list of the sorted ages and lastNames"
returnArray do: [:i | tempString add: (i age asString);

add: ' '; add: i lastName; lf].
tempString
%
24 Adams
40 Jones
40 Smith

For finer control, you can use the sortWith: method, which allows you to define
direction for each instance variable
April 2014 GemTalk Systems 63

Sorting GemStone/S 64 Bit 3.2 Programming Guide
Example 4.11

| returnArray tempString |
tempString := String new.
returnArray := AllEmployees sortWith: #('age' 'Ascending'
 'lastName' 'Descending').
returnArray do: [:i | tempString add: (i age asString);

add: ' '; add: i lastName; lf].
tempString
%
24 Adams
40 Smith
40 Jones

SortBlocks

You can also specify sort ordering by defining a sortBlock. A sortBlock is a two-argument
block that should return true if the first argument should precede the second argument,
and false if not. The expressions within the block are expected to by symmetrical - i.e., for
two specific arguments for which the block returns true, then the block should return false
when the arguments are reversed. If values compare equal, and the block returns the
same results for both argument orders, then the final ordering of the equal elements is
arbitrary.

SortedCollection is a type of Collection that includes a sortBlock; SortedCollection is
discussed starting on page 56. You can use sortBlocks to sort the elements of any
collection, using methods such as sortWithBlock:.

For example, to sort customers by last name:

AllEmployees sortWithBlock: [:a :b |
a lastName <= b lastName]

You can create sort blocks that are as elaborate as you need; however, you should observe
the symmetry of the expression.

For example, this block sorts by lastName, with further sorting by firstName if the
lastNames are the same:

AllEmployees sortWithBlock: [:a :b |
a lastName = b lastName

ifTrue: [a firstName <= b firstName]
ifFalse: [a lastName <= b lastName]

].

Sorting Large Collections

When sorting using the above methods, the entire collection must fit into memory. This
may not be practical for very large collections. To avoid out of memory errors when
sorting large collections, you can allow the sort to issue periodic commits, which will
make the sort results persistent. Persistent objects don’t need to stay in memory the way
temporary objects do, which reduces the demand on memory.
64 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Sorting
These intermediate commits are enabled by specifying a persistentRoot for the sort, and
by taking advantage of the IndexManager’s ability to set up autoCommit. IndexManager
is a class that manages Indexes, which you’ll read more about in Chapter 7. You do not
need to have an index on the collection in order to use this feature. However, you do need
to set IndexManager’s autoCommit setting to true. For more information on autoCommit,
see page 111.

For example, the following code sorts AllEmployees collection using
sortWithBlock:persistentRoot:

UserGlobals at: #SortedEmployees put: Array new.
System commitTransaction.
AllEmployees

sortWithBlock: [:a :b | a lastName <= b lastName]
persistentRoot: SortedEmployees
April 2014 GemTalk Systems 65

Sorting GemStone/S 64 Bit 3.2 Programming Guide
66 GemTalk Systems April 2014

Chapter

5 String Classes and
Collation
String handling is an important part of most applications. While Strings are a type of
Collection, they have a number of unique features and behavior.

Characters and Unicode
Describes Characters.

CharacterCollection and String classes
Introduces the GemStone Smalltalk objects that store collections of Characters.

String Sorting and Collation
Describes collation, including traditional string collation and collation using the ICU
libraries and Unicode strings.

Encrypting Strings
Explains how to encrypt strings.

5.1 Characters and Unicode
A Character is a special object -- an object whose value is encoded in the OOP. Literal
Characters are formed with a leading $.

Code point

Each Character has a code or codePoint, which for lower order Characters is the ASCII
value. Either of these terms may be used, though ASCII is an incorrect term for the higher
code points. GemStone supports Characters with values from 0 to 16r10FFFF, the full
Unicode range, except for the Unicode reserved range.

The Unicode range of codePoints from 16rD800-16rDFFF is reserved for encoding
leading/trailing surrogate pairs for UTF-16 encoding. These can never be legal Unicode
characters, and as such, it is an error to attempt to create a Character in this range.

To get the Character for a given codePoint, use the Character class methods withValue:
or codePoint:.
April 2014 GemTalk Systems 67

Characters and Unicode GemStone/S 64 Bit 3.2 Programming Guide
Attributes

Characters have “type”, and know if they are a digit, letter, separator, or other similar
characteristic. This information is defined in the Unicode database as the Unicode general
category, and a variety of testing methods are available. The Unicode database also
defines the upper and lower case equivalents, and case conversion methods are available.
See the image for a full list of available protocol.

For example,

$Z isUppercase
true

$u isDigit
false

Collation

Characters are ordered (collated) using internal character tables, which provide Unicode
collation order for Characters up to code point 255. Characters above that are collated by
code point. Character collation is used in collating instances of basic String classes. For
more on collation, see “String Sorting and Collation” on page 75.

Character collation can be modified by installing character data tables, although this use is
deprecated. This may be used to provide Unicode collation for Characters with
codePoints above 255 or to provide legacy GemStone collate order (the collation order
that was used in versions before 2.4). Character-based string collation has limitations
outside the ASCII range; the ICU-library based string collation should be used if the
default collation is not sufficient.

Unicode and the Unicode Database

The Unicode Consortium is an international standards organization that produces the
Unicode Database. Unicode is a commonly used standard which provides unique codes for
all Characters in all Character sets, in the range 0 to 0x10FFF. It also describes the category
of each Character and relationship between it and other Characters, and provides a default
collation order with the Default Unicode Collation Element Table (DUCET).

For more information on this database, refer to:

http://www.unicode.org/Public/UNIDATA/UCD.html

The Unicode Consortium provides code charts by script as well as a single master list of all
characters, presented in an ASCII-only, comma-delimited version. The current version of
this database can be found at

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

Character Data Tables

Customized Character data tables are deprecated. This information is provided for
convenience when performing tests as part of transitioning to alternate character and
string collation and other handling.

Character data tables are an internal structure that supports Character collation and
Character-based string collation. For performance, the base installed tables include only
Characters with codes 0..255. Installing character data tables allows Unicode collation of
68 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide CharacterCollection and String classes
Characters over 255, or collation in GemStone legacy collate order, which avoids the need
for existing applications to rebuild indexes.

The character data tables are used repository-wide, and changing this table may have
consequences; if the character tables change collation, then GemStone indexes and
collections that depend on ordering may not return the correct results.

Installing Character Data Tables

The following methods can only be executed by SystemUser. After commit, the installed
tables apply to all logins for the repository. Any indexes or collections that depend on
string collation must be rebuilt after installing new tables. Installed tables are not affected
by upgrade or conversion. The tables distributed with GemStone are based on Unicode
version 5.1; note that this is an older version of the Unicode standard.

To install a 0...255 character table in GemStone legacy collate order:

Character installCharTables: (PassiveObject fromServerTextFile:
'$GEMSONE/examples/CharTableDefault.tab') activate.

To install the full Unicode character table in GemStone legacy collate order:

Character activateCharTablesFromFile:
'$GEMSTONE/examples/CharTableUnicode510.dat'.

To install the full Unicode character data table in Unicode DUCET collate order:

Character activateCharTablesFromFile:
'$GEMSTONE/examples/CharTableUnicode410.dat'

To reset to the default internal character table:

Globals removeKey: #CharacterDataTables.

To disable loading of installed character tables on session login, set the following
environment variable:

export GS_DISABLE_CHARACTER_TABLE_LOAD=TRUE

5.2 CharacterCollection and String classes

CharacterCollection and String classes

CharacterCollection is a subclass of SequenceableCollection that is specialized to hold
Characters, and expands the protocol inherited from SequenceableCollection to include
messages specialized for comparing, searching, concatenating, and changing the case of
character sequences. CharacterCollection is the abstract superclass for strings, including
String class and other specialized strings. In this discussion, we will generally use the
term String to include all the subclasses of CharacterCollection, not just the String class
itself.

Each element of a CharacterCollection is a Character. A Character has an associated value,
which may require more than one byte of physical storage. This is handled for you by
GemStone; if more storage is required, the String is transparently converted to the
appropriate type. For String, this is DoubleByteString or QuadByteString; for Unicode7,
this is Unicode16 or Unicode32. The specific class does not change the interaction with the
April 2014 GemTalk Systems 69

CharacterCollection and String classes GemStone/S 64 Bit 3.2 Programming Guide
object; access by index will return the Character at the given index, regardless of how
many bytes the Character actually requires. However, if you need to write the String to a
file or other non-GemStone sequential format, this may require converting to an
appropriate single-byte format, generally UTF-8.

The CharacterCollection hierarchy includes the following concrete classes:

Strings

These classes are traditional strings.

String
Strings hold Characters with codepoints in the range 0..255.

DoubleByteString
DoubleByteStrings are required when one or more Characters in a string needs more
than one byte of storage. DoubleByteStrings holds Characters with codepoints in the
range 0...16rFFFF (64K).

QuadByteString
QuadByteStrings are required when one or more Characters in a string needs more
than two bytes of storage. QuadByteStrings holds Characters with codepoints in the
range 0...16r10FFFF.

Unicode Strings

For strings that require locale-specific collation, specialized subclasses of the String classes
are provided. These classes rely on the open-source ICU libraries to provide comparison
and sorting behavior.

Unicode7
A subclass of String, limited to holding Characters with codepoints in the range 0..127
that are represented in 7 bits.

Unicode16
A subclass of DoubleByteString, holding Characters with codepoints in the range
0...16rFFFF (64K), excluding the range 16rD800-16rDFFF. This range is reserved for
surrogates that allow encoding into UTF-16.

Unicode32
A subclass of QuadByteString, holding Characters with codepoints in the range
0..16r10FFFF. Again, this excludes the range range 16rD800-16rDFFF.

Symbol

Class Symbol is a subclass of String. Each Symbol with a unique set of Characters is
guaranteed to have only one canonical instance in GemStone. Symbols are created by a
special process, the SymbolGem, to ensure this uniqueness.

Like Strings, symbols may also contain Characters with values that require more than a
byte of storage, and will convert into DoubleByteSymbols or QuadByteSymbols as
needed. GemStone Smalltalk uses symbols internally to represent variable names and
selectors. All symbols may be viewed by all users. Private information should be
maintained in Strings, not in Symbols.

Symbols, DoubleByteSymbols, and QuadByteSymbols are restricted to 1024 or fewer
characters.
70 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide CharacterCollection and String classes
You can “create” symbols using asSymbol or withAll: method. If the Symbol was
created previously as part of the GemStone kernel, by another user, or by yourself, you
will get the existing Symbol. A new symbol is only created if it has not been previously
defined. Existing Symbols cannot be modified.

Since Symbols are canonical, the class of a Symbol always depends on the contents. While
you can create a DoubleByteString with only characters in the range of String, you cannot
create a DoubleByteSymbol that does not contain at least one character in the DoubleByte
range, and the same is true for QuadByteString.

Symbols that have no references from anywhere in the system will eventually be garbage
collected, if the system is configured to do so. See the System Administration Guide for more
information on symbol garbage collection.

ByteArray

ByteArray is a specialized collection that is restricted to holding Integers between 0 and
255 (inclusive).

Instances of ByteArray can be creating using literal syntax #[]. For example:

#[1 2 3 4]

Utf8

Utf8 is a subclass of ByteArray. It holds UTF-8 encoded bytes created by sending
encodeAsUTF8 to a string, or by reading encoded data from a GsFile using
contentsAsUTF8. Utf8 instance should not be directly created or edited.

'šamas' encodeAsUTF8
anUtf8(197, 161, 97, 109, 97, 115)

Instances of Utf8 can be decoded into a Unicode String using the method
asUnicodeString. This will create an instance of Unicode7, Unicode16 or Unicode32
string, whatever is the smallest representation that can hold the decoded characters.

Instances of Utf8 can be read from and written to instance of GsFile, which cannot directly
handle characters with codePoints over 256.

String equality, ordering, and interoperation

By default, traditional strings and symbols are compared for equality and ordered using
legacy rules. String and symbol are ordered using a character based comparison,and
equality includes non-printing characters as well as printing characters. The collation is
described in more detail on page 75.

Unicode strings always use a an IcuCollator, and comparison is based on the entire string,
and is highly configurable; the character data tables are not used. Unicode string equality
does not consider non-printing characters. Unicode collation is described starting on
page 76.

Since legacy and Unicode equality and ordering rules are different, traditional strings and
symbols, using legacy comparision, cannot be ordered with Unicode strings (other than
using protocol that explicitly provides a collator). To avoid inconsistent results,
attempting to do so results in an error.
April 2014 GemTalk Systems 71

CharacterCollection and String classes GemStone/S 64 Bit 3.2 Programming Guide
When Unicode Comparison Mode is enabled (see page 81), traditional strings and
symbols are also collated using Unicode rules, and can be ordered and compared with
Unicode strings in collections.

String protocol

Creating Strings

You have already seen strings created as literals. Strings created as literals are invariant;
they cannot be modified after they are created.

In addition to creating strings literally, you can use the inherited instance creation
methods, such as new: and withAll:. For example:

| myString |
myString := String withAll: #($a $z $u $r $e).
myString
azure

To create a string that can be modified later, you can use withAll: with a literal String:

| myString |
myString := String withAll: 'azure'.
myString at: 1 put: $A.
myString
Azure

Concatenating Strings

A string responds to the comma operator by returning a new string in which the
argument to the comma has been appended to the string’s original contents. For example:

'String ' , 'con' , 'catenation'
String concatenation

Although this technique is handy when you need to build a small string, it’s not very
efficient. In the last example, GemStone Smalltalk creates a String object for the first literal,
'String'. The #, message returns a new instance of String containing 'String con',
and the second #, message creates a third string.

When you need to build a longer string, you’ll find it more efficient to use addAll: or
add: (they’re the same for class String), which modifies the original string. Note that you
cannot start with a literal string, since a literal string is invariant.

For example:

| resultString |
resultString := String new.
resultString add: 'String ';
 add: 'con';
 add: 'catenation'.
resultString
%
String concatenation
72 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide CharacterCollection and String classes
Converting Strings

CharacterCollection and its subclasses define messages that let you perform various
conversions.

Strings can be converted into other kinds of strings.

Instances of traditional strings can be converted to the lowest-storage type of Unicode
string using asUnicodeString.

Instances of Unicode strings can be converted to the lowest-storage type of traditional
strings using asString.

Either kind of String can be converted to the lowest-storage type of Symbol using
asSymbol.

For example:

'abcde' asSymbol
#'abcde'

Strings can be converted in case:

asUppercase creates a new instance with all uppercase letters

asLowercase creates a new instance with all lowercase letters

asTitlecase creates a new instance with the first letter of each word capitalized,
the remaining letters lowercase.

asFoldcase returns a new instance in “fold case”, which is case-free for comparison
and usually is similar to the lowercase.

For example:

'abcde' asUppercase
ABCDE

Strings can be converted to numbers and other types of objects as well. Note that not all
Strings can be converted to all kinds of other objects —if the String does not contain the
representation of a number, for example, it’s meaningless to convert it to an Integer, so
this will return an error.

For example:

'15' asFloat
1.5000000000000000E01

Equality and Identity

Traditional strings are equal to each other if they contain the exact same Characters in the
same case; equality is case-senstitive.

Unicode strings compared using = follow the ICU library comparsion rules for equality,
which are similar, although any non-whitespace control characters (such as null) are
ignored for the comparison.

Traditional strings and Unicode strings cannot be compared to each other for equality
using =. Any comparison involving a Unicode string require a collator. To compare
traditional and Unicode strings in any combination, use compareTo:collator:.
Specifying nil for the collator uses the default collator.
April 2014 GemTalk Systems 73

CharacterCollection and String classes GemStone/S 64 Bit 3.2 Programming Guide
Strings can be compared for case-insensitive equality using the methods
isEquivalent: or equalsNoCase:.

Identity in Literal vs. nonliteral

Literal and nonliteral Strings behave differently in identity comparisons. Each nonliteral
String (created, for example, with new, withAll:, or asString) has a unique identity.
That is, two Strings that are equal are not necessarily identical.

| nonlitString1 nonlitString2 |
nonlitString1 := String withAll: #($a $b $c).
nonlitString2 := String withAll: #($a $b $c).
(nonlitString1 == nonlitString2)
false

However, literal strings that contain the same character sequences and are compiled at the
same time are both equal and identical:

| litString1 litString2 |
litString1 := 'abc'.
litString2 := 'abc'.
(litString1 == litString2)
true

This distinction can become significant in building sets. If you add both litString1 and
litString2 to the same IdentitySet, the set will contain only one instance of 'abc';
however, an IdentitySet would include both nonlitString1 and nonlitString2.

Searching and Pattern matching

CharacterCollection and its subclasses define methods that can tell you whether a string
contains a particular sequence of characters and, if so, where the sequence begins. This
search can be case sensitive, case insensitive, and may include wild cards.

Below are some common methods; see the image for further methods.

Case-sensitive
Search

Case-insensitive
Search Description

includesString:
 subString

Return true if the receiver includes
subString.

findString: subString
startingAt: anIndex

findStringNoCase:
 subString
startingAt: anIndex

Return the index of subString if it
exists within the receiver at anIndex
or above, otherwise zero (0).

matchPattern:
 patternArray

Return true if the receiver matches
the specifications in patternArray

findPattern:
 patternArray
startingAt: anIndex

findPatternNoCase:
 patternArray
startingAt: anIndex

Return the index of a substring in
the receiver that matches the
specifications in patternArray at
anIndex or above, otherwise zero (0).
74 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide String Sorting and Collation
Pattern Matching Wild Cards

Pattern matching arguments (patternArray) consist of an Array containing combinations of
Strings and the wildcard characters $* and $?. The character $? matches any single
character in the receiver, and $* matches any sequence of characters in the receiver.

This is an example of the use of wildcard characters in pattern matching.

'weimaraner' matchPattern: #('w' $* 'r')
true

Since $* is interpreted as “any sequence of characters”, this returns true.

Similarly, The following example returns the index at which a sequence of characters
beginning and ending with $r occurs in the receiver.

'weimaraner' findPattern: #('r' $* 'r') startingAt: 1
6

If a wildcard character $* or $? occurs in the receiver or within a string in the argument
array, it is interpreted literally.

The following expressions illustrate what happens when the * is within the string and
interpreted literally:

'w*r' matchPattern: #('weimaraner')
false

'weimaraner' findPattern: #('w*r') startingAt: 1
0

5.3 String Sorting and Collation
While strings clearly have a natural sort order, the details of that order are complex.
Different languages may sort the same set of strings differently, according to the
particular rules in that language. Even within one language, different applications may
want to order string data differently. To complicate matters, some languages may treat
certain sequences of characters as a unit when sorting strings.

The sorting of strings into a standard order is called collation. Collation depends on the
results of a comparison between two strings, which in turn depends on how the
Characters within the string are collated. While this simple view breaks down with some
sorting requirements and linguistic rules, basic string comparison is adequate for many
uses and is faster than the more complete external collation.

Traditional String Legacy Collation

Traditional strings (String, DoubleByteString, and QuadByteString) and symbols
(Symbol, DoubleByteSymbol, and QuadByteSymbol) are collated by individual character.
The comparison of characters with values up to 255 are done according to the Default
Unicode Collation Element Table (DUCET), and Character 256 and above are sorted by
codePoint, the Unicode numeric value.

This is the default behavior for traditional strings and symbols. Installing non-default
Character Data Tables (see “Character Data Tables” on page 68) will affect the Character
collation, according to the specific table installed. Enabling Unicode Comparison Mode
April 2014 GemTalk Systems 75

String Sorting and Collation GemStone/S 64 Bit 3.2 Programming Guide
(see “Unicode Comparison Mode” on page 81) causes traditional strings and symbols to
collate following the same rules as Unicode strings. This section does not apply when
using Unicode Comparison Mode.

String ordering using <= (as well as <, >, and >=) is not case-sensitive. When instances of
String, DoubleByteString, and QuadByteString are compared using <= or related
operations, the comparison first is done case-insensitive. If they are found to be equal
other than with respect to case—if the only difference is case—then they are collated
according to the Character Data Table, which specifies uppercase comes before lowercase.

For example:

#('c' 'MM' 'Mm' 'mb' 'mM' 'mm' 'x')
sortAscending

anArray('c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x')

Since ordering is by character, with only case being excluded, the default ordering is
sensitive to accents and other diacritical marks on characters. Characters with diacritical
marks are not related to the base character.

For example, all words beginning with 'Co' and 'co' would sort before all words beginning
with 'Có' and 'có':

#('Cór' 'COz' 'Coa' 'cóa')
sortAscending

anArray('Coa', 'COz', 'cóa', 'Cór')

Unicode String Collation using ICU libraries

The classes IcuLocale and IcuCollator provide an interface to the ICU (International
Components for Unicode) libraries. The ICU libraries are a widely-used, open-source
implementation of language-specific sorting and collation.

For a complete explanation of the features and subtleties of language-specific collation,
you should refer to documentation on the ICU website.

http://icu-project.org/

Unicode strings (instance of Unicode7, Unicode16, and Unicode32) and instances of Utf8
use IcuCollator and IcuLocale to perform sorting operations using the ICU libraries. The
collation is performed by considering the entire string, not on a character-by-character
basis, and requires a specific language and locale to determine the rules for the
comparison. In addition to specific language rules, ICU sorting is highly configurable for
other application-specific sorting requirements.

While collation will vary according to specific language and locale, in general ICU
collation orders characters with diacritical marks with the base character, and sorts
lowercase before uppercase.

For example, using the sorting examples in the previous section and the default collator
for the US, a different sort ordering is produced from that of legacy collation:

('c', 'mb', 'mm', 'mM', 'Mm', 'MM', 'x')

('Coa', 'cóa', 'Cór', 'COz')

By configuring the IcuCollator, however, other orderings, including ordering similar to
the traditional string collation, may be produced..
76 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide String Sorting and Collation
Only Unicode strings and Utf8 instances use ICU sorting, by default. You may explicitly
order traditional strings and symbols by specifying an IcuCollator; and enabling Unicode
Comparison Mode (page 81) will cause all these to use ICU comparison and sorting.

IcuLocale

Instances of IcuLocale represent a specific language, country, and language variant. The
available IcuLocales are in the shared library and can be listed using IcuLocale class
>> availableLocales.

A default instance of IcuLocale is instantiated on first reference, and stored in session
state. The default IcuLocale is based on the operating system locale setting for the gem.

To set a specific default IcuLocale, use the method IcuLocale class > default:.
This sets the default locale for the session executing this code. While the instance of
IcuLocale can be made persistent, the default IcuLocale does not persist from session to
session.

IcuLocale class >> getUS is an example of instantiating an IcuLocale for the
language English in the country US.

To determine what IcuLocale is currently in use, use the method IcuLocale >>
default.

Example 5.1 Default IcuLocale

topaz 1> printit
IcuLocale default
%
a IcuLocale
 name en_US

IcuCollator

An IcuCollator encapsulates the rules involved in collation for a specific IcuLocale. A
default instance of IcuCollator is instantiated on first reference, based on the default
IcuLocale, and stored in session state.

When comparing instances of Unicode String classes, the comparison always uses an
IcuCollator, using the method compareTo:collator:. If an IcuCollator is not specified,
such as when Unicode String classes are compared using >, the IcuCollator default
is used; which in turn uses IcuLocale default.

You can also create an instance of IcuCollator for a specific locale, if you need to use a
specific collation rules other than the default. You can do this using IcuCollator class
methods forLocale: anIcuLocale or forLocaleNamed: aString. For example, to create
an IcuCollator for the German language as spoken in Germany:

IcuCollator forLocaleNamed: 'de_DE'

The actual string comparison is done by the ICU libraries, and follows the ICU
comparison rules for that locale. Collation rules are similar in most western languages,
but there are differences in specific languages.
April 2014 GemTalk Systems 77

String Sorting and Collation GemStone/S 64 Bit 3.2 Programming Guide
For example, in the Hungarian language, ’cs’ is considered a single letter, so words that
start with ’cs’ are sorted together and follow other words beginning with ’c’. The
following example sets up a collection that is sorted according to Hungarian rules:

Example 5.2 Sorting in Hungarian IcuLocale

| hungarianWords collator |
collator := IcuCollator forLocaleNamed: 'hu_HU'.
hungarianWords := IcuSortedCollection newUsingCollator:

collator.
hungarianWords

add: 'csak' asUnicodeString;
add: 'cukor' asUnicodeString;
add: 'comb' asUnicodeString.

hungarianWords
a IcuSortedCollection
 sortBlock a ExecBlock2
 collator a IcuCollator
 #1 comb
 #2 cukor
 #3 csak

Customizing Sort

IcuCollator includes a number of attributes that can be used to customize the sort. These
attributes work within the specific language rules of the associated IcuLocale.

Keep in mind that while the default values and the descriptions listed in Table 1 apply to
most locales, particularly with non-Western scripts, the defaults may be different in
different locales, and the attribute may have different behaviors.

See the ICU site, particularly the pages under:

http://userguide.icu-project.org/collation

for more precise descriptions and more detailed documentation.
78 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide String Sorting and Collation
Strength allows degrees of sort, to consider or not consider things like accent characters
and case when performing the sort. The default strength is TERTIARY for most locales
(the main exception being Japanese). The following are the sort strengths:

PRIMARY sorts by primary differences, ignoring secondary and later differences. The
base letter represents a primary difference, so for example 'a' and 'b'.

SECONDARY sorts by primary and secondary differences, ignoring tertiary and later
differences. An example of a secondary difference is diacritical differences on the
same base letter, for example 'o' and 'ó'.

Table 1 IcuCollator Attributes

Attribute name Allowed values Default

alternateHan-
dling

true | false false When true, allows space and
punctuation characters within the
string to be ignored.

caseFirst 'off', 'upperFirst',
or 'lowerFirst'

'off' When comparing case, deter-
mines if upper or lowercase is
sorted first. Most locales sort low-
ercase first when caseFirst is ’off’
as well as when ’lowerFirst’.

caseLevel true | false false When true, considers case in the
comparison, even if the strength
would normally not consider
case. For some locales, adds
another strength level between
SECONDARY and TERTIARY
strengths.

frenchColla-
tion

true | false false When true, sorts secondary dif-
ferences (the same base character
with different diacritical marks)
in reverse order (starting from the
end of the string). This is the cor-
rect collation in French.

normalization true | false false Determines whether to normal-
ize input strings, useful if input
data may be un-normalized. Has
performance impact.

numericColla-
tion

true | false false When true, sorts numeric
sequences within the string by
numerical rather than string com-
parison; e.g. sort ’100’ after ’2’.

strength PRIMARY - 0
SECONDARY - 1
TERTIARY - 2
QUARTENARY - 4,
or
IDENTICAL - 15

TER-
TIARY

Determines the level of collation
factors to consider, such as dia-
critical marks and case. See dis-
cussion below for more details.
April 2014 GemTalk Systems 79

String Sorting and Collation GemStone/S 64 Bit 3.2 Programming Guide
TERTIARY sorts by primary, then secondary, then tertiary differences. Uppercase vs.
lowercase is a tertiary differences. TERTIARY is the default sort order for most
locales.

QUATERNARY is used in Japanese, where it distinguishes between Japanese
Katakana and Hiragana, and can be used to break ties among separator characters
when alternateHandling is true.

IDENTICAL sorts by the specific character, by codepoints in the NFD (Normalization
Form Canonical Decomposition) form. There is a performance impact with this
strength.

The default sort strength is TERTIARY. As an example, when two strings are compared
using TERTIARY strength, characters in the strings are compared first by the base
character, ignoring any case or diacritical marks. If the base characters are the same, they
are compared by diacritical mark, ignoring case. If both base characters and diacritical
marks are the same, then case is considered. Note that unlike GemStone’s Strings or ASCII
ordering, the default sorts places lowercase before uppercase.

Keep in mind that with lower sort strengths, when a factor such as case is not used, the
relative position in the results of similar strings is not deterministic; the strings compare
as the same, and so their position will depend on the order of the input.

By using the IcuCollator sort attributes, you have a great deal of control over your specific
sorting.

For example, using the alternative handling example, you can sort strings that include
spaces, dashes and other punctuation without considering the punctuation characters
when doing the comparison:

Example 5.1 Sort ignoring punctuation

| blues collator|
collator := IcuCollator forLocale: IcuLocale default.
collator alternateHandling: true.
blues := IcuSortedCollection newUsingCollator: collator.
blues add: (Unicode7 withAll: 'blue berry').
blues add: (Unicode7 withAll: 'blue moon').
blues add: (Unicode7 withAll: 'bluebird').
blues add: (Unicode7 withAll: 'blue bird').
blues add: (Unicode7 withAll: 'blue-bird').
blues add: (Unicode7 withAll: 'bluetooth').
blues
%
a IcuSortedCollection
 sortBlock a ExecBlock2
 collator a IcuCollator
 #1 blue berry
 #2 bluebird
 #3 blue bird
 #4 blue-bird
 #5 blue moon
 #6 bluetooth
80 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Encrypting Strings
IcuSortedCollection

An IcuSortedCollection is a specialized subclass of SortedCollection for which you do not
set the sortBlock. An IcuSortedCollection is associated with a IcuCollator, which is turn is
associated with an IcuLocale, and the sorting behavior is specific to the configuration of
these instances. IcuSortedCollections rely on the open-source ICU libraries to perform the
comparisons and produce correctly collated results.

Using IcuCollator is recommended if you will have sorted collections containing Unicode
strings. This avoids lookup failures if a different collator is used to lookup than was used
to sort the elements in the collection.

Unicode Comparison Mode

Configuring your repository to use Unicode Comparison Mode allows traditional strings
to automatically use Unicode comparison rules. This permits traditional and Unicode
strings to be compared interchangably.

Unicode Comparison Mode affects not only collation using >, >=, <, <=, but also equality
using = and ~=. The legacy and Unicode rules for equality are not identical.

Since Unicode Comparison Mode affects equality comparisons of traditional strings and
symbols, as well as ordering, it may break lookup in existing hashed collections in
addition to SortedCollections and indexes. The risks and impacts of Unicode Comparison
Mode are unquantified, and there is no support for application validation after changing
comparison mode; working with GemTalk Engineering is recommended, and careful
testing, if you wish to experiment with Unicode Comparison Mode

Unicode Comparison Mode is controlled by the Global #StringConfiguration. By default,
StringConfiguration is set to String, which provides legacy string comparison mode.

To turn on Unicode mode, as SystemUser, execute

Globals at: #StringConfiguration put: Unicode16.
System commitTransaction.

The current session is not affected; the new mode will take effect for all subsequent logins.

To disable Unicode Comparison Mode, as SystemUser, execute

Globals at: #StringConfiguration put: String
System commitTransaction.

The current session is not affected; the new mode will take effect for all subsequent logins.

5.4 Encrypting Strings
There are times when you may which to encrypt strings in your repository or for
transmittal to other systems. GemStone provides an interface to Advanced Encryption
Standard (AES) encryption/decryption, provided by the OpenSSL open source libraries
included with GemStone.

The AES specification is available at:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
April 2014 GemTalk Systems 81

Encrypting Strings GemStone/S 64 Bit 3.2 Programming Guide
All encryptions/decryptions are in cipher block chaining (CBC) mode; see the AES
specification document for further details.

Encryption and decryption API methods are provided for 128-bit/16-byte keys, 192-
bit/24-byte keys, and 256-bit/32-byte keys, using the following methods.

Encryption can be done on instances of ByteArray or Uft8, or subclasses of
CharacterCollection. For encryption, you must provide a key that is a ByteArray of the
appropriate size (16, 24, or 32 bytes) containing key bytes, and a salt that is a 16-byte
ByteArray containing salt values.

The following methods encrypt or decrypt using the specified key and salt, return the
encrypted or decrypted result:

aesEncryptWith128BitKey: aKey salt: aSalt
aesDecryptWith128BitKey: aKey salt: aSalt

aesEncryptWith192BitKey: aKey salt: aSalt
aesDecryptWith192BitKey: aKey salt: aSalt

aesEncryptWith256BitKey: aKey salt: aSalt
aesDecryptWith256BitKey: aKey salt: aSalt

These methods place the encrypted or decrypted result into aByteObjOrNil, starting at
offset 1, and resizing if necessary. If aByteObjOrNil is nil, a new instance of the same class
as the receiver will be created containing the results.

aesEncryptWith128BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith128BitKey: aKey salt: aSalt into: aByteObjOrNil

aesEncryptWith192BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith192BitKey: aKey salt: aSalt into: aByteObjOrNil

aesEncryptWith256BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith256BitKey: aKey salt: aSalt into: aByteObjOrNil

You may use ByteArray withRandomBytes: N to produce pseudo-random key and
salt values for encryption.

For example:

topaz 1> run
| key salt encrypted |
key := ByteArray withRandomBytes: 32.
salt := ByteArray withRandomBytes: 16.
encrypted := 'My secret string' aesEncryptWith256BitKey: key

salt: salt.
encrypted aesDecryptWith256BitKey: key salt: salt.
%
My secret string
82 GemTalk Systems April 2014

Chapter

6 Numeric Classes
This chapter describes GemStone’s numeric classes. These include Integers, floating point
(limited-precision rational numbers), fractions (arbitrary precision rational numbers), and
decimal numbers. Most numbers can be specified as literals within your code, and most
numbers can be used in expressions with, or converted to, other types of numbers.

Integers
Describes classes that represent whole numbers: SmallInteger and LargeInteger.

Binary Floating Point
Describes classes for binary floating point numbers: SmallDouble and Float.

Other Rational Numbers
Describes classes for other rational numbers with different ranges and precisions,
including Fraction, FixedPoint, ScaledDecimal, and DecimalFloat.

Internationalizing Decimal Points using Locale
How to control the display of decimal points.

Random Number Generator
Information on the set of random number generator classes, providing random
numbers of various purposes.

6.1 Integers
Integers in GemStone are composed of SmallIntegers and LargeIntegers. Most Integers
you are likely to use will be SmallIntegers, in the range of -260 to 260 -1. Integers outside
this range are represented by LargeIntegers. Operations that result in a value outside the
SmallInteger range transparently result in LargeIntegers, and vice-versa

The literal syntax for Integer will create either a SmallInteger or LargeInteger.

SmallInteger

SmallIntegers are special (immediate) objects, that is, the number itself is encoded in the
OOP, making instances of this class both small (since no further storage is required) and
April 2014 GemTalk Systems 83

Binary Floating Point GemStone/S 64 Bit 3.2 Programming Guide
fast. They are also unique, so SmallIntegers of the same value are always identical (==) as
well as equal (=).

SmallIntegers have a range from -260 to 260 -1. Values outside this range must be
represented as LargeIntegers.

LargeInteger

LargeIntegers are not special objects; they require an OOP.

Each instance of LargeInteger is stored as an array of bytes, where every 4 bytes
represents a base 4294967296 digit. The first 4 bytes are the sign digit (0 or 1), the next 4
bytes in that array constitute the least significant base 4294967296 digit, and the last 4
bytes are the most significant base 4294967296 digit.

Instances of LargeInteger have a maximum size of 4067 digits plus the sign. The
maximum absolute value for a LargeInteger is (2130144 - 1). Attempting to create a
LargeInteger that exceeds this maximum will fail with an Integer overflow error.

Printing Integers

Integers are printed by default, using Integer>>asString, in base 10. You may print
using other bases by invoking printStringRadix: or
printStringRadix:showRadix:.

For example,

1234 printStringRadix: 2
'10011010010'

-1234 printStringRadix: 16 showRadix: true
'-16r4D2'

6.2 Binary Floating Point
Floating point values in GemStone are composed of SmallDoubles and Floats. The most
commonly used floating points will be SmallDoubles. While both SmallDouble and Float
represents 8-byte binary floating point numbers, as defined in IEEE standard 754,
SmallDoubles have a reduced exponent range. Some floating point values therefore can
only be represented by instances of Float, rather than SmallDouble. Similarly to
SmallInteger and LargeInteger, GemStone operations return one or the other as needed.

The numerical behavior of instances of Float is implemented by the mathematics package
of the vendor of the machine on which the Gem process is running. There are slight
variations in results with different platform’s implementation of the
IEEE-754 standard.

You can get the components of a floating point value using the methods signBit,
exponent, and mantissa.
84 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Binary Floating Point
SmallDouble

SmallDoubles are special objects; as with SmallIntegers, the number itself is encoded in
the OOP, making instances small and fast. They are also unique, so SmallDoubles of the
same value are identical (==) as well as equal (=).

Each SmallDouble contains a 61 bit value, in IEEE format but with reduced exponent
range. There is 1 sign bit, 8 bits of exponent and 52 bits of fraction. SmallDoubles are
always in big-endian format (both on disk and in memory).

SmallDoubles can represent C doubles that have value zero or that have exponent bits in
range 0x381 to 0x3ff, which corresponds to about 5.0E-39 to 6.0E38; approximately the
range of C 4-byte floats.

Float

Floats are not special objects; they require an OOP.

Each Float contains a 64 bit value in IEEE format, with 1 sign bit, 11 bits of exponent and
52 bits of mantissa. Floats are in cpu-native byte order when in memory, and the byte
order of the extent when on disk.

In addition to the finite numbers, the IEEE standard defines floating point formats to
include Infinity (positive and negative) and NaNs (not a Number), which can be quiet or
signaling. NaNs results from an operations whose result is not a real number, such as:

-23 sqrt
%
PlusQuietNaN

Infinity results from operations that return a value outside the range of representation,
such as:

32.0 / 0
%
PlusInfinity

ExceptionalFloats are named, unique instances of Float, not of SmallDouble. Exceptional
Floats include:

PlusInfinity
MinusInfinity
PlusQuietNaN
MinusQuietNaN
PlusSignalingNaN
MinusSignalingNaN

Since the sign of NaNs is not defined, GemStone operations return only positive NaNs;
they do not return MinusQuietNan or MinusSignalingNan.

An unusual quality of NaNs is that they are not equal to themselves. This means that
NaNs can cause problems if used as keys of hashed equality-based collections.

PlusQuietNaN = PlusQuietNaN
%
false
April 2014 GemTalk Systems 85

Binary Floating Point GemStone/S 64 Bit 3.2 Programming Guide
Literal Floats

Literal numbers in evaluated code that include a decimal point by default create a
SmallDouble or Float. If the value is in the SmallDouble range, a SmallDouble will be
created, otherwise a Float will be created.

Literal floats may be specified using exponential notation. For example, 5.1E3 and 5.1E-3
are valid SmallDouble literals.

Note that using a plus sign before the exponent is not allowed in literal floats, although it
can be used to create floating points from strings (using Float fromString:). This
avoids ambiguity with Smalltalk dialects that would interpret this as the addition
operator. For example, 5.1E+3, which historically GemStone would interpret as the same
as 5.1E3, is disallowed; code must either omit the +, or include white space to clarify the
addition operator.

Printing Binary Floating Points

SmallDoubles and Floats are printed by default, using asString, in exponential
notation. For readability, you can format floating point numbers for printing with
asStringUsingFormat:.

This method accepts an Array of three elements:

an Integer between -1000 and 1000, specifying a minimum number of Characters in
the result String. Negative arguments pad with blanks to the left, positive arguments
pad to the right. Note that if the value of this element is not large enough to
completely represent the Float, a longer String will be generated.

an Integer between 0 and 1000, specifying the number of digits to display to the right
of the decimal point. If the printed representation of the float requires fewer
characters, the result is padded with blanks on the right. If the value is insufficient to
completely specify the float, the value is rounded to fit.

A Boolean indicating whether or not to display the magnitude using exponential
notation. If true, exponential notation is used; if false, decimal notation.

For example:

12.3456 asStringUsingFormat: #(-8 2 false)
' 12.35'

12.3456 asStringUsingFormat: #(4 10 true)
'1.2345600000E01'

By default, Float and SmallDouble are printed with the equivalent of #(1 16 true).
86 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Other Rational Numbers
6.3 Other Rational Numbers
For some application, binary floating points are problematic, since there are common
decimal values that cannot be expressed exactly in binary floating point; for example, 5.1
does not have a precise binary floating point representation.

5.1
%
5.0999999999999996E00

There are several options to avoid this: Fraction, FixedPoint, ScaledDecimal, and
DecimalFloat. These classes are independent of each other, and each provides different
qualities of precision and range.

Fraction

Fractions precisely represent rational numbers. Fractions are composed of an integer
numerator and an integer denominator. As the ratio of two Integers, Fractions can
represent any rational number to an unbounded level of precision.

The display of fractions is as the numerator and denominator separated by the $/
character, which is also the division binary method. Fractions have no literal
representation. An expression such as 1/3, which performs a division of two Integers, will
return a Fraction if the result is not an Integer.

(1/3) printString
%
1/3

Any expression, not just division expressions, that could result in Fractions will be
reduced automatically, to the lowest Fraction or to an Integer.

(5/6) + (1/6)
%
1

FixedPoint

FixedPoints, like Fractions, represents rational numbers, but also include information on
how they should be displayed. A FixedPoint is composed of an integer numerator, integer
denominator, and an integer scale. Like Fraction, this allows rational numbers to be
represented with unbounded precision, and since fractional arithmetic is used in
calculations, numerical results do not lose precision.

The scale provides automatic rounding when representing the FixedPoint as a String.

FixedPoint uses a literal notation using p, such as 1.23p2.

ScaledDecimal

ScaledDecimals represent a decimal number to the precision of a fixed number of
fractional digits. ScaledDecimals are composed of an integer mantissa and a power-of-10
scale. While ScaledDecimals represent decimal fractions to the precision specified, not all
values can be represented exactly by ScaledDecimals. The maximum scale is 30000.

ScaledDecimals use a literal notation using s, such as 1.23s2.
April 2014 GemTalk Systems 87

Other Rational Numbers GemStone/S 64 Bit 3.2 Programming Guide
ANSI does not precisely specify the scale of a ScaledDecimal that is returned by
mathematical operations. The following rules are used:

For unary messages, the scale of the result equals the scale of the receiver.

For a one-argument message, the scale of the result is the greater of the scale of the
receiver and argument. An integer receiver or argument coerced to a ScaledDecimal
should effectively have a scale of zero, meaning the result will have the scale of the
non-coerced ScaledDecimal argument or receiver.

For some mathematical operations, the returned value type is a ScaledDecimal, but the
returned value cannot always be exactly represented as a ScaledDecimal with the correct
scale. In these cases, the results are rounded using the following rules:

Following the example of IEEE754 float rounding, the ScaledDecimal that is answered
is selected as though we computed the numerically exact value and then chose the
closest representable ScaledDecimal of the scale specified by the rules. If the
numerically exact value falls exactly halfway between two adjacent representable
ScaledDecimal values of the scale specified by the rules, the ScaledDecimal with an
even least significant digit is answered.

DecimalFloat

DecimalFloats represent base 10 floating point numbers, as defined in IEEE standard 854-
1987.

Objects of class DecimalFloat have 20 digits of precision, with an exponent in the range -
15000 to +15000. The first byte has encoded in it the sign and kind of the floating-point
number. Bit 0 is the sign bit (0=positive, 1=negative). The values in bits 1 through 3
indicate the kind of DecimalFloat:

001x = normal
010x = subnormal
011x = infinity
100x = zero
101x = quiet NaN
110x = signaling NaN

Bytes 2 and 3 encode the exponent as a biased 16-bit number (byte 2 is more significant).
The actual exponent is calculated by subtracting 15000. Bytes 4 through 13 form the
mantissa of the number. Each byte holds two BCD digits, with bits 4 through 7 of byte 4
containing the most significant digit.

Similarly to Float, operations that would not result in a real number, or that produce a
result outside the representable range, result in Exceptional numbers:

DecimalPlusInfinity
DecimalMinusInfinity
DecimalPlusQuietNaN
DecimalMinusQuietNaN
DecimalPlusSignalingNaN
DecimalMinusSignalingNaN
88 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Internationalizing Decimal Points using Locale
6.4 Internationalizing Decimal Points using Locale
The class Locale allows you to obtain operating system locale information and use or
override it in GemStone. GemStone currently only uses the decimalPoint setting, to
provide localized reading and writing of numbers involving decimal points. Updates to
Locale are stored in session state, and only persist for the lifetime of the session. They are
not affected by commit or abort.

Note that Smalltalk syntax requires the use of “.” as the decimal point separator, so
expressions involving literal floating point numbers within Smalltalk code will still
require use of the period, regardless of Locale.

To override the operating system locale information, use the following message:

Locale class >> setCategory: categorySymbol locale: LocaleString

The LocaleString passed to setCategory:locale: must be defined on the host machine.
You can use the UNIX command locale -a to get a list of all available LocaleStrings.

While there are a number of Locale category symbols, the only ones that are of use in this
release are #LC_NUMERIC and #LC_ALL, either of which will set the category that affects
the decimal point.

For example, To use decimal localization appropriate for Germany:

Locale setCategory: #LC_NUMERIC locale: 'de_DE'.

To reset to UNIX default value, using period:

Locale setCategory: #LC_ALL locale: 'C'.

The following method returns the decimalPoint setting for the current Locale:

Locale decimalPoint

Regardless of Locale, you can read a string with a period decimal point using the
methods:

Float class >> fromStringLocaleC:
DecimalFloat class >> fromStringLocaleC:
April 2014 GemTalk Systems 89

Random Number Generator GemStone/S 64 Bit 3.2 Programming Guide
6.5 Random Number Generator
The class Random and its subclasses provide random number generation.

There are two types of random number generation, which correspond to separate subclass
hierarchies. The SeededRandom subclasses provide random numbers generated within
GemStone code, using a starting seed value. The HostRandom subclass provides access to
the host operating system’s /dev/urandom random number generator. This is much
slower, but unlike the SeededRandom numbers, on some platforms this may be designed
to be cryptographically secure.

The class hierarchy of the Random classes are:

Object

Random (abstract)
HostRandom

SeededRandom (abstract)
Lag1MwcRandom

Lag25000CmwcRandom

Random

The Random class is an abstract superclass for the random number generators. It also can
be used to create an instance of the default random number generator class,
Lag25000CmwcRandom. Sending instance creation messages to Random will return
instances of Lag25000CmwcRandom. For example:

Random seed: 12345
%
aLag25000CmwcRandom

The message

Random new

will create an instance of Lag25000CmwcRandom that is seeded with numbers generated
from the host OS /dev/urandom.

Once you have an instance of a concrete subclass of Random, you can generate random
numbers or collections of random numbers with the following range and type
specifications:

float - a random Float in the range [0,1)

floats: n - a collection of n random floats in the range [0,1)

integer - a random non-negative 32-bit integer, in the range [0,232-1]

integers: n - a collection of n random non-negative integers in the range [0,232-1]

integerBetween: l and: h - a random integer in the range [l,h]. l and h should be
less than approximately 231.

integers: n between: l and: h - a collection of n random integers in the range
[l,h]. l and h should be less than approximately 231.

smallInteger - Answer a random integer in the SmallInteger range,
[-260,260-1]
90 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Random Number Generator
Subsequent calls to the same instance will generate new random numbers.

You should create an instance of a Random subclass and retain that to generate many
random numbers, rather than creating new instances of a Random subclass.

HostRandom

HostRandom allows access to the host operating system's /dev/urandom random
number generator.

HostRandom is much slower than the other subclasses of Random. However,
/dev/urandom on some platforms may be intended to be cryptographically secure
random number generator, which none of the other subclasses are. It also has the
advantage of not needing an initial seed, and so is good for generating random seeds for
the faster Random subclasses.

HostRandom uses a shared singleton instance, which is accessed by sending #new to the
class HostRandom. Sending #new has the side effect of opening the underlying file
/dev/urandom. This file normally remains open for the life of the session, but if you wish
to close it you can send #close to the instance, and later send #open to reopen it. If you
store a persistent reference to the singleton instance the underlying file will not be open in
a new session and you must send #open to the instance before asking for a random
number.

Since HostRandom is a service from the operating system, it cannot be seeded, and should
not be used when a repeatable random sequence of numbers is needed.

SeededRandom

SeededRandom is an abstract superclass for classes that generate sequences of random
numbers that can be generated repeatedly by giving the same initial seed to the generator.

In addition to creating new instances using the class methods new and seed:, the
following instance methods allow repeatable sequences to be generated:

seed: aSmallInteger
Sets the seed of the receiver from the given seed, which can be any SmallInteger.
The subsequent random number sequence generated will be the same as if this
generator had been created with this seed.

fullState, fullState: stateArray
The internal state of a generator is more than can be represented by a single
SmallInteger. These messages allow you to retrieve the full state of a generator at
any time, and to restore that state later. The random number sequence generated
after the restoration of the state will be the same as that generated after the retrieval
of the state. You might, for instance, allow a generator to get its initial state from
/dev/urandom, then save this state so the random sequence can be repeated later.

Lag1MwcRandom

Lag1MwcRandom is intended for internal use only, in creating a random seed for
instances of Lag25000CmwcRandom. Lag1MwcRandom is slower, is not perfectly fair,
and has a shorter period, so the only advantage is its ability to be seeded by a single 61-bit
SmallInteger, rather than a seed of more than 800000 bits as required by
Lag25000CmwcRandom.
April 2014 GemTalk Systems 91

Random Number Generator GemStone/S 64 Bit 3.2 Programming Guide
Lag25000CmwcRandom

Lag25000CmwcRandom is a seedable random generator with a period of over 10240833. It
is a lag-25000 generator using the complementary multiply-with-carry algorithm to
generate random numbers. Its period is so long that every possible sequence of 24994
successive 32-bit integers appears somewhere in its output, making it suitable for
generating random n-tuples where n<24994. Its output is fair in that the number of 0 bits
and 1 bits in the full sequence are equal.

While this generator is recommended for most uses, it is not cryptographically secure, so
for applications such as key generation you should consider using HostRandom, once you
satisfy yourself that HostRandom is secure enough on your operating system.

You can also allow the seed bits to be initialized from the HostRandom, then retrieve that
state by sending #fullState. That state can later be restored by sending the retrieved state
as an argument to #fullState:.
92 GemTalk Systems April 2014

Chapter

7 Indexes and Querying
This chapter describes GemStone Smalltalk’s indexing and querying mechanism, a system
for efficiently retrieving elements of large collections.

Overview
reviews the concept of relations.

Defining and Executing Queries
describes the structure of query predicates, the types of queries, and how to construct
and execute a query.

Creating Indexes
discusses GemStone Smalltalk’s facilities for creating indexes on collections.

Special Kinds of Queries and Indexes
Describes how to create indexes and query on Unicode Strings, enumerated and
collection-valued path terms, and other special cases.

Managing Indexes
How to perform index management: find out about indexes in your system, remove
existing indexes, handle errors, and audit indexes.

Query Formulas and Optimization
How to use Query formulas, and how these formulas are optimized.

7.1 Overview
Most applications require one or more databases : a set of data that is critical for business
function, and needs to be accessed efficiently. In GemStone, this is a represented as a
instance of collection that holds instances of business objects. For large applications,
collection may be very large, containing many thousands or even millions of objects; and
you will need to be able to find specific objects within that collection quickly and easily.

The following example shows employee data in table form:
April 2014 GemTalk Systems 93

Overview GemStone/S 64 Bit 3.2 Programming Guide
Figure 7.1 Employees

Name Job Age Address
__

Fred clerk 40 22313 Main, Dexter, OR
Sophie busdriver 24 540 E. Sixth, Renton, WA
Conan librarian 40 999 Walnut, Hilt, CA
__

In GemStone Smalltalk, you would naturally define Employee and Address classes that
are subclasses of Object, with name, job, age, and so on as instance variables; and create
instances of these classes to store your employee information. You’d put these instances in
a collection. While various kinds of collections could be used, an IdentitySet (or
IdentityBag) would be the logical choice, since the Employees are not inherently ordered.

To make it easy to associate behavior with your set of Employees, you might define a class
SetOfEmployees that is a subclass of IdentitySet. Then, you might make the collection of
Employee globally accessible, by referencing it by the key #myEmployees.

Recall that in UnorderedCollections, lookup is by value, rather than by position in the
collection or by a key. Standard Collection protocol allows you to locate an object in an
UnorderedCollection by select:, or similar messages.

For example:

myEmployees select: [:anEmployee | anEmployee age = 40]

Searching this way sends one or more messages to each element of the receiver. In this
example, the messages age and = are each sent once for each element of myEmployees.
This is fine for small collections, but becomes unreasonably slow for collections containing
many thousands of complex objects. This is particularly true if objects are not in memory
and need to be read from disk in order to respond to messages.

GemStone Indexes

Indexes provide a way to locate specific objects in a collection by value. Indexing a
Collection creates internal structures such as balanced trees (Btrees). Only a few message
sends are needed to lookup a value or range of values in the indexing structures. When
collections are indexed, they can return results without having to iterate the collection or
send messages to each object.

Indexes may only be created and indexed queries performed over collection classes that
are subclasses of UnorderedCollection: this includes IdentityBag, IdentitySet, Bag, Set,
RcIdentityBag, and a few other specialized kinds of Set.

Indexes are created on objects based on instance variables, not on message sends; since the
instance variable relationships are known by the system, indexes can be usually be
updated automatically as elements are added and removed from the collection, and when
object instance variables change value. There are some exceptions to this, but these
require manual updating.
94 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Overview
What you need to do

In order to take advantage of efficient indexed queries on your collection, you need to do
the following:

Formulate the query that you wish to be indexed, using query syntax

Create an index on that collection, that specifies that particular instance variable path
on which you will perform the query.

execute the query on that indexed collection, using specific query protocol

For example, if you want searching for Employee by name to be fast, you can create an
index on name, and then use query syntax to execute a query on name. If you need to
search based on different instance variables, such as searching by ID as well as by name,
you need to create multiple indexes.

You may use query syntax to create and execute a query, even when there is no index on
that variable, but it will have to iterate the collection to find the results.

The details of how to define and create indexes, and how to formulate and execute
queries, are described in following sections.

APIs for creating indexes and queries

There are two distinct APIs for performing these tasks.

❐ The GsIndexSpec/GsQuery interface is introduced in version 3.2, and provides ways
to define and manipulate indexes and queries using objects.

❐ The traditional indexing API, which creates indexes using UnorderedCollection
methods and performs queries using selection blocks, is an alternate way to use
indexes. Some features are not available using this traditional indexing API.
Differences are noted in the following sections.

Internal index structures and behaviors are the same for both APIs, and if indexing and
querying is limited to the common features, they can be used interchangeably.

Managing Indexes

In addition to creating indexes and queries, you will also need to do some management
on your indexes and queries. For example, you should evaluate your indexes for
performance, remove indexes that are no longer needed, and audit indexes to ensure the
structures are correct. Many of these indexing tasks are handled by IndexManager.

Indexing trade-offs

Creating an index creates a number of internal objects that implement the indexing
infrastructure; this includes the btree structure and the RcIndexDictionary. If your
collection is small, the extra overhead of this infrastructure reduces the value of the
indexed search. The size at which the trade-off makes an index worthwhile will depend
on many factors, and testing is always preferred. As a rule of thumb, if your collection
contains fewer than about 2000 objects, it may not be worthwhile to create an index.

Building and removing indexes requires extra management. You must be sure to remove
indexes before dereferencing instances of UnorderedCollection, to avoid leaving indexing
structures in place that cannot be automatically garbage collected.
April 2014 GemTalk Systems 95

Overview GemStone/S 64 Bit 3.2 Programming Guide
Special Syntax for Indexing

GemStone indexing uses several syntactical elements that are either specific to, or
primarily used for, index creation and indexed queries.

Path-dot syntax

Indexes are created, and queries formed, using special syntactic structure called a path,
which designates variables for indexing and describes certain features of the index. Path
syntax uses a period . to represent the object/instance variable name relationship.

For example, for a collection of Employees, in which each employee has an address
instance variable, which refers to an Address that has a “state” instance variable, an
example of a path is:

address.state

In the simplest case, a path on an instance variable on the collection elements, this is just
the instance variable name. For example:

name

Each instance variable name on the path is a pathTerm. In the above example, address
and state are each pathTerms. Paths can contain many pathTerms, if the elements of the
collection represent a deeply nested tree of objects. If each object has the appropriate
instance variable, this is an example of a longer path:

account.order.address.state

You may specify the values of variables nested up to 16 levels deep within the elements of
a collection.

Path-dot syntax can be used anywhere in GemStone code; it is required in index creation
and queries, for which message sends are not allowed.

An initial 'each.', where each represents the elements of the collection, is
recommended but optional for GsIndexSpec index creation. For example:

each.address.state

This “each” is not permitted in paths supplied to UnorderedCollection index creation
methods.

Enumerated pathTerms

A vertical bar | in the path indicates the presence of two alternate instance variables that
will be indexed together, as if they were a single variable.

For example, you might want to search on both name and nickname in a single operation.
This might look like this:

account.name|nickname

This syntax can be used to create indexes and queries using the GsQuery/GsIndexSpec
API, but not with the traditional API.

Set-value path terms

An asterisk * in the path indicates a collection, which must be an instance of an indexable
class (an instance of a subclass of UnorderedCollection).
96 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Defining and Executing Queries
For example, if the instance variable children contains an IdentityBag of instances of
Child, and a child has the instance variable age:

children.*.age

This syntax can be used to create indexes and queries using the GsQuery/GsIndexSpec
API, but not with the traditional API.

7.2 Defining and Executing Queries
Before you can define indexes on your collection, you need to determine the ways in
which you will need to search your collection to retrieve elements. Once you have defined
the queries you need, this will determine the details of the indexes you need to create.

At its simplest, a query consists of an instance variable of the objects in the collection, a
comparison operator, and a literal to which the value is compared. For example, if you
wish to be able to find all employees 18 and older, your query formula would be
something like this:

each.age >= 18

In this example, every object in the collection (each) has an instance variable age, which
is specified using dot-path notation. The value of that instance variable is compared,
greater than or equal, to the literal 18.

This formula is simple; you can formulate queries based on multiple instance variable
values, operators, and constants, and combine them using boolean logic. However, note
that in the query syntax, you cannot include message sends. The details of predicate
syntax is described in the next section, ’Query Predicate Syntax’.

Equality vs. Identity queries

Queries, and the indexes that support them, can be based on equality comparisons or on
identity comparison. Equality comparisons include greater than and less than
comparisons, as well as equal and not equal; equality comparison-based indexes depend
on being able to order the indexed elements respective to one another, so an element or
range of elements can be found using search on the internal btree.

Identity indexes and queries compare elements by identity and have more limited
flexibility, but fewer restrictions—since any objects can be compared using identity. You
cannot query for a range of results using Identity indexes.

Query Predicate Syntax

A query contains a predicate expression, which is a Boolean expression that, when
evaluated with the elements of the collection, returns true or false. In a query, the
expression usually compares an instance variable on the collection objects with another
instance variable or with a constant.

A predicate contains one or more predicate terms—the expressions that specify
comparisons.
April 2014 GemTalk Systems 97

Defining and Executing Queries GemStone/S 64 Bit 3.2 Programming Guide
Predicate Terms

A term is a Boolean expression containing an operand and usually a comparison operator
followed by another operand. For example, in

each.age >= 18

each.age and 18 are operands, while >= is a comparison operator. The only time you
would not have a comparison operator is if the operand is itself a Boolean (true or false).

Predicate Operands

An operand can be a path (each.age, in this case), a variable name, or a literal (18, in this
example). All GemStone Smalltalk literals except arrays are acceptable as operands.

Predicate Operators

The following tables list the comparison operators used in a query predicates:

No other operators are permitted in a GsQuery or selection block query.

These operators behave according to the rules governing the objects being compared.
Equality comparisons that use an index, however, are more restricted in an indexed
query; you cannot compare classes that are not in the same hierarchy as the class specified
during index creation. The exception to this are strings; all kinds of traditional strings can
be compared to each other and to Symbols, and all kinds of Unicode strings can be
compared to each other, but not to traditional strings or Symbols. (But see the note on
page 113).

Nil is a special case for equality index comparisons. Because of its special significance as a
placeholder for unknown or inapplicable values, nil is comparable to every kind of object,
and every kind of object is comparable to nil. Since the appearance of nil signifies a value
that is not there, less than and greater than comparison results will not include nil values.

Basic Classes optimized for indexes

The most efficient indexes are on certain GemStone Smalltalk kernel classes, in which all
or a large part of the object’s value can be encoded within the index internal structures,
avoiding the need to read the object itself. These classes are referred to as “Basic classes”
for indexing and querying.

Table 1 Comparison Operators for Identity Indexed Queries

== Identity comparison operator

~~ Non-identity comparison operator

Table 2 Comparison Operators for Equality Indexed Queries

= Equality comparison operator

~= Not-equal comparison operator

< Less than equality operator

<= Less than or equal to equality operator

> Greater than equality operator,

>= Greater than or equal to equality operator
98 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Defining and Executing Queries
This includes the following classes, and subclasses of these classes:

Character, String, DoubleByteString, QuadByteString,
Unicode7, Unicode16, Unicode32,
Symbol, DoubleByteSymbol, QuadByteSymbol,
Boolean, Time, Date, DateTime, DateAndTime
SmallInteger, LargeInteger,
ScaledDecimal, Fraction,
SmallDouble, Float, DecimalFloat

Instances of basic classes, and subclasses of basic classes, use specialized protocol to
perform the comparisons.

In comparisons involving instances of String or its subclasses, the indexed comparison
mechanism considers only the first 900 characters of each operand. Two strings that differ
only beginning at the 901st character are considered equal.

Creating indexes on Unicode strings (Unicode7, Unicode16, and Unicode32) require using
a Unicode index.

Using non-basic Classes

You can create indexes on instances of classes that are not basic classes, including classes
you defined yourself.

Identity indexes on instances of your own classes, since they compare on the identity of
the objects, require no addition consideration, nor do indexes on instances of classes that
inherit a kernel implementation of the equality operators.

If you need to, you can redefine the equality operators =, ~=, <=, <, >=, and > in classes
that you have created that are not subclasses of Basic classes. There are some caveats; this
is discussed under “Redefined Comparison Messages” on page 116.

Combining Predicates using Boolean Logic

If you want retrieval of an element to be contingent on the values of two or more of its
instance variables, you can join several terms using a conjunction (logical AND) or
disjunction (logical OR) operator.

The conjunction operator, &, makes the predicate true if and only if the terms it connects
are true. The disjunction operator, |, makes the predicate true if either one, or both, of the
terms it connects are true.

Selection block queries only permit the conjunction operator; GsQuery queries allow both
conjunction and disjunction operators.

You may also negate individual predicate terms using not, only in GsQuery queries.

Each predicate term must be parenthesized.

For example, the following are legal queries. This example returns a collection of
employees who are named Conan and are librarians:

(each.name = 'Conan') & (each.job = 'librarian')

While this returns a collection of employees who are 40 or younger in age, or who are not
librarians.

(each.age <= 40) | (each.job = 'librarian') not
April 2014 GemTalk Systems 99

Defining and Executing Queries GemStone/S 64 Bit 3.2 Programming Guide
Combining Range Predicates

Queries that use less than or greater than, such as each.age >= 18, define a starting (or
ending) point in a range query. Specifying both a starting point and ending point creates a
range query. For example,

(18 <= each.age) & (each.age <= 65)

Using the GsQuery API, but not in the traditional API, these two terms can be combined
into single range predicate. For example:

18 <= each.age <= 65

Range specifications such this can only be defined with this syntax if the operands and
comparison operators truly define a range.

Selection Block Queries

To create a query based on your search criteria, you can use either GsQuery or traditional
selection block syntax. Both types of query syntax produce the same results. Your existing
GemStone indexes will use the selection block syntax; GsQuery has the advantage of
allowing programmatic management of the query, and there are a number of specialized
query features that are only available when using GsQuery.

Selection Blocks

Selection blocks are a kind of block specialized for queries, using curly braces instead of
brackets. The compiler understands this syntax and creates the selection block instance
when the code or method is compiled. Selection blocks require exactly one argument and
do not allow message sends within them; there are other restrictions on allowed
operations within a selection block, as described under “Query Predicate Syntax” on
page 97.

A selection block query might be written like this:

{:each | each.address.state = 'OR'}

As with the equivalent iteration methods that use ordinary blocks with square brackets,
each represents the elements of the collection, and in this case, the dot-path syntax
resolves the object at the instance variable #address, which object has an instance variable
#state.

In selection block queries, you can reference temporary, instance or other variables within
the block, and these are resolved at runtime as in ordinary blocks.

Executing Selection Block Queries

A selection block is used with reject:, collect:, detect: and detect:ifNone:, to
perform the query over a collection.

For example:

Employees select: {:each | each.address.state = 'OR'}

Selection blocks can be also used with reject:, collect:, detect: and
detect:ifNone:. These have the same semantics as with standard blocks executed on a
collection. For example, reject: will return a result set that includes all elements for
which the block evaluation would return false.
100 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Defining and Executing Queries
Return values

A selection block query returns a new instance of collection of the same class as the base
collection. So if you query on a collection that is an instance of SetOfEmployees, for
example, the results will be returned in an instance of SetOfEmployee.

The exception is if you root collection is an instances of a reduced-conflict (Rc) collection,
such as RcIdentityBag. The result of a query in this case is a non-Rc collection. The results
of a query on a RcIdentityBag are returned as an instance of IdentityBag. This avoids the
overhead that supports the reduced-conflict classes.

The collection returned from a query has no index structures. If you want to perform
indexed selections on the new collection, you must build the necessary indexes on the
new collection.

Queries using GsQuery

GsQuery is a programmatic way to define a query, allowing you to easily abstract, store
and reuse various aspects of the query. While GsQuery provides more query features, the
query is internally similar to the processes used by selection block queries, and the query
results will be the same.

Creating and Executing a GsQuery

To create a query using GsQuery, you create an instance of GsQuery, specifying the
details of the search. There are a number of ways to specify the search; the most simple is
by passing in a string. For example:

GsQuery fromString: 'each.age >= 18'

This message will return an instance of GsQuery. Before it can be executed, it must be
bound to a collection. You can create the GsQuery using fromString:on: in order to
create a GsQuery that is bound to a particular collection, or you can bind the collection
later using the on: method. Sending queryResult to the GsQuery will return the results
of the query.

The following two examples illustrate creating and executing a bound query, and creating
and executing a query that is not associated with a collection, and binding it before
execution.

(GsQuery fromString: 'each.age >= 18' on: Employees)
queryResult.

(GsQuery fromString: 'each.age >= 18')
on: Employees;
queryResult.

Since the fromString: protocol requires a string, if the query includes literal strings,
they must be double quoted. For example:

GsQuery fromString: 'each.firstName = ''Fred'''.

Creating a GsQuery from a selection block

If you have existing code that includes selection block queries, you can use those selection
blocks to create the instances of GsQuery.
April 2014 GemTalk Systems 101

Defining and Executing Queries GemStone/S 64 Bit 3.2 Programming Guide
For example,

GsQuery fromSelectBlock: {:each | each.address.state = 'OR'}

This can be bound using on:, or created using fromSelectBlock:on:, similarly to how
you create and bind a GsQuery from a string.

You may also create the GsQuery from a saved query formula, previously extracted from
another GsQuery; this is described on page 124.

Query Variables

The strings used to define GsQuery instances may contain variables—any element of a
predicate that is are not a literal or path-dot expressions. This allows your query to be
stored and executed later using different values.

For example, for a query such as

GsQuery fromString: '18 <= each.age <= 65'

This can be generalized to a query with variables:

GsQuery fromString: 'min <= each.age <= max'.

The resulting formula in the GsQuery includes 'min' and 'max' as variables. These must be
bound to specific values before the query can be executed. Binding is done by sending the
bind:to: message to the query. For the above example, to execute the query:

aQuery := GsQuery fromString: 'min <= each.age < max'.
aQuery

bind: 'min' to: 18;
bind: 'max' to: 65;
on: myEmployees;
queryResult

Note that the “max” and “min” in the query formula are string elements, and are not
affected by any temporary or instance variables named max or min in the scope of the
code being executed. The only way to resolve max and min are by binding variables.

GsQuery’s Collection protocol

To get the query results, you can send queryResult to the instance of GsQuery.
GsQuery accepts other Collection protocol, which it responds to as if the GsQuery were
the query result Collection.

You can send asArray or asIdentityBag to the GsQuery directly, for example:

(GsQuery fromString: 'each.address.state = ''OR'''
on: Employees) asArray

Performing one of the collection operations that are provided for GsQuery simplifies your
code, since you may not have to put results in temporary variables. It may or may not
allow you to avoid creating query result objects. Enumeration methods also allows you to
perform code while the query is executing, rather than waiting for the results.
102 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Defining and Executing Queries
GsQuery and cacheQueryResults

By default, each time you execute any GsQuery collection protocol, the query is
performed again. So sending includes: or isEmpty to a GsQuery, by default, does not
avoid executing the query during a subsequent queryResult.

You can cache the results of your GsQuery by specifying an instance of GsQueryOptions
with cacheQueryResult: set to true. This will cache the result set of the GsQuery. Note
that this cache will not reflect changes in the root collection that occurred after the query
was executed; you are responsible for re-running the query if current results are required.

You may pass in an instance of GsQueryOptions using the fromString:options: and
related protocol for GsQuery.

For example:

query := (GsQuery fromString: 'each.address.state = ''OR'''
options: (GsQueryOptions cacheQueryResult)
on: Employees).

query isEmpty ifTrue: [^'no results'].
report := self createReportingStructure.
query do: [:ea | report updateDataWith: ea].
...

GsQuery enumeration methods accepting blocks

Among the collection protocol that GsQuery understands are the methods do:, select:,
reject:, collect:, detect: and detect:ifNone:. While these look similar to
fetching query results using selection blocks, since the actual query is already provided by
the GsQuery, there are key differences.

With GsQuery, it’s important to remember that these will operate on the result set of the
initial query. In essence, you are adding an additional, non-indexed search criteria to the
indexed query. This additional code will be executed for each element in the collection for
which the indexed query matches, at the time that the index query is examining that result
element.

For example, if you have an index on Employee age, and a query such as:

(GsQuery fromString: 'each.age <= 18' on: Employees)

Using this query, you can add an additional search criteria using select:, so that only
Employees who live in Oregon are returned.

(GsQuery fromString: 'each.age <= 18' on: Employees) select:
[:each | each state = 'OR']

This will return a result set that includes Employees under 18 who live in Oregon. The
state message is only sent to the elements (Employees) who are under 18, it is not
executed for every element in the collection.

Order of results

Provided there is an index on the query path, the enumeration block operates on each
object in the result set in the order specified by the index. However, since the select: or
other method will necessarily return a kind of UnorderedCollection (see “Return values”
April 2014 GemTalk Systems 103

Defining and Executing Queries GemStone/S 64 Bit 3.2 Programming Guide
on page 104), the objects in the collection returned by the enumeration method will be not
be ordered.

You can use the enumeration protocol to produce results that are ordered according to the
index. For example:

resultArray := Array new.
(GsQuery fromString: 'each.age <= 18' on: Employees) do:

[:each | resultArray add: each].

However, for ordered results, you may want to stream over the results instead.

Efficiency of query vs. enumeration

It is more efficient to perform an indexed query using GsQuery than to add additional
criteria using enumeration methods.

For example, the following code returns a collection of all employees who are 26 or
younger, and who respond false to hasOtherHealthInsurance.

GsQuery fromString: 'each.age <= 26' on: myEmployees)
reject: [:each | each hasOtherHealthInsurance]

This is useful if you have predicates that require message sends. However, if you can
formulate the second statement as an indexable predicate, it would be more efficient. If
hasOtherHealthInsurance was actually an instance variable, you could write this as:

(GsQuery fromString: '(each.age <= 26) &
(each.hasOtherHealthInsurance) not' on: myEmployees)
queryResults

Early exit from execution

Since the code in the block provided to select: (and similar methods) is executed for
each element that the indexed query itself would return, this provides a way to exit the
indexed query early. In this block, you can execute any code (as long as it does not modify
the collection or the objects in the collection in ways that would change the result set).
Based on this code, if it’s no longer useful to continue the search, you can exit the block.

For example, say you have a collection of purchase orders, and you are generating a
report of all open purchase orders. If a new order arrives during the period you are
executing this operation, you might want not want to bother producing the already-
obsolete report.

(GsQuery fromString: 'each.isOpen' on: MyOrders) do:
[:anOrder |
report add: anOrder description.
self checkForNewOrders ifTrue: [^'report cenceled']
]

Return values

GsQuery >> queryResult will, like selection block queries, return a new instance of
collection of the same class as the base collection, unless protocol such as asArray are
used to specify the class of the results.

Also similarly to selection block queries, queries on instances of reduced-conflict (Rc)
collections, return the equivalent non-Rc collection.
104 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Defining and Executing Queries
The collection returned from a query has no index structures. Indexes belong to specific
instances of collections, rather than the classes. If you want to perform indexed selections
on the new collection, you must build the necessary indexes on the new collection.

Query results as Streams

It may be more useful to return the result of an equality query as a stream, instead of a
collection, especially if the result set is large. Returning the result as a stream not only is
faster, is also avoids the need to have all the result objects in memory simultaneously.

Streaming on index results return the results in order that is defined by the index, so you
can iterate over the elements that are returned in the order defined by the index, with no
extra effort.

To get the results as a stream, use the message GsQuery >> readStream. or
UnorderedCollection >> selectAsStream:. These methods return an instance of
RangeIndexReadStream, which is similar to a ReadStream but specialized for index
results.

You can then iterate the results using standard stream protocol. Instances of
RangeIndexReadStream understand the messages next, atEnd, and similar ReadStream
protocol.

Streams do not automatically save the resulting objects. If you do not save them as you
read them, the results of the query are lost. You should not modify the objects in the base
collection while streaming, nor add or remove objects; doing so can cause an error or
corrupt the stream.

For example, suppose your company wishes to send a congratulatory letter to anyone
who has worked there for thirty years or more. Once you have sent the letter, you have no
further use for the data. Assuming that each employee has an instance variable called
lengthOfService, and there is an index on this, you can use a stream to formulate the query
as follows:

oldTimers := (GsQuery fromString: 'each.lengthOfService >= 30'
on: myEmployees) readStream.

[oldTimers atEnd] whileFalse: [
| anEmployee |
anEmployee := oldTimers next.
anEmployee sendCongratuations.].

The selection block query interface uses the message selectAsStream: to create a
stream on the query results. This is handled the same as a GsQuery readStream.

oldTimers := myEmployees selectAsStream:
{:anEmp | anEmp.lengthOfService >= 30}.

[oldTimers atEnd] whileFalse: [
| anEmployee |
anEmployee := oldTimers next.
anEmployee sendCongratuations.].
April 2014 GemTalk Systems 105

Defining and Executing Queries GemStone/S 64 Bit 3.2 Programming Guide
Limitations on streamable queries

Streams on query results have certain limitations; for example, the predicate in the query
must be logically streamable. The following restrictions apply:

It takes a single predicate only; no conjunction of predicate terms is allowed. The
exception is with if two predicates can be automatically combined to form a single
range predicate. So, for example, (each.age > 18) & (each.age <= 65) is
legal, since it can be reformulated as a single range predicate,
(18 < each.age <= 65).

The predicate can contain only one path.

The collection you are searching must have an equality index on the path specified in
the predicate.
106 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating Indexes
7.3 Creating Indexes
To execute a query efficiently, you need to create an index on the instance variables that
you want to query on. These indexes provide a mapping from the specific key values that
you are interested in to the results (the objects in the collection).

The path you provide when creating an index provides the key. These keys are objects in
the collection, or the values of a specific instance variable within the elements of a
collection.

For example, given a collection of Employees, and the path each.address.state, the
objects at the state instance variable (perhaps a two-character String) would be the key.
Then when you make an indexed query for Employees with addresses in a given state,
that state key is used to lookup the matching elements (instance of Employee).

Equality and Identity Indexes

Indexes fall into two main types: Equality Indexes and Identity Indexes. Equality indexes
keep keys in a btree structure, which provides tree-based lookup. This allows greater-than
and less-than, and sorted range results, to be produced. IdentityIndexes store keys in a
hashed identity dictionary, which only allows lookup by identity.

When creating an index, you specify whether an equality or identity index is created.

Then, in the indexed query, the comparison operator controls the type of index that is
used. Queries containing >, >=, <, <=, =, and ~= use an equality index. Queries containing
== and ~~ will look for an identity index.

If you only have an identity index on a variable, but form your query using an equality
operator, the query will not have an index to use (and thus, will iterate the collection).

The exception to this is if your equality index is on a “special” object, such as a
SmallInteger, SmallDouble, Character, or Boolean, in which equality and identity are the
same. This results in an implicit index (see page 108), which can be used to make identity
based queries.

You may create both equality and identity indexes on the same path.

Specialized subtypes of Indexes

Within the general types of indexes, there are some variations with special features.

Unicode Indexes

The Unicode Index is a type of Equality Index that allows you to index instances of
Unicode strings— Unicode7, Unicode16, and Unicode32—which require a IcuCollator to
compare. See “Unicode String Indexes and Queries” on page 113 for details.

Reduced-conflict Equality Indexes

An Rc Equality Index is a type of Equality Index in which internal indexing structures are
reduced-conflict. This avoids some transaction conflicts when creating an index on a
reduced-conflict (RC) collection, such as RcIdentityBag. Reduced-conflict classes are
described in “Indexes and Concurrency Control” on page 137. Rc Equality indexes are
described under “Reduced-Conflict Indexes” on page 110.
April 2014 GemTalk Systems 107

Creating Indexes GemStone/S 64 Bit 3.2 Programming Guide
Implicit Indexes

Most of the indexes you will use for your queries are created explicitly, by executing code
specifying a particular indexed path.

However, under some cases, implicit indexes are also created as a side effect. These
indexes can be used to perform indexed queries. You cannot manage or remove them,
however; they can only be removed by removing the primarily explicit index for which
the implicit index is a side-effect.

Implicit indexes include:

In the process of creating an index on a nested instance variable, GemStone Smalltalk
also creates identity indexes on the values that lie on the path to that variable.

For example, if you create an equality index on 'name.lastName', it also creates an
identity index on name. By creating this index, you can make indexed identity queries
on the objects specified by name, without explicitly creating an index on name.

An implicit identity index is also present if you create an equality index on a Special,
such as a SmallInteger, SmallDouble, Character, or Boolean, in which equality and
identity are the same.

Creating indexes using GsIndexSpec

To create an index using GsIndexSpec, do the following:

1. Create an instance of GsIndexSpec
This is done by executing GsIndexSpec new

2. Define one or more indexes on the Spec
To define an index, send an index creation message to the GsIndexSpec, including the
path you want indexed, the class of the last element (for equality indexes), and
options (if used).

Index creation messages include, for example, equalityIndex:lastElement-
Class: and identityIndex: (see the list below).

3. Create the index on a specific collection
To actually create the index, send the message createIndexesOn:, providing the
specific collection on which you want to create the indexes.

To put this all together, for example:

GsIndexSpec new
identityIndex: 'each.userId';
equalityIndex: 'each.age' lastElementClass: SmallInteger;
equalityIndex: 'each.address.state' lastElementClass: String;
createIndexesOn: myEmployees.

This creates an identity index on userId, an equality index on age, and another equality
index on address.state, all on the collection myEmployees.
108 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating Indexes
You can view the indexes by recreating the specification code, using indexSpec. For
example:

myEmployees indexSpec
GsIndexSpec new

identityIndex: 'each.userId';
equalityIndex: 'each.age'

lastElementClass: SmallInteger;
equalityIndex: 'each.address.state'

lastElementClass: String;
yourself.

The expressions that create a GsIndexSpec can be stored as instances or as code, and can
be used along or in conjunction with other GsIndexSpec instances, to create the same set
of indexes or a customized set of indexes on any collections that contain objects that
implement the given paths.

The following index creation methods are defined on GsIndexSpec :

equalityIndex:lastElementClass:
equalityIndex:lastElementClass:options:
identityIndex:
identityIndex:options:
unicodeIndex:
unicodeIndex:collator:
unicodeIndex:collator:options:

GsIndexOptions

A instance of GsIndexOptions specifies optional additional refinements that will be used
when creating a particular index on a collection. A GsIndexOptions instance is provided
by using the variants of the index creation methods that include the options: keyword.
GsIndexOptions are not used by traditional index creation.

The options available for GsIndexOptions are:

GsIndexOptions class >> reducedConflict
Returns an instance of GsIndexOptions that specifies that the index is reduced-
conflict. This applies for equality indexes, making these into Rc Equality Indexes.

GsIndexOptions class >> optionalPathTerms
Returns an instance of GsIndexOptions that specifies that the collection is allowed
to be non-homogenous, that each element of the collection is not required to
include all indexed instance variables on the path. May applies to any index.

GsIndexOptions can be combined using the plus operator and removed using the minus
operator. For example:

GsIndexSpec new
equalityIndex: 'each.name'
lastElementClass: String
options: (GsIndexOptions optionalPathTerms +

GsIndexOptions reducedConflict)
April 2014 GemTalk Systems 109

Creating Indexes GemStone/S 64 Bit 3.2 Programming Guide
Creating indexes using UnorderedCollection protocol

UnorderedCollection provides protocol to create indexes. This creates the same index
structures as GsIndexSpec, but does not provide access to some index features.

The following index creation methods are defined on UnorderedCollection:

createIdentityIndexOn:
createEqualityIndexOn:withLastElementClass:

For example, this message requests that myEmployees creates an identity index on the
instance variable userId within each of its elements:

myEmployees createIdentityIndexOn: 'userId'.

And these messages request to create equality indexes on the instance variables age and
name:

myEmployees
createEqualityIndexOn: 'age'
withLastElementClass: SmallInteger.

myEmployees
createEqualityIndexOn: 'address.state'
withLastElementClass: String.

Together, these three statements create the same indexes that were provided in the
example in the previous section.

Reduced-Conflict Indexes

When creating an equality index on a collection that is reduced-conflict, such as
RcIdentityBag, some multi-user commit conflicts may be avoided by creating the indexing
structures themselves as reduced-conflict. This option is not particularly useful if your
collection is not reduced conflict (such as IdentitySet, etc.), since this collection will
encounter any commit conflicts as well.

This doesn’t apply to identity indexes, which are always reduced-conflict.

If you are creating an index on an RcIdentityBag, to make the index reduced-conflict, use
an index creation method with the options: keyword, and pass in GsIndexOptions
reducedConflict. For example:

GsIndexSpec new
equalityIndex: 'each.name'
options: (GsIndexOptions reducedConflict)

Using UnorderedCollection index creation protocol to create an index, the message is:

UnorderedCollection >> createRcEqualityIndexOn:withLastElementClass:

Optional pathTerms

A homogenous collection is one in which each element in the indexed collection defines
the instance variable described by the index, for each pathTerm in the indexed path. By
default, indexes require that the collection be homogeneous. If any element does not have
the given instance variable, it will raise an error when the element is added to the
collection.
110 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating Indexes
If you want to create an index on a non-homogenous collection, you can define the
indexes with optional pathTerms using GsIndexSpec protocol. Use an index creation
method with the options: keyword, and pass in GsIndexOptions
optionalPathTerms. For example:

GsIndexSpec new
equalityIndex: 'each.nickName'
options: (GsIndexOptions optionalPathTerms)

When creating an optional pathTerm index, it is not an error when the objects in the
collection do not implement an instance variable specified by the index. For a multi-
pathTerm index, that includes each pathTerm; objects with missing instance variable
definitions for any of the pathTerms in the indexed path are not considered when creating
query results.

If you create an index with a pathTerm for an instance variable that does not exist at all
(perhaps due to a typing error), then the index is created correctly and does not report an
error, even if it does not create the index you might have intended to create.

While Indexes are Being Created

Indexing a large collection will take some amount of time to create the infrastructure and
tracking for each indexed object.

The message progressOfIndexCreation returns a description of the current status for
an index as it is created.

Queries during index creation

While the index is being created, the index is write-locked. Any query that would
normally use the index is performed directly on the collection, by brute force. If a
concurrent user modifies an object that is actively participating in the index at the same
time, index creation is terminated with an error.

Auto-commit

Creating or removing an index creates and/or modifies many objects related to the
internal structures that support indexes. These modifications are uncommitted changes
that must be kept in the session’s memory until these changes are committed. Many
uncommitted changes place a large demand on memory and creates a risk of out of
memory conditions. Chapter 8, “Transactions and Concurrency Control,” explains
uncommitted objects and transactions in more detail, while Chapter NN explains object
memory use.

To avoid problems during index creation, it is often necessary to set the IndexManager to
autoCommit. The IndexManager controls overall index behavior, and is described in
more details in “Managing Indexes” on page 118. When IndexManager is set to
autoCommit, it will commit the partially created index, rather than risk running out of
resources and failing the index operation.

By default, autoCommit is false. When you send the following message:

IndexManager autoCommit: true
April 2014 GemTalk Systems 111

Creating Indexes GemStone/S 64 Bit 3.2 Programming Guide
it configures your IndexManager such that the current transaction is committed during an
indexing operation, whenever any of the following occur:

The current session receives a signal indicating temporary object memory is almost
full.

The percentage of temporary object memory in use reaches the IndexManager’s
setting for percentTempObjSpaceCommitThreshold.

The default is 60. This threshold can be changed using IndexManager >> per-
centTempObjSpaceCommitThreshold: anInt

The current session receives a signal to FinishTransaction. This occurs when the
commit record backlog is larger than STN_SIGNAL_ABORT_CR_BACKLOG, and
this session is holding the commit record.

The number of modified objects in the current transaction reaches the
IndexManager’s setting for dirtyObjectCommitThreshold.

The default is SmallInteger maximum value, which means this limit is effectively dis-
abled.This limit can be changed using IndexManager >> dirtyObjectCommit-
Threshold: anInt

When autoCommit is true, a transaction will be started (if necessary) before the indexing
operation begins, and the IndexManager will commit at the completion of the indexing
operation. Note that this means that, even if you are in manual transaction mode and not
in a transaction, index operations will cause changes to be committed to the repository
without you explicitly beginning a transaction.

If you want to enable autoCommit only for the current session, not for all index creation,
you can use

IndexManager sessionAutoCommit: true
112 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Special Kinds of Queries and Indexes
7.4 Special Kinds of Queries and Indexes
Previously the basic kinds of indexes, on the instance variables of your objects, have been
described. The following are some special kinds of indexes, providing some specialized
behavior.

Unicode String Indexes and Queries

Equality indexes are inherently ordered. So, while you may search for an object using
equality, the ability to find that object using the internal Btree requires that the keys be
ordered (collated) in a predicable way with respect to all other keys in that index. The
ordering of keys in an equality index is more clear for queries that involve less than and
greater than comparisons.

While objects such as numbers and dates have an obvious and fixed ordering, with strings
this is more complicated, since different languages may order strings differently. This is
described in more detail in Chapter 4.

You may safely create indexes on traditional strings, which have a fixed collation order
(you must not change collation using customized Character Data Tables without
removing all indexes in the repository).

Unicode strings, which are instance of Unicode7, Unicode16, and Unicode32, allow locale,
language, and usage specific collation by relying on instance of IcuCollator. Unicode
strings provide a more powerful way to order strings according to the specific
requirements for your application. Any ordering that involves a Unicode string needs an
IcuCollator, and since the default IcuCollator can change, Unicode strings cannot be used
in an ordinary index.

To create an index on a final String element that will permit Unicode strings to be used,
you must create a unicode index. A unicode index persists an instance of IcuCollator,
which will be used for all comparisons0 within that index. This assures that you can locate
elements correctly for a given key, whether it be a unicode string or a traditional string.

NOTE
With Unicode Comparison Mode, these rules change; with this setting, traditional
strings behave like Unicode strings in comparison operations. See page 81 for
more information.

Creating Unicode Indexes

All unicode indexes require an instance of IcuCollator. An immutable copy of this
IcuCollator is persisted as part of the index, and is used for all queries on that index,
regardless of the current locale.

If you don’t explicitly specify an instance of IcuCollator, than the current default
IcuCollator is used, and will be used for all comparisons on this index.

You cannot change the collator of an index after it has been created.
April 2014 GemTalk Systems 113

Special Kinds of Queries and Indexes GemStone/S 64 Bit 3.2 Programming Guide
GsIndexSpec

GsIndexSpec provides special protocol to create unicode indexes. The following methods
are available:

unicodeIndex:
unicodeIndex:collator:
unicodeIndex:collator:options:

If you do not specify a collator, a copy of the current default IcuCollator will be made
invariant and persisted with the index. Otherwise, you may specify a collator using
standard IcuCollator methods, such as IcuCollator class >> forLocaleNamed:.
See Chapter 4 for more information on IcuCollator.

UnorderedCollection protocol

You may also create unicode indexes using the traditional UnorderedCollection protocol,
by specifying a lastElementClass of any Unicode string class (Unicode7, Unicode 16, or
Unicode32).

Since no collator can be specified, the index will be created using the current default
IcuCollator.

Due to the way Unicode strings fit into the CharacterCollection hierarchy, the semantics
of specifying the lastElementClass are different for CharacterCollection classes, and do
not follow the usual hierarchy rules.

When Unicode7, Unicode 16, or Unicode32 is specified as a lastElementClass, a
Unicode index is created, using the current default collator. In addition to allowing
instances of Unicode7, Unicode 16, and Unicode32 (regardless of which of these
classes is specified), instances of any subclasses of CharacterCollection are allowed.

When a lastElementClass of String or CharacterCollection is specified, this
specifically disallows instances of Unicode7, Unicode16, and Unicode32, although
otherwise the hierarchical meaning of the lastElementClass applies.

Example

The following example demonstrates creating a unicode string index, which will collate
according to the rules for the German language as used in Germany:

GsIndexSpec new
unicodeIndex: 'each.lastName'
collator: (IcuCollator forLocaleNamed: 'de_DE');

createIndexesOn: myEmployees.

Queries are created and executed as for equality indexes on ordinary strings. When
performing a query, the results are located and ordered according to the collation rules of
the IcuCollator that was used to create the index.

For example, since the index was created above with German-language collation, the
following query will return results that are correct for German collation:

GsQuery
fromString: '''Weiß''<= each.lastName <= ''Weiz'''
on: myEmployees
114 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Special Kinds of Queries and Indexes
Enumerated path terms in indexes and queries

Enumerated path terms allow you query over more than one instance variable value in a
single query. This is specified using the vertical bar | in the path term, between the
instance variable names.

The instance variables are treated as alternate choices; if any one of the specified instance
variables matches the search criteria, the predicate evaluates to true.

For example, you might want to search on both first name and nickname in a single
operation. The query might look like this:

(GsQuery fromString: 'each.firstName|nickName = ''Freddie'''
on: MyEmployees) queryResult

When this is executed, the results will include all instance that have either the firstName
equal to ‘Freddie’, or the nickName ‘Freddie’, or both.

In order to optimize this query with an index, you need to create an index on the specific
enumeration, e.g. 'each.firstName|nickName'. An enumerated path term query will
not use an index on the individual instance variables that are enumerated.

Restrictions on predicates with enumerated pathTerms

The semantics of enumerated pathTerms do not allow multiple conjoined predicates using the same
enumerated pathTerm, since each predicate is evaluated separately. (conjoined predicates are those
connected using &).

Collection path Indexes and Queries

Your business objects may themselves contain collections; for example, an employee may contain
a collection of children; and you may want to search based on some criteria of the objects in that
collection. As long as this collection is itself indexable, indexes and queries can include all elements
within these contained collections.

Index paths that include collections, and the queries that use these indexes, are sometimes called Set-
valued indexes and queries, although any kind of indexable collection, not just Sets, may be used.

When you wish to specify a path containing an instance of a subclass of UnorderedCollection, the
collection is represented by an asterisk *. This syntax may be used to create indexes and perform
queries. However, only GsQuery may be used to perform set-valued queries.

For example, suppose you want to know which of your employees has children of age 18 or
younger. To facilitate such queries, each of your employees has an instance variable named
children, which is implemented as a set. This set contains instances of a class that has an instance
variable named age.

To create the index:

GsIndexSpec new
equalityIndex: 'each.children.*.age'

lastElementClass: SmallInteger;
createIndexesOn: myEmployees.

Set-valued query results

When you execute a set-valued query, the results you get will follow the particular
semantics of Set-valued queries. Since there are potentially multiple “true” query results for a
April 2014 GemTalk Systems 115

Special Kinds of Queries and Indexes GemStone/S 64 Bit 3.2 Programming Guide
given element in the base collection, the result of a set-valued query such as this can be larger than
the original collection.

For example, consider the following query, using the index created above:

(GsQuery fromString: 'each.children.*.age <= 18'
on: myEmployees) queryResults

In this example, if the root collection myEmployees is a Bag or IdentityBag (rather than a Set or
IdentitySet), and an employee has two children that are under 18, then that employee will appear in
the results (a Bag or IdentityBag) twice. Employees with three minor children appear in the results
three times, and so on. The resulting collection may be several times as large as the original
collection, depending on the details of the query and data.

If the root collection myEmployees is a Set, which does not allow multiple instances of the same
object, this potential source of confusion does not occur.

Restrictions on predicates in set-valued queries

The semantics of set-valued indexes do not allow multiple conjoined predicates that use the same
set-valued pathTerm, since each predicate is evaluated separately. (conjoined predicates are those
connected using &).

In general, it is recommended to avoid using multiple- set-valued predicate queries, although some
multiple-predicate set-valued queries can be optimized, or avoid the problem cases, and are safe
and therefor allowed.

Redefined Comparison Messages

When indexed queries are executed for instances of basic classes or subclasses of basic
classes (see “Basic Classes optimized for indexes” on page 98), the comparison operators
are not performed as message sends, and you cannot change the operation of a query by
redefining the comparison messages in a GemStone kernel class. In other words, for
predefined GemStone classes, the comparison operators really are operators in the
traditional programming language sense; they are not messages.

For example, if you recompiled or subclassed the class Time, redefining < to count
backwards from the end of the century, GemStone Smalltalk would ignore that
redefinition when < appeared next to an instance of Time inside a selection block.
GemStone Smalltalk would simply apply an operator that behaved like Time’s standard
definition of <.

For subclasses that you have created that are not subclasses of basic classes, however,
equality operators can be redefined. If you do so, the selection block in which they are
used performs the comparison on the basis of your redefined operators—as long as one of
the operands is the class you created and in which you redefined the equality operator.

If you redefine any, you must redefine at least the operators =, >, <, and <=. You can
redefine one or more of these in terms of another.

The operators must be defined to conform to the following rules:

If a < b and b < c, then a < c.

Exactly one of these is true: a < b, or b < a, or a = b.

a <= b if a < b or a = b.
116 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Special Kinds of Queries and Indexes
If a = b, then b = a.

If a < b, then b > a.

If a >= b, then b <= a.

You must obey one other rule as well: objects that are equal to each other must have equal
hash values. Therefore, if you redefine =, you must also redefine the method hash so that
dictionaries will behave in a consistent and logical manner. This rule is not limited to
indexes, but applies to any object that will be stored in any dictionary.

WARNING: Modifying an existing object in such a way that its hash value changes
will corrupt hashed collections containing that object. Use care if you need to redefine
the hash method; do not refer to instance variables that are likely to change.
April 2014 GemTalk Systems 117

Managing Indexes GemStone/S 64 Bit 3.2 Programming Guide
7.5 Managing Indexes
You may need to find out about all the indexes in your system, and to remove selected
indexes or clean up indexes that were not successfully created. This functionality is
provided by the class IndexManager.

IndexManager has a single instance which provides much of the functionality, accessible
via:

IndexManager current

This instance is lazy initialized, and stored in the IndexManager class instance variable
after it is created. Any configuration you do on IndexManager current, therefore, will be
used by all affected operations, if you commit after making the change.

Indexes on temporary collections

You may create indexes on temporary collections containing temporary and persistent
objects. However, on abort, any indexes on temporary collections are removed.

Inquiring About Indexes

For a full description of the indexes on a particular collection, send indexSpec to the
collection. This produces a string containing the GsIndexSpec code that would recreate
the same indexes, and provide useful documentation on those indexes.

For example,

myEmployees indexSpec
%
GsIndexSpec new

equalityIndex: 'each.age'
lastElementClass: SmallInteger;

equalityIndex: 'each.address.state'
lastElementClass: String;
options: GsIndexOptions reducedConflict;

identityIndex: 'each.userId';
yourself.

You can also send messages to the collection that will return quick information on
indexed paths.

equalityIndexedPaths and identityIndexedPaths

Returns, respectively, the equality indexes and the identity indexes on the receiver’s
contents. Each message returns an array of strings representing the paths in question.

For example, the following expression returns the paths into myEmployees that bear
equality indexes:

myEmployees equalityIndexedPaths
%
anArray('age', 'address.state')

kindsOfIndexOn: aPathNameString
118 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Managing Indexes
Returns information about the kind of index present on an instance variable within
the elements of the receiver. The information is returned as one of these symbols:
#none, #identity, #equality, #identityAndEquality.

equalityIndexedPathsAndConstraints

Returns an array in which the odd-numbered elements are the elements of the path,
and the even-numbered elements are the constraints specified when creating an index
using the keyword withLastElementClass:.

The following IndexManager messages allow you to inquire about all indexes in the
repository.

getAllNSCRoots

Returns a collection of all UnorderedCollections in the repository that have indexes.

usageReport

Returns a report on all indexes on all UnorderedCollections in the repository.

Removing Indexes

There are a number of ways to remove indexes, using GsIndexSpec, IndexManager, and
UnorderedCollection protocol.

Since indexing internal structures create references to the indexed collection and to objects
in the collection, before dereferencing a collection, you should be sure to remove all
indexes on the collection. This allows the collection to be garbage collected.

To remove indexes based on a GsIndexSpec

As you can create indexes based on an instance of GsIndexSpec, you can also use that
specification to remove these indexes.

GsIndexSpec >> removeIndexesFrom: aCollection
Removes the indexes described by the receiver from the collection indicated by aCol-
lection. If any specified indexes do not exist, they are not removed and no error is
returned.

This is most useful in combination with the method that creates the spec from the existing
collection. For example:

(MyEmploees indexSpec)
removeIndexesFrom: MyEmployees.

To remove a single index, you may edit the specification code printed by indexSpec, or
create a simple GsIndexSpec with information to remove a single index:

(GsIndexSpec new
equalityIndex: 'each.age' lastElementClass: Object)

removeIndexesFrom: MyEmployees.

To remove indexes using IndexManager

IndexManager, which provides a system-wide view of all the indexes in the repository,
provides a number of methods to remove indexes both individually, by collection, and
globally.
April 2014 GemTalk Systems 119

Managing Indexes GemStone/S 64 Bit 3.2 Programming Guide
IndexManager >> removeEqualityIndexFor: aCollection on: aPathString
Removes an equality index from the collection aCollection with the indexed path
described by aPathString. If the path specified does not exist, this method returns an
error. Implicit indexes are not removed.

IndexManager >> removeIdentityIndexFor: aCollection on: aPathString
Removes the identity index from the collection aCollection with the indexed path
described by aPathString. If the path specified does not exist, this method returns an
error. Implicit indexes are not removed.

IndexManager >> removeAllIndexesOn: aCollection
Removes all explicitly created indexes from the collection aCollection. Implicit indexes
that were created by these elements participating in other indexed collections are not
removed.

IndexManager >> removeAllIndexes
Removes all indexes on all UnorderedCollections, including all implicit and partial
indexes.

IndexManager >> removeAllTracking
Removes all indexes on all UnorderedCollections, and all object tracking. While this is
the fastest way and most complete way to remove indexing infrastructure, if you are
using modification tracking for any other purpose, that tracking will be removed as
well.

To remove indexes using UnorderedCollection protocol

You may also send methods to the indexed collection directly to remove one or all
indexes.

UnorderedCollection >> removeEqualityIndexOn: aPathString
Removes an equality index from the path indicated by aPathString. If the path speci-
fied does not exist, this method returns an error. Implicit indexes are not removed.

UnorderedCollection >> removeIdentityIndexOn: aPathString
Removes the identity index on the specified path. If the path specified does not exist,
this method returns an error. Implicit indexes are not removed.

UnorderedCollection >> removeAllIndexes
Removes all explicitly created indexes from the receiver. Implicit indexes that were
created by these elements participating in other indexed collections are not removed.

Rebuilding Indexes

When objects that participate in an index are modified, the related indexing infrastructure
must be updated. This causes some overhead. If you are performing an operation that will
modify a large number of objects that participate in multiple indexes, such as a large
migration, it may be more efficient to remove some or all of the indexes on the collection
before performing the migrate, and rebuild those indexes after the migration is complete.

It is also sometimes required to remove and rebuild indexes as part of a GemStone
upgrade; certain changes in GemStone kernel classes require you to either rebuild specific
kinds of, or all, indexes. Any requirement to do this will be included in upgrade
instructions in the Installation Guide for the version of GemStone to which you are
upgrading.
120 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Managing Indexes
To remove and rebuild indexes, you can extract and save the GsIndexSpec, and reuse that
after the operation is complete.

For example:

| mySpec |
mySpec := myCollection indexSpec.
mySpec removeAllIndexesFrom: myCollection.
<perform migration or other operation>
mySpec createIndexesOn:myCollection

Using IndexManager >> getAllNSCRoots, you may extend this example to retrieve
the GsIndexSpec for each collection in the repository, which will allow you to remove and
rebuild the indexes.

Indexing and Performance

Under ordinary circumstances, indexing a large collection speeds up queries performed
on that collection and has little effect on other operations. Under certain uncommon
circumstances, however, indexing can cause a performance bottleneck.

For example, you may notice slower than acceptable performance if you are making a
great many modifications to the instance variables of objects that participate in an index,
and:

the path of the index is long; or

the object occurs many times within the indexed IdentityBag or Bag (recall that
neither IdentitySet nor Set may have multiple occurrences of the same object); or

the object participates in many indexes.

Even so, indexing a large collection is still likely to improve performance unless more
than one of these circumstances holds true. If you do experience a performance problem,
you can work around it in one of two ways:

If you have created relatively few indexes but are modifying many indexed objects, it
may be worthwhile to remove the indexes, modify the objects, and then re-create the
indexes.

If you are making many modifications to only a few objects, or if you have created a
great many indexes, it is more efficient to commit frequently during the course of
your work. That is, modify a few objects, commit the transaction, modify a few more
objects, and commit again. Frequent commits improve performance noticeably.

Formulating queries and performance

The most efficient queries are the ones in which the first predicate will return the smallest
result set. This is sometimes easy for a human to determine, but the query cannot predict
this without actually running the query. Queries should be manually reviewed for these
kinds of domain-specific optimizations.

For example, you might want to query for current orders for a particular customer.

(each.status = #current) & (each.customer.name = 'Smith')
April 2014 GemTalk Systems 121

Managing Indexes GemStone/S 64 Bit 3.2 Programming Guide
If your application is likely to have only a few current orders, then this is more efficient.
However, if you are likely to have many current orders, but only a few customers named
Smith, it would be more efficient for you to write the formula in reverse order.

This assumes that both predicates have an associated index. The optimization step will
reorders predicates so the indexed predicates will be evaluated before any non-indexed
predicates. See “Query Formula Optimizations” on page 126 for the automatic
optimizations that are done.

Indexing Errors

To ensure that indexing structures are consistent, some kinds of errors that may occur
during index creation will disable commits. Before creating an index, it is advisable to
commit any work in progress, to avoid losing any work if an indexing error does occur.

For example, if you create an index on a collection and one or more of the objects that
participate in the index do not implement the instance variable on the path, it will raise an
error (unless using optionalPathTerms, as described starting on page 110).

If an error occurs partly through index creation, and the autoCommit status (see page 113)
means that some portion of the index creation was committed, a collection may have
unusable partial indexes. These indexes must be manually removed.

The following IndexManager instance methods allow you to remove incomplete indexes,
while not affecting any complete, usable indexes:

IndexManager current removeAllIncompleteIndexes
Removes all incomplete indexes on all UnorderedCollections.

IndexManager current removeAllIncompleteIndexesOn: anNSC
Removes all incomplete indexes on the specified UnorderedCollection.

If you modify objects that participate in an index, try to commit your transaction, and
your commit operation fails, query results can become inconsistent. If this occurs, abort
the transaction and try again.

Auditing Indexes

Indexes should be audited regularly, as part of your regular application maintenance, to
ensure there are no problems.

You can audit the internal indexing structures for a particular collection by executing:

aCollection auditIndexes

This audits all the indexes, explicit and implicit, on the given collection. If indexes are
correct, this method returns 'Indexes are OK' or 'Indexes are OK and the receiver
participates in one or more indexes.'. If there are no indexes on the collection, a message
such as 'No indexes are present.' is returned.

In the case of failure, a list of specific problems is returned.

You can audit all indexes in the entirely repository at once using:

IndexManager current nscsWithBadIndexes

which will return an IdentitySet containing all collections that fail auditIndexes.
Depending on the number of indexed collections in your system, this may take a
considerable time to run.
122 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Managing Indexes
In the rare case of a problem reported, the usual way to resolve the problem is to remove
and rebuild the affected indexes. In some cases, removing all indexes on the collection
may succeed even if the internal problems prevent a single index being removed. If
removing indexes is impractical, contact Gemstone Technical Support for further
assistance.
April 2014 GemTalk Systems 123

Query Formulas and Optimization GemStone/S 64 Bit 3.2 Programming Guide
7.6 Query Formulas and Optimization
When you define a query, you may be able to most easily write this as a statement of
business logic. For more complicated queries, this may not be in its most efficient form.

Automatic query optimization performs some optimizations that can change a query into
the logically equivalent form that is more efficient for GemStone to execute.

You can also perform these optimizations manually, by writing your query in a the most
efficient form, rather than in the human/business logic form.

Query Formulas

An instance of GsQuery is created on a string, and is internally represented as an instance
of GsQueryFormula. The formula provided by the string may not be in its most efficient
form for execution. While you can hand-optimize the formula when you create the string,
it may be desirable to write the query so it makes sense from a business logic point of
view, and is more human-readable.

While a query formula such as

each.numberOfChildren < 3

does not change from optimization, a more complicated query such as this:

((1 <= each.numberOfChildren) not &
(each.numberOfChildren <= 3)) not

benefits from optimization; the optimized version of this is

each.numberOfChildren < 1

When a query is being executed or displayed, by default it is auto-optimized. It uses the
current formula to create an optimized version according to the optimization rules, and
executes or displays the optimized formula. The optimized version is not saved.

You can access the current formula using the formula message. By accessing the instance
of GsQueryFormula directly, you bypass the auto-optimization.

You can update the query’s formula by sending the optimize message to the query. This
saves the new, optimized formula in place of the current formula in the query.

Queries also retain the original formula with which they are created, so you can still view
the human-readable form. These are accessible via the originalFormula message.

For example, if you create a query based on the above formula:

query := GsQuery fromString: '((1 <= each.numberOfChildren) not
& (each.numberOfChildren <= 3)) not'.
124 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Query Formulas and Optimization
You can view the formulas, before and after optimization:

query printString
each.numberOfChildren < 1

query formula printString
((1 <= each.numberOfChildren) not & (each.numberOfChildren <=
3)) not

query optimize.
query formula printString
each.numberOfChildren >= 1

query originalFormula printString
((1 <= each.numberOfChildren) not & (each.numberOfChildren <=
3)) not

Invariance and Formula reuse

Instances of GsQuery are not invariant. However, instances of GsQueryFormula and its
subclasses are invariant when created using the public API. This allows formulas to be
safely persisted and shared, since side effects of message sends will not change the
semantics of the query.

When a GsQuery’s formula changes, such as when variables are bound, or when
optimize is sent, a new formula instance replaces the previous one. The particular
formula in a GsQuery, therefore, will depend on the stage at which the formula is
accessed.

For example, to save and reuse a formula from a GsQuery:

aQuery := GsQuery fromString: 'each.age <= min'.
UserGlobals at: #savedFomula put: aQuery formula.

The formula can be later reused:

(GsQuery fromFormula: savedFomula on: aCollection)
bind: 'min' to: 18;
queryResults.

To make a GsQuery invariant so it can safely be reused, send immediateInvariant.
The query can later be copied, to bind, optimize and execute. In this example, note that the
query is saved with the reference to the collection:

query := GsQuery fromString: 'each.age <= min' on: aCollection.
UserGlobals at: #savedQuery put: query immediateInvariant.

In this case, the reused query does not need to specify the collection when reused:

savedQuery copy
bind: 'min' to: 18;
queryResults.
April 2014 GemTalk Systems 125

Query Formulas and Optimization GemStone/S 64 Bit 3.2 Programming Guide
Disabling auto-optimize

Queries, by default, are optimized before execution. Each query has an associated instance
of GsQueryOptions. This controls optimization and other query features. In addition to
the various specific optimizations performed, GsQueryOptions controls if automatic
query optimization is done. The default is to do auto-optimization.

Queries are created with a default GsQueryOptions, or the options can be set on creation
using the query creation methods with the options: keyword.

To disable auto-optimization, you can create a query that specifies an instance of
GsQueryOptions that has autoOptimize removed. For example:

query := GsQuery
fromString: '((1 <= each.numberOfChildren) not &

(each.numberOfChildren <= 3)) not'
on: myEmployees
options: (GsQueryOptions default - GsQueryOptions

autoOptimize).

Query Formula Optimizations

The following are the specific optimizations that are performed when a query is
optimized.

Remove "not" using boolean logic

Clauses that include a not are transformed using De Morgan's Laws into the logical
equivalent form without the not. For example:

(each.firstName = 'Dale') not

becomes:

(each.firstName ~= 'Dale')

Convert predicates with equal operands into boolean constants

Predicates with common operands are transformed to the equivalent constant predicate.
For example, either of the following becomes true:

(each.firstName = each.firstName)
(4 = 4)

Convert constant-path reversed to path-constant

Constant-path predicates are replaced by equivalent path-constant predicates. For
example:

(19 > each.age)

becomes:

(each.age < 19)
126 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Query Formulas and Optimization
Eliminate redundant predicates

Predicates that fall within range of other predicates are removed. For example:

(each.age < 19) & (each.age < 4)

becomes:

(each.age < 4)

This optimization requires that the variables in the query be bound to values.

Combine path-constants into range predicate

Two path-constant predicates on the same path will be converted into a single range
predicate, if the predicates represent a range. For example:

(each.age > 4) & (each.age < 19)

becomes:

(4 < each.age < 19)

This optimization requires that the variables in the query are bound to values.

Combine path-constants to enumerated predicate

If an index exists that has an enumerated path term, and there are path-constant
predicates using that enumerated path term, the path-constant predicates can be
combined into a single enumerated predicate. For example,

(each.firstName = 'Martin') | (each.lastName = 'Martin')

becomes:

(each.firstName|lastName = 'Martin')

This optimization requires that the collection and any variables be bound to the query.

Simplify (true) and (false) predicates

Other optimizations may result in predicates that are unary constants true or false.
These are removed, or the entire expression is simplified, depending on the logic.

(true) & <other predicates> becomes: <other predicates>

(true) | <other predicates> becomes: (true)

(false) & <other predicates> becomes: (false)

(false) | <other predicates> becomes: <other predicates>

Reorder predicates

The predicates are reordered as follows, from left to right.

1. predicates involving indexed paths.

2. predicates with identity comparisons on paths without indexes.

3. predicates with equality comparisons on paths without indexes.
April 2014 GemTalk Systems 127

Query Formulas and Optimization GemStone/S 64 Bit 3.2 Programming Guide
128 GemTalk Systems April 2014

Chapter

8 Transactions and
Concurrency Control
GemStone users can share code and data objects by maintaining common dictionaries that
refer to those objects. However, if operations that modify shared objects are interleaved in
any arbitrary order, inconsistencies can result. This chapter describes how GemStone
manages concurrent sessions to prevent such inconsistencies.

GemStone’s Conflict Management
introduces the concept of a transaction and describes how it interacts with each user’s
view of the repository.

How GemStone Detects and Manages Conflict
describes how commit conflicts are detected and reported and how to handle and
avoid conflicts.

Controlling Concurrent Access with Locks
discusses the kinds of lock you can use to prevent conflict.

Classes That Reduce the Chance of Conflict
describes the classes that help reduce the likelihood of a conflict.

8.1 GemStone’s Conflict Management
GemStone prevents conflict between users by encapsulating each session’s operations
(computations, stores, and fetches) in units called transactions. The operations that make
up a transaction act on what appears to you to be a private view of GemStone objects.
When you tell GemStone to commit the current transaction, GemStone tries to merge the
modified objects in your view with the shared object store.

Views and Transactions

As shown in Figure 8.1, every user session maintains its own consistent view of the
repository state. Objects that the repository contained at the beginning of your session are
preserved in your view, even if you are not using them—and even if other users’ actions
have rendered them obsolete. The storage that those objects are using cannot be reclaimed
until you commit or abort your transaction. Depending upon the characteristics of your
April 2014 GemTalk Systems 129

GemStone’s Conflict Management GemStone/S 64 Bit 3.2 Programming Guide
particular installation (such as the number of users and the commit frequency), this
burden can be trivial or significant.

When you log in to GemStone, you get a view of repository state. After login, you may
start a transaction automatically or manually, or remain outside of transaction. The
repository view you get on login is updated when you begin a transaction or abort. When
you commit a transaction, your changes are merged with other changes to the shared data
in the repository, and your view is updated. When you obtain a new view of the
repository, by commit, abort, or continuing, any new or modified objects that have been
committed by other users become visible to you.

The transaction mode controls if a transaction is automatically began, or if you must
manually begin a transaction. For details, see “Committing Transactions” on page 135.)

Figure 8.1 View States

view of current

view of your
Commit

Log out

Log in

Modify an

Start

object

modifications transaction

Modify an

view of your
modifications and
updated objects

modified by others

Log out

Log out

Modify an
object

Continue transaction

Continue
transaction

view does
not exist

Abort
transaction

Abort transaction

object

committed repository

Commit
succeeds

Commit
fails

130 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone’s Conflict Management
Transaction State and Transaction Modes

A GemStone session is always either in a transaction or not in a transaction. When in
transaction, changes can be committed to the repository. When not in transaction, you can
make changes in your view but these changes cannot be committed.

A session that is in transaction may be in one of a number of transaction levels, depending
on if nested transactions are involved.

When not in transaction, the session may merely be not in transaction, or it may be in the
specialized transactionless mode. In transactionless mode, the session is not in
transaction, but its view may be updated automatically at any time. Transactionless mode
is primarily for idle sessions that do not need a reliable view of repository data; the topics
that this chapter discusses for the most part do not apply to transactionless mode sessions.

The transaction modes provide different behavior with respect to starting new
transactions. When in automatic transaction mode, the session is always in transaction.
When in manual transaction mode, you may be in transaction or not in transaction,
depending on specific messages your session sends.

The following are the GemStone transaction modes:

Automatic transaction mode

In this mode, GemStone begins a transaction when you log in, and starts a new one after
each commit or abort message. In this default mode, you are in a transaction the entire
time you are logged into a GemStone session. Use caution with this mode in busy
production systems, since your session will not receive the signals that your view is
causing a strain on system resources.

This is the default transaction mode on login.

To change to transactionless transaction mode, send the message:

System transactionMode: #autoBegin

This aborts the current transaction and starts a new transaction.

Manual transaction mode

In this mode, you can be logged in and outside of a transaction. You explicitly control
whether your session starts a transaction, makes changes, and commits. Although a
transaction is started for you when you log in, you can set the transaction mode to
manual, which aborts the current transaction and leaves you outside a transaction. You
can subsequently start a transaction when you are ready to commit. Manual transaction
mode provides a method of minimizing the transactions, while still managing the
repository for concurrent access.

In manual transaction mode, you can view the repository, browse objects, and make
computations based upon object values. You cannot, however, make your changes
permanent, nor can you add any new objects you may have created while outside a
transaction. You can start a transaction at any time during a session; you can carry
temporary results that you may have computed while outside a transaction into your new
transaction, where they can be committed, subject to the usual constraints of conflict-
checking.
April 2014 GemTalk Systems 131

GemStone’s Conflict Management GemStone/S 64 Bit 3.2 Programming Guide
To change to manual transaction mode, send the message:

System transactionMode: #manualBegin

This aborts the current transaction and leaves the session not in transaction.

To begin a transaction, execute

System beginTransaction

This message gives you a fresh view of the repository and starts a transaction. When you
commit or abort this new transaction, you will again be outside of a transaction until you
either explicitly begin a new one or change transaction modes.

Transactionless mode

In transactionless mode, you remain outside a transaction. This mode is intended
primarily for idle sessions. If all you need to do is browse objects in the repository,
transactionless mode can be a more efficient use of system resources. However, you are at
risk of obtaining inconsistent views.

To change to transactionless transaction mode, send the message:

System transactionMode: #transactionless

Determining transaction mode and transaction state

To determine the transaction mode you are in, send the message:

System transactionMode

To determine the transaction level you are at, send the message:

System transactionLevel

To determine if you are in transaction, send the message

System inTransaction

A transaction level of 1 or more means your session is in transaction, with values greater
than 1 indicating the number of levels of transaction. A transaction level of 0 is not in
transaction, while -1 indicates transactionless.

You can determine whether you are currently in a transaction by sending the message:

System inTransaction

This message returns true if you are in a transaction and false if you are not.

Reading and Writing in Transactions

GemStone considers the operations that take place in a transaction (or view) as reading or
writing objects. Any operation that sends a message to an object, or accesses any instance
variable of an object, is said to read that object. An operation that stores something in one
of an object’s instance variables is said to write the object. While you can read without
writing, writing an object always implies reading it. GemStone must read the internal
state of an object in order to store a new value in the object.

Operations that fetch information about an object also read the object. In particular,
fetching an object’s size, class, or security policy reads the object. An object also gets read
in the process of being stored into another object.
132 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone’s Conflict Management
The following expression sends a message to obtain the name of an employee and so
reads the object:

theName := anEmployee name. "reads anEmployee"

The following example reads aName in the same operation that anEmployee is written:

anEmployee name: aName "writes anEmployee, reads aName"

Some less common operations cause objects to be read or written. For example, assigning
an object to a new object security policy, using the message
assignToObjectSecurityPolicy:, writes the object and reads both the old and the
new GsObjectSecurityPolicy. Modifying an object that participates in an index may write
support objects built and maintained as part of the indexing mechanism.

For the purposes of detecting conflict among concurrent users, GemStone keeps separate
sets of the objects you have written during a transaction and the objects you have only
read. These sets are called the write set and the read set; the read set is always a superset of
the write set.

Reading and Writing Outside of Transactions

Outside of a transaction, reading an object is accomplished precisely the same way. You
can write objects in the same way as well, but you cannot commit these changes to make
them a permanent part of the repository.

When Should You Commit a Transaction?

Most applications create or modify objects in logically separate steps, combining trivial
operations in sequences that ultimately do significant things. To protect other users from
reading or using intermediate results, you want to commit after your program has
produced some stable and usable results. Changes become visible to other users only after
you’ve committed.

Your chance of being in conflict with other users increases with the time between
commits.

Nested In-memory Transactions

Within a transaction, GemStone allows you to group units of work into logical
transactions, which can be committed or aborted within the given session. These logical
transactions can be nested with up to 16 levels of nesting (including the outer level actual
transaction). When the full set of changes are ready to be committed, committing the outer
transaction will make the changes persistent and detect any conflicts.

While the same protocol is used to commit the actual (outer) transaction and the nested
transactions, the semantics are different. A commit of a nested transaction does not detect
conflicts with changes by other users, does not update current session state, and does not
make the changes persistent if the session exits unexpectedly or recoverable on system
shutdown. Abort of a nested transaction returns the session to the state it was in at the
beginning of the nested transaction, without updating the session’s view with any
changes by other users.

When transactions are discussed, unless specified otherwise, it only refers to an outer
level actual transaction, not to a nested transaction.
April 2014 GemTalk Systems 133

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.2 Programming Guide
To begin a nested transaction, use

System beginNestedTransaction

You should be already in transaction when executing this method.

Executing commit, commitTransaction, abort, or abortTransaction when in a
nested transaction preserve or discard in-memory changes and return to the parent level
of transaction. The same protocol is used at the outer level, actual transaction to perform
the commit or abort.

continueTransaction cannot be used when in a nested transaction.

You can commit or abort all levels of nested transactions at once, including performing
the outer level actual commit or abort, using the messages:

System commitAll
System abortAll

8.2 How GemStone Detects and Manages Conflict
GemStone detects conflict by comparing your read and write sets with those of all other
transactions committed since your transaction began. The following conditions signal a
possible concurrency conflict:

An object in your write set is also in the write set of another transaction—a write-write
conflict. Write-write conflicts can involve only a single object.

An object in your write set is also in another session’s dependency list—a write-
dependency conflict. An object belongs to a session’s dependency list if the session has
added, removed, or changed a dependency (index) for that object. For details about
how GemStone creates and manages indexes on collections, see Chapter 7, Indexes
and Querying.

If a write-write or write-dependency conflict is detected, then your transaction cannot
commit. This mode allows an occasional out-of-date entry to overwrite a more current
one. You can use object locks to enforce more stringent control if you can anticipate the
problem.

Concurrency Management

As the application designer, you determine your approach to concurrency control.

Using the optimistic approach to concurrency control, you simply read and write
objects as if you were the only user. The object server detects conflicts with other
sessions only at the time you try to commit your transaction. Your chance of being in
conflict with other users increases with the time between commits and the size of your
write set.

Although easy to implement in an application, this approach entails the risk that you
might lose the work you’ve done if conflicts are detected and you are unable to com-
mit.

Using the pessimistic approach to concurrency control, you detect and prevent
conflicts by explicitly requesting locks that signal your intentions to read or write
objects. By locking an object, other users are unable to use the object in a way that
134 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide How GemStone Detects and Manages Conflict
conflicts with your purposes. If you are unable to acquire a lock, then someone else
has already locked the object and you cannot use the object. You can then abort the
transaction immediately instead of doing work that can’t be committed.

Using reduced-conflict (RC) classes to perceive a write-write conflict and further test the
changes to see if they can truly be added concurrently. In some cases, allowing
operations to succeed leaves the object in a consistent state, even though a write
conflict is detected.

The GemStone reduced-conflict classes work well in situations that otherwise experi-
ence unnecessary conflicts. These classes include: RcCounter, RcIdentityBag,
RcQueue, and RcKeyValueDictionary. See “Classes That Reduce the Chance of Con-
flict” on page 150.

Committing Transactions

Committing a transaction has two effects:

It makes your new and changed objects visible to other users as a permanent part of
the repository.

It makes visible to you any new or modified objects that have been committed by
other users in an up-to-date view of the repository.

When you tell GemStone to commit your transaction, the object server performs these
actions:

1. Checks whether other concurrent sessions have committed transactions that modify an
object that you modified during your transaction.

2. Checks to see whether other concurrent sessions have committed transactions of their
own, modifying an object that you have read during your transaction, while at the
same time you have modified an object that another session has read.

3. Checks to see whether other concurrent sessions have added, removed, or changed
indexes on an object that you have modified during your transaction.

4. Checks for locks set by other sessions that indicate the intention to modify objects that
you have read.

If none of these conditions is found, GemStone commits the transaction. The messages
commit or commitTransaction commit the current transaction:

Example 8.1

UserGlobals at: #SharedDictionary put: SymbolDictionary new.

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System commitTransaction.
"commit the transaction, merging my private view
 of SharedDictionary with the committed repository"

%

April 2014 GemTalk Systems 135

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.2 Programming Guide
The message commitTransaction returns true if GemStone commits your transaction
and false if it can’t. The message commit performs the same commit, but returns true if
GemStone commits your transaction and signals an error if it fails to commit.

To find why your transaction failed to commit, you can send the message:

System transactionConflicts

This method returns a symbol dictionary that contains an Association whose key is
#commitResult and whose value is one of the following symbols:

#readOnly
#success
#rcFailure
#dependencyFailure
#failure
#retryFailure
#commitDisallowed
#retryLimitExceeded

The remaining Associations in the dictionary are used to report the conflicts found. Each
Association’s key indicates the kind of conflict detected; its associated value is an Array of
OOPs for the objects that are conflicting.

Table 1 lists the possible keys for the conflict.

If there are no conflicts for the transaction, the returned symbol dictionary has no
additional Associations.

Conflict sets are cleared at the beginning of a commit or abort and thus can be examined
until the next commit, continue, or abort.

NOTE
To avoid making conflict sets persistent, be sure to disconnect them before
committing.

To determine whether the current transaction has write-write conflicts, you can send the
following message before attempting to commit the transaction:

System currentTransactionHasWWConflicts

Table 1 Transaction Conflict Keys

Key Meaning

#'Read-Write' StrongReadSet and WriteSetUnion conflict.
Used by GemStone indexing mechanism.

#'Write-Write' WriteSet and WriteSetUnion conflict.

#'Write-Dependency' WriteSet and DependencyChangeSetUnion
conflict.

#'Write-WriteLock' WriteSet and WriteLockSet conflict.

#’Rc-Write-Write’ Logical Write-Write conflict on an instance of
a reduced conflict class.
136 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide How GemStone Detects and Manages Conflict
Similarly, to determine whether the current transaction has write-dependency conflicts,
you can send this message:

System currentTransactionHasWDConflicts

If the above message returns true, you can send the appropriate message to obtain a list of
write-write (or write-dependency) conflicts in the current transaction:

System currentTransactionWWConflicts (write-write)

or:

System currentTransactionWDConflicts (write-dependency)

Handling Commit Failure in a Transaction

If GemStone refuses to commit your transaction, the transaction read or wrote an object
that another user modified and committed to the repository (or involved in indexing
operations) since your transaction began. Because you can’t undo a read or a write
operation, simply repeating the attempt to commit will not succeed.

You must abort the transaction in order to get a new view of the repository and, along
with it, an empty read set and an empty write set. A subsequent attempt to run your code
and commit the view can succeed. If the competition for shared data is heavy, subsequent
transactions can also fail to commit. In this situation, locking objects that are frequently
modified by other transactions gives you a better chance of committing.

Indexes and Concurrency Control

It is also possible that you can encounter conflict on the internal indexing structures used
by GemStone. For example, if two transactions modify the salaries of different employees
that participate in the same indexed set, it is possible that both transactions will modify
the same internal indexing structure and therefore conflict, despite the fact that neither
transaction has explicitly accessed an object written by the other transaction. It is true
even if the collection itself is an Rc collection and does not encounter transaction conflicts.

To check this possibility, examine the dictionary returned by evaluating System
transactionConflicts (page 136). If that dictionary includes any Associations whose
key is #'Write-Dependency', you have experienced a conflict on some portion of an
indexing structure. In that case, you can abort the transaction and try the modification
again.

If you encounter conflicts in the internal indexing structures, you can create a reduced-
conflict index. See “Reduced-Conflict Indexes” on page 110.

Aborting Transactions

If GemStone refuses to commit your modifications, your view remains intact with all of
the new and modified objects it contains. However, your view now also includes other
users’ modifications to objects that are visible to you, but that you have not modified. You
must take some action to save the modifications in your session or in a file outside
GemStone.

Then you need to abort the transaction. This discards all of the modifications from the
aborted transaction, and gives you a new view containing the shared, committed objects.
Depending on the activities of other users, you can repeat your operations using the new
values and commit the new transaction without encountering conflicts.
April 2014 GemTalk Systems 137

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.2 Programming Guide
The messages abort or abortTransaction discard the modified objects in your view.
If you are in automatic transaction mode, these messages also begin a new transaction.

Example 8.1

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System abortTransaction.

"discard the modified copy of SharedDictionary
 and all other modified objects, get a new view,
 and start a new transaction"

Aborting a transaction discards any changes you have made to shared objects during the
transaction. However, work you have done within your own object space is not affected
by an abortTransaction. GemStone gives you a new view of the repository that does
not include any changes you made to permanent objects during the aborted
transaction—because the transaction was aborted, your changes did not affect objects in
the repository. The new view, however, does include changes committed by other users
since your last transaction started. Objects that you have created in the GemBuilder for
Smalltalk object space, outside the repository, remain until you remove them or end your
session.

Updating the View Without Committing or Aborting

The message continueTransaction gives you a new, up-to-date view of other users’
committed work without discarding the objects you have modified in your current
session.

The message continueTransaction returns true if your uncommitted changes do not
conflict with the current state of the repository; it returns false if the repository has
changed.

Unlike commitTransaction and abortTransaction, continueTransaction does
not end your transaction. It has no effect on object locks, and it does not discard any
changes you have made or commit any changes. Objects that you have modified or
created do not become visible to other users.

Work you have done locally within your own interface is not affected by a
continueTransaction. Objects that you have created in your own application remain.
Similarly, any execution that you have begun continues, unless the execution explicitly
depends upon a successful commit operation.

Note that if you were unable to commit your transaction due to conflicts, you cannot use
continueTransaction until you abort the transaction.

Being Signaled To Abort

As mentioned earlier, being in a transaction incurs certain costs. When you are in a
transaction, GemStone waits until you commit or abort before it attempts to reclaim
obsolete objects in your view. While you are in a transaction, your session will not be
signalled to abort, nor is it subject to losing it’s view of the repository or being terminated
138 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide How GemStone Detects and Manages Conflict
when it does not respond to a signal to abort. However, a session in transaction may cause
your repository to grow until it runs out of disk space.

When you are outside of a transaction, GemStone warns you when your view is outdated,
and keeping it available for you is imposing a burden on the system, by sending your
session the TransactionBacklog notification. You are allowed a certain amount of
time to abort your current view, as specified in the STN_GEM_ABORT_TIMEOUT
parameter in your configuration file. When you abort your current view (by sending the
message System abortTransaction), GemStone can reclaim storage and you get a
fresh view of the repository.

If you do not respond within the specified time period, the object server sends your
session the exception RepositoryViewLost and then either terminates the Gem or
forces an abort, depending on the value of the related configuration parameter
STN_GEM_LOSTOT_TIMEOUT. (These parameters are described in Appendix A of the
System Administration Guide.) Forcing an abort recomputes your view of the repository;
copies of objects that your application had been holding may no longer be valid.

Work that you have done locally (such as references to objects within your application) is
retained, and you still cannot commit work to the repository when running outside of a
transaction. However, you must read again those objects that you had previously read
from the repository, and recompute the results of any computations performed on them,
because the object server no longer guarantees that the application values are valid.

Your GemStone session controls whether it is signalled to abort by receiving the
TransactionBacklog notification when it is out of transaction. To enable receiving it, send
the message:

System enableSignaledAbortError

To disable receiving it, send the message:

System disableSignaledAbortError

To determine whether receiving this notification is currently enabled or disabled, send the
message:

System signaledAbortErrorStatus

This method returns true if the notification is enabled, and false if it is disabled. By
default, GemStone sessions disable receiving this notification. The GemBuilder interfaces
may change this default. If you wish to be notified, then you must explicitly enable the
signaled abort error, and re-enable it after each time the signal is received.

Being Signaled to continueTransaction

As described earlier, when you are in a transaction, GemStone does not signal the session
to abort, nor are you subject to losing your view of the repository. This entails a risk that
your repository may grow until it runs out of disk space.

To avoid this problem, you can enable your GemStone session to receive the
TransactionBacklog notification when you are in transaction. This prompts your
session that it is now holding the oldest view of the repository, and potentially causing
your repository to grow. When your session receives this signal, it may execute a
continueTransaction, or abort or commit its changes.
April 2014 GemTalk Systems 139

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.2 Programming Guide
Your GemStone session controls whether it receives the TransactionBacklog
notification when in transaction. To enable receiving it, send the message:

System enableSignaledFinishTransactionError

To disable receiving it, send the message:

System disableSignaledFinishTransactionError

To determine whether receiving this error message is currently enabled or disabled, send
the message:

System signaledFinishTransactionErrorStatus

This method returns true if the notification is enabled, and false if it is disabled. By
default, GemStone sessions disable receiving this notification. If you wish to be notified,
then you must explicitly enable it after each time the signal is received.

Handlers for abort or continueTransaction notifications

Not only do you need to enable the receipt of the notification to abort or
continueTransaction, you must also set up a signal handler to take the appropriate action.
Sending enableSignaledAbortError and
enableSignaledFinishTransactionError control whether you receive the
TransactionBacklog notification when you are not in transaction or when you are in
transaction, respectively. The handler for the TransactionBacklog notification needs to
take both possible situations into account.

8.3 Controlling Concurrent Access with Locks
If many users are competing for shared data in your application, or you can’t tolerate even
an occasional inability to commit, then you can implement pessimistic concurrency
control by using locks.

Locking an object is a way of telling GemStone (and, indirectly, other users) your
intention to read or write the object. Holding locks prevents transactions whose activities
would conflict with your own from committing changes to the repository. Unless you
specify otherwise, GemStone locks persist across aborts. If you lock on an object and then
abort, your session still holds the lock after the abort. Aborting the current transaction
(and starting another, if you are in manual transaction mode) gives you an up-to-date
value for the locked object without removing the lock.

Remember, locking improves one user’s chances of committing only at the expense of
other users. Use locks sparingly to prevent an overall degradation of system performance.

Locking and Manual Transaction Mode

GemStone permits you to request any kind of lock, regardless of your transaction mode or
whether you are in a transaction. When you are in manual transaction mode and running
outside of a transaction, however, you are not allowed to commit the results of your
operations. Requesting a lock under such circumstances is not helpful, and can adversely
affect other users’ ability to get work done. It may be useful to request a lock to determine
whether an object is dirty, and therefore to ascertain whether your view of it is current
and valid. Otherwise, do not request a lock when outside a transaction.
140 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Controlling Concurrent Access with Locks
Lock Types

GemStone provides two kinds of locks you may use on any objects: read and write. A
session may hold only one kind of lock on an object at a time. GemStone also provides
another type of lock, applicationWriteLock, which is limited to a single unique lock object; it
behaves similarly but is used to provide a mutex. While these behave similarly to read
and write locks, they are used differently and are discussed separately.

Read Locks

Holding a read lock on an object means that you can use the object’s value, and then
commit without fear that some other transaction has committed a new value for that
object during your transaction. Another way of saying this is that holding a read lock on
an object guarantees that other sessions cannot:

acquire a write lock on the object, or

commit if they have written the object.

To understand the utility of read locks, imagine that you need to compute the average age
of a large number of employees. While you are reading the employees and computing the
average, another user changes an employee’s age and commits (in the aftermath of the
birthday party). You have now performed the computation using out-of-date information.
You can prevent this frustration by read-locking the employees at the outset of your
transaction; this prevents changes to those objects.

Multiple sessions can hold read locks on the same object. A maximum of 1 million read
locks can be held concurrently. Because locking incurs a cost at commit time, you should
keep the aggregate number of locked objects as small as possible.

NOTE
If you have a read lock on an object and you try to write that object, your attempt
to commit that transaction will fail.

Write Locks

Holding a write lock on an object guarantees that you can write the object and commit.
That is, it ensures that you won’t find that someone else has prevented you from
committing by writing the object and committing it before you, while your transaction
was in progress. Another way of looking at this is that holding a write lock on an object
guarantees that other sessions cannot:

acquire either a read or write lock on the object, or

commit if they have written the object.

Write locks are useful, for example, if you want to change the addresses of a number of
employees. If you write-lock the employees at the outset of your transaction, you prevent
other sessions from modifying one of the employees and committing before you can finish
your work. This guarantees your ability to commit the changes.

Write locks differ from read locks in that only one session can hold a write lock on an
object. In fact, if a session holds a write lock on an object, then no other session can hold
any kind of lock on the object. This prevents another session from receiving the assurance
implied by a read lock: that the value of the object it sees in its view will not be out of date
when it attempts to commit a transaction.
April 2014 GemTalk Systems 141

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.2 Programming Guide
Acquiring Locks

The kernel class System is the receiver of all lock requests. The following statements
request one lock of each kind:

Example 8.2

System readLock: SharedDictionary.
System writeLock: myEmployees.

When locks are granted, these messages return System.

Commits and aborts do not necessarily release locks, although locks can be set up so that
they will do so. Unless you specify otherwise, once you acquire a lock, it remains in place
until you log out or remove it explicitly. (Subsequent sections explain how to remove
locks.)

When a lock is requested, GemStone grants it unless one of the following conditions is
true:

You do not have suitable authorization. Read locks require read authorization; write
locks require write authorization.

The object is an instance of SmallInteger, Boolean, Character, SmallDouble, or nil.
Trying to lock these special objects is meaningless.

The object is already locked in an incompatible way by another session (remember,
only read locks can be shared).

Variants of the readLock: and writeLock: messages allow you to lock collections of
objects en masse. For details, see “Locking Collections of Objects Efficiently” on page 144.

Lock Denial

If you request a lock on an object and another session already holds a conflicting lock on
it, then GemStone denies your request; GemStone does not automatically wait for locks to
become available.

If you use one of the simpler lock request messages (such as readLock:), lock denial
generates an error. If you want to take some automatic action in response to the denial,
use a more complex lock request message, such as this:

System readLock: anObject
ifDenied: [block1]
ifChanged: [block2].

A lock denial causes GemStone to execute the block argument to ifDenied:. The
method in Example 8.3 uses this technique to request a lock repeatedly until the lock
becomes available.

Example 8.3

testObject := Object new.
%
Object subclass: #Dummy
142 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Controlling Concurrent Access with Locks
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
options: #()

%
method: Dummy
getReadLockOn: anObject
 "This method tries to lock anObject. If the lock is
 denied, it determines the kind of lock and the user who
 has locked the object."
System readLock: anObject
 ifDenied: [^ { System lockKind: anObject .
 System lockOwners: anObject}]
 ifChanged: [System abortTransaction].
%
Dummy new getReadLockOn: testObject
%
method: Dummy
getReadLockOn: anObject
System readLock: anObject
 ifDenied: [self getReadLockOn: anObject]
 ifChanged: [System abortTransaction]
%

Dummy new getReadLockOn: testObject
%

Dead Locks

You may never succeed in acquiring a lock, no matter how long you wait. Furthermore,
because GemStone does not automatically wait for locks, it does not attempt deadlock
detection. It is your responsibility to limit the attempts to acquire locks in some way. For
example, you can write a portion of your application in such a way that there is an
absolute time limit on attempts to acquire a lock. Or you can let users know when locks
are being awaited and allow them to interrupt the process if needed.

Dirty Locks

If another user has written an object and committed the change since your transaction
began, then the value of the object in your view is out of date. Although you may be able
to acquire a lock on the object, it is a dirty lock because you cannot use the object and
commit, despite holding the lock.

This condition is trapped by the argument to the ifChanged: keyword following read
lock request message:

System readLock: anObject
ifDenied: [block1]
ifChanged: [block2].
April 2014 GemTalk Systems 143

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.2 Programming Guide
Like its simpler counterpart, this message returns System if it acquires a lock on anObject
without complications. It generates an error if the user has no authorization for acquiring
the lock, or selects one of the blocks passed as arguments and executes that block,
returning the block’s value.

For example, if a conflicting lock is held on anObject, this message executes the block given
as an argument to the keyword ifDenied:. Similarly, if anObject has been changed by
another session, it executes the argument to ifChanged:. The following sections provide
some suggestions about the code such blocks might contain. For example:

Example 8.4

System readLock: anObject
 ifDenied: []
 ifChanged: [System abortTransaction]

To minimize your chances of getting dirty locks, lock the objects you need as early in your
transaction as possible. If you encounter a dirty lock in the process, you can keep track of
the fact and continue locking. After you finish locking, you can abort your transaction to
get current values for all of the objects whose locks are dirty. See Example 8.5.

Example 8.5

| dirtyBag |
dirtyBag := IdentityBag new.
myEmployees do: [:anEmp |
 System readLock: anEmp
 ifDenied: []
 ifChanged: [dirtyBag add: anEmp]].
dirtyBag isEmpty
 ifTrue: [^true]
 ifFalse: [System abortTransaction].

Your new transaction can then proceed with clean locks.

Locking Collections of Objects Efficiently

In addition to the locking request messages for single objects, GemStone provides
messages to request locks on an entire collection of objects. If the objects you need to lock
are already in collections, or if they can be gathered into collections without too much
work, it is more efficient to use the collection-locking methods than to lock the objects
individually.

The following statements request locks on each of the elements of two different
collections:

Example 8.6

UserGlobals at: #myArray put: Array new;
 at: #myBag put: IdentityBag new.
144 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Controlling Concurrent Access with Locks
System readLockAll: myArray.
System writeLockAll: myBag.

The messages in Example 8.6 are similar to the simple, single-object locking-request
messages (such as readLock:) that you’ve already seen. If a clean lock is acquired on
each element of the argument, these messages return System. If you lack the proper
authorization for any object in the argument, GemStone generates an error and grants no
locks.

The difference between these methods and their single-object counterparts is in the
handling of other errors. The system does not immediately halt to report an error if an
object in the collection is changed, or if a lock must be denied because another session has
already locked the object. Instead, the system continues to request locks on the remaining
elements, acquiring as many locks as possible. When the method finishes processing the
entire collection, it generates an error. In the meantime, however, all locks that you
acquired remain in place.

You might want to handle these errors from within your GemStone Smalltalk program
instead of letting execution halt. For this purpose, class System provides collection-
locking methods that pass information about unsuccessful lock requests to blocks that you
supply as arguments. For example:

System writeLockAll: aCollection ifIncomplete: aBlock

The argument aBlock that you supply to this method must take three arguments. If locks
are not granted on all elements of aCollection (for any reason except authorization failure),
the method passes three arrays to aBlock and then executes the block.

The first array contains all elements of aCollection for which locks were denied.

The second array contains all elements for which dirty locks were granted.

The third array is empty, and is there for compatibility with previous versions of
GemStone.

You can then take appropriate actions within the block. See Example 8.7.
April 2014 GemTalk Systems 145

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.2 Programming Guide
Example 8.7

classmethod: Dummy
handleDenialOn: deniedObjs
^ deniedObjs
%
classmethod: Dummy
getWriteLocksOn: aCollection
System writeLockAll: aCollection
 ifIncomplete: [:denied :dirty :unused |
 denied isEmpty ifFalse: [self handleDenialOn: denied].
 dirty isEmpty ifFalse: [System abortTransaction]]
%
System readLockAll: myEmployees
%
Dummy getWriteLocksOn: myEmployees
%

Upgrading Locks

On occasion, you might want to upgrade a read lock to a write lock. For example, you
might initially intend to read an object, only to discover later that you must also write the
object.

However, if you have a read lock on an object, you cannot successfully write that object. If
you attempt to do so, your attempt to commit that transaction will fail.

GemStone currently provides no built-in support for upgrading locks. However, to
ensure your ability to commit, you can remove the read lock you currently hold on an
object and then immediately request a write lock.

It is important to request the upgraded lock immediately, because between the time that
the lock is removed, and the time that the upgraded lock is requested, another session has
the opportunity to lock the object, or to write it and commit.

Locking and Indexed Collections

When indexes are present, locking can fail to prevent conflict. The reasons are similar to
those discussed in the section “Indexes and Concurrency Control” on page 137. Briefly,
GemStone maintains indexing structures in your view and does not lock these structures
when an indexed collection or one of its elements is locked. Therefore, despite having
locked all of the visible objects that you touched, you can be unable to commit.

Specifically, this means that:

if an object is either an element of an indexed collection, or participates in an index
(meaning it is a component of an element bearing an index);

and another session can access the object, an indexed collection of which the object is a
member, or one of its predecessors along the same indexed path;

then locking the object does not guarantee that you can commit after reading or
writing the object.
146 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Controlling Concurrent Access with Locks
Therefore, don’t rely on locking an object if the object participates in an index.

Removing or Releasing Locks

Once you lock an object, its default behavior is to remain locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through aborts and
commits. In general, remove a lock on an object when you have used the object,
committed the resulting values to the repository, and no longer foresee an immediate
need to maintain control of the object.

Class System provides the following messages for removing locks:

System removeLock: anObject
Removes any lock you might hold on a single object. If anObject is not locked, Gem-
Stone does nothing. If another session holds a lock on anObject, this message has no
effect on the other session’s lock.

System removeLockAll: aCollection
Removes any locks you might hold on the elements of a collection.

If you intend to continue your session, but the next transaction is to work on a different set
of objects, you might wish to remove all the locks held by your session. Class System
provides two mechanisms for doing so.

System commitTransaction; removeLocksForSession
Attempts to commit the present transaction and removes all locks it holds, even if the
commit does not succeed.

System commitAndReleaseLocks
Attempts to commit your transaction and release all the locks you hold in a single
operation. If your transaction fails to commit, all locks are held instead of released.

Releasing Locks Upon Aborting or Committing

After you have locked an object, you can add it to either of two special sets. One set
contains objects whose locks you wish to release as soon as you commit your current
transaction. The other set contains objects whose locks you wish to release as soon as you
either commit or abort your current transaction. Executing continueTransaction does
not release the locks in either set.

The following statement adds a locked object to the set of objects whose locks are to be
released upon the next commit:

System addToCommitReleaseLocksSet: aLockedObject

The following statement adds a locked object to the set of objects whose locks are to be
released upon the next commit or abort:

System addToCommitOrAbortReleaseLocksSet: aLockedObject

The following statement adds the locked elements of a collection to the set of objects
whose locks are to be released upon the next commit:

System addAllToCommitReleaseLocksSet: aLockedCollection

The following statement adds the locked elements of a collection to the set of objects
whose locks are to be released upon the next commit or abort:

System addAllToCommitOrAbortReleaseLocksSet: aLockedCollection
April 2014 GemTalk Systems 147

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.2 Programming Guide
NOTE
If you add an object to one of these sets and then request an updated lock on it, the
object is removed from the set.

You can remove objects from these sets without removing the lock on the object. The
following statement removes a locked object from the set of objects whose locks are to be
released upon the next commit:

System removeFromCommitReleaseLocksSet: aLockedObject

The following statement removes a locked object from the set of objects whose locks are to
be released upon the next commit or abort:

System removeFromCommitOrAbortReleaseLocksSet: aLockedObject

The following statement removes the locked elements of a collection from the set of
objects whose locks are to be released upon the next commit:

System removeAllFromCommitReleaseLocksSet: aLockedCollection

The following statement removes the locked elements of a collection from the set of
objects whose locks are to be released upon the next commit or abort:

System removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

You can also remove all objects from either of these sets with one message. The following
statement removes all objects from the set of objects whose locks are to be released upon
the next commit:

System clearCommitReleaseLocksSet

The following statement removes all objects from the set of objects whose locks are to be
released upon the next commit or abort:

System clearCommitOrAbortReleaseLocksSet

The statement System commitAndReleaseLocks also clears both sets if the
transaction was successfully committed.

Inquiring About Locks

GemStone provides messages for inquiring about locks held by your session and other
sessions. Most of these messages are intended for use by the data curator, but several can
be useful to ordinary applications.

The message sessionLocks gives you a complete list of all the locks held by your
session. This message returns a three-element array. The first element is an array of read-
locked objects; the second is an array of write-locked objects. (The third element is always
empty)

The following code uses this information to remove all write locks held by the current
session:

System removeLockAll: (System sessionLocks at: 2)

Another useful message is systemLocks, which reports locks on all objects held by all
sessions currently logged in to the repository. The only exception is that systemLocks
does not report on any locks that other sessions are holding on their temporary
objects—that is, objects that they have never committed to the repository. Because such
148 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Controlling Concurrent Access with Locks
objects are not visible to you in any case, this omission is not likely to cause a problem.
The message systemLocks can help you discover the cause of a conflict.

Another lock inquiry message, lockOwners: anObject, is useful if you’ve been unable to
acquire a lock because of conflict with another session. This message returns an array of
SmallIntegers representing the sessions that hold locks on anObject. The method in
Example 8.8 uses lockOwners: to build an array of the userIDs of all users whose
sessions hold locks on a particular object.

Example 8.8

classmethod: Dummy
getNamesOfLockOwnersFor: anObject
| userIDArray sessionArray |
sessionArray := System lockOwners: anObject.
userIDArray := Array new.
sessionArray do:
 [:aSessNum | userIDArray add:
 (System userProfileForSession: aSessNum) userId].
^userIDArray
%

Dummy getNamesOfLockOwnersFor: (myEmployees detect: {:e | e.name =
’Conan’ })
%

You can test to see whether an object is included in either of the sets of locked objects
whose locks are to be released upon the next abort or commit operation. The following
statement returns true if anObject is included in the set of objects whose locks are to be
released upon the next commit:

System commitReleaseLocksSetIncludes: anObject

The following statement returns true if anObject is included in the set of objects whose
locks are to be released upon the next commit or abort:

System commitOrAbortReleaseLocksSetIncludes: anObject

For information about the other lock inquiry messages, see the description of class System
in the image.

Application Write Locks

Unlike read and write locks, application write locks can only be placed on a single object
per lock queue (there are two lock queues available). The object can be any persistent
object; the first time an application lock write is invoked on a lock queue, the object that is
locked is registered for that lock queue, and all subsequent uses of that lock queue can
only lock this particular object until the next Stone restart.

This allows it to be used as a mutex, or simplifies serializing modifications to a single
critical object, such as a collection.

The other difference in locking behavior is that invoking the method to place an
application write lock does not return until the lock is acquired, or the lock wait times out.
April 2014 GemTalk Systems 149

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.2 Programming Guide
The timeout is controlled by the configuration parameter STN_OBJ_LOCK_TIMEOUT.
This frees you from having to repeatedly request a lock if it is not immediately available.

To set an application write lock on an object, send the message:

System waitForApplicationWriteLock: lockObject queue: lockIdx
autoRelease: aBoolean

lockId must be 1 or 2, depending on which lock queue is being used.

If aBoolean is true, the lock is released automatically on commit or abort, otherwise you
must manually remove the lock when you are done.

This method returns an integer code, one of the following:

1 - lock granted
2071 - undefined lock (lockIdx out of range or lockObject is special object)
2074 - dirty; the lock object written by other session since start of this
 transaction
2418 - lock not granted, deadlock
2419 - lock not granted, wait for lock timed out

8.4 Classes That Reduce the Chance of Conflict
Often, concurrent access to an object is structural, but not semantic. GemStone detects a
conflict when two users access the same object, even when respective changes to the
objects do not collide. For example, when two users both try to add something to a bag
they share, GemStone perceives a write-write conflict on the second add operation,
although there is really no reason why the two users cannot both add their objects. As
human beings, we can see that allowing both operations to succeed leaves the bag in a
consistent state, even though both operations modify the bag.

A situation such as this can cause spurious conflicts. Therefore, GemStone provides four
reduced-conflict classes that you can use instead of their regular counterparts in
applications that might otherwise experience too many unnecessary conflicts. These
classes are:

RcCounter

RcIdentityBag

RcQueue

RcKeyValueDictionary

Using these classes allows a greater number of transactions to commit successfully,
improving system performance. However, in order to determine whether it is appropriate
for your application to use these reduced-conflict classes, you need to be aware of the
costs:

The reduced-conflict classes use more storage than their ordinary counterparts.

When using instances of these classes, your application may take longer to commit
transactions.

Under certain circumstances, instances of these classes can hide conflicts from you
that you indeed need to know about. They are not always appropriate.
150 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Classes That Reduce the Chance of Conflict
These classes are not exact copies of their regular counterparts. In certain cases they
may behave slightly differently.

“Reduced conflict” does not mean “no conflict.” The reduced-conflict classes do not
circumvent normal conflict mechanisms; under certain circumstances, you will still be
unable to commit a transaction. These classes use different implementations or more
sophisticated conflict-checking code to allow certain operations that human analysis has
determined need not conflict. They do not allow all operations. Using these classes
significantly reduces write-write conflicts on their instances.

NOTE
Unlike other Dictionaries, the class RcKeyValueDictionary does not support
indexing because of its position in the class hierarchy.

RcCounter

The class RcCounter can be used instead of a simple number in order to keep track of the
amount of something. It allows multiple users to increment or decrement the amount at
the same time without experiencing conflicts.

The class RcCounter is not a kind of number. It encapsulates a number—the counter—but
it also incorporates other intelligence; you cannot use an RcCounter to replace a number
anywhere in your application. It only increments and decrements a counter.

For example, imagine an application to keep track of the number of items in a warehouse
bin. Workers increment the counter when they add items to the bin, and decrement the
counter when they remove items to be shipped. This warehouse is a busy place; if each
concurrent increment or decrement operation produces a conflict, work slows
unacceptably.

Furthermore, the conflicts are mostly unnecessary. Most of the workers can tolerate a
certain amount of inaccuracy in their views of the bin count at any time. They do not need
to know the exact number of items in the bin at every moment; they may not even worry if
the bin count goes slightly negative from time to time. They may simply trust that their
views are not completely up-to-date, and that their fellow workers have added to the bin
in the time since their views were last refreshed. For such an application, an RcCounter is
helpful.

Instances of RcCounter understand the messages increment (which increments by 1),
decrement (which decrements by 1), and value (which returns the number of elements
in the counter). Additional protocol allows you to increment or decrement by specified
numbers; to decrement unless that operation would cause the value of the counter to
become negative, in which case an alternative block of code is executed instead; or to
decrement unless that operation would cause the value of the counter to be less than a
specified number, in which case an alternative block of code is executed instead.
April 2014 GemTalk Systems 151

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.2 Programming Guide
For example, the following operations can all take place concurrently from different
sessions without causing a conflict:

Example 8.9

!session 1
UserGlobals at: #binCount put: RcCounter new.
System commitTransaction.
%
!session 2
binCount incrementBy: 48.
System commitTransaction.
%
!session 1
binCount incrementBy: 24.
System commitTransaction.
%
!session 3
binCount decrementBy: 144
 ifLessThan: -24
 thenExecute: [^'Not enough widgets to ship today.'].
System commitTransaction.
%

RcCounter is not appropriate for all applications—for example, it would not be
appropriate to use in an application that keeps track of the amount of money in a shared
checking account. If two users of the checking account both tried to withdraw more than
half of the balance at the same time, an RcCounter would allow both operations without
conflict. Sometimes, however, you need to be warned—for example, of an impending
overdraft.

RcIdentityBag

The class RcIdentityBag provides much of the same functionality as IdentityBag,
including the expected behavior for add:, remove:, and related messages. However, no
conflict occurs on instances of RcIdentityBag when any of these conditions exists:

Any number of users read objects in the bag at the same time.

Any number of users add objects to the bag at the same time.

One user removes an object from the bag while any number of users are adding
objects.

Any number of users remove objects from the bag at the same time, as long as no
more than one of them tries to remove the last occurrence of an object.

When your session and others remove different occurrences of the same object, you may
sometimes notice that it takes a bit longer to commit your transaction.

Indexing an instance of RcIdentityBag does diminish somewhat its “reduced-conflict”
nature, because of the possibility of a conflict on the underlying indexing structure. (For a
more complete explanation of this possibility, see “Indexes and Concurrency Control” on
page 137.) You can reduce the risk further by using reduced conflict equality indexes; see
152 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Classes That Reduce the Chance of Conflict
“Creating Indexes” on page 107. However, even an indexed instance of RcIdentityBag
reduces the possibility of a transaction conflict, compared to an instance of IdentityBag,
indexed or not.

RcQueue

The class RcQueue approximates the functionality of a first-in-first-out queue, including
the expected behavior for add:, remove:, size, and do:, which evaluates the block
provided as an argument for each of the elements of the queue. No conflict occurs on
instances of RcQueue when any of these conditions exists:

Any number of users read objects in the queue at the same time.

Any number of users add objects to the queue at the same time.

One user removes an object from the queue while any number of users are adding
objects.

If more than one user removes objects from the queue, they are likely to experience a
write-write conflict. When a commit fails for this reason, the user loses all changes made
to the queue during the current transaction, and the queue remains in the state left by the
earlier user who made the conflicting changes.

RcQueue approximates a first-in-first-out queue, but it cannot implement such
functionality exactly because of the nature of repository views during transactions. The
consumer removing objects from the queue sees the view that was current when his or her
transaction began. Depending upon when other users have committed their transactions,
the consumer may view objects added to the queue in a slightly different order than the
order viewed by those users who have added to the queue. For example, suppose one
user adds object A at 10:20, but waits to commit until 10:50. Meanwhile, another user adds
object B at 10:35 and commits immediately. A third user viewing the queue at 10:30 will
see neither object A nor B. At 10:35, object B will become visible to the third user. At 10:50,
object A will also become visible to the third user, and will furthermore appear earlier in
the queue, because it was created first.

Objects removed from the queue always come out in the order viewed by the consumer.

Because of the way RcQueues are implemented, reclaiming the storage of objects that
have been removed from the queue actually occurs when new objects are added. If a
session adds a great many objects to the queue all at once and then does not add any more
as other sessions consume the objects, performance can become degraded, particularly
from the consumer’s point of view. In order to avoid this, the producer can send the
message cleanupMySession occasionally to the instance of the queue from which the
objects are being removed. This causes storage to be reclaimed from obsolete objects.

NOTE
If you subclass and reimplement these methods, build in a check for nils. Because
of lazy initialization, the expected subcomponents of the RcQueue may not exist
yet.

To remove obsolete entries belonging to all inactive sessions, the producer can send the
message cleanupQueue.

You may also experience commit conflicts when additional users begin to add or remove
objects from the RcQueue, since the internal structure of the RcQueue itself is not
reduced-conflict. If you know in advance how many users will be adding or removing
April 2014 GemTalk Systems 153

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.2 Programming Guide
from the RcQueue, you should specify the RcQueue size on creation using the new:
method.

RcKeyValueDictionary

The class RcKeyValueDictionary provides the same functionality as KeyValueDictionary,
including the expected behavior for at:, at:put:, and removeKey:. However, no
conflict occurs on instances of RcKeyValueDictionary when any of these conditions exists:

Any number of users read values in the dictionary at the same time.

Any number of users add keys and values to the dictionary at the same time, unless a
user tries to add a key that already exists.

Any number of users remove keys from the dictionary at the same time, unless more
than one user tries to remove the same key at the same time.

Any number of users perform any combination of these operations.
154 GemTalk Systems April 2014

Chapter

9 Object Security and
Authorization
This chapter explains how to set up object security policies to restrict read and write
access to application objects. It covers:

How GemStone Security Works
describes the Gemstone object security model.

Assigning Objects to Security Policies
summarizes the messages for reporting your current security policy, changing your
current policy, and assigning a policy to simple and complex objects.

An Application Example and A Development Example
provides examples for defining and implementing object security for your projects.

Privileged Protocol for Class GsObjectSecurityPolicy
defines the system privileges for creating or changing security policy authorization.

9.1 How GemStone Security Works
GemStone provides security at several levels:

Login authorization keeps unauthorized users from gaining access to the repository;

Privileges limit ability to execute special methods affecting the basic functioning of
the system (for example, the methods that reclaim storage space); and

Object level security allows specific groups of users access to individual objects in the
repository.

Login Authorization

You log into GemStone through any of the interfaces provided: GemBuilder for Smalltalk,
GemBuilder for Java, Topaz, or the C interface (see the appropriate interface manual for
details). Whichever interface you use, GemStone requires the presentation of a user ID (a
name or some other identifying string) and a password. If the user ID and password pair
match the user ID and password pair of someone authorized to use the system, GemStone
permits interaction to proceed; if not, GemStone severs the logical connection.
April 2014 GemTalk Systems 155

How GemStone Security Works GemStone/S 64 Bit 3.2 Programming Guide
The GemStone system administrator, or someone with equivalent privileges (see below),
establishes your user ID and (depending on the login authentication used) your
password, when he or she creates your UserProfile. The GemStone system administrator
can also configure a GemStone system to monitor failures to log in, and to note the
attempts in the Stone log file after a certain number of failures have occurred within a
specified period of time. A system can also be configured to disable a user account after a
certain number of failed attempts to log into the system through that account. See the
GemStone System Administration Guide for details.

The UserProfile

Each instance of UserProfile is created by the system administrator. The UserProfile is
stored with a set of all other UserProfiles in a set called AllUsers. The UserProfile contains:

Your UserID and Password.

A SymbolList (the list of symbols, or objects, that the user has access to—
UserGlobals, Globals, and Published) for resolving symbols when compiling.
Chapter 3, “Resolving Names and Sharing Objects,” discusses these topics.

The groups to which you belong and any special system privileges you may have.

A default GsObjectSecurityPolicy to assign your session at login, or nil.

See the System Administration Guide for instructions about creating UserProfiles.

System Privileges

Actions that affect the entire GemStone system are tightly controlled by privileges to use
methods or access instances of the System, UserProfile, GsObjectSecurityPolicy, and
Repository classes, and to modify code. Privileges are given to individual UserProfile
accounts to access various parts of GemStone or perform important functions such as
storage reclamation.

The privileged messages for the System, UserProfile, GsObjectSecurityPolicy and
Repository Classes are described in the image, and their use is discussed in the System
Administration Guide.

Object-level Security

GemStone object-level security allows you to:

abstractly group objects;

specify who owns the objects;

specify who can read them; and

specify who can write them.

Each site designs a custom scheme for its data security. Objects can be secured for
selective read or write access by a group or individual users. Objects can also be left
unsecured, so any user can read or modify them. Not restricting access will improve
performance for sites with fewer security requirements.

The GemStone class GsObjectSecurityPolicy facilitates this security.
156 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide How GemStone Security Works
GsObjectSecurityPolicy

Each object's header includes a 16-bit unsigned security policy Id that specifies the
GsObjectSecurityPolicy to which the object has been assigned. In previous releases, object
security policies were known as Segments. In GemStone/S 64 Bit 3.0, Segment has been
renamed to GsObjectSecurityPolicy, to more clearly represents its function. All references
to Segment in previous releases now pertain to GsObjectSecurityPolicy.

All objects assigned to an security policy have exactly the same protection. That is, if you
can read or write one object assigned to a certain policy, you can read or write them all.
Each policy is owned by a single user, and all objects assigned to the same security policy
have the same owner. Groups of users can have read, write, or no access to an security
policy. Likewise, any authorized GemStone user can have read, write, or no access to a
policy.

An object may also have no security policy, in which case its security policy Id is zero.
This means that there are no restrictions on access to this object; any logged-in user can
read and write this object.

Whenever an application tries to access an object, GemStone compares the object’s
authorization attributes in the security policy associated with the object with those of the
user whose application is attempting access. If the user is appropriately authorized, the
operation proceeds. If not, GemStone returns an error notification.

The user name, group membership, and security policy authorization control access to
objects, as shown by Figure 9.1:

Figure 9.1 User Access to Application ObjectSecurityPolicy1

User3
Groups: Admin
 Personnel

ObjectSecurityPolicy1
Owner (System Admin): Write
World: Read
GroupsWrite: (Personnel)

User2
Groups: Payroll
 Admin

User1
System Admin

Three users access this application:

The System Administrator owns ObjectSecurityPolicy1 and can read and write the
objects assigned to it.

User3 belongs to the Personnel group, which authorizes read and write access to
ObjectSecurityPolicy1’s objects.
April 2014 GemTalk Systems 157

Assigning Objects to Security Policies GemStone/S 64 Bit 3.2 Programming Guide
User2 doesn’t belong to a group that can access ObjectSecurityPolicy1, but can still
read those objects, because ObjectSecurityPolicy1 gives read authorization to all
GemStone users.

Because security policies are objects, access to a GsObjectSecurityPolicy object is
controlled by the security policy it is assigned to, exactly like access to any other object.
GsObjectSecurityPolicy instances are usually assigned to the
DataCuratorObjectSecurityPolicy. The authorization information stored in the
GsObjectSecurityPolicy instance, which controls access to the objects assigned to that
security policy, does not control access to the policy object itself.

Objects do not “belong” to an security policy. It is more correct to say that objects are
associated with a security policy. Although objects know which policy they are assigned
to, security policies do not know which objects are assigned to them. Security policies are
not meant to organize objects for easy listing and retrieval. For those purposes, you must
turn to symbol lists, which are described in Chapter 3, “Resolving Names and Sharing
Objects“.

9.2 Assigning Objects to Security Policies
For security policy authorizations to have any effect, you must assign some objects to the
security policies whose authorizations you have set up.

Default Security Policy and Current Security Policy

In your UserProfile, you may be assigned a default security policy, or this may be left
empty. When you login to GemStone, your Session uses this default security policy as
your current security policy. Any objects you create are assigned to your current security
policy; if you do not have a current security policy, the new objects do not have a security
policy, and so have world read and write access.

Class UserProfile has the message defaultObjectSecurityPolicy, which returns
your default GsObjectSecurityPolicy (or nil). Sending the message
currentObjectSecurityPolicy: to System changes your current security policy:

Example 9.1

| aPolicy myPolicy |
myPolicy := System myUserProfile

defaultObjectSecurityPolicy.
aPolicy := GsObjectSecurityPolicy new.
System commitTransaction.
"change my current security policy to aPolicy"
System currentObjectSecurityPolicy: aPolicy

Only committed instances of GsObjectSecurityPolicy can be used.

If you commit after changing the security policy, the new GsObjectSecurityPolicy remains
your current security policy until you change the security policy again or log out. If you
abort after changing your current security policy, your current security policy is reset
from your UserProfile’s default security policy.
158 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Assigning Objects to Security Policies
Unnamed GsObjectSecurityPolicies are often stored in a UserProfile, but named
GsObjectSecurityPolicies are stored in symbol dictionaries like other named objects.
Private security policies are typically kept in a user’s UserGlobals dictionary; security
policies for groups of users are typically kept in a shared dictionary.

You can also put security policies in application dictionaries that appear only in the
symbol lists of that application’s users.

Example 9.2

| myPolicy |
"get default security policy"
myPolicy := System myUserProfile defaultObjectSecurityPolicy.
"compare with current"
myPolicy = System currentObjectSecurityPolicy

true

Objects and Security Policies

GemStone object security is defined for objects. Your security scheme must be defined to
protect sensitive data in separate objects, either by itself or as a member object of a
customer class. Since each object has separate authorization, each object must be assigned
separately.

Compound Objects

Usually, the objects you are working with are compound, and each part is an object in its
own right, with its own security policy assignment. For example, look at anEmployee in
Figure 9.2. The contents of its instance variables (name, salary, and department) are
separate objects that can be assigned to different security policies. Salary is assigned to
ObjectSecurityPolicy2, which enforces more restricted access than ObjectSecurityPolicy1.
April 2014 GemTalk Systems 159

Assigning Objects to Security Policies GemStone/S 64 Bit 3.2 Programming Guide
Figure 9.2 Multiple Security Policy Assignments for a Compound Object

ObjectSecurityPolicy1
Owner (System Admin): Write
Group1 (Personnel): Write

anEmployee

 name

 salaryHistory

dept.

ObjectSecurityPolicy2
Owner (System Admin): Write
Group1 (Personnel): Read

World: Read

Group2 (Payroll): Write
World: None

Collections

When you assign collections of objects to security policies, you must distinguish the
container from the items it contains. Each of the items must also be assigned to the proper
policy. Distinguishing between a collection and the objects it contains allows you to create
collections most elements of which are publicly accessible, while some elements are
sensitive.

Configuring Authorization for an Object Security Policy

Object security polices store authorization information that defines what a particular user
or group member can do to the objects with that policy. Three levels of authorization are
provided:

write — A user can read and modify any of the objects with that security policy and create
new objects associated with the policy.

read — A user can read any of the objects with that security policy, but cannot modify
(write) them or add new ones.

none — A user can neither read nor write any of the objects with that security policy.

By assigning a security policy to an object, you give the object the access information
associated with that policy. Thus, all objects with a security policy have exactly the same
protection; that is, if you can read or write one object with to a certain policy, you can read
or write them all.

Controlling authorizations at the security policy level rather than storing the information
in each object makes them easy to change. Instead of modifying a number of objects
160 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Assigning Objects to Security Policies
individually, you just modify one security policy object. This also keeps the repository
smaller, eliminating the need for duplicate information in each of the objects.

How GemStone Responds to Unauthorized Access

GemStone immediately detects an attempt to read or write without authorization and
responds by stopping the current method and issuing an error. When you successfully
commit your transaction, GemStone verifies that you are still authorized to write in your
current security policy. If you are no longer authorized to do so, GemStone issues an
error, and your default security policy once again becomes your current security policy. If
you are no longer authorized to write in your default security policy, GemStone
terminates your session, and you are unable to log back in to GemStone. If this happens,
see your system administrator for assistance.

Owner, Group, and World Authorization

A GsObjectSecurityPolicy controls what access a user has to associated objects. Access can
be separately assigned for:

a security policy’s owner

groups of users (by name)

the world of all GemStone users

Whenever a program tries to read or write an object, GemStone compares the object’s
authorization attributes with those of the user who is attempting to do the reading or
writing. If the user has authorization to perform the operation, it proceeds. If not,
GemStone returns an error notification.

These categories overlap. The owner of a security policy is also in the world of all
GemStone users, and may also be in one or more groups that have other access
authorization. When determining a user's authorization, the most permissive or generous
authorization will be allowed and other, more restrictive authorizations, will be ignored.
Thus, if world authorization is #read, but the user is a member of a group with #write
authorization, then the world authorization will be ignored.

Owner Authorization

Each GsObjectSecurityPolicy has an owner. The owner of a policy may be assigned read,
write, or no access in the security policy, and therefore to the objects associated with this
security policy. Usually, the owner of a policy has write authorization, but this isn’t
required (unless this is the default security policy for that user). Users may own more
than one security policy.

The message GsObjectSecurityPolicy>>ownerAuthorization:
anAuthorizationSymbol is used to set and clear authorization for the owner of the security
policy. The message GsObjectSecurityPolicy>>ownerAuthorization returns the
authorization for the owner of the security policy.

Group Authorization

Groups are an efficient way to ensure that a number of GemStone users all will share the
same level of access to objects in the repository, and all will be able to manipulate certain
objects in the same ways.
April 2014 GemTalk Systems 161

Assigning Objects to Security Policies GemStone/S 64 Bit 3.2 Programming Guide
Groups are typically organized as categories of users who have common interests or
needs. In Figure 9.3, for example, a group named Managers was set up to allow a few
users to read the objects in anObjectSecurityPolicy, while GemStone users in general
aren’t allowed any access.

Figure 9.3 User Access to a Security Policy’s Objects

anObjectSecurityPolicy
Owner: Write
GroupsRead: (Managers)
World: None

The global collection AllGroups, a collection of group names, defines all groups in the
system. Membership in a group is granted by having adding the group name to the user’s
UserProfile groups.

The message GsObjectSecurityPolicy>>authorizationForGroup:
groupNameString returns the rights for users in the group groupNameString.

The message GsObjectSecurityPolicy>>groupsWithAuthorization:
anAuthSymbol returns the names of groups that have a particular level of access (#read,
#write, or #none) for the receiver security policy.

To set group access, use the message GsObjectSecurityPolicy>>group:
groupNameString authorization: anAuthSymbol. For example, to set the group
authorization as shown in Example 9.3, use the following:

anObjectSecurityPolicy group: 'Managers' authorization: #read

World Authorization

In addition to storing authorization for its owner and for groups, a security policy can also
be told to authorize or to deny access by all GemStone users (the world.)

The message GsObjectSecurityPolicy>>worldAuthorization returns the rights
for all users. A corresponding message,
GsObjectSecurityPolicy>>worldAuthorization: anAuthSymbol, sets the
authorization for all GemStone users. For example:

anObjectSecurityPolicy worldAuthorization: #none
162 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Assigning Objects to Security Policies
Predefined GsObjectSecurityPolicies

The initial GemStone repository has eight GsObjectSecurityPolicies, with the following
Ids:

1. SystemObjectSecurityPolicy

This security policy is defined in the Globals dictionary, and is owned by the System-
User. All GemStone users, represented by world access, are authorized to read, but
not write, objects associated with this security policy. The group #System is autho-
rized to write to objects in this policy.

2. DataCuratorObjectSecurityPolicy

This security policy is defined in the Globals dictionary, and is owned by the DataCu-
rator. All GemStone users, represented by world access, are authorized to read, but
not write, objects associated with this security policy. The group #DataCuratorGroup
is authorized to write in this security policy.

Objects in the DataCuratorObjectSecurityPolicy include the Globals dictionary, the
SystemRepository object, all GsObjectSecurityPolicy objects, AllUsers (the set of all
GemStone UserProfiles), AllGroups (the collection of groups authorized to read and
write objects in GemStone security policies), and each UserProfile object.

NOTE:
When GemStone is installed, only the DataCurator is authorized to write in this
security policy. To protect the objects in the DataCuratorObjectSecurityPolicy
against unauthorized modification, other users should not write in this security
policy.

3. (unnamed)

The initial repository does not use this Id. Repositories that have been converted from
earlier GemStone/S server products use this for the GsTimeZoneObjectSecurityPol-
icy.

4. GsIndexingObjectSecurityPolicy

This security policy is used by the indexing subsystem.

5. SecurityDataObjectSecurityPolicy

This security policy is used by the system for passwords for UserProfiles, and other
highly protected information.

6. PublishedObjectSecurityPolicy

This security policy is used for objects in the Published symbol dictionary.

7. (unnamed) default GsObjectSecurityPolicy of GcUser

This security policy is used by the system for reclaiming storage.

8. (unnamed) default GsObjectSecurityPolicy of Nameless

This security policy is used by Nameless sessions.

For repositories that have been converted from certain earlier versions, there may also be
GsObjectSecurityPolicy with id 20, with world write.
April 2014 GemTalk Systems 163

Assigning Objects to Security Policies GemStone/S 64 Bit 3.2 Programming Guide
Changing the Security Policy for an Object

If you have the authorization, you can change the accessibility of an individual object by
assigning a different security policy to it.

The message Object >> objectSecurityPolicy returns the security policy that
protects that receiver, or nil if the receiver does not have an associated security policy:

Example 9.3

UserGlobals objectSecurityPolicy
%
anObjectSecurityPolicy, Number 2 in Repository SystemRepository,
Owner DataCurator write, Group DataCuratorGroup write, World read

The message Object >> objectSecurityPolicy: anObjectSecurityPolicy assigns
anObjectSecurityPolicy as the security policy for the receiver. You also use this method to
remove the security policy, so the receiver object has world read and write access. You
must have write authorization for both security policies, that of the receiver and the
argument. Assuming the necessary authorization, this example assigns a new security
policy to class Employee:

Employee objectSecurityPolicy: aPolicy.

You may override the method objectSecurityPolicy: for your own classes,
especially if they have several components.

For objects having several components, such as collections, you may assign all the
component objects to a specified security policy when you reassign the composite object.
You can implement the message objectSecurityPolicy: to perform these multiple
operations. Within the method objectSecurityPolicy: for your composite class,
send the message assignToObjectSecurityPolicy: to the receiver and each object
of which it is composed.

For example, an objectSecurityPolicy: method for the class Menagerie might
appear as shown in Example 9.4. The object itself is assigned to another security policy
using the method assignToObjectSecurityPolicy:. Its component objects, the
animals themselves, have internal structure (names, habitats, and so on), and therefore
call Animal’s objectSecurityPolicy: method, which in its turn sends the message
assignToObjectSecurityPolicy: to each component of anAnimal, ensuring that
each animal is properly and completely reassigned to the new security policy.

Example 9.4

Array subclass: 'Menagerie'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

%

method: Menagerie
objectSecurityPolicy: aPolicy
164 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Assigning Objects to Security Policies
"Assign the receiver and each component to the given objectSecuri-
tyPolicy."
self assignToObjectSecurityPolicy: aPolicy.
1 to self size do:

[:eachAnimal | eachAnimal
objectSecurityPolicy: aPolicy.]

%

Special objects — SmallInteger, SmallDouble, Character, Boolean, and nil — are assigned
the SystemObjectSecurityPolicy and cannot be assigned another security policy.

Security Policy Ownership

Each GsObjectSecurityPolicy has an owner—by default, the user who created it. An
security policy’s owner is always has control over who can access the security policy’s
objects. As a security policy’s owner, you can alter your own access rights at any time,
even forbidding yourself to read or write objects with that security policy.

You might not be the owner of your default security policy. To find out who owns a
security policy, send it the message owner. The receiver returns the owner’s UserProfile,
which you may read, if you have the authorization:

Example 9.5

"Return the userId of the owner of the default security policy for
the current Session."
| aUserProf myDefaultPolicy |
"get default security policy"
myDefaultPolicy := System myUserProfile

defaultObjectSecurityPolicy.
myDefaultPolicy notNil ifTrue:

["return its owner’s UserProfile"
aUserProf := myDefaultPolicy owner.
"request the userId"
aUserProf userId]

%
user1

Every security policy understands the message owner: aUserProfile. This message
assigns ownership of the receiver to the person associated with aUserProfile. The following
expression, for example, assigns the ownership of your default security policy to the user
associated with aUserProfile:

System myUserProfile defaultObjectSecurityPolicy owner: aUserPro-
file

In order to reassign ownership of a security policy, you must have write authorization for
the DataCuratorObjectSecurityPolicy. Because of the way separate authorizations for
owners, groups and world combine, changing access rights for the any one of them may
or may not alter a particular user’s rights to a security policy.
April 2014 GemTalk Systems 165

Assigning Objects to Security Policies GemStone/S 64 Bit 3.2 Programming Guide
CAUTION
Do not, under any circumstances, attempt to change the authorization of the
SystemObjectSecurityPolicy.

Revoking Your Own Authorization: a Side Effect

You may occasionally want to create objects and then take away authorization for
modifying them.

CAUTION
Do not remove your write authorization for your default security policy or your
current security policy. If you lose write authorization for your default security
policy, you will not be able to log in again.

Finding Out Which Objects Are Protected by a Security Policy

It may be useful for you to be able to find all the objects that are protected by a particular
security policy. An expression of the form:

SystemRepository listObjectsInObjectSecurityPolicies: anArray

takes as its argument an array of security policy IDs, and returns an array of arrays. Each
inner array contains all objects whose security policy ID is equal to the corresponding
security policy ID element in the argument anArray. Instances to which you lack read
authorization are omitted without notification.

Note that this method aborts the current transaction and scans the object header of each
object in the repository.

If the result set is very large, there is a risk of out of memory errors. To avoid the need to
have the entire result set in memory, the following methods are provided:

Repository >> listObjectsInObjectSecurityPolicyToHiddenSet: anOb-
jectSecurityPolicyId

This method puts the set of all objects in the specified security policy in the
ListInstancesResult hidden set. (a hidden set is an internal memory structure that, while
not an object, is treated as one).

To enumerate the hidden set, you can use this method:

System >> hiddenSetEnumerate: hiddenSetId limit: maxElements

using a hiddenSetId of 1, which is the number of the “ListInstancesResult” hidden set in
GemStone/S 64 Bit v3.2. This hidden set number is subject to change in new releases; to
determine which hidden sets are in a particular release, use the GemStone Smalltalk
method System Class >> HiddenSetSpecifiers. For more on hidden sets, see
“Other Optimization Hints” on page 277.

You can also list objects that are protected by a particular security policies to an external
binary file, which can later be read into a hidden set. To do this, use the method:

Repository >> listObjectsInObjectSecurityPolicies: anArray toDirec-
tory: aString

This method scans the repository for the instances protected by the security policies in
anArray and writes the results to binary bitmap files in the directory specified by aString.
166 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide An Application Example
Binary bitmap files have an extension of .bm and may be loaded into hidden sets using
class methods in System.

Bitmap files are named:

objectSecurityPolicy<ObjectSecurityPolicyId>-objects.bm

where ObjectSecurityPolicyId is the security policy ID.

The result is an Array of pairs. For each element of the argument anArray, the result array
contains ObjectSecurityPolicyId, numberOfInstances. The numberOfInstances is the total
number written to the output bitmap file.

9.3 An Application Example
The structure of the user community determines how your data is stored and accessed.
Regardless of their job titles, users generally fall into three categories:

Developers define classes and methods.

Updaters create and modify instances.

Reporters read and output information.

When you have a group of users working with the same GemStone application, you need
to ensure that everyone has access to the objects that should be shared, such as the
application classes, but you probably want to limit access to certain data objects.
Figure 9.4 shows a typical production situation.
April 2014 GemTalk Systems 167

An Application Example GemStone/S 64 Bit 3.2 Programming Guide
Figure 9.4 Application Objects Assigned to Three Security Policies

ObjectSecurityPolicy2
Owner (System Admin): Write
Group1 (Personnel): Read

Salary Data

ObjectSecurityPolicy3
Owner (System Admin): Read
World: Read

Application Classes

Group2 (Payroll): Write
World: None

ObjectSecurityPolicy1
Owner (System Admin): Write
Group1 (Personnel): Write

General Employee Data

World: Read

In this example, all the application users need access to the data, but different users need
to read some objects and write others. So most data goes into ObjectSecurityPolicy1,
which anyone can look at, but only the Personnel group or owner can change.
ObjectSecurityPolicy2 is set up for sensitive salary data, which only the Payroll group or
owner can change, and only they and the Personnel group can see. You don’t want
anyone to accidentally corrupt the application classes, so they go into
ObjectSecurityPolicy3, which no one can change.

Look at how the user name, group membership, and security policy authorization control
access to objects, as shown by Figure 9.5 and Figure 9.6:
168 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide An Application Example
Figure 9.5 User Access to Application ObjectSecurityPolicy1

User4
Leslie
Group1: Admin
Group2: Personnel

ObjectSecurityPolicy1
Owner (System Admin): Write
World: Read
Group1 (Personnel): WriteUser3

Group1: Payroll
Group2: Admin

User2
Myron
Group1: Admin

User1
System Admin

Four users access this application:

The System Administrator owns both security policies and can read and write the
objects assigned to them.

Leslie belongs to the Personnel group, which authorizes her to read and write
ObjectSecurityPolicy1’s objects and read ObjectSecurityPolicy2’s objects.

Jo can read and write the objects assigned to ObjectSecurityPolicy2, because she
belongs to the Payroll group. She doesn’t belong to a group that can access
ObjectSecurityPolicy1, but she can still read those objects, because
ObjectSecurityPolicy1 gives read authorization to all GemStone users.

Myron does not belong to a group that can access either security policy. He can read
the objects assigned to ObjectSecurityPolicy1 objects, because it allows read access to
all GemStone users. He has no access at all to ObjectSecurityPolicy2.

Leslie and Jo are sometimes updaters and sometimes reporters, depending on the type of
data. Myron is strictly a reporter.
April 2014 GemTalk Systems 169

A Development Example GemStone/S 64 Bit 3.2 Programming Guide
Figure 9.6 User Access to Application ObjectSecurityPolicy2

User4
Leslie
Group1: Admin
Group2: Personnel

ObjectSecurityPolicy2
Owner (System Admin): Write
World: None
Group1 (Personnel): Write

User2
Myron
Group1: Admin

User1
System Admin

User3
Jo
Group1: Payroll
Group2: Admin

Group2 (Payroll): Write

9.4 A Development Example
Up to now, this discussion has been limited to applications in a production environment,
but issues of access and security arise at each step of application development. During the
design phase you need to consider the security policies needed for the application life
cycle: development, testing, and production.

The access required at each stage is a subset of the preceding one, as shown in Figure 9.7.
170 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide A Development Example
Figure 9.7 Access Requirements During an Application’s Life Cycle

1

2

3

Testers: read access to all
classes and methods,
write access to test data

Developers: write access to
all application objects

Users: read access
to classes and
public methods,
read, write, or
no access to
specified data

Planning Security Policies for User Access

As you design your application, decide what kind of access different end users will need
for each object.

Protecting the Application Classes

All the application users need read access to the application classes and methods, so they
can execute the methods. To prevent accidental damage to them, however, you probably
want to limit write access. The CodeModification privilege is required to create or modify
classes and methods. You can further limit write access using security policies. You may
even want to change the owner’s authorization to read, until changes are required.

Like other objects, classes and their methods are assigned to security policies on an object-
by-object basis. You may keep separate subsections of your application in different
security policies, with different write authorizations, if you want.

CodeModification privilege

All application developers will need to have CodeModification privilege. This is in
addition to the ability to read and write the appropriate security policies. Without
CodeModification privilege, you cannot compile methods or classes, add new methods,
April 2014 GemTalk Systems 171

A Development Example GemStone/S 64 Bit 3.2 Programming Guide
add a Class to a SymbolDictionary, or perform other operations required for application
development.

Application users, on the other hand, should not have CodeModification privilege, since
they will not be modifying methods or classes. This allows you to protect the application
code for inadvertent (or intentional) damage or modification, even if you do not want to
implement object level security.

Planning Authorization for Data Objects

Authorization for data objects means protecting the instances of the application’s classes,
which will be created by end users to store their data. You can begin the planning process
by creating a matrix of users and their required access to objects. Table 1 shows part of
such a matrix, which maps out access to instances of the class Employee and some of its
instance variables.

Security is easier to implement if it is built into the application design at the beginning,
not added later. In the following sections, planning for the third stage, end user access,
comes first. Following the planning discussion comes the implementation instructions,
which explain how to set up security policies for the developers, extend the access to the
testers, and finally move the application into production.

Remember that in effect you have four options, shown on the matrix as:

W — need to write (also allows reading)

R — need to read, must not write

N — must not read or write

blank —

Table 1 Access for Application Objects Required by Users

Users

Objects System
Admin.

Human
Resource

Employee
Records Payroll Mktg Sales Customer

Support

anEmployee W W W R R R R

name W W W R R R R

position W W W R R

dept. W W W R R

manager W W W R R

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N

don’t need access, but it won’t hurt
172 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide A Development Example
World Access

To begin analyzing your access requirements, check whether the objects have any Ns. For
objects that do, world authorization must be set to none.

If you have people who need read access to nonsensitive information, give world read
authorization to those objects. In this example, world can have read access to anEmployee,
name, position, dept., and manager. The objects can still be protected from casual
browsing by storing them in a dictionary that does not appear in everyone’s symbol list.
This does not absolutely prevent someone from finding an object, but it makes it difficult.
For more information, see Chapter 3, “Resolving Names and Sharing Objects“.

Owner

By default, the owner has write access to the objects protected by a security policy. To
choose an owner, look for a user who needs to modify everything. In terms of the basic
user categories described earlier, the owner could be either an administrator or an
updator. This depends on the type of objects that will be assigned to the security policy.

In Table 1 the system administrator is the user who needs write access. So the system
administrator is made the owner, with full control of all the objects. The DataCurator and
SystemUser logins are available to the system administrator. The DataCurator is not
automatically authorized to read and write all objects, however. Like any other user
account, it must be explicitly authorized to access objects in security policies it does not
own. Although the SystemUser can read and write all objects, it should not be used for
these purposes.

Planning Groups

The rest of the access requirements must be satisfied by setting up groups. The thing to
remember about groups is that they do not reflect the organization chart; they reflect
differences in access requirements. Because the number of possible authorization
combinations is limited, the number of groups required is also limited.

First look at the existing access to anEmployee, name, position, dept., and manager, as
shown in Table 2. By making the system administrator the owner with write
authorization and assigning read authorization to world, you have already satisfied the
needs of five departments.

Table 2 Access to the First Five Objects Through Owner and World Authorization

Users

Objects System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales Customer

Support

Employee W W W R R

name W W W R R

position W W W R R

dept. W W W R R

manager W W W R R

 write access as owner or read access as world
April 2014 GemTalk Systems 173

A Development Example GemStone/S 64 Bit 3.2 Programming Guide
You still need to provide authorization for the Human Resources and Employee Records
departments. In every case, they need the same access (see Table 1) so you only have to
create one group for the two departments. This group, named Personnel, requires write
authorization for the objects in Table 2.

Now look at the existing access to the rest of the objects. These objects store more sensitive
information, so access requirements of different users are more varied. Assigning write
authorization to owner and none to world has completely satisfied the needs of three
departments, as shown in Table 3.

Two more departments, Human Resources and Employee Records, are already set up to
access as the Personnel group. As shown in Table 4, this group needs write authorization
to dateHired, vacationDays, and sickDays, which they must be able to read and modify.
They need read authorization to salary, salesQuarter, and salesYear, which they must
read but cannot modify.

Table 3 Access to the Last Six Objects Through Owner and World Authorization

Users

Objects System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales Customer

Support

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacation-
Days

W W W N N N N

sickDays W W W N N N N

 write access as owner or no access as world

Table 4 Access to the Last Six Objects Through the Personnel Group

Users

Objects System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales Customer

Support

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacation-
Days

W W W N N N N

 read or write access as Personnel group
174 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide A Development Example
Now the Payroll and Sales departments still require access to the objects, as shown in
Table 3. Because these departments’ needs don’t match anyone else’s, they must each
have a separate group.

In all, this example only requires three groups: Personnel, Payroll, and Sales, even though
it involves seven departments.

Planning Security Policies

When you have been through this exercise with all your application’s prospective objects
and users, you are ready to plan the security policies. For easiest maintenance, use the
smallest number of security policies that your required combinations of owner, group,
and world authorizations allow. You don’t need different security policies with duplicate
functionality to separate particular objects, like the application classes and data objects.
Remember that symbol lists, not security policies, are used to organize objects for listing
and retrieval.

In this example you need six security policies, as shown in Figure 9.8. Notice that each one
has different authorization.

Developing the Application

During application development you implement two separate schemes for object
organization: one for sharing application objects by the development team and one

sickDays W W W N N N N

Table 4 Access to the Last Six Objects Through the Personnel Group

Users

Objects System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales Customer

Support

 read or write access as Personnel group

Table 5 Access to the Last Six Objects Through the Payroll and Sales Groups

Users

Objects System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales Customer

Support

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N

 read or write access as Payroll or Sales group
April 2014 GemTalk Systems 175

A Development Example GemStone/S 64 Bit 3.2 Programming Guide
controlling access by the end users. In addition, you may need to allow access for the
testers, who may need different access to objects.

Once you have planned the security policies and authorizations you want for your
project, you can refer to procedures in the System Administration Guide for implementing
that plan.

Setting Up Security Policies for Joint Development

To make joint development possible, you need to set up authorization and references so
that all the developers have access to the classes and methods that are being created.
Create a new symbol dictionary for the application and put it in everyone’s symbol list;
make sure it includes references to any shared security policies. If only developers are
using the repository, you can give world access to shared objects, but if other people are
using the repository, you must set up a group for developers.

You can organize security policy assignments in various ways:

Full access to all personal security policies. Give all the developers their own default
security policies to work in. Give everyone in the team write access to all the security
policies. Because the objects you create are typically assigned to your default security
policy, this method may be the simplest way to organize shared work.

Read access to all personal security policies. Set up the same as above, except give
everyone read access to the security policies. If each developer is doing a separate
module, read access may be enough. Then everyone can use other people’s classes,
but not change them. This has the advantage of enforcing the line between application
and data.

Full access to a shared security policy. Give all developers the same default security
policy, writable by everyone. This is an easy, informal way to share objects.

Full access to a shared security policy plus private security policies. Developers
work in their own default security policies and reassign their objects to the shared
security policy when they are finished. This lets you share a collection, for example,
but keep the existing elements private, so that other developers could add elements
but not modify the elements you have already created. To share a collection this way,
assign the collection object itself to the accessible security policy. The collection has
references to many other objects, which can be associated with other security policies.
Everyone has the references, but they get errors if they try to access objects with non-
readable security policies. You might also choose to share an application symbol
dictionary, so that other developers can put objects in it, without making the objects
themselves public.
176 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide A Development Example
Figure 9.8 Security Policies Required for User Access to Application Objects

salary

ObjectSecurityPolicy1
Owner (System Admin): Write
Group1 (Personnel): Write

ObjectSecurityPolicy2
Owner (System Admin): Write

Group2 (Payroll): Read

ObjectSecurityPolicy3
Owner (System Admin): Write

ObjectSecurityPolicy4
Owner (System Admin): Write

ObjectSecurityPolicy5
Owner (System Admin): Write

ObjectSecurityPolicy6
Owner (System Admin): Read
World: Read

Group3 (Sales): Read

World: Read

Group1 (Personnel): Write

World: None

Group1 (Personnel): Read
Group2 (Payroll): Write
World: None

Group1 (Personnel): Read
Group2 (Payroll): Read
Group3 (Sales): Write
World: None

Group1 (Personnel): Write
World: None

position

name

dept.

anEmployee

manager

dateHired

salesQuarter salesYear

sickDays vacationDays

Employee

Making the Application Accessible for Testing

Testers need to be able to alternate between two distinct levels of access:

Full access. As members of the development team, they need read access to all the
classes and methods in the application, including the private methods. Testers also
need write access to their test data.

User-level access. They need a way to duplicate the user environment, or more
likely several environments created for different user groups.
April 2014 GemTalk Systems 177

A Development Example GemStone/S 64 Bit 3.2 Programming Guide
This can be done by setting up a tester group and one or more sample user groups during
the development phase. For testing the user environment, the application must already be
set up for multi-user production use, as explained in the following section.

Moving the Application into a Production Environment

When you have created the application, it is time to set it up for a multi-user environment.
A GemStone application is developed in the repository, so all you have to do to install an
application is to give other users access to it. This means implementing the rest of your
application design, in roughly the reverse order of the planning exercise. To give other
users authorization to use the objects in the application:

1. Create the security policies.

2. Create the necessary user groups specified in up-front development, if they don’t
exist.

3. Assign the required owner, world, and group authorizations to the security policies.

4. Assign testers to the user groups and complete multi-user testing.

5. Assign any end users that need group authorization to the user groups.

6. Assign the application’s objects to the security policies you created.

You also have to give users a reference to the application so they can find it. An
application dictionary is usually created with references to the application objects,
including its security policies. A reference to this dictionary usually must appear in the
users’ symbol lists. For more information on the use of symbol dictionaries, see the
discussion of symbol resolution and object sharing in Chapter 3, “Resolving Names and
Sharing Objects.”

Security Policy Assignment for User-created Objects

Because security policy assignment is on an object-by-object basis, it is important to know
how objects are assigned. When the objects are being created by end users of an
application, as in this example, you may want to partially or fully automate the process of
security policy assignment. Depending on the needs of the local site, you can implement
various mechanisms to ensure data security, prevent accidental damage to existing data,
or simply avoid misplaced data.

Assign a Specified Security Policy to the User Account

Set up users with the proper security policy by default. This is a simple way to assure that
someone who creates objects in a single security policy doesn’t misplace them. To make it
impossible to change security policies, rather than just unlikely, you also have to close
write access for group and world to all the other security policies.

This solution would work for the Sales and Payroll groups in the example (Figure 9.8 on
page 177). They need read access to several security policies, but they only write in one.

The drawback of this solution is that the user can only use one security policy.

Develop the Application to Create the Data Objects

Your best choice is to create objects in the correct security policy, using the
GsObjectSecurityPolicy>>setCurrentWhile: method. With this method, the
application stores data objects in the proper security policies. This provides the most
178 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Privileged Protocol for Class GsObjectSecurityPolicy
protection. Besides guaranteeing that the objects end up in the proper security policy, this
prevents users from accidentally modifying objects they have created. It also prevents
them from reading the data that other users enter, even when everyone is creating
instances of the same classes.

9.5 Privileged Protocol for Class GsObjectSecurityPolicy
Privileges stand apart from the security policy and authorization mechanism. Privileges
are associated with certain operations: they are a means of stating that, ordinarily, only
the DataCurator or SystemUser is to perform these privileged operations. The
DataCurator can assign privileges to other users at his or her discretion, and then those
users can also perform the operations specified by the particular privilege.

NOTE
Privileges are more powerful than security policy authorization. Although the
owner of a security policy can always use read/write authorization protocol to
restrict access to objects protected by a security policy, the DataCurator can
override that protection by sending privileged messages to change the
authorization scheme.

The following message to GsObjectSecurityPolicy always requires special privileges:

new (class method)
newInRepository: (class method)

You can always send the following messages to the security policies you own, but you
must have special privileges to send them to other security policies:

group:authorization:
ownerAuthorization:
worldAuthorization:

For changing privileges, UserProfile defines two messages that also work in terms of the
privilege categories described above. The message addPrivilege: aPrivString takes a
number of strings as its argument, including the following:

'DefaultObjectSecurityPolicy'
'ObjectSecurityPolicyCreation'
'ObjectSecurityPolicyProtection'

For a full list of privileges, see the System Administration Guide chapter on User
Management.

To add security policy creation privileges to your UserProfile, for example, you might do
this:

System myUserProfile addPrivilege:
'ObjectSecurityPolicyCreation'.

This gives you the ability to execute
GsObjectSecurityPolicy new.

A similar message, privileges:, takes an array of privilege description strings as its
argument. The following example adds privileges for security policy creation and
password changes:
April 2014 GemTalk Systems 179

Privileged Protocol for Class GsObjectSecurityPolicy GemStone/S 64 Bit 3.2 Programming Guide
System myUserProfile privileges:
#('ObjectSecurityPolicyCreation' 'UserPassword')

To withdraw a privilege, send the message deletePrivilege: aPrivString. As in
preceding examples, the argument is a string naming one of the privilege categories. For
example:

System myUserProfile deletePrivilege:
'ObjectSecurityPolicyCreation'

Because UserProfile privilege information is typically protected by a security policy that
only the data curator can modify, you might not be able to change privileges yourself. You
must have write authorization to the DataCuratorObjectSecurityPolicy, or be a member of
DataCuratorGroup, in order to do so.

For direction and information about configuring user accounts, adding user accounts and
assigning security policies to those accounts, and checking authorization for user
accounts, see the System Administration Guide.
180 GemTalk Systems April 2014

Chapter

10 Class versions and
Instance Migration
Although you designed your schema with care and thought, after using it for a while you
will probably find a few things you would like to improve. Furthermore, even if your
design was perfect, real-world changes usually require changes to the schema sooner or
later. This chapter discusses the mechanisms GemStone Smalltalk provides to allow you to
make these changes.

Versions of Classes
defines the concept of a class version and describes two different approaches you can
take to specify one class as a version of another.

ClassHistory
describes the GemStone Smalltalk class that encapsulates the notion of class
versioning.

Migrating Objects
explains how to migrate either certain instances, or all of them, from one version of a
class to another while retaining the data that these instances hold.

10.1 Versions of Classes
In order to create instances of a class, the class must be invariant, and invariant classes
cannot be modified. While you defined your schema to be as complete as you could at the
time you created the classes, inevitably further changes are needed. You may now have
instances of invariant classes populating your database and a need to modify your schema
by redefining certain of these classes.

To support this schema modification, GemStone allows you to define different versions of
classes. Every class in GemStone has a class history—an object that maintains a list of all
versions of the class—and every class is listed in at least one class history, the class history
for the class itself. You can define as many different versions of a class as required, and
declare that the different versions belong to the same class history. You can migrate some
or all instances of one version of a class to another version when you need to. The values
of the instance variables of the migrating instances are retained if you have defined the
new version to do so.
April 2014 GemTalk Systems 181

Versions of Classes GemStone/S 64 Bit 3.2 Programming Guide
Defining a New Version

In GemStone Smalltalk classes have versions. Each version is a unique and independent
class object, but the versions are related to each other through a common class history.
The classes need not share a similar structure, nor even a similar implementation. The
classes need not even share a name, although it is probably less confusing if they do, or if
you establish and adhere to some naming convention.

If you define a new class in a SymbolDictionary that already contains an existing class
with the same name, it automatically becomes a new version of the previously existing
class. This is the most common way of creating new class versions. Instances that predate
the creation of the new version remain unchanged, and continue to access the old class’s
methods, although tools such as GemBuilder or GemTools may provide options to
automatically migrate instances to the new class. Instances created after the redefinition
have the new class’s structure and access to the new class’s methods.

When you define a class, the class creation protocol includes an option to specify the
existing class of which the new class is a version. See the keyword newVersionOf:.

New Versions and Subclasses

When you create a new version of a class—for example, Animal—subclasses of the old
version of Animal still point to the old version of Animal as their superclass (unless you
are using a tool which provides the option to automatically version and recompile
subclasses). If you wish these classes to become subclasses of the new version, you need to
recompile the subclass definitions to make new versions of the subclasses, specifying the
new version of Animal as their superclass.

One way to do this is to file in the subclasses of Animal after making the new version of
Animal (assuming the new version of the superclass has the same name).

New Versions and References in Methods

When you create a new version of a class (such as Animal) you typically want your
existing code to use the new version rather than the old version. That is, without being
recompiled, existing methods containing code like the following should create an instance
of the new version rather than of the old version of Animal class:

pet := Animal new.

As long as the new class version replaces an existing class in the same SymbolDictionary,
then references from existing methods will be automatically updated to the new class
version.

This works because a compiled method does not directly reference a global (e.g., the class
Animal), but references a SymbolAssociation in a SymbolDictionary. When you
originally compile the method, it resolves the name using an expression similar to the
following:

System myUserProfile resolveSymbol: #theClassName

The compiled method includes the resulting SymbolAssociation, whose key is the name
of the global and whose value is the class (or other object). The value can be updated at
any time, for example when you create a new version of a class.
182 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide ClassHistory
This tiny performance penalty is what allows global variables to vary. If you have a global
that you know will be constant, then you can reference the value directly from a compiled
method by making the SymbolAssociation invariant before compiling the method.

While the SymbolAssociation is updated with the new value by versioning the class
within the same SymbolDictionary, keep in mind that under some circumstances you may
have a SymbolAssociation that does not reference the latest version, or the version you
expect. If you have a newer class with the same name in a different SymbolDictionary, or
if you delete and recreate the class, the SymbolAssociation will continue to point to the
older class.

Class Variable and Class Instance Variables

When you create a new version of a class, the values in any Class variables or Class
Instances variables in the old class are referenced by the new class as well. By default, all
versions of a class refer to the same objects referenced from Class or Class instance

variables.

10.2 ClassHistory
In GemStone Smalltalk, every class has a class history, represented by the system as an
instance of the class ClassHistory. A class history is an array of classes that are meant to be
different versions of each other. While they often have the same class name, this is not a
requirement; you can rename classes as well as change their structure.

Defining a Class as a new version of an existing Class

When you define a new class in the same symbol dictionary as an existing class with the
same name, it is by default created as the latest version of the existing class and shares its
class history.

When you define a new class by a name that is new to a symbol dictionary, the class is by
default created with a unique class history. If you use a class creation message that
includes the keyword newVersionOf:, you can specify an existing class whose history
you wish the new class to share. This is useful if you want to create a version of a class
with a different name or in a different symbol dictionary. If the new class version has the
same name and is in the same symbol dictionary, it is not necessary to use
newVersionOf:, since the new class will become a version of the existing class
automatically.

For example, suppose your existing class Animal was defined like this:

Example 10.1

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals
April 2014 GemTalk Systems 183

ClassHistory GemStone/S 64 Bit 3.2 Programming Guide
Example 10.2 creates a class named NewAnimal and specifies that the class shares the
class history used by the existing class Animal.

Example 10.2

Object subclass: 'NewAnimal'
instVarNames: #('diet' 'favoriteFood' 'habitat' 'name'

'predator')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals
description: nil
newVersionOf: Animal
options: #()

If you wish to define a new class Animal with its own unique class history—in other
words, the new class Animal is not a version of the old class Animal—you can add it to a
different symbol dictionary, and specify the argument nil to the keyword
newVersionOf:. See Example 10.3.

Example 10.3

Object subclass: 'Animal'
instVarNames: #('favoriteFood' 'habitat' 'name'

'predator')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: Published
description: nil
newVersionOf: nil
options: #()

If you try to define a new class with the same name as an existing class that you did not
create, you will most likely get an error, because you are trying to modify the class history
of that class — an object which you are probably not permitted to modify. By specifying a
newVersionOf: of nil, you can still create this class.

However, we recommend against creating multiple unrelated versions of classes with the
same name; this can be confusing and it may be difficult to diagnose problems.

Accessing a Class History

You can access the class history of a given class by sending the message classHistory
to the class. For example, the following expression returns the class history of the class
Employee:

Employee classHistory
184 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Migrating Objects
Assigning a Class History

You can assign a class history by sending the message addNewVersion: to the class
whose class history you wish to use; the argument to this message is the class whose
history is to be reassigned. For example, suppose that we created NewAnimal using the
regular class creation protocol, and did not use the method with the keyword
newVersionOf:. To later specify that it is a new version of Animal, execute the
following expression:

Animal addNewVersion: NewAnimal

10.3 Migrating Objects

Once you define two or more versions of a class, you may wish to migrate instances of the
class from one version to another. Migration in GemStone Smalltalk is a flexible,
configurable operation:

Instances of any class can migrate to any other. The two classes need not be similarly
named, or, indeed, have anything else in common, although it will usually make more
sense if they represent the same conceptual object.

Migration can occur whenever you specify.

Not all instances of a class need to migrate at the same time—you can migrate only
certain instances at a time. Other instances need never migrate, if that is appropriate.
However, instance that are versions of these older classes will not understand new
methods added, and require special consideration if you manage code using fileout,
or if you use passivation.

The manner in which values of the old instance variables are used to initialize values
of the new instance variables is also under your control. A default mapping
mechanism is provided, which you can override if you need to.

Migration Destinations

If you know the appropriate class to which you wish to migrate instances of an older class,
you can set a migration destination for the older class. To do so, send a message of the
form:

OldClass migrateTo: NewClass

This message configures the old class to migrate its instances to become instances of the
new class, but only when it is instructed to do so. Migration does not occur as a result of
sending the above message.

It is not necessary to set a migration destination ahead of time. You can specify the
destination class when you decide to migrate instances. It is also possible to set a
migration destination, and then migrate the instances of the old class to a completely
different class, by specifying a different migration destination in the message that
performs the migration.

You can erase the migration destination for a class by sending it the message
cancelMigration. For example:

OldClass cancelMigration
April 2014 GemTalk Systems 185

Migrating Objects GemStone/S 64 Bit 3.2 Programming Guide
If you are in doubt about the migration destination of a class, you can query it with an
expression of the form:

MyClass migrationDestination

The message migrationDestination returns the migration destination of the class, or
nil if it has none.

Migrating Instances

A number of mechanisms are available to allow you to migrate one instance, or a specified
set of instances, to either the migration destination, or to an alternate explicitly specified
destination.

No matter how you choose to migrate your data, however, you should migrate data in its
own transaction. That is, as part of preparing for migration, commit your work so far. In
this way, if migration should fail because of some error, you can abort your transaction
and you will lose no other work; your database will be in a consistent state from which
you can try again.

Moreover, many of the methods discussed below — allInstances, listInstances:,
migrateInstancesTo:, and others — abort your current view and thus must be
executed in a separate transaction.

After migration succeeds, commit your transaction again before you do any further work.
Again, this technique ensures a consistent database from which to proceed.

If you need to migrate many instances of a class, break your work into multiple
transactions.

Finding Instances and References

To prepare for instance migration, several methods are available to help you find
instances of specified classes or references to such instances. An expression of the form:

SystemRepository listInstances: anArray

takes as its argument an array of classes, and returns an array of sets. Each set contains all
instances whose class is equal to the corresponding element in the argument anArray.

NOTE
The above method searches the database once for all classes in the array. Executing
allInstances for each class would require searching the database once per
class.

An expression of the form:

SystemRepository listReferences: anArray

takes as its argument an array of objects, and returns an array of sets. Each set contains all
instances that refer to the corresponding element in the argument anArray.

NOTE
Executing either listInstances: or listReferences: causes an abort.
However, if the abort would cause any modifications to persistent objects to be
lost, the method will signal a TransactionError instead.
186 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Migrating Objects
Repository-wide scans such as listInstances: use a multi-threaded scan that can be
tuned to use more or less resources of the system, thereby impacting performance of
anything else running on this system to a greater or lesser degree. For details on tuning
the multi-threaded scan, see the System Administration Guide.

What If the Result Set Is Very Large?

If Repository>>listInstances: returns a very large result set, there is a risk of out
of memory errors. To avoid the need to have the entire result set in memory, the following
methods are provided:

Repository >> listInstances: anArray limit: aSmallInteger

This method is similar to listInstances:, but returns just the first aSmallInteger
instances of each of the classes in anArray.

Repository >> listInstancesToHiddenSet: aClass

This method puts the set of all instances of aClass in a new hidden set (an internal memory
structure that, while not an object, is treated as one).

To enumerate the hidden set, you can use this method:

System Class >> hiddenSetEnumerate: hiddenSetId limit: maxElements

using a hiddenSetId of 1, which is the number of the “ListInstancesResult” hidden set in
GemStone/S 64 Bit v3.2. This is the hidden set in which listInstances results are placed.
This hidden set number is subject to change in new releases. To determine which hidden
sets are in a particular release, use the GemStone Smalltalk method System Class >>
HiddenSetSpecifiers.

For more on how to use hidden sets, see the section “Other Optimization Hints” on
page 277.

You can also list instances to an external binary file, which can later be read into a hidden
set. To do this, use the method:

Repository >> listInstances: anArray toDirectory: aString

This method scans the repository for the instances of classes in anArray and writes the
results to binary bitmap files in the directory specified by aString. Binary bitmap files have
an extension of .bm and may be loaded into hidden sets using class methods in System.

Bitmap files are named:

className-classOop-instances.bm

where className is the name of the class and classOop is the object ID of the class.

The result is an Array of pairs. For each element of the argument anArray, the result array
contains aClass, numberOfInstances. The numberOfInstances is the total number written to
the output bitmap file.

List Instances in Page Order

For even more efficient migration of large sets of objects of multiple classes, you can list all
the instances of all the classes in page order - the same order as the objects are stored on
disk. This allows multiple objects of several different classes on the same page in the
repository to be migrated at the same time.
April 2014 GemTalk Systems 187

Migrating Objects GemStone/S 64 Bit 3.2 Programming Guide
If migration performance is an issue for your application, the following methods can be
used to write the list of instances to a file, and open, read, and process the instances from
the file.

Repository >> listInstancesInPageOrder: anArray toFile: aString
Repository >> openPageOrderOopFile: aString.
Repository >> readObjectsFromFileWithId: fileId

startingAt: startIndex upTo: endIndex into: anArray.
Repository >> closePageOrderOopFileWithId: fileId
Repository >> auditPageOrderOopFileWithId: fileId

For details on these methods and how to use them, refer to the method comments in the
image.

Since the normal operation of the repository, where objects are added, removed, and
modified, will cause objects to move from page to page, over time the actual ordering of
the objects by page will diverge from the order of the results. When the file is read later, it
will (of course) not contain any references to objects that were created since the
listInstances was run. During the read, if any of the instances have been garbage collected,
the Array of results will contain a nil. Given these issues, it is important to read and
process the file as soon as possible after it is created.

Using the Migration Destination

The simplest way to migrate an instance of an older class is to send the instance the
message migrate. If the object is an instance of a class for which a migration destination
has been defined, the object becomes an instance of the new class. If no destination has
been defined, no change occurs.

The following series of expressions, for example, creates a new instance of Animal, sets
Animal’s migration destination to be NewAnimal, and then causes the new instance of
Animal to become an instance of NewAnimal.

Example 10.4

| aLemming |
aLemming := Animal new.
Animal migrateTo: NewAnimal.
aLemming migrate.

Other instances of Animal remain unchanged until they, too, receive the message to
migrate.

If you have collected the instances you wish to migrate into a collection named
allAnimals, execute:

allAnimals do: [:each | each migrate]

Bypassing the Migration Destination

You can bypass the migration destination, if you wish, or migrate instances of classes for
which no migration destination has been specified. To do so, you can specify the
188 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Migrating Objects
destination directly in the message that performs the migration. Two methods are
available to do this.

Neither of these messages changes the class’s persistent migration destination. Instead,
they specify a one-time-only operation that migrates the specified instances, or all
instances, to the specified class, ignoring any migration destination that has been defined
for the class.

The message migrateInstances:to: takes a collection of instances as the argument
to the first keyword, and a destination class as the argument to the second. The following
example migrates the specified instances of Animal to instances of NewAnimal:

Animal migrateInstances: #{aDugong . aLemming} to: NewAnimal.

Alternatively, the message migrateInstancesTo: migrates all instances of the receiver
to the specified destination class. The following example migrates all instances of Animal
to instances of NewAnimal:

Animal migrateInstancesTo: NewAnimal.

NOTE
Executing either migrateInstances:to: or migrateInstancesTo:
causes an abort. To avoid loss of work, always commit your transaction before you
begin data migration.

Example 10.5 uses migrateInstances:to: to migrate all instances of all versions of a
class, except the latest version, to the latest version.

Example 10.5

| animalHist allAnimals |
animalHist := Animal classHistory.
allAnimals := SystemRepository listInstances: animalHist.
"Returns an array of the same size as the class history.
 Each element in the array is a set corresponding to one
 version of the class. Each set contains all the
 instances of that version of the class."

1 to: animalHist size-1 do: [:index |
(animalHist at: index)

migrateInstances:(allAnimals at: index)
to: Animal currentVersion].

The migration methods migrateInstancesTo: and migrateInstances:to: return
an array of four collections. The first two collections in the array are always empty.

The third collection is a set of objects that are instances of indexed collections, and
were not migrated. See the following discussion, “Migration Errors”.

The fourth collection is a set of objects whose class was not identical to the
receiver—presumably, incorrectly gathered instances—and thus, were not migrated.
See “Instance Variable Mappings” on page 191.

If all four of these collections are empty, all requested migrations have occurred.
April 2014 GemTalk Systems 189

Migrating Objects GemStone/S 64 Bit 3.2 Programming Guide
Migration Errors

Several problems can occur with migration:

You may be trying to migrate an object that the interpreter needs to remain in a
constant state (migrating to self).

You may be trying to migrate an instance that is indexed, or participates in an index.

Migrating self

Sometimes a requested migration operation can cause the interpreter to halt and display
an error message of the following form:

The object <anObject> is present on the GemStone Smalltalk
stack, and cannot participate in a become.

This error occurs when you try to send the message migrate (or one of its variants) to
self. Migration can change the structure of an object. If the interpreter was already
accessing the object whose structure you are trying to change, the database can become
corrupted. To avoid this undesirable consequence, the interpreter checks for the presence
of the object in its stack before trying to migrate it, and notifies you if it finds it.

If you receive such a notifier, rewrite the method that sends the migration message to self,
so as to accomplish its purpose in some other manner.

Migrating Instances that Participate in an Index

If an instance participates in an index (for example, because it is part of the path on which
that index was created), then the indexing structure can, under certain circumstances,
cause migration to fail. Three scenarios are possible:

Migration succeeds. In this case, the indexing structure you have made remains
intact. Commit your transaction.

GemStone examines the structures of the existing version of the class and the version
to which you are trying to migrate, and determines that migration is incompatible
with the indexing structure. In this case, GemStone raises an error notifying you of the
problem, and migration does not occur.

You can commit your transaction, if you have done other meaningful work since you
last committed, and then follow these steps:

1. Remove the index in which the instance participates.

2. Migrate the instance.

3. Modify the indexing code as appropriate for the new class version and re-
create the index.

4. Commit the transaction.

In the final case, GemStone fails to determine that migration is incompatible with the
indexing structure, and so migration occurs and the indexing structure is corrupted.
In this case, GemStone raises an error notifying you of the problem, and you will not
be permitted to commit the transaction. Abort the transaction and then follow the
steps explained above.

For more information about indexing, see Chapter 7, “Indexes and Querying.”
190 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Migrating Objects
For more information about committing and aborting transactions, see Chapter 8,
“Transactions and Concurrency Control.”

Instance Variable Mappings

Earlier, we explained that migration can involve changing the structure of an object. Since
migration is only useful if you can retain the data that is contained in these instances, you
can set up mappings so instances using the old structure can be migrated to a new
structure and updated appropriately.

The following discussion describes the default manner in which instance variables are
mapped. This default arrangement can be modified if necessary.

Default Instance Variable Mappings

The simplest way to retain the data held in instance variables is to use instance variables
with the same names in both class versions. If two versions of a class have instance
variables with the same name, then the values of those variables are automatically
retained when the instances migrate from one class to the other.

Suppose, for example, you create two instances of class Animal and initialize their
instance variables as shown in Example 10.6.

Example 10.6

| aLemming aDugong |
aLemming := Animal new.
aLemming name: 'Leopold'.
aLemming favoriteFood: 'grass'.
aLemming habitat: 'tundra'.
aDugong := Animal new.
aDugong name: 'Maybelline'.
aDugong favoriteFood: 'seaweed'.
aDugong habitat: 'ocean'.

You then decide that class Animal really needs an additional instance variable, predator,
which is a Boolean—true if the animal is a predator, false otherwise. You create a class
called NewAnimal, and define it to have four instance variables: name, favoriteFood, habitat,
and predator, creating accessing methods for all four. You then migrate aLemming and
aDugong. What values will they have?

Example 10.7 takes the class and method definitions for granted and performs the
migration. It then shows the results of printing the values of the instance variables.

Example 10.7

| bagOfAnimals |
bagOfAnimals := IdentityBag new.
bagOfAnimals add: aLemming; add: aDugong.
Animal migrateInstances: bagOfAnimals to: NewAnimal.
aLemming name.
Leopold
April 2014 GemTalk Systems 191

Migrating Objects GemStone/S 64 Bit 3.2 Programming Guide
aLemming favoriteFood.
grass

aLemming habitat.
tundra

aLemming predator.
nil

aDugong name.
Maybelline

aDugong favoriteFood.
seaweed

aDugong habitat.
ocean

aDugong predator.
nil

As you see, the migrated instances retained the data they held. They have done so because
the class to which they migrated defined instance variables that had the same names as
the class from which they migrated. The new instance variable name was initialized with
the value of the old instance variable name, and so on.

The new class also defined an instance variable, predator, for which the old class defined
no corresponding variable. This instance variable therefore retains its default value of nil.

If the class to which you migrate instances defines no instance variable having the same
name as that of the class from which the instance migrates, the data is dropped. For
example, if you migrated an instance of NewAnimal back to become an instance of the
original Animal class, any value in predator would be lost. Because Animal defines no
instance variable named predator, there is no slot in which to place this value.

To summarize, then:

If an instance variable in the new class has the same name as an instance variable in
the old class, it retains its value when migrated.

If the new class has an instance variable for which no corresponding variable exists in
the old class, it is initialized to nil upon migration.

If the old class has an instance variable for which no corresponding variable exists in
the new class, the value is dropped and the data it represents is no longer accessible
from this object.

Customizing Instance Variable Mappings

This section describes two kinds of customization:

To initialize an instance variable with the value of a variable that has a different
name, you must provide an explicit mapping from the instance variable names of the
older class to the instance variable names of the migration destination.
192 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Migrating Objects
To perform a specific operation on the value of a given variable before initializing the
corresponding variable in the class to which the object is migrating, you can
implement methods to transform the variable values.

Explicit Mapping by Name

The first situation requires providing an explicit mapping from the instance variable
names of the older class to the instance variable names of the migration destination. To
provide such a customized mapping, override the default mapping strategy by
implementing a class method named instVarMappingTo: in your destination class.

For example, suppose that you define the class NewAnimal with three instance variables:
species, name, and diet. When instances of Animal migrate to NewAnimal, it is impossible
to determine the value to which species ought to be initialized. The value of name can be
retained, and the value of diet ought to be initialized with the value presently held in
favoriteFood. In that case, the class NewAnimal must define a class method as shown in
Example 10.8.

Example 10.8

instVarMappingTo: anotherClass
| result myNames itsNames dietIndex |
"Use the default strategy first to properly fill in inst vars hav-
ing the same name."
result := super instVarMappingTo: anotherClass.
myNames := self allInstVarNames.
itsNames := anotherClass allInstVarNames.
dietIndex := myNames indexOfValue: #diet.
dietIndex > 0
 ifTrue: [(result at: dietIndex) = 0

ifTrue:[result at: dietIndex
put:(itsNames indexOfValue: #favoriteFood)]].

^result

The method allInstVarNames is used because it would also migrate all inherited
instance variables, although at the expense of performance. If your class inherits no
instance variables, you could use the method instVarNames instead, for efficiency.

Transforming Variable Values

Another kind of customization is required when the format of data changes. For example,
suppose that you have a class named Point, which defines two instance variables x and y.
These instance variables define the position of the point in Cartesian two-dimensional
coordinate space.

Suppose that you define a class named NewPoint to use polar coordinates. The class has
two instance variables named radius and angle. Obviously the default mapping strategy is
not going to be helpful here; migrating an instance of Point to become an instance of
NewPoint loses its data—its position—completely. Nor is it correct to map x to radius and
y to angle. Instead, what is needed is a method that implements the appropriate
trigonometric function to transform the point to its appropriate position in polar
coordinate space.
April 2014 GemTalk Systems 193

Migrating Objects GemStone/S 64 Bit 3.2 Programming Guide
In this case, the method to override is migrateFrom:instVarMap:, which you
implement as an instance method of the class NewPoint. Then, when you request an
instance of Point to migrate to an instance of NewPoint, the migration code that calls
migrateFrom:instVarMap: executes the method in NewPoint instead of in Object.

Example 10.9

Object subclass: #OldPoint
instVarNames: #(#x #y)
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

oldPoint compileAccessingMethodsFor: OldPoint instVarNames.

Object subclass: #Point
instVarNames: #(#radius #angle)
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

Point compileAccessingMethodsFor: Point instVarNames.

method: Point
migrateFrom: oldPoint instVarMap: aMap

| x y |
x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (y/x) asFloat arcTan.
^self

Point new migrateFrom: (OldPoint new x: 123; y: 456)
 instVarMap: ’unused argument’.
a Point
 radius 4.7229757568719322E02
 angle 2.6346654103491746E-01

Of course, if you believe there is a chance that you might be migrating instances from a
completely separate version of class Point that does not have the instance variables x and
y, nor use the Cartesian coordinate system, then it is wise to check for the class of the old
instance before you determine which method migrateFrom:instVarMap: to use.

For example, you could define a class method isCartesian for your old class Point that
returns true. Other versions of class Point could define the same method to return false.
(You could even define the method in class Object to return false.) You could then modify
the above method as follows:
194 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Migrating Objects
Example 10.10

method: Point
migrateFrom: oldPoint instVarMap: aMap
| x y |
oldPoint isCartesian
 ifTrue: [

x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (y/x) asFloat arcTan.
^self]

 ifFalse: [^super migrateFrom: oldPoint instVarMap: aMap]
April 2014 GemTalk Systems 195

Migrating Objects GemStone/S 64 Bit 3.2 Programming Guide
196 GemTalk Systems April 2014

Chapter

11 File I/O and Operating
System Access
As a GemStone application programmer, you’ll seldom need to be concerned with the
details of operating system file management. However, it can be useful to transfer
GemStone data to or from a text file on the GemStone object server’s host machine. This
chapter explains how such tasks can be accomplished, as well as other tasks involving
operating system access.

Accessing Files
describes the protocol provided by class GsFile to open and close files, read their
contents, and write to them.

Executing Operating System Commands
how to execute operating system commands from GemStone.

File In and File Out
filing out your application source code.

PassiveObject
describes the mechanism that GemStone provides for storing the objects that represent
your data.

Creating and Using Sockets
describes the protocol provided by class GsSocket and GsSecureSocket to create
operating system sockets and exchange data between two independent interface
processes.

11.1 Accessing Files
The class GsFile provides the protocol to create and access operating system files. This
section provides a few examples of the more common operations for text files. For a
complete description of the functionality available, including the set of messages for
manipulating binary files, see the comment for the class GsFile in the image.

Instances of GsFile understand most protocol common to Streams.
April 2014 GemTalk Systems 197

Accessing Files GemStone/S 64 Bit 3.2 Programming Guide
Specifying Files

Many of the methods in the class GsFile take as arguments a file specification, which is any
string that constitutes a legal file specification in the operating system under which
GemStone is running. Wildcard characters are legal in a file specification if they are legal
in the operating system.

Many of the methods in the class GsFile distinguish between files on the client versus the
server machine. In this context, the term client refers to the machine on which the interface
is executing, and the server refers to the machine on which the Gem is executing. (This
may not necessarily be the same machine on which the Stone is executing.) In the case of a
linked interface, the interface and the Gem execute as a single process, so the client
machine and the server machine are the same. In the case of an RPC interface, the
interface and the Gem are separate processes, and the client machine can be different from
the server machine.

Specifying Files Using Environment Variables

If you supply an environment variable instead of a full path when using the methods
described in this chapter, the way in which the environment variable is expanded
depends upon whether the process is running on the client or the server machine.

If you are running a linked interface or you are using methods that create processes
on the server, the environment variables accessed by your GemStone Smalltalk
methods are those defined in the shell under which the Gem process is running.

If you are running an RPC interface and using methods that create processes on a
separate client machine, the environment variables are instead those defined by the
remote user account on the client machine on which the application process is
running.

NOTE
If you do not want to worry about these details, supply full path names and avoid
the use of environment variables. This allows your application to work uniformly
across different environments.

The examples in this section use a UNIX path as a file specification.

Creating a File

You can create a new operating system file from GemStone Smalltalk using several class
methods for GsFile. Example 11.1 creates a file named aFileName in the current directory
on the client machine.

Example 11.1

| myFile myFilePath |
myFilePath := 'aFileName'.
myFile := GsFile openWrite: myFilePath.
"Here would go code to write data to the file"
myFile close
%
198 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Accessing Files
Example 11.2 creates a file named aFileName in the current directory on the server.

Example 11.2

myFile := GsFile openWriteOnServer: mySpec
"Here would go code to write data to the file"
myFile close
%

These methods return the instance of GsFile that was created, or nil if an error occurred.
Common errors include invalid paths or insufficient permissions. To determine the
specific problem, use the techniques described under “GsFile Errors” on page 204.

Opening a File

GsFile provides a wide variety of protocol to open files. For a complete set of methods, see
the image. These methods return the GsFile instance if successful, or nil if an error occurs.

Table 1 GsFile Class Methods to Open Files

Method Description

openRead:
openReadCompressed:

Opens a file on the client machine for reading,
replacing the existing contents.

openWrite:
openWriteCompressed:

Opens a file on the client machine for writing.
Creates a new file if one does not exist, or trun-
cates an existing file to 0.

openAppend: Opens a file on the client machine for writing,
appending the new contents instead of replac-
ing the existing contents. Creates the file if it
does not exist.

openReadOnServer:
openReadOnServerCompressed:

Opens a file on the server for reading, replac-
ing the existing contents.

openWriteOnServer:
openWriteOnServerCompressed:

Opens a file on the server for writing. Creates a
new file if one does not exist, or truncates an
existing file to 0.

openAppendOnServer: Opens a file on the server for reading, append-
ing the new contents instead of replacing the
existing contents.

GsFile close Closes the receiver.

closeAll Closes all open GsFile instances on the client
machine except stdin, stdout, and stderr.

closeAllOnServer Closes all open GsFile instances on the server
except stdin, stdout, and stderr.
April 2014 GemTalk Systems 199

Accessing Files GemStone/S 64 Bit 3.2 Programming Guide
Closing a File or Files

The following methods close the current instance, or multiple open files:

Your operating system limits the number of files a process can concurrently access. Using
GemStone classes to open, read or write, and close files does not lift your application’s
responsibility for closing open files. Make sure you write and close files as soon as
possible.

Writing to a File

After you have opened a file for writing, you can add new contents to it in several ways.
For example, the instance methods addAll: and nextPutAll: take strings as
arguments and write the string to the end of the file specified by the receiver. The method
add: takes a single character as argument and writes the character to the end of the file.
And various methods such as cr, lf, and ff write specific characters to the end of the
file—in this case, a carriage return, a line feed, and a form feed character, respectively.

For example, the following code writes the two strings specified to the file myFile.txt,
separated by end-of-line characters.

Example 11.1

myFile := GsFile openWrite: 'myFileName'.
myFile nextPutAll: 'All of us are in the gutter,'.
myFile cr.
myFile nextPutAll: 'but some of us are looking at the stars.'.
myFile close.
myFile := GsFile openRead: 'myFileName'.
myFile contents.
%

GsFile closeAll.
%

These methods return the number of bytes that were written to the file, or nil if an error
occurs.

Table 2 GsFile Method Summary

Method Description

GsFile >> close Closes the receiver.

GsFile class >> closeAll Closes all open GsFile instances on the client
machine except stdin, stdout, and stderr.

GsFile class >>
 closeAllOnServer

Closes all open GsFile instances on the server
except stdin, stdout, and stderr.
200 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Accessing Files
Writing Extended Characters To a File

Characters outside the base ASCII range of 0...255 require multiple bytes to represent.
Instance of traditional and Unicode Strings handle characters with larger values than can
be held by the given class, by transparently morphing into a class that can hold larger
Characters. This is discussed in Chapter 5.

Most GsFile protocol can read and write byte values only, and do not handle Characters
with values larger than 255, nor instances of DoubleByteString, QuadByteString,
Unicode16 and Unicode32 that include Characters over 255.

To write a string containing extended characters to a file, it must be explicitly encoded
into UTF-8 before writing to the file. You can do this by using

GsFile >> nextPutAsUtf8: aString

This writes the given string (or instsance of Uft8) to the file encoded as UTF-8.

You can also encode a string into UTF-8 using String >> encodeAsUTF8. This creates
an instance of Uft8, a type of ByteArray holding the UTF-8 encoded equivalent of the data.
This can be written to the GsFile normally.

For example, the Euro character € has the Unicode value U+20AC.

Example 11.2 Writing the Extended Character € to a File

| myfile str |
myfile := GsFile openWrite: 'extendedCharacterExample.txt'.
str := String new.
str add: 'How to write a Euro character '.
str add: (Character withValue: 16r20AC).
str add: ' to a file'; lf.
myfile nextPutAsUtf8: str.
myfile close.

To read a file containing data encoded in UTF-8, use the method

GsFile >> contentsAsUtf8

This returns the contents of the entire file as an instance of Utf8, which contains byte
values. The method Utf8 >> decodeFromUTF8 can them be used to decode the
contents into an instance of the appropriate Unicode String class.

Note that when reading files containing Characters with codePoints larger than 127. you
must be aware of the whether the file is encoded in order to decode appropriately. GsFile
reads the bytes and does not distinguish between encoded or un-encoded contents.

Reading from a File

Instances of GsFile can be accessed in many of the same ways as instances of Stream
subclasses. Like streams, GsFile instances also include the notion of a position, or pointer
into the file. When you first open a file, the pointer is positioned at the beginning of the
file. Reading or writing elements of the file ordinarily repositions the pointer as if you
were processing elements of a stream.
April 2014 GemTalk Systems 201

Accessing Files GemStone/S 64 Bit 3.2 Programming Guide
A variety of methods allow you to read some or all of the contents of a file from within
GemStone Smalltalk. For example, the contents method (at the end of Example 11.1)
returns the entire contents of the specified file and positions the pointer at the end of the
file.

In Example 11.3, next: into: takes the 12 characters after the current pointer position
and places them into the specified string object. It then advances the pointer by 12
characters.

Example 11.3

| result |
result := String new.
myFile := GsFile openRead: 'myFileName'.
myFile next: 12 into: result.
myFile close
result.
%

Positioning

You can also reposition the pointer without reading characters, or peek at characters
without repositioning the pointer. The method:

GsFile peek

allows you to view the next character in the file without advancing the pointer.

To advance the pointer without reading the intervening characters, use:

GsFile skip: anInteger

Testing Files

The class GsFile provides a variety of methods that allow you to determine facts about a
file.

To test for existence of a file, use:

GsFile >> exists: aFileNameString
GsFile >> existsOnServer: aFileNameString

These methods returns true if the file exists, false if it does not, and nil if an error occurred.

Renaming Files

Files on the client or server can be renamed or moved. For example:

GsFile rename: '/tmp/myfile.txt' to: '/tmp/newname.txt'.

GsFile renameFileOnServer: '$GEMSTONE/data/system.conf' to:
'/users/david/mysystem.conf'.
202 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Accessing Files
Removing Files

To remove a file from the client machine, use an expression of the form:

GsFile closeAll.
GsFile removeClientFile: mySpec.

To remove a file from the server machine, use the method removeServerFile: instead.
These methods return the receiver or nil if an error occurred.

Examining a Directory

To get a list of the names of files in a directory, send GsFile the message
contentsOfDirectory: aFileSpec onClient: aBoolean. This message acts very much
like the UNIX ls command, returning an array of file specifications for all entries in the
directory.

If the argument to the onClient: keyword is true, GemStone searches on the client
machine. If the argument is false, it searches on the server instead.

For example:

Example 11.4

GsFile contentsOfDirectory: '$GEMSTONE/examples/admin' onClient:
false
%
an Array
 #1 /dbf/gsadmin/GS6432/examples/admin/.
 #2 /dbf/gsadmin/GS6432/examples/admin/..
 #3 /dbf/gsadmin/GS6432/examples/admin/onlinebackup.sh
 #4 /dbf/gsadmin/GS6432/examples/admin/archivelogs.sh

If the argument is a directory name, this message returns the full pathnames of all files in
the directory, as shown in Example 11.4. However, if the argument is a filename, this
message returns the full pathnames of all files in the current directory that match the
filename. The argument can contain wildcard characters such as *. The following example
shows a different use of this message.

GsFile contentsOfDirectory: '$GEMSTONE/ver*' onClient: false
%
an Array
 #1 /dbf/gsadmin/GS6432/version.txt

If you wish to distinguish between files and directories, you can use the message
contentsAndTypesOfDirectory:onClient: instead. This method returns an array
of pairs of elements. After the name of the directory element, a value of true indicates a
file; a value of false indicates a directory. For example:

All the above methods, like most GsFile methods, return nil if an error occurs.
April 2014 GemTalk Systems 203

Accessing Files GemStone/S 64 Bit 3.2 Programming Guide
GsFile Errors

GsFile operations return nil in cases where an error occurs during the operation. For this
reason, most GsFile operations should check for nil return. There are separate methods to
check for errors within file operations on server files and client files.

To check for errors in an operation on a server file, the method is GsFile >>
serverErrorString. It is nil if no error has occurred. This error is available until the
next GsFile operation is executed.

Example 11.5

| myFile |
myFile := GsFile openReadOnServer: 'nonexistentfile'.
myFile isNil
 ifTrue: [GsFile serverErrorString]
 ifFalse: ['Succesfully opened'].
%
errno=2,ENOENT, The file or directory specified cannot be found

To check for similar errors for a client file, use the method lastErrorString. For
example:

Example 11.6

| myFile |
myFile := GsFile openRead: 'privatefile'.
myFile isNil
 ifTrue: [GsFile lastErrorString]
 ifFalse: ['Succesfully opened'].
%
errno=13,EACCES, Authorization failure (permission denied)
204 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Executing Operating System Commands
11.2 Executing Operating System Commands

Simple Commands

System also understands the message performOnServer: aString, which causes the
UNIX shell commands given in aString to execute in a subprocess of the current
GemStone process. The output of the commands is returned as a GemStone Smalltalk
string. For example:

System performOnServer: 'date'
%
Mon Mar 10 15:19:56 PDT 2014

The commands in aString can have exactly the same form as a shell script; for example,
new lines or semicolons can separate commands, and the character “\” can be used as an
escape character. The string returned is whatever an equivalent shell command writes to
stdout. If the command or commands cannot be executed successfully by the subprocess,
the interpreter halts and GemStone returns an error message.

The GemStone (reverse) privilege NoPerformOnServer controls the ability to execute this
method. If a user account is given this privilege, that user cannot execute
performOnServer:.

More complex interactions

System >> performOnServer: can execute arbitrary OS code on the server, but only
operates synchronously; Smalltalk will block until the command has completed.

To provide an asynchronous perform, and to allow Smalltalk to read from stdout or write
to stdin, you can use the class GsHostProcess.

To use this, use the class method fork:, passing the command line you wish to execute.
This will return immediately with an instance of GsHostProcess with sockets on stdin,
stdout, and stderr. You can use socket protocol to read from or write to these sockets.

Note that pathname resolution is not provided. You must fully qualify executable paths.

For example:

run
| hostprocess |
hostprocess := GsHostProcess fork: '/bin/date'.
hostprocess stdout read: 1024
%
Tue Mar 11 11:03:14 PDT 2014
April 2014 GemTalk Systems 205

File In and File Out GemStone/S 64 Bit 3.2 Programming Guide
11.3 File In and File Out
To archive your application or transfer GemStone classes to another repository you can
file out GemStone Smalltalk source code for classes and methods to a text file. To port your
application to another repository, you can file in that text file, and the source code for your
classes and methods is immediately available in the new repository.

Fileout

Methods in behavior allow you to file out a class, category, or method. For example, to file
out a single class named Customer:

| myFile |
myFile := GsFile openWrite: 'CustomerClassFileout.gs'.
myFile isNil
 ifTrue: [^GsFile serverErrorString].
Customer fileOutClassOn: myFile.
myFile close.
%

Using ClassOrganizer, you can file out all the classes and methods in a SymbolDictionary,
ordered correctly for filein. For example, to file out UserGlobals:

| myFile |
myFile := GsFile openWrite: 'UserGlobalsFileout.gs'.
myFile isNil
 ifTrue: [^GsFile serverErrorString].
ClassOrganizer new fileOutClassesAndMethodsInDictionary:

UserGlobals on: myFile.
myFile close.
%

File out can also be done using the topaz command fileout. See the Topaz User’s Guide for
more information.

Filein

File in is done using topaz input command, or facilities provided by GBS.

For example, to file in the fileout of UserGlobals from the previous example:

topaz 1> input UserGlobalsFileout.gs

Handling strings with extended characters

GsFile cannot directly write characters with codepoints over 255. If your class or method
names, code, or comments includes any characters with codepoints over 255, you will
need to encode as UTF-8 in order to file out using GsFile, as is described on “Writing
Extended Characters To a File” on page 201.

In topaz, the fileformat command allows you to file out and file in as UTF-8.
206 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide PassiveObject
11.4 PassiveObject
To archive your data, you can passivate objects themselves to a file. Objects representing
your data are stored into a serialized, text-based form by the GemStone class
PassiveObject. PassiveObject starts with a root object and traces through its instance
variables, and their instance variables, recursively until it reaches special objects
(instances of SmallInteger, Character, Boolean, SmallDouble, or UndefinedObject), or
classes that can be reduced to special objects (strings and numbers that are not integers),
creating a representation of the object that preserves all of the values required to re-create
it. The resulting network of object descriptions can be written to a file, stream, or string.
Each file can hold only one network—you cannot append additional networks to an
existing passive object file, stream, or string.

A few objects and aspects of objects are not preserved:

Instances of UserProfile cannot be preserved in this way, for obvious security reasons.

SystemRepository cannot be preserved.

Blocks that refer to globals or other variables outside the scope of the block cannot be
reactivated correctly.

Blocks that can be associated with objects (such as the sort block in SortedCollections)
are not preserved.

Any indexes you have created on the object are lost as well.

Identities (OOPs) are not preserved.

The relationship between two objects is conserved only so long as they are described in
the same network. Similarly, if two separate objects A and B both refer to the same third
object C, then making A and B passive in two separate operations will result in
duplicating the object C, which will be represented in both A’s and B’s network. Because
the resulting network of objects can be quite large anyway, you want to avoid such
unnecessary duplication. For this reason, it is usually a good idea to create one collection
to hold all the objects you wish to preserve before invoking one of the PassiveObject
methods.

In addition, since object identity is not preserved, behavior that depends on identity may
not work as expected. For example, for objects that implement = using ==, the re-activated
object will not be = to the original.

The class PassiveObject implements the method passivate: anObject toStream:
aGsFileOrStream to write objects out to a stream or a file. To write the object
AllEmployees out to the file allEmployees.obj in the current directory, execute an
expression of the form shown in Example 11.7.

Example 11.7

| empFile |
empFile := GsFile openWriteOnServer: 'allEmployees.obj'.
PassiveObject passivate: AllEmployees toStream: empFile.
empFile close.
April 2014 GemTalk Systems 207

Creating and Using Sockets GemStone/S 64 Bit 3.2 Programming Guide
The class PassiveObject implements the method newOnStream: aGsFileOrStream to read
objects from a stream or file into a repository. The method activate then restores the
object to its previous form.

The following example reads the file allEmployees.obj into a GemStone repository:

Example 11.8

| empFile passivatedEmployees |
empFile := GsFile openReadOnServer: 'allEmployees.obj'.
passivatedEmployees := PassiveObject newOnStream: empFile.
AllEmployees := passivatedEmployees activate.
empFile close.

Examples 11.7 and 11.8 use streams rather than files to actually move the data. This is
useful, as streams do not create temporary objects that occupy large amounts of memory
before the garbage collector can reclaim their storage.

11.5 Creating and Using Sockets
Sockets open a connection between two processes, allowing a two-way exchange of data.
The class GsSocket provides a mechanism for manipulating operating system sockets
from within GemStone Smalltalk.

Methods in the class GsSocket do not use the terms client and server in the same way as the
methods in class GsFile. Instead, these terms refer to the roles that two processes play
with respect to the socket: the server process creates the socket, binds it to a port number,
and listens for the client, while the client connects to an already created socket. Both client
and server are processes created (or spawned) by a Gem process.

In addition to standard sockets created by GsSocket, you can create secure SSL sockets
using the class GsSecureSocket. GsSecureSocket is a subclass of GsSocket that adds
protocol to specify certificates and require authentication.

Both GsSocket and GsSecureSocket contain class methods clientExample and
serverExample, and GsSecureSocket contains additional class methods
clientExample2 and serverExample2. These methods provide examples of how to
create a socket connection between two sessions. The example methods work together;
they require two separate sessions running from two independently executing interfaces,
one running the server example and one running the client example. You can execute
these methods from Topaz or from GemBuilder for Smalltalk, but note that
serverExample, which should be started first, will take control of the interface until the
clientExample completes the socket connection.

GsSocket

GsSocket is the class representing a basic socket.
208 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating and Using Sockets
Establishing the connection

To setup a socket connection, you create instances of GsSocket in both the client and
server processes.

1. On the server side, create an instance of GsSocket, and call makeServerAtPort: This
creates a listening socket on the given port.

To have the operating system select a port, use a wildcard bind using makeServer:,
or pass nil as the port argument. You will then need to determine the port that the cli-
ent should connect at using the port method.

2. On the client side, create an instance of a GsSocket and call one of the following:

 connectTo: for a connection to a process on the same host

 connectTo:on: if the server is on a different machine

 connectTo:on:timeoutMs: to specify a timeout for the connection

Provided there was a listening server socket setup as in step 1, this will initiate the
connection to the server.

3. The server then does an accept, or acceptTimeoutMs: (to specify a timeout) . This
returns a new instance of GsSocket for the client connection.

Note that the server side has two sockets; a listening socket and the established socket
with the client.

Communication on the socket

Each process can write and read to the socket using protocol such as write: and read:.
See the image methods in the categories Reading and Writing for specific methods.

Writes and reads are of byte objects such as String or ByteArray. Read operations are for a
specified number of bytes, and return the actual number of bytes read if fewer bytes were
available (if fewer bytes were written to the socket by the peer).

Closing the socket

When completed, the client should close its socket and the server close the listening and
established sockets. This is done by simply sending close to the sockets.

Socket Configuration

Socket configuration can be done using the method

GsSocket >> option:put:

See the comments in this method for details on socket configuration.

The most common option is blocking.

Blocking

Sockets can be made blocking or non-blocking, and the blocking status checked, using the
following methods:

GsSocket >> makeNonBlocking
GsSocket >> makeBlocking
GsSocket >> isNonBlocking
GsSocket >> isBlocking
April 2014 GemTalk Systems 209

Creating and Using Sockets GemStone/S 64 Bit 3.2 Programming Guide
GsSecureSocket

GsSecureSocket creates a secure socket using Secure Sockets Layer (SSL), providing access
to the open-source OpenSSL library. This product includes software developed by the
OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)

To create a secure socket, you create instances of the GsSecureSocket class and first
establish the connection as a regular socket. Then, further protocol authenticates the
connection to make the socket secure.

Secure Sockets include class level setup of certificates and types of authentication that
may be done outside of specific socket operations.

Set up certificates and private keys

GsSecureSocket instances must be configured with the CA certificates, private key files,
and passphrases (if needed), to allow them to complete the secure handshake.

These can be configured in the class GsSecureSocket, so they will apply to all instances of
GsSecureSocket. In this case they must be configured before the instance of
GsSecureSocket is created.

Alternatively, you can create the instance of GsSecureSocket, and send instance methods
to configure the certificates and private keys.

Generating certificates

To use secure sockets, you will need to have certificates, CA certificates, private key files
and passphrases, such as sufficient for your security requirements. These may be
provided by your organization.

The GemStone distribution includes example certificates, and a script that will allow you
to generate certificates. The script is provided here:

$GEMSTONE/examples/openssl/make_example_certs.sh

The GemStone distribution also includes the openssl executable:

$GEMSTONE/bin/openssl

This is the version of openssl that GemStone uses; using this, rather than any version that
may be present on your system, is recommended. For details on the openssl interface, see

http://www.openssl.org/docs/apps/openssl.html

Enable or disable certificate validation

By default, client sockets do not validate server connections, but by default server sockets
validate client connection. This is the usual case, and if this is your preferred behavior you
do not need to explicitly enable or disable validation.

If validation on either server socket or client socket is disabled, the methods that configure
the certificates, CA certificates, private key files and passphrases do not need to be
executed.

Class methods that configure validation must be executed prior to the creation of the
GsSecureSocket instance.
210 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating and Using Sockets
Server Sockets

By default, server sockets validate all connection requests. To disable validation, use the
methods:

GsSecureSocket enableCertificateVerificationOnServer
aGsSecureServerSocket enableCertificateVerification

Parallel methods exist to re-enable validation after validation is disabled.

Client Sockets

By default, client sockets do not validate connections from the server. To enable
validation, use the methods:

GsSecureSocket enableCertificateVerificationOnClient
aGsSecureClientSocket enableCertificateVerification

Parallel methods exist to disable validation after validation is enabled.

Setup CA certificates

When socket validation is to be done, the Certificate Authority (CA) certificates should be
setup prior to creating instance of GsSecureSocket.

Server Sockets

By default, server sockets validate client connections. Before creating a server socket, the
CA certificate used to validate client connections should be loaded using the following
method:.

GsSecureSocket class >>
 useCACertificateFileForServers: certfile

The CA certificate file must be in PEM format. It may contain more than one certificate. If
this method returns false, an error occurred and the certificate was not successfully
loaded.

An example CA certificate file is provided here:

$GEMSTONE/examples/openssl/certs/serverCA.pem'

Client Sockets

By default, certificates are not verified on the client, so the client CA certificate file does
not need to be loaded. If you need to enable client validation, load the client CA certificate
file using the following method.

GsSecureSocket class >>
 useCACertificateFileForClients: certfile

Setup certificate, private key, and passphrase

The certificate, private key, and private key passphrase can be setup by class methods to
apply to all instances, or by sending messages to the instance of GsSecureSocket.

Method variants are provided that allow you to pass in the certificate and private key
either as file path and name, or as a string. If a string is used, it must exactly match the
contents of the corresponding certificate file (including white space, line feeds, etc.), or the
strings will not be accepted.
April 2014 GemTalk Systems 211

Creating and Using Sockets GemStone/S 64 Bit 3.2 Programming Guide
Both certificate and private key must be in PEM format, and the private key must match
the certificate. The same file may be specified for the certificate file and the private key
file.

The certificate may contain a certificate chain or a single certificate.

If the private key requires a passphrase, it must be specified as a string. If the private key
does not require a passphrase, the argument is expected to be nil.

Class setup for server sockets

To specify the server certificates, private key file, and passphrase (if required), that will be
used for all secure server sockets that are created after these methods are invoked, use the
methods:

GsSecureSocket class >> useServerCertificateFile: certfile withPri-
vateKeyFile: keyFile privateKeyPassphraseFile: strOrNil

GsSecureSocket class >> useServerCertificate: certString withPri-
vateKey: keyString privateKeyPassphraseFile: strOrNil

An example file is provided here:

$GEMSTONE/examples/openssl/certs/server.pem

Class setup for client sockets

By default, certificates are not verified on the client, so the certificate and private key do
not need to be setup.

If you need to enable client validation, the follow methods specify the client certificates,
private key file, and passphrase, that will be used to validate server connections for secure
client sockets that are created after these methods are invoked:

GsSecureSocket class >> useClientCertificateFile: certfile withPri-
vateKeyFile: keyFile privateKeyPassphraseFile: strOrNil

GsSecureSocket class >> useClientCertificate: certString withPri-
vateKey: keyString privateKeyPassphraseFile: strOrNil

Instance setup for client or server sockets

You can specify the certificate, private key, and passphrase for a single specific instance of
GsSecureSocket (either a server socket or a client socket), using instance methods:

GsSecureSocket >> useCertificateFile: certfile withPrivateKeyFile:
keyFile privateKeyPassphraseFile: strOrNil
GsSecureSocket >> useCertificate: certString withPrivateKey: keyString
privateKeyPassphraseFile: strOrNil

Setup the Cipher list

The list of ciphers that are acceptable to use can be configured, either on the class side for
servers and clients, or for specific instances of GsSecureSocket client or server sockets.

The cipher list is specified as a formatted string. See
http://www.openssl.org/docs/apps/ciphers.html for details on the format of this string
(as well as other information on ciphers).
212 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating and Using Sockets
For example, to use all ciphers except NULL ciphers and anonymous Diffie-Hellman
(DH), and sort by strength, use the following string:

'ALL:!ADH:@STRENGTH'

To configure the cipher list for all instances of GsSecureSocket, use the following methods.
These methods return true if the specification finds one or more usable ciphers, false if no
usable ciphers match the specification.

GsSecureSocket class >>
 setClientCipherListFromString: aString
GsSecureSocket class >>
 setServerCipherListFromString: aString

To configure the cipher list for a specific instance of a server socket or client socket, the
ciphers must be set before secureConnect:/secureAccept are executed. This
method returns true if the specification finds one or more usable ciphers, false if no usable
ciphers match the specification, and nil if the operation has no affect because the receiver
is already connected.

GsSecureSocket class >>
 setCipherListFromString: aString

Once an instance of GsSecureSocket is successfully connected, you can fetch the cipher in
use using:

GsSecureSocket >> fetchCipherDescription

Establishing the connection

Rather than creating instances using GsSocket class >> new, with GsSecureSocket
sockets are instantiated using newClient and newServer.

To establish the socket connection, as with regular GsSocket,

1. The server creates the socket using newServer, and calls makeServerAtPort: on
an unused port, to create the server listener socket on that port.

2. The client creates the socket using newClient, and calls connectTo:, specify the
same port as in Step 1.

3. The server socket calls accept, which creates the connected socket on the given port.

This establishes the standard socket, but the connection is not secure. Another client-
server interaction is required to make this a secure socket.

At this point, you can setup specific certificates and ciphers that will apply to these
sockets only, as described in the preceding sections. This is needed if you have not
previously set up certificates and ciphers that apply to all GsSecureSocket connections.

Then continue with the process that makes the socket secure:

4. The client socket calls secureConnect

5. The server socket calls secureAccept

If these methods return true, then the connection is secure. To determine if you have a
secure connection, use the method:

GsSecureSocket >> hasSecureConnection
April 2014 GemTalk Systems 213

Creating and Using Sockets GemStone/S 64 Bit 3.2 Programming Guide
Communication on the socket

At this point reads and writes are done as for standard sockets.

Closing the socket

You can either close the socket connection entirely, or close the secure connection and
remain connected for normal (not secure) communication.

To close the socket entirely, use

GsSecureSocket >> close

Which performs both the secure close and the regular close.

Note that the secure close requires a handshake. If the socket is blocking, and the peer
does not respond, then the close will hang. To close the socket, we recommend first
making it non blocking:

mySecureSocket makeNonBlocking.
mySecureSocket close.

To close only the secure socket and leave the connection available for non-secure
communication, you can use the method

GsSecureSocket >> secureClose

Which must be executed by both sockets on the connection. You can then call close later,
to close the connection entirely.

Error handling

GsSocket

The following methods are implemented both for the class and instance of GsSocket. For
errors in GsSocket class methods, use the class side error methods, and for errors in
GsSocket instance methods, use the instance methods

lastErrorString
Returns a String containing information about the last error or nil if no error has
occurred. Clears the error information.

lastErrorCode
Returns an integer representing the last OS error or nil if no error has occurred. Does
not clear the error information

lastErrorSymbol
Returns a Symbol representing the last OS error or nil if no error has occurred. Does
not clears the error information.

GsSecureSocket

If one of the calls returns nil or false, you can determine the last error from an SSL
function called from an instance method using the instance method:

GsSecureSocket >> fetchLastIoErrorString
This fetches and clears the error string from a call to SSL functions for connect, accept,
read, or write.
214 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating and Using Sockets
On the class side, the following methods return error strings for any SSL function call
errors:

GsSecureSocket class >> fetchErrorStringArray
Returns an Array of error strings generated by the OpenSSL package. The errors
returned are cleared from the SSL error queue. The array is ordered from oldest to
newest error.

GsSecureSocket class >> fetchLastCertificateVerificationError-
ForClient
GsSecureSocket class >> fetchLastCertificateVerificationError-
ForServer

These methods fetches and clears a string representing the last certificate verification
error logged by, respectively, a client SSL socket or a server SSL socket.

To clear the error queue, use the method

GsSecureSocket class >> clearErrorQueue
April 2014 GemTalk Systems 215

Creating and Using Sockets GemStone/S 64 Bit 3.2 Programming Guide
216 GemTalk Systems April 2014

Chapter

12 Signals and Notifiers
This chapter discusses how to communicate between one session and another, and
between one application and another.

Communicating Between Sessions
introduces two ways to communicate between sessions.

Object Change Notification
describes the process used to enable object change notification for your session.

Gem-to-Gem Signaling
describes one way to pass signals from one session to another.

Other Signal-Related Issues
describes performance, signal buffer overflow, and other signal related considerations.

12.1 Communicating Between Sessions
Applications that handle multiple sessions often find it convenient to allow one session to
know about other sessions’ activities. GemStone provides two ways to send information
from one current session to another:

Object change notification

Reports the changes recorded by the object server. You set your session to be notified
when specific objects are modified. Once enabled, notification is automatic, but a sig-
nal is not sent until the changed objects are committed.

Gem-to-Gem signaling

Reports events that happen independent of the transaction space. Currently logged-in
users signal to send messages to each other. Gems can also pass information that is
not necessarily visible to users, such as the name of a queue that needs servicing.
Sending a signal requires a specific action by the other Gem; it happens immediately.

Object change notification and Gem-to-Gem signals only reach logged-in sessions. For
applications that need to track processes continuously, you can create a Gem that runs
April 2014 GemTalk Systems 217

Object Change Notification GemStone/S 64 Bit 3.2 Programming Guide
independently of the user sessions and monitors the system. See the instructions on
creating a custom Gem in the GemBuilder for C manual.

12.2 Object Change Notification

Object change notifiers are signals that can be generated by the object server to inform you
when specified objects have changed. You can request that the object server inform you of
these changes by adding objects to your notify set.

When a reference to an object is placed in a notify set, you receive notification of all
changes to that object (including the changes you commit) until you remove it from your
notify set or end your GemStone session. The notification you receive can vary in form
and content, depending on which interface to GemStone you are running and how the
notification action was defined.

Your application can respond in several ways:

Prompt users to abort or commit for an updated image.

Log the information in an object change report.

Use the notifiers to trigger another action. For example, a package for managing
investment portfolios might check the stock that triggered the notifier and enter a
transaction to buy or sell if the price went below or above preset values.

To set up a simple notifier for an object:

1. Create the object and commit it to the object server.

2. Add the object to your session’s notify set with one of the messages:

System addToNotifySet: aCommittedObject
System addAllToNotifySet: aCollectionOfCommittedObjects

3. Define how to receive the notifier with either a notifier message or by polling.

4. Define what your session will do upon receiving the notifier.

The following section describes each of these steps in detail.

Setting Up a Notify Set

GemStone defines a notify set for each user session to which you add or remove objects.
Except for a few special cases discussed later, any object you can refer to can be added to a
notify set.

Notify sets persist through transactions, living as long as the GemStone session in which
they were created. When the session ends, the notify set is no longer in effect. If you need
notification regarding the same objects for your next session, you must once again add
those objects to the notify set.

Adding an Object to a Notify Set

To add an object to your notify set, use an expression of the form:

System addToNotifySet: aCommittedObject
218 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Object Change Notification
When you add an object to the notify set, GemStone begins monitoring changes to it
immediately.

Most GemStone objects are composite objects, made up of a root object and a few
subobjects. Usually you can just ignore the subobjects. However, there are circumstances
in which the both the root object and subobjects must appear in the notify set. For details,
see “Special Classes” on page 225.

Example 12.1 creates a collection of stock holdings and then creates a notify set for the
stocks in the collection. Finally, the session is set to automatically receive the notifier.

Example 12.1

"Create a Class to record stock name, number and price"
Object subclass: #Holding

instVarNames: #('name' 'number' 'price')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: Published.

"Compile accessing methods"
Holding compileAccessingMethodsFor: Holding instVarNames.

"Add a Collection for Holdings to UserGlobals dictionary"
UserGlobals
 at: #MyHoldings put: IdentityBag new.

"Add some stocks to my collection"
MyHoldings add:
 (Holding new name: #USSteel; number: 1000; price: 50.00).
MyHoldings add:
 (Holding new name: #VMware; number: 50000; price: 95.00).
MyHoldings add:
 (Holding new name: #ATT; number: 100000; price: 30.00).

"Add the collection object to the notify set"
System addToNotifySet: MyHoldings.
(System notifySet) includesIdentical: MyHoldings.

"Enable receipt of signals"
System enableSignaledObjectsError.

Objects That Cannot Be Added

Not every object can be added to a notify set. Objects in a notify set must be visible to
more than one session; otherwise, other sessions could not change them. So, objects you
have created for temporary use or have not committed cannot be added to a notify set.
GemStone responds with an error if you try to add such objects to the notify set.

You also receive an error if you attempt to add objects whose values cannot be changed.
This includes special objects such as true, false, nil, and instances of Character,
SmallInteger and SmallDouble.
April 2014 GemTalk Systems 219

Object Change Notification GemStone/S 64 Bit 3.2 Programming Guide
Adding a Collection to a Notify Set

To add a collection of objects to your notify set, use an expression like this:

System addAllToNotifySet: aCollectionOfCommittedObjects

This expression adds the elements of the collection to the notify set.

You don’t have to add the collection object itself, but if you do, use addToNotifySet:
rather than addAllToNotifySet:.When a collection object is in the notify set, adding
elements to the collection or removing elements from it trigger notification. Modifications
to the elements do not trigger notification on the collection object; if you want to know
when the elements change, you must add them to the notification set.

Example 12.2 shows the notify set containing both the collection object and the elements
in the collection.

Example 12.2

"Add the stocks in the collection to the notify set"
System addAllToNotifySet: MyHoldings.
System notifySet.
%
an Array
 #1 a Holding
 #2 a Holding
 #3 a Holding

"Add the collection object itself to the notify set"
System addToNotifySet: MyHoldings.
System notifySet.
%
an Array
 #1 a Holding
 #2 a Holding
 #3 a Holding
 #4 an IdentityBag

Very Large Notify Sets

You can register any number of objects for notification, but very large notify sets can
degrade system performance. GemStone can handle thousands of objects without
significant impact. Beyond that, test whether the response times are acceptable for your
application.

If performance is a problem, you can set up a different system of change recording:

1. Have each session maintain its own list of the last several objects updated (a modify
list). The list is a collection written only by that session.

2. Create a global collection of collections that contains every session’s list of changes.

3. Put the global collection and its elements in your notify set, so you receive notification
when a session commits a modified list of changed objects. Then you can check for
changes of interest.
220 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Object Change Notification
If the modify lists are ordered, this preserves the order of the additions, so that the new
objects can be serviced in the correct order. Using the notifySet, notification on a batch of
changed objects is received in OOP order.

Listing Your Notify Set

To determine the objects in your notify set, execute:

System notifySet

Removing Objects From Your Notify Set

To remove an object from your notify set, use an expression of the form:

System removeFromNotifySet: anObject

To remove a collection of objects from your notify set, use an expression of the form:

System removeAllFromNotifySet: aCollection

This expression removes the elements of the collection. If the collection object itself is also
in the notify set, remove it separately, using removeFromNotifySet:.

To remove all objects from your notify set, execute:

System clearNotifySet

Notification of New Objects

In a multi-user environment, objects are created in various sessions, committed, and
immediately open to modification. It may not be sufficient to receive notifiers on the
objects that existed at the beginning of your session. You may also need notification
concerning new objects.

You cannot put unknown objects in your notify set, but you can create a collection for
those kinds of objects and add that collection to the notify set. Then when the collection
changes, meaning that objects have been added or removed, you can stop and look for
new objects. For example, to receive notification when the price of any stock in your
portfolio changes, you can perform the following steps:

1. Create a globally known collection (for example, MyHoldings) and add your existing
stock holdings (instances of class Holding) to it.

2. Place all of these stocks in your notify set:

System addAllToNotifySet: MyHoldings

3. Place the collection MyHoldings in your notify set, so that you receive notification
that the collection has changed when a stock is bought or sold:

System addToNotifySet: MyHoldings

4. Place new stock purchases in MyHoldings by adding code to the instance creation
method for class Holding.

5. When you receive notification that the contents of MyHoldings have changed, com-
pare the new MyHoldings with the original.

6. When you find new stocks, add them to your notify set, so that you will be notified if
they are changed.
April 2014 GemTalk Systems 221

Object Change Notification GemStone/S 64 Bit 3.2 Programming Guide
Example 12.3 shows one way to do steps 5 and 6.

Example 12.3

"Make a temporary copy of the set."

| tmp newObjs |
tmp := MyHoldings copy.

"Refresh the view (commit or abort)."
System commitTransaction.

"Get the difference between the old and new sets."
newObjs := (MyHoldings - tmp).

"Add the new elements to the notify set."
newObjs size > 0 ifTrue: [System addAllToNotifySet: newObjs].

You can also identify objects to remove from the notify set by doing the opposite
operation:

tmp - MyHoldings

This method could be useful if you are tracking a great many objects and trying to keep
the notify set as small as possible.

Note that only IdentityBag and its subclasses understand "-" as a difference operator.

Receiving Object Change Notification

After a commit, each session view is updated. The object server also updates its list of
committed objects. This list of objects is compared with the contents of the notify set for
each session, and a set of the changed objects for each notify set is compiled.

You can receive notification of committed changes to the objects in your notify set in two
ways:

Enabling automatic notification, which is faster and uses less CPU

Polling for changes
222 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Object Change Notification
Automatic Notification of Object Changes

For automatic notification, you enable your session to receive the exception
ObjectsCommittedNotification. By default, ObjectsCommittedNotification
is disabled (except in GemBuilder for Smalltalk, which enables the signal as part of
GbsSession>>notificationAction:).

To enable the event signal for your session, execute:

System enableSignaledObjectsError

To disable the event signal, send the message:

System disableSignaledObjectsError

To determine whether this error message is enabled or disabled for your session, send the
message:

System signaledObjectsErrorStatus

This method returns true if the signal is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you end
the session, or you receive the signal. The signal is automatically disabled when you
receive it so that the exception handler can take appropriate action.

The receiving session handles the notification with an exception handler. Your exception
handler is responsible for reading the set of signaled objects (by sending the message
System class>>signaledObjects) as well as taking the appropriate action.

ObjectsCommittedNotification addDefaultHandler:
[:ex |
| changes |
changes := System signaledObjects.
"do something with the changed objects"
System enableSignaledObjectsError].

Reading the Set of Signaled Objects

The System class>>signaledObjects method reads the incoming changed object
signals. This method returns an array, which includes all the objects in your notify set that
have changed since the last time you sent signaledObjects in your current session.
The array contains objects changed and committed by all sessions, including your own. If
more than one session has committed, the OOPs are OR’d together. The elements of the
array are arranged in OOP order, not in the order the changes were committed. If none of
the objects in your notify set have been changed, the array is empty.

Use a loop to call signaledObjects repeatedly, until it returns an empty collection. The
empty collection guarantees that there are no more signals in the queue.

Also see the discussion of “Frequently Changing Objects” on page 224.
April 2014 GemTalk Systems 223

Object Change Notification GemStone/S 64 Bit 3.2 Programming Guide
Polling for Changes to Objects

You also use System class>>signaledObjects to poll for changes to objects in your
notify set.

Example 12.4 uses the polling method to inform you if anyone has added objects to a set
or changed an existing one. Notice that the set is created in a dictionary that is accessible
to other users, not in UserGlobals.

Example 12.4

System disableSignaledObjectsError;
 signaledObjectsErrorStatus.
%

"Create a set."
Published at: #Changes put: IdentitySet new.
System commitTransaction.

System addToNotifySet: Changes.
%

"Login a separate session to perform the following"
Changes add: 'here is a change'.
System commitTransaction
%

"In the original session, see the signal"
| mySignaledObjs count |
System abortTransaction.
count := 0 .
[mySignaledObjs := System signaledObjects.
mySignaledObjs size = 0 and:[count < 50]
]
 whileTrue: [
 System sleep: 10 .
 count := count + 1
].
^ mySignaledObjs.
%

Troubleshooting

Notification on object changes may occasionally produce unexpected results. The
following sections outline areas of concern.

Frequently Changing Objects

If users are committing many changes to objects in your notify set, you may not receive
notification of each change. You might not be able to poll frequently enough, or your
exception handler might not process the errors it receives fast enough. In such cases, you
can miss some intermediate values of frequently changing objects.
224 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Object Change Notification
Special Classes

Most GemStone objects are composite objects, but for the purposes of notification you can
usually ignore this fact. They are almost always implemented so that changes to
subobjects affect the root, so only the root object needs to go into the notify set.

Common operations that trigger notification on the root object include:

Assignment to an instance variable:

name := 'dowJones'

Updating the indexable portion of an object:

self at: 3 put: 'active'.

Adding to a collection:

self add: 3.

In a few cases, however, the changes are made only to subobjects. For the following
GemStone kernel classes, both the object and the subobjects must appear in the
notification set:

 RcQueue

 RcIdentityBag

 RcCounter

 RcKeyValueDictionary

You can also have the problem with your own application classes. Wherever possible, you
should implement objects so that changes modify the root object. You must also balance
the needs of notification with potential problems of concurrency conflicts.

If you are not being notified of changes to a composite object in your notify set, look at the
code and see which objects are actually modified during common operations such as
add: or remove:. When you are looking for the code that actually modifies an object,
you may have to check a lower-level method to find where the work is performed.

Once you know the object’s structure and have discovered which elements are changed,
add the object and its relevant elements to the notify set. For cases where elements are
known, you can add them just like any other object:

System addToNotifySet: anObject

Example 12.5 shows a method that creates an object and automatically adds it to the notify
set in the process.

Example 12.5

method: SetOfHoldings
add: anObject

System addToNotifySet: anObject.
^super add: anObject

%

April 2014 GemTalk Systems 225

Gem-to-Gem Signaling GemStone/S 64 Bit 3.2 Programming Guide
Methods for Object Notification

Methods related to notification are implemented in class System. Browse the class System
and read about these methods:

addAllToNotifySet:
addToNotifySet:
clearNotifySet
disableSignaledObjectsError
enableSignaledObjectsError
notifySet
removeAllFromNotifySet:
removeFromNotifySet:
signaledObjects
signaledObjectsErrorStatus

See Chapter 13, "Handling Exceptions", on page 233, for more on handling Exceptions
such as ObjectsCommittedNotification.

12.3 Gem-to-Gem Signaling
GemStone enables you to send a signal from your Gem session to any other current Gem
session. GsSession implements several methods for communicating between two sessions.
Unlike object change notification, inter-session signaling operates on the event layer and
deals with events that are not being recorded in the repository. Signaling happens
immediately, without waiting for a commit.

An application can use signals between sessions for situations like a queue, when you
want to pass the information quickly. Signals can also be a way for one user who is
currently logged in to send information to another user who is logged in.

NOTE
A signal is not an interrupt, and it does not automatically awaken an idle session.
The signal can be received only when your session is actively executing Smalltalk
code.

You can receive a signal from another session by polling for the signal or by receiving
automatic notification.

As an example of Gem-to-Gem signaling, Figure 12.1 shows the following sequence of
events:

1. session1 enables event signals from other Gem sessions. (For details, see "Receiving a
Notification".)

2. session2 sends a signal to session1. (See “Receiving a Notification” on page 230.)

3. The Stone sends the exception InterSessionSignal to session1. The receiving ses-
sion processes the signal with an exception handler. For details, see Chapter 13, Han-
dling Exceptions.
226 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Gem-to-Gem Signaling
Figure 12.1

session 1 session 2

Stone

I
n
t
e
r
S
e
s
s
i
o
n
S
i
g
n
a
l

System enable-

S
y
s
t
e
m

s
e
n
d
S
i
g
n
a
l
:
t
o
:
w
i
t
h
M
e
s
s
a
g
e

1

SignaledGemStone-
SessionError

3

2

Communicating from Session to Session

Sending a Signal

To communicate, one session must send a signal and the receiving session must be set up
to receive the signal.

Finding the Session ID

To send a signal to another Gem session, you must know its session ID. To see a
description of sessions that are currently logged in, execute the following method:

System currentSessions

This message returns an array of SmallIntegers representing session IDs for all current
sessions. Example 12.6 shows how you might use this method to find the session ID for
user1 and send a message.
April 2014 GemTalk Systems 227

Gem-to-Gem Signaling GemStone/S 64 Bit 3.2 Programming Guide
Example 12.6

| sessionId serialNum otherSession signalToSend |
 sessionId := System currentSessions
 detect:[:each |(((System descriptionOfSession: each) at: 1)
 userId = 'user1')]
 ifNone: [nil].
sessionId notNil ifTrue: [
 serialNum := GsSession serialOfSession: sessionId .
 otherSession := GsSession sessionWithSerialNumber: serialNum .
 signalToSend := GsInterSessionSignal signal: 4
 message:'reinvest form is here'.
 signalToSend sendToSession: otherSession.
]

Example 12.6 uses the method signalToSend sendToSession: otherSession.
Alternatively, you might use this method:

otherSession sendSignalObject: signalToSend

Still another alternative is this one, which replaces the final two expressions in
Example 12.6 with a single expression:

System sendSignal: aSignalNumber to: otherSession withMessage:
aMessage

No matter how the message is sent, the other session needs to receive it, as shown in
Example 12.7.

Example 12.7

GsSession currentSession signalFromSession message
%
reinvest form is here

Sending the Message

When you have the session ID, you can use the method GsInterSessionSignal
class>>signal: aSignalNumber message: aMessage.

aSignalNumber is determined by the particular protocol you arranged at your site and
the specific message you wish to send. Sending the integer “1,” for example, doesn’t
convey a lot unless everyone has agreed that ”1” means “Ready to trade.” An option
is to create an application-level symbol dictionary of meanings for the different signal
numbers.

aMessage is a String object with up to 1023 characters.

Instead of assigning meanings to aSignalNumber, your site might agree that the integer is
meaningless, but the message string is to be read as a string of characters conveying the
intended message, as in Example 12.8.
228 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Gem-to-Gem Signaling
For more complex information, the message could be a code where each symbol conveys
its own meaning.

You can use signals to broadcast a message to every user logged in to GemStone. In
Example 12.8, one session notifies all current sessions that it has created a new object to
represent a stock that was added to the portfolio. In applications that commit whenever a
new object is created, this code could be part of the instance creation method for class
Holding. Otherwise, it could be application-level code, triggered by a commit.

Example 12.8

System currentSessions do: [:each |
 System sendSignal: 8 to: each
 withMessage: 'new Holding: SallieMae'.].

System signalFromGemStoneSession at: 3.

If the message is displayed to users, they can commit or abort to get a new view of the
repository and put the new object in their notify sets. Or the application could be set up so
that signal 8 is handled without user visibility. The application might do an automatic
abort, or automatically start a transaction if the user is not in one, and add the object to the
notify set. This enables setting up a notifier on a new unknown object. Also, because
signals are queued in the order received, you can service them in order.

Receiving a Signal

You can receive a signal from another session in either of two ways: you can poll for such
signals, or you can enable notification from GemStone. Signals are queued in the receiving
session in the order in which they were received. If the receiving session has inadequate
heap space for an incoming signal, the contents of the signal is written to stdout, whether
the receiving session has enabled receiving such signals or not. (Both the structure of the
signal contents and the process of enabling signals are described in detail in the following
sections.)

The method System class>>signalFromGemStoneSession reads the incoming
signals, whether you poll or receive a signal. If there are no pending signals, the array is
empty.

Use a loop to call signalFromGemStoneSession repeatedly, until it returns a nil. This
guarantees that there are no more signals in the queue. If signals are being sent quickly,
you may not receive a separate InterSessionSignal for every signal. Or, if you use
polling, signals may arrive more often than your polling frequency.

Polling

To poll for signals from other sessions, send the following message as often as you
require:

System signalFromGemStoneSession

If a signal has been sent, this method returns a three-element array containing:

The session ID of the session that sent the signal (a SmallInteger).

The signal value (a SmallInteger).
April 2014 GemTalk Systems 229

Gem-to-Gem Signaling GemStone/S 64 Bit 3.2 Programming Guide
The string containing the signal message.

If no signal has been sent, this method returns an empty array.

Example 12.9 shows how to poll for Gem-to-Gem signals. If the polling process finds a
signal, it immediately checks for another one until the queue is empty. Then the process
sleeps for 10 seconds.

Example 12.9

| response count |
count := 0 .
[response := System signalFromGemStoneSession.
 response size = 0 and:[count < 50]
] whileTrue: [
 System sleep: 10.
 count := count + 1
].
^response

Receiving a Notification

To use the exception mechanism to receive signals from other Gem sessions, you must
enable receipt of the InterSessionSignal notification. This exception has the same
three arguments mentioned above:

The session ID of the session that sent the signal (a SmallInteger).

The signal value (a SmallInteger).

The string containing the signal message.

By default, the InterSessionSignal notification is disabled, except in the GemBuilder
for Smalltalk interface, which enables the error as part of
GbsSession>>gemSignalAction:.

To enable this exception, execute:

System enableSignaledGemStoneSessionError

To disable the exception, send the message:

System disableSignaledGemStoneSessionError

To determine whether receiving this exception is presently enabled or disabled, send the
message:

System signaledGemStoneSessionErrorStatus

This method returns true if the notification is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you end
the session, or you receive the error. The error is automatically disabled when you receive
it so that the exception handler can take appropriate action without further interruption.
You must re-enable it afterwards.
230 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Other Signal-Related Issues
12.4 Other Signal-Related Issues
GemStone notifiers and Gem-to-Gem signals use the same underlying implementation.
The following performance and other considerations apply when using either
mechanism.

Inactive Gem

Receiving the signal can also be delayed. GemStone is not an interrupt-driven application
programming interface. It is designed to make no demands on the application until the
application specifically requests service. Therefore, Gem-to-Gem signals and object
change notifiers are not implemented as interrupts, and they do not automatically awaken
an idle session. They can be received only when GemBuilder is running, not when you are
running client code, sitting at the Topaz prompt, waiting for activity on a socket, or
waiting on a semaphore (as for a child process to complete). The signals are queued up
and wait until you read them, which can create a problem with signal overflow if the
delay is too long and the signals are coming rapidly.

You can receive signals at reliable intervals by regularly performing some operation that
activates GemBuilder. For example, in a GemStone Smalltalk application, you could set
up a polling process that periodically sends out GbsSession>>pollForSignal. The
pollForSignal method causes GemBuilder for Smalltalk to poll the repository.
GemBuilder for C also provides a function GciPollForSignal.

You should also check in your application to make sure the session does not hang. For
instance, use GsSocket>>readReady to make sure your session won’t be waiting for
nonexistent input at a socket connection.

Dealing With Signal Overflow

Gem-to-Gem signals and object change notification signals are queued separately in the
receiving session. The queues maintain the order in which the signals are received.

NOTE
For object change notification, the queue does not preserve the order in which the
changes were committed to the repository. Each notification signal contains an
array of OOPs, and these changes are arranged in OOP order. See “Receiving
Object Change Notification” on page 222.

Each session has a signal buffer that will accommodate 50 signals. Signals remain in the
signal buffer until they are received and read by the receiving session. If the receiving
session does not read the signals, or if it does not read them fast enough to keep up with
signals that are being sent, the signal buffer will fill up. In this case, further signals will
cause the Exception SignalBufferFull to be signalled on the sender. Set your
application so that the sender gracefully handles this error. For example, the sender might
try to send the signal five times, and finally display a message of the form:

Receiver not responding.

The most effective way to prevent signal overflow is to keep the session in a state to
receive signals regularly, using the techniques discussed in the preceding section. When
you do receive signals, make sure you read all the signals off the queue. Repeat
signaledObjects or signalFromGemStoneSession until it returns a nil. You can
postpone the problem by sending very short messages, such as an OOP pointing to some
April 2014 GemTalk Systems 231

Other Signal-Related Issues GemStone/S 64 Bit 3.2 Programming Guide
string on disk or perhaps an index into a global message table. For a better idea of how the
message queue works, see System class>>sendSignal:to:withMessage: in the
image.

Sending Large Amounts of Data

If you want to pass large amounts of data between sessions, sockets are more appropriate
than Gem-to-Gem signals. Chapter 11, "File I/O and Operating System Access" describes
the GemStone interface to TCP/IP sockets. That solution does not pass data through the
Stone, so it does not create system overload when you send a great many messages or
very long ones.

Maintaining Signals and Notification When Users Log Out

Object change notification and Gem-to-Gem signals only reach logged-in sessions. For
applications that need to track processes continuously, you can create a Gem that runs
independently of the user sessions and monitors the system. For example, such a Gem can
monitor a machine and send a warning to all current sessions when something is out of
tolerance. Or it might receive the information that all the users need and store it where
they can find it when they log in.

Example 12.10 shows some of the code executed by an error handler installed in a monitor
Gem. It traps Gem-to-Gem signals and writes them to a log file.

Example 12.10

| gemMessage logString |
gemMessage := System signalFromGemStoneSession.
logString := String new.
logString add:
'---
The signal ';

add: (gemMessage at: 2) asString;
add: ' was received from GemStone sessionId = ';
add: (gemMessage at: 1) asString;
add: ' and the message is ';
addAll: (gemMessage at: 3).

(GsFile openWriteOnServer: '$GEMSTONE/gemmessage.txt')
addAll: logString; close.
232 GemTalk Systems April 2014

Chapter

13 Handling Exceptions
GemStone Smalltalk implements the ANSI exception handling protocols, with provisions
for signaling that an exception has occurred and for defining handlers for signaled
exceptions.

The Exception Class Hierarchy
describes the exception class hierarchy, listing the subclasses that correspond to events
that you may want to handle.

Signaling Exceptions
describes the mechanism whereby an application can signal that a some notable event
occurred. The class of the signaled exception determines which handler(s) will be
invoked. A handler might halt execution and report an error to the user.

Handling Exceptions
describes how to define handlers in your application to cope with signaled exceptions.
Depending on the type of the exception, your application might be able to handle the
exception gracefully, possibly even without the user being informed of the exception.

The Legacy Exception Handling Framework
describes the legacy exception handling framework.

13.1 The Exception Class Hierarchy
GemStone/S 64 Bit supports the ANSI Exception framework. The ANSI Exception
framework defines subclasses to match the granularity of errors that you may want to
handle.

GemStone also supports a Legacy Exception framework, for compatibility with earlier
version of Gemstone. This can be used to signal and handle ANSI exceptions. The Legacy
Exception framework is described starting on page page 242.

Figure 13.1 shows the ANSI exception handler class hierarchy.
April 2014 GemTalk Systems 233

The Exception Class Hierarchy GemStone/S 64 Bit 3.2 Programming Guide
Figure 13.1 Exception Class Hierarchy

AbstractException (gsResumable gsTrappable gsNumber currGsHandler
gsStack gsReason gsDetails tag messageText gsArgs)

Exception
ControlInterrupt

Break
Breakpoint (context stepPoint)
ClientForwarderSend (receiver clientObj selector)
Halt
TerminateProcess

Error
CompileError
EndOfStream
ExternalError

IOError
SocketError

SystemCallError (errno)
GciError
GciLegacyError
GsMalformedQueryExpressionError
ImproperOperation (object)

ArgumentError
ArgumentTypeError (expectedClass actualArg)
CannotReturn
LookupError (key)
OffsetError (maximum actual)
OutOfRange (minimum maximum actual)

FloatingPointError
RegexpError

IndexingErrorPreventingCommit
InternalError

GciTransportError
LockError (object)
NameError (selector)

MessageNotUnderstood (envId receiver)
NumericError

ZeroDivide (dividend)
RepositoryError
SecurityError
SignalBufferFull
ThreadError
TransactionError
UncontinuableError
UserDefinedError

Notification
Admonition

AlmostOutOfMemory
AlmostOutOfStack
RepositoryViewLost

Deprecated
FloatingPointException
GsUnsatisfiableQueryNotification
InterSessionSignal (sendingSession signal)
ObjectsCommittedNotification
TransactionBacklog (inTransaction)
Warning

CompileWarning
TestFailure

ResumableTestFailure
234 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Signaling Exceptions
13.2 Signaling Exceptions
ANSI Exceptions are class-based: you use a class in the Exception hierarchy to describe
errors and other exceptions in your GemStone Smalltalk programs.

You can extend the built-in exception types by defining new subclasses. You can also
change your new exception’s default behavior by adding method overrides to the new
class (for example, defaultAction and isResumable).

The ANSI exception handling framework provides for zero or more dynamic (stack-
based) handlers and a list of zero or more default handlers, ordered in the sequence they
were installed.

When an application sends a message of the form:

Exception signal: aString

GemStone Smalltalk creates an instance of the signaled class and performs the following
search for a suitable handler:

1. Search the stack for a handler associated with the exception class. In a dynamic
(stack-based) handler (page 236), you explicitly identify a block of application code
that might signal an exception to which you wish to respond.

2. Search the default (static) handlers. A default handler (page 240) is invoked if a
dynamic handler is not found or if the last dynamic handler passes the exception.

3. Search the exception class for an implementation of the instance method default-
Action. Some exception classes redefine this method, thereby establishing a handler
to use in the case that there is no suitable dynamic or default handler or if the last such
handler passes the exception. For example, with Notification, the default action is to
ignore the exception.

If the exception class does not override the implementation of defaultAction in
class AbstractException, halt the GemStone Smalltalk interpreter and pass the excep-
tion back to the client to be handled (by Topaz, GemBuilder, or another application)
as an error.

Example 13.1

method: Employee
age: anInt
(anInt between: 15 and: 65)

ifFalse: [Error signal: 'Employee age out of range'].
age := anInt.
%

April 2014 GemTalk Systems 235

Handling Exceptions GemStone/S 64 Bit 3.2 Programming Guide
13.3 Handling Exceptions
Other than a few fatal errors, most signaled exceptions can be handled in your GemStone
Smalltalk application. To do so, you identify the type of exception that might be signaled
(Exception or, more often, a subclass of Exception) and provide GemStone Smalltalk code
to handle the exception.

GemStone Smalltalk allows you to define two kinds of exception handlers: dynamic (stack-
based) handlers and default (static) handlers.

Dynamic (Stack-Based) Handlers

A dynamic (stack-based) handler is associated with an executable block (instance of
ExecBlock) and the associated state in which the GemStone Smalltalk virtual machine is
presently executing. These handlers live and die with their associated blocks—when the
block is exited, the handler is gone.

A dynamic handler is associated with exactly one ExecBlock and applies as long as the
ExecBlock is being executed. Because an ExecBlock can be embedded in another
ExecBlock (either directly or via another method), multiple dynamic handlers can be
active at one time. Figure 13.2 illustrates this relationship.

Figure 13.2 ExecBlock and Associated Handlers

top
...
^

/ ExecBlock -> Optional dynamic handler
Stack ^

\ ExecBlock -> Optional dynamic handler
^
bottom

To define a dynamic handler for an ExecBlock, send the on:do: message to the block.
Example 13.2 defines an averagePay method for the Employee class. The method
calculates an average by dividing two values. If the division signals a ZeroDivide
exception, the exception handler returns zero as the result of the method. In this
implementation, the method will never result in a “division by zero error” being seen by
the user. (Of course, there are other ways you might write this particular method. This
example simply serves to highlight the on:do: exception handling approach.)
236 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Handling Exceptions
Example 13.2

method: Employee
averagePay

[
^self totalPay / self yearsOfService.

] on: ZeroDivide do: [:ex |
^0.

].
%

The first argument to the on:do: method specifies what types of exception the handler
should catch. The argument can be a class in the Exception hierarchy, or it can be an
ExceptionSet made up of one or more classes in the Exception hierarchy.

The second argument specifies a one-argument ExecBlock that will be invoked when the
specified exception is signaled. The one argument is the newly-created instance of the
class of the exception that was signaled, and can contain additional information about the
exception (including the string that was passed to the signal: method). For example, an
instance of the ZeroDivide error can be queried for the dividend (obviously, the divisor is
zero). Similarly, an instance of the MessageNotUnderstood error can be queried for the
receiver and message (selector and arguments).

Selecting a Handler

When an exception is signaled, GemStone starts at the top of the current process’s stack,
searching down the stack for a handler that handles the exception. Each exception handler
in the stack is examined to see if it was installed (using the on:do: message) as a handler
for the signaled exception’s class. If a handler is found but it does not handle the signaled
exception, it is passed over and the search continues down the stack.

A handler for a superclass will handle subclass exceptions. That is, an exception handler
for the class Error will be invoked for an exception of its subclass ZeroDivide, and an
exception handler for the class Notification will be invoked for an exception of its subclass
Warning.

A subclass does not, however, handle a superclass exception. This means that an
exception handler for the class MessageNotUnderstood will not be invoked for an
exception of its superclass Error.

Example 13.3 contains six blocks, three protected blocks and three handler blocks. Each of
the three on:do: messages creates a new stack frame that has an associated handler
block.
April 2014 GemTalk Systems 237

Handling Exceptions GemStone/S 64 Bit 3.2 Programming Guide
Example 13.3

method: Employee
doStuff

| a b c |
a := [

self doStuffA.
b := [

self doStuffB.
c := [
self doStuffC.
self doStuffD.
] on: ZeroDivide do: [:zdEx |
self handleZeroDivide: zdEx.
^self.
].
self doStuffE.

] on: Warning do: [:wEx |
self handleWarning: wEx.
wEx resume: #ok.

].
self doStuffF.
#good.

] on: Error do: [:erEx |
self handleError: erEx.
erEx return: #bad.

].
%

As shown in Figure 13.3, the handler for Error is installed first, and catches any Error or
subclass exception signaled during the block that begins with self doStuffA.

The handler for Warning is installed next, and catches any Warning or subclass exception
signaled during the block that begins with self doStuffB.

If a ZeroDivide error is signaled during doStuffB, it is handled by the Error handler, not
by the ZeroDivide handler (which is not yet installed).

The handler for ZeroDivide is installed last, and catches any ZeroDivide error or subclass
exception signaled during the block that begins with self doStuffC.

If a MessageNotUnderstood error were signaled during doStuffC, it would not be
handled by either the ZeroDivide or Warning handler, even though they were installed
more recently. Those handlers are not of the proper class; MessageNotUnderstood does
not inherit from ZeroDivide or Warning. Instead, a MessageNotUnderstood error would
be handled by the Error handler associated with the block that begins with self
doStuffA.
238 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Handling Exceptions
Figure 13.3 Selecting a Handler

Newest or innermost call Handler

 Direction
 of
 Search

doStuffC ZeroDivide

doStuffB Warning

doStuffA Error

Oldest or outermost call

Flow of Control

Once control is passed by sending value: to the handler block with the exception
instance as an argument, the handler block can attempt to address the situation.

Keep in mind that a dynamic handler is just an ExecBlock that is defined in a method and
passed as an argument during a message send (like a block sent with a select:
message). As such, the dynamic handler has access to the method context in which it is
defined, including method temporaries and block variables in its scope, as well as the
object in which the method is defined (including instance variables). The handler may, of
course, send messages to any object to which it has access.

In particular, the dynamic handler may return from the method containing the dynamic
handler. In Example 13.3 (on page 238), the ZeroDivide handler returns self. If a
ZeroDivide exception were signaled during doStuffC, then the doStuff method would
return and other messages would never be sent (doStuffD, doStuffE, and doStuffF).

Messages That Alter the Flow of Control

In addition to an explicit return from the containing method, a dynamic handler can send
the following messages to the exception instance to cause other changes in the flow of
control. Sending one of these messages is similar to a method return in that there is no
return from these messages (except for outer, which might return).

resume: anObject
Causes anObject to be returned as the result of the signal: message that triggered the
exception. Sending resume: to a non-resumable exception is an error.

In Example 13.3, the Warning handler returns #ok as the result of the signal: mes-
sage.

resume
Causes nil to be returned as the result of the signal: message. Sending resume to a
non-resumable exception is an error.

return: anObject
Causes anObject to be returned as the result of the on:do: message to the protected
block. In Example 13.3, the Error handler returns #bad to the local variable ‘a’ as the
result of the on:do: message. If no Error occurred during the protected block, then the
on:do: method would return #good as the result of evaluating the protected block.
April 2014 GemTalk Systems 239

Handling Exceptions GemStone/S 64 Bit 3.2 Programming Guide
return
Causes nil to be returned as a result of the on:do: message.

retry
Unwinds the stack and re-evaluates the protected block (by sending the on:do:
message again).

retryUsing: aBlock
Unwinds the stack and evaluates the replacement block as the protected block, sending
it the on:do: message.

pass
Exits the current handler and searches for the next handler. In Example 13.3, if the
ZeroDivide handler sends pass to the ZeroDivide exception instance, control passes
to the Error handler as if the ZeroDivide handler didn’t exist (except that any side
effects of its operation up to the pass message are preserved).

outer
Similar to pass, except that if the outer handler sends resume: or resume to the
exception instance, control returns to the inner handler from the outer message.

resignalAs: replacementException
Sending this message causes GemStone Smalltalk to start searching for an exception
handler for replacementException at the top of the stack as if the original signal:
message had been sent to replacementException instead of the receiver.

NOTE
If none of the above messages are sent to alter the flow of control, the value of the
last expression in the block will be returned as the result of the on:do: message.
(For clarity, you could make this behavior explicit by using the return:
message.)

Default Handlers

As described above, a dynamic (stack-based) handler protects a particular block of code
that exists in the same method as the handler. This is appropriate when you only want to
handle a particular exception during execution of the protected code. When the protected
block finishes executing, the handler is no longer in effect.

There are, however, other exceptions that could happen at any time for reasons entirely
unrelated to your code — for example, being notified that the disk is full
(RepositoryError) or that another Gem is sending you a signal (InterSessionSignal). For
such exceptions, you can establish a default (or static) handler.

Since ANSI does not provide a direct API for adding and removing default handlers at
runtime, GemStone provides the following methods to deal with default handlers in the
context of the ANSI framework.

Exception class >> addDefaultHandler: aOneArgumentBlock
Returns a GsExceptionHandler that understands the message remove and adds
the new handler to the beginning of the defaultHandlers list. After
aOneArgumentBlock (equivalent to the second argument to on:do:) is invoked, the
argument (an instance of Exception or one of its subclasses) responds
appropriately to pass and outer seamlessly between stack-based and default
handlers.
240 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Handling Exceptions
AbstractException class >> defaultHandlers
Returns a SequenceableCollection (or subclass) of GsExceptionHandler instances
that will catch instances of the receiver (typically, a subclass of AbstractException).
The result does not include any legacy static handlers (as discussed on page 243).
This collection may be empty and typically is a subset of the installed default
(static) handlers.

GsExceptionHandler >> remove
Since a default handler is not tied to a specific block of code, once installed it
remains in effect until explicitly removed (or until the session logs out). This
method removes (and returns) the default handler if it is found. If it is not found,
returns nil.

Default Actions

The third line of defense for an exception (after dynamic and default handlers) occurs
when the virtual machine sends the message defaultAction to the signaled exception.
Because defaultAction is implemented in AbstractException, every exception will
eventually be handled. The ultimate default action (in AbstractException) is to stop the
GemStone Smalltalk interpreter and pass the exception back to the client (to be handled
by Topaz, GemBuilder, or another application).

Exception subclasses can override this method to provide alternate behavior. For
example, the default action for Notification is to ignore the notification and return nil
from the signal: message. For Deprecated, the default action is to log information; for
MessageNotUnderstood, the default action is to retry the original action.

To define a default handler for a new exception, add a defaultAction method to your
new exception class.
April 2014 GemTalk Systems 241

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.2 Programming Guide
13.4 The Legacy Exception Handling Framework
ANSI exception handling, as described previously, is the primary mechanism for dealing
with errors in your programs. The legacy handler protocol is deprecated, and all exceptions
are now raised as ANSI exceptions. While we strongly encourage the use of ANSI protocol,
legacy protocol may be used to raise and handle ANSI exceptions.

Dynamic (Stack-Based) Exception Handler

In ANSI, a dynamic (stack-based) exception handler is associated with an ExecBlock. By
contrast, a dynamic legacy exception handler is associated with a method being executed.
These exception handlers live and die with their associated method contexts—when the
method returns, control is passed to the next method and the exception handler is gone.

Each exception handler is associated with one method context, but each method context
can have a stack of associated exception handlers. The relationship is diagrammed in
Figure 13.4.

Figure 13.4 Method Contexts and Associated Exceptions

method
handler

top

next

handler

next = nil

handler

next

handler

context

method
context

method
context

handler

next

S
ta

ck

resignal:

.

.

.

Installing a Dynamic (Stack-Based) Exception Handler

To define a legacy dynamic (stack-based) handler for an exception, use the class method
Exception category:number:do:.

The argument to the category: keyword is ignored.

The argument to the number: keyword is the specific error number you wish to
catch, which can be nil (to catch all exceptions).
242 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide The Legacy Exception Handling Framework
The argument to the do: keyword is a four-argument block you wish to execute
when the error is raised.

 The first argument to the four-argument block is the instance of Exception that was
signaled.

 The second argument to the four-argument block is always GemStoneError.

 The third argument to the four-argument block is an error number.

 The fourth argument to the four-argument block is the data passed in when
invoking the error.

If your exception handler does not specify an error number (an error number of nil), then
it receives control in the event of any exception.

The exception handler in Example 13.4 catches the GemStone exception ZeroDivide and
returns either PlusInfinity or MinusInfinity, depending on the sign of the dividend.

Example 13.4

| a b c |
a := 0.
Exception

category: GemStoneError
number: 2026
do: [:ex :cat :num :args |

"Return a value as a result of the #'/' message"
ex dividend * 1.0e0 / 0].

"This might give a ZeroDivide error,
depending on the value of a"
b := -10 / a.
c := b * 3.
c

NOTE
Keep the handler as simple as possible, because you cannot receive any additional
errors while the handler executes. Normally your handler should never terminate
the ongoing activity and change to some other activity.

Default (Static) Exception Handlers

A default (static) exception handler is a final line of defense—if you define one, it will take
control in the event of any error for which no other handler has been defined. A static
exception handler executes without changing in any way the stack, or the return value of
the method that called it. Static exception handlers are therefore useful for handling errors
that appear at unpredictable times, such as the errors listed in Table 1. You can use a static
exception handler as you would an interrupt handler, coding it to change the value of
some global variable, perhaps, so that you can determine that an error did, in fact, occur.

Installing a Default (Static) Exception Handler

To define a default (static) exception handler, use the Exception class method
installStaticException:category:number:.
April 2014 GemTalk Systems 243

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.2 Programming Guide
The argument to the installStaticException: keyword is the block you wish to
execute when the error is raised.

The argument to the category: keyword is ignored.

The argument to the number: keyword is the specific error number you wish to
catch.

The following exception handler, for example, handles the error #abortErrLostOtRoot:

Example 13.5

UserGlobals at: #tx3 put:
 ("Handle lost OT root"
 Exception
 installStaticException: [:ex :cat :num :args |
 System abortTransaction.
]
 category: nil
 number: 3031
 subtype: nil
).

To remove the handler, execute:

self removeExceptionHandler: (UserGlobals at: #tx3).

GemStone Event Exceptions

The errors in Table 1 are sometimes called event exceptions. Although they are not true
errors, their implementation is based on the GemStone error mechanism. For examples
that use these event exceptions, also called signals, see Chapter 12, “Signals and
Notifiers”.

In Table 1, the legacy error symbol (and number) is listed along with the corresponding
GemStone/S 64 Bit v3.2 exception class.

NOTE
The array LegacyErrNumMap (in Globals) describes the mapping of legacy (pre-
3.0) error numbers to ANSI exception classes (as described in Chapter 13).
244 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide The Legacy Exception Handling Framework
Table 1 Common GemStone Event Exceptions

Exception class

Legacy symbol (and number)
Description

When System inTransaction returns false (running
outside a transaction), Stone requested Gem to abort. This
error is generated only if you have executed either
System enableSignaledAbortError or Transac-
tionBacklog enableSignalling.

When System inTransaction returns true (the session is
in transaction), Stone has requested the session to commit,
abort, or continue (with continueTransaction) the current
transaction. This error is received only if you have executed
either
System enableSignaledFinishTransactionError
or TransactionBacklog enableSignalling.

An element of the notify set was committed and added to
the signaled objects set. This error is received only if you
have executed either
System enableSignaledObjectsError or
ObjectsCommittedNotification enableSignal-
ling

Your session received a signal from another GemStone ses-
sion. This error is received only if you have executed either
System enableSignaledGemstoneSessionError or
InterSessionSignal enableSignalling.
InterSessionSignal arguments:
1. The session ID of the session that sent the signal.
2. An integer representing the signal.
3. A message string.

Temporary object memory for the session is almost full.
The error is deferred if in user action or index maintenance.
This error is enabled by default, but the default handler has
no action. After a signal is received, it must be reenabled
using System enableAlmostOutOfMemoryError or
AlmostOutOfMemory enable.

All available transaction log directories or partitions are
full. This error is received if you are DataCurator or Syste-
mUser, otherwise only if you have executed
System enableSignalTranlogsFull.

While running outside a transaction, Stone requested Gem
to abort. Gem did not respond in the allocated time, and
Stone was forced to revoke access to the object table.

TransactionBacklog

#rtErrSignalAbort (6009)

#rtErrSignalFinishTransaction
(6012)

ObjectsCommittedNotification

#rtErrSignalCommit (6008)

InterSessionSignal

#rtErrSignalGemStoneSession
(6010)

AlmostOutOfMemory

#rtErrSignalAlmostOutOfMemory
(6013)

RepositoryError

#rtErrTranlogDirFull (2339)

RepositoryViewLost

#abortErrLostOtRoot (3031)
April 2014 GemTalk Systems 245

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.2 Programming Guide
Flow of Control

Exception handlers with no explicit return operate like interrupt handlers—they return
control directly to the method from which the exception was raised. You must write all
default (static) exception handlers this way, because the stack usually changes by the time
they catch an error. Dynamic (stack-based) exception handlers can also be written to
behave that way, like the one in Example 13.4 on page 243. See Figure 13.5.

Figure 13.5

top

to interface

Exception
without ^

executed
code

System
signal:

args:

1/0
Error, e.g.

Default Flow of Control in Legacy Exception Handlers

Sometimes, however, this is not useful behavior—the application may simply have to
raise the same error again. In dynamic (stack-based) exception handlers, it can be useful
instead to return control to the method that defined the handler.

You can accomplish this by defining an explicit return (using the return character ^) in the
block that is executed when the exception is raised. For example, the method in
Example 13.1 redefines how the GemStone exception #ZeroDivide is to be handled.

Example 13.1

| a b c |
a := 0.
Exception

category: GemStoneError
number: 2026
do: [:ex :cat :num :args |
"Return from this method with a String"
^'zero divide'
].

"When a is zero, the error will be caught and the method will
return without assigning any value to b or c"
246 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide The Legacy Exception Handling Framework
b := -10 / a.
c := b * 3.
c

Figure 13.6 shows the flow of control in Example 13.1.

Figure 13.6

to interface

executed
code

Exception
with ^

top

System
signal:

args:

1/0
Error, e.g.

Dynamic (Stack-Based) Exception Handler with Explicit Return

Signaling Other Exception Handlers

Under certain circumstances, your exception handler can choose to pass control to a
previously defined exception handler, one that is below the present exception handler on
the stack. To do so, your exception handler can send the message
resignal:number:args:.

The argument to the resignal: keyword is ignored.

The argument to the number: keyword is the specific error number you wish to
signal.

The argument to the args: keyword is an array of information you wish to pass to
the exception handler. This is the array whose elements might be used to build the
error message.

Removing Exception Handlers

You can define an exception so that it removes itself after it has been raised, using the
Exception instance method remove. In conjunction with the resignal: mechanism
described in the previous section, remove allows you to set up your application so that
successive occurrences of the same error (or category of errors) are handled by
successively older exception handlers that are associated with the same context.
April 2014 GemTalk Systems 247

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.2 Programming Guide
For example, suppose we execute the following code:

Example 13.2

| x y |
Exception

category: GemStoneError
number: 2026
do: [:ex :cat :num :args | ex remove. 'result of first handler'].

Exception
category: GemStoneError
number: 2026
do: [:ex :cat :num :args | ex remove. 'result of second handler'].

x := 1 / 0. "handled by the second (most recent) handler"
y := 2 / 0. "handled by the first handler; the second was removed"
Array with: x with: y.

" anArray('result of second handler', 'result of first handler')"

The first occurrence of the error executes the most recent exception defined. The exception
then removes itself, so that the next occurrence of the same error executes the exception
handler stacked previously within the same method context. This exception handler
returns an array of two strings, as shown here.

Recursive Errors

If you define an exception handler broadly to handle many different errors, and you make
a programming mistake in your exception handler, the exception handler may then raise
an error that calls itself repeatedly. Such infinitely recursive error handling eventually
reaches the stack limit. The resulting stack overflow error is received by whichever
interface you are using.

If you receive such an error, check your exception handler carefully to determine whether
it includes errors that are causing the problem.

Raising Exceptions

Legacy methods for raising exceptions can be used, but raise ANSI exceptions.

To raise an exception, use the class method System signal:args:
signalDictionary:.

The argument to the signal: keyword is the specific error number you wish to
signal.

The argument to the args: keyword is an array of information you wish to pass to
the exception handler. This is the array whose elements are passed to the handler.

The argument to the signalDictionary: keyword is ignored.

To raise the generic exception defined for you in ErrorSymbols as #genericError, use the
class method System genericSignal:text:args:, or one of its variants.
248 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide The Legacy Exception Handling Framework
The argument to the genericSignal: keyword is an object you can define to
further distinguish between errors, if you wish. Alternatively, it can be nil.

The argument to the text: keyword is a string you can use for an error message. It
will appear in GemStone’s error message when this error is raised. It can be nil.

The argument to the args: keyword is an array of information you wish to pass to
the exception handler, as described above.

Other variants of this message are System genericSignal:text:arg: for errors
having only one argument, or System genericSignal:text: for errors having no
arguments.

ANSI Integration

The ANSI and legacy frameworks should work together so that signaling an ANSI
exception is caught by a legacy exception handler. Example 13.3 shows a sample use of a
legacy handler to catch signaled ANSI exceptions.

Example 13.3

method: Employee
legacyMethod

self doA.
"Install a legacy handler"
Exception

category: nil
number: nil
do: [:ex :cat :num :args |

self handlerCode.
self shouldReturn ifTrue: [

^self returnValue.
].
self continueValue.

].
self doB.
"Signal an ANSI error"
instVar1 := Error signal: 'something bad happened!'.
self doC.
^instVar2.

%

When this method is invoked, it calls doA before installing the exception handler. After
the exception handler is installed, the method calls doB. If any exception is signaled
during the execution of doB, the handler is invoked.

Next, an explicit error is invoked, using the ANSI protocol. This signaled ANSI exception
is caught by the legacy exception handler installed earlier in the method. After evaluating
the handlerCode, the handler decides whether to return from the method or continue. If
it returns, the result of returnValue is returned. If it continues, the result of
continueValue is stored in instVar1, and the method proceeds with doC and finally
returns instVar2.
April 2014 GemTalk Systems 249

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.2 Programming Guide
250 GemTalk Systems April 2014

Chapter

14 Performance and
Optimization
GemStone Smalltalk includes several tools to help you tune your applications for faster
performance.

Clustering Objects for Faster Retrieval
How to cluster objects that are often accessed together so that many of them can be
found in the same disk access.

Profiling Smalltalk Execution
Profiling tools that allow you to pinpoint the problem areas in your application code.

Modifying Cache Sizes for Better Performance
How to increase or decrease the size of various caches in order to minimize disk access
and storage reclamation.

Managing VM Memory
Issues to consider when managing temporary object memory, and presents techniques
for diagnosing and addressing OutOfMemory conditions.

NotTranloggedGlobals
Optimize certain operations by avoiding writing tranlog entries.

Other Optimization Hints
Allow operations on large collections without using temporary object memory.

14.1 Clustering Objects for Faster Retrieval
As you’ve seen, GemStone ordinarily manages the placement of objects on the disk
automatically—you’re never forced to worry about it. Occasionally, you might choose to
group related objects on secondary storage to enable GemStone to read all of the objects in
the group with as few disk accesses as possible.

Because an access to the first element usually presages the need to read the other
elements, it makes sense to arrange those elements on the disk in the smallest number of
disk pages. This placement of objects on physically contiguous regions of the disk is the
April 2014 GemTalk Systems 251

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.2 Programming Guide
function of class Object’s clustering protocol. By clustering small groups of objects that are
often accessed together, you can sometimes improve performance.

Clustering a group of objects packs them into disk pages, each page holding as many of
the objects as possible. The objects are contiguous within a page, but pages are not
necessarily contiguous on the disk.

Will Clustering Solve the Problem?

Clustering objects solves a specific problem—slow performance due to excessive disk
accessing. However, disk access is not the only factor in poor performance. In order to
determine if clustering will solve your problem, you need to do some diagnosis. You can
use GemStone’s VSD utility to find out how many times your application is accessing the
disk. VSD allows you to chart system statistics over time to better understand the
performance of your system. See the VSD User’s Guide for more information on using
VSD.

The following statistics are of interest:

pageReads — how many pages your session has read from the disk since the session
began

pageWrites — how many pages your session has written to the disk since the
session began

You can examine the values of these statistics before and after you commit each
transaction to discover how many pages it read in order to perform a particular query,
and to determine the number of disk accesses required by the process of committing the
transaction.

It is tempting to ignore these issues until you experience a problem such as an extremely
slow application, but if you keep track of such statistics on a regular (even if intermittent)
basis, you will have a better idea of what is “normal” behavior when a problem crops up.

Cluster Buckets

You can think of clustering as writing the components of their receivers on a stream of
disk pages. When a page is filled, another is randomly chosen and subsequent objects are
written on the new page. A new page is ordinarily selected for use only when the
previous page is filled, or when a transaction ends. Sending the message cluster to
objects in repeated transactions will, within the limits imposed by page capacity, place its
receivers in adjacent disk locations. (Sending the message cluster to objects repeatedly
within a transaction has no effect.)

The stream of disk pages used by cluster and its companion methods is called a bucket.
GemStone captures this concept in the class ClusterBucket.

If you determine that clustering will improve your application’s performance, you can use
instances of the class ClusterBucket to help. All objects assigned to the same instance of
ClusterBucket are to be clustered together. When the objects are written, they are moved
to contiguous locations on the same page, if possible. Otherwise the objects are written to
contiguous locations on several pages.

Once an object has been clustered into a particular bucket and committed, that bucket
remains associated with the object until you specify otherwise. When the object is
252 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Clustering Objects for Faster Retrieval
modified, it continues to cluster with the other objects in the same bucket, although it
might move to another page within the same bucket.

Using Existing Cluster Buckets

By default, a global array called AllClusterBuckets defines seven instances of
ClusterBucket. Each can be accessed by specifying its offset in the array. For example, the
first instance, AllClusterBuckets at: 1, is the default bucket when you log in. It
specifies an extentId of nil. This bucket is invariant—you cannot modify it.

The second, third, and seventh cluster buckets in the array also specify an extentId of nil.
They can be used for whatever purposes you require and can all be modified.

The GemStone system makes use of the fourth, fifth, and sixth buckets of the array
AllClusterBuckets:

AllClusterBuckets at: 4 is the bucket used to cluster the methods associated
with kernel classes.

AllClusterBuckets at: 5 is the bucket used to cluster the strings that define
source code for kernel classes.

AllClusterBuckets at: 6 is the bucket used to cluster other kernel objects such
as globals.

You can determine how many cluster buckets are currently defined by executing:

System maxClusterBucket

A given cluster bucket’s offset in the array specifies its clusterId. A cluster bucket’s
clusterId is an integer in the range of 1 to (System maxClusterBucket).

NOTE
For compatibility with previous versions of GemStone, you can use a clusterId as
an argument to any keyword that takes an instance of ClusterBucket as an
argument.

You can determine which cluster bucket is currently the system default by executing:

System currentClusterBucket

You can access all instances of cluster buckets in your system by executing:

ClusterBucket allInstances

You can change the current default cluster bucket by executing an expression of the form:

System clusterBucket: aClusterBucket

Creating New Cluster Buckets

You are not limited to the predefined instances of ClusterBucket. You can create new
instances of ClusterBucket with the simple expression ClusterBucket new.

This expression creates a new instance of ClusterBucket and adds it to the array
AllClusterBuckets. You can then access the bucket in one of two ways. You can assign it a
name:

UserGlobals at: #empClusterBucket put: (ClusterBucket new)
April 2014 GemTalk Systems 253

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.2 Programming Guide
You could then refer to it in your application as empClusterBucket. Alternatively, you can
use the offset into the array AllClusterBuckets. For example, if this is the first cluster
bucket you have created, you could refer to it this way:

AllClusterBuckets at: 8

(Recall that the first seven elements of the array are predefined.)

You can determine the clusterId of a cluster bucket by sending it the message
clusterId. For example:

empClusterBucket clusterId
8

You can access an instance of ClusterBucket with a specific clusterId by sending it the
message bucketWithId:. For example:

ClusterBucket bucketWithId: 8
empClusterBucket

You can create and use as many cluster buckets as you need; up to thousands, if
necessary.

NOTE
For best performance and disk space usage, use no more than 32 cluster buckets in
a single session.

Cluster Buckets and Concurrency

Cluster buckets are designed to minimize concurrency conflicts. As many users as
necessary can cluster objects at the same time, using the same cluster bucket, without
experiencing concurrency conflicts. Cluster buckets do not contain or reference the objects
clustered on them -- the objects that are clustered keep track of their bucket. This also
avoids problems with authorizations.

However, creating a new instance of ClusterBucket automatically adds it to the global
array AllClusterBuckets. Adding an instance to AllClusterBuckets causes a concurrency
conflict when more than one transaction tries to create new cluster buckets at the same
time, since all the transactions are all trying to write the same array object.

To avoid concurrency conflicts, you should design your clustering when you design your
application. Create all the instances of ClusterBucket you anticipate needing and commit
them in one or few transactions.

To facilitate this kind of design, GemStone allows you to associate descriptions with
specific instances of ClusterBucket. In this way, you can communicate to your fellow
users the intended use of a given cluster bucket with the message description:. For
example:

Example 14.1

UserGlobals at: #empClusterBucket put: (ClusterBucket new)
empClusterBucket description: 'Use this bucket for

clustering employees and their instance variables.'

As you can see, the message description: takes a string of text as an argument.
254 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Clustering Objects for Faster Retrieval
Changing the attributes of a cluster bucket, such as its description or clusterId, writes that
cluster bucket and thus can cause concurrency conflict. Only change these attributes when
necessary.

NOTE
For best performance and disk space usage as well as avoiding concurrency
conflicts, create the required instances of ClusterBucket all at once, instead of on
a per-transaction basis, and update their attributes infrequently.

Cluster Buckets and Indexing

Indexes on instance of subclasses of UnorderedCollection are created and modified using
the cluster bucket associated with the specific collection, if any. To change the clustering
of an indexed collection:

1. Remove its index.

2. Recluster the collection.

3. Re-create its index.

Clustering Objects

Class Object defines several clustering methods. One method is simple and fundamental.
Another method is more sophisticated and attempts to order the receiver’s instance
variables as well as writing the receiver itself.

The Basic Clustering Message

The basic clustering message defined by class Object is cluster. For example:

myObject cluster

This simplest clustering method simply assigns the receiver to the current default cluster
bucket; it does not attempt to cluster the receiver’s instance variables. When the object is
next written to disk, it will be clustered according to the attributes of the current default
cluster bucket.

If you wish to cluster the instance variables of an object, you can define a special method
to do so.

CAUTION
Do not redefine the method cluster in the class Object, because other methods
rely on the default behavior of the cluster method. You can, however, define a
cluster method for classes in your application if required.

Suppose, for example, that you defined class Name and class Employee as shown in
Example 14.2.

Example 14.2

Object subclass: 'Name'
instVarNames: #('first' 'middle' 'last')
classVars: #()
classInstVars: #()
April 2014 GemTalk Systems 255

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.2 Programming Guide
poolDictionaries: {}
inDictionary: UserGlobals.

Object subclass: 'Employee'
instVarNames: #('name' 'job' 'age' 'address')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

The following clustering method might be suitable for class Employee. (A more purely
object-oriented approach would embed the information on clustering first, middle, and
last names in the cluster method for Name, but such an approach does not exemplify
the breadth-first clustering technique we wish to show here.)

Example 14.3

method: Employee
clusterBreadthFirst

self cluster.
name cluster.
job cluster.
address cluster.
name first cluster.
name middle cluster.
name last cluster.
^false

%

| Lurleen |
Lurleen := Employee new name: (Name new first: #Lurleen);

job: 'busdriver'; age: 24; address: '540 E. Sixth'.
Lurleen clusterBreadthFirst
%

The elements of byte objects such as instances of String and Float are always clustered
automatically. A string’s characters, for example, are always written contiguously within
disk pages. Consequently, you need not send cluster to each element of each string
stored in job or address; clustering the strings themselves is sufficient. Sending cluster to
individual special objects (instances of SmallInteger, Character, Boolean, SmallDouble, or
UndefinedObject) has no effect. Hence no clustering message is sent to age in the previous
example.

After sending cluster to an Employee, the Employee is clustered as follows:

anEmp aName job address first middle last

cluster returns a Boolean value. You can use that value to eliminate the possibility of
infinite recursion when you’re clustering the variables of an object that can contain itself.
Here are the rules that cluster follows in deciding what to return:
256 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Clustering Objects for Faster Retrieval
If the receiver has already been clustered during the current transaction or if the
receiver is a special object, cluster declines to cluster the object and returns true to
indicate that all of the necessary work has been done.

If the receiver is a byte object that has not been clustered in the current transaction,
cluster writes it on a disk page and, as in the previous case, returns true to indicate
that the clustering process is finished for that object.

If the receiver is a pointer object that has not been clustered in the current transaction,
cluster writes the object and returns false to indicate that the receiver might have
instance variables that could benefit from clustering.

Depth-First Clustering

clusterDepthFirst differs from cluster only in one way: it traverses the tree
representing its receiver’s instance variables (named, indexed, or unordered) in depth-
first order, assigning each node to the current default cluster bucket as it is visited. That is,
it writes the receiver’s first instance variable, then the first instance variable of that
instance variable, then the first instance variable of that instance variable, and so on to the
bottom of the tree. It then backs up and visits the nodes it missed before, repeating the
process until the whole tree has been written.

This method clusters an Employee as shown below:

anEmp aName first middle last job address

Assigning Cluster Buckets

Both cluster and clusterDepthFirst use the current default cluster bucket. If you
wish to use a specific cluster bucket instead, you can use the method
clusterInBucket:. For example, the following expression clusters aBagOfEmployees
using the specific cluster bucket empClusterBucket:

aBagOfEmployees clusterInBucket: empClusterBucket

In order to determine the cluster bucket associated with a given object, you can send it the
message clusterBucket. For example, after executing the example above, the following
example would return the value shown below:

aBagOfEmployees clusterBucket
empClusterBucket

Clustering and Memory Use

Clustering tags objects in memory so that when the next successful commit occurs, the
objects are clustered onto data pages according to the method specified. After an object
has been clustered, it is considered to be “dirty”. If you cluster a large number of objects,
you may need to increase temporary object memory to avoid running out of session
memory. See “Managing VM Memory” on page 270.

Using Several Cluster Buckets

When you want to write a loop that clusters parts of each object in a group into separate
pages, it is helpful to have multiple cluster buckets available. Suppose that you had
defined class SetOfEmployees and class Employee as in Chapter 4. Suppose, in addition,
that you wanted a clustering method to write all employees contiguously and then write
April 2014 GemTalk Systems 257

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.2 Programming Guide
all employee addresses contiguously. With only one cluster bucket at your disposal, you
would need to define your clustering method as shown in Example 14.4. In this approach,
each employee is fetched once for clustering, then fetched again in order to cluster the
employee’s address.

Example 14.4

method: SetOfEmployees
clusterEmployees
 self do: [:n | n cluster].
 self do: [:n | n address cluster].
%
myEmployees clusterEmployees

Clustering Class Objects

Clustering provides the most benefit for small groups of objects that are often accessed
together — for example, a class with its instance variables. Those instance variables of a
class that describe the class’s variables are often accessed in a single operation, as are the
instance variables that contain a class’s methods. Therefore, class Behavior defines the
following special clustering methods for classes:

The code in Example 14.1 clusters class Employee’s structure-describing variables, then its
class methods, and finally its instance methods.

Table 1 Clustering Protocol

clusterBehavior Clusters in depth-first order the parts of the
receiver required for executing GemStone Small-
talk code (the receiver and its method diction-
ary).

clusterDescription Clusters in depth-first order those instance vari-
ables in the receiver that describe the structure of
the receiver’s instances. (Does not cluster the
receiver itself.) The instance variables clustered
are instVarNames, classVars, categories, and class
histories.

clusterBehaviorExcept-
Methods:aCollectionOfMethod-
Names

This method can sometimes provide a better
clustering of the receiving class and its method
dictionary by omitting those methods that are
seldom used. This omission allows frequently
used methods to be packed more densely.
258 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Clustering Objects for Faster Retrieval
Example 14.1

| behaviorBucket descriptionBucket |
behaviorBucket := AllClusterBuckets at: 4.
descriptionBucket := AllClusterBuckets at: 5.
System clusterBucket: descriptionBucket.
Employee clusterDescription.
System clusterBucket: behaviorBucket.
Employee class clusterBehavior.
Employee clusterBehavior.
%

The following clusters all of class Employee’s instance methods except for address and
address:

Employee clusterBehaviorExceptMethods: #(#address #address:).

Maintaining Clusters

Once you have clustered certain objects, they do not necessarily stay clustered in the same
way forever. If you edit some of the objects in the data structure, the edited object will be
placed on a new page in the same clusterBucket. The performance benefit of clustering is
that the objects are on the same page, but since the clusterBucket will span multiple pages,
the objects may be in the same clusterBucket but not on the same page.

You may therefore wish to check an object’s location, especially if you suspect that such
declustering is causing your application to run more slowly than it used to.

Determining an Object’s Location

To enable you to check your clustering methods for correctness, Class Object defines the
message page, which returns an integer identifying the disk page on which the receiver
resides. For example:

anEmp page
2539

Disk page identifiers are returned only for temporary use in examining the results of your
custom clustering methods—they are not stable pointers to storage locations. The page on
which an object is stored can change for several reasons, as discussed in the next section.

For special objects (instances of SmallInteger, Character, Boolean, SmallDouble, or
UndefinedObject), the page number returned is 0.

Why Do Objects Move?

The page on which an object is stored can change for any of the following reasons:

A clustering message is sent to the object or to another object on the same page.

The current transaction is aborted.

The object is modified.

Another object on the page with the object is modified.
April 2014 GemTalk Systems 259

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.2 Programming Guide
The extent in which you requested the object be clustered had insufficient space.

As your application updates clustered objects, new values are placed on secondary
storage using GemStone’s normal space allocation algorithms. When objects are moved,
they are automatically reclustered within the same clusterId. If a specific clusterId was
specified, it continues to be used; if not, the default clusterId is used.

If, for example, you replace the string at position 2 of the clustered array
ProscribedWords, the replacement string is stored in a page separate from the one
containing the original, although it will still be within the same clusterId. Therefore, it
might be worthwhile to recluster often-modified collections occasionally to counter the
effects of this fragmentation. You’ll probably need some experience with your application
to determine how often the time required for reclustering is justified by the resulting
performance enhancement.
260 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Profiling Smalltalk Execution
14.2 Profiling Smalltalk Execution
Ordinarily, disk access has the greatest impact on application performance. However,
your GemStone Smalltalk code can also affect the speed of your application; as with other
programming languages, some code is more efficient than other code. To help you
determine how you can best optimize your application, GemStone Smalltalk provides a
profiling tool, defined by the classes ProfMonitor and its subclass ProfMonitorTree.

System >> millisecondsToRun:

Keep in mind that if you simply want to know how long it takes a given block to return its
value, you can use the familiar GemStone Smalltalk method System
millisecondsToRun: aBlock. This method takes a zero-argument block as its argument
and returns the time in milliseconds required to evaluate the block.

Classes ProfMonitor and ProfMonitorTree

ProfMonitor and ProfMonitorTree are classes that allow you to sample the methods that
are executed in a given block of code and to estimate the percentage of total execution
time represented by each method. When an instance of one of these classes starts
profiling, it will take a method call stack at specified intervals for a specified period of
time. When it is done, it collects the results and returns them in the form of a string
formatted as a report.

The reports returned by ProfMonitorTree include a execution tree structure as well as the
reports returned by ProfMonitor; otherwise these classes have the same interface. This
discussion use ProfMonitor to refer to either class.

ProfMonitor, by default, will take a sample every millisecond (1 ms). You can specify the
interval at which ProfMonitor takes samples using the instance methods interval: or
intervalNs:, or class method with these keywords. Options with Ns: specify the
interval in nanoseconds; a nanosecond is a billionth of a second. The minimum interval is
1000 nanoseconds.

It may be convenient to refer to Table 1 when determining the sample interval and
reading the results:

By default, ProfMonitor reports every method it found executing. It may be more useful
to limit the reporting to methods that execute at least some number of times, to reduce
clutter in the results. To do this, set the lower limit using the instance method
reportDownTo: anInteger or methods with the keyword downTo:.

ProfMonitor stores its results temporarily in a file with the default filename
/tmp/gemprofile.tmp. You can specify a different filename by using ProfMonitor’s

Table 1 Subsecond time conversions

seconds milliseconds
ms

microseconds
us

nanoseconds
ns

1 1000 1,000,000 1,000,000,000

1 1000 1,000,000

1 1000
April 2014 GemTalk Systems 261

Profiling Smalltalk Execution GemStone/S 64 Bit 3.2 Programming Guide
instance method fileName:. This file is deleted by profiling block methods, profileOff,
and reportAfterRun* methods.

Profiling Your Code

Profiling a Block of Code

ProfMonitor provides several methods that allow you to profile a block of code and report
the results with a single class method.

By default, profiling uses a sampling interval of 1 ms, and includes every method it finds
in its results, even those executing only once.

ProfMonitorTree
monitorBlock: [100 timesRepeat:

[System myUserProfile dictionaryNames]]

This example uses a 5 ms sampling interval to 5 ms, and includes only methods that were
found executing more than once:

ProfMonitorTree
monitorBlock: [100 timesRepeat:

[System myUserProfile dictionaryNames]]
downTo: 2
interval: 5

This example samples every 5000 ns (5 us), so a much more detailed profile report will be
produced for the same code block; it reports only methods that were sampled 10 times or
more.

ProfMonitorTree
monitorBlock: [100 timesRepeat:

[System myUserProfile dictionaryNames]]
downTo: 10
intervalNs: 5000

Multi-Step Profiling

You can also explicitly start and stop profiling, allowing you to profile any arbitrary
sequence of GemStone Smalltalk statements, rather than only blocks of code.

To start and stop profiling, you can use the class method profileOn, which create an
instances of ProfMonitor and starts profiling; when you are done, the instance method
profileOff stops profiling and reports the results.
262 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Profiling Smalltalk Execution
For example:

run
UserGlobals at: #myMonitor put: ProfMonitorTree profileOn.
%

run
100 timesRepeat: [System myUserProfile dictionaryNames].
%

run
(UserGlobals at: #myMonitor) profileOff.
%

Profiling beyond default variables

You can also create and configure the instance of ProfMonitor. This allows you full
control, including enabling features such as object creation profiling that are not accessible
from the default interface.

To profile in this way you will perform the following steps:

Step 1. Create instance using ProfMonitor new.

Step 2. Configure it as desired, using instance methods interval:, intervalNs:,
and/or traceObjectCreation:.

Step 3. start profiling using the instance method startMonitoring.

Step 4. execute your code.

Step 5. stop profiling using the instance method stopMonitoring.

Step 6. gather results and report, using reportAfterRun or
reportAfterRunDownTo:.

For example:

| aMonitor |
aMonitor := ProfMonitorTree new.
aMonitor interval: 2.
aMonitor traceObjectCreation: true.
aMonitor startMonitoring.
100 timesRepeat: [System myUserProfile dictionaryNames].
aMonitor stopMonitoring.
aMonitor reportAfterRun.
April 2014 GemTalk Systems 263

Profiling Smalltalk Execution GemStone/S 64 Bit 3.2 Programming Guide
The Profile Report

The profiling methods discussed in previously return a string formatted as a report. The
following example shows a sample run and the resulting report.

Example 14.1

topaz 1> printit
ProfMonitorTree
 monitorBlock:[
 200 timesRepeat:[System myUserProfile dictionaryNames]]
 downTo: 2
%
================
STATISTICAL SAMPLING RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms

 tally % class and method name
------ ----- --------------------------------------
 23 24.21 Array >> _at:
 22 23.16 IdentityDictionary >> associationsDo:
 18 18.95 block in SymbolList >> names
 18 18.95 AbstractDictionary >> _at:
 11 11.58 block in AbstractDictionary >> associationsDetect:ifNone:
 2 2.11 Object >> _basicSize
 1 1.05 11 other methods
 95 100.00 Total

================
STATISTICAL STACK SAMPLING RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms

 total % class and method name
------ ----- --------------------------------------
 95 100.00 GsNMethod class >> _gsReturnToC
 95 100.00 executed code
 95 100.00 ProfMonitor class >> monitorBlock:downTo:
 95 100.00 ProfMonitor >> monitorBlock:
 94 98.95 block in executed code
 94 98.95 UserProfile >> dictionaryNames
 94 98.95 SymbolList >> namesReport
 94 98.95 SymbolList >> names
 94 98.95 AbstractDictionary >> associationsDetect:ifNone:
 94 98.95 IdentityDictionary >> associationsDo:
 29 30.53 block in AbstractDictionary >> associationsDetect:ifNone:
 23 24.21 Array >> _at:
 18 18.95 block in SymbolList >> names
 18 18.95 AbstractDictionary >> _at:
 2 2.11 Object >> _basicSize
 1 1.05 2 other methods
 95 100.00 Total
264 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Profiling Smalltalk Execution
================
STATISTICAL METHOD SENDERS RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms

 % % Parent
 self total total local Method
 Time Time ms % Child
------ ------ ------ ----- -----------

= 0.0 100.0 90.0 0.0 GsNMethod class >> _gsReturnToC
 90.0 100.0 executed code

 90.0 100.0 GsNMethod class >> _gsReturnToC
= 0.0 100.0 90.0 0.0 executed code
 90.0 100.0 ProfMonitor class >> monitorBlock:downTo:

 90.0 100.0 executed code
= 0.0 100.0 90.0 0.0 ProfMonitor class >> monitorBlock:downTo:
 90.0 100.0 ProfMonitor >> monitorBlock:

 90.0 100.0 ProfMonitor class >> monitorBlock:downTo:
= 0.0 100.0 90.0 0.0 ProfMonitor >> monitorBlock:
 89.1 98.9 block in executed code
 0.9 1.1 ProfMonitor >> startMonitoring

 89.1 100.0 ProfMonitor >> monitorBlock:
= 0.0 98.9 89.1 0.0 block in executed code
 89.1 100.0 UserProfile >> dictionaryNames

 89.1 100.0 block in executed code
= 0.0 98.9 89.1 0.0 UserProfile >> dictionaryNames
 89.1 100.0 SymbolList >> namesReport

 89.1 100.0 UserProfile >> dictionaryNames
= 0.0 98.9 89.1 0.0 SymbolList >> namesReport
 89.1 100.0 SymbolList >> names

 89.1 100.0 SymbolList >> namesReport
= 0.0 98.9 89.1 0.0 SymbolList >> names
 89.1 100.0 AbstractDictionary >> associationsDetect:ifNone:

 89.1 100.0 SymbolList >> names
= 0.0 98.9 89.1 0.0 AbstractDictionary >> associationsDetect:ifNone:
 89.1 100.0 IdentityDictionary >> associationsDo:

April 2014 GemTalk Systems 265

Profiling Smalltalk Execution GemStone/S 64 Bit 3.2 Programming Guide
 89.1 100.0 AbstractDictionary >> associationsDetect:ifNone:
= 23.2 98.9 89.1 23.4 IdentityDictionary >> associationsDo:
 1.9 2.1 Object >> _basicSize
 27.5 30.9 block in AbstractDictionary >> associationsDetect:ifNone:
 21.8 24.5 Array >> _at:
 17.1 19.1 AbstractDictionary >> _at:

 27.5 100.0 IdentityDictionary >> associationsDo:
= 11.6 30.5 27.5 37.9 block in AbstractDictionary >> associationsDetect:ifNone:
 17.1 62.1 block in SymbolList >> names

 21.8 100.0 IdentityDictionary >> associationsDo:
= 24.2 24.2 21.8 100.0 Array >> _at:

 17.1 100.0 block in AbstractDictionary >> associationsDetect:ifNone:
= 18.9 18.9 17.1 100.0 block in SymbolList >> names

 17.1 100.0 IdentityDictionary >> associationsDo:
= 18.9 18.9 17.1 100.0 AbstractDictionary >> _at:

 1.9 100.0 IdentityDictionary >> associationsDo:
= 2.1 2.1 1.9 100.0 Object >> _basicSize

================
STACK SAMPLING TREE RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms

 100.0% (95) executed code [UndefinedObject]
 100.0% (95) ProfMonitor class >> monitorBlock:downTo: [ProfMonitorTree class]
 100.0% (95) ProfMonitor >> monitorBlock: [ProfMonitorTree]
 98.9% (94) block in executed code [ExecBlock0]
 | 98.9% (94) UserProfile >> dictionaryNames
 | 98.9% (94) SymbolList >> namesReport
 | 98.9% (94) SymbolList >> names
 | 98.9% (94) AbstractDictionary >> associationsDetect:ifNone: [SymbolDictionary]
 | 98.9% (94) IdentityDictionary >> associationsDo: [SymbolDictionary]
 | 30.5% (29) block in AbstractDictionary >> associationsDetect:ifNone: [ExecBlock1]
 | | 18.9% (18) block in SymbolList >> names [ExecBlock1]
 | 24.2% (23) Array >> _at: [IdentityCollisionBucket]
 | 18.9% (18) AbstractDictionary >> _at: [SymbolDictionary]
 | 2.1% (2) Object >> _basicSize [IdentityCollisionBucket]
266 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Profiling Smalltalk Execution
As you can see, the report is in four sections:

STATISTICAL SAMPLING RESULTS

STATISTICAL STACK SAMPLING RESULTS

STATISTICAL METHOD SENDERS RESULTS

STACK SAMPLING TREE RESULTS

Each section includes the same set of methods that the profile monitor encountered when
it checked the execution stack every millisecond; the report is presented to give different
views of this data.

Keep in mind that these numbers are based on sampling, and depending on the size and
number of samples, may not exactly reflect the actual percentage of time spent in each
method. If you may external calls to the OS, to user actions or other C libraries, this may
also distort results for the invoking method.

If you enable object creation tracking, additional sections are included that report the
count and object creation. For example:

Example 14.2 Object creation report

OBJECT CREATION REPORT:
elapsed CPU time: 40 ms
monitoring interval: 2.0 ms

tally class of created object
 call stack
------ ---

 600 String class
 - - - -
 500 SmallInteger >> asString
 500 SymbolList >> namesReport
 500 UserProfile >> dictionaryNames
 500 executed code
 500 GsNMethod class >> _gsReturnToC
 - - - -
 100 String class >> new
 100 SymbolList >> namesReport
 100 UserProfile >> dictionaryNames
 100 executed code
 100 GsNMethod class >> _gsReturnToC
------ ---

 100 Array class
 - - - -
 100 SymbolList >> names
 100 SymbolList >> namesReport
 100 UserProfile >> dictionaryNames
 100 executed code
 100 GsNMethod class >> _gsReturnToC
April 2014 GemTalk Systems 267

Modifying Cache Sizes for Better Performance GemStone/S 64 Bit 3.2 Programming Guide
14.3 Modifying Cache Sizes for Better Performance
As code executes in GemStone, committed objects must be fetched from disk or from
cache, and temporary objects must be managed. This is handled transparently by the
GemStone repository monitor. The performance of your application can be affected both
by the tuning of the caches, and the structure and usage patterns of your application.

GemStone Caches

GemStone uses four kinds of caches: temporary object space, the Gem private page cache,
the Stone private page cache, and the shared page cache.

Two caches are associated with Gem processes: the temporary object space and the Gem
private page cache. The other two caches (Stone private page cache and shared page
cache) are associated with the Stone (although the Gem also makes use of the shared page
cache).

Temporary Object Space

The temporary object space cache is used to store temporary objects created by your
application. Each Gem session has a temporary object memory that is private to the Gem
process and its corresponding session. When you fault persistent (committed) objects into
your application, they are copied to temporary object memory.

Some of these objects may ultimately become permanent and reside on the disk, but
probably not all of them. Temporary objects that your application creates merely in order
to do its work reside in temporary object space until they are no longer needed, when the
Gem’s garbage collector reclaims the storage they use.

It is important to provide sufficient temporary object space. At the same time, you must
design your application so that it does not create an infinite amount of reachable
temporary objects. Temporary object memory must be large enough to accommodate the
sum of live temporary objects and modified persistent objects. It that sum exceeds the
allocated temporary object memory, the Gem can encounter an OutOfMemory condition
and terminate.

The amount of memory allocated for temporary object space is primarily determined by
the GEM_TEMPOBJ_CACHE_SIZE configuration option. You should increase this value
for applications that create a large number of temporary objects — for example,
applications that make heavy use of the reduced conflict classes or sessions performing a
bulk load. (For more information about the reduced-conflict classes, see “Classes That
Reduce the Chance of Conflict” on page 150.)

You will probably need to experiment somewhat before you determine the optimum size
of the temporary object space for the application. The default of 10000 (10 MB) should be
adequate for normal user sessions. For sessions that place a high demand on the
temporary object cache, such as upgrade, you may wish to use 100000 (i.e., 100 MB).

For a more exhaustive discussion of the issues involved in managing the size of
temporary object memory, and a general discussion of garbage collection, see the
“Garbage Collection” chapter of the System Administration Guide.

For details about how to set the size of GEM_TEMPOBJ_CACHE_SIZE in the Gem
configuration file, see the “GemStone Configuration Options” appendix of the System
Administration Guide.
268 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Modifying Cache Sizes for Better Performance
Gem Private Page Cache

The Gem private page cache is only used to hold bitmap pages and shadow object table
pages during commit processing. When you commit objects created by your application,
they move directly from temporary object memory to the shared page cache.

The amount of memory allocated for the Gem private page cache is determined by the
GEM_PRIVATE_PAGE_CACHE_KB configuration option. The default size is 1000 KB;
the minimum is 128 KB; the maximum is 524288 KB.

NOTE
Under normal circumstances, you should not need to modify the default values of
the Gem private page cache.

Stone Private Page Cache

The Stone private page cache is used to maintain lists of allocated object identifiers and
pages for each active Gem process that the Stone is monitoring. The single active Stone
process per repository has one Stone private page cache.

The amount of memory allocated for the Stone private page cache is determined by the
STN_PRIVATE_PAGE_CACHE_KB configuration option. The default size is 2000 KB; the
minimum is 128 KB; the maximum is 524288 KB.

NOTE
Under normal circumstances, you should not need to modify the default values of
the Stone private page cache.

Shared Page Cache

The shared page cache is used to hold the object table—a structure containing pointers to all
the objects in the repository—and copies of the disk pages that hold the objects with
which users are presently working. The system administrator must enable the shared
page cache in the configuration file for a host. The single active Stone process per
repository has one shared page cache per host machine. The shared page cache is
automatically enabled for the host machine on which the Stone process is running.

Whenever the Gem needs to read an object, it reads into the shared page cache the entire
page on which an object resides. If the Gem then needs to access another object, GemStone
first checks to see if the object is already in the shared page cache. If it is, no further disk
access is necessary. If it is not, it reads another page into the shared page cache.

For acceptable performance, the shared page cache should be large enough to hold the
entire object table. To get the best possible performance, make the shared page cache as
large as possible.

The amount of memory allocated for the shared page cache is determined by the
SHR_PAGE_CACHE_SIZE_KB configuration parameter (in the Stone configuration file).
The default size is 75000 KB; the minimum is 512 KB; the maximum is limited by the
available system memory and the kernel configuration.

For details about how to set the size of SHR_PAGE_CACHE_SIZE_KB in the Stone
configuration file, see the System Administration Guide (Appendix A, GemStone
Configuration Options).
April 2014 GemTalk Systems 269

Managing VM Memory GemStone/S 64 Bit 3.2 Programming Guide
By default, only the system administrator is privileged to set this parameter, which is set
at repository startup. However, if a Gem session is running remotely and it is the first
Gem session on its host, its configuration file sets the size of the shared page cache on that
host.

Getting Rid of Non-Persistent Objects

As discussed in Chapter 4, you can create instances of KeySoftValueDictionary to enable
your session to free up temporary object memory as needed. The entries in a
KeySoftValueDictionary are non-persistent; that is, they cannot be committed to the
database. When there is a demand on memory, you can configure GemStone to clear non-
persistent entries as needed during a VM mark/sweep garbage collection.

The action taken during mark/sweep depends on two configuration parameters, along
with startingMemUsed — the percentage of temporary object memory in-use at the
beginning of the VM mark/sweep.

Case 1: GEM_SOFTREF_CLEANUP_PERCENT_MEM < startingMemUsed < 80%

If startingMemUsed is greater than GEM_SOFTREF_CLEANUP_PERCENT_MEM but
less than 80%, the VM mark/sweep will attempt to clear an internally determined
number of least recently used SoftReferences (non-persistent entries). Under rare cir-
cumstances, you might choose to specify a minimum number
(GEM_KEEP_MIN_SOFTREFS) that will not be cleared.

Case 2: startingMemUsed < GEM_SOFTREF_CLEANUP_PERCENT_MEM

No SoftReferences will be cleared.

Case 3: startingMemUsed > 80%

VM mark/sweep will attempt to clear all SoftReferences.

For more about these and other configuration parameters, see the “GemStone
Configuration Options” appendix of the System Administration Guide.

Several cache statistics may also be of interest: NumSoftRefsCleared, NumLiveSoftRefs,
and NumNonNilSoftRefs. For more about these statistics, see the “Monitoring GemStone”
chapter of the System Administration Guide.

14.4 Managing VM Memory
As mentioned earlier in this chapter, each Gem session has a temporary object memory
that is private to the Gem process and its corresponding session. When you fault
persistent (committed) objects into your application, they are copied to temporary object
memory.

It is important to provide sufficient temporary object space. At the same time, you must
design your application so that it does not create an infinite amount of reachable
temporary objects. Temporary object memory must be large enough to accommodate the
sum of live temporary objects and modified persistent objects. It that sum exceeds the
allocated temporary object memory, the Gem can encounter an OutOfMemory condition
and terminate.
270 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Managing VM Memory
There is a limit on how large a transaction can be, either in terms of the total size of
previously committed objects that are modified, or of the total size of temporary objects
that are transitively reachable from modified committed objects. For large applications,
you may need to commit incrementally, rather than waiting to commit all at once.

The remainder of this chapter discusses issues to consider when allocating and managing
temporary object memory, and presents techniques for diagnosing and addressing
OutOfMemory conditions. This section assumes you have read the general discussion of
memory organization in “Managing Memory” chapter of the System Administration Guide.

Large Working Set

If your application requires a large working set of committed objects in memory, you can
configure the pom area to be large (compared to other object spaces) without having an
adverse effect on in-memory garbage collection. To do this, increase the setting for the
configuration parameter GEM_TEMPOBJ_POMGEN_SIZE. For details on how to do this,
see the System Administration Guide, Appendix A.

Class Hierarchy

If your application references a very deep class hierarchy, you may need to adjust the
memory configuration accordingly to allow a larger temporary object memory. When an
object is in memory, its class is also faulted into the perm area of temporary object
memory, along with the class’s superclass, extending up through the hierarchy all the way
to Object. While this approach provides for significantly faster message lookups, it also
increases the consumption of temporary object memory.

For example, the default configuration provides 1 MB for the perm area. Each class
consumes about 400 bytes (including the metaclass). Thus, the default configuration can
accommodate about 2500 classes in memory at once.

UserAction Considerations

NOTE
Do not compact the code region of temporary object memory while a UserAction
is executing.

When using GemBuilder for C, you may encounter an OutOfMemory error within an
UserAction in either of the following situations:

The UserAction faults in a large number of methods via GciPerform.

The UserAction compiles a large number of anonymous methods via GciExecute.

Exported Set

The ExportSet is a collection of objects for which the Gem process has handed out its OOP
to one of the interfaces (GCI, GBS, objects returned from topaz run commands). Objects in
the ExportSet are prevented from being garbage collected by any of the garbage collection
processes (that is, by a Gem’s in-memory collection of temporary objects, or the epoch
garbage collection). The ExportSet is used to guarantee referential integrity for objects
only referenced by an application, that is, objects that have no references to them within
the Gem.
April 2014 GemTalk Systems 271

Managing VM Memory GemStone/S 64 Bit 3.2 Programming Guide
The application program is responsible for timely removal of objects from the ExportSet.
The contents of the ExportSet can be examined using hidden set methods defined in class
System.

In general, the smaller the size of the ExportSet, the better the performance is likely to be.
There are several reasons for this relationship. The ExportSet is one of the root sets used
for garbage collection. The larger the ExportSet, the more likely it is that objects that
would otherwise be considered garbage are being retained. One threshold for
performance is when the size of the export set exceeds 16K objects. When its size is
smaller than 16K objects, the export set is a small object in object memory. When its size is
larger than 16K, the export set becomes a large object, implemented as a tree of small
objects in memory.

The configuration parameter #GemDropCommittedExportedObjs will allow committed
object to be removed from the ExportSet when memory is low, at the expense of having to
re-fault these object when they are needed.

You can use GciReleaseObjs to remove objects from the ExportSet. For details, see the
GemStone/S 64 Bit GemBuilder for C manual.

Debugging out of memory errors

If you find that your application is running out of temporary memory, you can set several
GemStone environment variables to help you identify which parts of your application are
triggering OutOfMemory conditions. These environment variables allow you to obtain
multiple Smalltalk stack printouts and other useful information before your application
runs out of temporary object memory. You can examine those printouts to determine how
many objects of each class are in temporary memory. Once you’ve identified the cause/s
of the problem, you can adjust your GemStone configuration options to provide the
needed memory.

These environment variables are documented in the $GEMSTONE/sys/gemnetdebug
file, which is a debug version of the gemnetobject script. They may be set for RPC
processes using gemnetdebug in the gem login parameters, or via on the command line
prior to starting linked topaz. For more information on these environment variables, see
the System Administration Guide.

Signal on low memory condition

When a session runs low on temporary object memory, there are actions it can take to
avoid running out of memory altogether; for example, the session may commit or abort,
or discard temporary objects. By enabling handling for the notification
AlmostOutOfMemory, an application can take appropriate action before memory is
entirely full. This notification is asynchronous, so may be received at any time memory
use is greater than the threshold the end of an in-memory markSweep. However, if the
session is executing a user action, or is in index maintenance, the error is deferred and
generated when execution returns.

After an AlmostOutOfMemory notification is delivered, the handling is automatically
disabled. Handling must be reenabled each time the signal occurs. Handling this signal is
enabled by executing either of the following:

System enableAlmostOutOfMemoryError
272 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Managing VM Memory
or

System signalAlmostOutOfMemoryThreshold: 0

When handling is enabled, the default threshold is 85%. You can find out the current
threshold using:

System almostOutOfMemoryErrorThreshold

This will return -1 if handling is not enabled.

The threshold can be modified using:

System Class >> signalAlmostOutOfMemoryThreshold: anInteger
Controls the generation of an error when session's temporary object memory is almost
full. Calling this method with 0 < anInteger < 100, sets the threshold to the given value
and enables generation of the error.

Calling this method with an argument of -1 disables generation of the error and resets
the threshold to the default.

Calling this method with an argument of 0 enables the generation of the error and
does not change the threshold.

Methods for Computing Temporary Object Space

To find out how much space is left in the old area of temporary memory, the following
methods in class System (category Performance Monitoring) are provided:

System _tempObjSpaceUsed
Returns the approximate number of bytes of temporary object memory being
used to store objects.

System _tempObjSpaceMax
Returns the size of the old area of temporary object memory; that is, the
approximate maximum number of bytes of temporary object memory that are
usable for storing objects. When the old area fills up, the Gem process may
terminate with an OutOfMemory error.

System _tempObjSpacePercentUsed
Returns the approximate percentage of temporary object memory that is being
used to store temporary objects. This is equivalent to the expression:

(System _tempObjSpaceUsed * 100) //
System _tempObjSpaceMax.
Note that it is possible for the result to be slightly greater than 100%. Such a
result indicates that temporary memory is almost completely full.

To measure the size of complex objects, you might create a known object graph containing
typical instances of the classes in question, and then execute the following methods at
various points in your test code to get memory usage information:

CAUTION
Do not execute this sequence in your production code!
April 2014 GemTalk Systems 273

Managing VM Memory GemStone/S 64 Bit 3.2 Programming Guide
Example 14.3

System _vmMarkSweep.
System _tempObjSpaceUsed.

Statistics for monitoring memory use

You can monitor the following statistics to better understand your application’s memory
usage. The statistics are grouped here with related statistics, rather than alphabetically.

Table 1 Statistics Related to the Objects Copied into Memory

ObjectsRead The number of committed objects copied into VM
memory since the start of the session.

ClassesRead The number of classes copied into the perm genera-
tion area of VM memory since the start of the ses-
sion.

MethodsRead The number of GsNMethods copied into the code
generation area of VM memory since the start of the
session.

ObjectsRefreshed The number of committed objects in VM memory
that have been re-read from the shared page cache
after transaction boundaries, since the start of the
session.

Table 2 Statistics Related to Mark/Sweeps and Scavenges

NumberOfMark-
Sweeps

The number of mark/sweeps executed by the in-
memory garbage collector.

NumberOfScavenges The number of scavenges executed by the in-memory
garbage collector. Only updated at mark/sweeps.

TimeInMarkSweep The real time (in milliseconds) spent in in-memory
garbage collector mark/sweeps.

TimeInScavenge The real time (in milliseconds) spent in in-memory
garbage collector scavenges. Only updated at
mark/sweeps.

Table 3 Statistics Related to Object Memory Regions

CodeCacheSizeBytes Total size in bytes of copies of GsNMethods that
are in the code generation area and ready for exe-
cution, as of the end of mark/sweep.

NewGenSizeBytes The number of used bytes in the new generation at
the end of mark/sweep.

OldGenSizeBytes The number of used bytes in the old generation at
the end of mark/sweep.
274 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Managing VM Memory
Symbol Creation

In GemStone/S 64 Bit, a SymbolGem process runs in the background and is responsible
for creating all new Symbols, based on session requests that are managed by the Stone.
You can examine the following statistics to track the effect of symbol creation activity on
temporary object memory.

PomGenSizeBytes The number of used bytes in the pom generation
area at the end of mark/sweep. Pom generation
holds clean copies of committed objects.

PermGenSizeBytes The number of used bytes in the perm generation
area at the end of mark/sweep. Perm generation
holds copies of Classes.

MeSpaceUsedBytes The number of bytes occupied by the remembered
set (remSet), in-memory oopMap, and in-use map
entries.

MeSpaceAllocated-
Bytes

The number of bytes allocated for the remembered
set (remSet), in-memory oopMap, and map
entries.

Table 4 Statistics Related to Stubbing

NumRefsStubbedMark-
Sweep

The number of in-memory references that were
stubbed (converted to a POM objectId) by in-mem-
ory mark/sweep.

NumRefsStubbedScav-
enge

The number of in-memory references that were
stubbed (converted to a POM objectId) by in-mem-
ory scavenge.

Table 5 Statistics Related to Garbage Collection

CodeGenGcCount The number of times the code generation area has
been garbage collected.

PomGenScavCount The number of times scavenge has thrown away
the oldest pom generation space.

Table 6 Statistics Related to Symbol Creation

NewSymbolRequests The number of symbol creation requests by a ses-
sion to the symbol creation gem.

NewSymbolsCount The number of symbol creation requests by a ses-
sion that did not resolve to an already committed
symbol.

TimeWaitingForSym-
bols

Cumulative elapsed time (in milliseconds) waiting
for symbol creation requests to be processed.

Table 3 Statistics Related to Object Memory Regions
April 2014 GemTalk Systems 275

NotTranloggedGlobals GemStone/S 64 Bit 3.2 Programming Guide
14.5 NotTranloggedGlobals
All changes to the repository are written to the transaction logs when the transaction is
committed, to ensure these changes are recoverable in case of unexpected shutdown, and
to allow these changes to be applied to warm standby copies of the repository. However,
you may have data that you will be committing changes to, but that does not need to be
recovered in case of system crash or corruption. For this kind of data, you can avoid the
overhead of writing each change to the transaction logs, and the disk space required for
the transaction logs to archive large amounts of non-critical data.

For objects that are intended to be persistent, but not log changes in the transaction logs,
there must be no reference from persistent objects, and the reference should be from the
variable NotTranloggedGlobals. This is in the Globals SymbolDictionary.

For example:

NotTranloggedGlobals at: #perfLog put: PerformanceLogger new.

If the object in NotTranlogGlobals is reachable from AllUsers (the regular root for all
persistent objects), it will generate an error on commit.

On system crash or unexpected shutdown, the state of the objects reachable from
NotTranloggedGlobals will be as was recorded in the most recent checkpoint prior to the
shutdown; changes made after that checkpoint will be lost. If the repository is restored

Table 7 Other Statistics

ExportedSetSize The number of objects in the ExportSet (see
page 271).

TrackedSetSize The number of objects in the Tracked Objects Set, as
defined by the GCI. You can use GciReleaseObjs to
remove objects from the Tracked Objects Set. For
details, see the GemStone/S 64 Bit GemBuilder for C
manual.

DirtyListSize The number of modified committed objects in the
temporary object memory dirty list.

WorkingSetSize The number of objects in memory that have an
objectId assigned to them; approximately the num-
ber of committed objects that have been faulted in
plus the number that have been created and com-
mitted.

TempObjSpacePercen-
tUsed

The approximate percentage of temporary object
memory for this session that is being used to store
temporary objects. If this value approaches or
exceeds 100%, sessions will probably encounter an
OutOfMemory error. This statistic is only updated
at the end of a mark/sweep operation.
Compare with System
_tempObjSpacePercentUsed (page 273), which
is computed whenever the primitive is executed.
276 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Other Optimization Hints
from backup, and transaction logs applied, the state of these objects will be as of the time
the backup was taken; all changes made since the backup was taken are lost.

14.6 Other Optimization Hints
While optimization is an application-specific problem, we can provide a few ideas for
improving application performance:

Arrays tend to be faster than sets. If you do not need the particular semantics that a
set affords, use an array instead.

The following Number classes are listed in decreasing order of performance:

SmallInteger
SmallDouble
Float
LargeInteger
ScaledDecimal
DecimalFloat

Avoid coercing integers to floating point numbers. Although GemStone Smalltalk can
easily handle mixing integers and floating point numbers in computations, the
coercion required can be time-consuming.

If you create an instance of a Dictionary class (or subclass) that you intend to load
with values later, create it to be approximately the final required size in order to avoid
rehashing, which can significantly slow performance.

Prefer methods that invoke primitives, if possible, or methods that cause primitives to
be invoked after fewer intermediate message-sends. (For information on writing your
own primitive methods, see the GemBuilder for C manual.)

Prefer message-sends over path notation, where possible. (This is not possible in
indexed queries, however.)

Prefer simpler blocks to more complex blocks. The most efficient blocks refer only to
one or more literals, global variables, pool variables, class variables, local block
arguments, or block temporaries; they also do not include a return statement.

Less efficient blocks include a return statement and can also refer to one or more of
the pseudovariables super or self, instance variables of self, arguments to the enclosing
method, temporary variables of the enclosing method, block arguments, or block tem-
poraries of an enclosing block.

The least efficient blocks enclose a less efficient block of the kind described in the
above paragraph.

Blocks provided as arguments to the methods ifTrue:, ifFalse:,
ifTrue:ifFalse:, ifFalse:ifTrue:, whileFalse:, and whileTrue: are spe-
cially optimized. Unless they contain block temporary variables, you need not count
them when counting levels of block nesting.

Used optimized selectors whenever possible. For example, iterations using to:do
are specially optimized; using to:do: instead of another collection iteration method
avoids a message send and a level of block nesting, possibly avoiding the cost of using
a block altogether. See page 331 for a list of optimized selectors.
April 2014 GemTalk Systems 277

Other Optimization Hints GemStone/S 64 Bit 3.2 Programming Guide
In the same way, for fastest performance in iterating over Collections, use the to:do:
or to:by:do: methods to iterate, rather than do: or other collection iteration meth-
ods

Resize rather than concatenate strings. String >> , creates a new string to use in
modifying the old one, whereas String >> add: modifies a string. This is much
more efficient.

If you have a choice between a method that modifies an object and one that returns a
modified copy, use the method that modifies the object directly if your application
allows it. This creates fewer temporary objects whose storage will have to be
reclaimed.

Avoid generating temporary objects whose storage will need to be reclaimed. Storage
reclamation can slow your application significantly.

Keep repository files on a disk reserved for their use, if possible. Particularly avoid
putting repository files on the disk used for swapping.

For large applications, you may need to commit incrementally, rather than waiting to
commit all at once. There is a limit on how large a transaction can be, either in terms
of the total size of previously committed objects that are modified, or of the total size
of temporary objects that are transitively reachable from modified committed objects.

Consider trade-offs in indexing. While indexes can improve query performance on
large collections, there is overhead. If the collection has fewer than about 2000 objects,
the extra overhead in internal objects and index maintenance may not be worth
negligable performance gain in queries.
278 GemTalk Systems April 2014

Chapter

15 Working with Classes
and Methods
An object responds to messages defined and stored with its class and its class’s
superclasses. The classes named Object, Class, and Behavior are superclasses of every class.
Although the mechanism involved may be a little confusing, the practical implication is
easy to grasp — every class understands the instance messages defined by Object, Class,
and Behavior.

This chapter provides an overview of the Behavior methods that are inherited by all
classes, and so can be used to programmatically create and access methods, categories,
pool dictionaries and variables for your classes.

Creating and Removing Methods
describes the protocol in class Behavior for adding and removing methods.

Information about Class and Methods
describes the protocol in class Behavior for examining the method dictionary of a class.

ClassOrganizer
describes the protocol in class Behavior for examining, adding, and removing method
categories.

Handling Deprecated Methods
How to locate and clean up references to methods that have been deprecated.

15.1 Creating and Removing Methods
Class Behavior defines messages for creating methods and removing methods.

Defining Simple Accessing and Updating Methods

Class Behavior provides an easy way to define simple methods for establishing and
returning the values of instance variables. For each instance variable named by a symbol
in the argument array, the message compileAccessingMethodsFor: arrayOfSymbols
creates one method that sets the instance variable’s value and another method that returns
it. These methods are added to the categories “Accessing” (return the instance variable’s
value) and “Updating” (set its value).
April 2014 GemTalk Systems 279

Creating and Removing Methods GemStone/S 64 Bit 3.2 Programming Guide
For example, this invocation of the method:

Animal compileAccessingMethodsFor: #(#name)

has the same effect as the following topaz:

category: 'Accessing'
method: Animal
name

^name
%
category: 'Updating'
method: Animal
name: aName
 name := aName
%

You can also use compileAccessingMethodsFor: to define class methods for
accessing class, class instance and pool variables, by sending
compileAccessingMethodsFor: to the class of the class that defines the variables of
interest.

The similar method compileMissingAccessingMethods will create accessing
methods for any instance variables for which accessor methods with the standard selector
do not already exist.

Compiling Methods

Class Behavior defines the basic method for compiling a new method for a class and
adding the method to the class’s method dictionary.

An invocation of the method has this form:

aClass compileMethod: sourceString
 dictionaries: arrayOfSymbolDicts
 category: aCategoryNameString
 environmentId: 0

The first argument, sourceString, is the text of the method to be compiled, beginning with
the method’s selector. The second argument, arrayOfSymbolDicts, is an array of
SymbolDictionaries to be used in resolving the source code symbols in sourceString. Under
most circumstances, you will probably use your symbol list for this argument. The third
argument names the category to which the new method is to be added.

environmentId specifies one of potentially multiple compile environments, provided for
Ruby implementations; it is normally 0 for Smalltalk applications. You can omit this
keyword, and methods within Smalltalk will default to an environmentId of 0.

The following code compiles an accessor method named habitat for the class Animal,
adding it to the category “Accessing”:
280 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Creating and Removing Methods
Animal
compileMethod:

 'habitat
 "Return the value of the receiver''s habitat
 instance variable"
 ^habitat'

dictionaries: (System myUserProfile symbolList)
category: 'Accessing'

 environmentId: 0

When you write methods for compilation in this way, remember to double each
apostrophe within the source string.

If compileMethod:.. executes successfully, it adds the new method to the receiver. If
the source string contains errors, this method signals a CompileError, with details on the
specific causes of the failure.

Removing Methods

You can remove a method by sending removeSelector: aSelectorSymbol to a class or
metaclass.

The following examples remove instance and class methods, respectively:

Animal removeSelector: #habitat

Animal class removeSelector:#newWithName:favoriteFood:habitat:

To remove all methods in a method category, as well as the category itself, use
removeCategory: categoryName. For example,

Animal removeCategory: 'Accessing'
April 2014 GemTalk Systems 281

Information about Class and Methods GemStone/S 64 Bit 3.2 Programming Guide
15.2 Information about Class and Methods
Classes Behavior and Class defines messages that let you discover information about a
class, such as the class’s instance variables, selectors, and categories. The class
ClassOrganizer provides searching over methods in the image.

For full protocol, see the image.

Information about the Class

Protocol in Class provides listing of superclasses and subclasses:

Class >> allSubclasses
Class >> allSuperclasses
Class >> allInstances

Each class also has a class comment and a category. This information can be accessed and
updated using:

Class >> comment
Class >> comment: aString
Class >> category
Class >> category: aString

Information about Instance, Class, and Shared Pool variables

Protocol in Behavior allows you to discover the class variables names, instance variable
names, and shared pools defined for a given class, or for that class and all its superclasses.

Behavior >> classVarNames
Behavior >> allClassVarNames
Behavior >> instVarNames
Behavior >> allInstVarNames
Behavior >> sharedPools
Behavior >> allSharedPools

Information about Method Selectors

Protocol in Behavior allows you to discover the selectors for the methods in a class, or in
that class and its superclasses, and query on particular selectors.

Behavior >> selectors
Behavior >> allSelectors
Behavior >> includesSelector: aSelector
Behavior >> canUnderstand: aSelector
Behavior >> whichClassIncludesSelector: aSelector
282 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide ClassOrganizer
Accessing and Managing Method Categories

The methods in a class are associated with a method category, which is used to organize
and document the method but does not affect execution. Method categories can be
managed programmatically using the following methods in Behavior:

Behavior >> categoryNames
Behavior >> selectorsIn: categoryName
Behavior >> categoryOfSelector: selector
Behavior >> addCategory: categoryName
Behavior >> removeCategory: categoryName
Behavior >> renameCategory: categoryName to: newCategoryName
Behavior >> moveMethod: aSelector toCategory: categoryName

Specific Methods

Each method is compiled into an instance of GsNMethod. You can query a class for its
methods, and get source code and other information about the method.

To get the source code for a method, use:

Behavior >> sourceCodeAt: aSelector

To retrieve the compiled method itself, use:

Behavior >> compiledMethodAt: aSelector

This returns an instance of GsNMethod, from which you can then get source code. For
example,

(Animal compiledMethodAt: #habitat) sourceString

Some GsNMethod methods that may be particularly useful are:

GsNMethod >> sourceString
GsNMethod >> sourceStringToFirstComment
GsNMethod >> selector

15.3 ClassOrganizer
ClassOrganizer provides useful methods to analyze your repository and perform
operations such as searching for senders, receivers, or implementors, and string searches
over method source. While usually you would perform these operations using GBS (or
another Smalltalk IDE), ClassOrganizer provide the ability to do customized analysis and
reporting.

ClassOrganizer provides both reporting methods, which return formatted Strings, and
query methods, which return collections of symbols or instances of GsNMethods that can
be used for further analysis and reporting.
April 2014 GemTalk Systems 283

ClassOrganizer GemStone/S 64 Bit 3.2 Programming Guide
For example, to get a report of all the senders of #asDecimalFloat:

ClassOrganizer new sendersOfReport: #asDecimalFloat
%
DecimalFloat >> integerPart
DecimalFloat >> rem:
DecimalFloat >> _coerce:
FixedPoint >> asDecimalFloat
Fraction >> asDecimalFloat
ScaledDecimal >> asDecimalFloat
SmallFloat >> asDecimalFloat

If you want to perform more analysis on the methods or add additional reporting, send
sendersOf:, which will return two arrays, the first an array of GsNMethods, the second
the offset into the source code. For example

(ClassOrganizer new sendersOf: #asDecimalFloat) printString
%
anArray(anArray(aGsNMethod, aGsNMethod, aGsNMethod,
aGsNMethod, aGsNMethod, aGsNMethod, aGsNMethod), anArray(161,
102, 309, 104, 215, 1052, 85))

See the image for the full set of protocol that ClassOrganizer understands.

For example, the following code looks for all methods that are send the message
subclassRresponsibility:, and make sure all subclasses override that
implementation. This example will return false positives, however, since it does not
distinguish abstract classes.

| clsOrg meths report |
clsOrg := ClassOrganizer new.
report := String new.
meths := (clsOrg sendersOf: #subclassResponsibility:) at: 1.
meths do:

[:srMeth |
(clsOrg subclassesOf: srMeth inClass) do:

[:subcls |
(subcls whichClassIncludesSelector: srMeth selector) =

srMeth inClass
ifTrue: [

report
add: subcls name asString;
add: ' does not override ';

 add: srMeth inClass asString;
add: '>>';
add: srMeth selector asString;
lf
].

]
].

report
284 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Handling Deprecated Methods
15.4 Handling Deprecated Methods
As GemStone features change, some methods may no longer be appropriate, or the
method names may be incorrect or misleading. To allow obsolete methods to continue to
function and provide a gentle transition to new methods, these obsolete methods may be
deprecated.

Deprecated methods may be removed in future major releases, although some deprecated
methods may remain in the image for longer periods for the convenience of existing
applications.

Usually, deprecated methods will continue to work exactly as they did in the previous
releases. However, in some cases the old behavior may not be meaningful in a new
version; the deprecated method will continue to work as similarly as possible, but there
may be differences.

Behavior may also change for existing methods. With any new release, you should review
the Release Notes for changes in behavior as well as for newly deprecated methods.

Deprecated methods in GemStone are indicated by:

Officially deprecated method must include a call to deprecated:.

Deprecated methods are in method category with a name including 'Deprecated'.

Deprecation may be mentioned in the method comment. This may indicate an
intention to deprecate.

Private methods, in a category with a name including 'Private', or which begin with an
underscore, or which the method comment says private, may or may not be deprecated
prior to removal. It is strongly recommended to avoid calling private methods.

Kernel methods that call deprecated: provide a string, which will generally include the
class and selector, the version in which this method was deprecated, and the method that
replaces it or some other indications of alternate action.

Since deprecated methods are subject to removal in major releases, it is important to keep
your application updated so that no deprecated methods are called.

Deprecated handling

By default, nothing happens when a deprecated method is called; the call to deprecated:
has no action. This is most convenient when you first upgrade or convert to a new release
of GemStone.

After you have updated your application references to deprecated methods, you can
enable Deprecation handling, which can be configured to error or to log all calls to any
deprecated methods. By running with this setting, you can locate and fix calls you may h
ave missed, or confirm that you have indeed fixed all calls.

Changing deprecation handling can only be done by a user with write permission for the
DataCurator object security policy. Once committed, the setting affects all users of the
repository.

There are several levels of action that can be taken when a deprecated method is called:

Do nothing -- calls to deprecated methods are execute the same as any other method.
This is the default.
April 2014 GemTalk Systems 285

Handling Deprecated Methods GemStone/S 64 Bit 3.2 Programming Guide
To turn off any action on deprecation that you have previously enabled, execute:

Deprecated doNothingOnDeprecated

Raise an exception -- calls to deprecated methods signal an exception.

To enable this, execute:

Deprecated doErrorOnDeprecated

Log the call -- when a call to a deprecated method occurs, the call to the deprecated
method is logged to the deprecation log file, and execution continues. There is no
impact on the application, other than performance.

To enable this, execute:

Deprecated doLogOnDeprecated

Log the call stack --when a call to a deprecated method occurs, the call to the
deprecated method and the call stack are logged to the deprecation log file, and
execution continues. There is no impact on the application, other than performance.

To enable this, execute:

Deprecated doLogStackOnDeprecated

Deprecation log

When deprecations are configured to write to a log, a file named DeprecatedPID.log is
created in the same location as a the gem log for an RPC login.

This file continues to grow and must be manually deleted. Logging methods or call stacks
consumes resources and can noticeably affect performance, and use significant disk space.
Methods called repeatedly, such as calls from within sort blocks, are particularly likely to
impact the application.

Listing deprecated methods

You can find all currently deprecated methods in a particular version by executing :

ClassOrganizer new sendersOfReport: #deprecated:

Determining senders of deprecated methods

For each deprecated method, you can use development tools to determine if you have any
senders within your application. In addition to GBS or other IDE tools, you can use
ClassOrganizer methods.

For example, having determined that setSegmentId: has been deprecated, you can
perform this to find all senders of that selector within your application:

ClassOrganizer sendersOfReport: #setSegmentId:

Since deprecation only applies to a method associated specific class, and this search looks
for all senders of the selector, you will have to examine the list to determine if the call is
actually deprecated. This is the consequence of how typing is handled in Smalltalk. For
example, String >>+ is deprecated, but Integer >>+ is not.

This will not find methods in perform: statements, in code executed by client applications,
or in topaz scripts.
286 GemTalk Systems April 2014

Chapter

16 System Sets
GemStone provides an interface to number of internal structures that provide specialized
behavior, different from the way normal objects are handled with respect to storage,
visibility to other sessions, and transactional behavior. These structures are intended for
use by experienced GemStone programmers.

This chapter provides an introduction to these specialized structures.

Hidden Sets
Describes HiddenSets, a non-persistent way to manage objects using bitmaps.

SessionTemps and access to Session State
Ways to keep session-temporary data available for the life of a session.

Shared Counters
Integer counters that can be shared between sessions. Both non-persistent and
persistent counters are available.

16.1 Hidden Sets
Hidden sets are internal GemStone structures that are used to hold objects in the form of
OOPs. They are implemented as bitmaps, an efficient way to transfer large collections of
objects. Hidden sets use heap memory, not temporary object cache memory, and the
objects in the hidden set are not loaded in memory, so hidden sets can be very useful
when working with very large collections.

Several repository-wide operations, such as listInstancesToHiddenSet:, write the
results to a hidden set; this allows operations that may return very large result sets to
complete, and the results to be enumerated, without exceeding memory limits.

Many hidden sets are used internally, but there are a number of hidden sets that are
provided for customer use. The specific hidden sets and their purposes are documented in
the image method System class >> HiddenSetSpecifiers. Hidden sets number
41 through 45 are designated for use by customers for their applications.
April 2014 GemTalk Systems 287

Hidden Sets GemStone/S 64 Bit 3.2 Programming Guide
Hidden sets are ordered in OOP order. You can load hidden sets from data that is
organized in any order, such as files containing oops sorted in page order, but that
ordering will be lost in the hidden set. Any OOP can only appear once in a hidden set; so,
like an IdentitySet, identical objects can only appear once, but equal objects can both be
included.

Special objects that are encoded within the OOP cannot be stored in Hidden sets.
Attempting to add objects such as SmallIntegers, SmallDoubles, Characters and Booleans
to a Hidden set will result in an error.

For example, the method listInstancesToHiddenSet: puts the results of a
listInstances operation in Hidden Set 1. The following code shows the call to this method,
and how to use hidden set protocol migrate each object:

Example 16.1

topaz 1> run
SystemRepository listInstancesToHiddenSet: MyClass.
[(System hiddenSetSize: 1) > 0]
 whileTrue:

[| resultBatch |
resultBatch := System hiddenSetEnumerate: 1 limit: 1024.
resultBatch do: [:aMyClass |

 aMyClass migrate].
System commitTransaction.

].
%

Methods to work with Hidden Sets

Add

You can add a single object or an array of objects to a hidden set using the methods:

System Class >> add: anObject toHiddenSet: hiddenSetSpecifier

System Class >> addAll: anArray toHiddenSet: hiddenSetSpecifier

To add all objects in one hidden set to another hidden set, use:

System class >> addHiddenSet: hiddenSet1 to: hiddenSet2

Remove

You can remove a single object or an array of objects from a hidden set using the methods:

System Class >> remove: anObject fromHiddenSet: hiddenSetSpecifier

System Class >> removeFirst: count
fromHiddenSet:hiddenSetSpecifier

System Class >> removeAll: anArray
fromHiddenSet:hiddenSetSpecifier
288 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Hidden Sets
System Class >> removeContentsOfHiddenSet: hiddenSet1
fromHiddenSet: hiddenSet2

System Class >> truncateHiddenSet: hiddenSetSpecifier
toSize:newSize

Any objects to be removed that are not in the hidden set are ignored. For more details, see
the method comments in the image.

To reinitialize the hidden set, removing all objects, use the following:

System Class >> hiddenSetReinit: hiddenSetSpecifier

Testing

To determine how large the hidden set is, use the method:

System Class >> hiddenSetSize: hiddenSetSpecifier

To determine if a specific object is in the hidden set, use:

System Class >> testIf: anObject isInHiddenSet: hiddenSetSpecifier

Set operations

To compute the union or difference of two hidden sets, and place the results in a third
hidden set, use the following methods:

System Class >> computeUnionOfHiddenSet: hiddenSet1 and:
hiddenSet2 into: hiddenSet3

System Class >> computeDifferenceOfHiddenSet: hiddenSet1
and: hiddenSet2 into: hiddenSet3

Enumerating

Retrieving the contents of hidden sets is done through the following methods. These
methods return a chunk of the contents of the hidden set as objects or as OOPs. These
objects are removed from the hidden set.You can then perform whatever operations you
need on each object in this chunk, before fetching another chunk. This way, very large
collections of objects can be operated on.

System Class >> hiddenSetEnumerate: hiddenSetSpecifier
limit: maxResultSize

This method returns the first maxResultSize objects in the hidden set. If there are not that
many objects in the hidden set, the result may be smaller than maxResultSize. If
maxResultSize is 0, all objects are returned (similar to hiddenSetAsArray:).

System Class >> hiddenSetEnumerateAsInts: hiddenSetSpecifier
limit: maxResultSize

This method is the same as hiddenSetEnumerate:limit:, except the OOPs of the
objects are returned, rather than the objects.

Converting

To create an Array containing all objects in the hidden set, use the following method.

System Class >> hiddenSetAsArray: hiddenSetSpecifier
April 2014 GemTalk Systems 289

SessionTemps and access to Session State GemStone/S 64 Bit 3.2 Programming Guide
Some care should be taken not to use this with very large hidden sets. The objects in the
resulting array, unlike the objects in the hidden set, are in temporary object memory. If the
hidden set is too large it may cause the session to run out of memory.

16.2 SessionTemps and access to Session State
Most data that you will work with in GemStone is either temporary or persistent. While
most temporary data is only retained for as long as the method is executing, or until the
session updates its commit record by committing or aborting, you may sometimes want
data that is not persistent and not shared, so does not risk transaction conflicts, but
remains unaffected by transaction status.

Session-specific data of this kind can be put into SessionTemps. SessionTemps
current provides access to a kind of SymbolDictionary; elements in the SessionTemps
dictionary remain until the session logs out or exits, are not affected by commit or abort,
and are not visible outside of the session.

For example, if you wish to open a log file and leave it open:

SessionTemps at: #Log put: (GsFile openAppend: 'myFile.log')

Actual code, of course, would do more error checking. To write to the file, use code
similar to this:

(SessionTemps at: #Log) nextPutAll: 'a message for the log
file'.

Objects in SessionTemps use temporary object memory, and the objects cannot be
removed from memory by in-memory garbage collection. While there is no limit on how
much data can be stored in SessionTemps, if your session reaches the memory limit and
exits, that data will be lost.

SessionState

SessionTemps uses a slot in the internal Session State structure, which is primarily
provided for use by the kernel. Access to customer-available SessionState slots is
provided primarily for legacy uses, but may be useful depending on application
requirements.

SessionState is accessed by integer index, with slots 1 to 1994 available for use. The
SessionState array is variable size, and will grow as needed.

The following methods can be used to read and update SessionState:

System >> sessionStateAt: anIndex

System >> sessionStateAt: anIndex put: anObject

System >> sessionStateSize
290 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Shared Counters
16.3 Shared Counters
There are two types of Shared Counters available; AppStat Shared Counters and
Persistent Shared Counters.

AppStat Shared Counters provide a way for sessions on the same shared cache to read
and update a set of counters. These counters are stored in the shared cache and are not
persistent across cache restart. They are not visible to sessions on remote shared page
caches, nor are the values recoverable from tranlogs.

Persistent shared counters are stored in the repository, and are visible to all sessions on all
shared caches. On repository recovery or restore, the values of persistent shared caches
are restored.

AppStat Shared Counters

Shared counters allow multiple sessions on the same SPC to read and update a common
counter value.

Shared counters are indexed from 0 to (System numSharedCounters - 1), which is set by
the configuration parameter SHR_PAGE_CACHE_NUM_SHARED_COUNTERS. The
default value for SHR_PAGE_CACHE_NUM_SHARED_COUNTERS is 1900. Each
counter is protected by a unique spinlock. The index of the first counter is 0.

Shared counters may be set to any signed 64 bit integer value, in the range:
 -263 (-9223372036854775808) to 263 - 1 (9223372036854775807)
If you increment or decrement so that the result would be outside the range of a signed
64-bit integer, the value will be set to the minimum or maximum; directly setting an out of
range value will result in an error.

Shared counters are transient, that is, they do not persist across cache restart.

Shared counter values are recorded by statmonitor when using the -n option and
recorded as AppStats.

The following methods may be used to read and update shared counters. For details, see
the method comments in the image.

System class >> numSharedCounters

System class >> sharedCounter: index

System class >> sharedCounter: index setValue: value

System class >> sharedCounter: index incrementBy: amount

System class >> sharedCounter: index decrementBy: amount

System class >> sharedCounter: index decrementBy: amount
withFloor: floorValue

sSystem class >> sharedCounterFetchValuesFrom: firstCounter
to: lastCounter
April 2014 GemTalk Systems 291

Shared Counters GemStone/S 64 Bit 3.2 Programming Guide
Persistent Shared Counters

Persistent shared counters allow all sessions in a repository to read and update a set of
counters. Persistent shared counters are globally visible to all sessions on all shared page
caches.

There are 1536 persistent shared counters, numbered from 1 to 1536. The index of the first
counter is 1.

Persistent shared counters may be set to any signed 64 bit integer value, in the range:
 -263 (-9223372036854775808) to 263 - 1 (9223372036854775807)
No limit checks are done when incrementing or decrementing a counter. If you increment
or decrement so that the result would be outside the range of a signed 64-bit integer, the
value will “rollover” and the overflow bits will be lost. Directly setting an out of range
value will result in an error.

Values of all persistent shared counters are stored in the repository and in tranlog records.
They are persistent through Stone restart, and recovered on Stone crash, restore from
backup, and restore from tranlog.

Persistent shared counters are independent of database transactions. Updates to counters
are visible immediately and not affected by aborts.

Each update to a persistent shared counter causes a roundtrip to the Stone; but reading
the value is handled by the gem (and the page server, if remote), and does not cause a
roundtrip to the stone.

The following methods may be used to read and update persistent shared counters. For
details, see the method comments in the image.

System class >> numberOfPersistentSharedCounters

System class >> persistentCounterAt: index put: value

System class >> persistentCounterAt: index

System class >> persistentCounterAt: index incrementBy: amount

System class >> persistentCounterAt: index decrementBy: amount
292 GemTalk Systems April 2014

Chapter

17 The Foreign Function
Interface
For certain applications, you may need to provide functionality that is not readily
available within GemStone Smalltalk. Such functionality might include interactions with
third-party products such as these:

Access to hardware, such as a bar code reader
Access to software that provides a service, such as the zlib compression library
Data encryption
Screen graphics
Interaction with Oracle, mySQL, or other databases

To interact with third-party products such as these, you can use the Foreign Function
Interface (FFI) to make C library calls from within GemStone Smalltalk. Using the FFI, you
can access C functions in external libraries without the need to write UserActions.

NOTE
With UserActions, your code is checked against function prototypes of the
external library that you’re calling. With the FFI, no such checking takes place.

This chapter describes the FFI classes and methods, and how you can use them to build
and interface to an existing C library..

FFI Core Classes
describes the FFI related classes and data types.

FFI Wrapper Utilities
Instructions for using FFI utilities to define FFI classes for your library.
April 2014 GemTalk Systems 293

FFI Core Classes GemStone/S 64 Bit 3.2 Programming Guide
17.1 FFI Core Classes
The core FFI defines six classes: CLibrary, CFunction, CPointer, CByteArray, CCallout,
and CCallin.

CLibrary

An instance of CLibrary corresponds to a C compiled library. Instances of CLibrary are
created using:

CLibrary class >> named:libraryName

passing in the path and name of the C shared library to be loaded. The platform-specific
extension (such as .so) is optional.

CCallout

Individual functions within a CLibrary are represented by instances of CCallout. To create
a CCallout, the following class methods are available:

library: aCLibrary name: aName result: resType args: argumentTypes

library: aCLibrary name: aName result: resType args: argumentTypes
varArgsAfter: varArgsAfter

name: aName result: resType args: argumentTypes

name: aName result: resType args: argumentTypes varArgsAfter: varArgsAfter

aCLibrary may be an instance of CLibrary, an Array of CLibraries, or nil. Passing nil
for aCLibrary will cause search of the loaded libraries for a function of this name.
aName is a String providing the name of the specific function. resType is the return
type of the function, and argumentTypes is an array of zero or more symbols describ-
ing the types of the argument for this function.

varArgsAfter is -1 if the number of arguments to the function is fixed. If the function
prototype ends with an ellipsis (‘...’), indicating that the function takes a variable
number of arguments, then varArgsAfter indicates the one-based index of the last
fixed argument. (If varArgsAfter is 0, there are no fixed arguments.)

The following instance method is used to invoke the function described by the instance of
CCallout:

callWith: argsArray

To get the value of the C global variable errno that was saved by the most recent call to
callWith:, use the CCallout class method:

errno
294 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide FFI Core Classes
C type symbols

Table 1 lists the symbols used for creating resType (result type) and argumentTypes
arguments when creating CCallouts.

Table 1 C type symbols

Return type Argument type

#int64 Integer. The C function returns
an int64. Integer

#uint64 Integer. The C function returns
a uint64. Integer

#int32 Integer. The C function returns
a signed C integer 32 bits. Integer

#uint32
Integer. The C function returns
an unsigned C integer, 32 bits
or smaller.

Integer

#int16 Integer Integer

#uint16 Integer Integer

#int8 Integer Integer

#uint8 Integer Integer

#double SmallDouble or Float. The C
function returns a C double.

SmallDouble or Float; and the function
is limited to a maximum of four
arguments.

#float SmallDouble or Float. The C
function returns a C float. SmallDouble or Float

#'char*' nil or a String

The corresponding arg must be a String.
The body is copied to C memory before
call and copied from C memory (and
possible grown/shrunk) after call. C
memory will not be valid after the call
finishes.

#void nil

#ptr nil or a CPointer

The corresponding arg must be nil, a
CByteArray or a CPointer. If nil, a C
NULL is passed. If CByteArray, address
of body is passed. If CPointer, the
encapsulated pointer is passed.

#'&ptr'
The corresponding arg must be a
CPointer. The CPointer’s value will be
passed and updated on return.
April 2014 GemTalk Systems 295

FFI Core Classes GemStone/S 64 Bit 3.2 Programming Guide
Functions using varArgs normally may have a maximum of 20 variable arguments. This
limit is lower if native code is disabled for this session; see “Limitations with native code
disabled” on page 297.

#'&int64'
The corresponding arg must be a
CByteArray of size 8. A pointer to body
will be passed.

 #'&double'
The corresponding arg must be a
CByteArray of size 8. A pointer to body
will be passed.

#'const char*'

The corresponding arg must be nil (to
pass NULL) or a String (body is copied
to C memory before call) C memory
will not be valid after the call finishes.

Table 1 C type symbols (Continued)

Return type Argument type
296 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide FFI Core Classes
Limitations with native code disabled

If the generation of native code is disabled, there are further limitations:

Functions using varArgs may have a maximum of four fixed and 10 total arguments.

Functions not using varArgs are limited to a maximum of 15 total arguments.

Arguments and results of C type float are not supported.

Functions with one or more args of C type double are limited to a maximum of four
arguments.

CCallin cannot be used

Native code generation is on by default, but may be configured to be disabled or becomes
disabled when breakpoints are set. See the System Administration Guide for more
information on native code generation.

CCallin

A CCallin represents a signature for a C function to be called by C code. The resulting
CCallin may be used as a type within the argumentTypes array when defining a CCallout.

CByteArray

A CByteArray represents an allocation of C memory. When objects such as pointers or
strings are passed to or from C functions, creating a CByteArray, with memory malloc’ed,
ensures that the memory will be valid following the call.

CFunction

CFunction is an abstract superclass representing the type signature of a C function. It has
two subclasses, CCallout and CCallin.

CPointer

CPointer encapsulates a C pointer that does not have auto-free semantics. New instances
are created by CFunction calls with result type #ptr, and are also used for certain
arguments of CFunctions.
April 2014 GemTalk Systems 297

FFI Wrapper Utilities GemStone/S 64 Bit 3.2 Programming Guide
17.2 FFI Wrapper Utilities
While it is possible to manually construct FFI calls using the core classes described above
in section 17.1, it involves analysis of the various header files and may be tedious and
error-prone. The typical header file includes many other header files, and the typical C
program involves many defines, typedefs, and other definitions.

To help in the process of constructing FFI calls, GemStone includes a class, CHeader, that
does the required analysis of a header file. You can parse a header file by using the
method CHeader class >> path:. This will return an object containing an analysis of
the header file.

The following example analyzes a a header file and stores the result in a variable in
UserGlobals:

Example 17.1 Create a CHeader for zlib.h

topaz 1> doit
UserGlobals at: #'ZLibHeader' put:

(CHeader path: '/usr/include/zlib.h').
%

NOTE
Many of the following examples use zlib, a software library for data compression
that is available on many platforms. Documentation on the library is available at
http://zlib.net/manual.html. These zlib examples are on Linux; library details
are platform-specific. If you are trying these examples on another platform, you
may need to experiment.

Once you have a CHeader object, you can get information about the various things
defined in the header file and those it includes.
298 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide FFI Wrapper Utilities
Example 17.2 CDeclaration for compress()

topaz 1> printit
(ZLibHeader functions at: 'compress')
%
a CDeclaration
 header a CHeader
 name compress
 storage extern
 type int32
 count nil
 pointer 0
 fields nil
 parameters a Array
 enumTag nil
 isStorage false
 isConstant false
 includesCode false
 isVaryingArgCount false
 isTransparentUnion false
 bitCount nil
 source \n/* Return flags indicating compile-time
options.\n\n Type ...
 file /usr/include/zlib.h
 line 1042

While the compress() function is directly in zlib.h, this isn’t necessarily the case.
Functions that are defined in any header file that is #included in the parsed header file
also will have definitions in the instance of CHeader.

For example, on Linux the zlib.h file #includes unistd.h, so functions such as
getcwd() also have definitions in the instance of CHeader:.

topaz 1> run
(ZLibHeader functions at: 'getcwd') file.
%
/usr/include/unistd.h

On other platforms, zlib.h may not #include unistd.h. In this case, the definition is
not included in ZLibHeader. In this case (if you wanted to access these functions from
GemStone), you could create a separate instance of CHeader for unistd.h:

topaz 1> doit
UserGlobals at: #'UnistdLibHeader' put: (CHeader path:
'/usr/include/unistd.h').

Note that parsing the header file does not give you the location of the actual C library file
that you will be calling. Normally when to write an interface to specific libraries, you
would be provided the library names and locations as well as the header files.
April 2014 GemTalk Systems 299

FFI Wrapper Utilities GemStone/S 64 Bit 3.2 Programming Guide
Simple function call--getcwd()

To take an example that is in unitstd.c, viewing the source for the getcwd() function
declaration will let us see the argument declarations.

topaz 1> run
(ZLibHeader functions at: 'getcwd') source
%
/* Get the pathname of the current working directory,
 and put it in SIZE bytes of BUF. Returns NULL if the
 directory couldn't be determined or SIZE was too small.
 If successful, returns BUF. In GNU, if BUF is NULL,
 an array is allocated with `malloc'; the array is SIZE
 bytes long, unless SIZE == 0, in which case it is as
 big as necessary. */
extern char *getcwd (char *__buf, size_t __size) __THROW __wur;

This tells us that the function takes two arguments, a pointer to a string and an integer,
and returns a pointer to a string. Knowing that the function defined by this header is in
libc, and the actual library path and filename is /lib/libc.so.6, we can manually
create a call to this function:

Example 17.3 CCallout to invoke getcwd()

| string ccallout_getcwd |
string := String new: 200.
ccallout_getcwd := CCallout

library: (CLibrary named: '/lib/libc.so.6')
name: 'getcwd'
result: #'char*'
args: #(#'char*' #'uint64').

string := ccallout_getcwd callWith:
(Array with: string with: string size).

It’s important to note the way arguments are defined, since C handles memory differently
from Smalltalk. The temporary string that is created as an argument to the function must
be created with a size larger than the expected result. This is required for heap space to be
allocated for the C function; if it is not large enough, the function will error. Also keep in
mind that it’s very important that the specified size of the string in the second argument
not be larger than the actual size of the string. The C function will write results to memory
limited by the second argument.

getcwd() updates the argument as well returns a value; both contain the same string,
but different instances. In both cases String’s size is now the actual size of the returned
String, truncated from the original size of 200.

More complex function call--compress()

A more complex example is the ZLib function compress(). This is defined in zlib.h as
follows:

ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen));
300 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide FFI Wrapper Utilities
You can view a simplified definition using the CHeader printString:

topaz 1> printit
(ZLibHeader functions at: 'compress') printString
%
extern int32 compress(uint8 *dest, uint64 *destLen, uint8
*source, uint64 sourceLen)

This tells us that compress() takes four arguments:

 a pointer to a destination buffer

 a pointer to the length of the destination buffer

 a pointer to the source data

 the length of the source data

The function compresses the source data and places the result in the destination buffer.
The destination length is updated with the space actually used. The function returns a flag
indicating success or the type of error experienced.

We can manually create a call to this function using the core classes described in 16.1:

CCallout
library: (CLibrary named: '/lib/libz.so.1.2.3.3')
name: 'compress'
result: #'int32'
args: #(#'ptr' #'ptr' #'const char*' #'uint64').

This creates an object that can be used to call the compress() function in the library. The
constructor takes four arguments: (1) an instance of CLibrary; (2) the name of the function;
(3) the result type; and (4) a list of the types of the arguments.

In order to call the function from Smalltalk we need to create the arguments. The source
string and the source length are easy--they are just instances of a Smalltalk String and
Integer. The destination and destination length are a bit more complex. They are both
pointers to memory locations where the function will retrieve information (destLen starts
as the available length of the destination buffer) as well as return information (dest, where
the result is placed, and destLen, the amount of dest actually used).

In general, C libraries cannot deal directly with Smalltalk objects since the format is
different and objects can move in memory with various garbage collection operations. As
part of making the C function call, the virtual machine converts the Smalltalk objects to C
data and constructs a C stack before making the C library call. For many objects this works
fine; as we saw in the getcwd() example above, simple String and Integer objects are
handled properly. But when an argument is a pointer to a chunk of memory in which the
C library will place arbitrary data, we need to explicitly allocate that space and pass a
pointer to it.

The class CByteArray represents a chunk of memory that is outside the Smalltalk object
space (it is on the "heap"), and when an instance of CByteArray is passed as a #'ptr' type,
the virtual machine puts a pointer to the space on the stack before making the function
call. There are methods in CByteArray to place various Smalltalk objects in the allocated
memory and to retrieve Smalltalk objects from the memory.

To allocate memory for the destination buffer, we can do the following:

dest := CByteArray gcMalloc: 100.
April 2014 GemTalk Systems 301

FFI Wrapper Utilities GemStone/S 64 Bit 3.2 Programming Guide
The gcMalloc constructor says to create space on the heap (outside of Smalltalk's object
memory) and create a Smalltalk object (in object memory) that references the external
memory. The heap memory will be automatically freed when the Smalltalk object is
garbage collected. We don't need to put anything into the memory since the compress()
function will not retrieve anything from the buffer. We pick a size that is enough to hold
the expected result (we made an educated guess for this example; in real use we could get
a better estimate by calling compressBound() with the source length).

To allocate memory for the destination size, and put a value in the location, we can do the
following:

dest_size := CByteArray gcMalloc: 8.
dest_size uint64At: 0 put: destination size.

This allocates 8 bytes in the heap and puts the integer 100 (or whatever size we have
allocated for the destination buffer) in that memory location (starting at a zero-based
offset of 0). When we call the function we will pass a pointer to the number, not the
number itself. This is so we provide a place for the function to tell us the amount of the
destination buffer actually used (reusing the memory we allocated). After we make the
call we can get the size back from the memory location:

used := dest_size uint64At: 0.

Once we know the amount of the destination actually used, we can extract the zip data.
Note that the zip data is generic binary data, not a string, and may include bytes with a
value of 0 (so cannot be treated as a C-string). Note that we are again dealing with zero-
based offsets since our underlying structures are C memory:

compressed := destination byteArrayFrom: 0 to: used - 1.

We can put this all together and pass a source string to be compressed:

Example 17.4 CCallout to invoke compress()

| ccallout_compress source dest dest_size result used compressed
|
ccallout_compress := CCallout

library: (CLibrary named: '/lib/libz.so.1.2.3.3')
name: 'compress'
result: #'int32'
args: #(#'ptr' #'ptr' #'const char*' #'uint64').

source := 'The quick brown fox jumped over the lazy dog'.
dest := CByteArray gcMalloc: 100.
dest_size := CByteArray gcMalloc: 8.
dest_size uint64At: 0 put: dest size.
result := ccallout_compress callWith: (Array with: dest with:
dest_size with: source with: source size).
used := dest_size uint64At: 0.
compressed := dest byteArrayFrom: 0 to: used - 1.

If the result is zero (Z_OK), then the function executed successfully, and compressed
will reference a ByteArray that contains the compressed data.
302 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide FFI Wrapper Utilities
Creating a Smalltalk class

The CHeader object can also be used to create a new Smalltalk class and automatically
generate methods to invoke the C functions.

The method CHeader >> wrapperForLibraryAt: can be used to create a Smalltalk
class with default name and methods for each function. The default name is the library
name without the ‘lib’, so for zlib.h, the resulting class name is simply “Z”.

To create Smalltalk syntax to allow arguments to be passed to the C function in the
generated interface methods, each function argument is represented with “_:”. So for
example for the getcwd() function, which as two arguments, the equivalent Smalltalk
method is:

getcwd_: buffer _: size

To generate a wrapper class for the zlib library, in the most simple case you could use the
following code:

Example 17.5 Create wrapper class using default

| header wrapperClass wrapper |
header := CHeader path: '/usr/include/zlib.h'.
wrapperClass := header wrapperForLibraryAt:
 '/lib/libz.so.1.2.3.3'.
wrapperClass initializeFunctions.
UserGlobals at: wrapperClass name put: wrapperClass.

After this is executed, you can use a code browser to view the class-side methods that
create the CCallout instances, and the instance-side methods that call the functions.

As mentioned earlier, the header file may include many functions beyond that provided
in the library -- all the functions that are defined in the referenced include files. And we
can call any of these functions through this library, due to the way the C function lookup
occurs.

For example, the function getpid() is defined to take no arguments and return a 32-bit
number. This makes it very easy to call once we have defined a wrapper class:

Example 17.6 Invoke Z function getpid

topaz 1> run
Z new getpid
%
22753

We probably don’t want to allow the Z class to have access to every function that is
included - for example, it might be better not to have access to sethostid(), which
changes the current machine's Internet number. It’s better to be more selective about what
functions to include in the wrapper. It’s also desirable to have a more descriptive name for
the library wrapper class.
April 2014 GemTalk Systems 303

FFI Wrapper Utilities GemStone/S 64 Bit 3.2 Programming Guide
The method CHeader>> wrapperNamed:forLibraryAt:select: allows you to
specify the name and a select block to determine the specific libraries to include. The select
block should evaluate to a Boolean that indicates whether or not to include the particular
function.

For example, to create a wrapper for various compress functions, you could do the
following:

Example 17.7 Create wrapper class specifying name and functions

| header class |
UserGlobals removeKey: #'ZLib' ifAbsent: [].
header := CHeader path: '/usr/include/zlib.h'.
class := header

wrapperNamed: 'ZLib'
forLibraryAt: '/lib/libz.so.1.2.3.3'
select: [:each |

each name includesString: 'compress'].
class initializeFunctions.
UserGlobals at: class name put: class.

This code creates a wrapper class, ZLib, that contains only four functions: compress(),
uncompress(), compress2(), and compressBound(), all the ones that happen to
include the string “compress”. The select block may be considerably more complex,
depending on which specific libraries you want to include.

To invoke compress using the Zlib class rather than manually creating a CCallout:.

Example 17.8 Invoke Zlib function compress()

topaz 1> printit
| source destination dest_size result used compressed |
source := 'The quick brown fox jumped over the lazy dog'.
destination := CByteArray gcMalloc: 100.
dest_size := CByteArray gcMalloc: 8.
dest_size uint64At: 0 put: destination size.
result := ZLib new
 compress_: destination
 _: dest_size
 _: source
 _: source size.
used := dest_size int64At: 0.
compressed := destination byteArrayFrom: 0 to: used - 1.
compressed
%
x.^K.HU(,.L.VH*./.SH..P.*.-HMQ./K-R(^A..$VU*...^C.k.^P0
304 GemTalk Systems April 2014

Chapter

18 External Sessions
GemStone/S 64 Bit incorporates a number of classes that facilitate spawning and
managing external sessions. External sessions allow you to execute Smalltalk code in
separate Gems, which may run on different servers and log in as different users to
different repositories. This allows you do to things such as partitioning work among
multiple gems or managing separate repositories.

Operations to create and communicate with the external sessions use the Foreign Function
Interface (FFI) to access the GCI libraries, except on AIX, which uses GciInterface
primitives. GciLibrary provides interface methods for all the GemBuilder for C functions.

Specifying NRS with GsNetworkResourceString
describes how to programmatically define NRS Strings

Using ExternalSessions
How to create and use external sessions

18.1 Specifying NRS with GsNetworkResourceString
GemStone uses a Network resource string, or NRS, to specify the details for the gem and
stone on login. NRS strings are also used for other purposes and include a number of
features; the NRS syntax is documented in the System Administration Guide, appendix C.

While you may compose strings in NRS syntax for your external session logins, the new
class GsNetworkResourceString provides a way to compose NRS strings from the
significant elements.

This class includes parameters that are meaningful for both Stone and Gem NRS strings,
which may have a different meaning in the gem vs. in the stone, and ones which apply to
one or the other,
April 2014 GemTalk Systems 305

Specifying NRS with GsNetworkResourceString GemStone/S 64 Bit 3.2 Programming Guide
Gem NRS methods

These methods return the NRS for a gem, using defaults as needed:

gemNRS
gemNRSForNetLDI: nameOrPort
gemNRSForNetLDI: nameOrPort onHost: gemhostname
gemNRSForNetLDI: nameOrPort onHost: gemhostname gemService:
customGemService

nameOrPort specifies the netldi name, or the port of the netldi on the stone’s host. If not
provided, gs64dli is used.

gemhostname specified the name of the host on which the gem will run. If a variant without
this argument is used, it will default to the stone’s host.

customGemService is the name of the gem service (script). This is normally gemnetobject,
but may be gemnetdebug or a customized script.

Stone NRS methods

These methods return the NRS for a gem, using defaults as needed:

stoneNRS
stoneNRSForStoneName: aStoneName
stoneNRSForStoneName: aStoneName onHost: stoneHostName

aStoneName is the name of the stone that you will log into. If a variant without this
argument is used, it defaults to gs64stone.

stonehostname specified the name of the host on which the stone is running. If a variant
without this argument is used, it will default to localhost.

GsNetworkResourceString direct protocol

The following instance methods set NRS parameters directly. You may either create an
instance of GsNetworkResourceString using the above methods, and send these messages
to further specify the NRS; or you may create a new instance of
GsNetworkResourceString and construct it using these and other methods.

log:
Set the name of the log file for the Gem service. Optional; applies for the Gem’s NRS.

temporaryObjectCacheSize:
Specify the size of the temporary object cache of the new gem. Optional; applies for the
Gem’s NRS.

dir:
Applies when starting a gem session. Set the default directory for the Gem. Optional;
applies for the Gem’s NRS.

authorization:
Sets the host UNIX user name and password. For example, ’user@password’. Applies
for the Gem’s NRS, if required by the NetLDI mode.

netldi:
Set the name or port of the netldi that will be used to service the request. Applies for
the Gem’s NRS, if not using the default netldi name.
306 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Using ExternalSessions
node:
For a stone, sets the node that the stone is running on; when starting a gem session, the
node that the gem process will be run on.

body:
For a stone, the name of the stone. For the gem, the name of the gem service. Gem
services may be gemnetobject or gemnetdebug, or a custom gem service.

For example, with the Stone on a machine named santiam, to run with a Gem on the
Stone’s node , the Stone and Gem NRS could be defined as follows:

myStoneNRS := GsNetworkResourceString
stoneNRSForStoneName: 'gs64stone'
onHost: 'santiam.gemtalksystems.com'.

myGemNRS := GsNetworkResourceString
gemNRSForNetldi: 'gs64ldi'
onHost: 'santiam.gemtalksystems.com'

18.2 Using ExternalSessions
To use an external session, you must create an instance of GsExternalSession, set the
appropriate login parameters, and login, which creates the external gem session.

After you have executed operations on the external gem, you must logout, to ensure the
external gem is terminated and does not continue to use resources.

You cannot persist instances of GsExternalSession in the repository.

Setup the External Session

The login parameters you configure are the same as when logging in via topaz or other
interfaces: the Stone’s Network Resource String (NRS), the Gem’s NRS, and the userId
and password that the external session will login as. If your login requires host username
and host password, these are also provided as part of the NRS arguments.

The Stone and Gem NRS may be provided as instances of the new class
GsNetworkResourceString, or as strings using GemStone’s standard NRS syntax.

Creating the External Session

To create the external session, create an instance and specify instances of
GsNetworkResourceString or NRS strings. The following examples show equivalents
using GsNetworkResourceString and NRS strings.

With GsNetworkResourceString

Note that this uses the instances of GsNetworkResourceString defined above.

myGsExternalSession := GsExternalSession new.
myGsExternalSession

stoneNRS: myStoneNRS;
gemNRS: myGemNRS;
username: 'DataCurator';
password: 'swordfish'.
April 2014 GemTalk Systems 307

Using ExternalSessions GemStone/S 64 Bit 3.2 Programming Guide
Using NRS strings

myGsExternalSession := GsExternalSession new.
myGsExternalSession

stoneNRS: '!@santiam.gemtalksystems.com!gs64stone';
gemNRS: '!@santiam.gemtalksystems.com#netldi:gs64ldi!gemnetobject';
username: 'DataCurator';
password: 'swordfish'.

Log in the External Session

To login, send #login to the configured GsExternalSession:

myGsExternalSession login.

Login creates a gem session that is logged in and in transaction in the specified stone,
either the same stone as the calling session or a different stone. If the external gem is
logged into a stone that is in active use, you must manage the gem appropriately to avoid
creating a commit record backlog in that stone; avoid leaving external gems logged in and
idle, and ensure that the code you execute commit or aborts regularly.

To logout, send #logout to the logged-in GsExternalSession:

myGsExternalSession logout.

Executing Code

Code to be executed by the external session can be passed as strings or blocks. These can
be executed synchronously or asynchronously.

Code in Strings

To synchronously execute code contained in a string, use the method executeString:.

For example:

myGsExternalSession executeString:
'SystemRepository fullBackupTo: ''/backups/gs/bkup14-03-23.dat'''.

Code in Blocks

What is actually sent to the remote session is always in the form of a String, but methods
are provided that accept blocks containing the code to execute in the remote session. The
source strings for these block will be passed to the remote session. This allows Smalltalk
tools to manage the source, detect senders, and so on, which is not possible with strings.

To use blocks, the blocks must be able to compile in both the calling session and the
remote session in which you intend them to execute, although the block’s code is not
necessarily meaningful in the calling session. Any variable resolution, etc. in the blocks
will be resolved again in the environment of the remote session when the block is
compiled after being transmitted as a string, and if the variables cannot be resolved in the
remote session, it will result in an error.

Code in block can also be executed synchronously or asynchronously.
308 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Using ExternalSessions
To synchronously execute code contained in a block, use:

executeBlock: aNoArgBlock
executeBlock: aOneArgBlock with: aValue
executeBlock: aTwoArgBlock with: aValue with: anotherValue
executeBlock: aBlock withArguments: aCollectionOfValues

These methods execute the source code contained in the given block, and return the
result of executing that code.

When passing arguments to the block, the arguments values must be objects for
which the printString allows the correct object state to be recreated in the remote ses-
sion. This is true for all objects, including specials, strings, integers and floats; use cau-
tion to avoid unexpected conversion or loss of information as well as errors.

Return Values

After code is executed in the remote session, the result is returned to the calling session.

If the result of the expression is a special (Character, Boolean, SmallInteger, SmallFloat,
etc.), or a String, Symbol, or ByteArray, the results are converted into the appropriate
object in the calling Gem.

When result is not a special, then the OOP of the result is places in the ExportSet of the
remote session. See the cautions on page 310.

Expressions that return another type of object will return an Array containing the OOP of
the result. This should be avoided, except when performing additional remote operations
on returned OOPs. The returned OOP is for the value of the result in the remote session,
which may not exist or be resolvable in the calling session; and OOP lookup has an
inherent risk of unexpected results.

Since the evaluation is done in a separate Gem process, any transient changes in the
remote Gem are not visible in the calling Gem. In order for persistent changes in the
remote Gem to be visible to the calling Gem, the remote Gem must commit the changes,
and the calling Gem must abort.

Asynchronous Execution

The executeString: and executeBlock: methods block the calling session until
execution completes. To execute the remote code asynchronously and return control
immediately to the calling session, the following equivalent methods are available:

forkString: aString
forkBlock: aNoArgBlock
forkBlock: aOneArgBlock with: aValue
forkBlock: aTwoArgBlock with: aValue with: anotherValue

When you execute asynchronously, an external call is in progress, and the methods you
can invoke on the remote session are limited:

isResultAvailable
Check whether the current call in progress has finished and save the result if it has.

lastResult
Answer the result received when the last isResultAvailable answered true, which
includes after a waitForResult operation completed.
April 2014 GemTalk Systems 309

Using ExternalSessions GemStone/S 64 Bit 3.2 Programming Guide
waitForResult
Wait for the external Gem to complete the current operation.

waitForResultForSeconds: numSeconds
Wait up to numSeconds seconds for the external Gem to complete the current operation.

waitForResultForSeconds: numSeconds otherwise: aBlock
Wait up to numSeconds seconds for the external Gem to complete the current operation.
If the operation does not complete within that time, answer the result of evaluating
aBlock.

Operations on remote objects

If you perform a remote operation that returns an OOP, you can send specific selectors to
that remote object by OOP.

send: anOop to: selector
Perform the given selector on the object in the external session with the OOP anOop.

send: selector to: anOop withArguments: anArrayOfValues
Perform the given selector on the object represented by the given OOP, which is an
OOP in the external session, and pass the Array of arguments.

The OOPs of the arguments are passed to the remote session. These arguments must
be specials, or persistent objects that exist on both the calling and remote sessions,
otherwise it will result in an error.

Managing Remote Sessions

Managing transaction state

Management of transaction state in the remote gem can generally be done by executing
code on the remote gem. The following methods are provided for convenience.

GsExternalSession >> abort
GsExternalSession >> commit

Logging

Login and logout will output messages to stdout for the session that created the
GsExternalSession; either the RPC Gem log, or the linked topaz session. You may control
the location of this logging, or suppress these messages using GsExternalSession >>
suppressLogging. However, the regular GCI login message is sent by the GCI layer,
and is not affected by image-level logging control.

Breaking remote execution

You can break execution on the remote session using

GsExternalSession >> softbreak
GsExternalSession >> hardbreak

Important caution on Export Set of remote session

For objects other than specials (Integers, Characters, etc.) that are returned by the remote
Gem, the remote Gem adds these objects to its export set. This includes Strings and other
byte collections, Exceptions returned by the external session, and other objects that are
310 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Using ExternalSessions
returned as OOPs. These OOPs remain in the export set of the remote gem, and will not be
garbage collected, until that gem is logged out. These OOPS can be removed manually
from the export set using Hidden Set protocol.

Although Strings and similar byte-format results and exceptions are converted into new
String (or appropriate) instances in the calling Gem (with a new OOP), the OOP of the
original String on the remote Gem remains in the external Gem’s export set.

Exceptions

The class GciError and GciLegacyError are provided to represent errors during remote
execution. If the code being executed on the remote session encounters an exception, this
is raised as a GciError in the calling session, or a GciLegacyError if the with
GsLegacyExternalSession.

Since remote debugging is not possible with this interface, the stack of the error is
included with the error description.

For example, given the following code which triggers an error on the remote session:

result := [myGsExternalSession executeString: '1/0']
on: GciError
do: [:ex | ex description].

The result in the calling session will be:

GciError: a ZeroDivide occurred (error 2026), reason:numErrIntDi-
visionByZero, attempt to divide 1 by zero
1 AbstractException >> signal @1 line 1
 receiver a ZeroDivide occurred (error 2026), reason:numErrInt-
DivisionByZero, attempt to divide 1 by zero
2 Number >> _errorDivideByZero @5 line 6
 receiver 1
3 SmallInteger >> / @5 line 7
 receiver 1
 aNumber 0
4 Executed Code @1 line 1
 receiver nil
5 GsNMethod class >> _gsReturnToC @1 line 1
 receiver nil
April 2014 GemTalk Systems 311

Using ExternalSessions GemStone/S 64 Bit 3.2 Programming Guide
312 GemTalk Systems April 2014

Chapter

19 The SUnit Framework
SUnit is a minimal yet powerful framework that supports the creation of automated unit
tests. This chapter discusses the importance of repeatable unit tests and illustrates the ease
of writing them using SUnit.1

Why SUnit?
introduces the SUnit framework and its benefit to the application developer.

Testing and Tests
describes the general goals of automated testing.

SUnit by Example
presents a step-by-step example that illustrates the use of SUnit.

The SUnit Framework
describes the core classes of the SUnit framework.

Understanding the SUnit Implementation
explores key aspects of the implementation by following the execution of a test and test
suite.

19.1 Why SUnit?
Writing tests is an important way of investing in the future reliability and maintainability
of your code. Tests should be repeatable, automated, and cover a precise functionality to
maximize their potential.

SUnit was developed originally by Kent Beck and was extended by Joseph Pelrine and
others. The interest in SUnit is not limited to the Smalltalk community. Indeed, legions of
developers understand the power of unit testing and versions of XUnit (as the general
framework is called) exist in many other languages.

1. This chapter is adapted from “SUnit Explained” by Stéphane Ducasse
(http://www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf) and
is used by permission.
April 2014 GemTalk Systems 313

http://www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf

Testing and Tests GemStone/S 64 Bit 3.2 Programming Guide
Testing and building regression test suites is not new; it is common knowledge that
regression tests are a good way to catch errors. Extreme Programming has brought a new
emphasis to this somewhat neglected discipline by making testing a foundation of its
methodology. The Smalltalk community has a long tradition of testing, due to the
incremental development supported by its programming environment. However, once
you write tests in a workspace or as example methods, there is no easy way to keep track
of them and to automatically run them. Unfortunately, tests that you cannot automatically
run are less likely to be run. Moreover, having a code snippet to run in isolation often does
not readily indicate the expected result. That’s why SUnit is interesting—it provides a
code framework to describe the context of your tests and to run them automatically. In
less than two minutes, you can write tests using SUnit that become part of an automated
test suite. This represents a vast improvement over writing small code snippets in an
ephemeral workspace.

19.2 Testing and Tests
Many traditional development methodologies include testing as a step that follows
coding, and this step is often cut short when time pressures arise. Yet development of
automated tests can save time, since having a suite of tests is extremely useful and allows
one to make application changes with much higher confidence.

Automated tests play several roles. First, they are an active and always synchronized
documentation of the functionality they cover. Second, they represent the developer’s
confidence in a piece of code. Tests help you quickly find defects introduced by changes to
your code. Finally, writing tests at the same time or even before writing code forces you to
think about the functionality you want to design. By writing tests first, you have to clearly
state the context in which your functionality will run, the way it will interact with other
code, and, more important, the expected results. Moreover, when you are writing tests,
you are your first client and your code will naturally improve.

The culture of tests has always been present in the Smalltalk community; a typical practice
is to compile a method and then, from a workspace, write a small expression to test it.
This practice supports the extremely tight incremental development cycle promoted by
Smalltalk. However, because workspace expressions are not as persistent as the tested
code and cannot be run automatically, this approach does not yield the maximum benefit
from testing. Moreover, the context of the test is left unspecified so the reader has to
interpret the obtained result and assess whether it is right or wrong.

It is clear that we cannot tests all the aspects of an application. Covering a complete
application is simply impossible and should not be goal of testing. Even with a good test
suite, some defect can creep into the application and be left hidden waiting for an
opportunity to damage your system. While there are a variety of test practices that can
address these issues, the goal of regression tests is to ensure that a previously discovered
and fixed defect is not reintroduced into a later release of the product.

Writing good tests is a technique that can be easily learned by practice. Let us look at the
properties that tests should have to get a maximum benefit:

Repeatable. We should be able to easily repeat a test and get the same result each
time.

Automated. Tests should be run without human intervention. You should be able to
run them during the night.
314 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide SUnit by Example
Tell a story. A test should cover one aspect of a piece of code. A test should act as a
specification for a unit of code.

Resilient. Changing the internal implementation of a module should not break a test.
One way to achieve this property is to write tests based on the interfaces of the tested
functionality.

In addition, for test suites, the number of tests should be somehow proportional to the
bulk of the tested functionality. For example, changing one aspect of the system might
break some tests, but it should not break all the tests. This is important because having 100
tests broken should be a much more important message for you than having 10 tests
failing.

By using “test-first” or “test-driven” development, eXtreme Programming proposes to
write tests even before writing code. While this is counter-intuitive to the traditional
“design-code-test” mindset, it can have a powerful impact on the overall result. Test-
driven development can improve the design by helping you to discover the needed
interface for a class and by clarifying when you are done (the tests pass!).

The next section provides an example of an SUnit test.

19.3 SUnit by Example
Before going into the details of SUnit, let’s look at a step-by-step example. The example in
this section tests the class Set, and is included in the SUnit distribution so that you can
read the code directly in the image.

Step 1: Define the Class ExampleSetTest

Example 19.1 defines the class ExampleSetTest, a subclass of TestCase.

Example 19.1

TestCase subclass: 'ExampleSetTest'
instVarNames: #(full empty)
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: Globals

The class ExampleSetTest groups all tests related to the class Set. It establishes the context
of all the tests that we will specify. Here the context is described by specifying two
instance variables, full and empty, that represent a full and empty set, respectively.

Step 2: Define the Method setUp

Example 19.2 presents the method setUp, which acts as a context definer method or as an
initialize method. It is invoked before the execution of any test method defined in this
class. Here we initialize the empty instance variable to refer to an empty set, and the full
instance variable to refer to a set containing two elements.
April 2014 GemTalk Systems 315

SUnit by Example GemStone/S 64 Bit 3.2 Programming Guide
Example 19.2

ExampleSetTest>>setUp
empty := Set new.
full := Set with: 5 with: #abc.

This method defines the context of any tests defined in the class. In testing jargon, it is
called the fixture of the test.

Step 3: Define Three Test Methods

Example 19.3 defines three methods on the class ExampleSetTest. Each method represents
one test. If your test method names begin with test, as shown here, the framework will
collect them automatically for you into test suites ready to be executed.

Example 19.3

ExampleSetTest>>testIncludes
self assert: (full includes: 5).
self assert: (full includes: #abc).

ExampleSetTest>>testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1.

ExampleSetTest>>testRemove
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5).

The testIncludes method tests the includes: method of a Set. After running the
setUp method in Example 19.2, sending the message includes: 5 to a set containing 5
should return true.

Next, testOccurrences verifies that there is exactly one occurrence of 5 in the full set,
even if we add another element 5 to the set.

Finally, testRemove verifies that if we remove the element 5 from a set, that element is
no longer present in the set.

Step 4: Execute the Tests

Now we can execute the tests, using either Topaz or one of the GemBuilder interfaces. To
run your tests, execute the following code:

(ExampleSetTest selector: #testRemove) run.

Alternatively, you can execute this expression:

ExampleSetTest run: #testRemove.
316 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide SUnit by Example
Developers often include such an expression as a comment, to be able to run them while
browsing. See Example 19.4.

Example 19.4

ExampleSetTest>>testRemove
"self run: #testRemove"
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5).

To debug a test, use one of the following expressions:

(ExampleSetTest selector: #testRemove) debug.

or

ExampleSetTest debug: #testRemove.

Examining the Value of a Tested Expression

The method TestCase>>assert: requires a single argument, a boolean that represents
the value of a tested expression. When the argument is true, the expression is considered
to be correct, and we say that the test is valid. When the argument is false, then the test
failed. The method deny: is the negation of assert:. Hence

aTest deny: anExpression.

is equal to

aTest assert: anExpression not.

Finding Out If an Exception Was Raised

SUnit recognizes two kinds of defects: not getting the correct answer (a failure) and not
completing the test (an error). If it is anticipated that a test will not complete, then the test
should raise an exception. To test that exceptions have been raised during the execution of
an expression, SUnit offers two methods, should:raise: and shouldnt:raise:. See
Example 19.5.

Example 19.5

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #abc] raise: Error.

In the example provided by SUnit, the exception is provided via the TestResult class
(Example 19.6). Because SUnit runs on a variety of Smalltalk dialects, the SUnit
framework factors out the variant parts (such as the name of the exception). If you plan to
write tests that are intended to be cross-dialect, look at the class TestResult.
April 2014 GemTalk Systems 317

The SUnit Framework GemStone/S 64 Bit 3.2 Programming Guide
Example 19.6

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: TestResult error.
self should: [empty at: 5 put: #abc] raise: TestResult error.

Because GemStone Smalltalk has a legacy exception framework that uses numbers to
identify exceptions, a subclass of TestCase is provided, GSTestCase, which overrides
should:raise: to allow a number argument for the expected error type.

Example 19.7

GSExampleSetTest>>testIllegal
self should: [empty at: 5] raise: 2007.
self should: [empty at: 5 put: #abc] raise: 2007.

Having provided an example of writing and running a test, we now turn to an
investigation of the framework itself.

19.4 The SUnit Framework
SUnit is implemented by four main classes: TestSuite, TestCase, TestResult, and
TestResource. See Figure 19.1. (Note that this is an object composition diagram, not a class
hierarchy diagram.)

Figure 19.1

TestSuite
run
resources
addTest:

TestResource

isAvailable
setUp
tearDown

TestResult
passedCount
failureCount
errorCount

TestCase
setUp
tearDown
assert:

runCount
tests

deny:
should:raise:
shouldnt:raise:
selector: (C)
run
resources

tests

The SUnit Core Classes

TestSuite

The class TestSuite represents a collection of tests. An instance of TestSuite contains zero
or more instances of subclasses of TestCase and zero or more instances of TestSuite. The
classes TestSuite and TestCase form a composite pattern in which TestSuite is the
composite and TestCase is the leaf.
318 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide The SUnit Framework
TestCase

The class TestCase represents a family of tests that share a common context. The context is
specified by instance variables on a subclass of TestCase and by the specialization method
setUp, which initializes the context in which the test will be executed. The class TestCase
also defines the method tearDown, which is responsible for cleanup, including releasing
the objects allocated by setUp. The method tearDown is invoked after the execution of
every test.

TestResult

The class TestResult represents the results of a TestSuite execution. This includes a
description of which tests passed, which failed, and which had errors.

TestResource

Recall that the setUp method is used to create a context in which the test will run. Often
that context is quite inexpensive to establish, as in Example 19.2 (on page 316), which
creates two instances of Set and adds two objects to one of those instances.

At times, however, the context may be comparatively expensive to establish. In such
cases, the prospect of re-establishing the context for each run of each test might
discourage frequent running of the tests. To address this problem, SUnit introduces the
notion of a resource that is shared by multiple tests.

The class TestResource represents a resource that is used by one or more tests in a suite,
but instead of being set up and torn down for each test, it is established once before the
first test and reset once after the last test. By default, an instance of TestSuite defines as its
resources the list of resources for the TestCase instances that compose it.

As shown in Example 19.8, a resource is identified by overriding the class method
resources. Here, we define a subclass of TestResource called MyTestResource. We
associate it with MyTestCase by overriding the class method resources to return an
array of the test classes to which it is associated.

Example 19.8

MyTestCase class>>resources
"associate a resource with a testcase"
^ Array with: MyTestResource.

As with a TestCase, we use the method setUp to define the actions that will be run
during the setup of the resource.
April 2014 GemTalk Systems 319

Understanding the SUnit Implementation GemStone/S 64 Bit 3.2 Programming Guide
19.5 Understanding the SUnit Implementation
Let’s now look at some key aspects of the implementation by following the execution of a
test. Although this understanding is not necessary to use SUnit, it can help you to
customize SUnit.

Running a Single Test

To execute a single test, we evaluate the expression

(TestCase selector: aSymbol) run.

The method TestCase>>run creates an instance of TestResult to contain the result of
the executed tests, and then invokes the method TestCase>>run:, which in turn
invokes the method TestResult>>runCase:. See Figure 19.2.

Figure 19.2 TestCase instance methods run and run: (source code)

TestCase>>run
| result |
result := TestResult new.
self run: result.

ensure: [TestResource resetResources: self resources].
^result.

TestCase>>run: aResult
aResult runCase: self.

The runCase: method (Figure 19.3) invokes the method TestCase>>runCase, which
executes a test. Without going into the details, TestCase>>runCase pays attention to
the possible exception that may be raised during the execution of the test, invokes the
execution of a TestCase by calling the method runCase, and counts the errors, failures,
and passed tests.

Figure 19.3 TestResult instance method runCase: (source code)

TestResult>>runCase: aTestCase
[aTestCase runCase.
self addPass: aTestCase]

on: self class failure , self class error
do: [:ex | ex sunitAnnounce: aTestCase toResult: self]

As shown in Figure 19.4, the method TestCase>>runCase calls the methods setUp and
tearDown.

Figure 19.4 TestCase instance method runCase (source code)

TestCase>>runCase
self resources do: [:each | each availableFor: self].
[self setUp.
320 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Understanding the SUnit Implementation
self performTest]
ensure: [self tearDown]

Running a TestSuite

To execute more than a single test, we invoke the method TestSuite>>run on a
TestSuite (see Figure 19.5). The class TestCase provides the functionality to build a test
suite from its methods. The expression MyTestCase suite returns a suite containing all
the tests defined in the class MyTestCase.

The method TestSuite>>run creates an instance of TestResult, verifies that all the
resource are available, then invokes the method TestSuite>>run: to run all the tests
that compose the test suite. All the resources are then reset.

Figure 19.5 TestSuite instance methods run and run: (source code)

TestSuite>>run
| result |
result := TestResult new.
[self run: result]

ensure: [TestResource resetResources: self resources].
^result

TestSuite>>run: aResult
self tests do: [:each |

self sunitChanged: each.
each run: aResult]

The class TestResource and its subclasses use the class method current to keep track of
their currently created instances (one per class) that can be accessed and created. This
instance is cleared when the tests have finished running and the resources are reset. The
resources are created as needed. See Figure 19.6.

Figure 19.6 TestResource class methods isAvailable and current (source code)

TestResource class>>isAvailable
^self current notNil

TestResource class>>current
current isNil ifTrue: [current := self new].
^current
April 2014 GemTalk Systems 321

For More Information GemStone/S 64 Bit 3.2 Programming Guide
19.6 For More Information
To continue your exploration of repeatable unit testing, visit the Camp Smalltalk SUnit
site (http://sunit.sourceforge.net). The SUnit site provides information about SUnit
development efforts, along with downloads, documentation, and other materials of
interest.

You may also find these books helpful:

Beck, Kent. Test-Driven Development: By Example. Addison-Wesley, 2003.

Beck, Kent, and Cynthia Andres. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2004.

Fowler, Martin, and Kent Beck. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.
322 GemTalk Systems April 2014

Chapter

A GemStone Smalltalk
Syntax
This appendix outlines the syntax for GemStone Smalltalk and introduces the important
kinds of GemStone Smalltalk objects.

A.1 GemStone and ANSI Smalltalk
GemStone’s programming language, GemStone Smalltalk, is a dialect of the Smalltalk
programming language. The Smalltalk language standard is defined by an ANSI Smalltalk
standard. While GemStone follows this standard, there are places where either for
historical reasons or by choice, GemStone Smalltalk does not follow the ANSI standard.

Some known places in which GemStone Smalltalk does not conform to the ANSI standard:

 • Arrays sizes are not fixed; an Array may increase in size by 1 when an operation assign
to an index not more than 1 larger than the current size.

 • Array constructors using {} are not part of the standard.

 • DateAndTime asSeconds does not print fractional seconds.

 • Integer >> asInteger truncates rather than rounds.

 • The Fixed point literal syntax with ‘p’ is not part of the standard.
April 2014 GemTalk Systems 323

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
A.2 GemStone Smalltalk
Every object is an instance of a class, taking its methods and its form of data storage from
its class. Defining a class thus creates a kind of template for a whole family of objects that
share the same structure and methods. Instances of a class are alike in form and in
behavioral repertoire, but independent of one another in the values of the data they
contain.

Classes are much like the data types (string, integer, etc.) provided by conventional
languages; the most important difference is that classes define actions as well as storage
structures. In other words, Algorithms + Data Structures = Classes.

Smalltalk provides a number of predefined classes that are specialized for storing and
transforming different kinds of data. Instances of class Float, for example, store floating-
point numbers, and class Float provides methods for doing floating-point arithmetic.
Floats respond to messages such as +, -, and reciprocal.

Instances of class Array store sequences of objects and respond to messages that read and
write array elements at specified indices.

The Smalltalk classes are organized in a treelike hierarchy, with classes providing the most
general services nearer the root, and classes providing more specialized functions nearer
the leaves of the tree. This organization takes advantage of the fact that a class’s structure
and methods are automatically conferred on any classes defined as its subclasses. A
subclass is said to inherit the properties of its parent and its parent’s ancestors.

How to Create a New Class
Classes are created using a number of class creation methods, defined on the class Class.
For example, following message expression makes a new subclass of class Object, the class
at the top of the class hierarchy:

Object subclass: 'Animal'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

This subclass creation message establishes a name (’Animal’) for the new class and installs
the new class in a Dictionary called UserGlobals. The String used for the new class’s name
must follow the general rule for variable names — that is, it must begin with an alphabetic
character and its length must not exceed 1024 characters. Installing the class in UserGlobals
makes it available for use in the future—you need only write the name Animal in your code
to refer to the new class. For more on class creation, see Chapter 2.

Case-Sensitivity
GemStone Smalltalk is case-sensitive; that is, names such as “SuperClass,” “superclass,”
and “superClass” are treated as unique items by the GemStone Smalltalk compiler.
324 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
Statements
The basic syntactic unit of a Smalltalk program is the statement. A lone statement needs no
delimiters; multiple statements are separated by periods:

a := 2.
b := 3.

In a group of statements to be executed en masse, a period after the last statement is
optional.

A statement contains one or more expressions, combining them to perform some reasonable
unit of work, such as an assignment or retrieval of an object.

Comments
GemStone Smalltalk usually treats a string of characters enclosed in quotation marks as a
comment—a descriptive remark to be ignored during compilation. Here is an example:

"This is a comment."

 A quotation mark does not begin a comment in the following cases:

 • Within another comment. You cannot nest comments.

 • Within a string literal (see page 327). Within a GemStone Smalltalk string literal, a
“comment” becomes part of the string.

 • When it immediately follows a dollar sign ($). GemStone Smalltalk interprets the first
character after a dollar sign as a data object called a character literal (see page 327).

A comment terminates tokens such as numbers and variable names. For example,
GemStone Smalltalk would interpret the following as two numbers separated by a space
(by itself, an invalid expression):

2" this comment acts as a token terminator" 345

Expressions
An expression is a sequence of characters that Smalltalk can interpret as a reference to an
object. Some references are direct, and some are indirect.

Expressions that name objects directly include both variable names and literals such as
numbers and strings. The values of those expressions are the objects they name.

An expression that refers to an object indirectly by specifying a message invocation has the
value returned by the message’s receiver. You can use such an expression anywhere you
might use an ordinary literal or a variable name. This expression:

2 negated

has the value (refers to) -2, the object that 2 returns in response to the message negated.

The following sections describe the syntax of GemStone Smalltalk expressions and tell you
something about their behavior.

Kinds of Expressions

A GemStone Smalltalk expression can contain a combination of the following:
April 2014 GemTalk Systems 325

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
 • a literal

 • a variable name

 • an assignment

 • a message expression

 • an array constructor

 • a path

 • a block

The following sections discuss each of these kinds of expression in turn.

Literals

A literal expression is a representation of some object such as a character or string whose
value or structure can be written out explicitly. The five kinds of GemStone Smalltalk
literals are:

 • numbers

 • characters

 • strings

 • symbols

 • arrays of literals

Numeric Literals

In Smalltalk, literal numbers look and act much like numbers in other programming
languages. Like other Smalltalk objects, numbers receive and respond to messages. Most
of those messages are requests for arithmetic operations. In general, Smalltalk numeric
expressions do the same things as their counterparts in other programming languages. For
example:

5 + 5

returns the sum of 5 and 5.

A literal floating point number must include at least one digit after the decimal point:

5.0

You can express very large and very small numbers compactly with scientific notation. To
raise a number to some exponent, simply append the letter “e” and a numeric exponent to
the number’s digits. For example:

8.0e2

represents 800.0. The number after the e represents an exponent (base 10) to which the
number preceding the e is to be raised. The result is always a floating point number. Here
are more examples:

1e-3 represents 0.001
1.5e0 represents 1.5

The literal numeric type GemStone/S 64 Bit supports are:
326 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
 • “e”, “E”, “d” and “D” for floating point literals (SmallDouble or Float)

 • “f” and “F” for DecimalFloat literals

 • “s” for ScaledDecimal literals

 • “p” for FixedPoint literals

For details, see “GemStone Smalltalk Lexical Tokens” on page 346.

To represent a number in a nondecimal base literally, write the number’s base (in decimal),
followed by the radix “r” or character "#", and then the number itself. Here, for example, is
how you could write octal 23 and hexadecimal FF:

8#23
16rFF

The largest radix available is 36.

Character Literals

A Smalltalk character literal represents a character, such as one of the symbols of the
alphabet. To create a character literal, write a dollar sign ($) followed by the character’s
alphabetic symbol. Here are some examples:

$b $B $4 $? $$

If a nonprinting ASCII character such as a tab or a form feed follows the dollar sign,
Smalltalk creates the appropriate internal representation of that character.

GemStone Smalltalk interprets this statement, for example, as a representation of ASCII
character 32:

$. "Creates the character representing a space (ASCII 32)"

In this example, the period following the space acted as a statement terminator. If no space
had separated the dollar sign from the period, GemStone Smalltalk would have interpreted
the expression as the character literal representing a period.

String Literals

Literal strings represent sequences of characters. They are instances of the class String,
described in Chapter 4, “Collection and Stream Classes.” A literal string is a sequence of
characters enclosed by single quotation marks. These are literal instances of String:

'Intellectual passion drives out sensuality.'
'A difference of taste in jokes is a great strain
 on the affections.'

When you want to include apostrophes in a literal string, double them:

'You can''t make omelettes without breaking eggs.'

GemStone Smalltalk faithfully preserves control characters when it compiles literal strings.
The following example creates a String containing a line feed (ASCII 10), the end-of-line
character:

'Control characters such as line feeds
 are significant in literal strings.'
April 2014 GemTalk Systems 327

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
Strings may hold characters with values up to 255, that is, characters that can be
representing in a single byte. Characters themselves may have values much higher. If a
string includes any characters larger than 255, it is converted to a DoubleByteString. If any
of the characters require more than two bytes, it becomes a QuadByteString. For example,
this is a DoubleByteString:

'Škoda'

Symbol Literals

A literal Symbol is similar to a literal String. It is a sequence of letters, numbers, or an
underscore preceded by a pound sign (#). For example:

Example A.1

#stuff
#nonsense
#may_24_thisYear

Literal Symbols can contain white space (tabs, carriage returns, line feeds, formfeeds,
spaces, or similar characters). If they do, they must be preceded by a pound sign (#) and
must also be delimited by single quotation marks, as described in the “String Literals”
discussion. For example:

#'Gone With the Wind'

As with strings that contain characters that require more than a byte to represent,
DoubleByteSymbol and QuadByteSymbol are used for symbol literals that include
characters with values over 255.

Array Literals

Arrays can hold objects of any type, and they respond to messages that read and write
individual elements or groups of elements.

A literal Array can contain only other literals—Characters, Strings, Symbols, other literal
Arrays, and three “special literals” (true, false, nil). The elements of a literal Array are
enclosed in parentheses and preceded by a pound sign (#). White space must separate the
elements.

Here is an Array that contains two Strings, a literal Array, and a third String:

#('string one' 'string two' #('another' 'Array') 'string three')

The following Array contains a String, a Symbol, a Character, a Number, and a Boolean:

#('string one' #symbolOne $c 4 true)

Besides Array literals, you may also specify Array constructors in your code, which are
used similarly, but follow quite different rules. For a discussion of array constructors, see
page 335.
328 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
Variables and Variable Names
A variable name is a sequence of characters of either or both cases. A variable name must
begin with an alphabetic character or an underscore (“_”), but it can contain numerals.
Spaces are not allowed, and the underscore is the only acceptable punctuation mark. Here
are some permissible variable names:

zero
relationalOperator
Top10SolidGold
A_good_name_is_better_than_precious_ointment

Most Smalltalk programmers begin local variable names with lowercase letters and global
variable names with uppercase letters. When a variable name contains several words,
Smalltalk programmers usually begin each word with an uppercase letter (sometimes
called “camelcase”). You are free to ignore either of these conventions, but remember that
Smalltalk is case-sensitive. The following are all different names to Smalltalk:

VariableName
variableName
variablename

Variable names can contain up to 1024 characters.

Declaring Temporary Variables

GemStone Smalltalk requires you to declare new variable names (implicitly or explicitly)
before using them. The simplest kind of variable to declare, and one of the most useful in
your initial exploration of GemStone, is the temporary variable. Temporary variables are
so called because they are defined only for one execution of the set of statements in which
they are declared.

To declare a temporary variable, you must surround it with vertical bars as in this example:

Example A.2

| myTempVariable |
myTempVariable := 2.

You can declare at most 253 temporary variables for a set of statements. Once declared, a
variable can name objects of any kind.

To store a variable for later use, or to make its scope global, you must put it in one of
GemStone’s shared dictionaries that GemStone Smalltalk uses for symbol resolution. For
example:

Example A.3

| myTempVariable |
myTempVariable := 2.
UserGlobals at: #MyPermanentVariable put: myTempVariable.

Subsequent references to MyPermanentVariable return the value 2.
April 2014 GemTalk Systems 329

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
Pseudovariables

You can change the objects to which most variable names refer simply by assigning them
new objects. However, five GemStone Smalltalk variables have values that cannot be
changed by assignment; they are therefore called pseudovariables. They are:

nil

Refers to an object representing a null value. Variables not assigned another value
automatically refer to nil. nil is an instance of UndefinedObject.

true

Refers to the object representing logical truth. true is an instance of Boolean.

false

Refers to the object representing logical false. false is an instance of Boolean.

self

Refers to the receiver of the message, which differs according to the context. self may
be used anywhere a method argument or method temporary would be used, except
self is not allowed on the left side of an assignment. When self is used in code that is
not part of a method, it resolves to nil.

super

Refers to the receiver of the message, but the search for the method to execute will start
in the superclass of the class in which the sending method was compiled. super may
only be used as the receiver of a message send, in code within a method.

Assignment
Assignment statements in Smalltalk look like assignment statements in many other
languages. The following statement assigns the value 2 to the variable MightySmallInteger:

MightySmallInteger := 2.

The next statement assigns the same String to two different variables (C programmers may
notice the similarity to C assignment syntax):

nonmodularity := interdependence := 'No man is an island'.

Message Expressions
Smalltalk objects communicate with one another by means of messages. Most of your effort
in Smalltalk programming will be spent in writing expressions in which messages are
passed between objects. This subsection discusses the syntax of those message expressions.

You have already seen several examples of message expressions:

2 + 2
5 + 5
330 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
In fact, the only GemStone Smalltalk code segments you have seen that are not message
expressions are literals, variables, and simple assignments:

2 "a literal"
variableName "a variable"
MightySmallInteger := 2. "an assignment"

The ubiquity of message-passing is one of the hallmarks of object-oriented programming.

Messages

A message expression consists of:

 • an identifier or expression representing the object to receive the message,

 • one or more identifiers called selectors that specify the message to be sent, and

 • (possibly) one or more arguments that pass information with the message (these are
analogous to procedure or function arguments in conventional programming).
Arguments can be written as message expressions.

Reserved and Optimized Selectors
GemStone represents selectors internally as symbols, and almost all symbols that confirm
to the unary, binary, or keyword selector patterns are acceptable as a selectors. For details
on legal selectors, see the BNF on page 344.

There are a few selectors that have been reserved for the sole use of the GemStone kernel
classes. The compiler will not allow you to compile methods with reserved selectors.

Those selectors are:

__inProtectedMode _and: _downTo:by:do:
_downTo:do: _gsReturnNothingEnableEvents
_gsReturnNoResult _isArray _isExceptionClass
_isExecBlock _isFloat _isInteger
_isNumber _isOneByteString _isRange
_isRegexp _isRubyHash _isScaledDecimal
_isSmallInteger _isSymbol _leaveProtectedMode
_or: _stringCharSize ~~
and: == ifFalse:
ifFalse:ifTrue: ifNil: ifNil:ifNotNil:
ifNotNil: ifNotNil:ifNil: ifTrue:
ifTrue:ifFalse: isKindOf: or:
timesRepeat: to:by:do: to:do:
untilFalse untilFalse: untilTrue
untilTrue: whileFalse whileFalse:
whileTrue whileTrue: repeat

In addition, the following methods are optimized in the class SmallInteger:

+ - * >= =

You can redefine the optimized methods above in your application classes, but
redefinitions in the class SmallInteger are ignored.
April 2014 GemTalk Systems 331

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
Messages as Expressions

In the following message expression, the object 2 is the receiver, + is the selector, and 8 is
the argument:

2 + 8

When 2 sees the selector +, it looks up the selector in its private memory and finds
instructions to add the argument (8) to itself and to return the result. In other words, the
selector + tells the receiver 2 what to do with the argument 8. The object 2 returns another
numeric object 10, which can be stored with an assignment:

myDecimal := 2 + 8.

The selectors that an object understands (that is, the selectors for which instructions are
stored in an object’s instruction memory or “method dictionary”) are determined by the
object’s class.

Unary Messages

The simplest kind of message consists only of a single identifier called a unary selector. The
selector negated, which tells a number to return its negative, is representative:

7 negated
-7

 Here are some other unary message expressions:

9 reciprocal. "returns the reciprocal of 9"
myArray last. "returns the last element of Array myArray"
DateTime now. "returns the current date and time"

Binary Messages

Binary message expressions contain a receiver, a single selector consisting of one or two
nonalphanumeric characters, and a single argument. You are already familiar with binary
message expressions that perform addition. Here are some other binary message
expressions (for now, ignore the details and just notice the form):

8 * 8 "returns 64"
4 < 5 "returns true"
myObject = yourObject "returns true if myObject and
 yourObject have the same value"

Keyword Messages

Keyword messages are the most common. Each contains a receiver and up to 15 keyword
and argument pairs. In keyword messages, each keyword is a simple identifier ending in
a colon.

In the following example, 7 is the receiver, rem: is the keyword selector, and 3 is the
argument:

7 rem: 3 "returns the remainder from the division of 7 by 3"
332 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
Here is a keyword message expression with two keyword-argument pairs:

Example A.4

| arrayOfStrings |
arrayOfStrings := Array new: 4.
arrayOfStrings at: (2 + 1) put: 'Curly'.
"puts 'Curly' at index position 3 in the receiver"

In a keyword message, the order of the keyword-argument pairs (at:arg1 put:arg2) is
significant.

Combining Message Expressions
In a previous example, one message expression was nested within another, and
parentheses set off the inner expression to make the order of evaluation clear. It happens
that the parentheses were optional in that example. However, in GemStone Smalltalk as in
most other languages, you sometimes need parentheses to force the compiler to interpret
complex expressions in the order you prefer.

Combinations of unary messages are quite simple; GemStone Smalltalk always groups
them from left to right and evaluates them in that order. For example:

9 reciprocal negated

is evaluated as if it were parenthesized like this:

(9 reciprocal) negated

That is, the numeric object returned by 9 reciprocal is sent the message negated.

Binary messages are also invariably grouped from left to right. For example, GemStone
Smalltalk evaluates:

2 + 3 * 2

 as if the expression were parenthesized like this:

(2 + 3) * 2

This expression returns 10. It may be read: “Take the result of sending + 3 to 2, and send
that object the message * 2.”

All binary selectors have the same precedence. Only the sequence of a string of binary
selectors determines their order of evaluation; the identity of the selectors doesn’t matter.

However, when you combine unary messages with binary messages, the unary messages
take precedence. Consider the following expression, which contains the binary selector +
and the unary selector negated:

2 + 2 negated
0

April 2014 GemTalk Systems 333

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
This expression returns the result 0 because the expression 2 negated executes before the
binary message expression 2 + 2. To get the result you may have expected here, you would
need to parenthesize the binary expression like this:

(2 + 2) negated
-4

Finally, binary messages take precedence over keyword messages. For example:

myArrayOfNums at: 2 * 2

would be interpreted as a reference to myArrayofNums at position 4. To multiply the
number at the second position in myArrayOfNums by 2, you would need to use
parentheses like this:

(myArrayOfNums at: 2) * 2

Summary of Precedence Rules

1. Parenthetical expressions are always evaluated first.

2. Unary expressions group left to right, and they are evaluated before binary and
keyword expressions.

3. Binary expressions group from left to right, as well, and take precedence over keyword
expressions.

4. GemStone Smalltalk executes assignments after message expressions.

Cascaded Messages
You will often want to send a series of messages to the same object. By cascading the
messages, you can avoid having to repeat the name of the receiver for each message. A
cascaded message expression consists of the name of the receiver, a message, a semicolon,
and any number of subsequent messages separated by semicolons.

For example:

Example A.5

| arrayOfPoets |
arrayOfPoets := Array new.
(arrayOfPoets add: 'cummings'; add: 'Byron'; add: 'Rimbaud';
yourself)

is a cascaded message expression that is equivalent to this series of statements:
334 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
Example A.6

| arrayOfPoets |
arrayOfPoets := Array new.
arrayOfPoets add: 'cummings'.
arrayOfPoets add: 'Byron'.
arrayOfPoets add: 'Rimbaud'.
arrayOfPoets

You can cascade any sequence of messages to an object. And, as always, you are free to
replace the receiver’s name with an expression whose value is the receiver.

Array Constructors
Most of the syntax described in this chapter so far is standard Smalltalk syntax. However,
GemStone Smalltalk also includes a syntactic construct called a Array constructor. An Array
constructor is similar to a literal array, but its elements can be written as nonliteral
expressions as well as literals. GemStone Smalltalk evaluates the expressions in an Array
constructor at run time.

Array constructors look a lot like literal Arrays; the differences are that array constructors
are enclosed in braces and have their elements delimited by periods.

Example A.7 shows an Array constructor whose last element, represented by a message
expression, has the value 4.

Example A.7

"An Array constructor"
{'string one' . #SymbolOne . $c . 2+2}

NOTE
The Array constructor is not part of the Smalltalk standard. You should avoid its
use in any code that might be ported to an other Smalltalk dialect. Instead, use a
message send constructor such as Array class >> #with:. See
Example A.8.

Example A.8

Array with: 'string one' with: #symbolOne with: $c with: 2+2

Because any valid GemStone Smalltalk expression is acceptable as an array constructor
element, you are free to use variable names as well as literals and message expressions:
April 2014 GemTalk Systems 335

GemStone Smalltalk GemStone/S 64 Bit 3.2 Programming Guide
Example A.9

| aString aSymbol aCharacter aNumber |
aString := 'string one'.
aSymbol := #symbolOne.
aCharacter := $c.
aNumber := 4.
{aString . aSymbol . aCharacter . aNumber}

The differences in the behavior of array constructors versus literal arrays can be subtle. For
example, the literal array:

#(123 huh 456)

is interpreted as an array of three elements: a SmallInteger, aSymbol, and another
SmallInteger. This is true even if you declare the value of huh to be a SmallInteger such as
88, as shown in Example A.10.

Example A.10

| huh |
huh := 88.
#(123 huh 456)

[20176897 sz:3 cls: 66817 Array] an Array
 #1 [986 sz:0 cls: 74241 SmallInteger] 123 == 0x7b
 #2 [27086593 sz:3 cls: 110849 Symbol] huh
 #3 [3650 sz:0 cls: 74241 SmallInteger] 456 == 0x1c8

The same declaration used in an array constructor, however, produces an array of three
SmallIntegers:

Example A.11

| huh |
huh := 88.
{ 123 . huh . 456 }

[20192001 sz:3 cls: 66817 Array] an Array
 #1 [986 sz:0 cls: 74241 SmallInteger] 123 == 0x7b
 #2 [706 sz:0 cls: 74241 SmallInteger] 88 == 0x58
 #3 [3650 sz:0 cls: 74241 SmallInteger] 456 == 0x1c8

Path Expressions
With the exception of Array constructors, most of the syntax described in this chapter so
far is standard Smalltalk syntax. GemStone Smalltalk also includes a syntactic construct
336 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk
called a path. A path is a special kind of expression that returns the value of an instance
variable.

A path is an expression that contains the names of one or more instance variables separated
by periods; a path returns the value of the last instance variable in the series. The sequence
of the names reflects the order of the objects’ nesting; the outermost object appears first in
a path, and the innermost object appears last. The following path points to the instance
variable name, which is contained in the object anEmployee:

anEmployee.name

The path in this example returns the value of instance variable name within anEmployee.

If the instance variable name contained another instance variable called last, the
following expression would return the value of last:

anEmployee.name.last
NOTE

Use paths only for their intended purposes. Although you can use a path
anywhere an expression is acceptable in a GemStone Smalltalk program, paths are
intended for specifying indexes, formulating queries, and sorting. In other
contexts, a path returns its value less efficiently than an equivalent message
expression. Paths also violate the encapsulation that is one of the strengths of the
object-oriented data model. Using them can circumvent the designer’s intention.
Finally, paths are not standard Smalltalk syntax. Therefore, programs using them
are less portable than other GemStone Smalltalk programs.

Returning Values
Previous discussions have spoken of the “value of an expression” or the “object returned
by an expression.” Whenever a message is sent, the receiver of the message returns an
object. You can think of this object as the message expression’s value, just as you think of
the value computed by a mathematical function as the function’s value.

You can use an assignment statement to capture a returned object:

Example A.12

| myVariable |
myVariable := 8 + 9. "assign 17 to myVariable"
myVariable "return the value of myVariable"
17

You can also use the returned object immediately in a surrounding expression:

Example A.13

"puts 'Moe' at position 2 in arrayOfStrings"
| arrayOfStrings |
arrayOfStrings := Array new: 4.
(arrayOfStrings at: 1+1 put: 'Moe'; yourself) at: 2
April 2014 GemTalk Systems 337

Blocks GemStone/S 64 Bit 3.2 Programming Guide
And if the message simply adds to a data structure or performs some other operation
where no feedback is necessary, you may simply ignore the returned value.

A.3 Blocks
A GemStone Smalltalk block is an object that contains a sequence of instructions. The
sequence of instructions encapsulated by a block can be stored for later use, and executed
by simply sending the block the unary message value. Blocks find wide use in GemStone
Smalltalk, especially in building control structures.

A literal block is delimited by brackets and contains one or more GemStone Smalltalk
expressions separated by periods. Here is a simple block:

[3.2 rounded]

 To execute this block, send it the message value.

[3.2 rounded] value
3

When a block receives the message value, it executes the instructions it contains and
returns the value of the last expression in the sequence. The block in the following example
performs all of the indicated computations and returns 8, the value of the last expression.

[89*5. 3+4. 48/6] value
8

You can store a block in a simple variable:

| myBlock |
myBlock := [3.2 rounded].
myBlock value.
3

or store several blocks in more complex data structures, such as Arrays:

Example A.14

| factorialArray |
factorialArray := Array new.
factorialArray at: 1 put: [1];
 at: 2 put: [2 * 1];
 at: 3 put: [3 * 2 * 1];
 at: 4 put: [4 * 3 * 2 * 1].
(factorialArray at: 3) value
6

Because a block’s value is an ordinary object, you can send messages to the value returned
by a block.
338 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Blocks
Example A.15

| myBlock |
myBlock := [4 * 8].
myBlock value / 8
4

The value of an empty block is nil.

[] value
nil

Blocks are especially important in building control structures. The following section
discusses using blocks in conditional execution.

Blocks with Arguments
You can build blocks that take arguments. To do so, precede each argument name with a
colon, insert it at the beginning of the block, and append a vertical bar to separate the
arguments from the rest of the block.

Here is a block that takes an argument named myArg:

[:myArg | 10 + myArg]

To execute a block that takes an argument, send it the keyword message value:
anArgument. For example:

Example A.16

| myBlock |
myBlock := [:myArg | 10 + myArg].
myBlock value: 10.
20

The following example creates and executes a block that takes two arguments. Notice the
use of the two-keyword message value: aValue value: anotherValue.

Example A.17

| divider |
divider := [:arg1 :arg2 | arg1 / arg2].
divider value: 4 value: 2
2

A block assigns actual parameter values to block variables in the order implied by their
positions. In this example, arg1 takes the value 4 and arg2 takes the value 2.

Variables used as block arguments are known only within their blocks; that is, a block
variable is local to its block. A block variable’s value is managed independently of the
values of any similarly named instance variables, and GemStone Smalltalk discards it after
the block finishes execution. Example A.18 illustrates this:
April 2014 GemTalk Systems 339

Blocks GemStone/S 64 Bit 3.2 Programming Guide
Example A.18

| aVariable |
aVariable := 1.
[:aVariable | aVariable] value: 10.
aVariable
1

You cannot assign to a block variable within its block. This code, for example, would elicit
a compiler error:

Example A.19

"The following expression attempts an invalid assignment
 to a block variable."
[:blockVar | blockVar := blockVar * 2] value: 10

Blocks and Conditional Execution
Most computer languages, GemStone Smalltalk included, execute program instructions
sequentially unless you include special flow-of-control statements. These statements
specify that some instructions are to be executed out of order; they enable you to skip some
instructions or to repeat a block of instructions. Flow of control statements are usually
conditional; they execute the target instructions if, until, or while some condition is met.

GemStone Smalltalk flow of control statements rely on blocks because blocks so
conveniently encapsulate sequences of instructions. GemStone Smalltalk’s most important
flow of control structures are message expressions that execute a block if or while some
object or expression is true or false. GemStone Smalltalk also provides a control structure
that executes a block a specified number of times.

Conditional Selection

You will often want GemStone Smalltalk to execute a block of code only if some condition
is true or only if it is false. GemStone Smalltalk provides the messages ifTrue: aBlock and
ifFalse: aBlock for that purpose. Example A.20 contains both of these messages:

Example A.20

5 = 5 ifTrue: ['yes, five is equal to five'].
yes, five is equal to five
5 > 10 ifFalse: ['no, five is not greater than ten'].
no, five is not greater than ten

In the first of these examples, GemStone Smalltalk initially evaluates the expression (5 =
5). That expression returns the value true (a Boolean), to which GemStone Smalltalk then
sends the selector ifTrue:. The receiver (true) looks at itself to verify that it is, indeed, the
object true. Because it is, it proceeds to execute the block passed as an argument to
ifTrue:, and the result is a String.
340 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Blocks
The receiver of ifTrue: or ifFalse: must be Boolean; that is, it must be either true or
false. In Example A.20, the expressions (5 = 5) and (5 > 10) returned true and false,
respectively, because GemStone Smalltalk numbers know how to compute and return
those values when they receive messages such as = and >.

Two-Way Conditional Selection

You will often want to direct your program to take one course of action if a condition is met
and a different course if it isn’t. You could arrange this by sending ifTrue: and then
ifFalse: in sequence to a Boolean (true or false) expression. For example:

Example A.21

2 < 5 ifTrue: ['two is less than five'].
two is less than five
2 < 5 ifFalse: ['two is not less than five'].
nil

However, GemStone Smalltalk lets you express the same instructions more compactly by
sending the single message ifTrue: block1 ifFalse: block2 to an expression or object
that has a Boolean value. Which of that message’s arguments GemStone Smalltalk executes
depends upon whether the receiver is true or false. In Example A.22, the receiver is true:

Example A.22

2 < 5 ifTrue: ['two is less than five']
 ifFalse: ['two is not less than five'].
two is less than five

Conditional Repetition

You will also sometimes want to execute a block of instructions repeatedly as long as some
condition is true, or as long as it is false. The messages whileTrue: aBlock and
whileFalse: aBlock give you that ability. Any block that has a Boolean value responds
to these messages by executing aBlock repeatedly while it (the receiver) is true
(whileTrue:) or false (whileFalse:).

Here is an example that repeatedly adds 1 to a variable until the variable equals 5:

Example A.23

| sum |
sum := 0.
[sum = 5] whileFalse: [sum := sum + 1].
sum
5

The next example calculates the total payroll of a miserly but egalitarian company that
pays each employee the same salary.
April 2014 GemTalk Systems 341

Blocks GemStone/S 64 Bit 3.2 Programming Guide
Example A.24

| totalPayroll numEmployees salariesAdded standardSalary |
totalPayroll := 0.00.
salariesAdded := 0.
numEmployees := 40.
standardSalary := 5000.00.
"Now repeatedly add the standard salary to the total payroll so
long as the number of salaries added is less than the number of
employees"
[salariesAdded < numEmployees] whileTrue:

[totalPayroll := totalPayroll + standardSalary.
salariesAdded := salariesAdded + 1].

totalPayroll
2.0000000000000000E05

Blocks also accept two unary conditional repetition messages, untilTrue and
untilFalse. These messages cause a block to execute repeatedly until the block’s last
statement returns either true (untilTrue) or false (untilFalse).

The following example is equivalent to Example A.23, but uses untilTrue (rather than
whileFalse:).

Example A.25

| sum |

sum := 0.
[sum := sum + 1. sum = 5] untilTrue.
sum

5

When GemStone Smalltalk executes the block initially (by sending it the message value),
the block’s first statement adds one to the variable sum. The block’s second statement asks
whether sum is equal to 5; since it isn’t, that statement returns false, and GemStone
Smalltalk executes the block again. GemStone Smalltalk continues to reevaluate the block
as long as the last statement returns false (that is, while sum is not equal to 5).

The descriptions of classes Boolean and Block in the image describe these flow of control
messages and others.

Formatting Code
GemStone Smalltalk is a free-format language. A space, tab, line feed, form feed, or carriage
return affects the meaning of a GemStone Smalltalk expression only when it separates two
characters that, if adjacent to one another, would form part of a meaningful token.
342 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Blocks
In general, you are free to use whatever spacing makes your programs most readable. The
following are all equivalent:

Example A.26

UserGlobals at: #arglebargle put: 123 "Create the symbol"

{'string one'.2+2.'string three'.$c.9*arglebargle}

{ 'string one' . 2+2 . 'string three' . $c . 9*arglebargle }

{ 'string one'.
 2 + 2.
 'string three'.
 $c.
 9 * arglebargle }
April 2014 GemTalk Systems 343

GemStone Smalltalk BNF GemStone/S 64 Bit 3.2 Programming Guide
A.4 GemStone Smalltalk BNF
This section provides a complete BNF description of GemStone Smalltalk. Here are a few
notes about interpreting the grammar:

A = expr

This defines the syntactic production ‘A’ in terms of the expression on the right side of
the equals sign.

B = C | D

The vertical bar ‘|’ defines alternatives. In this case, the production “B” is one of either
“C” or “D”.

C = '<'

A symbol in accents is a literal symbol.

D = F G

A sequence of two or more productions means the productions in the order of their
appearance.

E = [A]

Brackets indicate zero or one optional productions.

F = { B }

Braces indicate zero or more occurrences of the productions contained within.

G = A | (B|C)

Parentheses can be used to remove ambiguity.

In the GemStone Smalltalk syntactic productions in Figure A.1, white space is allowed
between tokens. White space is required before and after the ‘_’ character.
344 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide GemStone Smalltalk BNF
Figure A.1 GemStone Smalltalk BNF

ArrayBuilder = '#[' [AExpression { ',' AExpression }] ']'
(exists only if System configurationAt:#GemConvertArrayBuilder is true)

ByteArrayLiteral = '#' '[' [Number { Number }] ']'
(exists only if System configurationAt:#GemConvertArrayBuilder is false)

Assignment = VariableName ':=' Statement
AExpression = Primary [AMessage { ';' ACascadeMessage }]
ABinaryMessage = [EnvSpecifier | RubyEnvSpecifier] ABinarySelector Primary

[UnaryMessages]
ABinaryMessages = ABinaryMessage { ABinaryMessage }
ACascadeMessage = UnaryMessage | ABinaryMessage | AKeyWordMessage
AKeyWordMessage = [EnvSpecifier | RubyEnvSpecifier] AKeyWordPart { AKeyWordPart }
AKeyWordPart = KeyWord Primary UnaryMessages { ABinaryMessage }
AMessage = [UnaryMessages] [ABinaryMessages] [AKeywordMessage]
Array = '(' { ArrayItem } ')'
ArrayLiteral = '#' Array
CurlyArrayBuilder = '{' [AExpression { '.' AExpression }] '}'
ArrayItem = Number | Symbol | SymbolLiteral | StringLiteral |

CharacterLiteral | Array | ArrayLiteral
BinaryMessage = [EnvSpecifier | RubyEnvSpecifier] BinarySelector Primary

[UnaryMessages]
BinaryMessages = BinaryMessage { BinaryMessage }
BinaryPattern = BinarySelector VariableName
Block = '[' [BlockParameters] [Temporaries] Statements ']'
BlockParameters = { Parameter } '|'
CascadeMessage = UnaryMessage | BinaryMessage | KeyWordMessage
Expression = Primary [Message { ';' CascadeMessage }]
KeyWordMessage = [EnvSpecifier | RubyEnvSpecifier] KeyWordPart { KeyWordPart }
KeyWordPart = KeyWord Primary UnaryMessages { BinaryMessage }
KeyWordPattern = KeyWord VariableName {KeyWord VariableName}
Literal = Number | NegNumber | StringLiteral | CharacterLiteral |

SymbolLiteral | ArrayLiteral | SpecialLiteral
Message = [UnaryMessages] [BinaryMessages] [KeyWordMessage]
MessagePattern = UnaryPattern | BinaryPattern | KeyWordPattern
Method = MessagePattern [Primitive] MethodBody
MethodBody = [Pragmas] [Temporaries] [Statements]
NegNumber = '-' Number
Operand = Path | Literal | Identifier
Operator = '=' | '==' | '<' | '>' | '<=' | '>=' | '~=' | '~~'
ParenStatement = '(' Statement ')'
Predicate = (AnyTerm | ParenTerm) { '&' Term }
Primary = ArrayBuilder | CurlyArrayBuilder | Literal | Path | Block | SelectionBlock |

ParenStatement | VariableName
Primitive = '<' ['protected' | 'unprotected'] ['primitive:' Digits] '>'
Pragmas = Pragma [Pragma]
Pragma = '< PragmaBody '>'
PragmaBody = UnaryPragma | KeywordPragma
UnaryPragma = SpecialLiteral | UnaryPragmaIdentifier
KeywordPragma = PragmaPair [PragmaPair]
PragmaPair = [KeywordNotPrimitive | BinarySelector] PragmaLiteral

KeywordNotPrimitive is any Keyword other than 'primitive:'
UnaryPragmaIdentifier is any Identifier except 'protected', 'unprotected',

'requiresVc'
PragmaLiteral = Number | NegNumber | StringLiteral | CharacterLiteral |

SymbolLiteral | SpecialLiteral
SelectionBlock = '{' Parameter } '|' Predicate '}'
Statement = Assignment | Expression
Statements = { [Pragmas] { Statement '.' } } [Pragmas] [['^'] Statement ['.' [

Pragmas]]]
Temporaries = '|' { VariableName } '|'
April 2014 GemTalk Systems 345

GemStone Smalltalk BNF GemStone/S 64 Bit 3.2 Programming Guide
ParenTerm = '(' AnyTerm ')'
Term = ParenTerm | Operand
AnyTerm = Operand [Operator Operand]
UnaryMessage = [EnvSpecifier | RubyEnvSpecifier] Identifier
UnaryMessages = { UnaryMessage }
UnaryPattern = Identifier

GemStone Smalltalk lexical tokens are shown in Figure A.2. No white space is allowed
within lexical tokens.

Figure A.2 GemStone Smalltalk Lexical Tokens

ABinarySelector = any BinarySelector except comma
BinaryExponent = ('e' | 'E' | 'd' | 'D') ['-'] Digits
BinarySelector = SelectorCharacter [SelectorCharacter]
Character = Any Ascii character with ordinal value 0..255
CharacterLiteral = '$' Character
Comment = '"' { Character } '"'
DecimalExponent = ('f' | 'F') ['-'] Digits
Digit = '0' | '1' | '2' | ... | '9'
Digits = Digit {Digit}
EndOfSource = the end of the method source string
Exponent = BinaryExponent | DecimalExponent | ScaledDecimalExponent |

FixedPointExponent
FractionalPart = '.' Digits [Exponent]
FixedPointExponent = 'p' [['-'] Digits]
Identifier = SingleLetterIdentifier | MultiLetterIdentifier
KeyWord = Identifier ':'
Letter = 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z' | '_'
MultiLetterIdentifier = Letter { Letter | Digit }
Number = RadixedLiteral | NumericLiteral
Numeric = Digit | 'A' | 'B' | ... | 'Z'
NumericLiteral = Digits ([FractionalPart] | [Exponent])
Numerics = Numeric { Numeric }
Parameter = ':' VariableName

(white space allowed between : and variableName)
Path = Identifier '.' PathIdentifier { '.' PathIdentifier }
PathIdentifier = Identifier | '*'
EnvSpecifier = '@env' Digits ':'

(no white space before or after Digits)
RubyEnvSpecifier '@ruby' Digits ':'

(other keyword tokens allowed after RubyEnvSpecifier)
RadixedLiteral = Digits ('#' | 'r') ['-'] Numerics
ScaledDecimalExponent = 's' [['-'] Digits]
ScdExponTerminator = '"' | WhiteSpace | ',' | ')' | ']' | '}' | '.' | ';' |

EndOfSource
SelectorCharacter = '+' | '-' | '\' | '*' | '~' | '<' | '>' | '='

| '|' | '/' | '&' | '@' | '%' | ',' | '?' | '!'
SingleLetter 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z'
SingleLetterIdentifier = SingleLetter
SpecialLiteral = 'true' | 'false' | 'nil' | '_remoteNil'
StringLiteral = "'" { Character | "''" } "'"
Symbol = Identifier | BinarySelector | (Keyword { Keyword })
SymbolLiteral = '#' (Symbol | StringLiteral)
VariableName = Identifier
346 GemTalk Systems April 2014

Index

Index
Symbols
^ 246
, (GsFile) 200
* (in a path) 115
+ (String) 72

A
abortErrLostOtRoot 244, 245
aborting

receiving a signal from Stone 138
releasing locks when 147
transaction 137
views and 138

abortTransaction (System) 138
AbstractDictionary 52
accessing

elements of an IdentityBag 58
method 279
objects in a collection by key 49
objects in a collection by position 50, 67
objects in a collection by value 50, 67
operating system from GemStone 197
pool dictionaries 283
SequenceableCollections with streams 60
variables 279, 283
without authorization 161

acquiring locks 142
activate objects, from passivated form 207
addAllToNotifySet: (System) 218, 220
adding

method 279

to notify set 218–220
to symbol lists 41
users to symbol lists 46

addPrivilege
 (UserProfile) 179

addToNotifySet: (System) 218
AllClusterBuckets 253, 254
allInstances (Repository) 186
AllUsers 156
AlmostOutOfMemory 272
ANSI exceptions

flow of control 239
handling 236
selecting handler 237
signaling 233, 235

ANSI Smalltalk 25, 323
application objects 138, 139

planning authorizations for 172

application write lock 149
AppStat 291
arguments 332

block 339

arithmetic, mixed-mode 277
Array 55–56

comparing with client Smalltalk 55
constructors 335
contructors 56
creating 56
large, and efficiency 50
literal 56, 328
performance of 277

assert: (TestCase) 317
assigning
April 2014 GemTalk Systems 347

Index GemStone/S 64 Bit 3.2 Programming Guide
class history 185
cluster buckets 257
migration destination 185
objects to objectSecurityPolicies 158, 164

assignment (syntax) 330
asterisk

as wild-card character 203
in a path 115

atEnd (RangeIndexReadStream) 105
audit indexes 122
authorization

and joint application development 176
error while redefining class 184
group 161
locking and 142
none 160
objectSecurityPolicies and 164
of application classes, planning 171
of application objects, planning 172
owner 165
read 160
world 162
write 160

auto-commit, configuring 112
automated unit tests 313–322

rationale for 314

automatic transaction mode, defined 131

B
Bag 57
basic classes, for indexing 99
beginTransaction (System) 132
binary file, listing instances to 187
binary messages 332, 333
bitmap

use in hidden sets 287

blocks 338
arguments 339
complexity of and performance 277
conditional execution 340
empty 339
executing 338
literal 338
optimized 277
reactivating 207
repeated execution 341
sort blocks 64
sorting 64

BNF syntax for GemStone Smalltalk 344
Boolean

instances true and false 330
locking and 142
objectSecurityPolicy of 165
operators in queries 99

branching 340
By 315
byte objects 30
ByteArray 71
byte-format

indexable objects 30

byteSubclass:... (Object) 30

C
C code callouts 23
C type symbols

and CCallout 295

C, GemBuilder for C 23
cache 268–270

changing size of 268–270
Gem private page 268
KeySoftValueDictionary 53
shared page 268
Stone private page 268
temporary object space 268

cancelMigration (Object) 185
caret 246
cascaded messages 334
case of variable names 329
case-sensitivity of GemStone Smalltalk compiler

324
category:number:do: (Exception) 242
CByteArray (FFI) 297
CCallin (FFI) 297
CCallout

C type symbols 295

CCallout (FFI) 294
certificate, for secure sockets 210, 211
CFunction (FFI) 297
changed object notification 218
changes, receiving notification of 218, 222–223

by polling 224

changeToObjectSecurityPolicy: (Object)
164

changing
cache sizes 268–270
frequently, and notification 224
invariant objects 181
objects

notification of 218–223
visibility of to other users 135
348 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
objectSecurityPolicy after committing
transaction 158

privileges 179

Character
adding to notify set 219
literal 327
locking and 142
objectSecurityPolicy of 165

Character Data Tables 68
cipher list, for secure sockets 212
class

clustering 258
comments 33
examining method dictionary 282
history 183–185
invariant 34
migrating 189
RcKeyValueDictionary, indexing and 154
redefining 181–183
reduced-conflict 150, 268

when to use 151
renaming 183
storage and reducing conflict 150
storage for 30
versions 181–183
versions, and method references 183
versions, and subclasses 182

class instance variables 31
class variables 31
class version, defined 182
ClassesRead (cache statistic) 274
ClassHistory 183–185

assigning 185
determining 184

class-level invariance 35
ClassOrganizer 283–284
cleanupMySession (RcQueue) 153
cleanupQueue (RcQueue) 153
clearCommitOrAbortReleaseLocksSet

(System) 148
clearCommitReleaseLocksSet (System) 148
clearing notify set 221
CLibrary (FFI) 294
client interfaces

GemBuilder for C 23
GemBuilder for Java 22
GemBuilder for Smalltalk 22
linked vs. remote 277
Topaz 23, 25
user actions 23, 24

client platforms 22

closing files (GsFile) 200, 203
ClusterBucket 252–260

assigning 257
changing 253
concurrency and 254–255
creating 253
default 253
describing 254
determining current 253
indexing and 255

clustering 251–260
as factor in performance 252
buckets for 252
classes 258
concurrency conflict and 254
depth-first 257
global variables 253
instance variables 255
maintaining 259
messages (table) 258
recursion and 256
source code for kernel classes 253
special objects and 256

code formatting 342
CodeCacheSizeBytes (cache statistic) 274
CodeGenGcCount (cache statistic) 275
collation 75–80

default 76
ignore punctuation 80
using ICU 76–80

collect: 52
Collection

enumerating 51
errors while locking 145
indexing and clustering 255
locking efficiently 144
migrating instances 188
returned by selection blocks 101
searching

efficiently using indexing 93
sorting 62
streaming over 60

combining expressions 333
commands, executing operating system 205
comment (Class comments) 33
comment (in method) 325
commitAndReleaseLocks (System) 147, 148
commitOrAbortReleaseLocksSet-

Includes: (System) 149
commitReleaseLocksSetIncludes: (System)

149
April 2014 GemTalk Systems 349

Index GemStone/S 64 Bit 3.2 Programming Guide
committing a transaction 129
after changing objectSecurityPolicies 158
automatically by IndexManager 112
effects of 135
failure 137
moving objects to disk and 257
performance 150
releasing locks when 147
when 133
write locks to guarantee success 141

communicating between sessions 217–232
comparing

IdentityBags 59
InvariantStrings 74
literal strings 74
messages and selection block predicates 116
nil, in indexes 98
Strings 74

compileAccessingMethodsFor: (Behavior)
280

compileMethod: dictionaries:
category: (Behavior) 280

compiling methods programmatically 280
concatenating strings 72
concurrency 129

cluster buckets and 254–255

concurrency control
optimistic 134–137
pessimistic 140–149

conditional
execution and blocks 340
repetition 341
selection 340

configuration options
GEM_PRIVATE_PAGE_CACHE_KB 269
GEM_TEMPOBJ_POMGEN_SIZE 271
SHR_PAGE_CACHE_SIZE_KB 269
STN_GEM_ABORT_TIMEOUT 139
STN_GEM_LOSTOT_TIMEOUT 139
STN_PRIVATE_PAGE_CACHE_KB 269

conflict
keys (table) 136
on indexing structure 137
read set 133
reducing 150–154, 268

performance 150
semantics of 150
with cluster buckets 254
write set 133
write-dependency 134
write-write 134, 151

conjoining predicate terms 99
conjunction operator 99
constants 330
constructors, array 335
contentsAndTypesOfDirectory:

onClient: (GsFile) 203
contentsOfDirectory: onClient: (GsFile)

203
continueTransaction (System) 138
control, flow of 51
copying objects 278
CPointer (FFI) 297
cr (GsFile) 200
createDictionary: (UserProfile) 43
createIdentityIndexOn: (Bag) 110
creating

files 198
Strings 72
subclass 324

current
object security policy 158

currentSessions (System) 227, 229
currentTransactionHasWDConflicts

(System) 137
currentTransactionHasWWConflicts

(System) 136
currentTransactionWDConflicts (System)

137
currentTransactionWWConflicts (System)

137
customizing data retention during migration 192

D
data

efficient retrieval 251–260
retaining during migration 191–195
sending large amounts of 232

data curator 40
database

disk use, optimization 278
pointers to objects in 269
preserving consistency 130

DataCurator, privileges of 179
DataCuratorObjectSecurityPolicy 163
DbTransient 36–37
dbTransient

subclass creation symbol 33

deadlocks, detecting 143
Debugging out of memory errors 272
DecimalFloat 88
DecimalMinusInfinity 88
350 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
DecimalMinusQuietNaN 88
DecimalMinusSignalingNaN 88
DecimalPlusInfinity 88
DecimalPlusQuietNaN 88
DecimalPlusSignalingNaN 88
decimalPoint

localizing 89

declaring temporary variables 329
default

cluster bucket 253
object security policy 158

default exception handler
defined 243

default GsObjectSecurityPolicy
for GcUser 163
for Nameless user 163

default handler
ANSI exceptions 240

defaultAction
ANSI exception handling 240

defaultObjectSecurityPolicy 156
deletePrivilege: (UserProfile) 180
deleting files 203
deny: (TestCase) 317
denying locks 142
dependency list 134
Deprecated methods ??–286
depth-first clustering 257
describing cluster buckets 254
description: (subclass creation keyword) 33
detect: 52
detect: (Collection) 58
determining

class version 184
lock status 148
object location on disk 259

developing applications cooperatively, and
authorization 176

Dictionary 49
Globals 40
internal structure 52
pool 31
Published 46
shared 39–47
UserGlobals 41

dictionaryNames (UserProfile) 41
directory, examining 203
dirty locks 143
DirtyListSize (cache statistic) 276
disableSignaledAbortError (System) 139
disableSignaledFinishTransactionErro

r (System) 140
disableSignaledGemStoneSession- Error

(System) 230
disableSignaledObjectsError (System)

223
disallowGciStore 33
disjunction operator 99
disk

access 251–260
efficient use and number of cluster buckets

254
location of database 278
location of objects 251–260
moving objects immediately to 257
page for special objects 259
pages cached from 269
pages read or written per session 252

do: (Collection) 51
do: (RcQueue) 153
dynamic exception handler 236, 242
dynamic instance variables 32
dynamicInstVarAt:put: (Object) 32

E
Employee

relation (table) 93

empty blocks 339
enableSignaledAbortError (System) 139,

140
enableSignaledAbortError (System) 245
enableSignaledFinishTransactionError

(System) 140
enableSignaledFinishTransactionError

(System) 245
enableSignaledGemStoneSession- Error

(System) 230
enableSignaledGemstoneSessionError

(System) 245
enableSignaledObjectsError (System) 223
enableSignaledObjectsError (System) 245
enableSignalTranlogsFull (System) 245
encodeAsUTF8 201
encrypting strings 81
Enumerated pathTerms 115
enumerating SequenceableCollections 55
enumeration protocol 51
environment variable in file specification 198
equality

InvariantStrings 74
operators

redefining 99
April 2014 GemTalk Systems 351

Index GemStone/S 64 Bit 3.2 Programming Guide
rules 117
strings 74

equalityIndexedPaths
(UnorderedCollection) 118

errno, access from FFI 294
error

abortErrLostOtRoot 244
compiler 281
locking collections 145
message, receiving from Stone 223, 230
recursive 248
#rtErrSignalCommit 223
while creating indexes 122
while executing operating system commands

205
while migrating 190

event exception 244
examining

directory 203
symbol lists 41

example application with objectSecurityPolicies
167

example using SUnit 315
exception

abortErrLostOtRoot 245
and SUnit 317
class hierarchy 234
context, defined 242
event 244
raising 248
removing 247
returning values from 246
#rtErrSignalAbort 245
#rtErrSignalAlmostOutOfMemory 245
#rtErrSignalCommit 245
#rtErrSignalFinishTransaction 245
#rtErrSignalGemStoneSession 245
#rtErrTranlogDirFull 245
static, handling 244
to receive intersession signals 230
to receive notification of changes 223

exception classes
mapping

LegacyErrNumMap 244

exception handler
dynamic 236, 242
resignaling another 247
selecting 237
stack-based 236, 242
static, defined 243

exception handlers

flow of control 246

exception handling
flow of control 239
legacy 242

exclusive locks 141
exclusiveLock: (System) 142
ExecBlock

and activation handler 236
and exception handlers 236

executing
blocks 338
operating system commands 205

Exported Set
effect on memory 271

ExportedSetSize (cache statistic) 276
ExportSet 310
expressions

combining 333
kinds 325
message 330
order of evaluation 333
syntax 325
value of 337

extensions to Smalltalk language 323
extent

defined 28

ExternalSessions ??–311
eXtreme Programming

and SUnit 315

F
false, defined 330
FFI (Foreign Function Interface) 23, 294–304

CByteArray 297
CCallin 297
CCallout 294
CFunction 297
CLibrary 294
CPointer 297

file 197–205
creating 198
data in 206
determining if open 202
external to GemStone 137
reading 201
removing 203
specifying 198
temporary, for profiling 261
testing for existence 202
writing 200
352 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
finding instances 186
FixedPoint 87
Float 85
floating point 84–85

performance of 277

flow of control
and blocks 340
looping through a collection 51

Foreign Function Interface
see FFI

formatting, code 342
Fraction 87

G
GciError 311
GciLegacyError 311
GciPollForSignal 231
GcUser’s default GsObjectSecurityPolicy 163
Gem

as process 27
private page cache 268, 269
-to-Gem signaling 226–230

overview 217
with exceptions 230

GemBuilder for C 23, 155
GemBuilder for Java 22
GemBuilder for Smalltalk 22
GemConnect 24
gemnetdebug, for debugging out of memory

errors 272
GEM_PRIVATE_PAGE_CACHE_KB (configuration

option) 269
gemprofile.tmp file 261
GemStone

caches 268–270
overview 21–25
process architecture 27
response to unauthorized access 161
security 155–167

GemStone Smalltalk
BNF syntax for 344
language extensions 323
syntax 323–343

GEM_TEMPOBJ_POMGEN_SIZE (configuration
option) 271

genericSignal:text:args: (System class)
248

getAllIndexes (IndexManager) 119
getAllNSCRoots (IndexManager) 119, 121
global variables 31

Globals dictionary 40
grammar, GemStone Smalltalk 344
group

authorization 161
Publishers 46
Subscribers 46

GsFile 197–205
GsHostProcess 205
GsIndexingObjectSecurityPolicy 163
GsIndexOptions 109
GsInterSessionSignal 228
GsNetworkResourceString 305
GsObjectSecurityPolicy

changing after committing transaction 158
default 158
predefined 163

GsQuery 101
cacheQueryResults 103
collection protocol 102
Variables 102

GsQueryOptions, and auto-optimize 126
GsSecureSocket 210
GsSocket 208
GsTimeZoneObjectSecurityPolicy 163

H
handler

dynamic 242

hash 117
heap space for signals 229
hidden set, listing instances to 187
hidden sets 287–290
homogenous collection 110

I
ICU (International Components for Unicode) 76
IcuCollator 77
IcuLocale 77
IcuSortedCollection 78, 81
identifying a session 229
identity

InvariantString 74
literal strings 74
strings 74

IdentityBag 57–60
accessing elements 58
adding to 58
comparing 59
removing 58
April 2014 GemTalk Systems 353

Index GemStone/S 64 Bit 3.2 Programming Guide
IdentityDictionary 53
identityIndexedPaths

(UnorderedCollection) 118
IdentityKeySoftValueDictionary 54
IdentityKeyValueDictionary 53
IdentitySet 60

nil values 57

IEEE754 84, 85, 88
IEEE854-1987 88
immediateInvariant (Object) 34
implementation formats 30
implicit indexes 108
indexable objects 30
indexableSubclass:... (Object) 30
indexed instance variables 30
indexes

Unicode strings ??–114

Indexing
GsIndexSpec 114

indexing 93–127
auditing 122
basic classes (cached) 98
basic classes listed 99
cluster buckets and 255
concurrency control and 107, 134–137
enumerated pathTerms 115
errors while 122
GsIndexOptions 109
GsQuery 101
implicit 108
inquiring about 122
locking and 146
migration and 190
optional pathTerms 110
performance and 121
range predicates 100
RcKeyValueDictionary and 151
structure

conflict on 137
Unicode strings 99, 107, 113–??

inquiring
about indexes 122
about notify set 221

insertDictionary:at: (UserProfile) 44
inspecting objects 42
installStaticException:category:

number: (Exception) 244
instance

finding 186
migrating 185–195
non-persistent 35

instance variables
clustering 255
dynamic 32
indexed 30
inherited, and migration 193
migration and 191–195
named

in collections 50
unordered

objects having 31

instances
transient 36

instancesInvariant
subclass creation symbol 33

instancesNonPersistent
subclass creation symbol 33

instVarMapping: (Object) 193
Integer, performance of 277
IntegerKeyValueDictionary 53
integers 83
International Components for Unicode (ICU) 76
interpreter

halting while executing operating system
command 205

intersession signal
with exceptions 230

inTransaction (System) 132
invariant classes 35
invariant objects 34

creating 34

invariant objects, changing 181
InvariantString

comparing 74
identity 74

isLegacyImplementation
(PositionableStream) 61

isPortableImplementation
(PositionableStream) 61

iteration 51

J
java

GemBuilder for Java 22

K
key

access by 49
dictionary 52

KeySoftValueDictionary 35, 53
354 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
KeyValueDictionary 53
keyword messages 332

maximum number of arguments 332

kindsOfIndexOn: (UnorderedCollection) 118

L
large collections

sorting 64

LargeInteger 84
lastErrorString (GsFile) 204
LegacyErrNumMap

legacy and ANSI exception classes 244

lf (GsFile) 200
linked session 26

performance and 277

listing contents of directory 203
listing instances 186

to binary file 187
to hidden set 187

listing objects in objectSecurityPolicies 166
to binary file 166
to hidden set 166

listing references to an object 186
literal

array 328
blocks 338
character 327
number 326
String 327
symbol 328
syntax 326

Locale (class) 89
locks 135, 140–149

aborting, effect of 147
acquiring 142
application write 149

defined 149
authorization for 142
Boolean 142
Character 142
committing, effect of 147
denial of 142
difference between write and read 141
dirty 143
exclusive 141
indexes and 146
inquiring about 148–149
limit on concurrent 141
logging out, effect of 147
manual transaction mode and 140

nil 142
on collections 144
performance and 135
read 140, 141
releasing upon commit 147
releasing upon commit or abort 147
removing 147
shared 141
SmallInteger 142
special objects and 142
types 141
upgrading 146
write 140, 141

logCreation
subclass creation symbol 34

logging out
effect on locks 147
signal notification after 232

logging transactions 28
loops 51
lost object table 245

M
maintaining clustering 259
managing VM memory 270
manual transaction mode 131

locking and 140

mapping exception classes
LegacyErrNumMap 244

maximum number of
arguments to a method 332
characters in a class name 30, 324
cluster buckets for performance 254

memory
allocated for Gem private page cache 269
allocated for shared page cache 269
allocated for Stone private page cache 269
allocated for temporary object space 268
DbTranscience and 36
increasing allocation for shared page cache

269
increasing allocation for temporary object

space 268
requirements for passive objects 208
signalling on low 272

memory management
KeySoftValueDictionary 53

MeSpaceAllocatedBytes (cache statistic) 275
MeSpaceUsedBytes (cache statistic) 275
message
April 2014 GemTalk Systems 355

Index GemStone/S 64 Bit 3.2 Programming Guide
arguments 332
binary 332, 333
cascaded 334
expressions 330
keyword 332
privileged, to ObjectSecurityPolicy 179
sending, vs. path notation, performance of 277
unary 332, 333

method
accessing 279
adding 279
change notification 226
compiling programmatically 280
executing while profiling 261
primitive 277
references to classes in 183
removing 281
updating 279

method dictionary, examining 282
MethodsRead (cache statistic) 274
migrate (Object) 188
migrateFrom:instVarMap: (Object) 194
migrateInstances:to: (Object) 188
migrateInstancesTo: (Object) 189
migrateTo: (Object) 185
migrating

all instances of a class 189
collection of instances 188
errors during 190–191
indexed instances 190
instance variable values and 191–195
instances 185–195
preparing for 186
self 190

migration destination
defined 185
ignoring 188

millisecondsToRun: (System) 261
MinusInfinity 85
MinusQuietNaN 85
MinusSignalingNaN 85
mixed-mode arithmetic 277
modeling 22
modifiable

subclass creation symbol 34

moving
objects among objectSecurityPolicies 164
objects on disk 259
objects to disk immediately 257

N
named instance variable

permissible names 329

named instance variables
in collections 50

Nameless user’s default GsObjectSecurityPolicy
163

nested transactions 133
NetLDI 27
network communication 27
NewGenSizeBytes (cache statistic) 274
newInRepository: (ObjectSecurityPolicy class)

179
NewSymbolRequests (cache statistic) 275
NewSymbolsCount (cache statistic) 275
newVersionOf: (subclass creation keyword) 33
next (RangeIndexReadStream) 105
nextPutAll: (GsFile) 200
nil

defined 330
in indexed queries 98
in UnorderedCollection 57
locking and 142
objectSecurityPolicy of 165

no authorization 160
noInheritOptions

subclass creation symbol 34

non-indexable objects 30
non-persistent objects 35, 53
nonsequenceable collection

unordered instance variables and 31

notifiers 218
notify set

adding objects 220
and reduced-conflict classes 225
and special objects 219
clearing 221
defined 218
inquiring about 221
permitted objects in 219
removing objects 221
restrictions on 219
size of 220

notifying user of changes 217–223
by polling 224
improving performance 231
methods for 226

notifySet (System) 221
NotTranloggedGlobals 276
NRS 305
356 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
NSC, see nonsequenceable collection
Number literal 326
NumberOfMarkSweeps (cache statistic) 274
NumberOfScavenges (cache statistic) 274
NumRefsStubbedMarkSweep (cache statistic) 275
NumRefsStubbedScavenge (cache statistic) 275

O
object

change notification 217
methods for 226

copying 278
local to application 138, 139
moving 259
moving among objectSecurityPolicies 164

object security policy
current 158
default 158

object table 269
lost 245

object-level invariance 34
object-level security 156
objects

indexable 30
non-indexable 30

ObjectSecurityPolicy
assigning ownership 165
example application 167
moving objects 164
ownership 165
planning for user access 171
privileged messages 179
setting up for joint development 176

ObjectsRead (cache statistic) 274
ObjectsRefreshed (cache statistic) 274
OldGenSizeBytes (cache statistic) 274
OpenSSL 210
operating system

accessing from GemStone 197
executing commands from GemStone 205
sockets 208

operating system locale information 89
operator

assignment 330
precedence 334

optimistic concurrency control 137
optimized selectors 277, 331
optimizing 251–276

arrays vs. sets 277
block complexity 277

copying objects and 278
creating Dictionary class or subclass 277
GemStone Smalltalk code 277–278
integers vs. floating point numbers 277
linked vs. remote interface 277
mixed-mode arithmetic and 277
path notation vs. message-sends 277
primitive methods and 277
reclaiming storage and 278

Optional pathTerms 110
options: (subclass creation keyword) 33
order of evaluation for expressions 333
out of memory errors

debugging 272

outer
sent by activation handler 240

owner authorization 165
owner, changing, of an objectSecurityPolicy 165

P
page

finding what page an object is on 259

page cache
Gem private 268, 269
increasing memory for 269
shared 27, 268, 269

memory allocated for 269
Stone private 268, 269

pageReads (statistic) 252
pageWrites (statistic) 252
parameters 332

block 339

pass
sent by activation handler 240

passivate objects to file 207
PassiveObject 207

memory and 208
objects not preserved 207
restrictions on 207
security considerations of 207

password 155
path 336–337

defined 337
operating system 198
performance of, vs. message-sending 277

pattern-matching in strings 75
percentTempObjSpaceCommitThreshold:

(IndexManager) 112
performance 251–276

arrays vs. sets 277
April 2014 GemTalk Systems 357

Index GemStone/S 64 Bit 3.2 Programming Guide
block complexity 277
cluster buckets and 254
copying objects 278
creating Dictionary class or subclass 277
indexing and 121
integers vs. floating point numbers 277
linked vs. remote interface 277
locking and 135
mixed-mode arithmetic 277
of primitive methods 277
of signals and notifiers, improving 231
optimized selectors 277
path notation vs. message-sends 277
reclaiming storage and 278
reducing conflict and 150
tuning cache sizes 268–270

performOnServer: (System) 205
PermGenSizeBytes (cache statistic) 275
persistence 35, 36
Persistent Shared Counters 292
planning objectSecurityPolicies for user access 171
PlusInfinity 85
PlusQuietNaN 85
PlusSignalingNaN 85
pointer-format

indexable objects 30

polling
for signals 231
to receive intersession signal 226, 229
to receive notification of changes 224

PomGenScavCount (cache statistic) 275
PomGenSizeBytes (cache statistic) 275
pool dictionaries 31

accessing 283

pool variables 31
portability among versions 193
PositionableStream 61
precedence rules 333
predicate syntax, for indexes 97
primitive methods 277
private key, for secure sockets 210, 211
privilege

changing 179
defined 179

process
architecture 27
spawning 205

profiling
report 264

ProfMonitor
method tally 261

sampling interval 261
temporary file for 261

programming language, comparing arrays 55
pseudovariables 277, 330

false 330
nil 330
self 330
super 330
true 330

Published symbol dictionary 41, 46
PublishedObjectSecurityPolicy 46, 163
Publishers group 46

Q
query

Boolean operators in 99

R
radix representation 327
raising exceptions 248
random access to SequenceableCollections 60
random number generation 90–92
RangeIndexReadStream 105
RcCounter 135, 150, 151–152

notify set and 225

RcIdentityBag 135, 150, 152–153
notify set and 225

RcKeyValueDictionary 135, 150, 154
indexing and 151, 154
notify set and 225

RcQueue 135, 150, 153
notify set and 225
order of objects 153
reclaiming storage from 153

Rc-write-write conflict
transaction conflict key 136

read authorization 160
read locks

defined 141
difference from write 141
locking collections of objects 144–146

read set 133
indexing and 133

reading
files 201
in transactions 132
outside a transaction 133
SequenceableCollection 60
with locks 140
358 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
readLock: (System) 142
readReady (GsSocket) 231
ReadStream 60
read-write conflict

transaction conflict key 136

ReadWriteStream 60
receiving

error message from Stone 223, 230
intersession signal 229

by polling 229
with exceptions 230

notification of changes 222–223
by polling 224
with exceptions 223

signals by automatic notification 226

reclaiming storage 139, 278
from temporary object space 268
RcQueues and 153

recursive
clustering 256
errors 248

redefining
classes 181–183

naming 182
equality operators 99, 116

rules 117

reduced-conflict class 150–154
and changed object notification 225
performance and 150
storage and 150
temporary objects and 268
when to use 151

remote interface 277
defined 26
file access and 198

remove
exception handler 247
method from a class 281

removeAllIncompleteIndexesOn:
(IndexManager) 122

removeAllIndexes (IndexManager) 120, 122
removeAllIndexes (UnorderedCollection) 120
removeEqualityIndexOn:

(UnorderedCollection) 120
removeFromCommitOrAbortRelease-

LocksSet: (System) 148
removeFromCommitReleaseLocksSet:

(System) 148
removeLock: (System) 147
removeLockAll: (System) 147
removeLocksForSession (System) 147

removing
elements from an IdentityBag 58
exception 247
files 203
locks 147
method 281
objects from notify set 221

rename:to
: (GsFile) 202

renameFileOnServer:to
: (GsFile) 202

renaming a class 183
reordering symbol lists 43
repeatable unit testing 313–322
repeating

blocks 341
conditionally 341

reporting
performance profile 264

reserved selectors 331
resignal:number:args: (Exception) 247
resignalAs:

sent by activation handler 240

resignaling another exception handler 247
resolving symbols 39
resume of a signal handler 239
retaining data during migration 191–195
retrieving data quickly 251–260
retry

sent by activation handler 240

retryUsing:
sent by activation handler 240

return
sent by activation handler 240

return character in exception handler 246
return:

sent by activation handler 239

returning values 337
from exceptions 246

reverse iteration of a collection 55
RPC session 26, 277
#rtErrSignalAbort 139, 140, 245
#rtErrSignalAlmostOutOfMemory 245
#rtErrSignalCommit 245
#rtErrSignalFinishTransaction 245
#rtErrSignalGemStoneSession 245
#rtErrTranlogDirFull 245

S
sampling interval for profiling 261
April 2014 GemTalk Systems 359

Index GemStone/S 64 Bit 3.2 Programming Guide
saving
code 206
from abort 137
objects to file 207

ScaledDecimal 87
ScaledDecimal results

rounding of 88
scale of 88

scientific notation 326
Secure Sockets Layer (SSL) 24, 210

sockets using 210–215

security 155
locking and 142
object-level 156
passive objects and 207

security policy (defined) 157
SecurityDataObjectSecurityPolicy 163
select: 52
selection block

Boolean operators in 99
collections returned 101
predicate

comparing and 116
operands 98

selection, conditional 340
selector

optimized 277, 331
reserved 331

self 277
defined 330
migrating 190

sending
large amounts of data 232
signal 227–230
signal to another Gem session 228–230

sendSignal: (System) 229
sendSignal:to:withMessage: (System) 229
SequenceableCollection 50, 54–71

accessing with streams 60

session
communicating between 217–232
identifying 229
linked, defined 26
maximum number of cluster buckets 254
pages read or written 252
private page cache 269
RPC, defined 26
signaling all current 229

SessionState 290
SessionTemps 290
Set

nil values 57
performance of 277

Set-value path terms 96
shallow copy 55
shared

dictionaries 39–47
locks, defined 141
page cache 27, 269

increasing size 269
memory allocated for 269

variables 31

Shared Counters 291
shared page cache 268
sharing objects 39–47
shell script 205
should:raise: (TestResult) 317
shouldnt:raise: (TestResult) 317
SHR_PAGE_CACHE_SIZE_KB 269
sigAbort - See #rtErrSignalAbort
sigAbort - See rtErrSignalAbort
signal

distinguished from interrupt 226
overflow 231
receiving 229

by polling 226, 229
sending 227–230
to abort, from Stone 138

signaledAbortErrorStatus 139
signaledFinishTransactionErrorStatus

(System) 140
signaledGemStoneSessionError- Status

(System) 230
signaledObjects (System) 223
signaledObjectsErrorStatus (System) 223
signalFromGemStoneSession (System) 229
signaling

after logout 232
all current sessions 229
and socket input 231
another session 228

asynchronous error for 245
by polling 229

Gem-to-Gem 226–230
improving performance 231
order of receiving 229

size (RcQueue) 153
SmallDouble 85
SmallInteger 83

adding to notify set 219
locking and 142
objectSecurityPolicyt of 165
360 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
Smalltalk: see GemStone Smalltalk
socket 208–215
SoftReference 54
sortBlock 64
SortedCollection 56, 64
sorting 62–80

large collections 64

spacing in GemStone Smalltalk programs 342
spawning a subprocess 205
special objects 31

adding to notify set 219
clustering and 256
disk page of 259
locking and 142

special selectors 331
specifying files 198
SSL

see Secure Sockets Layer (SSL)
stack overflow 248
stack-based exception handler 236, 242
state transition diagram of view 130
statement

assignment 330
defined 325

static exception handler
defined 243

stdout 205, 229
STN_OBJ_LOCK_TIMEOUT (Configuration

option) 150
STN_PRIVATE_PAGE_CACHE_KB (Configuration

option) 269
Stone

private page cache 268, 269
process 27

storage
reclaiming 139, 278

from temporary object space 268
RcQueues and 153

reduced-conflict classes and 150

Stream 60–61
legacy implementation

installing 61
on a collection 60
portable implementation

installing 61

String 67–82
collating traditional strings 75
comparing 74
concatenating 72
creating 72
encrypting 81

identity 74
literal 327
pattern matching 75

StringConfiguration 81
StringKeyValueDictionary 53
subclass creation 29, 182, 324
subclass:... (Object) 29
subclassesDisallowed

subclass creation symbol 34

subprocess, spawning 205
Subscribers group 46
SUnit 313–322

exception handling 317
framework 318
overview 313

super 277
defined 330

Symbol 39–46, 70
determining symbol list for 45
literal 328
resolving 39
white space in 328

symbol list 40–45, 184
examining 40, 41
order of searches 42
reordering 43

SymbolDictionary 53
SymbolKeyValueDictionary 53
symbolList

update from GsSession 44

symbolList instance variable (UserProfile) 40
symbolList: (UserProfile) 44
symbolResolutionOf: (UserProfile) 45
syntax of GemStone Smalltalk 323–343
system administrator, setting configuration

parameters 270
SystemObjectSecurityPolicy 163

objects assigned to 165

SystemUser (instance of UserProfile)
and SystemObjectSecurityPolicy 163

SystemUser, privileges of 179

T
tally of methods executed while profiling 261
TempObjSpacePercentUsed (cache statistic) 276
temporary object memory

managing 270
UserActions 271

temporary object space 268
increasing memory for 268
April 2014 GemTalk Systems 361

Index GemStone/S 64 Bit 3.2 Programming Guide
memory allocated for 268
methods to check memory usage 273

temporary objects, adding to notify set 219
temporary variables 329

declaring 329

term
predicate, conjoining 99

TestCase (SUnit class) 318
TestResource (SUnit class) 318
TestResult (SUnit class) 318
TestSuite (SUnit class) 318
TimeInMarkSweep (cache statistic) 274
TimeInScavenges (cache statistic) 274
TimeWaitingForSymbols (cache statistic) 275
Topaz 23, 25

logging in with 155
viewing symbol list dictionaries in 41

TrackedSetSize (cache statistic) 276
transaction 129–154

aborting 137
views 138

automatic mode 131
defined 131

being signalled while in 139
committing

after changing objectSecurityPolicies 158
moving objects to disk 257
performance 150

conflict keys (table) 136
continueing 138
defined 129
dependency list 134
failing to commit 137
logging 28
manual mode 131–132

defined 131
locking 140

mode 131–132
nested 133
reading in 132
reading outside 133
updating views 138
when to commit 133
write set 134

transactionConflicts (System) 136
transactionless mode 132
transactionMode, accessing 131
transient instances 36
traverseByCallback 34
true, defined 330

U
unary messages 332, 333
unauthorized access 161
Unicode Comparison Mode 72, 81, 113
Unicode Database

DUCET 68
extended character set support 68
Unicode Consortium 68

Unicode strings
collation 76–81
defined 70
equality 73
indexing on 99, 107, 113–114
writing to GsFile 201

unit tests
automated 313–322

UNIX commands, executing from GemStone 205
UNIX process, spawning 205
unordered instance variables

objects having 31

UnorderedCollection 50, 57–60
updating

method 279
views and 138

upgrading locks 146
user ID 155
UserActions 23, 24, 293

and temporary object memory 271

user-defined class
redefining equality operators 99

rules 117

UserGlobals 41
UserProfile

establishing login identity 156
purpose 156
symbol lists and 40

UTF-8 71, 201
Utf8 (Class) 71
Utf8, from GsFile contents 201

V
value

access by 50, 67
dictionary 52
returning 337

value (block) 338
variables

accessing 279, 283
class 31
362 GemTalk Systems April 2014

GemStone/S 64 Bit 3.2 Programming Guide Index
class instance 31
global 31
instance

clustering 255
limits on length 329
names 329

case of 329
pool 31
retaining values during migration 191–195
shared 31
temporary 329

versioning classes 181–183
defined 182
references in methods 183
reusable code and 193
subclasses and 182

view 132
aborting a transaction 138
defined 129
invalid 139
state transition diagram 130
updating a transaction 138

visibility of modifications 135
VM memory

managing 270

W
waitForApplicationWriteLock:queue:au

toRelease: (System) 150
white space in GemStone Smalltalk programs 342
wild-card character

in file specification 198
in string search 75

WorkingSetSize (cache statistic) 276
workspace, GemStone 42
world authorization 162
write authorization 160
write locks

defined 141
difference with read 141
locking collections of objects 144–146
locking object 142

write set 133, 134
indexing and 133

write-dependency conflict 134
defined 134
transaction conflict key 136

WriteStream 60
write-write conflict 134

defined 134

reduced-conflict classes and 151
transaction conflict key 136

write-writeLock conflict
transaction conflict key 136

writing
files 200
in transactions 133
outside a transaction 133
SequenceableCollection 60
with locks 140

Z
ZeroDivide (ANSI error) 234
April 2014 GemTalk Systems 363

Index GemStone/S 64 Bit 3.2 Programming Guide
364 GemTalk Systems April 2014

	1 Introduction to GemStone
	1.1 GemStone Overview
	Multi-User
	Programmable
	Scalable
	Object Database
	Partition Between Client and Server
	Connect to Outside Data Sources

	1.2 GemStone Services
	Transactions and Concurrency Control
	Login Security and Account Management
	Services To Manage the GemStone Repository

	1.3 GemStone Smalltalk
	No User Interface
	GemStone Sessions
	System Management Classes

	Monitoring your application
	File In and File Out

	Interapplication Communications

	1.4 Process Architecture
	Gem Process
	Stone Process
	NetLDI
	Shared Page Cache
	Extents and Repositories
	Transaction Log

	2 Class Creation
	2.1 Subclass Creation
	Implementation Formats
	Class Variables and Other Types of Variables
	Dynamic Instance Variables

	Additional Class Creation Protocol

	2.2 Creating Classes With Invariant Instances
	Per-Object Invariance
	Invariance for All Instances of a Class

	2.3 Creating Classes with Special Cases of Persistence
	Non-Persistent Classes
	DbTransient

	3 Resolving Names and Sharing Objects
	3.1 Sharing Objects
	3.2 UserProfile and Session-Based Symbol Lists
	What’s In Your Symbol List?
	Examining Your Symbol List
	Inserting and Removing Dictionaries from Your Symbol List
	Updating Symbol Lists
	Finding Out Which Dictionary Names an Object

	3.3 Using Your Symbol Dictionaries
	Publishers, Subscribers and the Published Dictionary

	4 Collection and Stream Classes
	4.1 An Introduction to Collections
	Protocol Common to All Collections
	Creating Instances
	Adding Elements
	Removing Elements
	Enumerating

	4.2 Collection Subclasses
	Dictionaries
	Dictionary
	KeyValueDictionary
	KeySoftValueDictionary

	SequenceableCollection
	Adding and Removing Objects for SequenceableCollection
	Comparing SequenceableCollection
	Copying SequenceableCollection
	Enumeration and Searching Protocol

	Array
	Literal Array and Array Constructors

	SortedCollection
	UnorderedCollection
	Bag and Set
	IdentityBag
	IdentitySet

	4.3 Stream Classes
	PositionableStream and Position

	4.4 Sorting
	Default Sort
	Sorting Large Collections

	5 String Classes and Collation
	5.1 Characters and Unicode
	Unicode and the Unicode Database
	Character Data Tables
	Installing Character Data Tables

	5.2 CharacterCollection and String classes
	CharacterCollection and String classes
	Strings
	Unicode Strings
	Symbol
	ByteArray
	Utf8

	String equality, ordering, and interoperation
	String protocol
	Creating Strings
	Concatenating Strings
	Converting Strings
	Equality and Identity
	Searching and Pattern matching

	5.3 String Sorting and Collation
	Traditional String Legacy Collation
	Unicode String Collation using ICU libraries
	IcuLocale
	IcuCollator
	Customizing Sort
	IcuSortedCollection

	Unicode Comparison Mode

	5.4 Encrypting Strings

	6 Numeric Classes
	6.1 Integers
	SmallInteger
	LargeInteger
	Printing Integers

	6.2 Binary Floating Point
	SmallDouble
	Float
	Literal Floats
	Printing Binary Floating Points

	6.3 Other Rational Numbers
	Fraction
	FixedPoint
	ScaledDecimal
	DecimalFloat

	6.4 Internationalizing Decimal Points using Locale
	6.5 Random Number Generator

	7 Indexes and Querying
	7.1 Overview
	GemStone Indexes
	Managing Indexes

	Indexing trade-offs
	Special Syntax for Indexing

	7.2 Defining and Executing Queries
	Query Predicate Syntax
	Predicate Terms
	Combining Predicates using Boolean Logic
	Combining Range Predicates

	Selection Block Queries
	Selection Blocks
	Executing Selection Block Queries
	Return values

	Queries using GsQuery
	Creating and Executing a GsQuery
	Query Variables
	GsQuery’s Collection protocol
	Return values

	Query results as Streams
	Limitations on streamable queries

	7.3 Creating Indexes
	Equality and Identity Indexes
	Specialized subtypes of Indexes
	Unicode Indexes
	Reduced-conflict Equality Indexes
	Implicit Indexes

	Creating indexes using GsIndexSpec
	GsIndexOptions

	Creating indexes using UnorderedCollection protocol
	Reduced-Conflict Indexes
	Optional pathTerms
	While Indexes are Being Created
	Queries during index creation
	Auto-commit

	7.4 Special Kinds of Queries and Indexes
	Unicode String Indexes and Queries
	Creating Unicode Indexes
	GsIndexSpec
	UnorderedCollection protocol
	Example

	Enumerated path terms in indexes and queries
	Restrictions on predicates with enumerated pathTerms

	Collection path Indexes and Queries
	Set-valued query results
	Restrictions on predicates in set-valued queries

	Redefined Comparison Messages

	7.5 Managing Indexes
	Indexes on temporary collections
	Inquiring About Indexes
	Removing Indexes
	To remove indexes based on a GsIndexSpec
	To remove indexes using IndexManager
	To remove indexes using UnorderedCollection protocol
	Rebuilding Indexes

	Indexing and Performance
	Formulating queries and performance

	Indexing Errors
	Auditing Indexes

	7.6 Query Formulas and Optimization
	Query Formulas
	Invariance and Formula reuse
	Disabling auto-optimize
	Query Formula Optimizations
	Remove "not" using boolean logic
	Convert predicates with equal operands into boolean constants
	Convert constant-path reversed to path-constant
	Eliminate redundant predicates
	Combine path-constants into range predicate
	Combine path-constants to enumerated predicate
	Simplify (true) and (false) predicates
	Reorder predicates

	8 Transactions and Concurrency Control
	8.1 GemStone’s Conflict Management
	Views and Transactions
	Transaction State and Transaction Modes
	Reading and Writing in Transactions
	Reading and Writing Outside of Transactions
	When Should You Commit a Transaction?
	Nested In-memory Transactions

	8.2 How GemStone Detects and Manages Conflict
	Concurrency Management
	Committing Transactions
	Handling Commit Failure in a Transaction
	Indexes and Concurrency Control
	Aborting Transactions
	Updating the View Without Committing or Aborting
	Being Signaled To Abort
	Being Signaled to continueTransaction

	Handlers for abort or continueTransaction notifications

	8.3 Controlling Concurrent Access with Locks
	Locking and Manual Transaction Mode
	Lock Types
	Read Locks
	Write Locks

	Acquiring Locks
	Lock Denial
	Dead Locks
	Dirty Locks
	Locking Collections of Objects Efficiently
	Upgrading Locks

	Locking and Indexed Collections
	Removing or Releasing Locks
	Releasing Locks Upon Aborting or Committing

	Inquiring About Locks
	Application Write Locks

	8.4 Classes That Reduce the Chance of Conflict
	RcCounter
	RcIdentityBag
	RcQueue
	RcKeyValueDictionary

	9 Object Security and Authorization
	9.1 How GemStone Security Works
	Login Authorization
	The UserProfile

	System Privileges
	Object-level Security
	GsObjectSecurityPolicy

	9.2 Assigning Objects to Security Policies
	Default Security Policy and Current Security Policy
	Objects and Security Policies
	Configuring Authorization for an Object Security Policy
	How GemStone Responds to Unauthorized Access
	Owner, Group, and World Authorization

	Predefined GsObjectSecurityPolicies
	Changing the Security Policy for an Object
	Revoking Your Own Authorization: a Side Effect
	Finding Out Which Objects Are Protected by a Security Policy

	9.3 An Application Example
	9.4 A Development Example
	Planning Security Policies for User Access
	Protecting the Application Classes
	CodeModification privilege
	Planning Authorization for Data Objects
	Planning Groups
	Planning Security Policies

	Developing the Application
	Setting Up Security Policies for Joint Development
	Making the Application Accessible for Testing
	Moving the Application into a Production Environment

	Security Policy Assignment for User-created Objects

	9.5 Privileged Protocol for Class GsObjectSecurityPolicy

	10 Class versions and Instance Migration
	10.1 Versions of Classes
	Defining a New Version
	New Versions and Subclasses
	New Versions and References in Methods
	Class Variable and Class Instance Variables

	10.2 ClassHistory
	Defining a Class as a new version of an existing Class
	Accessing a Class History
	Assigning a Class History

	10.3 Migrating Objects
	Migration Destinations
	Migrating Instances
	Finding Instances and References
	Using the Migration Destination
	Bypassing the Migration Destination
	Migration Errors

	Instance Variable Mappings
	Default Instance Variable Mappings
	Customizing Instance Variable Mappings

	11 File I/O and Operating System Access
	11.1 Accessing Files
	Specifying Files
	Creating a File
	Opening a File
	Closing a File or Files
	Writing to a File
	Writing Extended Characters To a File

	Reading from a File
	Positioning

	Testing Files
	Renaming Files
	Removing Files
	Examining a Directory
	GsFile Errors

	11.2 Executing Operating System Commands
	Simple Commands
	More complex interactions

	11.3 File In and File Out
	Fileout
	Filein
	Handling strings with extended characters

	11.4 PassiveObject
	11.5 Creating and Using Sockets
	GsSocket
	GsSecureSocket
	Set up certificates and private keys

	Error handling

	12 Signals and Notifiers
	12.1 Communicating Between Sessions
	12.2 Object Change Notification
	Setting Up a Notify Set
	Adding an Object to a Notify Set
	Adding a Collection to a Notify Set
	Listing Your Notify Set
	Removing Objects From Your Notify Set

	Notification of New Objects
	Receiving Object Change Notification
	Reading the Set of Signaled Objects

	Polling for Changes to Objects
	Troubleshooting
	Frequently Changing Objects
	Special Classes

	Methods for Object Notification

	12.3 Gem-to-Gem Signaling
	Sending a Signal
	Receiving a Signal

	12.4 Other Signal-Related Issues
	Inactive Gem
	Dealing With Signal Overflow
	Sending Large Amounts of Data

	Maintaining Signals and Notification When Users Log Out

	13 Handling Exceptions
	13.1 The Exception Class Hierarchy
	13.2 Signaling Exceptions
	13.3 Handling Exceptions
	Dynamic (Stack-Based) Handlers
	Selecting a Handler
	Flow of Control
	Default Handlers
	Default Actions

	13.4 The Legacy Exception Handling Framework
	Dynamic (Stack-Based) Exception Handler
	Installing a Dynamic (Stack-Based) Exception Handler

	Default (Static) Exception Handlers
	Installing a Default (Static) Exception Handler
	GemStone Event Exceptions

	Flow of Control
	Signaling Other Exception Handlers
	Removing Exception Handlers
	Recursive Errors

	Raising Exceptions
	ANSI Integration

	14 Performance and Optimization
	14.1 Clustering Objects for Faster Retrieval
	Will Clustering Solve the Problem?
	Cluster Buckets
	Using Existing Cluster Buckets
	Creating New Cluster Buckets
	Cluster Buckets and Concurrency
	Cluster Buckets and Indexing

	Clustering Objects
	The Basic Clustering Message
	Depth-First Clustering
	Assigning Cluster Buckets
	Clustering and Memory Use
	Using Several Cluster Buckets
	Clustering Class Objects

	Maintaining Clusters
	Determining an Object’s Location
	Why Do Objects Move?

	14.2 Profiling Smalltalk Execution
	Classes ProfMonitor and ProfMonitorTree
	Profiling Your Code
	The Profile Report

	14.3 Modifying Cache Sizes for Better Performance
	GemStone Caches
	Temporary Object Space
	Gem Private Page Cache
	Stone Private Page Cache
	Shared Page Cache

	Getting Rid of Non-Persistent Objects

	14.4 Managing VM Memory
	Large Working Set
	Class Hierarchy
	UserAction Considerations
	Exported Set
	Debugging out of memory errors
	Signal on low memory condition
	Methods for Computing Temporary Object Space
	Statistics for monitoring memory use

	14.5 NotTranloggedGlobals
	14.6 Other Optimization Hints

	15 Working with Classes and Methods
	15.1 Creating and Removing Methods
	Defining Simple Accessing and Updating Methods
	Compiling Methods
	Removing Methods

	15.2 Information about Class and Methods
	Information about the Class
	Information about Instance, Class, and Shared Pool variables
	Information about Method Selectors
	Accessing and Managing Method Categories
	Specific Methods

	15.3 ClassOrganizer
	15.4 Handling Deprecated Methods
	Deprecated handling
	Deprecation log
	Listing deprecated methods
	Determining senders of deprecated methods

	16 System Sets
	16.1 Hidden Sets
	Methods to work with Hidden Sets

	16.2 SessionTemps and access to Session State
	SessionState

	16.3 Shared Counters
	AppStat Shared Counters
	Persistent Shared Counters

	17 The Foreign Function Interface
	17.1 FFI Core Classes
	CLibrary
	CCallout
	C type symbols
	Limitations with native code disabled
	CCallin
	CByteArray
	CFunction
	CPointer

	17.2 FFI Wrapper Utilities
	Creating a Smalltalk class

	18 External Sessions
	18.1 Specifying NRS with GsNetworkResourceString
	Gem NRS methods
	Stone NRS methods
	GsNetworkResourceString direct protocol

	18.2 Using ExternalSessions
	Setup the External Session
	Creating the External Session

	Log in the External Session
	Executing Code
	Managing Remote Sessions
	Managing transaction state
	Logging
	Breaking remote execution

	Important caution on Export Set of remote session
	Exceptions

	19 The SUnit Framework
	19.1 Why SUnit?
	19.2 Testing and Tests
	19.3 SUnit by Example
	Examining the Value of a Tested Expression
	Finding Out If an Exception Was Raised

	19.4 The SUnit Framework
	19.5 Understanding the SUnit Implementation
	Running a Single Test
	Running a TestSuite

	19.6 For More Information

	A GemStone Smalltalk Syntax
	A.1 GemStone and ANSI Smalltalk
	A.2 GemStone Smalltalk
	How to Create a New Class
	Case-Sensitivity
	Statements
	Comments
	Expressions
	Kinds of Expressions
	Literals
	Numeric Literals
	Character Literals
	String Literals
	Symbol Literals
	Array Literals

	Variables and Variable Names
	Declaring Temporary Variables
	Pseudovariables

	Assignment
	Message Expressions
	Messages

	Reserved and Optimized Selectors
	Messages as Expressions

	Combining Message Expressions
	Summary of Precedence Rules

	Cascaded Messages
	Array Constructors
	Path Expressions
	Returning Values

	A.3 Blocks
	Blocks with Arguments
	Blocks and Conditional Execution
	Conditional Selection
	Two-Way Conditional Selection
	Conditional Repetition

	Formatting Code

	A.4 GemStone Smalltalk BNF

	Index

