
GemStone®
GemBuilder for C
for GemStone/S 64 Bit
S Y S T E M S

Version 3.3
February 2016

GemStone/S 64 Bit 3.3 GemBuilder for C
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems LLC
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in any
form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express written
authorization from GemTalk Systems.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.
This software is provided by GemTalk Systems LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2016 GemTalk Systems LLC. All rights reserved by
GemTalk Systems.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with persistent
object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”. GemStone
software may also be covered by one or more pending United States patent applications.

TRADEMARKS
GemTalk, GemStone, GemBuilder, GemConnect, and the GemStone and GemTalk logos are trademarks or registered
trademarks of GemTalk Systems LLC, or of VMware, Inc., previously of GemStone Systems, Inc., in the United States and other
countries.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows 7, Windows 2008, and Windows 8 are registered trademarks of Microsoft Corporation in
the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
Ubuntu is a registered trademark of Canonical Ltd., Inc., in the U.S. and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER6, POWER7, and POWER8 are trademarks or registered trademarks of International Business Machines
Corporation.
Apple, Mac, Mac OS, and Macintosh are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
GemTalk Systems
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems

Preface
About This Manual
This manual describes GemBuilder for C — a set of C functions that provide a bridge
between your application’s C code and the application’s database controlled by
GemStone®. These functions provide your C program with complete access to a GemStone
database of objects, and to a virtual machine on which to execute GemStone Smalltalk code.

This manual describes the classic GemBuilder for C interface, which is not thread-safe. A
newer, thread-safe interface is provided by gcits.hf. This is not described in this manual;
see this file, $GEMSTONE/include/gcits.hf, for usage details.

Prerequisites
This manual assumes you are familiar with the GemStone Smalltalk programming
language, as described in the Programming Guide for GemStone/S 64 Bit. In addition, you
must know the C programming language, as described in Kernighan and Ritchie’s The C
Programming Language (Prentice Hall, 1978). Finally, you should be familiar with your C
compiler, as described in its user documentation.

You should have the GemStone system installed correctly on your host computer, as
described in the GemStone/S 64 Bit Installation Guide for your platform.

How This Manual is Organized
 Chapter 1‚ "Introduction" describes the GemBuilder functions in general, and how

they are used in application development with GemStone.

 Chapter 2‚ "Building Applications with GemBuilder for C" introduces the two versions
of GemBuilder and explains how to build applications that bind to GemBuilder at run
time.
GemTalk Systems 3

GemStone/S 64 Bit 3.3 GemBuilder for C
 Chapter 3‚ "Writing C Functions To Be Called from GemStone" describes how to
implement “user action” routines that can be called from GemStone Smalltalk
methods.

 Chapter 4‚ "Compiling and Linking" describes how to compile and link your C
applications and user actions, and how to install them in a GemStone environment
prior to execution.

 Chapter 5‚ "GemBuilder for C Files and Data Structures" describes GemBuilder
include files and the data structures used internally.

 Chapter 6‚ "GemBuilder C Functions" provides a detailed description of each
GemBuilder function, including syntax, parameters, return value, a general
description of what the function does, and including examples of its use.

 Appendix A, "Reserved OOPs" lists mnemonics for reserved OOPs.

 Appendix B, "GemStone C Statistics Interface" describes the GemStone C Statistics
Interface (GCSI), a library of functions that allow your C application to collect
GemStone statistics directly from the shared page cache.

These documents are also available on the Gemtalk customer website, as described below.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit and
GemStone/S, and the GemStone family of products; the GemStone Smalltalk
programming language; and may also be used to refer to the company, now GemTalk
Systems, previously GemStone Systems, Inc. and a division of VMware, Inc.

Other GemStone Documentation
You may find it useful to look at other GemStone documentation:

 Programming Guide for GemStone/S 64 Bit — a programmer’s guide to GemStone
Smalltalk, GemStone’s object-oriented programming language.

 Topaz Programming Environment — describes Topaz, a scriptable command-line
interface to GemStone Smalltalk.

 System Administration Guide — describes maintenance and administration of your
GemStone/S system.

 GemStone/S 64 Bit Installation Guide for specific platforms — provides details on the
supported platforms for a particular version, and includes the latest compiler version.

A description of the behavior of each GemStone kernel class is available in the class
comments in the GemStone Smalltalk repository. Method comments include a description
of the behavior of methods.
4 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
Technical Support

Support Website
gemtalksystems.com

GemTalk’s website provides a variety of resources to help you use GemTalk products:

 Documentation for the current and for previous released versions of all GemTalk
products, in PDF form.

 Product download for the current and selected recent versions of GemTalk software.

 Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

 TechTips, providing information and instructions that are not in the documentation.

 Compatibility matrices, listing supported platforms for GemTalk product versions.

This material is updated regularly; we recommend checking this site on a regular basis.

Help Requests
You may need to contact Technical Support directly, if your questions are not answered in
the documentation or by other material on the Technical Support site. Technical Support is
available to customers with current support contracts.

Requests for technical assistance may be submitted online, by email, or by telephone. We
recommend you use telephone contact only for more serious requests that require
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: techsupport.gemtalksystems.com

Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702

When submitting a request, please include the following information:

 Your name and company name.

 The versions of GemStone/S 64 Bit and of all related GemTalk products, and of any
other related products, such as client Smalltalk products.

 The operating system and version you are using.

 A description of the problem or request.

 Exact error message(s) received, if any, including log files if appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.
GemTalk Systems 5

https://gemtalksystems.com
http://techsupport.gemtalksystems.com

GemStone/S 64 Bit 3.3 GemBuilder for C
24x7 Emergency Technical Support
GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.

Training and Consulting
GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.
6 GemTalk Systems

Table of Contents
Chapter 1. Introduction 17

1.1 GemBuilder Application Overview . 17
Deciding Where to Do the Work . 18

Representing GemStone Objects in C. 18
Smalltalk Access to Objects . 19
Calling C Functions from Smalltalk Methods 19

The GemBuilder Functions . 20
1.2 Session Control . 20

Starting and Stopping GemBuilder . 20
Remote Login Setup . 20
Logging In and Out . 21
Transaction Management . 21

Committing a Transaction . 21
Aborting a Transaction . 21
Controlling Transactions Manually . 22

1.3 Representing Objects in C . 22
GemStone-Defined Object Mnemonics. 23
Converting Between Special Objects and C Values 23
Byte-Swizzling of Binary Floating-Point Values 25

1.4 Manipulating Objects in GemStone . 26
Sending Messages to GemStone Objects . 26
Executing Code in GemStone . 26
Interrupting GemStone Execution . 27
Modification of Classes . 28

1.5 Manipulating Objects Through Structural Access . 28
Direct Access to Metadata . 29

Byte Objects . 30
Pointer Objects . 30
Nonsequenceable Collections (NSC Objects) 32
GemTalk Systems 7

GemStone/S 64 Bit 3.3 GemBuilder for C
1.6 Creating Objects. . 33
1.7 Fetching and Storing Objects . 34

Efficient Fetching and Storing with Object Traversal 34
How Object Traversal Works. . 34
The Object Traversal Functions . 35

Efficient Fetching And Storing with Path Access 36
1.8 Nonblocking Functions. . 36
1.9 Operating System Considerations . 38

Signal Handling in Your GemBuilder Application 38
Executing Host File Access Methods . 39
Writing Portable Code . 39

1.10 Error Handling and Recovery . 39
Polling for Errors . 39
Error Jump Buffers . 40
The Call Stack . 40
GemStone System Errors . 40

1.11 Garbage Collection . 40
1.12 Preparing to Execute GemStone Applications . 42

GemStone Environment Variables . 42

Chapter 2. Building Applications with GemBuilder for C 43

2.1 RPC and Linked applications . 43
RPC for Debugging . 43
Linked for Performance . 44
Multiple GemStone Sessions . 44
The GemBuilder for C Shared Libraries . 44

2.2 GemBuilder Applications that load Shared Libraries. 44
Building the Application . 44
Searching for the Library . 45

How UNIX Matches Search Names with Shared Library Files 45
2.3 Building Statically Linked Applications . 45

Chapter 3. Writing C Functions
To Be Called from GemStone 47

3.1 Shared User Action Libraries . 47
3.2 How User Actions Work . 48
3.3 Developing User Actions. . 48

Write the User Action Functions. . 49
Create a User Action Library. . 49

The gciua.hf Header File . 49
The Initialization and Shutdown Functions 50
Compiling and Linking Shared Libraries 51
Using Existing User Actions in a User Action Library. 51
8 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
Using Third-party C Code with a User Action Library 51
Loading User Actions . 52

Loading User Action Libraries At Run Time 52
Specifying the User Action Library . 52
Creating User Actions in Your C Application 53
Verify That Required User Actions Have Been Installed 53

Write the Code That Calls Your User Actions. 53
Remote User Actions . 54
Limit on Circular Calls Among User Actions and Smalltalk. 54

Debug the User Action. 54
3.4 Executing User Actions . 54

Choosing Between Session and Application User Actions. 54
Running User Actions with Applications . 56

With an RPC Application . 56
With a Linked Application. 56

Running User Actions with Gems . 57
Running User Actions with Applications and Gems 58

Chapter 4. Compiling and Linking 61

4.1 Development Environment and Standard Libraries 61
4.2 Compiling C Source Code for GemStone . 62

The C++ Compiler . 62
Listing the Version of Your Compiler 62

Compilation Options . 63
Compilation Command Lines. 63

4.3 Linking C/C++ Object Code with GemStone. 66
Risk of Database Corruption . 66
Linker . 67
Link Options . 67
Command Line Assumptions . 67

Linking User Actions into Shared Libraries 67
Linking Applications That Bind to GemBuilder at Run Time 68

Chapter 5. GemBuilder for C
Files and Data Structures 69

5.1 GemBuilder for C Include Files. 69
5.2 GemBuilder Data Types . 70

The Structure for Representing the Date and Time 71
The Error Report Structure . 72
The Object Information Structure. 72
The Object Report Structure . 74
The Object Report Header Class . 75
The User Action Information Structure . 78
GemTalk Systems 9

GemStone/S 64 Bit 3.3 GemBuilder for C
The Traversal Buffer Type . 79
5.3 Structural Access Functions . 80
5.4 environmentId . 80
5.5 UNIX Signal Handling . 80

Chapter 6. GemBuilder
C Functions 81

6.1 Function Summary Tables . 81
GciAbort 91
GciAddOopToNsc 92
GciAddOopsToNsc 93
GCI_ALIGN 94
GciAll7Bit 95
GciAllocTravBuf 96
GciAlteredObjs 97
GciAppendBytes 99
GciAppendChars 100
GciAppendOops 101
GciBegin 102
GCI_BOOL_TO_OOP 103
GciByteArrayToPointer 104
GciCallInProgress 105
GciCheckAuth 106
GCI_CHR_TO_OOP 107
GciClampedTrav 108
GciClassMethodForClass 110
GciClassNamedSize 112
GciClearStack 113
GciCommit 115
GciCompileMethod 116
GciCompress 118
GciContinue 120
GciContinueWith 121
GciCreateByteObj 122
GciCreateOopObj 124
GciCTimeToDateTime 126
GciDateTimeToCTime 127
GciDbgEstablish 128
GciDbgEstablishToFile 130
GciDbgLogString 131
GciDeclareAction 132
GciDecodeOopArray 133
GciDecSharedCounter 134
GciDirtyExportedObjs 135
GciDirtyObjsInit 137
10 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
GciDirtySaveObjs 138
GciDirtyTrackedObjs 140
Gci_doubleToSmallDouble 142
GciEnableFreeOopEncoding 143
GciEnableFullCompression 144
GciEnableSignaledErrors 145
GciEncodeOopArray 146
GciEncrypt 147
GciErr 148
GciExecute 149
GciExecute_ 149
GciExecuteFromContext 151
GciExecuteFromContext_ 151
GciExecuteStr 153
GciExecuteStr_ 153
GciExecuteStrFetchBytes 155
GciExecuteStrFromContext 157
GciExecuteStrFromContext_ 157
GciExecuteStrTrav 159
GciExecuteStrTrav_ 159
GciFetchByte 161
GciFetchBytes_ 162
GciFetchChars_ 164
GciFetchClass 165
GciFetchDateTime 167
GciFetchDynamicIv 168
GciFetchDynamicIvs 169
GciFetchNamedOop 170
GciFetchNamedOops 172
GciFetchNamedSize 174
GciFetchNameOfClass 175
GciFetchNumEncodedOops 176
GciFetchNumSharedCounters 177
GciFetchObjectInfo 178
GciFetchObjImpl 180
GciFetchOop 181
GciFetchOops 183
GciFetchPaths 185
GciFetchSharedCounterValuesNoLock 190
GciFetchSize_ 191
GciFetchUtf8Bytes_ 193
GciFetchVaryingOop 195
GciFetchVaryingOops 197
GciFetchVaryingSize_ 199
GciFindObjRep 200
GciFloatKind 202
GciFltToOop 203
GemTalk Systems 11

GemStone/S 64 Bit 3.3 GemBuilder for C
GciGetFreeOop 204
GciGetFreeOops 206
GciGetFreeOopsEncoded 208
GciGetSessionId 209
GciHardBreak 210
GciHiddenSetIncludesOop 211
GCI_I64_IS_SMALL_INT 212
GciI64ToOop 213
GciIncSharedCounter 214
GciInit 215
GciInitAppName 216
GciInitAppName_ 216
GciInstallUserAction 218
GciInstallUserAction_ 218
GciInstMethodForClass 219
GciInUserAction 221
GciIsKindOf 222
GciIsKindOfClass 223
GciIsRemote 224
GciIsSubclassOf 225
GciIsSubclassOfClass 226
GciIvNameToIdx 227
GciLoadUserActionLibrary 228
GciLogin 229
GciLoginEx 231
GciLogout 232
GciLongJmp 233
GciMoreTraversal 234
GciNbAbort 236
GciNbBegin 237
GciNbClampedTrav 238
GciNbCommit 239
GciNbContinue 240
GciNbContinueWith 241
GciNbEnd 242
GciNbEnd_ 242
GciNbEndPoll 244
GciNbExecute 245
GciNbExecute_ 245
GciNbExecuteStr 246
GciNbExecuteStr_ 246
GciNbExecuteStrFetchBytes 247
GciNbExecuteStrFromContext 249
GciNbExecuteStrFromContext_ 249
GciNbExecuteStrTrav 251
GciNbExecuteStrTrav_ 251
GciNbMoreTraversal 253
12 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbPerform 254
GciNbPerform_ 254
GciNbPerformNoDebug 256
GciNbPerformNoDebug_ 256
GciNbPerformTrav 258
GciNbPerformTrav_ 258
GciNbStoreTrav 260
GciNbStoreTravDo_ 261
GciNbStoreTravDoTrav_ 262
GciNbStoreTravDoTravRefs_ 263
GciNbTraverseObjs 265
GciNewByteObj 266
GciNewCharObj 267
GciNewDateTime 268
GciNewOop 269
GciNewOops 270
GciNewOopUsingObjRep 272
GciNewString 275
GciNewSymbol 276
GciNewUtf8String 277
GciNscIncludesOop 278
GciObjExists 279
GciObjInCollection 280
GciObjIsCommitted 281
GciObjRepSize_ 282
GciOldOopToNewOop 284
GCI_OOP_IS_BOOL 285
GCI_OOP_IS_SMALL_INT 286
GCI_OOP_IS_SPECIAL 287
GciOopToBool 288
GCI_OOP_TO_BOOL 289
GciOopToChar16 290
GciOopToChar32 291
GciOopToChr 292
GCI_OOP_TO_CHR 293
GciOopToFlt 294
GciOopToI32 296
GciOopToI32_ 296
GciOopToI64 297
GciOopToI64_ 297
GciPerform 298
GciPerform_ 298
GciPerformNoDebug 300
GciPerformNoDebug_ 300
GciPerformSymDbg 302
GciPerformSymDbg_ 302
GciPerformTrav 304
GciPerformTrav_ 304
GemTalk Systems 13

GemStone/S 64 Bit 3.3 GemBuilder for C
GciPerformTraverse 306
GciPerformTraverse_ 306
GciPointerToByteArray 308
GciPollForSignal 309
GciPollSocketForRead 310
GciPopErrJump 311
GciProcessDeferredUpdates_ 312
GciProduct 313
GciPushErrJump 314
GciRaiseException 315
GciReadSharedCounter 316
GciReadSharedCounterNoLock 317
GciRealloc 318
GciReleaseAllGlobalOops 319
GciReleaseAllOops 320
GciReleaseAllTrackedOops 321
GciReleaseGlobalOops 322
GciReleaseOops 323
GciReleaseTrackedOops 325
GciRemoveOopFromNsc 326
GciRemoveOopsFromNsc 327
GciReplaceOops 329
GciReplaceVaryingOops 330
GciResolveSymbol 331
GciResolveSymbolObj 332
GciRtlIsLoaded 333
GciRtlLoad 334
GciRtlUnload 335
GciSaveAndTrackObjs 336
GciSaveGlobalObjs 337
GciSaveObjs 338
GciServerIsBigEndian 339
GciSessionIsRemote 340
GciSetCacheName_ 341
GciSetDynLib 342
GciSetErrJump 343
GciSetHaltOnError 345
Gci_SETJMP 346
GciSetNet 347
GciSetNetEx 349
GciSetNetEx_ 349
GciSetSessionId 351
GciSetSharedCounter 353
GciSetTraversalBufSwizzling 354
GciSetVaryingSize 355
GciShutdown 356
GciSoftBreak 357
14 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
GciStep 359
GciStep_ 359
GciStoreByte 360
GciStoreBytes 361
GciStoreBytesInstanceOf 363
GciStoreChars 365
GciStoreDynamicIv 366
GciStoreIdxOop 367
GciStoreIdxOops 369
GciStoreNamedOop 371
GciStoreNamedOops 373
GciStoreOop 375
GciStoreOops 377
GciStorePaths 379
GciStoreTrav 384
GciStoreTravDo_ 387
GciStoreTravDoTrav_ 390
GciStoreTravDoTravRefs_ 391
GciStringToInteger 394
GciStrKeyValueDictAt 395
GciStrKeyValueDictAtObj 396
GciStrKeyValueDictAtObjPut 397
GciStrKeyValueDictAtPut 398
GciSwapBytesUint 399
GciSwapBytesUshort 400
GciSymDictAt 401
GciSymDictAtObj 402
GciSymDictAtObjPut 403
GciSymDictAtPut 404
GciTrackedObjsFetchAllDirty 405
GciTrackedObjsInit 407
GciTraverseObjs 408
GciUncompress 412
GciUserActionInit 413
GciUserActionShutdown 414
GciVersion 415

Appendix A. Reserved OOPs 417

Appendix B. GemStone C Statistics Interface 419

B.1 Developing a GCSI Application .419
Required Header Files . .419
The GCSI Shared Library .419
Compiling and Linking .420
GemTalk Systems 15

GemStone/S 64 Bit 3.3 GemBuilder for C
Connecting to the Shared Page Cache . 420
The Sample Program . 420

B.2 GCSI Data Types . 421
The Structure for Representing the GCSI Function Result 421
GcsiAllStatsForMask 423
GcsiAttachSharedCache 424
GcsiAttachSharedCacheForStone 425
GcsiDetachSharedCache 426
GcsiFetchMaxProcessesInCache 427
GcsiInit 428
GcsiStatsForGemSessionId 429
GcsiStatsForGemSessionWithName 430
GcsiStatsForPgsvrSessionId 431
GcsiStatsForProcessId 432
GcsiStatsForShrPcMon 433
GcsiStatsForStone 434
GCSI Errors 435
16 GemTalk Systems

Chapter

1 Introduction
GemBuilder for C is a set of C functions that provide your C application with complete
access to a GemStone repository and its programming language, GemStone Smalltalk. The
GemStone object server contains your schema (class definitions) and objects (instances of
those classes), while your C program provides the user interface for your GemStone
application. The GemBuilder functions allow your C program to access the GemStone
repository either through structural access (the C model) or by sending messages (the
Smalltalk model). Both of these approaches are discussed in detail later in this chapter.

1.1 GemBuilder Application Overview
Figure 1.1 illustrates the role of GemBuilder in developing a GemStone application. In
effect, developing your GemStone application consists of two separate efforts: creating
Smalltalk classes and methods, and writing C code.

Figure 1.1 The Role of GemBuilder in Application Development

GemBuilder CallsC Application
GemStone

GemStone
Objects

C Data
Structures

Repository

Flow of Control
User Input/Output

Transaction Management
Execute Smalltalk code
Send messages to objects
Structural Access
GemTalk Systems 17

GemBuilder Application Overview GemStone/S 64 Bit 3.3 GemBuilder for C
We recommend the following steps for developing your hybrid application:

Step 1. Define the application’s external interface.

Any GemBuilder application must manage its user interface through custom modules
written in C.

Step 2. Decide where to perform the work.

Applications that are a hybrid of C functions and Smalltalk classes pose interesting
problems to the designer: Where is the best place to perform the application’s work? Is
it better to import the representation of an object into your C program and perform the
work there, or to send a message which invokes a Smalltalk method? In the next
section, we’ll examine this question in more detail.

Step 3. Implement and debug the application.

After you’ve developed a satisfactory design, you can implement and test the C-based
functions using familiar techniques and tools (editor, C compiler, link editor,
debugger). For information about implementing applications, see
Chapter 2‚ “Building Applications with GemBuilder for C”

Step 4. Compile and link the application.

For instructions about compiling and linking your application, please see
Chapter 4‚ “Compiling and Linking” For full details, see your C compiler user
documentation.

Deciding Where to Do the Work
As mentioned above, you will need to decide how much of the application’s work to
perform in C functions and how much in Smalltalk methods. The following paragraphs
discuss both approaches.

Representing GemStone Objects in C
You may choose to implement C functions that access GemStone objects for manipulation
in your C program. In such cases, a representation of each object must be imported from
GemStone into your C program before the C function is executed. By import, we mean that
memory is allocated within your C program to contain the C equivalent of the GemStone
Smalltalk object. You could also say that these values are cached in your application; rather
than having a reference to the object by identity (OOP), we have the contents of its instance
variables. The object in its permanent form still exists in the repository, and the cached
values in your application may become obsolete if other sessions commit changes to this
object. Exporting is the reverse of importing - you create a GemStone Smalltalk object that
holds the equivalent to your C data, or update an existing GemStone Smalltalk object with
the C data in your application.

GemBuilder provides functions for importing objects from GemStone to your C program,
creating new GemStone objects, directly accessing and modifying the internal contents of
objects, and exporting objects to the GemStone repository.

Of course, if you import an object to your C program and modify it, or if you create a new
object within your C program, your application must export the new or modified object to
GemStone before it can commit the changes to the repository.
18 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GemBuilder Application Overview
Here are some advantages of using GemBuilder structural access functions to modify
objects:

It may be more efficient to perform a function in C than in Smalltalk.

The function may need to be closely linked with I/O functions for the user interface.

The function may already exist in a standard library. In this case, the data must be
transported from GemStone to that function.

The section “Manipulating Objects Through Structural Access” on page 28 defines exactly
how objects are represented in C as address space, and defines the GemBuilder functions
for exchanging these structures between GemStone and C.

Smalltalk Access to Objects
In many cases, you will choose to perform your GemStone work directly in Smalltalk.
GemBuilder provides C functions for defining and compiling Smalltalk methods for a
class, and for sending a message to an object (invoking a Smalltalk method). Here are some
advantages of writing a function directly in Smalltalk:

The integrity of the data encapsulation provided by the object metaphor is preserved.

Functions in Smalltalk are more easily shared among multiple applications.

Functions in Smalltalk may be easier to implement. There is no need to worry about
moving objects between C and Smalltalk or about space management.

The overhead of transporting objects between C and Smalltalk is avoided.

Classes or methods may already exist which exhibit behavior similar to the desired
behavior. Thus, less effort will be required to implement a new function in Smalltalk.

The section “Manipulating Objects in GemStone” on page 26 defines the GemBuilder
functions that allow C applications to send Smalltalk messages to objects and execute
Smalltalk code.

Calling C Functions from Smalltalk Methods
Even though you may choose to perform your GemStone work in Smalltalk, you may find
that you need to access some functions written in C. GemBuilder allows you to link your
user-written C functions to a GemStone session process, and subsequently call those
functions from Smalltalk. For example, operations that are computationally intensive or
are external to GemStone can be written as C functions and called from within a Smalltalk
method (whose high-level structure and control is written in Smalltalk). This is similar to
the concept of “user-defined primitives” offered by other object-oriented systems. Here are
some advantages of calling C functions from Smalltalk:

For computationally intensive portions of a GemStone operation, C functions may
execute faster than the same functions written in Smalltalk.

Operating system services, or services of other software systems, can be accessed
without the overhead of spawning a subprocess. In addition, using C functions to
access such services provides greater flexibility for passing arguments and returning
results.
GemTalk Systems 19

Session Control GemStone/S 64 Bit 3.3 GemBuilder for C
Chapter 3‚ “Writing C Functions To Be Called from GemStone” describes how to
implement “user action” routines that can be called from Smalltalk methods, and how to
link those routines into a GemBuilder application or a Gem (GemStone session) process.

The GemBuilder Functions
The remainder of this chapter introduces you to many of the GemBuilder C functions.

First, we’ll look at functions used in managing GemStone sessions: logging into (and
out of) GemStone, switching between multiple sessions, and committing and aborting
transactions.

Next, we’ll look at functions that allow your C program to manipulate objects by
sending Smalltalk messages or executing Smalltalk code fragments.

 Finally, we’ll examine those functions that perform “structural access” upon the
representation of objects within your C program.

1.2 Session Control
All interactions with the GemStone repository monitor occur within the scope of a user’s
GemStone session, which may encapsulate one or more individual transactions.
GemBuilder provides functions for obtaining and managing GemStone repository
sessions, such as logging in and logging out, committing and aborting transactions, and
connecting to a different session.

Starting and Stopping GemBuilder
The functions GciInitAppName and GciInit initialize GemBuilder. When it is used, your
application should call GciInitAppName before calling GciInit. Your C application must
not call any other GemBuilder functions until it calls GciInit.

The function GciShutdown logs out all sessions that are connected to the Gem and
deactivates GemBuilder. Your C application should call GciShutdown before exiting, in
order to guarantee that the process deallocates its resources.

Remote Login Setup
There are two ways to prepare for remote login to a GemStone repository:

1. First, you use a NetLDI that is running in guest mode, attached to the Stone process.
Guest mode provides easy access in situations where it is not considered necessary to
authenticate users in the network environment before permitting them to log in.

2. Otherwise, you need to set the hostusername and host password for the NetLDI
authentication, using the GciSetNet function. (see page 347).

You may also wish to set the GEM_RPCGCI_TIMEOUT configuration parameter in the
GemStone configuration file you use when starting a remote Gem. This parameter sets a
timeout limit for the remote Gem; if the Gem remains inactive too long, GemStone logs out
the session and terminates the Gem process. See the System Administration Guide for
GemStone/S 64 Bit for more details.
20 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Session Control
Logging In and Out
Before your C application can perform any useful repository work, it must create a session
with the GemStone system by calling GciLogin. That function uses the network
parameters initialized by GciSetNet.

GciInit must be called before the first GciLogin in the lifetime of a process.

If your application calls GciLogin again after you are already logged in, GemBuilder will
create an additional, independent, GemStone session for you. Multiple sessions can be
attached to the same GemStone repository, or they can be attached to different repositories.
The maximum number of sessions that may be logged in at one time depends upon your
version of GemStone and the terms of your license agreement.

From the point of view of GemBuilder’s classic API, only a single session is active at any
one time. It is known as the current session. Any time you execute code that communicates
with the repository, it talks to the current session only. Other sessions are unaffected.

Each session is assigned a number by GemBuilder as it is created. Your application can call
GciGetSessionId to inquire about the number of the current session, or GciSetSessionId
to make another session the current one. Your application is responsible for treating each
session distinctly.

An application can terminate a session by calling GciLogout. After that call returns, the
current session no longer exists.

Transaction Management

Committing a Transaction
The GemStone repository proceeds from one stable state to the next by continuously
committing transactions. In Smalltalk, the message System commitTransaction
attempts to commit changes to the repository. Similarly, when your C application calls the
function GciCommit, GemStone will attempt to commit any changes to objects occurring
within the current session.

A session within a transaction views the repository as it existed when the transaction
started. By the time you are ready to commit a transaction, other sessions or users may
have changed the state of the repository through intervening commit operations. Your
application can call GciAlteredObjs to determine which objects must be reread from the
repository in order to make its view current. Then, to reread those objects, use whatever
kind of GemBuilder fetch or traversal functions best suits your needs.

If an attempt to commit fails, your application must call GciAbort to discard the
transaction. If it does not do so, subsequent calls to GciCommit will not succeed.

As mentioned earlier, if your C code has created any new objects or has modified any
objects whose representation you have imported, those objects must be exported to the
GemStone repository in their new state before the transaction is committed. This ensures
that the committed repository properly reflects the intended state.

Aborting a Transaction
By calling GciAbort, an application can discard from its current session all the changes to
persistent objects that were made since the last successful commit or since the beginning of
GemTalk Systems 21

Representing Objects in C GemStone/S 64 Bit 3.3 GemBuilder for C
the session (whichever is later). This has exactly the same effect as sending the Smalltalk
message

System abortTransaction.

After the application aborts a transaction, it must reread any object whose state has
changed.

Controlling Transactions Manually
Under automatic transaction control, a transaction is started when a user logs in to the
repository. The transaction then continues until it is either committed or aborted. The call
to GciAbort or GciCommit automatically starts a new transaction when it finishes
processing the previous one. Thus, the user is always operating within a transaction.

Automatic transaction control is the default control mode in GemStone. However, there is
some overhead associated with transactions that an application can avoid by changing the
transaction mode to manual:

GciExecuteStr(
"System transactionMode: #manualBegin", OOP_NIL);

The transaction mode can also be returned to the automatic default:
GciExecuteStr(

"System transactionMode: #autoBegin", OOP_NIL);

In manual mode, the application starts a new transaction manually by calling the GciBegin
function. The GciAbort and GciCommit functions complete the current transaction, but do
not start a new transaction. Thus, they leave the user session operating outside of a
transaction, without its attendant overhead. The session views the repository as it was
when the last transaction was completed, or when the mode was last reset, whichever is
later.

Since automatic transaction control is the default, a transaction is always started when a
user logs in. To operate outside a transaction initially, an application must first set the
mode to manual, and then either abort or commit the transaction.

1.3 Representing Objects in C
An important feature of the GemStone data model is its ability to preserve an object’s
identity distinct from its state. Within GemStone, each object is identified by a unique 64-
bit object-oriented pointer, or OOP. Whenever your C program attempts to access or
modify the state of a GemStone object, GemStone uses its OOP to identify it. Both the OOP
and a representation of the object’s state may be imported into an application’s C address
space.

Within your C program, object identity is represented in variables of type OopType
(object-oriented pointer). The GemBuilder include file gci.ht defines type OopType,
along with other types used by GemBuilder functions. For more information, see
“GciAbort” on page 91.
22 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Representing Objects in C
GemStone-Defined Object Mnemonics
The GemBuilder include file gcioop.ht defines C mnemonics for all of the kernel classes
in the GemStone repository, as well as the GemStone objects nil, true, and false, and the
GemStone error dictionary.

In addition to the predefined objects mentioned above, the GemBuilder include file
gcioop.ht also defines the C mnemonic OOP_ILLEGAL. That mnemonic represents a
value that will never be used to represent any object in the repository. You can thus
initialize the state of an OOP variable to OOP_ILLEGAL, and test later in your program to
see if that variable contains valid information.

NOTE
Bear in mind that your C program can only use predefined OOPs, or OOPs that
it has received from the GemStone. Your C program cannot create new OOPs
directly — it must ask GemStone to create new OOPs for it.

Converting Between Special Objects and C Values
Some Smalltalk classes encode their objects’ states directly in their OOPs:

SmallInteger objects (for example, the number 5)

Character (for example, the letter ‘b’)

Boolean values (true and false)

Instances of class UndefinedObject (such as nil)

The following GemBuilder functions and macros allow conversion between Character,
Integer, or Boolean objects and the equivalent C values:

GCI_BOOL_TO_OOP — (MACRO) Convert a C Boolean value to a GemStone Boolean
object.

GciByteArrayToPointer — Given a result from GciPointerToByteArray, return a C
pointer.

GCI_CHR_TO_OOP — (MACRO) Convert a C character value to a GemStone Character
object.

GciI64ToOop — Convert a C 64-bit integer value to a GemStone object.

GciOopToBool — Convert a Boolean object to a C Boolean value.

GCI_OOP_TO_BOOL — (MACRO) Convert a Boolean object to a C Boolean value.

GciOopToChar16 — Convert a Character object to a 16-bit C character value.

GciOopToChr — Convert a Character object to a C character value.

GCI_OOP_TO_CHR — (MACRO) Convert a Character object to a C character value.

GciOopToI32, GciOopToI32_ — Convert a GemStone object to a C 32-bit integer value.

GciOopToI64, GciOopToI64_ — Convert a GemStone object to a C 64-bit integer value.

GciPointerToByteArray — Given a C pointer, return a SmallInteger or ByteArray
containing the value of the pointer.

GciStringToInteger — Convert a C string to a GemStone SmallInteger or LargeInteger
object.
GemTalk Systems 23

Representing Objects in C GemStone/S 64 Bit 3.3 GemBuilder for C
In addition, the following functions allow conversion between Float objects and their
equivalent C values. Although a Float’s OOP does not encode its state, these functions are
listed here for your convenience.

GciFltToOop — Convert a C double value to a SmallDouble or Float object.

GciOopToFlt — Convert a SmallDouble, Float, or SmallFloat object to a C double.

The following macros are for testing OOPs:

GCI_OOP_IS_BOOL — (MACRO) Determine whether or not a GemStone object
represents a Boolean value.

GCI_OOP_IS_SMALL_INT — (MACRO) Determine whether or not a GemStone object
represents a SmallInteger.

GCI_OOP_IS_SPECIAL — (MACRO) Determine whether or not a GemStone object has a
special representation.

The GemBuilder include file gcioop.ht uses the C mnemonics OOP_TRUE,
OOP_FALSE, and OOP_NIL to represent the GemStone objects true, false, and nil,
respectively.

In Example 1.1, assume that you have defined a Smalltalk class called Address that
represents a mailing address. If the class has five instance variables, the OOPs of one
instance of Address can be imported into a C array called address. Finally, assume that the
fifth instance variable represents the zip code of the address.

The fifth element of address is the OOP of the SmallInteger object that represents the zip
code, not the zip code itself. Example 1.1 imports the value of the zip code object to the C
variable zip.

This example and the ones that follow assume that you already have a valid session
(obtained from the successful execution of GciLogin).
24 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Representing Objects in C
Example 1.1

int64 example1_1(OopType addressId)
{
 // returns the zipcode or -1 if an error occurred,

 enum { addr_num_instVars = 5 };

 OopType instVars[addr_num_instVars];

 int numRet = GciFetchOops(addressId, 1, instVars,
addr_num_instVars);
 if (numRet != (int)addr_num_instVars)
 return -1;

 BoolType conversionError = FALSE;
 int64 zip = GciOopToI64_(instVars[4], &conversionError);
 if (! conversionError)
 return -1;

 // zip now contains an integer that has the same
 // value as the GemStone object represented by address[4]

 return zip;
}

Byte-Swizzling of Binary Floating-Point Values
If an application is running on a different machine than its Gem, the byte ordering of binary
floating-point values may differ on the two machines. To ensure the correct interpretation
of non-special floating-point objects when they are transferred between such machines, the
bytes need to be reordered (swizzled) to match the machine to which they are transferred.

In GemStone, a binary float is an instance of class Float (eight bytes) or SmallFloat (four
bytes), or an instance of SmallDouble (a special object identifier that has no body).
Instances of Float and SmallFloat have byte-format bodies whose size is fixed by GemStone
and cannot be changed. The programmer must supply all the bytes, or provide a C double,
for a binary floating object when creating or storing it.

Most GemBuilder functions provide automatic byte swizzling for instances of Float and
SmallFloat. The following GemBuilder functions raise an error if you pass a Float or
SmallFloat object to them:

GciAppendBytes — Append bytes to a byte object. (page 99)

GciStoreByte — Store one byte in a byte object. (page 360)

GciStoreBytes — (MACRO) Store multiple bytes in a byte object. (page 361)

GciStoreChars — Store multiple ASCII characters in a byte object. (page 365)

The GciFetchBytes_ function does not raise an error if you pass an instance of Float or
SmallFloat to it, but it also does not provide automatic byte swizzling. It is intended
GemTalk Systems 25

Manipulating Objects in GemStone GemStone/S 64 Bit 3.3 GemBuilder for C
primarily for use with other kinds of byte objects, such as strings. If you wish to use it with
Floats or SmallFloats, you must perform your own byte swizzling as needed.

1.4 Manipulating Objects in GemStone
GemBuilder provides functions that allow C applications to execute Smalltalk code in the
repository and to send messages directly to GemStone objects. This section describes these
functions in more detail.

Sending Messages to GemStone Objects
GemBuilder provides the function GciPerform, which sends a message to a GemStone
object. When GemStone receives a message, it invokes and executes the method associated
with that message. Thus, the code execution occurs in the repository, not in the application.
Example 1.2 illustrates this function.

This example assumes that you already have a valid session (obtained from the
successful execution of GciLogin).

Example 1.2

void example_1_2(void)
{
 OopType userGlobals = GciResolveSymbol(“UserGlobals”, OOP_NIL);
 OopType aKey = GciNewSymbol(“myNumber”);
 OopType aValue = GciI32ToOop(55);

 OopType argList[2];
 argList[0] = aKey;
 argList[1] = aValue;

 /* Two statements that have the same effect when executed */
 OopType result = GciSendMsg(userGlobals, 4, “at:”, aKey, “put:”,
aValue);

 result = GciPerform(userGlobals, “at:put:”, argList, 2);
}

Executing Code in GemStone
Your C application can execute Smalltalk code by calling any of the following GemBuilder
functions:

GciExecute — Execute a Smalltalk expression contained in a String or Utf8 object.
(page 149)

GciExecuteFromContext — Execute a Smalltalk expression contained in a String or
Utf8 object as if it were a message sent to another object. (page 151)

GciExecuteStr — Execute a Smalltalk expression contained in a C string. (page 153)
26 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Manipulating Objects in GemStone
GciExecuteStrFromContext — Execute a Smalltalk expression contained in a C string
as if it were a message sent to an object. (page 157)

The GemBuilder function GciExecuteStr allows your application to send a C string
containing Smalltalk code to GemStone for compilation and execution. The Smalltalk code
may be a message expression, a statement, or a series of statements; in sum, any self-
contained unit of code that you could execute within a Topaz PrintIt command.

GemStone uses the specified symbol list argument to bind any symbols contained in the
Smalltalk source. If the symbol list is OOP_NIL, GemStone uses the symbol list associated
with the currently logged-in user. Example 1.3 demonstrates the use of this GemBuilder
function.

Example 1.3

OopType example_1_3(void)
{
 // Pass the String to GemStone for compilation and execution.
 // If it succeeds, return the result of the expression shown
 // otherwise OOP_NIL will be returned.

 OopType objSize = GciExecuteStr(“ ^ myObject size “,
OOP_NIL/*use default symbolList*/);

 return objSize;
}

Your Smalltalk code has the same format as a method, and may include temporaries. In
addition, although the circumflex (^) character is used in the above example to return a
value after GemStone has executed Smalltalk code (myObject size), the circumflex is not
required. GemStone returns the result of the last Smalltalk statement executed.

The other functions work similarly, with variations. Before you call GciExecute or
GciExecuteFromContext, you must create or modify a GemStone String object to contain
the Smalltalk text to be executed. The GciExecuteFromContext and
GciExecuteStrFromContext functions execute the Smalltalk code within the context
(scope) of a specified GemStone object, which implies that the code can access the object’s
instance variables.

Interrupting GemStone Execution
GemBuilder provides two ways for your application to handle repository interrupts:

A soft break interrupts the Smalltalk virtual machine only. The only GemBuilder
functions that can recognize a soft break are GciPerform, GciContinue, GciExecute,
GciExecuteFromContext, GciExecuteStr, and GciExecuteStrFromContext.

A hard break interrupts the Gem process itself, and is not trappable through Smalltalk
exceptions.

Issuing a soft break may be desirable if, for example, your application sends a message to
an object (via GciPerform), and for some reason the invoked Smalltalk method enters an
infinite loop.
GemTalk Systems 27

Manipulating Objects Through Structural Access GemStone/S 64 Bit 3.3 GemBuilder for C
In order for GemBuilder functions in your program to recognize interrupts, your program
usually needs a signal handler that can call the functions GciSoftBreak and
GciHardBreak. Since GemBuilder generally does not relinquish control to an application
until it has finished its processing, soft and hard breaks are then initiated from an interrupt
service routine. Alternatively, if you are calling the non-blocking GemBuilder functions,
you can service interrupts directly within your event loop, while awaiting the completion
of a function.

If GemStone is executing when it receives the break, it replies with an error message. If it
is not executing, it ignores the break.

Modification of Classes
Some class definitions are more flexible than others. With respect to modification, classes
fall into three categories:

kernel classes
Predefined kernel classes cannot be modified. You can, however, create a subclass of a
kernel class and redefine your subclass’s behavior.

invariant classes
Once a class has been fully developed, it is normally invariant. Class invariance does
not imply that it is impervious to all change. You can add or remove methods, method
categories, class variables, or pool variables to any class except a predefined kernel
class. You can also create instances of an invariant class.

modifiable classes
You can also create specially modifiable classes, a feature that can be useful (for
example) while you are defining schema or implementing the classes. You can modify
these classes in the same ways as invariant classes, but you can also add or remove
named instance variables. However, you cannot create an instance of a modifiable
class. To create an instance, you must first change the class to invariant.

The GemStone Behavior class provides several methods for changing the
characteristics of modifiable classes. Use only these predefined methods — do not use
structural access to modify classes.

1.5 Manipulating Objects Through Structural Access
As mentioned earlier in this chapter, GemBuilder provides a set of C functions that enable
you to do the following:

Import objects from GemStone to your C program

Create new GemStone objects

Directly access and modify the internal contents of objects through their C
representations

Export objects from your C program to the GemStone repository

You may need to use GemBuilder’s “structural access” functions for either of two reasons:

Speed
28 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Manipulating Objects Through Structural Access
Because they call on GemStone’s internal object manager without using the Smalltalk
virtual machine, the structural access functions provide the most efficient possible
access to individual objects.

Generality

If your C application must handle GemStone objects that it did not create, using the
structural access functions may be the only way you can be sure that the components
of those objects will be accessible to the application. A user might, for example, define
a subclass of Array in which at: and at:put: were disallowed or given new meanings.
In that case, your C application could not rely on the standard GemStone kernel class
methods to read and manipulate the contents of such a collection.

Despite their advantages, you should use these structural access functions only if you’ve
determined that Smalltalk message-passing won’t do the job at hand. GemBuilder’s
structural access functions violate the principles of abstract data types and encapsulation,
and they bypass the consistency checks encoded in the Smalltalk kernel class methods. If
your C application unwisely alters the structure of a GemStone object (by, for example,
storing bytes directly into a floating-point number), the object will behave badly and your
application will break.

For the same reason, do not use structural access to change the characteristics of modifiable
classes. Use GciPerform to invoke the Smalltalk methods defined under class Behavior for
this specific purpose.

For security reasons, the GemStone object AllUsers cannot be modified using structural
access. If you attempt to do so, GemStone raises the RT_ERR_OBJECT_PROTECTED error.

Direct Access to Metadata
Your C program can use GemBuilder’s structural access functions to request certain data
about an object:

Class

Each object is an instance of some class. The class defines the behavior of its instances.
To find an object’s class, call GciFetchClass.

Format

GemStone represents the state of an object in one of four different implementations
(formats): byte, pointer, NSC (non-sequenceable collection), or special. These
implementations are described in greater detail in the GemStone/S 64 Bit Programming
Guide. To find an object’s implementation, call GciFetchObjImpl.

Size

The function GciFetchNamedSize returns the number of named instance variables in
an object, while GciFetchVaryingSize_ returns the number of unnamed instance
variables in an object. GciFetchSize_ returns the object’s complete size (the sum of its
named and unnamed variables).

The result of GciFetchSize_ depends on the object’s implementation (“format”). For
byte objects (such as instances of String or Float), GciFetchSize_ returns the number of
bytes in the object’s representation. For pointer and NSC objects, this function returns
the number of OOPs that represent the object. For “special” objects (such as nil, or
instances of SmallInteger, Character, and Boolean), the size is always 0.
GemTalk Systems 29

Manipulating Objects Through Structural Access GemStone/S 64 Bit 3.3 GemBuilder for C
Byte Objects
GemStone byte objects (for example, instances of class String or Symbol) can be
manipulated in C as arrays of characters. The following GemBuilder functions enable your
C program to store into, or fetch from, GemStone byte objects such as Strings:

GciAppendBytes — Append bytes to a byte object. (page 99)

GciAppendChars — Append a C string to a byte object. (page 100)

GciFetchByte — Fetch one byte from an indexed byte object. (page 161)

GciFetchBytes_ — Fetch multiple bytes from an indexed byte object. (page 162)

GciFetchChars_ — Fetch multiple ASCII characters from an indexed byte object.
(page 164)

GciStoreByte — Store one byte in a byte object. (page 360)

GciStoreBytes — (MACRO) Store multiple bytes in a byte object. (page 361)

GciStoreChars — Store multiple ASCII characters in a byte object. (page 365)

Although instances of Float are implemented within GemStone as byte objects, use the
functions GciOopToFlt and GciFltToOop to convert between Float objects and their
equivalent C values.

Assume that the C variable suppId contains an OOP representing an object of class String.
Example 1.4 imports that String into the C variable suppName.

Example 1.4

void example_1_4(OopType suppId)
{
 char suppName[1025];
 int64 size = GciFetchBytes_(suppId, 1L, (ByteType*)suppName,

sizeof(suppName) - 1);
 suppName[size] = '\0';

 // suppName now contains the bytes of the GemStone object
referenced
 // by suppId , or the first 1024 bytes whichever is less
}

Pointer Objects
In your C program, a GemStone pointer object is represented as an array of OOPs. The
order of the OOPs within the GemStone pointer object is preserved in the C array.
GemStone represents the following kinds of objects as arrays of OOPs:

Objects with Named Instance Variables
Any object with one or more named instance variables is represented as an array of OOPs.
You can determine the positional mapping of instance variables to indexes within the OOP
array by calling the GemBuilder function GciIvNameToIdx. The following GemBuilder
functions allow your C program to store into, or fetch from, GemStone pointer objects with
named instance variables:
30 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Manipulating Objects Through Structural Access
GciFetchNamedOop — Fetch the OOP of one of an object’s named instance variables.
(page 170)

GciFetchNamedOops — Fetch the OOPs of one or more of an object’s named instance
variables. (page 172)

GciStoreNamedOop — Store one OOP into an object’s named instance variable.
(page 371)

GciStoreNamedOops — Store one or more OOPs into an object’s named instance
variables. (page 373)

Indexable Objects
Any indexable object not implemented as a byte object is represented as an array of OOPs.
The following GemBuilder functions allow your C program to store into, or fetch from,
indexable pointer objects:

GciFetchVaryingOop — Fetch the OOP of one unnamed instance variable from an
indexable pointer object or NSC. (page 195)

GciFetchVaryingOops — Fetch the OOPs of one or more unnamed instance variables
from an indexable pointer object or NSC. (page 197)

GciStoreIdxOop — Store one OOP in an indexable pointer object’s unnamed instance
variable. (page 367)

GciStoreIdxOops — Store one or more OOPs in an indexable pointer object’s
unnamed instance variables. (page 369)

In each of the following functions, if the indexable object contains named instance
variables, pointers to the named instance variables precede pointers to the indexable
instance variables.

GciFetchOop — Fetch the OOP of one instance variable of an object. (page 181)

GciFetchOops — Fetch the OOPs of one or more instance variables of an object.
(page 183)

GciStoreOop — Store one OOP into an object’s instance variable. (page 375)

GciStoreOops — Store one or more OOPs into an object’s instance variables.
(page 377)

Assume that the C variable currSup contains an OOP representing an object of class
Supplier (which defines seven named instance variables). Example 1.5 imports the state of
the Supplier object (that is, the OOPs of its component instance variables) into the C
variable instVar.
GemTalk Systems 31

Manipulating Objects Through Structural Access GemStone/S 64 Bit 3.3 GemBuilder for C
Example 1.5

void example_1_5(OopType currSup)
{
 enum { num_ivs = 7 };
 OopType instVars[num_ivs];

 int numRet = GciFetchNamedOops(currSup, 1L, instVars, num_ivs);
 if (numRet == 7) {
 // instVars now contains the OOPs of the seven instance
 // variables of the GemStone object referenced by currSup
 } else {
 // error occurred or currSup is not of expected class or size
 }
}

Nonsequenceable Collections (NSC Objects)
In addition to byte objects and pointer objects, GemStone exports objects implemented as
nonsequenceable collections (NSCs). NSC objects (for example, instances of class
IdentityBag and IdentitySet) reference other objects in a manner similar to pointer objects,
except that the notion of order is not preserved when objects are added to or removed from
the collection.

The following GemBuilder functions allow your C program to store into, or fetch from,
GemStone NSC objects:

GciAddOopToNsc — Add an OOP to the unordered variables of a nonsequenceable
collection. (page 92)

GciAddOopsToNsc — Add multiple OOPs to the unordered variables of a
nonsequenceable collection. (page 93)

GciFetchOop — Fetch the OOP of one instance variable of an object. (page 181)

GciFetchOops — Fetch the OOPs of one or more instance variables of an object.
(page 183)

GciRemoveOopFromNsc — Remove an OOP from an NSC. (page 326)

GciRemoveOopsFromNsc — Remove one or more OOPs from an NSC. (page 327)

GciReplaceVaryingOops — Replace all unnamed instance variables in an NSC object.
(page 330)

Note that GemStone preserves the position of objects in an NSC only until the NSC is
modified, or until the session is terminated (whichever comes first). Although you may use
the functions GciFetchOops or GciFetchOop (defined for pointer objects) to retrieve the
OOPs of an NSC’s elements, you must use one of the GciAddOopToNsc functions to
modify the unnamed instance variables of an NSC. (You can use the GciStoreOop,
GciStoreOops, GciStoreNamedOop, and GciStoreNamedOops functions to modify user-
defined named instance variables of an NSC. You cannot, however, use these functions to
modify the named instance variables defined in class IdentityBag.)
32 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Creating Objects
Assume that the C variable mySuppSet contains an OOP representing an object of class
SupplierSet (a large set of Supplier objects). Example 1.6 exports the contents of the C
variable newSupp (a Supplier object) into that SupplierSet.

Example 1.6

void example_1_6(OopType mySuppSet, OopType newSupp)
{
 GciAddOopToNsc(mySuppSet, newSupp);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // an error occurred
 } else {
 // The instance of SupplierSet referenced by mySuppSet now
contains
 // the OOP of the object newSupp.
 }
}

1.6 Creating Objects
The following GemBuilder functions allow your C program to create instances of Smalltalk
classes:

GciNewOop — Create a new GemStone object. (page 269)

GciNewOops — Create multiple new GemStone objects. (page 270)

GciNewOopUsingObjRep — Create a new GemStone object from an existing object
report. (page 272)

Your C application may also create a new object by executing some Smalltalk code that
creates new objects as a side-effect.

Once your application has created a new object, it can export the object to the repository by
performing the following steps:

Step 1. Modify a previously committed object in the repository so that it references the new
object. This may be accomplished with a call to one of the GciStore... functions, or by
sending a Smalltalk message with the new object as an argument, where the invoked
method changes a committed object to reference the new object.

Step 2. Give the new object some meaningful state.

Step 3. Commit a transaction. (As mentioned earlier in this chapter, your C program must
first export the object to the GemStone repository before attempting to commit the
transaction.)
GemTalk Systems 33

Fetching and Storing Objects GemStone/S 64 Bit 3.3 GemBuilder for C
1.7 Fetching and Storing Objects

Efficient Fetching and Storing with Object Traversal
The functions described in the preceding sections allow your C program to import and
export the components of a single GemStone object. When your application needs to obtain
information about multiple objects in the repository, it can minimize the number of
network calls by using GemBuilder’s object traversal functions.

NOTE:
If you are using “linkable” GemBuilder, object traversal will be of little benefit
to you. For details, see “RPC and Linked applications” on page 43.

Suppose, for example, that you had created a GemStone Employee class like the one in
Example 1.7.

Example 1.7

 Object subclass: 'Employee'
 instVarNames: #('name' 'empNum' 'jobTitle'
 'department' 'address' 'favoriteTune')
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals

Imagine that you needed to write C code to make a two-column display of job titles and
favorite tunes. By using GemBuilder’s “object traversal” functions, you can minimize the
number of network fetches and avoid running the Smalltalk virtual machine.

How Object Traversal Works
To understand the object traversal mechanism, think of each GemStone pointer object as
the root of a tree (for now, ignore the possibility of objects containing themselves). The
branches at the first level go to the object’s instance variables, which in turn are connected
to their own instance variables, and so on.

Figure 1.2 illustrates a piece of the tree formed by an instance of Employee.
34 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Fetching and Storing Objects
Figure 1.2 Object Traversal and Paths

departmentname address

myEmp

'Bob'

first

'Jones'

last

'welding'

deptName

'3333'

phone

'Elm'

street

'97333'

zip

'Am I Blue'

favoriteTune

'welder'

jobTitle

'255'

empNum

In a single call, GemStone’s internal object traversal function walks such a tree post-depth-
first to some specified level, building up a “traversal buffer” that is an array of “object
reports” describing the classes of the objects encountered and the values of their contents.
It then returns that traversal buffer to your application for selective extraction and
processing of the contents.

Thus, to make your list of job titles and favorite tunes with the smallest possible amount of
network traffic per employee processed, you could ask GemStone to traverse each
employee to two levels (the first level is the Employee object itself and the second level is
that object’s instance variables). You could then pick out the object reports describing
jobTitle and favoriteTune, and extract the values stored by those reports (welder and Am I
Blue respectively).

This approach would minimize network traffic to a single round trip.

One further optimization is possible: instead of fetching each employee and traversing it
individually to level two, you could ask GemStone to begin traversal at the collection of
employees and to descend three levels. That way, you would get information about the
whole collection of employees with just a single call over the network.

The Object Traversal Functions
The function GciTraverseObjs traverses object trees rooted at a collection of one or more
GemStone objects, gathering object reports on the specified objects into a traversal buffer.

Traversal buffers are instances of the C++ class GciTravBufType, which is defined in
$GEMSTONE/include/gcicmn.ht. (For details about GciTravBufType, see “The
Traversal Buffer Type” on page 79.)

Object reports within the traversal buffer are described by the C++ classes
GciObjRepSType and GciObjRepHdrSType, which are defined in $GEMSTONE/
include/gci.ht. (For details about these classes, see “The Object Report Structure”
on page 74.)

Each object report provides information about an object’s identity (its OOP), class, size (the
number of instance variables, named plus unnamed), object security policy id,
GemTalk Systems 35

Nonblocking Functions GemStone/S 64 Bit 3.3 GemBuilder for C
implementation (byte, pointer, NSC, or special), and the values stored in its instance
variables.

When the amount of information obtained in a traversal exceeds the amount of available
memory, your application can break the traversal into manageable amounts of information
by issuing repeated calls to GciMoreTraversal. Generally speaking, an application can
continue to call GciMoreTraversal until it has obtained all requested information.

Your application can call GciFindObjRep to scan a traversal buffer for an individual object
report. Before it allocates memory for a copy of the object report, your program can call
GciObjRepSize_ to obtain the size of the report.

The function GciStoreTrav allows you to store values into any number of existing
GemStone objects in a single network round trip. That function takes a traversal buffer of
object reports as its argument.

The function GciStoreTravDo_ is even more parsimonious of network resources. In a
single network round trip, you can store values into any number of existing GemStone
objects, then execute some code; the function returns a pointer to the resulting object. That
function takes a structure as its argument, which defines traversal buffer of object reports
and an execution string or message. After the function has completed, the structure also
contains information describing the GemStone objects that have changed.

Efficient Fetching And Storing with Path Access
As you’ve seen, object traversal is a powerful tool for fetching information about multiple
objects efficiently. But writing the code for parsing traversal buffers and object reports may
not always be simple. And even if you can afford the memory for importing unwanted
information, the processing time spent in parsing that information into object reports may
be unacceptable.

Consider the Employee object illustrated in the Figure 1.2. If your job were to extract a list
of job titles and favorite tunes from a set of such Employees, it would be reasonable to use
GemBuilder’s object traversal functions (as described above) to get the needed
information. The time spent in building up object reports for the unwanted portions would
probably be negligible. Suppose, however, that there were an additional 200 instance
variables in each Employee. Then the time used in processing wasted object reports would
far exceed the time spent in useful work.

Therefore, GemBuilder provides a set of path access functions that can fetch or store
multiple objects at selected positions in an object tree with a single call across the network,
bringing only the desired information back. The function GciFetchPaths lets you fetch
selected components from a large set of objects with only a single network round trip.
Similarly, your program can call GciStorePaths to store new values into disparate
locations within a large number of GemStone objects.

1.8 Nonblocking Functions
Under most circumstances, when an application calls a GemBuilder function, the operation
that the function specifies is completed before the function returns control to the
application. That is, the GemBuilder function blocks the application from proceeding until
the operation is finished. This effect guarantees a strict sequence of execution.
36 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Nonblocking Functions
Nevertheless, in most cases a GemBuilder function calls upon GemStone (that is, the Gem)
to perform some work. If the Gem and the application are running in different processes,
especially on different machines, blocking implies that only one process can accomplish
work at a time. GemBuilder’s nonblocking functions were designed to take advantage of the
opportunity for concurrent execution in separate Gem and application processes.

The results of performing an operation through a blocking function or through its
nonblocking twin are always the same. The difference is that the nonblocking function
does not wait for the operation to complete before it returns control to the session. Since the
results of the operation are probably not ready when a nonblocking function returns, all
nonblocking functions but one (GciNbEnd) return void.

While a nonblocking operation is in progress an application can do any kind of work that
does not require GemBuilder. In fact, it can also call a limited set of GemBuilder functions,
listed as follows:

GciCallInProgress
GciErr
GciGetSessionId
GciHardBreak
GciNbEnd
GciSetSessionId
GciShutdown
GciSoftBreak

If the application first changes sessions, and that session has no nonblocking operation in
progress, then the application can call any GemBuilder function, including a nonblocking
function. GemBuilder supports one repository request at a time, per session. However,
nonblocking functions do not implement threads, meaning that you cannot have multiple
concurrent repository requests in progress within a single session. If an application calls
any GemBuilder function besides those listed here while a nonblocking operation is in
progress in the current session, the error GCI_ERR_OP_IN_PROGRESS is generated.

Once a nonblocking operation is in progress, an application must call GciNbEnd at least
once to determine the operation’s status. Repeated calls are made if necessary, until the
operation is complete. When it is complete, GciNbEnd hands the application a pointer to
the result of the operation, the same value that the corresponding blocking call would have
returned directly.

Nonblocking functions are not truly nonblocking if they are called from a linkable
GemBuilder session, because the Gem and GemBuilder are part of the same process.
However, those functions can still be used in linkable sessions. If they are, GciNbEnd must
still be called at least once per nonblocking call, and it always indicates that the operation
is complete.

All error-handling features are supported while nonblocking functions are used. Errors
may be signalled either when the nonblocking function is called or later when GciNbEnd
is called.
GemTalk Systems 37

Operating System Considerations GemStone/S 64 Bit 3.3 GemBuilder for C
1.9 Operating System Considerations
Like your C application, GemBuilder for C is, in itself, a body of C code. Some aspects of
the interface must interact with the surrounding operating system. The purpose of this
section is to point out a few places where you must code with caution in order to avoid
conflicts.

Signal Handling in Your GemBuilder Application
Under UNIX, it is important that signals be enabled when your code calls GemBuilder
functions. Disabling signals has the effect of disabling much of the error handling within
GemBuilder. Because signal handlers can execute at arbitrary points during execution of
your application, your signal handling code should not call any GemBuilder functions
other than GciSoftBreak, GciHardBreak, or GciCallInProgress.

GciInit always installs a signal handler for SIGIO. This handler chains to any previous
handler.

In the linkable (GciLnk) configuration, GciInit also does the following:

Installs handlers to service and ignore these signals (if no previous handler is found):
SIGPIPE, SIGHUP, SIGDANGER

Installs handlers to treat the following signals as fatal errors if they are defined by the
operating system: SIGTERM, SIGXCPU, SIGABRT, SIGXFSZ, SIGXCPU, SIGEMT,
SIGLOST

Installs a handler for SIGUSR1. If you have a valid linkable session, SIGUSR1 will
cause the Smalltalk interpreter to print the current Smalltalk stack to stdout or to the
Topaz output file. This handler chains to any previous handler.

Installs a handler for SIGUSR2, which is used internally by a Gemstone session. This
handler chains to any previous handler.

Installs a handler to gracefully handle SIGCHLD if no previous handler is found.

Installs a handler to treat SIGFPE as a fatal error if no previous handler is found.

Installs handlers for SIGILL and SIGBUS. If the program counter is found to be in
libgci*.so code, or if no previous handler is available to chain to, these are fatal errors.

Installs a handler for SIGSEGV. A Smalltalk stack overflow produces a SIGSEGV,
which is translated to a Smalltalk stack overflow error. If the program counter is
found to be in libgci*.so code, or if no previous handler is available to chain to, SEGV
is a fatal error.

If your application installs a handler for SIGIO after calling GciInit, your handler must
chain to the previously existing handler.

If your application uses Linkable GCI and installs any signal handlers after calling GciInit,
you must chain to the previously existing handlers. If you install handlers for SIGSEGV,
SIGILL or SIGBUS, your handler must determine if the program counter at the point of the
signal is in your own C or C++ code and if not, must chain to the previously existing
handler. You must only treat these signals as fatal if the program counter is in your own
code.

If you are linking with other shared libraries, it is recommended that GciInit be called after
all other libraries are loaded.
38 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Error Handling and Recovery
Executing Host File Access Methods
If you use GciPerform or any of the GciExecute... functions to execute a Smalltalk host file
access method (as listed below), and you do not supply a full file pathname as part of the
method argument, the default directory for the Smalltalk method depends on the version
of GemBuilder that you are running. With GciLnk, the default directory is the directory in
which the Gem (GemStone session) process was started. With GciRpc, the default directory
is the home directory of the host user account, or the #dir specification of the network
resource string. The Smalltalk methods that are affected include
System class>>performOnServer: and the file accessing methods implemented in
GsFile. See the file I/O information in the GemStone/S 64 Bit Programming Guide.

Writing Portable Code
If you want to produce code that can run in both 32-bit and 64-bit environments, observe
the following guidelines:

Don’t hard-code size computations. Instead, use sizeof operations, so that if some
structure changes, your code will still return the correct values.

If you are using printf strings to print 64-bit integers, you might find it convenient
to use the FMT_* macros in $GEMSTONE/include/gcicmn.ht. Those macros help
you to compose a format string for a printf that will be portable. In particular, use
of the FMT_ macros make the printing of 64-bit integers portable between Windows
and UNIX.

To avoid discrepancies between 32-bit and 64-bit environments, avoid the use of
long or unsigned long in your code. Instead, you can use the type intptr_t,
which makes the variable the same size as a pointer, regardless whether your
application is running in 32-bit or 64-bit. Alternatively, you can use int64 or int to
fix the size of the variable explicitly.

1.10 Error Handling and Recovery
Your C program is responsible for processing any errors generated by GemBuilder
function calls.

The GemBuilder include file gcierr.ht documents and defines mnemonics for all
GemStone errors. Search the file for the mnemonic name or error number to locate an error
in the file. The errors are divided into five groups: compiler, run-time (virtual machine),
aborting, fatal, and event.

GemBuilder provides functions that allow you to poll for errors or to use error jump
buffers. The following paragraphs describe both of these techniques.

Polling for Errors
Each call to GemBuilder can potentially fail for a number of reasons. Your program can call
GciErr to determine whether the previous GemBuilder call resulted in an error. If so,
GciErr will obtain full information about the error. If an error occurs while Smalltalk code
is executing (in response to GciPerform or one of the GciExecute... functions), your
program may be able to continue Smalltalk execution by calling GciContinue.
GemTalk Systems 39

Garbage Collection GemStone/S 64 Bit 3.3 GemBuilder for C
If you are in a UserAction and want to pass the error back to the Smalltalk client, you must
execute GciRaiseException.

Error Jump Buffers
When your program makes three or more GemBuilder calls in sequence, jump buffers
provide significantly faster performance than polling for errors.

When your C program calls Gci_SETJMP, the context of the current C environment is
saved in a jump buffer designated by your program. GemBuilder maintains a stack of up
to 20 error jump buffers. A buffer is pushed onto the stack when GciPushErrJump is called,
and popped when GciPopErrJump is called. When an error occurs during a GemBuilder
call, the GemBuilder implementation calls GciLongJmp using the buffer currently at the
top of GemBuilder’s error jump stack, and pops that buffer from the stack.

For functions with local error recovery, your program can call GciSetErrJump to
temporarily disable the GciLongJmp mechanism (and to re-enable it afterwards).

Whenever the jump stack is empty, the application must use GciErr to poll for any
GemBuilder errors.

The Call Stack
The Smalltalk virtual machine creates and maintains a call stack that provides information
about the state of execution of the current Smalltalk expression or sequence of expressions.
The call stack includes an ordered list of activation records related to the methods and
blocks that are currently being executed. The virtual machine ordinarily clears the call
stack before each new expression is executed.

If a soft break or an unexpected error occurs, the virtual machine suspends execution,
creates a Process object, and raises an error. The Process object represents both the
Smalltalk call stack when execution was suspended and any information that the virtual
machine needs to resume execution. If there was no fatal error, your program can call
GciContinue to resume execution. Call GciClearStack instead if there was a fatal error, or
if you do not want your program to resume the suspended execution.

GemStone System Errors
If your application receives a GemStone system error while linked with GciLnk, relink
your application with GciRpc and run it again with an uncorrupted copy of your
repository. Your GemStone system administrator can refer to the repository backup and
recovery procedures in the System Administration Guide for GemStone/S 64 Bit.

If the error can be reproduced, contact GemStone Customer Support. Otherwise, the error
is in your application, and you need to debug your application before using GciLnk again.

1.11 Garbage Collection
GemStone performs automatic garbage collection via several mechanisms, which are
discussed more fully in the chapter “GemStone Garbage Collection” in the System
Administration Guide for GemStone/S 64 Bit.

In-memory garbage collection of non-persistent temporary objects occurs regularly, to
avoid low and out of memory issues. If newly created or temporary objects are not
40 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Garbage Collection
referenced, they run the risk of being garbage collected and disappearing prematurely
during in-memory garbage collection. To avoid this problem GemStone uses several
internal sets: the PureExportSet, the GciTrackedObjs set, and the user action’s export set.

Before removing any objects, the GemStone in-memory garbage collector checks the
PureExportSet and the GciTrackedObjs set in the user session’s workspace, and if in a user
action, the user action’s export set. Any object in these sets is considered to be referenced.
The garbage collector does not remove objects that are in these sets, or objects that are
referenced by a persistent object. It also does not remove any additional objects that they
refer to, or more objects that those additional objects refer to, and so on.

Some functions will automatically add the objects which they return to the export sets.
Objects may also be added and removed explicitly. Objects are automatically added to an
export set in these cases:

The results of GciNew*, GciCreate*, GciSend*, GciPerform*, GciExecute* and
GciResolve* calls are automatically added to the applicable export set - either the
PureExportSet, or if the function is called from within a user action, to the user
action’s export set.

Objects returned in the report buffer of a GciFetchObjectInfo or GciClampedTrav
when GCI_RETRIEVE_EXPORT flag is set will be added to the PureExportSet or the
user action’s export set.

When the function

 GciErr(GciErrSType *errorReport);

returns TRUE, values of type OopType in the *errorReport are added to the applicable
export set.

All of these functions return their results to the C application in the form of one or more
OOPs (objects), through either return values or output parameters. To protect these result
objects from premature garbage collection, GemBuilder automatically adds all of them to
the applicable export set. GemBuilder does not automatically add other objects to the
export sets; the application should be careful to explicitly call the GciSaveObjs or
GciSaveGlobalObjs function when it needs to be sure to retain an object that is not already
in an export set.

Objects that are the contents of instance variables, such as objects returned from a call to
GciFetchOops, are not added to the export sets. These are already referenced from the
object whose instance variable references them. Note however that these objects are cached
in your C code, and the values may no longer be valid if the referencing object becomes
dirty due to an abort or commit.

Persistent objects may be added to any of the three sets, in which case they are protected
from garbage collection on persistent objects, such as markForCollection.

In a user action, some of these functions behave differently. When these functions are
called from within a user action, the objects are added to the user action’s export set to
prevent them from being garbage collected, rather than to the PureExportSet. When the
user action comes to an end, the user action’s export set ceases to exist and the objects it
contained may be garbage collected. This avoids the risk of objects not being released and
consuming excess memory, for example if the user action exits with an unexpected error.
In order to prevent objects saved from within a user action from being released
prematurely, the user action can explicitly call GciSaveGlobalObjs, which will save them to
the PureExportSet regardless of the user action context.
GemTalk Systems 41

Preparing to Execute GemStone Applications GemStone/S 64 Bit 3.3 GemBuilder for C
Once the objects in the GciTrackedObjs or in the export sets are no longer needed, the
application can improve performance and avoid out of memory issues by calling the
GciRelease... functions, to reduce the size of the set and permit garbage collection of
obsolete temporaries.

1.12 Preparing to Execute GemStone Applications
The following information includes the requirements and recommendations for preparing
your environment to execute C applications for GemStone. Your application may have
additional requirements, such as environment variables that it uses.

GemStone Environment Variables
Anyone who runs a GemStone application or process is responsible for setting the
following environment variables:

GEMSTONE — A full pathname to your GemStone installation directory.

PATH — Add the GemStone bin directory to your path.

The following environment variables influence the behavior of GemStone and
GemBuilder. You may wish to supply values or defaults for them when you or your users
run your application or a Gem.

GEMSTONE_EXE_CONF — (not for RPC applications) A full path to a special GemStone
configuration file for an executable, if any. See the System Administration Guide for
GemStone/S 64 Bit for details.

GEMSTONE_SYS_CONF — (not for RPC applications) a full path to a special GemStone
configuration file for your system, if any. See the System Administration Guide for
GemStone/S 64 Bit for details.

GEMSTONE_NRS_ALL — A network resource string — a means for identifying certain
GemStone file and process information. It can identify the name of the script to run to
start an RPC Gem. See the System Administration Guide for GemStone/S 64 Bit for details.
42 GemTalk Systems

Chapter

2 Building Applications
with GemBuilder for C
This chapter explains how to use GemBuilder for C to build your C application. Your
application will provide the main program and API. When linking your compiled code,
you will link the GemBuilder for C libraries that allow you to make GemBuilder function
calls.

2.1 RPC and Linked applications
The GemBuilder for C interface provide two versions: Remote Procedure Call (RPC) and
Linked.

In an RPC application, your application exists in a process separate from the Gem. The two
processes communicate through remote procedure calls. This interprocess communication
requires a small overhead associated with each GemBuilder call, independent of whatever
object access is performed or Smalltalk code is executed.

In a linked application, your application and Gem (the GemStone session) exist as a single
process. Your application is expected to provide the main entry point.

A linked application can also run RPC Gems, in addition to its linked Gem. An RPC
application cannot have a linked Gem.

The function GciIsRemote reports whether your application was linked with the RPC
version or Linked version of the GemBuilder interface.

RPC for Debugging
When debugging a new application, you must use the RPC interface. You should use
GciLnk only after your application has been completely debugged and thoroughly tested,
to avoid the risk of errors corrupting your repository.

When using an RPC Gem, you usually achieve the best performance by using functions
such as GciTraverseObjs, GciStoreTrav, and GciFetchPaths. Those functions are
designed to reduce the number of network round-trips by combining functions that are
commonly used in sequence.
GemTalk Systems 43

GemBuilder Applications that load Shared Libraries GemStone/S 64 Bit 3.3 GemBuilder for C
Linked for Performance
You can use a linked, single-Gem configuration to enhance performance. In a linked
application, a GemBuilder function call is a machine-instruction procedure call rather than
a remote call over the network to a different process.

WARNING!
Before using GciLnk, debug your C code in a process that does not include a Gem!
For more information, see section “Risk of Database Corruption” on page 66.

In a linked application, you usually achieve the best performance by using the simple
GciFetch... and GciStore... functions instead of the complex object traversal functions. This
makes the application easier to write.

However, if your application will login to GemStone multiple times, any sessions after the
first will be RPC gems. The traversal functions should perform better in those sessions.

Multiple GemStone Sessions
If your application will be running multiple GemStone sessions simultaneously, or if you
will need to run your application and the GemStone session on separate machines, then
you will need to use either the RPC version of GemBuilder, or a non-default linked login
session.

The GemBuilder for C Shared Libraries
The two versions of GemBuilder are provided as a set of shared libraries. A shared library is
a collection of object modules that can be bound to an executable, usually at run time. The
contents of a shared library are not copied into the executable. Instead, the library’s main
function loads all of its functions. Only one copy is loaded into memory, even if multiple
client processes use the library at the same time. Thus, they “share” the library.

The GemBuilder library files libgcilnk.* and libgcirpc.* are provided in the
GemStone distribution under $GEMSTONE/lib.

2.2 GemBuilder Applications that load Shared Libraries
Most applications will load shared libraries at run time. The binding is done by code that
is part of the application. If that code is not executed, the shared library is not loaded. With
this type of binding, applications can decide at run time which GemBuilder library to use.
They can also unbind at run time and rebind to the same or different shared libraries. The
code is free to handle a run-time-bind error however it sees fit.

Building the Application
To build an application that loads GemBuilder shared libraries:

1. Include gci.ht and gcirtl.hf in the C source code.

#include "gci.hf"
#include "gcirtl.hf"
44 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Building Statically Linked Applications
However, applications are free to use their own run-time-bind interface instead of
gcirtl, which is meant to be used from C. For example, a Smalltalk application
would use the mechanism provided by the Smalltalk vendor to call a shared library.

2. Call GciRtlLoad(useRpc, path, errBuf, errBufSize) to load the RPC GemBuilder.

To load the RPC version, pass true as the first argument; to load the linked version,
pass in false.

Call GciRtlLoad before any other GemBuilder calls. To unload the GemBuilder
libraries, call GciRtlUnload. The GciRtlIsLoaded function can be used to determine if
an interface is loaded or not.

3. When linking, include gcirtlobj.o, not one of the GemBuilder libraries
(libgcirpc.* and libgcilnk.*). Details of what should be included and other
linker flags are provided starting on page 68.

Chapter 4‚ “Compiling and Linking” tells how to compile and link your application.

Searching for the Library
At run time the gcirtl code searches for the GemBuilder library in the following places:

1. Any directories specified by the application in the argument to GciRtlLoad.

2. The $GEMSTONE/lib directory.

3. The normal operating system search, as described in the following sections.

How UNIX Matches Search Names with Shared Library Files
The UNIX operating system loader searches the following directories for matching file
names, in this order:

1. Any path specified by an environment variable:

LD_LIBRARY_PATH on Solaris, Linux or AIX

2. Any path recorded in the executable when it was built.

3. The global directory /usr/lib.

2.3 Building Statically Linked Applications
Normally, applications will load shared libraries at runtime. However, it is also possible to
statically link GemBuilder applications, which in some cases may improve performance.

In a statically linked application, the executable is linked to the GemBuilder library archive
file when the executable is built. When the executable runs, it automatically loads the
library. Unlike when loading a shared library, your code cannot programmatically
determine which library to load. For example, with run-time loading, your code can
determine which version of the GemBuilder libraries to load, but this must be determined
ahead of time for a statically linked application.

Static linking is only possible with the RPC shared libraries.
GemTalk Systems 45

Building Statically Linked Applications GemStone/S 64 Bit 3.3 GemBuilder for C
To build an application that build-time-binds to GemBuilder:

1. Include gci.hf in the C source code.

2. When linking, include the RPC GemBuilder library (libgcirpc.*).

GemBuilder finds build-time-bound shared libraries by using the normal operating system
searches described in “Searching for the Library” on page 45. If a library cannot be found,
the operating system returns an error.
46 GemTalk Systems

Chapter

3 Writing C Functions
To Be Called from
GemStone
Within a GemStone Smalltalk-based application, you may choose to write a C function for
certain operations, rather than to perform the work in GemStone. For example, operations
that are computationally intensive or are external to GemStone can be written as C
functions and called from within a Smalltalk method (whose high-level structure and
control is written in Smalltalk). This approach is similar to the concept of “user-defined
primitives” offered by some other object-oriented systems.

This chapter describes how to implement C user action functions that can be called from
GemStone, and how to call those functions from a GemBuilder application or a Gem
(GemStone session) process.

3.1 Shared User Action Libraries
Although user actions can be linked directly into an application, they are usually placed in
shared libraries so they can be loaded dynamically. The contents of a library are not copied
into the executable. Instead, the library’s main function loads all of its user actions. Only
one copy is loaded into memory, even if multiple client processes use the library at the
same time. See Chapter 2‚ “Building Applications with GemBuilder for C” for more
information.

User action libraries are used in two ways: They can be application user actions, which are
loaded by the application process, or session user actions, which are loaded by the session
process. The operation that is used to load the library determines which type it is, not any
quality of the library itself. Application and Gem executables can load any library.

Application user actions are the traditional GemStone user actions. They are used by the
application for communication with the Gem or for an interactive interface to the user.

Session user actions add new functionality to the Gem, something like the traditional
custom Gem. The difference here is that you only need one Gem, which can customize itself
at run time. It loads the appropriate libraries for the code it is running. The decisions are
made automatically within GemStone Smalltalk, rather than requiring the users to decide
what Gem they need before they start their session.
GemTalk Systems 47

How User Actions Work GemStone/S 64 Bit 3.3 GemBuilder for C
3.2 How User Actions Work
Here’s a quick overview of the sequence of events when a user action function is executed:

1. The Gem or your C application program initiates GemStone Smalltalk execution by
calling one of the following functions: GciExecute, GciExecuteStr,
GciExecuteStrFromContext, GciPerform, or GciContinue.

2. Your GemStone Smalltalk code invokes a user action function (written in C) by
sending a message of the form:
System userAction: aSymbol with: args

The args arguments are passed to the C user action function named aSymbol. (You must
have already initialized that function before logging in to GemStone. See
Chapter ‚ “Loading User Actions”.)

3. The C user action function can call any GemBuilder functions and any C functions
provided in the application or the libraries loaded by the application (for application
user actions), or provided in the libraries loaded by the Gem (for session user actions).

Specifically, the C user action function can call GemBuilder’s structural access
functions (GciFetch... and GciStore..., etc.) to read or modify, respectively, any objects
that were passed as arguments to the user action.

If a GemBuilder or other GemStone error is encountered during execution of the user
action, control is returned to the Gem or your GemBuilder application as if the error
had occurred during the call to GciExecute (or whichever GemBuilder function
executed the GemStone Smalltalk code in step 1).

4. The C user action function must return an OopType as the function result, and must
return control directly to the Smalltalk method from which it was called.

NOTE:
Results are unpredictable if the C function uses GCI_LONGJMP instead of
returning control to the GemStone Smalltalk virtual machine.

3.3 Developing User Actions
For your GemStone application to take advantage of user action functions, you do the
following:

Step 1. Determine which operations to perform in C user action functions rather than in
Smalltalk. Then write the user action functions.

Step 2. Create a user action library to package the functions.

Step 3. Provide the code to load the user action library.

Step 4. If the application is to load the library, add the loading code to your application.

Step 5. If the session is to load the library, use the GemStone Smalltalk method
System class>>loadUserActionLibrary: for loading.

Step 6. Write the Smalltalk code that calls your user action. Commit it to your GemStone
repository.
48 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Developing User Actions
Step 7. Debug your user action.

The following sections describe each of these steps.

Write the User Action Functions
Writing a C function to install as a user action called from Smalltalk is little different from
writing other C functions. However, one important difference exists: user actions cannot
reliably retain references to objects they create. The application that called the user action
(whether written in C, Java, or Smalltalk) controls the export set—the set of OOPs to save
after execution completes. Therefore, make sure your C application treats all argument and
result objects of a user action as temporary objects. Don’t save the OOPs in static C
variables for use by a subsequent invocation of the user action or by another C function.

Don’t rely on GciSaveObjs to make the objects persistent. The application that called the
user action can still call GciReleaseOops on the object that the user action needs to retain
(or GciReleaseAllOops to release all objects at once).

To make a newly created object a permanent part of the GemStone repository, the user
action has two options:

Store the OOP of the new object into an object known to be permanent, such as a
collection created by the calling application (for example, a collection created in
Smalltalk and committed to the repository).

Return the OOP of the object as the function result.

After a user action returns, the persistence of the new object is determined by the normal
semantics of the calling application.

If you are working in GemBuilder for Smalltalk, you can also explicitly save these user
action objects by populating a collection in the user-definable portion of System
sessionState using System > sessionStateAt:put:. Your user action can retain
references to objects that you add to this collection in this way.

Create a User Action Library
Whether you have one user action or many, the way in which you prepare and package the
source code for execution has significant effects upon what uses you can make of user
actions at run time. It is important to visualize your intended execution configurations as
you design the way in which you package your user actions.

To build a user action library:

1. Include gciua.hf in your C source code.

2. Define the initialization and shutdown functions.

3. Compile with shared library switches.

4. Link with gciualib.o and shared library switches.

5. Install the library in the $GEMSTONE/ualib directory.

The gciua.hf Header File
User action libraries must always include the gciua.hf file, rather than the gci.hf or
gcirtl.hf file. Using the wrong file causes unpredictable results.
GemTalk Systems 49

Developing User Actions GemStone/S 64 Bit 3.3 GemBuilder for C
The Initialization and Shutdown Functions
A user action library must define the initialization function GciUserActionInit and the
shutdown function GciUserActionShutdown.

Do not call GciInit, GciLogin, or GciLogout within a user action.

Defining the Initialization Function
Example 3.1 shows how the initialization function GciUserActionInit is defined, using the
macro GCIUSER_ACTION_INIT_DEF. This macro must call GciDeclareAction once for
each function in the set of user actions.

Example 3.1

static OopType doParse(void)
{
 return OOP_NIL;
}
static OopType doFetch(void)
{
 return OOP_NIL;
}

GCIUSER_ACTION_INIT_DEF()
{
 GciDeclareAction("doParse", doParse, 1, 0, TRUE);
 GciDeclareAction("doFetch", doFetch, 1, 0, TRUE);
 // ...
}

GciDeclareAction associates the Smalltalk name of the user action function
userActionName (a C string) with the C address of that function, userActionFunction, and
declares the number of arguments that the function takes. A call to GciDeclareAction
looks similar to this:
GciDeclareAction("userActionName", userActionFunction, 1, 0, TRUE)

The function installs the user action into a table of such functions that GemBuilder
maintains. Once a user action is installed, it can be called from GemStone.

The name of the user action, “userActionName”, is a case-sensitive, null-terminated string
that corresponds to the symbolic name by which the function is called from Smalltalk. The
name is significant to 31 characters. It is recommended that the name of the user action be
the same as the C source code name for the function, userActionFunction.

The third argument to GciDeclareAction indicates how many arguments the C function
accepts. This value should correspond to the number of arguments specified in the
Smalltalk message. When it is 0, the function argument is void. Similarly, a value of 1
means one argument. The maximum number of arguments is 8. Each argument is of type
OopType.

The fourth argument to GciDeclareAction is rarely used. The final argument indicates
whether to return an error if there is already a user action with the specified name.
50 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Developing User Actions
Your user action library may call GciDeclareAction repeatedly to install multiple C
functions. Each invocation of GciDeclareAction must specify a unique userActionName.
However, the same userActionFunction argument may be used in multiple calls to
GciDeclareAction.

Defining the Shutdown Function
The shutdown function GciUserActionShutdown is defined by the
GCIUSER_ACTION_SHUTDOWN_DEF macro. GciUserActionShutdown is called
when the user action library is unloaded. It is provided so the user action library can clean
up any system resources it has allocated. Do not make GemBuilder C calls from this
function, because the session may no longer exist. In fact, GciUserActionShutdown can be
left empty. Example 3.2 shows a shutdown definition that does nothing but report that it
has been called.

Example 3.2

#include "gciuser.hf"

GCIUSER_ACTION_SHUTDOWN_DEF()
{
 /* Nothing needs to be done. */
 fprintf(stderr, "GciUserActionShutdown called.\n");
}

Compiling and Linking Shared Libraries
Shared user actions are compiled for and linked into a shared library. See
Chapter 4‚ “Compiling and Linking” for instructions.

Be sure to check the output from your link program carefully. Linking with shared libraries
does not require that all entry points be resolved at link time. Those that are outside of each
shared library await resolution until application execution time, or even until function
invocation time. You may not find out about incorrect external references until run time.

Using Existing User Actions in a User Action Library
With slight modifications, existing user action code can be used in a user action library. You
need to include gciua.hf instead of gci.hf or gcirtl.hf. Define a
GciUserActionShutdown, and a GciUserActionInit, if it is not already present. Compile,
link, and install according to the instructions for user action libraries.

Using Third-party C Code with a User Action Library
Third-party C code has to reside in the same process as the C user action code. Link the
third-party code into the user action library itself, and then you can call that code. It doesn’t
matter where you call it from.
GemTalk Systems 51

Developing User Actions GemStone/S 64 Bit 3.3 GemBuilder for C
Loading User Actions
GemBuilder does not support the loading of any default user action library. Applications
and Gems must include code that specifically loads the libraries they require.

Loading User Action Libraries At Run Time
Dynamic run-time loading of user action libraries requires some planning to avoid name
conflicts. If an executable tries to load a library with the same name as a library that has
already been loaded, the operation fails.

When user actions are installed in a process, they are given a name by which GemBuilder
refers to them. These names must be unique. If a user action that was already loaded has
the same name as one of the user actions in the library the executable is attempting to load,
the load operation fails. On the other hand, if the two libraries contain functions with the
same implementation but different names, the operation succeeds.

Application User Actions
If the application is to load a user action library, implement an application feature to load
it. The GemStone interfaces provide a way to load user actions from your application.

GemBuilder for C applications: the GciLoadUserActionLibrary call

Topaz applications: the loadua command

The application must load application user actions after it initializes GemBuilder (GciInit)
and before the user logs into GemStone (GciLogin). If the application attempts to install
user actions after logging in, an error is returned.

Session User Actions
A linked or RPC Gem process can install and execute its own user action libraries. To cause
the Gem to do this, use the System class>>loadUserActionLibrary: method in
your GemStone Smalltalk application code. A session user action library stays loaded until
the session logs out.

The session must load its user actions after the user logs into GemStone (GciLogin). At that
time, any application user actions are already loaded. If a session tries to load a library that
the application has already defined, it gets an error. The loading code can be written to
handle the error appropriately. Two sessions can load the same user action library without
conflict.

Specifying the User Action Library
When writing scripts or committing to the database, you can specify the user action library
as a full path or a simple base name. Always use the base name when you need portability.
The code that GemBuilder uses to load a user action library expands the base name ua to a
valid shared library name for the current platform:

Solaris: libua.so

HP-UX: libua.sl

AIX: libua.so

Linux (x86_64): libua.so
52 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Developing User Actions
Darwin: libua.dylib

and searches for the file in the following places in the specified order:

1. The current directory of the application or Gem.

2. The directory the executable is in, if it can be determined.

3. The $GEMSTONE/ualib directory.

4. The normal operating system search, as described in “Searching for the Library” on
page 45.

Creating User Actions in Your C Application
Loading user action libraries at run time is the preferred behavior for GemBuilder
applications. For application user actions, however, you have the option to create the user
actions directly in your C application, not as part of a library. When you implement user
actions this way, include gcirtl.hf or gci.hf in your C source code, instead of
gciua.hf. (Your C source code should include exactly one of these three include files.)

The GciUserActionInit and GciUserActionShutdown functions are not required, but the
application must call GciDeclareAction once for each function in the set of user actions.

After your application has successfully logged in to GemStone (via GciLogin), it may not
call GciDeclareAction. If your application attempts to install user actions after logging in,
an error will be returned.

Verify That Required User Actions Have Been Installed
After logging in to GemStone, your application can test for the presence of specific user
actions by sending the following Smalltalk message:

System hasUserAction: aSymbol

This method returns true if your C application has loaded the user action named aSymbol,
false otherwise.

For a list of all the currently available user actions, send this message:
System userActionReport

Write the Code That Calls Your User Actions
Once your application or Gem has a way to access the user action library, your GemStone
Smalltalk code invokes a user action function by sending a message to the GemStone
system. The message can take one of the following forms:

System userAction: aSymbol
System userAction: aSymbol with:arg1 [with:arg2] ...
System userAction: aSymbol withArgs:anArrayOfUpTo8Args

You can use the with keyword from zero to seven times in a message. The aSymbol
argument is the name of the user action function, significant to 31 characters. Each method
returns the function result.

Notice that these methods allow you to pass up to eight arguments to the C user action
function. If you need to pass more than eight objects to a user action, you can create a
GemTalk Systems 53

Executing User Actions GemStone/S 64 Bit 3.3 GemBuilder for C
Collection (for example, an instance of Array), store the objects into the Collection, and
then pass the Collection as a single argument object to the C user action function:

| myArray |
myArray := Array new: 10.

"populate myArray, then send the following message"

System userAction: #doSomething with: myArray.

NOTE
You can also call a user action function directly from your C code, as you would
any other C function.

Remote User Actions
The user action code that is called can be remote (on a different machine) from the Gem that
invokes this method.

Limit on Circular Calls Among User Actions and Smalltalk
From Smalltalk you can invoke a user action, and within the user action you can do a
GciSend, GciPerform, or GciExecute, that may in turn invoke another user action. This
kind of circular function calling is limited; no more than 2 user actions may be active at any
one time on the current Smalltalk stack. If the limit is exceeded, GemStone raises an error.

Debug the User Action
Even if you intend to use your library only as session user actions, test them first as
application user actions with an RPC Gem. As with applications, never debug user actions
with linked versions.

CAUTION
Debug your C code in a process that does not include a Gem.
For more information, see “Risk of Database Corruption” on page 66.

Use the instructions for user actions in Chapter 4‚ “Compiling and Linking” to compile and
link the user action library. Then load the user actions from the RPC version of your
application or Topaz. To load from Topaz, use the loadua command.

3.4 Executing User Actions
User actions can be executed either in the GemBuilder application (client) process or in a
Gem (server) process, or in both.

Choosing Between Session and Application User Actions
The distinction between application user actions that execute in the application and session
user actions that execute in the Gem is interesting primarily when the two processes are
running remotely, or when the application has more than one Gem process.
54 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Executing User Actions
Remote Application and Gem Processes
When the application and Gem run on different machines and the Gem calls an application
user action, the call is made over the network. Computation is done by the application
where the application user action is running, and the result is returned across the network.
Using a session user action eliminates this network traffic.

On the other hand, for overall efficiency you also need to consider which machine is more
suitable for execution of the user action. For example, assume that your application
acquires data from somewhere and wishes to store it in GemStone. You could write a user
action to create GemStone objects from the data and then store the objects. It might make
more sense to execute the user action in the application process rather than transport the
raw data to the Gem.

Alternatively, assume there is a GemStone object that could require processing before the
application could use it, like a matrix on which you need to perform a Fast Fourier
Transform (FFT). If the Gem runs on a more powerful machine than the client, you may
wish to run an FFT user action in the Gem process and send the result to your application.

Applications With Multiple Gems
In most situations, session user actions are preferable, because the Gem does not have to
make calls to the application. In the case of a linked application, however, an application
user action is just as efficient for the linked Gem, because the Gem and application run as
one process. Using an application user action guarantees that if any new sessions are
created, they will have access to the same user action functions as the first session.

Every Gem can access its own session user actions and the application user actions loaded
by its application. A Gem cannot access another Gem’s session user actions, however, even
when the Gems belong to the same application.

Although a linked application and its first Gem run in the same process, that process can
have session and application user actions, as in Figure 3.1. Application user actions, loaded
by the application’s loading function, are accessible to all the Gems. Session user actions in
the same process, loaded by the System class>>loadUserActionLibrary:
method, are not accessible to the RPC Gem. Conversely, the RPC Gem’s user actions are
not accessible to the linked Gem.

Figure 3.1 Access to Application and Session User Actions

Linked
Application

application
user actions

Linked Gem

session
user actions

RPC Gem

session
user actions

Starting a second Gem

Calling user actions

The following sections discuss the various possible configurations in detail.
GemTalk Systems 55

Executing User Actions GemStone/S 64 Bit 3.3 GemBuilder for C
Running User Actions with Applications
User actions can be executed in the user application process under two configurations of
GemStone processes. The configurations differ depending upon whether the application is
linked or RPC.

With an RPC Application
Figure 3.2 illustrates how various architectural components are distributed among three
GemStone processes when a set of user actions executes with an RPC application.

Figure 3.2 Application User Actions and RPC Applications in GemStone Processes

Gem StoneC App + GciRpc + AppUserActions

In this configuration, the application runs in a separate process from any Gem. Each time
the application calls a GemBuilder C function, the function uses remote procedure calls to
communicate with a Gem. The remote procedure calls are used whether the Gem is
running on the same machine as the application, or on another machine across the
network.

The user actions run in the same process as the application. If they call GemBuilder
functions, those functions also use remote procedure calls to communicate with the Gem.

In this configuration, all your code executes as a GemStone client (on the application side).
It can thus execute on any GemStone client platform; it is not restricted to GemStone server
platforms. Care should be taken in coding to minimize remote procedure call overhead and
to avoid excessive transportation of GemStone data across the network. The following list
enumerates some of the conditions in which you may find occasion to use this
configuration:

The application and/or the user action needs to be debugged or tested.

The user action depends on facilities or implement capabilities for the application
environment. Screen management, GUI operations, and control of specialized
hardware are possibilities.

The application acquires data from somewhere and wishes to store it in GemStone.
The user action creates the requisite GemStone objects from the data and then
commits them to the repository.

NOTE:
You can run RPC Topaz as the C application in this configuration for debugging
to perform unit testing of user action libraries. Apply a source-level debugger to
the Topaz executable, load the libraries with the Topaz loadua command, then
call the user actions directly from GemStone Smalltalk.

With a Linked Application
Figure 3.1 illustrates how various architectural components are distributed between two
GemStone processes when a set of user actions executes with a linked application.
56 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Executing User Actions
Figure 3.1 Session User Actions and Linked Applications in GemStone Processes

C App + GciLnk + SessUserActions + Gem Stone

In this configuration, the application, the user actions, and one Gem all run in the same
process (on the same machine). All function calls, from the application to GemBuilder and
between GemBuilder and the Gem, are resolved by ordinary C-language linkage, not by
remote procedure calls.

Since a Gem is required for each GemStone session, the first session uses the (linked) Gem
that runs in your application process. This Gem has the advantages that it does not incur
the overhead of remote procedure calls, and may not incur as much network traffic. It has
the disadvantage that it must run in the same process as the Gem, so that work cannot be
distributed between separate client and server processes. Since the application cannot
continue processing while the Gem is at work, the non-blocking GemBuilder functions
provide no benefit here.

If a linked application user logs in to GemStone more than once, GemStone creates a new
RPC Gem process for each new session. (These sessions would be additions to the
configuration of Figure 3.1.) If one of these sessions invokes a user action, the user action
executes in the same process as the application. If the user action then calls a GemBuilder
function, that call is serviced by the linked Gem, not by the Gem from which the user action
was invoked.

In this configuration, your code executes only on GemStone server platforms. It cannot
execute on client-only platforms because a Gem is part of the same process. The occasions
for using this configuration are much the same as those for running user actions with an
RPC application, except that you should not use this one for debugging.

CAUTION
Debug your user actions in a process that does not include a Gem. For more
information, see “Risk of Database Corruption” on page 66.

Running User Actions with Gems
Just as with applications, there are two forms of Gems: linked and RPC. The linked Gem is
embedded in the gcilnk library and is only used with linked applications.

Figure 3.2 illustrates how various architectural components are distributed among three
GemStone processes when a set of user actions executes with an RPC Gem.

Figure 3.2 Session User Actions and RPC Gems in GemStone Processes

C App + GciRpc

or

StoneGem + SessUserActionsSmalltalk App

StoneGem + SessUserActions

An RPC Gem executes in a separate process that can install and execute its own user
actions. The RPC Gem is RPC because it communicates by means of remote procedure
calls, through an RPC GemBuilder, with an application in another process.

However, it is also a separate C program. The Gem itself also uses GemBuilder directly, to
interact with the database. That is the reason why the RPC Gem is linked with the gcilnk
GemTalk Systems 57

Executing User Actions GemStone/S 64 Bit 3.3 GemBuilder for C
library. The user action in this configuration executes in the same process as the Gem, with
the GemBuilder that does not use remote procedure calls.

CAUTION
Debug your user actions in a process that does not include a Gem. For more
information, see “Risk of Database Corruption” on page 66.

The following list enumerates some of the conditions in which you may find occasion to
use this configuration:

You wish to execute the user action from a Smalltalk application using GemBuilder
for Smalltalk. This configuration is required for that purpose.

You wish the user action to be available to all or many other C applications.

The user action is called frequently from GemStone. This configuration eliminates
network traffic between GemBuilder and GemStone.

The user action makes many calls to GemBuilder. This configuration avoids remote
procedure call overhead.

You have a GemStone object or objects that you wish to process first, and your
application needs the result. The processing may be substantial. Your GemStone
server machine may be more powerful than your client machine and could do it more
quickly, or it might have specialized software the user action needs. Also, the result
might be smaller and could reduce network traffic.

For example, the user action might retrieve a data matrix and a filter from GemStone,
perform a Fast Fourier Transform, and send the result to the application.

Running User Actions with Applications and Gems
Figure 3.3 illustrates how various architectural components are distributed among three
GemStone processes when one set of user actions executes with an RPC application and
another set of user actions executes with an RPC Gem.

Figure 3.3 RPC Applications and Gems with User Actions in GemStone Processes

StoneGem + SessUserActionsC App + GciRpc + AppUserActions

This configuration is a combination of previous configurations. The application and the
Gem run in separate processes. User actions in the first set execute in the application
process, and user actions in the second set execute in the Gem process.

When user actions are installed in a process, they are given a name by which GemBuilder
refers to them. If a user action in the application has the same name as a user action in the
Gem, then the one in the Gem is always used, and the one in the application is ignored.

The two types of user actions could also exist in one linked process, as shown in Figure 3.4.
Figure 3.4 Application and Session User Actions in GemStone Processes

C App + GciLnk + AppUserActions + Gem + SessUserActions Stone

In this configuration, the user actions can be loaded as either application or session user
actions; it would be the same from the point of view of the linked Gem. Application user
58 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Executing User Actions
actions would be just as efficient as session user actions, because they are part of the Gem
process. If a linked application user logs in to GemStone more than once, GemStone creates
a new RPC Gem process for each new session, additions to the configuration of Figure 3.4.
The RPC Gems do not have access to the linked Gem’s session user actions. So it is
generally better to load them as application user actions, just in case.
GemTalk Systems 59

Executing User Actions GemStone/S 64 Bit 3.3 GemBuilder for C
60 GemTalk Systems

Chapter

4 Compiling and Linking
This chapter describes how to compile and link your C/C++ applications and user actions.

The focus is directly on operations for each compiling or linking alternative on each
GemStone server platform. It is assumed that you already know which alternatives you
want to use, and why, and when. Those topics are part of the application design and code
implementation, which are described in other chapters of this manual.

All operations are illustrated as though you are issuing commands at a command-line
prompt. You may choose to take advantage of your system’s programming aids, such as
the UNIX make utility and predefined environment variables, to simplify compilation and
linking. Whatever you choose, be sure that you designate options and operations that are
equivalent to those shown here.

NOTE
Much of the material in this chapter is system-specific and, therefore, subject to
change by compiler vendors and hardware manufacturers. Please check your
GemStone/S 64 Bit Release Notes, Installation Guide, and vendor publications for
possible updates.

4.1 Development Environment and Standard Libraries
For simplicity, set the GEMSTONE environment variable to your GemStone installation
directory. The command lines shown in this chapter assume that this has been done. No
other environment variables are required to find the GemStone C++ libraries.

GemStone requires linking with certain architecture-specific “standard” C and C++
libraries on some platforms. The order in which these libraries are specified can be
significant; be sure to retain the ordering given in the command lines to follow in this
section.

The environment of the supported Unix platforms is System V. On these platforms, the /
usr/bin directory should be present in the PATH environment variable. If /usr/ucb is
also present in PATH, then it should come after /usr/bin. The System V “standard” C/
C++ libraries (not Berkeley) should be used in linking.
GemTalk Systems 61

Compiling C Source Code for GemStone GemStone/S 64 Bit 3.3 GemBuilder for C
4.2 Compiling C Source Code for GemStone
The following information includes the requirements and recommendations for compiling
C applications or user actions for GemStone. Your C code may have additional
requirements, such as compile options or environment variables.

The C++ Compiler
C applications and user actions must be compiled and linked with a compiler that is
compatible with GemStone libraries and object code.

The example compiler and linker command lines in this chapter assume that a compatible
compiler has been installed and is in your path.

The following C++ compilers were used to produce the GemStone product, and have been
tested for producing C/C++ applications and user action libraries. Other compilers, such
as ANSI C++ compilers, are assumed to work, but have not been tested.

Linux:
Red Hat Linux 6.x: gcc/gcc/g++ 4.4.7

Red Hat Linux 7.x: gcc/gcc/g++ 4.8.5

Ubuntu Linux: gcc/g++ 4.6.3

SUSE Linux: gcc/g++ 4.8.5

Solaris (SPARC):
CC: Sun C++ 5.8 Patch 121017-05 2006/08/30

Solaris (x86):
Sun C++ 5.10 SunOS_i386 128229-09 2010/06/24

AIX (IBM):
AIX 6.1 and 7.1 on POWER7: IBM XL C/C++ for AIX, V11.1

AIX 7.1 on POWER8: 7.1: IBM XL C/C++ for AIX, V13.1.2

Darwin:
Apple LLVM version 6.0 (clang-600.0.56)

Windows:
Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel
Microsoft Visual C++ 2010 01021-532-2002102-70611

Listing the Version of Your Compiler
To list the version of your compiler, execute the appropriate command line.

Linux and Darwin:
% g++ -v

Solaris (SPARC and x86):
% CC -V
62 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Compiling C Source Code for GemStone
AIX (IBM):
% /usr/vacpp/bin/xlC_r -qversion

Compilation Options
When you compile, specify each directory that is to be searched for include files separately
by repeating the -I option. At a minimum, you should specify the GemStone include
directory.

The -c option inhibits the “load and go” operation, so compilation ends when the compiler
has produced an object file.

For more information and details on the listed complier options and other compiler flags,
please consult your compiler documentation.

Compilation Command Lines
This section presents simple example command lines for compiling C source code on each
platform.

The command lines for each platform illustrates how to compile a simple application
program or user action file named userCode, whose source contains one code file,
userCode.c. Its result is one object file, userCode.o.

For simplicity in compling code for user actions, this file is assumed to be a library
containing both the source code for one set of user actions and the implementation of the
function that installs them all with GemStone.

If you have multiple application or user action files, they should all be compiled under
these same basic conditions.

Linux:
g++ -fmessage-length=0 -fcheck-new -O3 -ggdb -m64 -pipe

-D_REENTRANT -D_GNU_SOURCE-pthread -fPIC -fno-strict-aliasing
-fno-exceptions -I$GEMSTONE/include -x c++ -c userCode.c
-o userCode.o

The following warn flags are recommended for compilation:
-Wformat -Wtrigraphs -Wcomment -Wsystem-headers -Wtrigraphs
-Wno-aggregate-return -Wswitch -Wshadow -Wunused-value
-Wunused-variable -Wunused-label -Wno-unused-function
-Wchar-subscripts -Wmissing-braces -Wmultichar -Wparentheses
-Wsign-compare -Wsign-promo -Wwrite-strings -Wreturn-type
-Wuninitialized

If you want to stop the compilation process when any of the above warnings are
encountered, use the following flag:

-Werror

To allow debugging of the resulting library, also include the optional -g
flag and omit the optimization flag -O3.
GemTalk Systems 63

Compiling C Source Code for GemStone GemStone/S 64 Bit 3.3 GemBuilder for C
Solaris (SPARC):
CC -xO4 -xcode=pic32 -xarch=v9 -mt -xchip=ultra2

-I$GEMSTONE/include -features=no%except -D_REENTRANT
-D_POSIX_PTHREAD_SEMANTICS -features=no%anachronisms
-c userCode.c -o userCode.o

To allow debugging of the resulting library, include the optional -g flag and omit the
optimization flag -xO4.

Solaris (x86):
CC -xO4 -m64 -xarch=generic -Kpic -mt -D_REENTRANT

-D_POSIX_PTHREAD_SEMANTICS -I$GEMSTONE/include
-features=no%except -c userCode.c -o userCode.o

To allow debugging of the resulting library, include the optional -g flag and omit the
optimization flag -xO4.

AIX (IBM):
xlC_r -O3 -qstrict -qalias=noansi -q64 -+ -qpic -qthreaded

-qarch=pwr6 -qtune=balanced -D_LARGEFILE64_SOURCE
-DFLG_AIX_VERSION=version -D_REENTRANT -D_THREAD_SAFE
-qminimaltoc -qlist=offset -qmaxmem=-1 -qsuppress=1500-010:1500
-029:1540-1103:1540-2907:1540-0804:1540-1281:1540-1090 -qnoeh
-I$GEMSTONE/include -c userCode.c -o userCode.o

Depending on your version of AIX, you need to include either -DFLG_AIX_VERSION=61
or -DFLG_AIX_VERSION=71.

Note that there is no space in the -qsuppress arguments that are continued on the
following line.

To allow debugging of the resulting library, also include the optional -g,
-qdbxextra and -qfullpath flags, and omit the optimization flag -O3.

Darwin:
g++ -fmessage-length=0 -O3 -ggdb -m64 -pipe -fPIC

-fno-strict-aliasing -D_LARGEFILE64_SOURCE -D_XOPEN_SOURCE
-D_REENTRANT -D_GNU_SOURCE -I$GEMSTONE/include -x c++
-c userCode.c -o userCode.o

The following warn flags are recommended for compilation:
-Wformat -Wtrigraphs -Wcomment -Wsystem-headers -Wtrigraphs
-Wno-aggregate-return -Wswitch -Wshadow -Wunused-value
-Wunused-variable -Wunused-label -Wno-unused-function
-Wchar-subscripts -Wconversion -Wmissing-braces -Wmultichar
-Wparentheses -Wsign-compare -Wsign-promo -Wwrite-strings
-Wreturn-type

To allow debugging of the resulting library, also include the optional -g
flag and omit the optimization flag -O3.
64 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Compiling C Source Code for GemStone
Windows:
> cl /W3 /Zi /MD /O2 /Oy- -DNDEBUG /TP /nologo /D_LP64 /D_AMD64_ /

D_CONSOLE /D_DLL /DWIN32_LEAN_AND_MEAN /
D_CRT_SECURE_NO_WARNINGS /DNATIVE
/I 'VisualStudioInstallPath\atlmfc\include'
/I 'VisualStudioInstallPath\VC\include'
/I 'C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Include'
/I '%GEMSTONE%\include' -c userCode.c -FouserCode.obj
GemTalk Systems 65

Linking C/C++ Object Code with GemStone GemStone/S 64 Bit 3.3 GemBuilder for C
4.3 Linking C/C++ Object Code with GemStone
The following information includes the requirements and recommendations for linking C/
C++ applications or user actions with GemStone. Your code may have additional
requirements, such as link options or libraries.

Run-time binding is done by code that is part of the application. The same application can
use either the RPC or linked GemBuilder libraries with this type of binding.

Linking with shared libraries does not require that all entry points be resolved at link time.
Those that are outside of each shared library await resolution until application execution
time, or even until function invocation time.

NOTE
When you link a user action shared library, be aware of the dangers of incorrect
unresolved external references. If you misspell a function call, you may not find
out about it until run-time, when your process dies with an unresolved external
reference error. Be sure to check your link program’s output carefully.

Risk of Database Corruption
CAUTION

Debug your C/C++ code in a process that does not include a Gem.

Do not log into GemStone in a linked application or run a Gem with your
user actions until your C/C++ code has been properly debugged.

When your C/C++ code executes in the same process as a Gem, it shares the same address
space as the GemStone database buffers and object caches that are part of the Gem. If that
C code has not yet been debugged, there is a danger that it might use a C pointer
erroneously. Such an error could overwrite the Gem code or its data, with unpredictable
and disastrous results. It is conceivable that such corruption of the Gem could lead it to
perform undesired GemStone operations that might then leave your database irretrievably
corrupt. The only remedy then is to restore the database from a backup.

There are three circumstances under which this risk arises:

You are running your linked application and you have logged into GemStone.

You are running any linked application and you are executing one of your user
actions from the application.

You are running any Gem, even a remote Gem, and you are executing one of your
user actions from the Gem.

To avoid the risk, you must run your C code in some process that does not include a Gem.
If the Gem is in a separate process, it has a separate address space that your C code should
not be able to access. Use the RPC version of an application, and run any user actions from
the application.
66 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Linking C/C++ Object Code with GemStone
Linker
Use the same C++ compiler to link your GemStone C/C++ code as you use to compile it.

Link Options
The -o option designates the path of the executable file produced by the link operation.

Be sure to employ at the appropriate times the link option that designates symbolic
debugging (often -g).

For information on most options, please consult your linker documentation.

Command Line Assumptions
This section presents simple example command lines for linking object code on each
platform.

How to link a user action object file named userCode.o with GemStone libraries to
produce a user action library named libuserAct.so, libuserAct.sl, or libuserAct.dylib,
depending on your platform.

How to link a simple application program with one application object file,
userCode.o. Its result is one executable file, userAppl or userAppl.exe, depending on
your platform.

If you have multiple application or user action files, they should all be linked under the
same basic conditions.

Use the same C++ compiler to link your GemStone C/C++ code as you used to compile it.

Linking User Actions into Shared Libraries

Linux:
$ g++ -shared -Wl,-Bdynamic,-hlibuserAct.so userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so -m64 -lpthread -lcrypt
-ldl -lc -lm -lrt -lpam -lpam_misc -Wl,-z,muldefs
-Wl,--warn-unresolved-symbols

Solaris (SPARC):
$ CC -xarch=v9 -G -Bsymbolic -h libuserAct.so -i userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so -Bdynamic -lc
-lpthread -ldl -lrt -lsocket -lnsl -lm -lpam -lCrun -znodefs

Solaris (x86):
$ CC -m64 -xarch=generic -G -Bsymbolic -h libuserAct.so -i userCode.o

$GEMSTONE/lib/gciualib.o -o libuserAct.so -Bdynamic -lc
-lpthread -ldl -lrt -lsocket -lnsl -lm -lpam -lCrun -z nodefs

AIX (IBM):
$ xlC_r -G -Wl,-bdatapsize:64K -Wl,-btextpsize:64K

-Wl,-bstackpsize:64K -q64 userCode.o $GEMSTONE/lib/gciualib.o
-o libuserAct.so -e GciUserActionLibraryMain -L/usr/vacpp/lib
-lpthreads -lc_r -lC_r -lm -ldl -lbsd -lpam -Wl,-berok
GemTalk Systems 67

Linking C/C++ Object Code with GemStone GemStone/S 64 Bit 3.3 GemBuilder for C
Darwin:
$ g++ -dynamiclib userCode.o $GEMSTONE/lib/gciualib.o
-o libuserAct.dylib -m64 -lpthread -ldl -lc -lm -lpam -undefined
dynamic_lookup

Linking Applications That Bind to GemBuilder at Run Time

Linux:
g++ userCode.o $GEMSTONE/lib/gcirtlobj.o -Wl,-traditional

-Wl,--warn-unresolved-symbols -m64 -lpthread -lcrypt -ldl -lc
-lm -lrt -lpam -lpam_misc -Wl,-z,muldefs -o userAppl

Solaris (SPARC):
CC -xildoff -xarch=v9 -i userCode.o $GEMSTONE/lib/gcirtlobj.o

-z nodefs -Bdynamic -lc -lpthread -ldl -lrt -lsocket -lnsl
-lm -lpam -lCrun -o userAppl

Solaris (x86):
CC -xildoff -m64 -xarch=generic -i userCode.o

$GEMSTONE/lib/gcirtlobj.o -z nodefs -Bdynamic -lc -lpthread
-ldl -lrt -lsocket -lnsl -lm -lpam -lCrun -o userAppl

AIX (IBM):
xlC_r -Wl,-bdatapsize:64K -Wl,-btextpsize:64K

-Wl,-bstackpsize:64K -q64 userCode.o $GEMSTONE/lib/gcirtlobj.o
-Wl,-berok -L/usr/vacpp/lib -lpthreads -lc_r -lC_r -lm -ldl
-lbsd -lpam -Wl,-brtllib -o userAppl

Darwin:
g++ userCode.o $GEMSTONE/lib/gcirtlobj.o -undefined dynamic_lookup

-m64 -lpthread -ldl -lc -lm -lpam -o userAppl

Windows:
link /LIBPATH:"VisualStudioInstallPath\VC\lib\amd64"

/LIBPATH:"C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Lib\x64"
/OPT:REF /INCREMENTAL:NO /MAP /nologo /MANIFEST
/MANIFESTFILE:userAppl.exe.manifest
/MANIFESTUAC:"level='asInvoker'" userCode.obj
%GEMSTONE%\lib\gcirpc.lib ws2_32.lib netapi32.lib advapi32.lib
comdlg32.lib user32.lib gdi32.lib kernel32.lib winspool.lib
/out:userAppl.exe
68 GemTalk Systems

Chapter

5 GemBuilder for C
Files and Data
Structures
This chapter describes the GemBuilder for C include files, data structures, and other
refernece information that may be useful when writing your application.

5.1 GemBuilder for C Include Files
The following include files are provided for use with GemBuilder for C functions. These
files are in the $GEMSTONE/include directory.

Your C source code should include exactly one of these include files:

gciua.hf Used instead of gcirtl.hf in modules that define user actions.

gci.hf Forward references to the GemBuilder functions; indirectly included
by gcirtl.hf and gciua.hf.

Used for a C application that will call GciInit and GciLogin, on
platforms that allow shared libraries to be built containing references
to unresolved symbols (which are defined in gci.hf and resolved at
run time).

If you want to directly call functions to load the libgci*.so files, rather than rely on implicit
loading, you can include the following:

gcirtl.hf Forward references to the GemBuilder functions, to be included in
code that will bind to GemBuilder at run time. For a discussion of how
to load a library that was compiled against gcirtl.hf, see
“GemBuilder Applications that load Shared Libraries” on page 44.
For modules that define user actions, use gciua.hf instead of this
file.

In addition, your code can include these files:

gcifloat.hf Macros, constants and functions for accessing the bodies of instances
of GemStone classes Float and SmallFloat. Optional for code that
includes gci.hf and gciua.hf, not used with gcirtl.hf.
GemTalk Systems 69

GemBuilder Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
gcisend.hf Inline implementations of deprecated GciSendMsg, which no longer
uses variable arguments. New code should use GciPerform. For
convenience, if you are using GciSendMsg in your GemBuilder
application, include this file after the include of gcirtl.hf.

You do not include the following files explicitly; they are listed here for your information.

flag.ht Contains host-specific C definitions for compilation.

gci.ht Defines C types for use by GemBuilder functions. See “GemBuilder
Data Types” on page 70.

gcicmn.ht Defines common C types and macros used by gcirtl.hf, gci.hf,
and gciua.hf.

gcierr.ht Defines mnemonics for all GemStone errors.

gcilegacy.ht Defines types used to gci.hf that are not used by the thread-safe GCI.

gcioc.ht Defines C mnemonics for sizes and offsets into objects.

gcioop.ht Defines C mnemonics for predefined GemStone objects. See
Appendix A, “Reserved OOPs” for a list of constants defined in this
file.

gciuser.hf Defines a macro to be used to install user actions. Include gciua.hf
instead of this file.

version.ht Defines C mnemonics for version-dependent strings.

5.2 GemBuilder Data Types
The following C types are used by GemBuilder functions. The file gci.ht defines each of
the GemBuilder types (shown in capital letters below). That file is in the $GEMSTONE/
include directory.

BoolType An int.

ByteType An unsigned 8-bit integer.

OopType Object-oriented pointer, an unsigned 32-bit integer.

FloatKindEType
Enumerated type that defines the possible kinds of an IEEE binary
float.

GciClampedTravArgsSType
A C++ class for clamped traversal arguments.

GciDateTimeSType
A structure for representing GemStone dates and times.

GciDbgFuncType
The type of C function called by GciDbgEstablish.

GciErrSType A GemStone error report (see “The Error Report Structure” on
page 72).
70 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GemBuilder Data Types
GciJumpBufSType
Jump buffer, defined in the setjmp.h file.

GciObjInfoSType
A C++ class for a GemStone object information report (see “The Object
Information Structure” on page 72).

GciObjRepHdrSType
A C++ class for an object report header (see “The Object Report
Header Class” on page 75).

GciObjRepSType
A C++ class for an object report (see “The Object Report Structure” on
page 74).

GciSessionIdType
A signed 32-bit integer.

GciStoreTravDoArgsSType
A C++ class for store traversal arguments.

GciTravBufType
A traversal buffer. See “The Traversal Buffer Type” on page 79.

GciUserActionSType
A structure for describing a user action (see “The User Action
Information Structure” on page 78.

The Structure for Representing the Date and Time
GemBuilder includes some functions to facilitate access to objects of type DateTime. (These
functions also make use of the C representation for time, time_t.)

The structured type GciDateTimeSType, which provides a C representation of an instance
of class DateTime, contains the following fields:

#if !defined(GCICMN_HT)

typedef struct {
int year;
int dayOfYear;
int milliseconds;
OopType timeZone;

} GciDateTimeSType;

#endif

The year value must be less than 1,000,000.

In addition, a C mnemonic supports representation of DateTime objects.
#define GCI_SECONDS_PER_DAY 86400
/* conversion constant */

NOTE:
The OOP of the Smalltalk DateTime class is OOP_CLASS_DATE_TIME.
GemTalk Systems 71

GemBuilder Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
The Error Report Structure
An error report is a C structured type named GciErrSType. This structure contains the
following fields:

OopType category
Deprecated. The value is always OOP_GEMSTONE_ERROR_CAT.

OopType context
The OOP of a GsProcess that provides the state of the virtual machine
for use in debugging. This GsProcess can be used as the argument to
GciContinue or GciClearStack. If the virtual machine was not running,
then context is OOP_NIL. If you are not interested in debugging or in
continuing from an error, your program can ignore this value.

OopType exceptionObj
Either an instance of Exception or nil (if the error was not signaled
from Smalltalk execution).

OopType args[GCI_MAX_ERR_ARGS]
An optional array of error arguments. In this release,
GCI_MAX_ERR_ARGS is defined to be 10.

int number
The GemStone error number (a positive integer).

int argCount
The number of arguments in the args array.

unsigned char fatal
Nonzero if this error is fatal.

char message[GCI_ERR_STR_SIZE + 1]
The null-terminated string which contains the text of the error
message. In this release, GCI_ERR_STR_SIZE is defined to be 300.

The arguments (args) are specific to the error encountered. In the case of a compiler error,
this is a single argument — the OOP of an array of error identifiers. Each identifier is an
Array with three elements: (1) the error number (a SmallInteger); (2) the offset into the
source string at which the error occurred (also a SmallInteger); and (3) the text of the error
message (a String). See the gcierr.ht file for a full list of errors and their arguments.

In the case of a fatal error, fatal is set to nonzero (TRUE). Your connection to GemStone is
lost, and the current session ID (from GciGetSessionId) is reset to
GCI_INVALID_SESSION_ID.

The Object Information Structure
Object information is placed in a C++ class named GciObjInfoSType. Object information
access functions provide information about objects in the database. These functions offer
C-style access to much information that would otherwise be available only through calls to
GemStone. For more information about the GciObjInfoSType structured type, refer to
GciFetchObjImpl (page 180).

OopType objId
OOP of the object.
72 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GemBuilder Data Types
OopType objClass
Class of the object; see GciFetchClass (page 165).

int64 objSize
Object's total size in bytes or OOPs; see GciFetchSize_ (page 191).

int namedSize
Number of named instance variables in the object.

unsigned short objectSecurityPolicyId
The ID of the object’s security policy.

Functions
The object information class GciObjInfoSType provides the following functions:

enum { implem_mask = 0x03,
indexable_mask = 0x04,
invariant_mask = 0x08,
partial_mask = 0x10,
overlay_mask = 0x20
};
Defines bits to use in evaluating whether this instance is invariable,
indexable, partial, or overlayed.

unsigned char isInvariant();
Returns non-zero if this object is invariant. Returns zero otherwise.

unsigned char isIndexable();
Returns non-zero if this object is indexable. Returns zero otherwise.

unsigned char isPartial();
Returns non-zero if the value buffer does not contain the entire object;
that is, the operation truncated the object’s instance variables. Returns
zero otherwise.

unsigned char isOverlayed();
Returns non-zero if overlay semantics were used on this operation.
Returns zero otherwise.

When the traversal is overlayed, you can use OOP_ILLEGAL to mask
out instance variables that you don’t want to modify, and then store
into the remaining instance variables.

unsigned char objImpl();
Returns an unsigned char in the range 0..3 that corresponds to the
object’s implementation format. See the description on page 74.

void clearBits();
Sets the invariant, indexable, partial, and overlayed bits to FALSE.

void setBits(unsigned char bits);
Sets the invariant, indexable, partial, and overlayed bits.

void setObjImpl(unsigned char impl);
Defines the object’s implementation format. The argument must be an
integer in the range 0..3 corresponding to the implementation format.
See the description on page 74.
GemTalk Systems 73

GemBuilder Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
void setInvariant(unsigned char val);
If val is non-zero, make this object invariant.

void setIndexable(unsigned char val);
If val is non-zero, make this object indexable.

void setPartial(unsigned char val);
This function has no practical effect.

void setOverlayed(unsigned char val);
If val is non-zero, use overlay semantics on this store traversal.

Description
The gcioc.ht include file defines four mnemonics that can be of assistance when you are
handling the object implementation field: GC_FORMAT_OOP, GC_FORMAT_BYTE,
GC_FORMAT_NSC, and GC_FORMAT_SPECIAL. These mnemonics, and no other
values, should be used to supply values for the objImpl field, or to test its contents.

The Object Report Structure
Each object report has two parts: a fixed-size header (as defined in the C++ class
GciObjRepHdrSType) and a variable-size value buffer (an array of the values of the object’s
instance variables):

#if !defined(GCI_HT)
class GciObjRepSType { /* object report struct */
 public:
 GciObjRepHdrSType hdr; /* object report header */
 union {
 ByteType bytes[1]; /* Byte obj impl. obj’s value buff */
 OopType oops[1]; /* Pointer obj impl. obj’s value buff*/
 } u;

 inline int64 usedBytes() const {
 return this->hdr.usedBytes();
 }

 inline GciObjRepSType* nextReport() const {
 return (GciObjRepSType*) this->hdr.nextReport();
 }

 inline ByteType* valueBufferBytes() const {
 return (ByteType*)this->u.bytes;
 }

 inline OopType* valueBufferOops() const {
 return (OopType*)this->u.oops;
 }
};
#endif
74 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GemBuilder Data Types
Functions
The object report class GciObjRepSType provides these functions:

int64 usedBytes() ;
When constructing an object report buffer, returns the size of the
object report, including any alignment considerations.

GciObjRepHdrSType * nextReport() ;
Given a pointer to an object report in a traversal buffer, this function
increments the pointer by usedBytes (the size of the object report).

ByteType* valueBufferBytes() ;
Returns a pointer to the start of the body, as bytes.

OopType* valueBufferOops()
Returns a pointer to the start of the body, as OOPs.

The Object Report Header Class
An object report header is a C++ class named GciObjRepHdrSType. This class holds a
general description of an object, and contains the following fields:

int valueBuffSize
Size (in bytes) of the object's value buffer.

short namedSize
Number of named instance variables in the object.

unsigned short objectSecurityPolicyId
The ID of the object’s security policy.

OopType objId
OOP of the object.

OopType oclass
Class of the object; see GciFetchClass (page 165).

int64 firstOffset
Offset of first value to fetch or store.

Functions
The object report header class GciObjRepHdrSType provides the following functions:

enum { implem_mask = 0x03,
indexable_mask = 0x04,
invariant_mask = 0x08,
partial_mask = 0x10,
overlay_mask = 0x20,
no_read_auth_mask = 0x40,
clamped_mask = 0x80,
unused_mask = 0xFF00
all_bits_mask = 0xFFFF
};
Defines bits to use in evaluating this instance’s implementation
format, and whether this instance is indexable, invariable, partial,
overlayed, readable, or clamped.
GemTalk Systems 75

GemBuilder Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
int64 idxSize();
Returns the number of indexable or varying instance variables.

void setIdxSize(int64 size);
Sets the number of indexable or varying instance variables.

void setIdxSizeBits(int64 size, unsigned char bits);
Sets both the indexable size and the eight bits defined by the enum of
the mask values. Intended for GemStone use only.

int objImpl();
Returns an integer in the range 0..3 that corresponds to the object’s
implementation format. See the description on page 77.

int setObjImpl(int impl);
Defines the object’s implementation format. The argument must be an
integer in the range 0..3 corresponding to the implementation format.
See the description on page 77.

int64 objSize();
Returns the total number of instance variables in the object (both
indexable and named). See GciFetchSize_ (page 191).

void clearBits();
Sets indexable, invariable, partial, overlayed, non-readable, and
clamped to FALSE.

unsigned char isClamped();
Returns non-zero if this object report is clamped. Returns zero
otherwise.

unsigned char noReadAuthorization();
Returns non-zero if this object report is not readable. Returns zero
otherwise.

unsigned char isInvariant();
Returns non-zero if this object report is invariant. Returns zero
otherwise.

unsigned char isIndexable();
Returns non-zero if this object report is indexable. Returns zero
otherwise.

unsigned char isPartial();
Returns non-zero if the value buffer does not contain the entire object;
that is, the traversal operation truncated the object’s instance
variables. Returns zero otherwise.

unsigned char isOverlayed();
Returns non-zero if overlay semantics were used on this store
traversal operation. Returns zero otherwise.

When the traversal is overlayed, you can use OOP_ILLEGAL to mask
out instance variables that you don’t want to modify, and then store
into the remaining instance variables.

void setIsClamped(unsigned char val);
If val is non-zero, make this object report clamped.
76 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GemBuilder Data Types
void setNoReadAuth(unsigned char val);
If val is non-zero, make this object report non-readable.

void setInvariant(unsigned char val);
If val is non-zero, make this object report invariant.

void setIndexable(unsigned char val);
If val is non-zero, make this object report indexable.

void setPartial(unsigned char val);
This function has no practical effect.

void clearPartial(unsigned char val);
This function has no practical effect.

void setOverlayed(unsigned char val);
If val is non-zero, use overlay semantics on this store traversal.

ByteType* valueBufferBytes() ;
Returns a pointer to the start of the body, as bytes.

OopType* valueBufferOops()
Returns a pointer to the start of the body, as OOPs.

int64 usedBytes() ;
Returns the size (in bytes) of this object report, including the size of the
header, value buffer, and any padding bytes needed at the end of the
report so that the next report in the buffer begins on an address that is
a multiple of 8.

GciObjRepHdrSType * nextReport() ;
Given a pointer to an object report in a traversal buffer, this function
increments the pointer by usedBytes (the size of the object report).

Description
During a store traversal operation, if the specified idxSize is inadequate to accommodate
the contents of the value buffer (the values in u.bytes or u.oops), the store operation will
automatically increase idxSize (the number of the object’s indexed variables) as needed. If
the specified objClass is not indexable, then the idxSize is ignored; in addition, if there are
more OOPs in the value buffer than there are named instance variables, and the object is
not an NSC, an error will be generated.

During a store traversal operation, the firstOffset indicates where to begin storing values
into the object’s array of instance variables. In that array, the object’s named instance
variables are followed by its unnamed variables. If firstOffset is not 1, all instance variables
(named or indexed) up to the firstOffset will be initialized to nil or 0. The firstOffset must be
in the range (1, objSize+1).

The gcioc.ht include file defines four mnemonics that can be of assistance when you are
handling the object implementation field (objImpl): GC_FORMAT_OOP,
GC_FORMAT_BYTE, GC_FORMAT_NSC, and GC_FORMAT_SPECIAL. These
mnemonics, and no other values, should be used to supply values for objImpl, or to test its
contents. However, the gcioc.ht file also defines other mnemonics that can be used in
other contexts related to object implementations, indexability, and invariance.
GemTalk Systems 77

GemBuilder Data Types GemStone/S 64 Bit 3.3 GemBuilder for C

An object’s implementation may restrict the number of its named instance variables
(namedSize) and its indexed instance variables (idxSize), as contained in the object report
header.

If the object implementation is GC_FORMAT_OOP, the object can have both named
and unnamed instance variables.

If the object implementation is GC_FORMAT_BYTE, the object can only have indexed
instance variables, and its namedSize is always zero.

If the object implementation is GC_FORMAT_NSC, the object can have both named
and unnamed instance variables. (The NSC’s idxSize reports the number of unnamed
instance variables, even though they are unordered, not indexed.)

If the object implementation is GC_FORMAT_SPECIAL, the object cannot have any
instance variables, and the number of both its named and unnamed variables is
always zero.

The isInvariant() value is true if the object itself is invariant. This can happen in one
of three ways:

The application program sends the message immediateInvariant to the object.

The application program explicitly executes setInvariant() in the report header
and then uses that report header in a call to GciStoreTrav.

The object’s class was created with instancesInvariant: true and the object
has been committed.

Table 5.1 Object Implementation Restrictions on Instance Variables

Object
Implementation

Named Instance
Variables OK?

Unnamed Instance Variables
OK?

0=Pointer YES YES (always indexed)

1=Byte NO YES (always indexed)

2=NSC YES YES (always unordered)

3=Special NO NO

For more information about object implementation types, see “Manipulating Objects
Through Structural Access” on page 28.

The User Action Information Structure
The structured type GciUserActionSType describes a user action function. It defines the
following fields:

char userActionName[GCI_MAX_ACTION_NAME+1]
The user action name (a case-insensitive, null-terminated string). In
this release, GCI_MAX_ACTION_NAME is defined to be 31.

int userActionNumArgs
The number of arguments in the C function.
78 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GemBuilder Data Types
GciUserActionFType
userAction
A pointer to the C user action function.

unsigned int userActionFlags
Mainly for internal use. If you use it, set it to 0 before passing a pointer
to it.

The Traversal Buffer Type
The C++ class GciTravBufType describes a traversal buffer, and defines the following
fields:

int64 allocatedBytes
The allocated size of the body.

int64 usedBytes
The used bytes of the body.

ByteType body[8]
The actual body size is variable, with a minimum of
GCI_MIN_TRAV_BUFF_SIZE.

Functions
The following function call is used to create an instance of GciTravBufType:

static GciTravBufType* malloc(size_t allocationSize);
Returns an instance obtained from ::malloc initialized with allocatedBytes equal to
allocationSize and usedBytes== 0. (If allocationSize is not a multiple of 8 bytes,
allocatedBytes is rounded up to the next 8-byte multiple.) Returns NULL if malloc fails.

The traversal buffer class GciTravBufType provides these functions:

GciObjRepSType* firstReport() ;
Returns a pointer to the first object report in the buffer.

GciObjRepSType* readLimit() ;
Used when reading object reports out of a buffer. Returns a pointer past the end of last
object report in the buffer.

If readLimit()==firstReport(), the buffer is empty.

GciObjRepSType* writeLimit() ;
Used when composing a buffer. Returns a pointer one byte past the end of the allocated
buffer.

GciObjRepHdrSType* firstReportHdr() ;
Returns a pointer to the first object report in the buffer.

GciObjRepHdrSType* readLimitHdr() ;
Used when reading object reports out of a buffer. Returns a pointer past the end of last
object report in the buffer.

GciObjRepHdrSType* writeLimitHdr() ;
Used when composing a buffer. Returns a pointer one byte past the end of the allocated
buffer.
GemTalk Systems 79

Structural Access Functions GemStone/S 64 Bit 3.3 GemBuilder for C
5.3 Structural Access Functions
A number of functions access Smalltalk objects structurally, rather than via executing
message sends. A list of these functions is in Table 6.8 on page 88.

Exercise caution when using structural access functions. Although they can improve the
speed of GemStone database operations, these functions bypass GemStone’s message-
sending metaphor. That is, structural access functions may bypass any checking that might
be coded into your application’s methods.

Structural access functions do not bypass authorization checks or other checks that are not
done in Smalltalk code.

5.4 environmentId
Many GCI functions come in two variants; the standard one, and one with the same name
followed by a trailing understore, that takes an additional environemtnId argument.

The environmentId argument allows a GCI function to specify one of up to 256 execution
environments, for use in Ruby applications.

Smalltalk applications do not need to know anything about environmentId. With Smalltalk
applications, it is preferable to use the existing GCI function (without the trailing
underscore).

For an example of this, see GciExecute (page 149). The syntax section on that page shows
both variants: GciExecute (used with Smalltalk applications) and GciExecute_ (used with
Ruby applications).

5.5 UNIX Signal Handling
Both versions of GemBuilder (GciLnk and GciRpc) use the SIGIO signal handler. GciLnk
also uses the signals SIGSEGV and SIGVTALRM. SIGVTALRM is used by the ProfMonitor
class.

If you must install your own signal handler (using signal or sigvec) for any of these signals,
be sure that your application signal handler chains to the previous handler when done.
Similar chaining is required for SIGVTALRM, if you intend to use ProfMonitor.

SIGSEGV occurs normally when a Smalltalk stack overflow occurs, and is translated to a
Smalltalk stack overflow error by the GemStone SIGSEGV handler. If you use GciLnk and
install handlers for this signal after calling GciLogin, your own SIGSEGV handler must
determine whether the SIGSEGV was produced by your own C code, and if not, chain to
the GemStone handler.

CAUTION
Do not, under any circumstances, turn off SIGIO.
80 GemTalk Systems

Chapter

6 GemBuilder
C Functions
This chapter describes the GemBuilder functions that may be called by your C application
program.

6.1 Function Summary Tables
Tables 6.1 through 6.9 summarize the GemBuilder C functions and the services that they
provide to your application.

Table 6.1 Functions for Controlling Sessions and Transactions

GciAbort,
GciNbAbort

Abort the current transaction.

GciAlteredObjs Find all exported or dirty objects that have changed and are
therefore in the ExportedDirtyObjs or TrackedDirtyObjs sets.

GciBegin,
GciNbBegin

Begin a new transaction.

GciCommit,
GciNbCommit

Write the current transaction to the database.

GciDeclareAction An alternative way to associate a C function with a Smalltalk
user action.

GciDirtyExportedObjs Find all objects in the ExportedDirtyObjs set.

GciDirtyObjsInit Begin tracking which objects in the session workspace change.

GciDirtySaveObjs Find all exported or tracked objects that have changed and are
therefore in the ExportedDirtyObjs or TrackedDirtyObjs sets.

GciDirtyTrackedObjs Find all tracked objects that have changed and are therefore in
the TrackedDirtyObjs set.

GciGetSessionId Find the ID number of the current user session.

GciHardBreak Interrupt GemStone and abort the current transaction.

GciInit Initialize GemBuilder.
GemTalk Systems 81

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciInitAppName Override the default application configuration file name.

GciInstallUserAction Associate a C function with a Smalltalk user action.

GciIsRemote Determine whether the application is running linked or
remotely.

GciLoadUserActionLibrary Load an application user action library.

GciLogin,
GciLoginEx

Start a user session.

GciLogout End the current user session.

GciNbEnd,
GciNbEndPoll

Test the status of nonblocking call in progress for completion.

GciProcessDeferredUpdates_ Process deferred updates to objects that do not allow direct
structural update.

GciReleaseAllGlobalOops Remove all OOPS from the PureExportSet, making these
objects eligible for garbage collection.

GciReleaseAllOops Remove all OOPS from the PureExportSet, or if in a user
action, from the user action’s export set, making these objects
eligible for garbage collection.

GciReleaseAllTrackedOops Clear the GciTrackedObjs set, making all tracked OOPs eligible
for garbage collection.

GciReleaseGlobalOops Remove an array of GemStone OOPs from the PureExportSet,
making them eligible for garbage collection.

GciReleaseOops Remove an array of GemStone OOPs from the PureExportSet,
or if in a user action, remove them from the user action’s
export set, making them eligible for garbage collection.

GciReleaseTrackedOops Remove an array of OOPs from the GciTrackedObjs set,
making them eligible for garbage collection.

GciRtlIsLoaded Report whether a GemBuilder library is loaded.

GciRtlLoad Load a GemBuilder library.

GciRtlUnload Unload a GemBuilder library.

GciSaveAndTrackObjs Add objects to GemStone’s internal GciTrackedObjs set to
prevent them from being garbage collected.

GciSaveGlobalObjs Add an array of OOPs to the PureExportSet, making them
ineligible for garbage collection.

GciSaveObjs Add an array of OOPs to the PureExportSet, or if in a user
action to the user action’s export set, making them ineligible
for garbage collection.

GciServerIsBigEndian Determine whether or not the server process is big-endian.

GciSessionIsRemote Determine whether or not the current session is using a Gem
on another machine.

GciSetCacheName_ Set the name that a linked application will be known by in the
shared cache.

GciSetNet,
GciSetNetEx

Set network parameters for connecting the user to the Gem and
Stone processes.

Table 6.1 Functions for Controlling Sessions and Transactions (Continued)
82 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetSessionId Set an active session to be the current one.

GciShutdown Logout from all sessions and deactivate GemBuilder.

GciStep Continue code execution in GemStone with specified single-
step semantics.

GciTrackedObjsFetchAllDirty Find all exported or tracked objects that have changed and are
therefore in the ExportedDirtyObjs or TrackedDirtyObjs sets.

GciTrackedObjsInit Reinitialize the set of tracked objects maintained by GemStone.

GciUserActionInit Declare user actions for GemStone.

GciUserActionShutdown Enable user-defined clean-up for user actions.

Table 6.2 Functions for Handling Errors and Interrupts and for Debugging

GciCallInProgress Determine if a GemBuilder call is currently in progress.

GciClearStack Clear the Smalltalk call stack.

GciContinue,
GciNbContinue

Continue code execution in GemStone after an error.

GciContinueWith
GciNbContinueWith

Continue code execution in GemStone after an error.

GciDbgEstablish Specify the debugging function for GemBuilder to execute before
most calls to GemBuilder functions.

GciDbgEstablishToFile Write trace information for most GemBuilder functions to a file.

GciDbgLogString Pass a message to a trace function.

GciEnableSignaledErrors Establish or remove GemBuilder visibility to signaled errors from
GemStone.

GciErr Prepare a report describing the most recent GemBuilder error.

GciInUserAction Determine whether or not the current process is executing a user
action.

GciLongJmp Provides equivalent functionality to the corresponding longjmp()
or _longjmp() function.

GciPollForSignal Poll GemStone for signal errors without executing any Smalltalk
methods.

GciPopErrJump Discard a previously saved error jump buffer.

GciPushErrJump Associate GemBuilder error handling with a jump buffer by
pushing a jump buffer onto the stack.

GciRaiseException Signal an error, synchronously, within a user action.

GciSetErrJump Enable or disable the current error handler.

GciSetHaltOnError Halt the current session when a specified error occurs.

Gci_SETJMP (MACRO) Save a jump buffer in GemBuilder’s error jump stack.

GciSoftBreak Interrupt the execution of Smalltalk code, but permit it to be
restarted.

Table 6.1 Functions for Controlling Sessions and Transactions (Continued)
GemTalk Systems 83

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Table 6.3 Functions for Compiling and Executing Smalltalk Code in the Database

GciClassMethodForClass Compile a class method for a class.

GciCompileMethod Compile a method.

GciExecute,
GciNbExecute

Execute a Smalltalk expression contained in a String or Utf8
object.

GciExecuteFromContext Execute a Smalltalk expression contained in a String or Utf8
object as if it were a message sent to another object.

GciExecuteStr,
GciNbExecuteStr

Execute a Smalltalk expression contained in a C string.

GciExecuteStrFetchBytes,
GciNbExecuteStrFetchBytes

Execute a Smalltalk expression contained in a C string,
returning byte-format results.

GciExecuteStrFromContext,
GciNbExecuteStrFromContext

Execute a Smalltalk expression contained in a C string as if it
were a message sent to an object.

GciInstMethodForClass Compile an instance method for a class.

GciPerform,
GciNbPerform

Send a message to a GemStone object.

GciPerformNoDebug,
GciNbPerformNoDebug

Send a message to a GemStone object, and temporarily disable
debugging.

GciPerformSymDbg Send a message to a GemStone object, using a String object as
a selector.

GciPerformTraverse First send a message to a GemStone object, then traverse the
result of the message.

Table 6.4 Functions for Accessing Symbol Dictionaries

GciResolveSymbol Find the OOP of the object to which a symbol name refers, in the
context of the current session’s user profile.

GciResolveSymbolObj Find the OOP of the Symbol to which a String object refers, in the
context of the current session’s user profile.

GciStrKeyValueDictAt Find the value in a symbol KeyValue dictionary at the
corresponding string key.

GciStrKeyValueDictAtObj Find the value in a symbol KeyValue dictionary at the
corresponding object key.

GciStrKeyValueDictAtObj
Put

Store a value into a symbol KeyValue dictionary at the
corresponding object key.

GciStrKeyValueDictAtPut Store a value into a symbol KeyValue dictionary at the
corresponding string key.

GciSymDictAt Find the value in a symbol dictionary at the corresponding string
key.

GciSymDictAtObj Find the value in a symbol dictionary corresponding to the key
object.

GciSymDictAtObjPut Store a value into a symbol dictionary at the corresponding object
key.
84 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSymDictAtPut Store a value into a symbol dictionary at the corresponding string
key.

GciTraverseObjs Traverse an array of GemStone objects.

Table 6.5 Functions for Creating and Initializing Objects

GciCreateByteObj Create a new byte-format object.

GciCreateOopObj Create a new pointer-format object.

GciGetFreeOop Allocate an OOP.

GciGetFreeOops Allocate multiple OOPs.

GciGetFreeOopsEncoded Allocate multiple OOPs.

GciNewByteObj Create and initialize a new byte object.

GciNewCharObj Create and initialize a new character object.

GciNewDateTime Create and initialize a new date-time object.

GciNewOop Create a new GemStone object.

GciNewOops Create multiple new GemStone objects.

GciNewOopUsingObjRep Create a new GemStone object from an existing object report.

GciNewString Create a new String object from a C character string.

GciNewSymbol Create a new Symbol object from a C character string.

GciNewUtf8String Create a new Unicode string object from a UTF-8 encoded C
character string.

Table 6.6 Functions and Macros for Converting Objects and Values

GCI_BOOL_TO_OOP (MACRO) Convert a C Boolean value to a GemStone Boolean
object.

GciByteArrayToPointer Given a result from GciPointerToByteArray, return a C
pointer.

GCI_CHR_TO_OOP (MACRO) Convert a C character value to a GemStone
Character object.

GciCTimeToDateTime Convert a C date-time representation to the equivalent
GemStone representation.

GciDateTimeToCTime Convert a GemStone date-time representation to the
equivalent C representation.

Gci_doubleToSmallDouble Convert a C double to a SmallDouble object.

GciFetchDateTime Convert the contents of a DateTime object and place the
results in a C structure.

GciFetchUtf8Bytes_ Encode a String, MultiByteString, or Uft8 as UTF-8, and fetch
the bytes of the encoded result.

GciFloatKind Obtain the float kind corresponding to a C double value.

GciFltToOop Convert a C double value to a SmallDouble or Float object.

Table 6.4 Functions for Accessing Symbol Dictionaries (Continued)
GemTalk Systems 85

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GCI_I64_IS_SMALL_INT Determine whether or not a C 64-bit integer value can be
translated into a SmallInteger object.

GciI64ToOop Convert a C 64-bit integer value to a GemStone object.

GCI_OOP_IS_BOOL (MACRO) Determine whether or not a GemStone object
represents a Boolean value.

GCI_OOP_IS_SMALL_INT (MACRO) Determine whether or not a GemStone object
represents a SmallInteger.

GCI_OOP_IS_SPECIAL (MACRO) Determine whether or not a GemStone object has a
special representation.

GciOopToBool Convert a Boolean object to a C Boolean value.

GCI_OOP_TO_BOOL (MACRO) Convert a Boolean object to a C Boolean value.

GciOopToChar16 Convert a Character object to a 16-bit C character value.

GciOopToChar32 Convert a Character object to a 32-bit C character value.

GciOopToChr Convert a Character object to a C character value.

GCI_OOP_TO_CHR (MACRO) Convert a Character object to a C character value.

GciOopToFlt Convert a SmallDouble, Float, or SmallFloat object to a C
double.

GciOopToI32 Convert a GemStone object to a C 32-bit integer value.

GciOopToI64 Convert a GemStone object to a C 64-bit integer value.

GciPointerToByteArray Given a C pointer, return a SmallInteger or ByteArray
containing the value of the pointer.

GciStringToInteger Convert a C string to a GemStone SmallInteger or
LargeInteger object.

Table 6.6 Functions and Macros for Converting Objects and Values (Continued)
86 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
CAUTION
Exercise caution when using the following structural access functions. Although
they can improve the speed of GemStone database operations, these functions
bypass GemStone’s message-sending metaphor. That is, structural access
functions may bypass any checking that might be coded into your application’s
methods. In using structural access functions, you implicitly assume full
responsibility for safeguarding the integrity of your system.

Table 6.7 Object Traversal and Path Functions and Macros

GCI_ALIGN (MACRO) Align an address to a word boundary.

GciClampedTrav,
GciNbClampedTrav

Traverse an array of objects, subject to clamps.

GciExecuteStrTrav,
GciNbExecuteStrTrav

Execute a string and traverse the result of the execution.

GciFetchPaths Fetch selected multiple OOPs from an object tree.

GciFindObjRep Fetch an object report in a traversal buffer.

GciMoreTraversal,
GciNbMoreTraversal

Continue object traversal, reusing a given buffer.

GciObjRepSize_ Find the number of bytes in an object report.

GciPerformTrav
GciNbPerformTrav

First send a message to a GemStone object, then traverse the
result of the message.

GciPerformTraverse First send a message to a GemStone object, then traverse the
result of the message.

GciSetTraversalBufSwizzling Control swizzling of the traversal buffers.

GciStorePaths Store selected multiple OOPs into an object tree.

GciStoreTrav
GciNbStoreTrav

Store multiple traversal buffer values in objects.

GciStoreTravDo_,
GciNbStoreTravDo_

Store multiple traversal buffer values in objects, execute the
specified code, and return the resulting object.

GciStoreTravDoTrav_
GciNbStoreTravDoTrav_

Combine in a single function the calls to GciStoreTravDo_
and GciClampedTrav, to store multiple traversal buffer
values in objects, execute the specified code, and traverse the
result object.

GciStoreTravDoTravRefs_
GciNbStoreTravDoTravRefs_

Combine in a single function modifications to session sets,
traversal of objects to the server, optional Smalltalk execution,
and traversal to the client of changed objects and (optionally)
the result object.

GciTraverseObjs,
GciNbTraverseObjs

Traverse an array of GemStone objects.
GemTalk Systems 87

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Note, however, that structural access functions do not bypass checks on
authorization violations or concurrency conflicts.

Table 6.8 Structural Access Functions and Macros

GciAddOopToNsc Add an OOP to the unordered variables of a nonsequenceable
collection.

GciAddOopsToNsc Add multiple OOPs to the unordered variables of a
nonsequenceable collection.

GciAppendBytes Append bytes to a byte object.

GciAppendChars Append a C string to a byte object.

GciAppendOops Append OOPs to the unnamed variables of a collection.

GciClassNamedSize Find the number of named instance variables in a class.

GciFetchByte Fetch one byte from an indexed byte object.

GciFetchBytes_ Fetch multiple bytes from an indexed byte object.

GciFetchChars_ Fetch multiple ASCII characters from an indexed byte object.

GciFetchClass Fetch the class of an object.

GciFetchNamedOop Fetch the OOP of one of an object’s named instance variables.

GciFetchNamedOops Fetch the OOPs of one or more of an object’s named instance
variables.

GciFetchNamedSize Fetch the number of named instance variables in an object.

GciFetchNameOfClass Fetch the class name object for a given class.

GciFetchObjImpl Fetch the implementation of an object.

GciFetchOop Fetch the OOP of one instance variable of an object.

GciFetchOops Fetch the OOPs of one or more instance variables of an object.

GciFetchSize_ Fetch the size of an object.

GciFetchVaryingOop Fetch the OOP of one unnamed instance variable from an
indexable pointer object or NSC.

GciFetchVaryingOops Fetch the OOPs of one or more unnamed instance variables from
an indexable pointer object or NSC.

GciFetchVaryingSize_ Fetch the number of unnamed instance variables in a pointer
object or NSC.

GciHiddenSetIncludesOop Determines whether the given OOP is present in the specified
hidden set.

GciIsKindOf Determine whether or not an object is some kind of a given class
or class history.

GciIsKindOfClass Determine whether or not an object is some kind of a given class.

GciIsSubclassOf Determine whether or not a class is a subclass of a given class or
class history.

GciIsSubclassOfClass Determine whether or not a class is a subclass of a given class.

GciIvNameToIdx Fetch the index of an instance variable name.

GciNscIncludesOop Determines whether the given OOP is present in the specified
unordered collection.
88 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciObjExists Determine whether or not a GemStone object exists.

GciObjInCollection Determine whether or not a GemStone object is in a Collection.

GciObjIsCommitted Determine whether or not an object is committed.

GciRemoveOopFromNsc Remove an OOP from an NSC.

GciRemoveOopsFromNsc Remove one or more OOPs from an NSC.

GciReplaceOops Replace all instance variables in a GemStone object.

GciReplaceVaryingOops Replace all unnamed instance variables in an NSC object.

GciSetVaryingSize Set the size of a collection.

GciStoreByte Store one byte in a byte object.

GciStoreBytes (MACRO) Store multiple bytes in a byte object.

GciStoreBytesInstanceOf Store multiple bytes in a byte object.

GciStoreChars Store multiple ASCII characters in a byte object.

GciStoreIdxOop Store one OOP in an indexable pointer object’s unnamed
instance variable.

GciStoreIdxOops Store one or more OOPs in an indexable pointer object’s
unnamed instance variables.

GciStoreNamedOop Store one OOP into an object’s named instance variable.

GciStoreNamedOops Store one or more OOPs into an object’s named instance
variables.

GciStoreOop Store one OOP into an object’s instance variable.

GciStoreOops Store one or more OOPs into an object’s instance variables.

Table 6.9 Utility Functions

GciAll7Bit Determine if a String contains only 7-bit ASCII characters.

GciCompress Compress the supplied data, which can be uncompressed with
GciUncompress.

GciDecodeOopArray Decode an OOP array that was previously run-length encoded.

GciDecSharedCounter Decrement the value of a shared counter.

GciEnableFreeOopEncoding Enable run-length encoding of free OOPs.

GciEnableFullCompression Enable full compression between the client and the RPC version
of GemBuilder.

GciEncodeOopArray Encode an array of OOPs, using run-length encoding.

GciEncrypt Encrypt a password string.

GciFetchNumEncodedOops Obtain the size of an encoded OOP array.

GciFetchNumSharedCounte
rs

Obtain the number of shared counters available on the shared
page cache used by this session.

GciFetchSharedCounterValu
esNoLock

Fetch the value of multiple shared counters without locking
them.

GciIncSharedCounter Increment the value of a shared counter.

Table 6.8 Structural Access Functions and Macros (Continued)
GemTalk Systems 89

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciProduct Return an 8-bit unsigned integer that indicates the GemStone/S
product.

GciReadSharedCounter Lock and fetch the value of a shared counter.

GciReadSharedCounterNoL
ock

Fetch the value of a shared counter without locking it.

GciSetSharedCounter Set the value of a shared counter.

GciUncompress Uncompress the supplied data, assumed to have been
compressed with GciCompress.

GciVersion Return a string that describes the GemBuilder version.

Table 6.9 Utility Functions (Continued)
90 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciAbort

Abort the current transaction.

Syntax
void GciAbort()

Description
This function causes the GemStone system to abort the current transaction. All changes to
persistent objects that were made since the last committed transaction are lost, and the application
is connected to the most recent version of the database. Your application must fetch again from
GemStone any changed persistent objects, to refresh the copies of these objects in your C program.
Use the GciDirtySaveObjs function to determine which of the fetched objects were also changed.

This function has the same effect as issuing a hard break, or the function call
GciExecuteStr("System abortTransaction", OOP_NIL). For more information, see
“Interrupting GemStone Execution” on page 27.

See Also
GCI_CHR_TO_OOP, page 107
GciCommit, page 115
GciNbAbort, page 236
GciNbCommit, page 239
GemTalk Systems 91

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciAddOopToNsc

Add an OOP to the unordered variables of a nonsequenceable collection.

Syntax
void GciAddOopToNsc(

OopType theNsc,
OopType theOop);

Input Arguments
theNsc The OOP of the NSC.
theOop The OOP to be added.

Description
This function adds an OOP to the unordered variables of an NSC, using structural access.

Example
OopType GciAddOopToNsc_example(void)
{
 // return an IdentityBag containing the SmallIntegers with value
0..99

 OopType oNsc = GciNewOop(OOP_CLASS_IDENTITY_BAG);
 for (int i = 0; i < 100; i ++) {
 OopType oNum = GciI32ToOop(i);
 GciAddOopToNsc(oNsc, oNum);
 }
 return oNsc;
}

See Also
GciAddOopsToNsc, page 93
GciNscIncludesOop, page 278
GciRemoveOopFromNsc, page 326
GciRemoveOopsFromNsc, page 327
92 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciAddOopsToNsc

Add multiple OOPs to the unordered variables of a nonsequenceable collection.

Syntax
void GciAddOopsToNsc(

OopType theNsc,
const OopType theOops[],
int numOops);

Input Arguments
theNsc The OOP of the NSC.
theOops An array of OOPs to be added.
numOops The number of OOPs to add.

Description
This function adds multiple OOPs to the unordered variables of an NSC, using structural access.

Example
OopType GciAddOopsToNsc_example(void)
{
 // return an IdentityBag containing the SmallIntegers with value
0..99

 enum { AddOopsToNsc_SIZE = 100 };

 OopType oNsc = GciNewOop(OOP_CLASS_IDENTITY_BAG);

 OopType values[AddOopsToNsc_SIZE];
 for (int i = 0; i < AddOopsToNsc_SIZE; i ++) {
 values[i] = GciI32ToOop(i);
 }
 GciAddOopsToNsc(oNsc, values, AddOopsToNsc_SIZE);
 return oNsc;
}

See Also
GciAddOopToNsc, page 92
GciNscIncludesOop, page 278
GciRemoveOopFromNsc, page 326
GciRemoveOopsFromNsc, page 327
GemTalk Systems 93

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GCI_ALIGN

(MACRO) Align an address to a word boundary.

Syntax
uintptr_t * GCI_ALIGN(argument)

Input Arguments
argument The pointer or integer to be aligned.

Return Value
The first multiple of 8 that is greater than or equal to the input argument.

Description
This macro can be used to round up a pointer or size to be a multiple of sizeOf(OopType).

Provided for compatibility. New code should use the accessor functions in GciObjRepHdrSType
(page 72).

See Also
GciMoreTraversal, page 234
GciNewOopUsingObjRep, page 272
GciTraverseObjs, page 408
94 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciAll7Bit

Determine if a String contains only 7-bit ASCII characters.

Syntax
BoolType GciAll7Bit(

 const char * aString,
 size_t * stringLength
);

Input Arguments
aString A null-terminated string.

Result Arguments
stringLength The length of aString, computed by strlen(aString).

Return Value
Returns TRUE if each character in aString is in the 7-bit ASCII range, that is, a value <= 127; FALSE
if any characters have values of 128 or higher.

Description
The function GciAll7Bit is used to test if a String is in the ASCII range, which will not involve
encoding to UTF-8 for storage.

See Also
GciFetchUtf8Bytes_, page 193
GemTalk Systems 95

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciAllocTravBuf

Allocate and initialize a new GciTravBufType structure.

Syntax
(GciTravBufType *) GciAllocTravBuf(

size_t allocationSize);

Input Arguments
allocationSize The size of the traversal buffer.

Description
This function allocates and initializes a new GciTravBufType structure.

See Also
“The Traversal Buffer Type” on page 79
96 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciAlteredObjs

Find all exported or dirty objects that have changed and are therefore in the ExportedDirtyObjs or
TrackedDirtyObjs sets.

Syntax
BoolType GciAlteredObjs(

OopType theOops[],
int * numOops);

Input Arguments
theOops An array that will contain the of OOPs of the objects in the

ExportedDirtyObjs or TrackedDirtyObjs sets.
numOops Pointer to the maximum number of OOPs that can be returned in this call,

that is, the size (in OOPs) of the buffer specified by theOops.

Result Arguments
theOops The resulting array of OOPs of objects that are in either the

ExportedDirtyObjs or TrackedDirtyObjs sets.
* numOops The number of actual OOPs in the result array theOops.

Return Value
The function result indicates whether all dirty objects have been returned. If the operation is not
complete, GciAlteredObjs returns FALSE, and it is expected that the application will make
repeated calls to this function until it returns TRUE, indicating that all of the dirty objects have been
returned. If repeated calls are not made, then the unreturned objects persist in the list until the next
time GciAlteredObjs, or another call that destructively accesses the ExportedDirtyObjs or
TrackedDirtyObjs sets, is called.

Description
Typically, a GemStone C application program caches some database objects in its local object space,
generally in the PureExportSet or if in a user action, in the user action’s export set (see
GciSaveObjs). It may also track them by storing them in the GciTrackedObjs set (see
GciSaveAndTrackObjs). After an abort or a successful commit, the user’s session is
resynchronized with the most recent version of the database. The values of instance variables
cached in your C program may no longer accurately represent the corresponding GemStone
objects. In such cases, your C program must update its representation of those objects. The function
GciAlteredObjs permits you to determine which objects your application needs to reread from the
database.
GemTalk Systems 97

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
This function returns a list of all objects that are in the PureExportSet and are “dirty”. An object is
considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.

 • The object was changed by a call from this session to any GemBuilder function from within a
user action.

 • The object was changed by a call from this session to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut, GciStrKeyValueDictAtObjPut, or
GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by another
session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling back the
Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and GciCreate... do
not put the modified object into the set of dirty objects (unless the call is from within a user action).
The assumption is that the client does not want the dirty set to include modifications that the client
has explicitly made.

You must call GciDirtyObjsInit once after GciLogin before you can use GciAlteredObjs.

Note that GciAlteredObjs removes OOPs from the ExportedDirtyObjs set and TrackedDirtyObjs
sets as it enumerates.

See Also
GciAbort, page 91
GciCommit, page 115
GciDirtyObjsInit, page 137
GciReleaseAllOops, page 320
GciReleaseOops, page 323
GciSaveAndTrackObjs, page 336
GciSaveGlobalObjs, page 337
GciSaveObjs, page 338
98 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciAppendBytes

Append bytes to a byte object.

Syntax
void GciAppendBytes(

OopType theObject,
int64 numBytes,
const ByteType * theBytes);

Input Arguments
theObject A byte object to which bytes are to be appended.
numBytes The number of bytes to be appended.
theBytes A pointer to the bytes to be appended.

Result Arguments
theObject The resulting byte object, with the appended bytes.

Description
This function appends numBytes bytes to byte object theObject. Its effect is equivalent to
GciStoreBytes(x, GciFetchSize_(x)+1, theBytes, numBytes).

GciAppendBytes raises an error if theObject is a Float or SmallFloat. Float and SmallFloat objects
are of a fixed and unchangeable size.

See Also
GciAppendChars, page 100
GemTalk Systems 99

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciAppendChars

Append a C string to a byte object.

Syntax
void GciAppendChars(

OopType theObject,
const char * aString);

Input Arguments
theObject A byte object to which the string is to be appended.
aString A pointer to the string to be appended.

Result Arguments
theObject The resulting byte object, with the appended string.

Description
This function appends the characters of aString to byte object theObject.

See Also
GciAppendBytes, page 99
100 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciAppendOops

Append OOPs to the unnamed variables of a collection.

Syntax
void GciAppendOops(

OopType theObject,
int numOops,
const OopType* theOops);

Input Arguments
theObject A collection to which additional OOPs are to be added.
numOops The number of OOPs to be added.
theOops A pointer to the OOPs to be added.

Result Arguments
theObject The resulting collection, with the added OOPs.

Description
Appends numOops OOPs to the unnamed variables of the collection theObject. If the collection is
indexable, this is equivalent to:

GciStoreOops(theObject, GciFetchSize_(theObject)+1, theOops, numOops);

If the collection is an NSC, this is equivalent to:

GciAddOopsToNsc(theObject, theOops, numOops);

If the object is neither indexable nor an NSC, an error is generated.
GemTalk Systems 101

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciBegin

Begin a new transaction.

Syntax
void GciBegin()

Description
This function begins a new transaction. If there is a transaction currently in progress, it aborts that
transaction. Calling GciBegin is equivalent to the function call
GciExecuteStr("System beginTransaction", OOP_NIL).

See Also
GciAbort, page 91
GciExecuteStr, page 153
GciNbAbort, page 236
GciNbBegin, page 237
GciNbExecuteStr, page 246
102 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GCI_BOOL_TO_OOP

(MACRO) Convert a C Boolean value to a GemStone Boolean object.

Syntax
OopType GCI_BOOL_TO_OOP(aBoolean)

Input Arguments
aBoolean The C Boolean value to be translated into a GemStone object.

Result Value
The OOP of the GemStone Boolean object that is equivalent to aBoolean.

Description
This macro translates a C Boolean value into the equivalent GemStone Boolean object. A C value of
0 translates to the GemStone Boolean object false (represented in your C program as OOP_FALSE).
Any other C value translates to the GemStone Boolean object true (represented as OOP_TRUE). For
more information, see Appendix A, “Reserved OOPs”

Example
int GCI_BOOL_TO_OOP_example(void)
{
 int z = 0;
 int nonZ = 99;

 OopType Fa = GCI_BOOL_TO_OOP(z);

 // any non-zero argument will produce a result of OOP_TRUE
 OopType Tr = GCI_BOOL_TO_OOP(nonZ);

 // the following will always be true
 return Fa == OOP_FALSE && Tr == OOP_TRUE;
}

See Also
GciOopToBool, page 288
GemTalk Systems 103

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciByteArrayToPointer

Given a result from GciPointerToByteArray, return a C pointer.

Syntax
void * GciByteArrayToPointer(

OopType arg);

Input Arguments
arg A GemStone SmallInteger or ByteArray that was returned by

GciPointerToByteArray.

Description
Given an argument that was the result of GciPointerToByteArray, this function returns the
corresponding C pointer.

See Also
GciPointerToByteArray, page 308
104 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciCallInProgress

Determine if a GemBuilder call is currently in progress.

Syntax
BoolType GciCallInProgress()

Return Value
This function returns TRUE if a GemBuilder call is in progress, and FALSE otherwise.

Description
This function is intended for use within signal handlers. It can be called any time after GciInit.

GciCallInProgress returns FALSE if the process is currently executing within a user action and the
user action’s code is not within a GemBuilder call. It considers the highest (most recent) call context
only.

See Also
GciInUserAction, page 221
GemTalk Systems 105

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciCheckAuth

Gather the current authorizations for an array of database objects.

Syntax
void GciCheckAuth(

const OopType oopArray[];
ArraySizeType arraySize;
unsigned char authCodeArray[]);

Input Arguments
oopArray An array of OOPs of objects for which the user’s authorization level. is to be

ascertained. The caller must provide these values.
arraySize The number of OOPs in oopArray.

Result Arguments
authCodeArray The resulting array, having at least arraySize elements, in which the

authorization values of the objects in oopArray are returned as 1-byte integer
values.

Description
GciCheckAuth checks the current user’s authorization for each object in oopArray up to arraySize,
returning each authorization code in the corresponding element of authCodeArray. The calling
context is responsible for allocating enough space to hold the results.

Authorization levels are:

1. No authorization

2. Read authorization

3. Write authorization

Special objects, such as instances of SmallInteger, are reported as having read authorization.

Authorization values returned are those that have been committed to the database; they do not
reflect changes you might have made in your local workspace. To query the local workspace, send
an authorization query message to a particular object security policy using GciPerform.

If any member of oopArray is not a legal OOP, GciCheckAuth generates the error
OBJ_ERR_DOES_NOT_EXIST. In that case, the contents of authCodeArray are undefined.
106 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GCI_CHR_TO_OOP

(MACRO) Convert a C character value to a GemStone Character object.

Syntax
OopType GCI_CHR_TO_OOP(aChar)

Input Arguments
aChar The C character value to be translated into a GemStone object.

Result Value
The OOP of the GemStone Character object that is equivalent to aChar.

Description
This macro translates a C character value into the equivalent GemStone Character object. For more
information, see Appendix A, “Reserved OOPs”.

Example
OopType GCI_CHR_TO_OOP_example(void)
{
 // return the OOP for the ASCII character 'a'
 OopType theOop = GCI_CHR_TO_OOP('a');
 return theOop;
}

See Also
GciOopToChr, page 292
GemTalk Systems 107

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciClampedTrav

Traverse an array of objects, subject to clamps.

Syntax
BoolType GciClampedTrav(

const OopType * theOops,
int numOops,
GciClampedTravArgsSType *travArgs);

Input Arguments
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travArgs Pointer to an instance of GciClampedTravArgsSType containing the

following input argument fields:

OopType clampSpec
The OOP of the Smalltalk ClampSpecification to be used,
or OOP_NIL, if the traversal is to operate without
clamping.

int level
Maximum traversal depth. When the level is 1, an object
report is written to the traversal buffer for each element in
theOops. When the level is 2, an object report is also
obtained for the instance variables of each level-1 object.
When the level is 0, the number of levels in the traversal
is not restricted.

GciTravBufType * travBuff
A pointer to the traversal buffer.

int retrievalFlags
If (retrievalFlags & GCI_RETRIEVE_EXPORT != 0) then
OOPs of non-special objects for which an object report
header is returned in the traversal buffer are
automatically added to the PureExportSet or the user
action’s export set (see GciSaveObjs). The value of
retrievalFlags should be given by using the following
GemBuilder mnemonics:
GCI_RETRIEVE_DEFAULT
GCI_RETRIEVE_EXPORT
GCI_CLEAR_EXPORT causes the traversal to clear the
PureExportSet or the user action’s export set before it
adds any OOPs to the traverse buffer.

Result Arguments
travArgs Pointer to an instance of GciClampedTravArgsSType containing the

following result argument field:
108 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciTravBufType * travBuff
The buffer for the results of the traversal. The first element
placed in the buffer is the actualBufferSize, an integer that
indicates how many bytes were actually stored in the
buffer by this function. The remainder of the traversal
buffer consists of a series of object reports, each of which
is of type GciObjRepSType.

Return Value
Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more objects to
be returned by subsequent calls to GciMoreTraversal (that is, an object report was constructed for
each object, minus the special objects).

Description
GciClampedTrav initiates a traversal of the specified objects, subject to the clamps in the specified
ClampSpecification. In order to guarantee that the root object of the traversal will always have an
entry in the traversal buffer, the root object is not subject to the specified clamps. Refer to
“GciTraverseObjs” on page 408 for a detailed discussion of object traversal.

GemBuilder clamped traversal functions are used by the GemBuilder for Smalltalk implementation
of object replication and are intended for similar sophisticated client applications.

See Also
GciMoreTraversal, page 234
GciSaveObjs, page 338
GemTalk Systems 109

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciClassMethodForClass

Compile a class method for a class.

Syntax
OopType GciClassMethodForClass(

OopType source,
OopType oclass,
OopType category,
OopType symbolList);

Input Arguments
source The OOP of a Smalltalk string to be compiled as a class method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string, which contains the name of the category to

which the method is added. If the category is nil (OOP_NIL), the compiler
adds this method to the category “(as yet unclassified)”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in source
code by using symbols that are available from symbolList. A value of
OOP_NIL means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

Return Value
Returns OOP_NIL, unless there were compiler warnings (such as variables declared but not used,
etc.), in which case the return will be the OOP of a string containing the warning messages.

Description
This function compiles a class method for the given class. You may not compile any method whose
selector begins with an underscore (_) character. Such selectors are reserved for use by the
GemStone development team as private methods.

In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may not
compile any methods with any of those selectors. See the Programming Guide for a list of the
optimized selectors.

To remove a class method, use GciExecuteStr instead.

Example
void GciClassMethodForClass_example(void)
{
 // Assumes the topaz code for GciFetchVaryingOop example
 // has been executed.

 OopType theClass = GciResolveSymbol("Component", OOP_NIL);
110 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 OopType oCateg = GciNewString("instance creation");
 // method to create a new instance with a specified part number
 OopType oMethodSrc = GciNewString(
"newWithNumber: aNum . | o | o := self new . o partNumber: aNum. ^
o");

 GciClassMethodForClass(oMethodSrc, theClass, oCateg, OOP_NIL);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 }
}

See Also
GciInstMethodForClass, page 219
GemTalk Systems 111

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciClassNamedSize

Find the number of named instance variables in a class.

Syntax
int GciClassNamedSize(

OopType oclass);

Input Arguments
oclass The OOP of the class from which to obtain information about instance

variables. Appendix A, “Reserved OOPs” lists the OOP of each Smalltalk
kernel class.

Return Value
Returns the number of named instance variables in the class, or zero if an error occurs.

Description
This function returns the number of named instance variables for the specified class, including
those inherited from superclasses.

Example
int namedSizeExample(void)
{
 // find the class named Employee in the current symbolList
 OopType empClass = GciResolveSymbol(“Employee”, OOP_NIL);
 if (empClass == OOP_NIL) {
 return -1; // class not found or other error.
 }

 int numIvs = GciClassNamedSize(empClass);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 return -1; // error occurred
 }

 // return the number of named instance variables which will
 // be >= 0
 return numIvs;
}

See Also
GciIvNameToIdx, page 227
112 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciClearStack

Clear the Smalltalk call stack.

Syntax
void GciClearStack(

OopType process);

Input Arguments
process The OOP of a GsProcess object (obtained as the value of the context field of

an error report returned by GciErr).

Description
Whenever a session executes a Smalltalk expression or sequence of expressions, the virtual machine
creates and maintains a call stack that provides information about its state of execution. The call
stack includes an ordered list of activation records related to the methods and blocks that are
currently being executed.

If a soft break or an unexpected error occurs, the virtual machine suspends execution, creates a
GsProcess object, and raises an error. The GsProcess object represents both the call stack when
execution was suspended and any information that the virtual machine needs to resume execution.
If there was no fatal error, your program can call GciContinue to resume execution. Call
GciClearStack instead if there was a fatal error, or if you do not want your program to resume the
suspended execution.

Example
The following example shows how an application can handle an error and either continue or
terminate Smalltalk execution.

void clearStackExample(void)
{
 OopType result = GciExecuteStr(
 "| a | a := 10 + 10. nil halt . ^ a + 100",
 OOP_NIL/*use default symbolList for execution*/);

 // halt method is expected to generate error number
RT_ERR_GENERIC_ERROR
 GciErrSType errInfo;
 if (! GciErr(&errInfo)) {
 printf("expected an error but none found\n");
 return;
 }
 if (errInfo.number == ERR_Halt) {
 // now continue the execution to finish the computation
 result = GciContinue(errInfo.context);
 } else {
 // FMT_OID format string is defined in gci.ht
GemTalk Systems 113

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 printf("unexpected error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 // terminate the execution
 GciClearStack(errInfo.context);
 return;
 }
 int val = GciOopToI32(result);
 if (GciErr(&errInfo)) {
 printf("unexpected error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 if (val != 120) {
 printf("Wrong answer = %d\n", val);
 } else {
 printf("result = %d\n", val);
 }
 }
}

See Also
GciContinue, page 120
GciSoftBreak, page 357
114 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciCommit

Write the current transaction to the database.

Syntax
BoolType GciCommit()

Return Value
Returns TRUE if the transaction committed successfully. Returns FALSE if the transaction fails to
commit due to a concurrency conflict or in case of error.

Description
The GciCommit function attempts to commit the current transaction to the GemStone database.

GciCommit ignores any commit pending action that may be defined in the current GemStone
session state.

Example
void GciCommit_example(void)
{
 // Call GciCommit and see if there was an error
 if (! GciCommit()) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“commit failed with error %d , %s \n”,
 errInfo.number, errInfo.message);
 } else {
 printf(“commit failed due to transaction conflicts\n”);
 }
 }
}

See Also
GciAbort, page 91
GCI_CHR_TO_OOP, page 107
GciNbAbort, page 236
GciNbCommit, page 239
GemTalk Systems 115

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciCompileMethod

Compile a method.

Syntax
OopType GciCompileMethod(

OopType source,
OopType oclass,
OopType category,
OopType symbolList,
OopType overrideSelector,
int compileFlags,
ushort environmentId);

Input Arguments
source The OOP of a Smalltalk string to be compiled as a class method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string, which contains the name of the category to

which the method is added. If the category is nil (OOP_NIL), the compiler
adds this method to the category “(as yet unclassified)”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in source
code by using symbols that are available from symbolList. A value of
OOP_NIL means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

overrideSelector If not nil, this is a string that is converted to a symbol and used in precedence
to the selector pattern in the method source when installing the method in
the method dictionary. Sending 'selector' to the resulting method will also
reflect the overrideSelector argument.

compileFlags Compiler flags used for bootstrapping the Ruby environment.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns OOP_NIL, unless there were compiler warnings (such as variables declared but not used,
etc.), in which case the return will be the OOP of a string containing the warning messages.

Description
This function is used for compiling a method. Replaces both GciInstMethodForClass and
GciClassMethodForClass, and adds the environmentId argument.

This function compiles a method for the given class. You may not compile any method whose
selector begins with an underscore (_) character. Such selectors are reserved for use by the
GemStone development team as private methods.
116 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may not
compile any methods with any of those selectors. See the Programming Guide for a list of the
optimized selectors.

To remove a method, use GciExecuteStr instead.

See Also
GciClassMethodForClass, page 110
GciInstMethodForClass, page 219
GemTalk Systems 117

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciCompress

Compress the supplied data, which can be uncompressed with GciUncompress.

Syntax
int GciCompress(

char * dest,
uint * destLen,
const char * source,
uint sourceLen);

Input Arguments
dest Pointer to the buffer intended to hold the resulting compressed data.
destLen Length, in bytes, of the buffer intended to hold the compressed data.
source Pointer to the source data to compress.
sourceLen Length, in bytes, of the source data.

Result Arguments
dest The resulting compressed data.

Return Value
GciCompress returns Z_OK (equal to 0) if the compression succeeded, or various error values if it
failed; see the documentation for the compress function in the GNU zlib library at http://
www.gzip.org.

Description
GciCompress passes the supplied inputs unchanged to the compress function in the GNU zlib
library Version 1.2.3, and returns the result exactly as the GNU compress function returns it.

Example
#include <limits.h>

OopType compressByteArray(OopType byteArray)
{
 // given an input ByteArray , return a new ByteArray with
 // the contents of the input compressed .

 if (!GciIsKindOfClass(byteArray, OOP_CLASS_BYTE_ARRAY))
 return OOP_NIL; /* error: input arg is not a ByteArray */

 int64 inputSize = GciFetchSize_(byteArray);
 if (inputSize > INT_MAX) {
 return OOP_NIL; // GciCompress supports max 2G bytes input
118 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 }

 int64 outputSize = inputSize;

 ByteType *inputBuffer = (ByteType*)malloc(inputSize);
 if (inputBuffer == NULL) {
 return OOP_NIL; // malloc failure
 }
 ByteType *outputBuffer = (ByteType*)malloc(outputSize);
 if (outputBuffer == NULL) {
 free(inputBuffer);
 return OOP_NIL; // malloc failure
 }

 OopType resultOop = OOP_NIL;

 int64 numRet = GciFetchBytes_(byteArray, 1/* start at first element */,
 inputBuffer, inputSize /* max bytes to fetch */);

 if (numRet == inputSize) {
 uint compressedSize;
 int status = GciCompress((char *)outputBuffer,

 &compressedSize,
 (char *) inputBuffer, inputSize);

 if (status == 0) {
 // compress ok
 resultOop = GciNewByteObj(OOP_CLASS_BYTE_ARRAY,

outputBuffer, (int64)compressedSize);
 } else {
 // compress failed
 }
 } else {
 // error during FetchBytes
 }
 free(inputBuffer);
 free(outputBuffer);
 return resultOop;
}

See Also
GciUncompress, page 412
GemTalk Systems 119

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciContinue

Continue code execution in GemStone after an error.

Syntax
OopType GciContinue(

OopType process);

Input Arguments
process The OOP of a GsProcess object (obtained as the value of the context field of

an error report returned by GciErr).

Return Value
Returns the OOP of the result of the Smalltalk code that was executed. Returns OOP_NIL in case
of error.

Description
The GciContinue function attempts to continue Smalltalk execution sometime after it was
suspended. It is most useful for proceeding after GemStone encounters a pause message, a soft
break (GciSoftBreak), or an application-defined error, since continuation is always possible after
these events. Because GciContinue calls the virtual machine, the application user can also issue a
soft break while this function is executing. For more information, see “Interrupting GemStone
Execution” on page 27.

It may also be possible to continue Smalltalk execution if the virtual machine detects a nonfatal
error during a GciExecute... or GciPerform call. You may then want to use structural access
functions to investigate (or modify) the state of the database before you call GciContinue.

Example
See the example for GciClearStack on page 113.

See Also
GciClearStack, page 113
GciErr, page 148
GciExecute, page 149
GciNbContinue, page 240
GciNbExecute, page 245
120 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciContinueWith

Continue code execution in GemStone after an error.

Syntax
OopType GciContinueWith (

OopType process,
OopType replaceTopOfStack,
int flags,
GciErrSType * error);

Input Arguments
process The OOP of a GsProcess object (obtained as the value of the context field of

an error report returned by GciErr).
replaceTopOfStack If not OOP_ILLEGAL, replace the top of the Smalltalk evaluation stack with

this value before continuing. If OOP_ILLEGAL, the evaluation stack is not
changed.

flags Flags to disable or permit asynchronous events and debugging in Smalltalk,
as defined for GciPerformNoDebug.

error If not NULL, continue with an error. This argument takes precedence over
replaceTopOfStack.

Return Value
Returns the OOP of the result of the Smalltalk code that was executed. In case of error, this function
returns OOP_NIL.

Description
This function is a variant of the GciContinue function, except that it allows you to modify the call
stack and the state of the database before attempting to continue the suspended Smalltalk
execution. This feature is typically used while implementing a Smalltalk debugger.

See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciNbContinueWith, page 241
GciNbExecute, page 245
GciPerformNoDebug, page 300
GemTalk Systems 121

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciCreateByteObj

Create a new byte-format object.

Syntax
OopType GciCreateByteObj(

OopType oclass,
OopType objId,
const ByteType * values,
int64 numValues,
int clusterId,
BoolType makePermanent);

Input Arguments
oclass The OOP of the class of the new object.
objId The new object’s OOP (obtained from GciGetFreeOop), or OOP_ILLEGAL.

If you are trying to create a Symbol or DoubleByteSymbol, objId must be
OOP_ILLEGAL. You cannot use the result of GciGetFreeOop to create a
type of Symbol object.

values Array of instance variable values.
numValues Number of elements in values.
clusterId ID of the cluster bucket in which to place the object. If clusterId is 0, use the

cluster bucket (System currentClusterId). Otherwise, clusterId must be a
positive integer <= GciFetchSize_(OOP_ALL_CLUSTER_BUCKETS).

makePermanent Has no effect.

Return Value
GciCreateByteObj returns the OOP of the object it creates. The return value is the same as
objId unless that value is OOP_ILLEGAL, in which case GciCreateByteObj assigns and
returns a new OOP itself.

Description
Creates a new object using an object identifier (objId) previously obtained from GciGetFreeOop or
GciGetFreeOops. For more about the semantics of such object identifiers, see GciGetFreeOop on
page 204.

The object is created in temporary object space, and the garbage collector makes it permanent if the
object is referenced, or becomes referenced, by another permanent object.

Values are stored into the object starting at the first named instance variable (if any) and continuing
to the indexable (or NSC) instance variables if oclass is indexable or NSC. The caller must initialize
any unused elements of *values to OOP_NIL.

If oclass is an indexable or NSC class, then numValues may be as large or as small as desired. If oclass
is neither indexable nor NSC, numValues must not exceed the number of named instance variables
in the class. If numValues is less than number of named instance variables, then the size of the
122 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
newly-created object is the number of named instance variables and any instance variables beyond
numValues are initialized to OOP_NIL.

For certain classes of byte format, namely DateTime, Float, and LargeInteger, additional size
restrictions apply.

For an indexable object, if numValues is greater than zero and values is NULL, then the object is
created of size numValues, and is initialized to logical size numValues. (This is equivalent to new:
aSize for classes Array or String.)

If GciCreateByteObj is being used to create an instance of OOP_CLASS_FLOAT or
OOP_CLASS_SMALL_FLOAT, then the correct number of value bytes must be supplied at the time
of creation.

If you are trying to create a Symbol or DoubleByteSymbol, objId must be OOP_ILLEGAL.

See Also
GciCreateOopObj, page 124
GciGetFreeOop, page 204
GciGetFreeOops, page 206
GemTalk Systems 123

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciCreateOopObj

Create a new pointer-format object.

Syntax
OopType GciCreateOopObj(

OopType oclass,
OopType objId,
const OopType * values,
int numValues,
int clusterId,
BoolType makePermanent);

Input Arguments
oclass The OOP of the class of the new object.
objId The new object’s OOP (obtained from GciGetFreeOop), or OOP_ILLEGAL.
values Array of instance variable values.
numValues Number of elements in values.
clusterId ID of the cluster bucket in which to place the object. If clusterId is 0, use the

cluster bucket (System currentClusterId). Otherwise, clusterId must be a
positive integer <= GciFetchSize_(OOP_ALL_CLUSTER_BUCKETS).

makePermanent Has no effect.

Return Value
GciCreateOopObj returns the OOP of the object it creates. The return value is the same as objId
unless that value is OOP_ILLEGAL, in which case GciCreateOopObj assigns and returns a new
OOP itself.

Description
Creates a new object using an object identifier (objId) previously obtained from GciGetFreeOop or
GciGetFreeOops. For more about the semantics of such object identifiers, see GciGetFreeOop on
page 204.

The object is created in temporary object space, and the garbage collector makes it permanent if the
object is referenced, or becomes referenced, by another permanent object.

Values are stored into the object starting at the first named instance variable (if any) and continuing
to the indexable (or NSC) instance variables if oclass is indexable or NSC. Values may be forward
references to objects whose identifier has been allocated with GciGetFreeOop, but for which the
object has not yet been created with GciCreate.... The caller must initialize any unused elements of
*values to OOP_NIL.

Because it is illegal to create a forward reference to a Symbol, any GciCreate... call that creates a
Symbol will fail if the client’s objId of the created object was already used as a forward reference.

If oclass is an indexable or NSC class, then numValues may be as large or as small as desired. If oclass
is neither indexable nor NSC, numValues must not exceed the number of named instance variables
124 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
in the class. If numValues is less than number of named instance variables, then the size of the
newly-created object is the number of named instance variables and any instance variables beyond
numValues are initialized to OOP_NIL.

For an indexable object, if numValues is greater than zero and values is NULL, then the object is
created of size numValues, and is initialized to logical size numValues. (This is equivalent to new:
aSize for classes Array or String.)

See Also
GciCreateByteObj, page 122
GciGetFreeOop, page 204
GciGetFreeOops, page 206
GemTalk Systems 125

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciCTimeToDateTime

Convert a C date-time representation to the equivalent GemStone representation.

Syntax
BoolType GciCTimeToDateTime(

time_t arg,
GciDateTimeSType * result);

Input Arguments
arg The C time value to be converted.

Result Arguments
result A pointer to the C struct in which to place the converted value.

Return Value
Returns TRUE if the conversion succeeds; otherwise returns FALSE.

Description
Converts a time_t value to GciDateTimeSType. On systems where time_t is a signed value,
GciCTimeToDateTime generates an error if arg is negative.

See Also
GciDateTimeToCTime, page 127
126 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciDateTimeToCTime

Convert a GemStone date-time representation to the equivalent C representation.

Syntax
time_t GciDateTimeToCTime(

const GciDateTimeSType *arg);

Input Arguments
arg An instance of GciDateTimeSType to be converted.

Return Value
A C time value of type time_t.

Description
Converts an instance of GciDateTimeSType to the equivalent time_t value.

See Also
GciCTimeToDateTime, page 126
GemTalk Systems 127

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciDbgEstablish

Specify the debugging function for GemBuilder to execute before most calls to GemBuilder
functions.

Syntax
GciDbgFuncType * GciDbgEstablish(

GciDbgFuncType * newDebugFunc);

Input Arguments
newDebugFunc A pointer to a C function that will be called before each subsequent

GemBuilder call. Note that this function will not be called before any of the
following GemBuilder functions or macros: GCI_ALIGN,
GCI_BOOL_TO_OOP, GCI_CHR_TO_OOP, GciErr, or GciDbgEstablish
itself.

The newDebugFunc function is passed a single null-terminated string argument, (of type
const char []), the name of the GemBuilder function about to be called.

Return Value
Returns a pointer to the newDebugFunc specified in the previous GciDbgEstablish call (if any).

Description
This function establishes the name of a C function (most likely a debugging routine) to be called
before your program calls any GemBuilder function or macro (except those named above). Before
each GemBuilder call, a single argument, a null-terminated string that names the GemBuilder
function about to be executed, is passed to the specified newDebugFunc.

To disable previous debugging routines, your program can use the following statement:

GciDbgEstablish(NULL);

Example
void traceGciFunct(const char* gciFname)
{
 printf("trace gci call %s \n", gciFname);
}

void debugEstablishExample(void)
{
 GciDbgEstablish(traceGciFunct); // enable tracing

 GciFetchSize_(OOP_CLASS_STRING); // this call will be traced

 GciDbgEstablish(NULL); // shut off tracing
}

128 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciDbgEstablishToFile, page 130
GciErr, page 148
GemTalk Systems 129

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciDbgEstablishToFile

Write trace information for most GemBuilder functions to a file.

Syntax
BoolType GciDbgEstablishToFile(

const char * fileName);

Input Arguments
fileName The file to which trace information is to be written.

Return Value
Returns TRUE if the file operation was successful.

Description
This function causes trace information for most GemBuilder functions to be written to a file. If the
file already exists, it is opened in append mode. If fileName is NULL and tracing to a file is not
currently active, trace information will be written to stdout.

Calling GciDbgEstablishToFile supersedes the effect of any previous calls to GciDbgEstablish or
GciDbgEstablishToFile.

To terminate tracing to an active file, your program can use the following statement:

GciDbgEstablishToFile(NULL);

Alternatively, your program can callGciShutdown.

For details about the trace information generated, see GciDbgEstablish.

See Also
GciDbgEstablish, page 128
GciErr, page 148
130 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciDbgLogString

Pass a message to a trace function.

Syntax
void GciDbgLogString(

const char * message);

Input Arguments
message A message to be passed to GciDbgEstablish or GciDbgEstablishToFile.

Description
If either GciDbgEstablish or GciDbgEstablishToFile has been called to activate tracing of
GemBuilder calls, this function passes the argument to the trace function.

If tracing is not active, this function has no effect.

See Also
GciDbgEstablish, page 128
GciDbgEstablishToFile, page 130
GemTalk Systems 131

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciDeclareAction

An alternative way to associate a C function with a Smalltalk user action.

Syntax
void GciDeclareAction(

const char* name,
void* func,
int nargs,
uint flags,
BoolType errorIfDuplicate);

Input Arguments
name The user action name (a case-insensitive, null-terminated string).
func A pointer to the C user action function.
nargs The number of arguments in the C function.
flags Flags that are rarely used. Mainly for internal use.
errorIfDuplicate If True, return an error if there is already a user action with the specified

name. If False, leave the existing user action in place and ignore the current
call.

Description
This function associates a user action name (declared in Smalltalk) with a user-written C function.
GciDeclareAction allows you to declare a user action by passing each field of the user action
structure to the function as a separate argument. Because the user action structure is encapsulated
within the function itself, there’s no need to explicitly allocate and free memory, as is required with
GciInstallUserAction (which uses the data structure defined by GciUserActionSType).

See Also
Chapter 3, “Writing C Functions To Be Called from GemStone”‚ starting on page 47
“The User Action Information Structure” on page 78
GciInstallUserAction, page 218
GciUserActionInit, page 413
GciUserActionShutdown, page 414
132 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciDecodeOopArray

Decode an OOP array that was previously run-length encoded.

Syntax
int GciDecodeOopArray(

OopType * encodedOopArray,
const int numEncodedOops,
OopType * decodedOopArray,
const int decodedOopArraySize);

Input Arguments
encodedOopArray An OOP array that was encoded by a call to GciEncodeOopArray.
numEncodedOops The number of OOPs in encodedOopArray.
decodedOopArraySize The maximum number of OOPs in decodedOopArray.

Result Arguments
decodedOopArray The decoded OOP array that had been run-length encoded.

Return Value
Returns the number of OOPs placed in decodedOopArray.

Description
This function decodes the OOPs in encodedOopArray that were run-length encoded using
GciEncodeOopArray and places the result in decodedOopArray.

The decodedOopArraySize must be large enough to hold all decoded OOPs. If it is not, no decode is
performed and *decodedOopArraySize is set to -1.

See Also
GciFetchNumEncodedOops, page 176
GciEnableFreeOopEncoding, page 143
GciEncodeOopArray, page 146
GciGetFreeOopsEncoded, page 208
GemTalk Systems 133

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciDecSharedCounter

Decrement the value of a shared counter.

Syntax
BoolType GciDecSharedCounter(

int64_t counterIdx,
int64_t * value,
int64_t * floor);

Input Arguments
counterIdx The offset into the shared counters array of the value to decrement.
value Pointer to a value that indicates how much to decrement the shared counter

by.
floor The minimum possible value for the shared counter. The counter cannot be

decremented below this value. If floor is NULL, then a floor value of
INT_MIN (-2147483647) will be used.

Result Arguments
value Pointer to a value that indicates the new value of the shared counter, after the

decrement.

Return Value
Returns a C Boolean value indicating if the shared counter was successfully decremented by the
given amount. Returns TRUE if successful, FALSE if an error occurred.

Description
This function decrements the value of a particular shared counter by a specified amount. The
shared counter is specified by index. The value of this shared counter cannot be decremented to a
value lower than floor.

This function is not supported for remote GCI interfaces, and will always return FALSE.

See Also
GciFetchNumSharedCounters, page 177
GciIncSharedCounter, page 214
GciSetSharedCounter, page 353
GciReadSharedCounter, page 316
GciReadSharedCounterNoLock, page 317
GciFetchSharedCounterValuesNoLock, page 190
134 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciDirtyExportedObjs

Find all objects in the ExportedDirtyObjs set.

Syntax
BoolType GciDirtyExportedObjs(

OopType theOops[],
int * numOops);

Input Arguments
numOops The maximum number of objects that can be put into theOops buffer.

Result Arguments
theOops An array of the dirty exported objects found.
numOops The number of dirty exported objects found.

Return Value
This function returns a C Boolean value indicating whether or not the complete set of dirty objects
has been returned in theOops in one or more calls. TRUE indicates that the complete set has been
returned, and FALSE indicates that it has not.

Description
This function returns a list of all objects that are in the ExportedDirtyObjs set, which includes all
objects in the PureExportSet that have been made “dirty” since the ExportedDirtyObjs set was last
initialized or retrieved using GciDirtyAlteredObjs, GciDirtyExportedObjs, GciDirtyObjsInit,
GciDirtySaveObjs, or GciTrackedObjsFetchAllDirty. Object are added to the PureExportSet
using GciSaveObjs or by other functions that invoke GciSaveObjs. An object is considered dirty
(changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.

 • The object was changed by a call from this session to any GemBuilder function from within a
user action.

 • The object was changed by a call from this session to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut, GciStrKeyValueDictAtObjPut, or
GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by another
session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling back the
Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and GciCreate... do
not put the modified object into the set of dirty objects (unless the call is from within a user action).
GemTalk Systems 135

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
The assumption is that the client does not want the dirty set to include modifications that the client
has explicitly made.

The function GciDirtyObjsInit must be executed once after GciLogin before this function can be
called, because it depends upon GemStone’s set of dirty objects.

The user is expected to call this function repeatedly while it returns FALSE, until it finally returns
TRUE. When this function returns TRUE, it first clears the set of dirty objects.

Note that GciDirtyExportedObjs removes OOPs from the ExportedDirtyObjs set as they are
enumerated.

See Also
“Garbage Collection” on page 40
GciDirtyObjsInit, page 137
GciDirtySaveObjs, page 138
GciDirtyTrackedObjs, page 140
GciTrackedObjsFetchAllDirty, page 405
GciHiddenSetIncludesOop, page 211
GciReleaseAllGlobalOops, page 319
GciSaveGlobalObjs, page 337
GciSaveObjs, page 338
136 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciDirtyObjsInit

Begin tracking which objects in the session workspace change.

Syntax
void GciDirtyObjsInit()

Description
GemStone can track which objects in a session change, but doing so has a measurable cost. By
default, GemStone does not do it. The GciDirtyObjsInit function permits an application to request
GemStone to maintain that set of dirty objects, the ExportedDirtyObjects, when it is needed. Once
initialized, GemStone tracks dirty objects until GciLogout is executed.

GciDirtyObjsInit must be called once after GciLogin before GciDirtyExportedObjs,
GciDirtySaveObjs, or GciTrackedObjsFetchAllDirty in order for those functions to operate
properly, because they depend upon GemStone’s set of dirty objects.

An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.

 • The object was changed by a call from this session to any GemBuilder function from within a
user action.

 • The object was changed by a call from this session to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut, GciStrKeyValueDictAtObjPut, or
GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by another
session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling back the
Smalltalk in-memory state to the previously committed state.

See Also
GciDirtyExportedObjs, page 135
GciDirtySaveObjs, page 138
GciTrackedObjsFetchAllDirty, page 405
GciHiddenSetIncludesOop, page 211
GemTalk Systems 137

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciDirtySaveObjs

Find all exported or tracked objects that have changed and are therefore in the ExportedDirtyObjs
or TrackedDirtyObjs sets.

Syntax
BoolType GciDirtySaveObjs(

OopType theOops[],
int * numOops);

Input Arguments
numOops The number of objects that can be put into theOops buffer.

Result Arguments
theOops An array of the dirty cached objects found.
numOops The number of dirty cached objects found.

Return Value
This function returns a C Boolean value indicating whether or not the complete set of dirty objects
has been returned in theOops in one or more calls. TRUE indicates that the complete set has been
returned, and FALSE indicates that it has not.

Description
GciDirtySaveObjs finds all objects that are in the ExportedDirtyObjs or TrackedDirtyObjs sets.
The ExportedDirtyObjs set includes all objects in PureExportSet that have been made “dirty” since
the ExportedDirtyObjs set was last reset, and the TrackedDirtyObjs set includes all objects in the
GciTrackedObjs set that have been made “dirty” since the TrackedDirtyObjs set was last reset.

The ExportedDirtyObjs set is initialized by GciDirtyObjsInit; it is cleared by calls to
GciDirtyAlteredObjs, GciDirtyExportedObjs, GciDirtySaveObjs (this function), or
GciTrackedObjsFetchAllDirty. The TrackedDirtyObjs set is initialized by GciTrackedObjsInit
and cleared by calls to GciDirtyAlteredObjs, GciDirtySaveObjs (this function),
GciDirtyTrackedObjs, or GciTrackedObjsFetchAllDirty.
138 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.

 • The object was changed by a call from this session to any GemBuilder function from within a
user action.

 • The object was changed by a call from this session to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut, GciStrKeyValueDictAtObjPut, or
GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by another
session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling back the
Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and GciCreate... do
not put the modified object into the set of dirty objects (unless the call is from within a user action).
The assumption is that the client does not want the dirty set to include modifications that the client
has explicitly made.

GciDirtyObjsInit must be called once after GciLogin before GciDirtySaveObjs can be executed,
because it depends upon GemStone’s set of dirty objects.

The user is expected to call GciDirtySaveObjs repeatedly while it returns FALSE, until it finally
returns TRUE. When GciDirtySaveObjs returns TRUE, it first clears the set of dirty objects.

For details about the PureExportSet, see GciSaveObjs. For details about the GciTrackedObjs set,
see GciSaveAndTrackObjs.

Note that GciDirtySaveObjs removes OOPs from the ExportedDirtyObjs and TrackedDirtyObjs
sets.

See Also
“Garbage Collection” on page 40
GciDirtyExportedObjs, page 135
GciDirtyObjsInit, page 137
GciDirtyTrackedObjs, page 140
GciTrackedObjsFetchAllDirty, page 405
GciSaveObjs, page 338
GemTalk Systems 139

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciDirtyTrackedObjs

Find all tracked objects that have changed and are therefore in the TrackedDirtyObjs set.

Syntax
BoolType GciDirtyTrackedObjs(

OopType theOops[],
int * numOops);

Input Arguments
numOops The maximum number of objects that can be put into theOops buffer.

Result Arguments
theOops An array of the dirty tracked objects found.
numOops The number of dirty tracked objects found.

Return Value
This function returns a C Boolean value indicating whether or not the complete set of dirty tracked
objects has been returned in theOops in one or more calls. TRUE indicates that the complete set has
been returned, and FALSE indicates that it has not.

Description
This function returns a list of all objects that are in the TrackedDirtyObjs set, which includes all
objects that are in the GciTrackedObjs set and have been made “dirty” since the GciTrackedObjs set
was initialized or cleared. Functions that initialize or remove objects from the TrackedDirtyObjs set
are GciDirtyAlteredObjs, GciDirtySaveObjs, GciDirtyTrackedObjs (this function),
GciTrackedObjsFetchAllDirty and GciTrackedObjsInit.

An object is considered dirty (changed) under one or more of the following conditions:

 • The object was changed by Smalltalk execution from this session.

 • The object was changed by a call from this session to any GemBuilder function from within a
user action.

 • The object was changed by a call from this session to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut, GciStrKeyValueDictAtObjPut, or
GciStrKeyValueDictAtPut.

 • The object was read by this session, and after this session did a commit, begin, or abort
transaction, the session now has visibility to changes to the object committed by another
session.

 • The object is persistent, and this session aborted its changes to the object, thus rolling back the
Smalltalk in-memory state to the previously committed state.

Calls to GciStore... (other than GciStorePaths), GciAppend..., GciReplace..., and GciCreate... do
not put the modified object into the set of dirty objects (unless the call is from within a user action).
140 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
The assumption is that the client does not want the dirty set to include modifications that the client
has explicitly made.

This function may only be called after GciTrackedObjsInit has been executed, because it depends
upon GemStone’s set of tracked objects. The user is expected to call this function repeatedly while
it returns FALSE, until it finally returns TRUE. When this function returns TRUE, it first clears the
set of dirty objects.

Note that GciDirtyTrackedObjs removes OOPs from the TrackedDirtyObjs set.

See Also
“Garbage Collection” on page 40
GciDirtySaveObjs, page 138
GciHiddenSetIncludesOop, page 211
GciReleaseAllTrackedOops, page 321
GciSaveAndTrackObjs, page 336
GciTrackedObjsFetchAllDirty, page 405
GciTrackedObjsInit, page 407
GemTalk Systems 141

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Gci_doubleToSmallDouble

Convert a C double to a SmallDouble object.

Syntax
OopType Gci_doubleToSmallDouble(

double aFloat);

Return Value
Returns the OOP of the GemStone SmallDouble object that corresponds to the C value. If the C
value is not representable as a GemStone SmallDouble, return OOP_ILLEGAL.

Description
This function translates a C double into the equivalent GemStone SmallDouble object.

See Also
GciFltToOop, page 203
142 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciEnableFreeOopEncoding

Enable run-length encoding of free OOPs.

Syntax
void GciEnableFreeOopEncoding()

Description
This function enables run-length encoding of free OOPs sent between the Gem and the GemBuilder
client. This function increases CPU consumption on both the client and the Gem, and decreases the
number of bytes passed on the network.

See Also
GciDecodeOopArray, page 133
GciEncodeOopArray, page 146
GciFetchNumEncodedOops, page 176
GciGetFreeOopsEncoded, page 208
GemTalk Systems 143

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciEnableFullCompression

Enable full compression between the client and the RPC version of GemBuilder.

Syntax
void GciEnableFullCompression()

Description
This function enables full compression (in both directions) between the client and GciRpc (the
“remote procedure call” version of GemBuilder). This function has no effect for linked sessions.

See Also
GciIsRemote, page 224
144 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciEnableSignaledErrors

Establish or remove GemBuilder visibility to signaled errors from GemStone.

Syntax
BoolType GciEnableSignaledErrors(

BoolType newState);

Input Arguments
newState The new state of signaled error visibility: TRUE for visible.

Return Value
This function returns TRUE if signaled errors are already visible when it is called.

Description
GemStone permits selective response to signal errors: RT_ERR_SIGNAL_ABORT,
RT_ERR_SIGNAL_COMMIT, and RT_ERR_SIGNAL_GEMSTONE_SESSION. The default
condition is to leave them all invisible. GemStone responds to each single kind of signal error only
after an associated method of class System has been executed: enableSignaledAbortError,
enableSignaledObjectsError, and enableSignaledGemStoneSessionError
respectively.

After GciInit executes successfully, the GemBuilder default condition also leaves all signal errors
invisible. The GciEnableSignaledErrors function permits GemBuilder to respond automatically to
signal errors. However, GemStone must respond to each kind of error in order for GemBuilder to
respond to it. Thus, if an application calls GciEnableSignaledErrors with newState equal to TRUE,
then GemBuilder responds automatically to exactly the same kinds of signal errors as GemStone.
If GemStone has not executed any of the appropriate System methods, then this call has no effect
until it does.

When enabled, GemBuilder checks for signal errors at the start of each function that accesses the
database. It treats any that it finds just like any other errors, through GciErr or the GciLongJmp
mechanism, as appropriate.

Automatic checking for signalled errors incurs no extra runtime cost. The check is optimized into
the check for a valid session. However, instead of checking automatically, these errors can be polled
by calling the GciPollForSignal function.

GciEnableSignaledErrors may be called before calling GciLogin.

See Also
GciErr, page 148
GciPollForSignal, page 309
GemTalk Systems 145

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciEncodeOopArray

Encode an array of OOPs, using run-length encoding.

Syntax
int GciEncodeOopArray(

OopType * oopArray,
const int numOops,
OopType * encodedOopArray,
BoolType needsSorting);

Input Arguments
oopArray An OOP array to be encoded.
numOops The number of OOPs in oopArray.
needsSorting If oopArray is known to be in ascending order, set this to FALSE; otherwise

set it to TRUE.

Result Arguments
encodedOopArray The encoded OOP array.

Return Value
Returns the number of elements in the encoded array. Returns -1 indicating an error if the input
array was found to be out of sequence and needsSorting was set to FALSE.

Description
This function encodes the OOPs in oopArray using run-length encoding and places the result in
encodedOopArray. Both oopArray and encodedOopArray must have the size numOops.

See Also
GciDecodeOopArray, page 133
GciEnableFreeOopEncoding, page 143
GciFetchNumEncodedOops, page 176
GciGetFreeOopsEncoded, page 208
146 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciEncrypt

Encrypt a password string.

Syntax
char * GciEncrypt(

const char* password,
char outBuff[],
unsigned int outBuffSize);

Input Arguments
password String containing a password.
outBuffSize The maximum number of bytes to place in outBuff.

Result Arguments
outBuff Array in which to put the encrytped password.

Return Value
Returns a pointer to the first character of the encrypted password in outBuff[], or NULL if the
encrypted password is larger than outBuffSize.

Description
This function encrypts a host or GemStone password for use in GciSetNetEx or GciLogin with
password encyrption enabled.

See Also

GciLoginEx, page 231
GciSetNetEx, page 349
GemTalk Systems 147

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciErr

Prepare a report describing the most recent GemBuilder error.

Syntax
BoolType GciErr(

GciErrSType * errorReport);

Result Arguments
errorReport Address of a GemBuilder error report structure.

Return Value
TRUE indicates that an error has occurred. The errorReport parameter has been modified to contain
the latest error information, and the internal error buffer in GemBuilder has been cleared. You can
only call GciErr once for a given error. If GciErr is called a second time, the function returns FALSE.

If the result is TRUE, all objects referenced from errorReport have been added to the PureExportSet,
unless the error occurred during a GciStoreTravDoTravRefs_, in which case all objects referenced
from errorReport have been added to the ReferencedSet rather than the PureExportSet.

FALSE indicates no error occurred, and the contents of errorReport are unchanged.

Description
Your application program can call GciErr to determine whether or not the previous GemBuilder
function call resulted in an error. If an error has occurred, this function provides information about
the error and about the state of the GemStone system. In the case of a fatal error, your connection
to GemStone is lost, and the current session ID (from GciGetSessionId) is reset to
GCI_INVALID_SESSION_ID.

The GciErr function is especially useful when error traps are disabled or are not present. See
“GciPopErrJump” on page 311 for information about using general-purpose error traps in
GemBuilder. The section “The Error Report Structure” on page 72 describes the C structure for
error reports.

See Also
GciClearStack, page 113
GciContinue, page 120
GciExecute, page 149
GciPopErrJump, page 311
GciRaiseException, page 315
148 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciExecute
GciExecute_

Execute a Smalltalk expression contained in a String or Utf8 object.

Syntax
OopType GciExecute(

OopType source,
OopType symbolList);

OopType GciExecute_(
OopType source,
OopType symbolList,
ushort environmentId);

Input Arguments
source The OOP of a String or Utf8 containing a sequence of one or more statements

to be executed.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description
This function sends an expression (or sequence of expressions) to GemStone for execution. This is
roughly equivalent to executing the body of a nameless procedure (method).

In most cases, you may find it more efficient to use GciExecuteStr. That function takes a C string
as its argument, thus reducing the number of network round-trips required to execute the code.
With GciExecute, you must first convert the source to a String or Utf8 object (see the following
example.) If the source is already one of these kinds of object, however, GciExecute will be more
efficient.

Because GciExecute calls the virtual machine, the user can issue a soft break while this function is
executing. For more information, see “Interrupting GemStone Execution” on page 27.

Example
void executeExample(void)
GemTalk Systems 149

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
{
 OopType oString = GciNewString(" ^ 3 + 4 ");

 OopType result = GciExecute(oString, OOP_NIL);
 if (result == OOP_NIL) {
 printf("error from execution\n");
 } else {
 BoolType conversionErr = FALSE;
 int val = GciOopToI32_(result, &conversionErr);
 if (conversionErr) {
 printf("Error converting result to C int\n");
 } else {
 printf("result = %d\n", val);
 }
 }
}

See Also
GciContinue, page 120
GciErr, page 148
GciExecuteFromContext, page 151
GciExecuteStr, page 153
GciExecuteStrFetchBytes, page 155
GciExecuteStrFromContext, page 157
GciNbExecute, page 245
150 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciExecuteFromContext
GciExecuteFromContext_

Execute a Smalltalk expression contained in a String or Utf8 object as if it were a message sent to
another object.

Syntax
OopType GciExecuteFromContext(

OopType source,
OopType contextObject,
OopType symbolList);

OopType GciExecuteFromContext_(
OopType source,
OopType contextObject,
OopType symbolList,
ushort environmentId);

Input Arguments
source The OOP of a String or Utf8 containing a sequence of one or more statements

to be executed.
contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description
This function sends an expression (or sequence of expressions) to GemStone for execution. The
source is executed as though contextObject were the receiver. That is, the pseudo-variable self will
have the value contextObject during the execution. Messages in the source are executed as defined
for contextObject.

For example, if contextObject is an instance of Association, the source can reference the pseudo-
variables key and value (referring to the instance variables of the Association contextObject). If any
pool dictionaries were available to Association, the source could reference them too.

In most cases, you may find it more efficient to use GciExecuteStrFromContext. That function takes
a C string as its argument, thus reducing the number of network round-trips required to execute
GemTalk Systems 151

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
the code. With GciExecuteFromContext, you must first convert the source to a String or Utf8 object.
If the source is already one of these kinds of object, however, GciExecuteFromContext will be more
efficient.

Because GciExecuteFromContext calls the virtual machine, the user can issue a soft break while
this function is executing. For more information, see “Interrupting GemStone Execution” on
page 27.

See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciExecuteStr, page 153
GciExecuteStrFetchBytes, page 155
GciExecuteStrFromContext, page 157
GciNbExecuteStrFromContext, page 249
152 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciExecuteStr
GciExecuteStr_

Execute a Smalltalk expression contained in a C string.

Syntax
OopType GciExecuteStr(

const char source[],
OopType symbolList);

OopType GciExecuteStr_(
const char source[],
OopType symbolList,
ushort environmentId);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description
This function sends an expression (or sequence of expressions) to GemStone for execution.

If the source is already a String object, you may find it more efficient to use GciExecute. That
function takes the OOP of a String as its argument.

Because GciExecuteStr calls the virtual machine, the user can issue a soft break while this function
is executing. For more information, see .“Interrupting GemStone Execution” on page 27
GemTalk Systems 153

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Example
void executeStrExample(void)
{
 // get the symbolList for UserProfile named 'romeo'
 OopType symbolList = GciExecuteStr(
"(AllUsers userWithId: 'Newton') symbolList", OOP_NIL);

 // get the value associated with key "#GciStructsMd5" in that
 // symbolList ; expected to be a kind of String
 OopType keysum = GciExecuteStr("GciStructsMd5", symbolList);

 // fetch characters of the String
 char buf[1024];
 GciFetchChars_(keysum, 1, buf, sizeof(buf));

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // FMT_OID format string is defined in gci.ht
 printf("unexpected error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf("#GciStructsMd5 is %s \n", buf);
 }
}

See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciExecuteFromContext, page 151
GciExecuteStrFetchBytes, page 155
GciExecuteStrFromContext, page 157
GciNbExecuteStr, page 246
154 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciExecuteStrFetchBytes
Execute a Smalltalk expression contained in a C string, returning byte-format results.

Syntax
int64 GciExecuteStrFetchBytes(

 const char * source,
 int64 sourceSize,
 OopType sourceClass,
 OopType contextObject,
 OopType symbolList,
 ByteType * result,
 int64 maxResultSize);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
sourceSize The number of bytes in the source, or -1. If sourceSize is -1, strlen(source)

is used.
sourceClass The OOP of the class that source should be converted to. Examples are

OOP_CLASS_STRING, OOP_CLASS_Utf8, OOP_CLASS_Unicode7 .
contextObject The OOP of any GemStone object. The code to be executed is compiled as if

it were an instance method in the class of contextObject. A value of
OOP_NO_CONTEXT means no context.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

maxResultSize Maximum size of the resulting string.

Result Arguments
result Array in which to put the results of executing the source.

Return Value
Returns the the number of bytes returned in the result buffer, or -1 if an error occured.

Description
This function sends an expression (or sequence of expressions) to GemStone for execution. The
execution result, which should be a byte format object is returned in the *result buffer.

Execution is in environment 0 using GCI_PERFORM_FLAG_ENABLE_DEBUG .
GemTalk Systems 155

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciExecuteFromContext, page 151
GciExecuteStr, page 153
GciExecuteStrFromContext, page 157
GciNbExecuteStrFetchBytes, page 247
156 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciExecuteStrFromContext
GciExecuteStrFromContext_

Execute a Smalltalk expression contained in a C string as if it were a message sent to an object.

Syntax
OopType GciExecuteStrFromContext(

const char source[],
OopType contextObject,
OopType symbolList);

OopType GciExecuteStrFromContext_(
const char source[],
OopType contextObject,
OopType symbolList,
ushort environmentId);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description
This function sends an expression (or sequence of expressions) to GemStone for execution. The
source is executed as though contextObject were the receiver. That is, the pseudo-variable self will
have the value contextObject during the execution. Messages in the source are executed as defined
for contextObject.

For example, if contextObject is an instance of Association, the source can reference the pseudo-
variables key and value (referring to the instance variables of the Association contextObject). If any
pool dictionaries were available to Association, the source could reference them too.

Because GciExecuteStrFromContext calls the virtual machine, the user can issue a soft break while
this function is executing. For more information, see “Interrupting GemStone Execution” on
page 27.
GemTalk Systems 157

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Example
void executeFromContextExample(void)
{
 // get the Assocation with key UserProfileSet in dictionary
Globals
 OopType oAssoc = GciExecuteStr("Globals associationAt:
#UserProfileSet",

OOP_NIL);

 OopType oResult = GciExecuteStrFromContext(" ^ value ", oAssoc,
OOP_NIL);

 if (oResult != OOP_CLASS_USERPROFILE_SET) {
 printf("unexpected result"FMT_OID" \n", oResult);
 }
}

See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciExecuteFromContext, page 151
GciExecuteStr, page 153
GciExecuteStrFetchBytes, page 155
GciNbExecuteStrFromContext, page 249
158 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciExecuteStrTrav
GciExecuteStrTrav_

First execute a Smalltalk expression contained in a C string as if it were a message sent to an object,
then traverse the result of the execution.

Syntax
BoolType GciExecuteStrTrav(

const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs);

BoolType GciExecuteStrTrav_(
const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
contextObject The OOP of any GemStone object. A value of OOP_ILLEGAL means no

context.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

travArgs Pointer to an instance of GciClampedTravArgsSType containing the
following input argument fields:

OopType clampSpec
The OOP of the Smalltalk ClampSpecification to be used,
or OOP_NIL, if the traversal is to operate without
clamping.

int level
Maximum traversal depth. When the level is 1, an object
report is written to the traversal buffer for each element in
the array of OOPs representing the objects to traverse.
When level is 2, an object report is also obtained for the
instance variables of each level-1 object. When level is 0,
the number of levels in the traversal is not restricted.

int retrievalFlags
Flags to control object retrieval. The value of retrievalFlags
GemTalk Systems 159

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
should be given by using the following GemBuilder
mnemonics:
GCI_RETRIEVE_DEFAULT
GCI_RETRIEVE_EXPORT
 GCI_CLEAR_EXPORT causes the traversal to clear the
PureExportSet or the user action’s export set before it
adds any OOPs to the traverse buffer.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Result Arguments
travArgs Pointer to an instance of GciClampedTravArgsSType containing the

following result argument field:

ByteType * travBuff
The buffer for the results of the traversal. The first element
placed in the buffer is the actualBufferSize, an integer that
indicates how many bytes were actually stored in the
buffer by this function. The remainder of the traversal
buffer consists of a series of object reports, each of which
is of type GciObjRepSType.

Return Value
Returns FALSE if the traversal is not yet completed. You can then call GciMoreTraversal to
proceed. Returns TRUE if there are no more objects to be returned by subsequent calls to
GciMoreTraversal.

Description
This function is like GciPerformTrav, except that it first does a GciExecuteStr instead of a
GciPerform.

See Also
GciExecuteStr, page 153
GciMoreTraversal, page 234
GciPerformTrav, page 304
GciPerformTraverse, page 306
160 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchByte

Fetch one byte from an indexed byte object.

Syntax
ByteType GciFetchByte(

OopType theObject,
int64 atIndex);

Input Arguments
theObject The OOP of the GemStone byte object.
atIndex The index into theObject of the element to be fetched. The index of the first

element is 1.

Return Value
Returns the byte value at the specified index. In case of error, this function returns zero.

Description
This function fetches a single element from a byte object at the specified index, using structural
access.

Example
void fetchByteExample(void)
{
 OopType oString = GciNewString("abc");

 ByteType theChar = GciFetchByte(oString, 2);
 if (theChar != 'b') {
 printf("unexpected result %d \n", theChar);
 }
}

See Also
GciFetchBytes_, page 162
GciStoreByte, page 360
GciStoreBytes, page 361
GemTalk Systems 161

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchBytes_

Fetch multiple bytes from an indexed byte object.

Syntax
int64 GciFetchBytes_(

OopType theObject,
int64 startIndex,
ByteType theBytes[],
int64 numBytes);

Input Arguments
theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin fetching bytes. (The index of the

first element is 1.) Note that if startIndex is 1 greater than the size of the object,
this function returns a byte array of size 0, but no error is generated.

numBytes The maximum number of bytes to return.

Result Arguments
theBytes The array of fetched bytes

Return Value
Returns the number of bytes fetched. (This may be less than numBytes, depending upon the size of
theObject.) In case of error, this function returns zero.

Description
This function fetches multiple elements from a byte object starting at the specified index, using
structural access. A common application of GciFetchBytes_ would be to fetch a text string.

GciFetchBytes_ permits theObject to be a byte object with multiple bytes per character or digit, such
as DoubleByteString, Float and LargeInteger. In this case, GciFetchBytes_ provides automatic byte
swizzling to client native byte order. For more about byte swizzling, see page 29. For
MultiByteStrings, startIndex must be aligned on character boundaries and numbytes must be a
multiple of the number of bytes per character; for numeric objects startindex must be one and
numBytes the size of the numeric class.

Example
This example illustrates a C function that incrementally processes a GemStone String of arbitrary
size, while using a limited amount of C memory space.

void displayByteObject(OopType oObject)
{
 enum { BUF_SIZE = 5000 };
 char displayBuff[BUF_SIZE];
162 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 BoolType done = FALSE;
 int idx = 1;
 while (! done) {
 int64 numRet = GciFetchBytes_(oObject, idx,
(ByteType*)displayBuff,

BUF_SIZE - 1);
 if (numRet == 0) {
 done = TRUE; // hit end of object or error
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("unexpected error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 }
 } else {
 displayBuff[numRet] = '\0';
 printf("%s\n", displayBuff);
 idx += numRet;
 }
 }
}

See Also
GciFetchByte, page 161
GciFetchOop, page 181
GciStoreByte, page 360
GciStoreBytes, page 361
GemTalk Systems 163

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchChars_

Fetch multiple ASCII characters from an indexed byte object.

Syntax
int64 GciFetchChars_(

OopType theObject,
int64 startIndex,
char * cString,
int64 maxSize);

Input Arguments
theObject The OOP of a text object.
startIndex The index of the first character to retrieve.
maxSize Maximum number of characters to fetch.

Result Arguments
cString Pointer to the location in which to store the returned string.

Return Value
Returns the number of characters fetched.

Description
Equivalent to GciFetchBytes_, except that it is assumed that theObject contains ASCII text. The
bytes fetched are stored in memory starting at cString. At most maxSize - 1 bytes will be fetched
from the object, and a \0 character will be stored in memory following the bytes fetched. The
function returns the number of characters fetched, excluding the null terminator character, which
is equivalent to strlen(cString) if the object does not contain any null characters. If an error
occurs, the function result is 0, and the contents of cString are undefined.

See Also
GciFetchBytes_, page 162
164 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchClass

Fetch the class of an object.

Syntax
OopType GciFetchClass(

OopType theObject);

Input Arguments
theObject The OOP of the specified object.

Return Value
Returns the OOP of the object’s class. In case of error, this function returns OOP_NIL.

The GemBuilder include file gcioop.ht defines a C constant for each of the Smalltalk kernel
classes. Those C constants are listed in Appendix A, “Reserved OOPs”.

Description
The GciFetchClass function obtains the class of an object from GemStone. The GemBuilder session
must be valid when GciFetchClass is called, unless theObject is an instance of one of the following
classes: Boolean, Character, JisCharacter, SmallInteger, SmallDouble, or UndefinedObject.

Example
#include <stdlib.h>

void fetchClassExample(void)
{
 // random double to Oop conversion producing a Float or SmallFloat
 double rand = drand48() * 1.0e38 ;
 OopType oFltObj = GciFltToOop(rand);

 OopType oClass = GciFetchClass(oFltObj);
 const char* kind;
 if (oClass == OOP_CLASS_SMALL_DOUBLE) {
 kind = "SmallDouble";
 } else if (oClass == OOP_CLASS_FLOAT) {
 kind = "Float";
 } else {
 kind = "Unexpected";
 }
 printf("result is a %s, class oop = "FMT_OID"\n", kind, oClass);
}
GemTalk Systems 165

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciFetchNamedSize, page 174
GciFetchObjImpl, page 180
GciFetchSize_, page 191
GciFetchVaryingSize_, page 199
166 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchDateTime

Convert the contents of a DateTime object and place the results in a C structure.

Syntax
void GciFetchDateTime(

OopType datetimeObj,
GciDateTimeSType * result);

Input Arguments
datetimeObj OOP of the object to fetch.

Result Arguments
result C pointer to the structure for the returned object.

Description
Fetches the contents of a DateTime object into the specified C result. Generates an error if
datetimeObj is not an instance of DateTime. The value that result points to is undefined if an error
occurs.
GemTalk Systems 167

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchDynamicIv

Fetch the OOP of one of an object’s dynamic instance variables.

Syntax
OopType GciFetchDynamicIv(

OopType theObject,
OopType aSymbol);

Input Arguments
theObject The OOP of the GemStone object.
aSymbol Specifies the dynamic instance variable to fetch.

Return Value
Returns the OOP of the specified dynamic instance variable. If no such dynamic instance variable
exists in the object, this function returns OOP_NIL.

Description
This function fetches the contents of an object’s dynamic instance variable, as specified by aSymbol.

See Also
GciFetchDynamicIvs, page 169
GciStoreDynamicIv, page 366
168 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchDynamicIvs

Fetches the OOPs of one or more of an object’s dynamic instance variables.

Syntax
int GciFetchDynamicIvs(

OopType theObject,
OopType * buf,
int numOops);

Input Arguments
theObject The OOP of the source GemStone object.
numOops The maximum number of elements to return.

Result Arguments
buf C pointer to the buffer that will contain the object’s dynamic instance

variables.

Return Value
Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.)

Description
The number of dynamic instance variable pairs returned is (function result / 2). To obtain all
dynamic instance variables in one call, use a buffer.

See Also
GciFetchDynamicIv, page 168
GciStoreDynamicIv, page 366
GemTalk Systems 169

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchNamedOop

Fetch the OOP of one of an object’s named instance variables.

Syntax
OopType GciFetchNamedOop(

OopType theObject,
int atIndex);

Input Arguments
theObject The OOP of the GemStone object.
atIndex The index into theObject’s named instance variables of the element to be

fetched. The index of the first named instance variable is 1.

Return Value
Returns the OOP of the specified named instance variable. In case of error, this function returns
OOP_NIL.

Description
This function fetches the contents of an object’s named instance variable at the specified index,
using structural access.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void fetchNamedOopExample(void)
{
 // C constants to match Smalltalk class definition
 enum { COMPONENT_OFF_PARTNUMBER = 1,
 COMPONENT_OFF_NAME = 2,
 COMPONENT_OFF_COST = 3 };

 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution or detect found nothing
 return;
 }

 // fetch the name instance variable of aComponent
 OopType oName = GciFetchNamedOop(aComponent, COMPONENT_OFF_NAME);
170 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 // fetch nameinstance variable without fixing its offset at C
compile time
 int ivOffset = GciIvNameToIdx(GciFetchClass(aComponent), "name");
 oName = GciFetchNamedOop(aComponent, ivOffset);
}

See Also
GciFetchNamedOops, page 172
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 197
GciIvNameToIdx, page 227
GciStoreIdxOop, page 367
GciStoreIdxOops, page 369
GciStoreNamedOop, page 371
GciStoreNamedOops, page 373
GemTalk Systems 171

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchNamedOops

Fetch the OOPs of one or more of an object’s named instance variables.

Syntax
int GciFetchNamedOops(

OopType theObject,
int startIndex,
OopType theOops[],
int numOops);

Input Arguments
theObject The OOP of the source GemStone object.
startIndex The index into theObject’s named instance variables at which to begin

fetching. (The index of the first named instance variable is 1.) Note that if
startIndex is 1 greater than the number of the object’s named instance
variables, this function returns an array of size 0, but no error is generated.

numOops The maximum number of elements to return.

Result Arguments
theOops The array of fetched OOPs.

Return Value
Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.) In case of error, this function returns zero.

Description
This function uses structural access to fetch multiple values from an object’s named instance
variables, starting at the specified index.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void fetchNamedOops_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 // execution error, or detect: found nothing
 return;
 }
172 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 // fetch name instance variables without knowing offset at C
compile time
 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0) {
 // error during fetch
 return;
 }
 OopType *oBuffer = (OopType*) malloc(sizeof(OopType) * namedSize
);
 if (oBuffer != NULL) {
 int numRet = GciFetchNamedOops(aComponent, 1, oBuffer,
namedSize);
 if (numRet != namedSize) {
 // error during fetch
 } else {
 // do something with contents of oBuffer
 }
 free(oBuffer);
 } else {
 // malloc failure
 }
}

See Also
GciFetchNamedOop, page 170
GciFetchVaryingOop, page 195
GciIvNameToIdx, page 227
GciStoreIdxOop, page 367
GciStoreNamedOop, page 371
GemTalk Systems 173

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchNamedSize

Fetch the number of named instance variables in an object.

Syntax
int GciFetchNamedSize(

OopType theObject);

Input Arguments
theObject The OOP of the specified object.

Return Value
Returns the number of named instance variables in theObject. In case of error, this function returns
zero.

Description
This function returns the number of named instance variables in a GemStone object. See the
example for GciFetchNamedOops on page 172.
174 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchNameOfClass

Fetch the class name object for a given class.

Syntax
OopType GciFetchNameOfClass(

OopType aClass);

Input Arguments
aClass The OOP of a class.

Return Value
The OOP of the class’s name, or OOP_NIL if an error occurred.

Description
Given the OOP of a class, this function returns the object identifier of the String object that is the
name of the class.
GemTalk Systems 175

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchNumEncodedOops

Obtain the size of an encoded OOP array.

Syntax
int GciFetchNumEncodedOops(

OopType * encodedOopArray,
const int numEncodedOops);

Input Arguments
encodedOopArray An OOP array that was encoded by a call to GciEncodeOopArray.

Result Arguments
numEncodedOops The number of OOPs in encodedOopArray.

Return Value
Returns the number of OOPs that will be decoded by a call to GciDecodeOopArray.

Description
This function returns the total number of OOPs in an OOP array that was encoded by a call to
GciEncodeOopArray.

See Also
GciDecodeOopArray, page 133
GciEnableFreeOopEncoding, page 143
GciEncodeOopArray, page 146
GciGetFreeOopsEncoded, page 208
176 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchNumSharedCounters

Obtain the number of shared counters available on the shared page cache used by this session.

Syntax
int GciFetchNumSharedCounters();

Return Value
Returns the number of shared counters available on the shared page cache used by this session, or
-1 if the session is not logged in.

Description
This function returns the total number of shared counters available on the shared page cache used
by this session.

Not supported for remote GCI interfaces.

See Also
GciDecSharedCounter, page 134
GciIncSharedCounter, page 214
GciSetSharedCounter, page 353
GciReadSharedCounter, page 316
GciReadSharedCounterNoLock, page 317
GciFetchSharedCounterValuesNoLock, page 190
GemTalk Systems 177

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchObjectInfo

Fetch information and values from an object.

Syntax
BoolType GciFetchObjectInfo(

OopType theObject,
GciFetchObjInfoArgsSType *args);

Input Arguments
theObject OOP of any object with byte, pointer, or NSC format.
args Pointer to an instance of GciFetchObjInfoArgsSType with the following

input argument fields:

int64 startIndex
The offset in the object at which to start fetching, using
GciFetchOops or GciFetchBytes_ semantics. startIndex is
ignored if bufSize == 0 or buffer == NULL.

int64 bufSize
The size in bytes of the buffer, maximum number of
elements fetched for a byte object. For an OOP object, the
maximum number of elements fetched for an OOP object
will be bufSize/8. If greater than zero, and if a Float or
BinaryFloat is being fetched, it must be large enough to
fetch the complete object.

int retrievalFlags
If (retrievalFlags & GCI_RETRIEVE_EXPORT) != 0 then if
theObject is non-special, theObject is automatically added
to the PureExportSet or the user action’s export set (see
GciSaveObjs on page 338).

Result Arguments

args Pointer to an instance of GciFetchObjInfoArgsSType with the following
result argument fields:

GciObjInfoSType *info
Pointer to an instance of GciObjInfoSType; may be
NULL.

ByteType * buffer
Pointer to an area where byte or OOP values will be
returned; may be NULL.

int64 numReturned
Number of logical elements (bytes or OOPs) returned in
buffer. Remember that the size of (OopType) is 8 bytes.

If either info or buffer is NULL, that portion of the result is not filled in.
178 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Return Value
TRUE if successful, FALSE if an error occurs.

Description
GciFetchObjectInfo fetches information and values from an object starting at the specified index
using structural access. If either info or buffer is NULL, then that part of the result is not filled in. If
numReturned is NULL, then buffer will not be filled in.

If theObject is a byte object with multiple bytes per character or digit, such as DoubleByteString,
LargeInteger, or Float, the results in args->buffer will be automatically byte swizzled to client native
byte order. For more about byte swizzling, see page 25.

For MultiByteStrings, args->startIndex must be aligned on a character boundary and args->bufSize
must be a multiple of the number of bytes per character in the string. For numeric objects, args-
>startIndex must be one and args->bufSize must be the size of the numeric class.

See Also
GciFetchOops, page 183
GciFetchBytes_, page 162
GciFetchOop, page 181
GciSaveObjs, page 338
GemTalk Systems 179

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchObjImpl

Fetch the implementation of an object.

Syntax
int GciFetchObjImpl(

OopType theObject);

Input Arguments
theObject The OOP of the specified object.

Return Value
Returns an integer representing the implementation type of theObject (0=pointer, 1=byte, 2=NSC,
or 3=special). In case of error, the return value is undefined.

Description
This function obtains the implementation of an object (pointer, byte, NSC, special) from GemStone.
For more information about implementation types, see “Direct Access to Metadata” on page 29.

See Also
GciFetchClass, page 165
GciFetchNamedSize, page 174
GciFetchSize_, page 191
GciFetchVaryingSize_, page 199
180 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchOop

Fetch the OOP of one instance variable of an object.

Syntax
OopType GciFetchOop(

OopType theObject,
 int64 atIndex);

Input Arguments
theObject The OOP of the source object.
atIndex The index into theObject of the OOP to be fetched. The index of the first OOP

is 1.

Return Value
Returns the OOP at the specified index of the source object. In case of error, this function returns
OOP_NIL.

Description
This function fetches the OOP of a single instance variable from any object at the specified index,
using structural access. It does not distinguish between named and unnamed instance variables.
Indices are based at the beginning of the object’s array of instance variables. In that array, any
existing named instance variables are followed by any existing unnamed instance variables.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void fetchOop_example(void)
{
 // C constant to match Smalltalk class definition
 enum { COMPONENT_OFF_NAME = 2 };

 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution, select: found nothing
 return ;
 }

 // Two ways to fetch the name instance variable of aComponent */
 OopType oName = GciFetchOop(aComponent, COMPONENT_OFF_NAME);
 oName = GciFetchNamedOop(aComponent, COMPONENT_OFF_NAME);
GemTalk Systems 181

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 // Fetch the 3rd element of aComponent's partsList,
 // without knowing exactly how many named instance variables exist.
 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0) {
 // error during fetch
 return ;
 }
 OopType aSubComponent = GciFetchOop(aComponent, namedSize + 3);

 // alternate way to Fetch the 3rd element of aComponent's partsList
 aSubComponent = GciFetchVaryingOop(aComponent, 3);
}

GciFetchOops, page 183
GciStoreOop, page 375
GciStoreOops, page 377
182 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchOops

Fetch the OOPs of one or more instance variables of an object.

Syntax
int GciFetchOops(

OopType theObject,
int64 startIndex,
OopType theOops[],
int numOops);

Input Arguments
theObject The OOP of the source object.
startIndex The index into theObject at which to begin fetching OOPs. The index of the

first OOP is 1. If startIndex is 1 greater than the size of the object, this function
returns an array of size 0, but no error is generated.

numOops The maximum number of OOPs to return.

Result Arguments
theOops The array of fetched OOPs.

Return Value
Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.) In case of error, this function returns zero.

Description
This function fetches the OOPs of multiple instance variables from any object starting at the
specified index, using structural access. It does not distinguish between named and unnamed
instance variables. Indices are based at the beginning of the object’s array of instance variables. In
that array, any existing named instance variables are followed by any existing unnamed instance
variables.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void fetchOops_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution, or detect: found nothing
 return ;
GemTalk Systems 183

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 }

 enum { BUF_SIZE = 60 };
 OopType oBuf[BUF_SIZE];

 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0 || namedSize > 50) {
 // error during fetch, or too many named instVars for buffer
 return;
 }

 // Two ways to fetch first 5 elements of aComponent's partsList
 GciFetchOops(aComponent, namedSize + 1, oBuf, 5);
 GciFetchVaryingOops(aComponent, 1, oBuf, 5);

 // Fetch the named instance variables PLUS
 // the first 5 elements of partsList
 GciFetchOops(aComponent, 1, oBuf, namedSize + 5);
 // oBuf[0..namedSize-1] are named instVar values,
 // oBuf[namedSize] is first varying instVar value
}

See Also
GciFetchOop, page 181
GciFetchVaryingOop, page 195
GciStoreOop, page 375
GciStoreOops, page 377
184 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchPaths

Fetch selected multiple OOPs from an object tree.

Syntax
BoolType GciFetchPaths(

const OopType theOops[],
int numOops,
const int paths[],
const int pathSizes[],
int numPaths,
OopType results[]);

Input Arguments
theOops A collection of OOPs from which you want to fetch.
numOops The size of theOops.
paths An array of integers. This one-dimensional array contains the elements of all

constituent paths, laid end to end.
pathSizes An array of integers. Each element of this array is the length of the

corresponding path in the paths array (that is, the number of elements in each
constituent path).

numPaths The number of paths in the paths array. This should be the same as the
number of integers in the pathSizes array.

Result Arguments
results An array containing the OOPs that were fetched.

Return Value
Returns TRUE if all desired objects were successfully fetched. Returns FALSE if the fetch on any
path fails for any reason.

Description
This function allows you to fetch multiple OOPs from selected positions in an object tree with a
single GemBuilder call, importing only the desired information from the database.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

Each path in the paths array is itself an array of integers. Those integers are offsets that specify a
path from which to fetch objects. In each path, a positive integer x refers to an offset within an
GemTalk Systems 185

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
object’s named instance variables (see GciFetchNamedOop), while a negative integer -x refers to
an offset within an object’s indexed instance variables (see GciFetchVaryingOop).

From each object in theOops, this function fetches the object pointed to by each element of the paths
array, and stores the fetched object into the results array. The results array contains (numOops *
numPaths) elements, stored in the following order:

[0,0]..[0,numPaths-1]..
[1,0]..[1,numPaths-1]..
[numOops-1,0]..[numOops-1,numPaths-1]

That is, all paths are first applied in order to the first element of theOops. This step is repeated for
each subsequent object, until all paths have been applied to all elements of theOops. The result for
object i and path j is represented as:

results[((i-1) * numPaths) + (j-1)]

If the fetch on any path fails for any reason, the result of that fetch is reported in the results array
as OOP_ILLEGAL. Because some path-fetching errors do not necessarily invalidate the remainder
of the information fetched, the system will then attempt to continue its fetching with the remaining
paths and objects.

This ability to complete a fetching sequence despite errors means that your application won’t be
slowed by a round-trip to GemStone on each fetch to check for errors. Instead, after a fetch is
complete, you can cycle through the result and deal selectively at that time with any errors you
find.

The appropriate response to an error in path fetching depends both upon the error itself and on
your application. Here are some of the reasons why a fetch might not succeed:

 • The user had no read authorization for some object in the path. The seriousness of this depends
on your application. In some applications, you may simply wish to ignore the inaccessible data.

 • The path was invalid for the object to which it was applied. This can happen if the object from
which you’re fetching is not of the correct class, or if the path itself is faulty for the class of the
object.

 • The path was valid but simply not filled out for the object being processed. This would be the
case, for example, if you attempted to access address.zip when an Employee’s Address instance
variable contained only nil. This is probably the most common path fetching error, and may
require only that the application program detect the condition and display some suitable
indication to the user that a field is not yet filled in with meaningful data.

Example

Example 1: Calling sequence for a single object and a single path

void fetchPath1(void)
{
 enum { path_size = 5 };
 int aPath[path_size]; /* the path itself */
 int aSize = path_size; /* the size of the path */

 for (int j = 0; j < path_size; j++) {
 aPath[j] = j + 1; // arbitrary offsets
 }
186 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr(“AllComponents detect:[:i|i partNumber =
1234]”, OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during resolve
 }

 OopType result;
 GciFetchPaths(&anOop, 1, aPath, &aSize, 1, &result);
}

Example 2: Calling sequence for multiple objects with a single path

void fetchPath2(void)
{
 OopType coll = GciResolveSymbol(“AllComponents”, OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }
 enum { num_roots = 3 ,
 path_size = 5 };
 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int aPath[path_size];
 int aSize = path_size;
 for (int j = 0; j < path_size; j++) {
 aPath[j] = 1; // arbitrary offsets
 }
 OopType results[num_roots];
 GciFetchPaths(oops, num_roots, aPath, &aSize, 1, results);
}

Example 3: Calling sequence for a single object with multiple paths

void fetchPath3(void)
{
 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr(“AllComponents detect:[:i|i partNumber =
1234]”, OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during execution
 }

 enum { num_paths = 10,
 path_size = 5 };
GemTalk Systems 187

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }
 OopType results[num_paths];
 GciFetchPaths (&anOop, 1, paths, pathSizes, num_paths, results);
}

Example 4: Calling sequence for multiple objects with multiple paths

void fetchPath4(void)
{
 OopType coll = GciResolveSymbol(“AllComponents”, OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }

 enum { num_roots = 10,
 num_paths = 3,
 path_size = 5 };

 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }

 OopType results[num_roots * num_paths];
 GciFetchPaths(oops, num_roots, paths, pathSizes, num_paths,
results);
}

188 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Example 5: Integrated Code

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void fetchPath5(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
“AllComponents detect:[i|i partNumber = 1234]”, OOP_NIL);
 if (aComponent == OOP_NIL) {
 return; // error in execute, or detect: found nothing
 }

 // fetch name instVar of 5th element of aComponent’s partsList */
 enum { path_size = 2 };
 int path[path_size];
 path[0] = -5; // 5th varying instVar
 path[1] = GciIvNameToIdx(GciFetchClass(aComponent), “name”);
 int pathSizes = path_size;

 OopType oName;
 GciFetchPaths(&aComponent, 1, path, &pathSizes, 1, &oName);
};

See Also
GciStorePaths, page 379
GemTalk Systems 189

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFetchSharedCounterValuesNoLock

Fetch the value of multiple shared counters without locking them.

Syntax
int GciFetchSharedCounterValuesNoLock(

int startIndex,
int64_t buffer[],
size_t * maxReturn);

Input Arguments
startIndex The offset into the shared counters array of the first shared counter value to

fetch.
maxReturn Pointer to a value that indicates the maximum number of shared counters to

fetch.

Result Arguments
buffer Pointer to a buffer where the shared counter values will be stored. The buffer

must be at least 8 * maxReturn bytes and the address must be aligned on an
8-byte boundary.

Return Value
Returns an int indicating the number of shared counter values successfully stored in the buffer.
Returns -1 if a bad argument is detected.

Description
Fetch the values of multiple shared counters in a single call, without locking any of them. The
values of the maxReturn count of shared counters starting at the offset indicated by counterIdx (0-
based) are put into the buffer buffer. buffer must be large enough to accommodate maxReturn 8-byte
values, and be aligned on an 8-byte boundary.

Not supported for remote GCI interfaces.

See Also
GciFetchNumSharedCounters, page 177
GciDecSharedCounter, page 134
GciIncSharedCounter, page 214
GciSetSharedCounter, page 353
GciReadSharedCounter, page 316
GciReadSharedCounterNoLock, page 317
190 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchSize_

Fetch the size of an object.

Syntax
int64 GciFetchSize_(

OopType theObject);

Input Arguments
theObject The OOP of the specified object.

Return Value
Returns the size of theObject. In case of error, this function returns zero.

Description
This function obtains the size of an object from GemStone.

The result of this function depends on the object’s implementation (see GciFetchObjImpl). For
byte objects, this function returns the number of bytes in the object. (For Strings, this is the number
of Characters in the String; for Floats, the size is 23.) For pointer objects, this function returns the
number of named instance variables (GciFetchNamedSize) plus the number of indexed instance
variables, if any (GciFetchVaryingSize_). For NSC objects, this function returns the cardinality of
the collection. For special objects, the size is always zero.

This differs somewhat from the result of executing the Smalltalk method Object>>size, as
shown in Table 6.10:

Example
void fetchSize_example(void)
{
 const char* str = “abcdef”;
 OopType oString = GciNewString(str);

Table 6.10 Differences in Reported Object Size

Implementation Object>>size (Smalltalk) GciFetchSize_

0=Pointer Number of indexed
elements in the object
(0 if not indexed)

Number of indexed elements
PLUS number of named
instance variables

1=Byte Number of indexed
elements in the object

Same as Smalltalk message
“size”

2=NSC Number of elements in
the object

Same as Smalltalk message
“size”

3=Special 0 0
GemTalk Systems 191

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 int64 itsSize = GciFetchSize_(oString);
 if (itsSize != (int64)strlen(str)) {
 printf(“error during fetch size\n”);
 }
}

See Also
GciFetchClass, page 165
GciFetchNamedSize, page 174
GciFetchObjImpl, page 180
GciFetchVaryingOop, page 195
192 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchUtf8Bytes_

Encode a String, MultiByteString, or Uft8 as UTF-8, and fetch the bytes of the encoded result.

Syntax
int64 GciFetchUtf8Bytes_(

OopType oopOfAString,
int64 startIndex,
ByteType * theBytes,
int64 numBytes,
OopType * utf8String,
int flags);

Input Arguments
oopOfAString The OOP of the GemStone String, MultiByteString or Utf8.
startIndex The index into aString at which to begin encoding bytes. The index of the first

element is 1. Note that if startIndex is 1 greater than the size of the object, this
function returns a byte array of size 0, but no error is generated.

numBytes The maximum number of bytes to return.
flags If flags = 0, generate an error on illegal codePoints in the input.

If flags = 1, subsitute ‘.’ for any illegal codePoints in input string while
performing the encoding.
If flags = 2, put a generated description in *theBytes instead of signalling an
error.

Result Arguments
theBytes The array of encoded bytes
utf8String Pointer to the OOP of the encoded string.

Return Value
Returns the number of bytes fetched. (This may be less than numBytes, depending upon the size of
theObject.) In case of error, this function returns zero.

Description
This function encodes a kind of String, MultiByteString, or Utf8 into UTF-8. The encoded bytes are
placed in the buffer theBytes, and the OOP of the encoded object is placed at utf8String.

The OOP of utf8String is also placed in the ExportSet. The caller must pass the OOP of utf8String to
GciReleaseOops after fetching all bytes.

If all characters in aString are < 128, or if the class of aString is Utf8, then the the behavior is the
same as GciFetchBytes_. No encoding is done; the bytes of aString are place in theBytes. utf8String
is the same as aString, and is not added to the ExportSet.
GemTalk Systems 193

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciFetchBytes_, page 162 GciReleaseOops, page 323
GciNewUtf8String, page 277
194 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchVaryingOop

Fetch the OOP of one unnamed instance variable from an indexable pointer object or NSC.

Syntax
OopType GciFetchVaryingOop(

OopType theObject,
int64 atIndex);

Input Arguments
theObject The OOP of the pointer object or NSC.
atIndex The index of the OOP to be fetched. The index of the first unnamed instance

variable’s OOP is 1.

Return Value
Returns the OOP of the unnamed instance variable at index atIndex. In case of error, this function
returns OOP_NIL.

Description
This function fetches the OOP of a single unnamed instance variable at the specified index, using
structural access. The numerical index of any unordered variable of an NSC can change whenever
the NSC is modified.

Example
In the following example, assume that you’ve executed the following Smalltalk code to define the
class Component and to populate the set AllComponents:

run
" define the class Component and compile accessor methods"
| cls |
cls := Array subclass: #Component
 instVarNames: #(#partNumber #name #cost
 "varying instVars form the partsList")
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals.
cls compileAccessingMethodsFor: cls instVarNames .
^ cls
%
run
"create and populate the set of all Components"
| allC |
allC := IdentitySet new .
UserGlobals at: #AllComponents put: allC .
GemTalk Systems 195

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
1 to: 100 do:[:j || aComp |
 aComp := Component new .
 aComp partNumber: 1200 + j .
 aComp name: 'part' + j asString .
 aComp cost: j asFloat .
 allC add: aComp .
] .
^ allC size
%
run
"build a parts list for each part."
| allC idx |
allC := Array withAll: AllComponents .
idx := 1 .
AllComponents do:[:aComp | | list |
 list := Array new: (idx \\ 10) . "list size varies from 0 to 9"
 idx > 75 ifTrue:[idx := 1].
 1 to: list size do:[:k |
 list at: k put: (allC at: idx + (k * 2)).
].
 aComp addAll: list .
 idx := idx + 1.
].
%

Now execute this C code:

OopType fetchVaryingOopExample(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 return OOP_NIL; // error in execute, or detect: found nothing
 }

 /* fetch 3rd element of aComponent's parts list */
 OopType aSubComponent = GciFetchVaryingOop(aComponent, 3);
 return aSubComponent;
}

See Also
GciFetchNamedOop, page 170
GciFetchNamedOops, page 172
GciFetchVaryingOops, page 197
GciStoreIdxOop, page 367
GciStoreIdxOops, page 369
GciStoreNamedOop, page 371
GciStoreNamedOops, page 373
196 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchVaryingOops

Fetch the OOPs of one or more unnamed instance variables from an indexable pointer object or
NSC.

Syntax
int GciFetchVaryingOops(

OopType theObject,
 int64 startIndex,
OopType theOops[],
int numOops);

Input Arguments
theObject The OOP of the pointer object or NSC.
startIndex The index of the first OOP to be fetched. The index of the first unnamed

instance variable’s OOP is 1. Note that if startIndex is 1 greater than the
number of theObject’s unnamed instance variables, this function returns an
array of size 0, but no error is generated.

numOops Maximum number of elements to return.

Result Arguments
theOops The array of fetched OOPs.

Return Value
Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.) In case of error, this function returns zero.

Description
This function fetches the OOPs of multiple unnamed instance variables beginning at the specified
index, using structural access. The numerical index of any unordered variable of an NSC can
change whenever the NSC is modified.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

int fetchVaryingOopsExample(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 return -1; // error in execute, or detect: found nothing
 }
GemTalk Systems 197

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 /* fetch the up to the first 5 elements of aComponent's parts list
*/
 enum { num_oops = 5 };
 OopType oBuf[num_oops];

 int numRet = GciFetchVaryingOops(aComponent, 1, oBuf, num_oops);
 // at this point we have 0 <= numRet <= 5
 return numRet;
}

See Also
GciFetchNamedOop, page 170
GciFetchNamedOops, page 172
GciFetchVaryingOop, page 195
GciStoreIdxOop, page 367
GciStoreIdxOops, page 369
GciStoreNamedOop, page 371
GciStoreNamedOops, page 373
198 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFetchVaryingSize_

Fetch the number of unnamed instance variables in a pointer object or NSC.

Syntax
int64 GciFetchVaryingSize_(

OopType theObject);

Input Arguments
theObject The OOP of the specified object.

Return Value
Returns the number of unnamed instance variables in theObject. In case of error, this function
returns zero.

Description
This function obtains from GemStone the number of indexed variables in an indexable object or the
number of unordered variables in an NSC.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

int64 fetchVaryingSizeExample(void)
{

 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 return -1; // error in execute, or detect: found nothing
 }

 /* fetch the size of aComponent's partsList */
 int64 theSize = GciFetchVaryingSize_(aComponent);
 return theSize;
}

See Also
GciFetchClass, page 165 GciFetchSize_, page 191
GciFetchNamedSize, page 174 GciSetVaryingSize, page 355
GciFetchObjImpl, page 180
GemTalk Systems 199

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFindObjRep

Fetch an object report in a traversal buffer.

Syntax
GciObjRepHdrSType * GciFindObjRep(

GciTravBufType * travBuff,
OopType theObject);

Input Arguments

travBuff A traversal buffer returned by a call to GciTraverseObjs.
theObject The OOP of the object to find.

Return Value
Returns a pointer to an object report within the traversal buffer. In case of error, this function
returns NULL.

Description
This function locates an object report within a traversal buffer that was previously returned by
GciTraverseObjs. If the report is not found within the buffer, this function generates the error
GCI_ERR_TRAV_OBJ_NOT_FOUND.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

GciObjRepHdrSType* findObjRepExample(GciTravBufType *buf, OopType
objId)
{
 GciObjRepHdrSType *theReport = GciFindObjRep(buf, objId);
 if (theReport == NULL) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 }
 }
 return theReport;
}

200 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciMoreTraversal, page 234 GciTraverseObjs, page 408
GciObjRepSize_, page 282
GemTalk Systems 201

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciFloatKind

Obtain the float kind corresponding to a C double value.

Syntax
GciFloatKindEType GciFloatKind(

double aReal);

Input Arguments
aReal A floating point value.

Return Value
Returns the type of GemStone Float object that corresponds to the C value.

Description
This function obtains the kind of GemStone Float object that corresponds to the C floating point
value aReal.

See Also
GciFltToOop, page 203
GciOopToFlt, page 294
202 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciFltToOop

Convert a C double value to a SmallDouble or Float object.

Syntax
OopType GciFltToOop(

double aReal);

Input Arguments
aReal The floating point value to be translated into an object.

Return Value
Returns the OOP of the GemStone SmallDouble or Float object that corresponds to the C value. In
case of error, this function returns OOP_NIL.

Description
This function translates a C double precision value into the equivalent GemStone Float object.

Example
#include <stdlib.h>

void fltToOopExample(void)
{
 // random double to Oop conversion producing a Float or SmallFloat
 double rand = drand48() * 1.0e38 ;
 OopType oFltObj = GciFltToOop(rand);

 OopType oClass = GciFetchClass(oFltObj);
 const char* kind;
 if (oClass == OOP_CLASS_SMALL_DOUBLE) {
 kind = "SmallDouble";
 } else if (oClass == OOP_CLASS_FLOAT) {
 kind = "Float";
 } else {
 kind = "Unexpected";
 }
 printf("result is a %s, class oop = "FMT_OID"\n", kind, oClass);
}

See Also
GciOopToFlt, page 294
GciGetFreeOopsEncoded, page 208
GemTalk Systems 203

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciGetFreeOop

Allocate an OOP.

Syntax
OopType GciGetFreeOop()

Return Value
Returns an unused object identifier (OOP).

You cannot use the result of GciGetFreeOop to create a Symbol object.

Description
Allocates an object identifier without creating an object.

The object identifier returned from this function remains allocated to the Gci session until the
session calls GciLogout or until the identifier is used as an argument to a function call.

If an object identifier returned from GciGetFreeOop is used as a value in a GciStore... call before it
is used as the objId argument of a GciCreate... call, then an unresolved forward reference is created
in object memory. This is a reference to an object that does not yet exist. This forward reference
must be satisfied by using the identifier as the objId argument to a GciCreate... call before a
GciCommit can be successfully executed.

If GciCommit is attempted prior to satisfying all unresolved forward references, an error is
generated and GciCommit returns FALSE. In this case, GciCreate can be used to satisfy the
forward references and GciCommit can be attempted again. GciAbort removes all unsatisfied
forward references from the session’s object space, just as it removes any other uncommitted
modifications.
204 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
As long as it remains an unresolved forward reference, the identifier returned by GciGetFreeOop
can be used only as a parameter to the following function calls, under the given restrictions:

 • As the objID of the object to be created

GciCreateByteObj

 • As the objID of the object to be created, or as an element of the value buffer

GciCreateOopObj

 • As an element of the value buffer only

GciStoreOop
GciStoreOops
GciStoreIdxOop
GciStoreIdxOops
GciStoreNamedOop
GciStoreNamedOops
GciStoreTrav
GciAppendOops
GciAddOopToNsc
GciAddOopsToNsc
GciNewOopUsingObjRep

 • As an element of newValues only

GciStorePaths

See Also
GciCreateByteObj, page 122
GciCreateOopObj, page 124
GciGetFreeOops, page 206
GciGetFreeOopsEncoded, page 208
GemTalk Systems 205

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciGetFreeOops

Allocate multiple OOPs.

Syntax
void GciGetFreeOops(

int count,
OopType * resultOops);

Input Arguments
count The number of OOPs to allocate.

Result Arguments
resultOops An array to hold the returned OOPs.

Return Value
Returns an unused object identifier (OOP).

Description
Allocates object identifiers without creating objects.

If an object identifier returned from GciGetFreeOops is used as a value in a GciStore... call before
it is used as the objId argument of a GciCreate... call, then an unresolved forward reference is
created in object memory. This is a reference to an object that does not yet exist. This forward
reference must be satisfied by using the identifier as the objId argument to a GciCreate... call before
a GciCommit can be successfully executed.

If GciCommit is attempted prior to satisfying all unresolved forward references, an error is
generated and GciCommit returns false. In this case, GciCreate can be used to satisfy the forward
references and GciCommit can be attempted again. GciAbort removes all unsatisfied forward
references from the session’s object space, just as it removes any other uncommitted modifications.
206 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
As long as it remains an unresolved forward reference, the identifier returned by GciGetFreeOops
can be used only as a parameter to the following function calls, under the given restrictions:

 • As the objID of the object to be created

GciCreateByteObj

 • As the objID of the object to be created, or as an element of the value buffer

GciCreateOopObj

 • As an element of the value buffer, only

GciStoreOop
GciStoreOops
GciStoreIdxOop
GciStoreIdxOops
GciStoreNamedOop
GciStoreNamedOops
GciStoreTrav
GciAppendOops
GciAddOopToNsc
GciAddOopsToNsc
GciNewOopUsingObjRep

 • As an element of newValues, only

GciStorePaths

See Also
GciCreateByteObj, page 122
GciCreateOopObj, page 124
GciGetFreeOop, page 204
GciGetFreeOopsEncoded, page 208
GemTalk Systems 207

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciGetFreeOopsEncoded

Allocate multiple OOPs.

Syntax
void GciGetFreeOopsEncoded(

int * count,
OopType * encodedOops);

Input Arguments
count The number of OOPs to allocate.
encodedOops A pointer to memory for holding encoded oops. Must be large enough to

hold at least the input value of count.

Result Arguments
count The number of OOPs returned in the encoded OOP array.
encodedOops An array to hold the returned encoded oops. Must be large enough to hold

at least the input value of count.

Description
This function is identical to GciGetFreeOops, except that it returns OOPs in an encoded array that
is more compact for less network I/O. Before the OOPs can be used, the encoded array must be
decoded by calling GciDecodeOopArray().

See Also
GciGetFreeOop, page 204
GciGetFreeOops, page 206
GciFetchNumEncodedOops, page 176
GciEnableFreeOopEncoding, page 143
GciEncodeOopArray, page 146
GciDecodeOopArray, page 133
208 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciGetSessionId

Find the ID number of the current user session.

Syntax
GciSessionIdType GciGetSessionId()

Return Value
Returns the session ID currently being used for communication with GemStone. Returns
GCI_INVALID_SESSION_ID if there is no session ID (that is, if the application is not logged in).

Description
This function obtains the unique session ID number that identifies the current user session to
GemStone. An application can have more than one active session, but only one current session.

The ID numbers assigned to your application’s sessions are unique within your application, but
bear no meaningful relationship to the session IDs assigned to other GemStone applications that
may be executing at the same time or accessing the same database.

Example
void getSessionExample(const char* userId, const char* password)
{
 if (GciLogin(userId, password)) {
 GciSessionIdType sessId = GciGetSessionId();
 printf("sessionId is %d \n", sessId);
 }
 GciLogout();
 GciSessionIdType sessId = GciGetSessionId();
 if (sessId != GCI_INVALID_SESSION_ID) {
 printf("unexpected sessionId %d after logout \n", sessId);
 }
}

See Also
GciLogin, page 229
GciSetSessionId, page 351
GemTalk Systems 209

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciHardBreak

Interrupt GemStone and abort the current transaction.

Syntax
void GciHardBreak()

Description
GciHardBreak sends a hard break to the current user session (set by the last GciLogin or
GciSetSessionId), which interrupts Smalltalk execution.

All GemBuilder functions can recognize a hard break, so the users of your application can
terminate Smalltalk execution. For example, if your application sends a message to an object (via
GciPerform), and for some reason the invoked Smalltalk method enters an infinite loop, the user
can interrupt the application. GciHardBreak has no effect if called from within a User Action.

In order for GemBuilder functions in your program to recognize interrupts, your program will
need a signal handler that can call the functions GciSoftBreak and GciHardBreak. Since
GemBuilder does not relinquish control to an application until it has finished its processing, soft
and hard breaks must be initiated from a signal handler.

If GemStone is executing when it receives the break, it replies with the error message
RT_ERR_HARD_BREAK. Otherwise, it ignores the break.

If GemStone is executing any of the following methods of class Repository, then a hard break
terminates the entire session, not just Smalltalk execution:

fullBackupTo:
restoreFromBackup(s):
markForCollection
objectAudit
auditWithLimit:
repairWithLimit:
pagesWithPercentFree

See Also
GciSoftBreak, page 357
210 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciHiddenSetIncludesOop

Determines whether the given OOP is present in the specified hidden set.

Syntax
BoolType GciHiddenSetIncludesOop(

OopType theOop,
int hiddenSetId);

Input Arguments
theOop The OOP to search for.
hiddenSetId The index to the hidden set to search.

Return Value
True if the OOP was found; false otherwise.

Description
The Gem holds objects in a number of sets ordinarily hidden from the user, including the
PureExportSet and the GciTrackedObjs (among others). GciHiddenSetIncludesOop allows you to
pass in an index to a specified hidden set to determine if the set includes a specific object. For
indexes of available hidden sets, see the GemStone Smalltalk method System Class >>
HiddenSetSpecifiers.

Example
OopType TrackedSetContainsOop(OopType anOop)
{
 if (GciHiddenSetIncludesOop(anOop, 40/* GciTrackedObjs */))
 return OOP_TRUE;
 else
 return OOP_FALSE;
}

GemTalk Systems 211

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GCI_I64_IS_SMALL_INT

Determine whether or not a C 64-bit integer value can be translated into a SmallInteger object.

Syntax
static inline BoolType GCI_I64_IS_SMALL_INT(anInt)

Input Arguments
anInt A C 64-bit signed integer.

Result Value
A C Boolean value. Returns TRUE if anInt is within SmallInteger range, FALSE otherwise. A
SmallInteger has a 61-bit two’s-complement integer and three tag bits.

For a positive argument to be within the range of the GemStone SmallInteger class, its top four bits
must be 2r0000. For a negative argument, the top four bits must be 2r1111.

Description
This macro tests to see if anInt can be represented as a SmallInteger.

See Also
GCI_OOP_IS_SMALL_INT, page 286
212 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciI64ToOop

Convert a C 64-bit integer value to a GemStone object.

Syntax
OopType GciI64ToOop(

int64 anInt);

Input Arguments
anInt A C 64-bit signed integer.

Return Value
The GciI64ToOop function returns the OOP of a GemStone object whose value is equivalent to
anInt.

Description
The GciI64ToOop function translates a C 64-bit integer (int64_t) value into the equivalent
GemStone object. If the result is not a SmallInteger, the result is automatically saved by a
GciSaveObjs() call.

See Also
GciOopToI64, page 297
GciSaveObjs, page 338
GemTalk Systems 213

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciIncSharedCounter

Increment the value of a shared counter.

Syntax
BoolType GciIncSharedCounter(

int64_t counterIdx,
int64_t * value);

Input Arguments
counterIdx The offset into the shared counters array of the value to increment.
value Pointer to a value that indicates how much to increment the shared counter

by. Shared counters cannot be incremented to a value greater than
INT_MAX (2147483647). Attempt to do so will not cause an error, but will set
the counter to a value of INT_MAX.

Result Arguments
value Pointer to a value that indicates the new value of the shared counter, after

incrementing.

Return Value
Returns a C Boolean value indicating if the shared counter was successfully incremented. Returns
TRUE if successful, FALSE if an error occurred.

Description
This function increments the value of a particular shared counter by a specified amount. The shared
counter is specified by index. The maximum value of this shared counter is INT_MAX
(2147483647), attempts to increase a shared counter to higher values is not an error, but does not
cause the value to increase further.

This function is not supported for remote GCI interfaces, and will always return FALSE.

See Also
GciFetchNumSharedCounters, page 177
GciDecSharedCounter, page 134
GciSetSharedCounter, page 353
GciReadSharedCounter, page 316
GciReadSharedCounterNoLock, page 317
GciFetchSharedCounterValuesNoLock, page 190
214 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciInit

Initialize GemBuilder.

Syntax
BoolType GciInit();

Return Value
The function GciInit returns TRUE or FALSE to indicate successful or unsuccessful initialization of
GemBuilder.

Description
This function initializes GemBuilder. Among other things, it establishes the default GemStone
login parameters.

If your C application program is linkable, you may wish to call GciInitAppName, which you must
do before you call GciInit. After GciInitAppName, you must call GciInit before calling any other
GemBuilder functions. Otherwise, GemBuilder behavior will be unpredictable.

(Note that when doing run-time binding, you would call GciRtlLoad before calling GciInit. For
details, see “Building the Application” on page 44.)

When GemBuilder is initialized on UNIX platforms, it establishes its own handler for SIGIO
interrupts. See “Signal Handling in Your GemBuilder Application” on page 38 for information on
GciInit’s handling of interrupts and pointers on making GemBuilder, application, and third-party
handlers work together.

See Also
GciInitAppName, page 216
GemTalk Systems 215

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciInitAppName
GciInitAppName_

Override the default application configuration file name.

Syntax
void GciInitAppName(

const char * applicationName,
BoolType logWarnings);

void GciInitAppName_(
const char * applicationName,
BoolType logWarnings,
unsigned int gemTempObjCacheOverrideKB,
int gemNativeCodeOverride);

Input Arguments
applicationName The application’s name, as a character string.
logWarnings If TRUE, causes the configuration file parser to print any warnings to

standard output at executable startup.
gemTempObjCacheOverrideKB

If non-zero, defines the maximum size (in KB) of temporary object memory
for this application. This value overrides any
GEM_TEMPOBJ_CACHE_SIZE settings in configuration files read by
GciInit.

gemNativeCodeOverride
If non-zero, value overrides the GEM_NATIVE_CODE_ENABLED config
file settings in configuration files read by GciInit.

Description
This function affects only linkable applications. It has no effect on RPC applications. If you do not
call this function before you call GciInit, it will have no effect.

A linkable GemBuilder application reads a configuration file called applicationName.conf when
GciInit is called. This file can alter the behavior of the underlying GemStone session. For complete
information, please see the System Administration Guide for GemStone/S 64 Bit.

A linkable GemBuilder application uses defaults until it calls this function (if it does) and reads the
configuration file (which it always does). For linkable GemBuilder applications, the default
application name is gci, so the default executable configuration file is gci.conf. The
applicationName argument overrides the default application name with one of your choice, which
causes your linkable GemBuilder application to read its own executable configuration file.

The logWarnings argument determines whether or not warnings that are generated while reading
the configuration file are written to standard output. If your application does not call
GciInitAppName, the default log warnings setting is FALSE. The logWarnings argument resets the
216 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
default for your application, which is used in the absence of a LOG_WARNINGS entry in the
configuration file, or until that entry is read.

The GciInitAppName_ variant allows you to specify additional arguments that are used by the
linkable GemBuilder application: the maximum temporary object cache size, and an override for
the native code configuration.

You application may not call both GciInitAppName and GciInitAppName_.

See Also
GciInit, page 215
GemTalk Systems 217

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciInstallUserAction
GciInstallUserAction_

Associate a C function with a Smalltalk user action.

Syntax
void GciInstallUserAction(

GciUserActionSType * userAction);

void GciInstallUserAction_(
GciUserActionSType * userAction,
BoolType errorIfDuplicate);

Input Arguments
userAction A pointer to a C structure that describes the user-written C function.
errorIfDuplicate If True, return an error if there is already a user action with the specified

name. If False, leave the existing user action in place and ignore the current
call.

Description
This function associates a user action name (declared in Smalltalk) with a user-written C function.
Your application must call GciInstallUserAction before beginning any GemStone sessions with
GciLogin. This function is typically called from GciUserActionInit. For more information, see
Chapter 3‚ “Writing C Functions To Be Called from GemStone”

See Also
Chapter 3, “Writing C Functions To Be Called from GemStone”‚ starting on page 47
“The User Action Information Structure” on page 78
GciDeclareAction, page 132
GciUserActionInit, page 413
GciUserActionShutdown, page 414
218 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciInstMethodForClass

Compile an instance method for a class.

Syntax
OopType GciInstMethodForClass(

OopType source,
OopType oclass,
OopType category,
OopType symbolList);

Input Arguments
source The OOP of a Smalltalk string to be compiled as an instance method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string which contains the name of the category to

which the method is added. If the category is nil (OOP_NIL), the compiler
will add this method to the category “as yet unclassified”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in source
code using symbols that are available from symbolList. A value of OOP_NIL
means to use the default symbol list for the current GemStone session (that
is, System myUserProfile symbolList).

Return Value
Returns OOP_NIL, unless there were compiler warnings (such as variables declared but not used,
etc.), in which case the return will be the OOP of a string containing the warning messages.

Description
This function compiles an instance method for the given class.

In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may not
compile any methods with any of those selectors. See the Programming Guide for a list of the
optimized selectors.

To remove a class method, use GciExecuteStr instead.

Example
void instanceMethodExample(void)
{
 // Assumes the topaz code for GciFetchVaryingOop example
 // has been executed.

 OopType theClass = GciResolveSymbol("Component", OOP_NIL);
 OopType oCateg = GciNewString("printing");
 // method to return the part number as a String
GemTalk Systems 219

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 OopType oMethodSrc = GciNewString("partNumString ^ partNumber
asString ") ;

 GciInstMethodForClass(oMethodSrc, theClass, oCateg, OOP_NIL);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 }
}

See Also
GciClassMethodForClass, page 110
220 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciInUserAction

Determine whether or not the current process is executing a user action.

Syntax
BoolType GciInUserAction()

Return Value
This function returns TRUE if it is called from within a user action, and FALSE otherwise.

Description
This function is intended for use within signal handlers. It can be called any time after GciInit.

GciInUserAction returns FALSE if the process is currently executing within a GemBuilder call that
was made from a user action. It considers the highest (most recent) call context only.

See Also
GciCallInProgress, page 105
GemTalk Systems 221

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciIsKindOf

Determine whether or not an object is some kind of a given class or class history.

Syntax
BoolType GciIsKindOf(

OopType anObj,
OopType givenClass);

Input Arguments
anObj The object whose kind is to be checked.
givenClass A class or class history to compare with the object’s kind.

Return Value
GciIsKindOf returns TRUE when the class of anObj or any of its superclasses is in the class history
of givenClass. It returns FALSE otherwise.

Description
GciIsKindOf performs structural access that is equivalent to the isKindOf: method of the
Smalltalk class Object. It compares anObj’s class and superclasses to see if any of them are in a given
class history. When givenClass is simply a class (which is typical), GciIsKindOf uses givenClass’s
class history. When givenClass is itself a class history, GciIsKindOf uses givenClass directly.

Since GciIsKindOf does consider class histories, it can help to support schema modification by
simplifying checks on the relationship of types when they can change over time. To accomplish a
similar operation without seeing the effects of class histories, use the GciIsKindOfClass function.

See Also
GciIsKindOfClass, page 223
GciIsSubclassOf, page 225
GciIsSubclassOfClass, page 226
222 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciIsKindOfClass

Determine whether or not an object is some kind of a given class.

Syntax
BoolType GciIsKindOfClass(

OopType anObj,
OopType givenClass);

Input Arguments
anObj The object whose kind is to be checked.
givenClass A class to compare with the object’s kind.

Return Value
GciIsKindOfClass returns TRUE when the class of anObj or any of its superclasses is givenClass. It
returns FALSE otherwise.

Description
GciIsKindOfClass performs structural access that is equivalent to the isKindOf: method of the
Smalltalk class Object. It compares anObj’s class and superclasses to see if any of them are the
givenClass.

Since GciIsKindOfClass does not consider class histories, it cannot help to support schema
modification. To accomplish a similar operation when the relationship of types can change over
time, use the GciIsKindOf function.

See Also
GciIsKindOf, page 222
GciIsSubclassOf, page 225
GciIsSubclassOfClass, page 226
GemTalk Systems 223

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciIsRemote

Determine whether the application is running linked or remotely.

Syntax
BoolType GciIsRemote()

Return Value
Returns TRUE if this application is running with GciRpc (the remote procedure call version of
GemBuilder). Returns FALSE if this application is running with GciLnk (that is, if GemBuilder is
linked with your GemStone session).

Description
This function reports whether the current application is using the GciRpc (remote procedure call)
or GciLnk (linkable) version of GemBuilder.
224 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciIsSubclassOf

Determine whether or not a class is a subclass of a given class or class history.

Syntax
BoolType GciIsSubclassOf(

OopType aClass,
OopType givenClass);

Input Arguments
aClass The class that is to be checked.
givenClass A class or class history to compare with the first class.

Return Value
GciIsSubclassOf returns TRUE when aClass or any of its superclasses is in the class history of
givenClass. It returns FALSE otherwise.

Description
GciIsSubclassOf performs structural access that is equivalent to the isSubclassOf: method of
the Smalltalk class Behavior. It compares aClass and aClass’s superclasses to see if any of them are
in a given class history. When givenClass is simply a class (which is typical), GciIsSubclassOf uses
givenClass’s class history. When givenClass is itself a class history, GciIsSubclassOf uses givenClass
directly.

Since GciIsSubclassOf does consider class histories, it can help to support schema modification by
simplifying checks on the relationship of types when they can change over time. To accomplish a
similar operation without seeing the effects of class histories, use the GciIsSubclassOfClass
function.

See Also
GciIsKindOf, page 222
GciIsKindOfClass, page 223
GciIsSubclassOfClass, page 226
GemTalk Systems 225

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciIsSubclassOfClass

Determine whether or not a class is a subclass of a given class.

Syntax
BoolType GciIsSubclassOf(

OopType aClass,
OopType givenClass);

Input Arguments
aClass The class that is to be checked.
givenClass A class to compare with the first class.

Return Value
GciIsSubclassOf returns TRUE when aClass or any of its superclasses is givenClass. It returns
FALSE otherwise.

Description
GciIsSubclassOfClass performs structural access that is equivalent to the isSubclassOf:
method of the Smalltalk class Behavior. It compares aClass and aClass’s superclasses to see if any of
them are the givenClass.

Since GciIsSubclassOfClass does not consider class histories, it cannot help to support schema
modification. To accomplish a similar operation when the relationship of types can change over
time, use the GciIsSubclassOf function.

See Also
GciIsKindOf, page 222
GciIsKindOfClass, page 223
GciIsSubclassOf, page 225
226 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciIvNameToIdx

Fetch the index of an instance variable name.

Syntax
int GciIvNameToIdx(

OopType oclass,
const char instVarName[]);

Input Arguments
oclass The OOP of the class from which to obtain information about instance

variables.
instVarName The instance variable name to search for.

Return Value
Returns the index of instVarName into the array of named instance variables for the specified class.
Returns 0 if the name is not found or if an error is encountered.

Description
This function searches the array of instance variable names for the specified class (including those
inherited from superclasses), and returns the index of the specified instance variable name. This
index could then be used as the atIndex parameter in the GciFetchNamedOop or
GciStoreNamedOop function call.

Example
int nameToIdx_example(void)
{
 // Assumes topaz code for GciFetchVaryingOop example has run

 OopType theClass = GciResolveSymbol("Component", OOP_NIL);
 int idx = GciIvNameToIdx(theClass, "cost");
 if (idx < 1) {
 printf("error during GciIvNameToIdx\n");
 }
 return idx;
}

See Also
GciClassNamedSize, page 112 GciStoreNamedOop, page 371
GciFetchNamedOop, page 170 GciStoreNamedOops, page 373
GciFetchNamedOops, page 172
GemTalk Systems 227

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciLoadUserActionLibrary

Load an application user action library.

Syntax
BoolType GciLoadUserActionLibrary(

const char * uaLibraryName[],
BoolType mustExist,
void ** libHandlePtr,
char infoBuf[],
int64 infoBufSize);

Input Arguments
uaLibraryName The name and location of the user action library file (a null-terminated

string).
mustExist A flag to make the library required or optional.
libHandlePtr A variable to store the status of the loading operation.
infoBuf A buffer to store the name of the user action library or an error message.
infoBufSize The size of infoBuf.

Return Value
A C Boolean value. If an error occurs, the return value is FALSE, and the error message is stored in
infoBuf, unless infoBuf is NULL. Otherwise, the return value is TRUE, and the name of the user
action library is stored in infoBuf.

Description
This function loads a user action shared library at run time. If uaLibraryName does not contain a
path, then a standard user action library search is done. The proper prefix and suffix for the current
platform are added to the basename if necessary. For more information, see Chapter 3‚ “Writing
C Functions To Be Called from GemStone”

If a library is loaded, libHandlePtr is set to a value that represents the loaded library, if libHandlePtr
is not NULL. If mustExist is TRUE, then an error is generated if the library can not be found. If
mustExist is FALSE, then the library does not need to exist. In this case, TRUE is returned and
libHandlePtr is NULL if the library does not exist and non-NULL if it exists.

See Also
GciInstallUserAction, page 218
GciInUserAction, page 221
GciUserActionShutdown, page 414
228 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciLogin

Start a user session.

Syntax
BoolType GciLogin(

const char gemstoneUsername[],
const char gemstonePassword[]);

Input Arguments
gemstoneUsername The user’s GemStone user name (a null-terminated string).
gemstonePassword The user’s GemStone password (a null-terminated string).

Description
The GemStone system is much like a time-shared computer system in that the user must log in
before any work may be performed. This function creates a user session and its corresponding
transaction workspace.

This function uses the current network parameters (as specified by GciSetNet) to establish the
user’s GemStone session.

Example
BoolType login_example(void)
{
 // assume the netldi on machine lichen been started with -a -g
 // so that host userId and host password are not required.
 const char* StoneName = "!tcp@lichen!gs64stone";
 const char* HostUserId = "";
 const char* HostPassword = "";
 const char* GemService = "!tcp@lichen!gemnetobject";
 const char* gsUserName = "isaacNewton";
 const char* gsPassword = "pomme";

 // GciInit required before first login
 if (!GciInit()) {
 printf("GciInit failed\n");
 return FALSE;
 }
 GciSetNet(StoneName, HostUserId, HostPassword, GemService);
 BoolType success = GciLogin(gsUserName, gsPassword);
 if (! success) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 }
GemTalk Systems 229

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 }
 return success;
}

See Also
GciGetSessionId, page 209
GciLogout, page 232
GciSetNet, page 347
GciSetSessionId, page 351
230 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciLoginEx

Start a user session with session configuration

Syntax
BoolType GciLoginEx(

const char gemstoneUsername[],
const char gemstonePassword[] ,
unsigned int loginFlags,
int haltOnErrNum);

Input Arguments
gemstoneUsername The user’s GemStone user name (a null-terminated string).
gemstonePassword The user’s GemStone password (a null-terminated string).
loginFlags Login flags, as described below.
haltOnErrNum A legacy error number.

Description
This function creates a user session and its corresponding transaction workspace. The current
network parameters , as specified by GciSetNet, are used to establish the user’s GemStone session.

Other login attributes are provided by loginFlags. The value of loginFlags should be given using the
following GemBuilder mnemonics:

GCI_LOGIN_PW_ENCRYPTED indicates the gemstonePassword is encrypted. When
specifying this flag, you must encrypt the passsword using GciEncrypt.

GCI_LOGIN_IS_SUBORDINATE Creates the new session as a child of the current session.
It will be terminated if the current session terminates. The primary use of this is for
GciInterface, and is only valid for RPC sessions.

GCI_LOGIN_FULL_COMPRESSION_ENABLED the login will use full compression.
GCI_LOGIN_ERRS_USE_REF_SET sets the OOPs of objects related to errors to be put into

the ReferencedSet, rather than the PureExportSet.
GCI_LOGIN_QUIET supresses prining of banner information during login.
GCI_CLIENT_DOES_SESSION_INIT after login, the session will manually execute

GciPerform(OOP_CLASS_GSCURRENT_SESSION, "initialize", NULL, 0);
otherwise, the VM will automatically executes that code as part of login.

GCI_TS_CLIENT the client will use the thread-safe API. Using this flag, GciLoginEx is
equivalent to GciTsLogin, from the gcits.hf (not included in this documentation).

If haltOnErrNum is set to a GemStone error number, and the session encounters the error
associated with that error number, the session will halt.

See Also
GciEncrypt, page 147 GciSetNet, page 347
GciGetSessionId, page 209 GciSetSessionId, page 351
GciLogout, page 232
GemTalk Systems 231

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciLogout

End the current user session.

Syntax
void GciLogout()

Description
This function terminates the current user session (set by the last GciLogin or GciSetSessionId),
and allows GemStone to release all uncommitted objects created by the application program in the
corresponding transaction workspace. The current session ID is reset to
GCI_INVALID_SESSION_ID, indicating that the application is no longer logged in. (See
“GciGetSessionId” on page 209 for more information.)

See Also
GciGetSessionId, page 209
GciLogin, page 229
GciSetSessionId, page 351
232 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciLongJmp

Provides equivalent functionality to the corresponding longjmp() or _longjmp() function.

Syntax
void GciLongJmp(

GciJmpBufSType * jumpBuffer,
int val);

Input Arguments
jumpBuffer A pointer to a jump buffer.

Description
Except for the difference in the first argument type, the semantics of this function are the same as
for longjmp() on Solaris and _longjmp() on HP-UX.

See Also
GciErr, page 148
GciPopErrJump, page 311
GciPushErrJump, page 314
GciSetErrJump, page 343
Gci_SETJMP, page 346
GemTalk Systems 233

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciMoreTraversal

Continue object traversal, reusing a given buffer.

Syntax
BoolType GciMoreTraversal(

GciTravBufType * travBuff);

Result Arguments
travBuff A buffer in which the results of the traversal will be placed.

Return Value
Returns FALSE if the traversal is not yet completed, but further traversal would cause the
travBuffSize to be exceeded. If the travBuffSize is reached before the traversal is complete, you can
continue to call GciMoreTraversal to proceed from the point where travBuffSize was exceeded.

Returns TRUE if there are no more objects to be returned by subsequent calls to GciMoreTraversal.

Description
When the amount of information obtained in a traversal exceeds the amount of memory available
to the buffer (as specified with travBuffSize), your application can call GciMoreTraversal
repeatedly to break the traversal into manageable amounts of information. The information
returned by this function begins with the object report following where the previous unfinished
traversal left off. The level value is retained from the initial GciTraverseObjs call.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

Generally speaking, an application can continue to call GciMoreTraversal until it has obtained all
requested information.

Naturally, GemStone will not continue an incomplete traversal if there is any chance that changes
to the database in the intervening period might have invalidated the previous report or changed
the connectivity of the objects in the path of the traversal. Specifically, GemStone will refuse to
continue a traversal if, in the interval before attempting to continue, you:

 • Modify the objects in the database directly by calling any of the GciStore... or GciAdd...
functions;

 • Call one of the Smalltalk message-sending functions GciPerform, GciContinue, or any of the
GciExecute... functions.

 • Abort your transaction, thus invalidating any subsequent information from that traversal.

Any attempt to call GciMoreTraversal after one of these events will generate an error.
234 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Note that this holds true across multiple GemBuilder applications sharing the same GemStone
session. Suppose, for example, that you were holding on to an incomplete traversal buffer and the
user moved from the current application to another, did some work that required executing
Smalltalk code, and then returned to the original application. You would be unable to continue the
interrupted traversal.

If you attempt to call GciMoreTraversal when no traversal is underway, this function will generate
the error GCI_ERR_TRAV_COMPLETED.

During the entire sequence of GciTraverseObjs and GciMoreTraversal calls that constitute a
traversal, any single object report will be returned exactly once. Regardless of the connectivity of
objects in the GemStone database, only one report will be generated for any non-special object.

The section “Organization of the Traversal Buffer” on page 409 describes the organization of
traversal buffers in detail.

GciMoreTraversal provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is
used to disable swizzling. For more about byte swizzling, see “Byte-Swizzling of Binary Floating-
Point Values” on page 25.

void moreTraversalExample(void)
{
 // Assumes topaz code for GciFetchVaryingOops example has run

 OopType rootObj = GciResolveSymbol("AllComponents", OOP_NIL);
 GciTravBufType *buf = GciTravBufType::malloc(8000);

 int totalCount = 0;
 // traverse the AllComponents collection to 10 levels deep
 BoolType done = GciTraverseObjs(&rootObj, 1, buf, 10);
 while (! done) {
 int objCount = 0;
 GciObjRepHdrSType *rpt = buf->firstReportHdr();
 GciObjRepHdrSType *limit = buf->readLimitHdr();
 while (rpt < limit) {
 objCount++ ;
 rpt = rpt->nextReport();
 }
 totalCount += objCount;
 done = GciMoreTraversal(buf);
 }
 buf->free();
 printf("traversal returned %d total objects\n", totalCount);
}

See Also
GCI_ALIGN, page 94 GciNbTraverseObjs, page 265
GciFindObjRep, page 200 GciObjRepSize_, page 282
GciNbMoreTraversal, page 253 GciTraverseObjs, page 408
GciNbTraverseObjs, page 265
GemTalk Systems 235

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbAbort

Abort the current transaction (nonblocking).

Syntax
void GciNbAbort()

Description
The GciNbAbort function is equivalent in effect to GciAbort. However, GciNbAbort permits the
application to proceed with non-GemStone tasks while the transaction is aborted, and GciAbort
does not.

See Also
GciAbort, page 91
GCI_CHR_TO_OOP, page 107
GciCommit, page 115
GciNbCommit, page 239
236 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbBegin

Begin a new transaction (nonblocking).

Syntax
void GciNbBegin()

Description
The GciNbBegin function is equivalent in effect to GciBegin. However, GciNbBegin permits the
application to proceed with non-GemStone tasks while a new transaction is started, and GciBegin
does not.

See Also
GciAbort, page 91
GciBegin, page 102
GciExecuteStr, page 153
GciNbAbort, page 236
GciNbExecuteStr, page 246
GemTalk Systems 237

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbClampedTrav

Traverse an array of objects, subject to clamps (nonblocking).

Syntax
void GciNbClampedTrav(

const OopType * theOops,
int numOops,
GciClampedTravArgsSType *travArgs);

Input Arguments
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travArgs Pointer to an instance of GciClampedTravArgsSType. See

GciClampedTrav (page 108) for documentation on the fields in travArgs.

Result Arguments
travArgs Pointer to an instance of GciClampedTravArgsSType containing the result

argument field travBuff.

Return Value
The GciNbClampedTrav function, unlike GciClampedTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciClampedTrav by using the argument to GciNbEnd.

Description
This function is equivalent in effect to GciClampedTrav. However, GciClampedTrav permits the
application to proceed with non-GemStone tasks while a traversal is carried out, and
GciClampedTrav does not.

See Also
GciClampedTrav, page 108
238 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbCommit

Write the current transaction to the database (nonblocking).

Syntax
void GciNbCommit()

Return Value
The GciNbCommit function, unlike GciCommit, does not have a return value. However, when the
commit operation is complete, you can access a value identical in meaning to the return value of
GciCommit by using the argument to GciNbEnd.

Description
This function is equivalent in effect to GciCommit. However, GciNbCommit permits the
application to proceed with non-GemStone tasks while the transaction is committed, and
GciCommit does not.

See Also
GciAbort, page 91
GCI_CHR_TO_OOP, page 107
GciCommit, page 115
GciNbAbort, page 236
GemTalk Systems 239

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbContinue

Continue code execution in GemStone after an error (nonblocking).

Syntax
void GciNbContinue(

OopType process);

Input Arguments
process The OOP of a GsProcess object (obtained as the value of the context field of

an error report returned by GciErr).

Return Value
The GciNbContinue function, unlike GciContinue, does not have a return value. However, when
the continued operation is complete, you can access a value identical in meaning to the return value
of GciContinue by using the argument to GciNbEnd.

Description
The GciNbContinue function is equivalent in effect to GciContinue. However, GciNbContinue
permits the application to proceed with non-GemStone tasks while the operation continues, and
GciContinue does not.

See Also
GciClearStack, page 113
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciNbExecute, page 245
240 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbContinueWith

Continue code execution in GemStone after an error (nonblocking).

Syntax
void GciNbContinueWith (

OopType process,
OopType replaceTopOfStack,
int flags,
GciErrSType * error);

Input Arguments
process The OOP of a GsProcess object (obtained as the value of the context field of

an error report returned by GciErr).
replaceTopOfStack If not OOP_ILLEGAL, replace the top of the Smalltalk evaluation stack with

this value before continuing. If OOP_ILLEGAL, the evaluation stack is not
changed.

flags Flags to disable or permit asynchronous events and debugging in Smalltalk,
as defined for GciPerformNoDebug.

error If not NULL, continue with an error. This argument takes precedence over
replaceTopOfStack.

Description
The GciNbContinueWith function is equivalent in effect to GciContinueWith. However,
GciNbContinueWith permits the application to proceed with non-GemStone tasks while the
operation continues, and GciContinueWith does not.

See Also
GciContinue, page 120
GciContinueWith, page 121
GciErr, page 148
GciExecute, page 149
GciNbExecute, page 245
GciPerformNoDebug, page 300
GemTalk Systems 241

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbEnd
GciNbEnd_

Test the status of nonblocking call in progress for completion.

Syntax
GciNbProgressEType GciNbEnd(

void ** result);

GciNbProgressEType GciNbEnd_(
int64* result,
);

Input Arguments
result The address at which GciNbEnd or GciNbEnd_ should place a pointer to

the result of the nonblocking call when it is complete. The actual result is that
of the corresponding equivalent blocking GCI call.

With GciNbEnd, the result may be either 4 byte or 8 byte, and the caller must
be aware of whether this is 4 byte or 8 byte, and dereference result
accordingly on big endian machines.

GciNbEnd_ produces 8 byte results that are correct on big endian machines.

Return Value
The GciNbEnd function returns an enumerated type. Its value is GCI_RESULT_READY if the
outstanding nonblocking call has completed execution and its result is ready,
GCI_RESULT_NOT_READY if the call is not complete and there has been no change since the last
inquiry, and GCI_RESULT_PROGRESSED if the call is not complete but progress has been made
towards its completion.

Description
Once an application calls a nonblocking function, it must call GciNbEnd, GciNbEnd_, or
GciNbEndPoll at least once, and must continue to do so until that nonblocking function has
completed execution. The intent of the return values is to give the scheduler a hint about whether
it is calling one of these functions too often or not often enough.

Once an operation is complete, you are permitted to call GciNbEnd or a related function
repeatedly. It returns GCI_RESULT_READY and a pointer to the same result each time, until you
call a nonblocking function again. It is an error to call GciNbEnd or a related function before you
call any nonblocking functions at all. Use the GciCallInProgress function to determine whether or
not there is a GemBuilder call currently in progress.

Example
void nbEnd_example(void)
242 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
{
 void *resultPtr;
 GciNbExecuteStr("Globals size", OOP_NIL);
 do {
 // wait for non-blocking result
 GciHostMilliSleep(1);
 } while (GciNbEnd(&resultPtr) != GCI_RESULT_READY);

 OopType result = *(OopType*)resultPtr;
 BoolType conversionErr = FALSE;
 int gSize = GciOopToI32_(result, &conversionErr);
 if (conversionErr) {
 printf("error in execution\n");
 } else {
 printf("Globals size = %d \n", gSize);
 }
}

See Also
GciCallInProgress, page 105
GciNbEndPoll, page 244
GemTalk Systems 243

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbEndPoll

Test the status of nonblocking call in progress for completion, with timeout.

Syntax
GciNbProgressEType GciNbEndPoll(

int64* result,
int timeoutMs
);

Input Arguments .
result The address at which GciNbEndPoll should place a pointer to the result of

the nonblocking call when it is complete. The actual result is that of the
corresponding equivalent blocking GCI call. The result will be 8 bytes, and
correct on big endian machines.

Return Value
The GciNbEndPoll function returns an enumerated type. Its value is GCI_RESULT_READY if the
outstanding nonblocking call has completed execution and its result is ready,
GCI_RESULT_NOT_READY if the call is not complete and there has been no change since the last
inquiry, and GCI_RESULT_PROGRESSED if the call is not complete but progress has been made
towards its completion.

Description
Once an application calls a nonblocking function, it must call GciNbEndPoll, GciNbEnd, or
GciNbEnd_ at least once, and must continue to do so until that nonblocking function has
completed execution. The intent of the return values is to give the scheduler a hint about whether
it is calling GciNbEndPoll too often or not often enough.

GciNbEndPoll allows you to specify a timeout, and will wait for timeoutMs milliseconds before
returning status. This avoids too-frequent polling for long-running code.

Once an operation is complete, you are permitted to call GciNbEndPoll repeatedly. It returns
GCI_RESULT_READY and a pointer to the same result each time, until you call a nonblocking
function again. It is an error to call GciNbEndPoll before you call any nonblocking functions at all.
Use the GciCallInProgress function to determine whether or not there is a GemBuilder call
currently in progress.

See Also
GciNbEnd, page 242
GciCallInProgress, page 105
244 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbExecute
GciNbExecute_

Execute a Smalltalk expression contained in a String object (nonblocking).

Syntax
void GciNbExecute(

OopType source,
OopType symbolList);

void GciNbExecute_(
OopType source,
OopType symbolList,
ushort environmentId);

Input Arguments
source The OOP of a String containing a sequence of one or more statements to be

executed.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
The GciNbExecute function, unlike GciExecute, does not have a return value. However, when the
executed operation is complete, you can access a value identical in meaning to the return value of
GciExecute by using the argument to GciNbEnd.

Description
The GciNbExecute function is equivalent in effect to GciExecute. However, GciNbExecute permits
the application to proceed with non-GemStone tasks while the Smalltalk expression is executed,
and GciExecute does not.

See Also
GciErr, page 148
GciExecute, page 149
GciNbContinue, page 240
GciNbExecuteStr, page 246
GciNbExecuteStrFromContext, page 249
GemTalk Systems 245

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbExecuteStr
GciNbExecuteStr_

Execute a Smalltalk expression contained in a C string (nonblocking).

Syntax
void GciNbExecuteStr(

const char source[],
OopType symbolList);

void GciNbExecuteStr_(
const char source[],
OopType symbolList,
ushort environmentId);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
The GciNbExecuteStr function, unlike GciExecuteStr, does not have a return value. However,
when the executed operation is complete, you can access a value identical in meaning to the return
value of GciExecuteStr by using the argument to GciNbEnd.

Description
The GciNbExecuteStr function is equivalent in effect to GciExecuteStr. However,
GciNbExecuteStr permits the application to proceed with non-GemStone tasks while the Smalltalk
expression is executed, and GciExecuteStr does not.

See Also
GciErr, page 148
GciExecuteStr, page 153
GciNbEnd, page 242
GciNbExecute, page 245
GciNbExecuteStrFromContext, page 249
246 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbExecuteStrFetchBytes
Execute a Smalltalk expression contained in a C string, returning byte-format results (nonblocking).

Syntax
int64 GciNbExecuteStrFetchBytes(

 const char * source,
 int64 sourceSize,
 OopType sourceClass,
 OopType contextObject,
 OopType symbolList,
 ByteType * result,
 int64 maxResultSize);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
sourceSize The number of bytes in the source, or -1. If sourceSize is -1, strlen(source)

is used.
sourceClass The OOP of the class that source should be converted to. Examples are

OOP_CLASS_STRING, OOP_CLASS_Utf8, OOP_CLASS_Unicode7 .
contextObject The OOP of any GemStone object. The code to be executed is compiled as if

it were an instance method in the class of contextObject. A value of
OOP_NO_CONTEXT means no context.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

maxResultSize Maximum size of the resulting string.

Result Arguments
result Array in which to put the results of executing the source.

Return Value
The GciNbExecuteStrFetchBytes function, unlike GciExecuteStrFetchBytes, does not have a
return value. However, when the executed operation is complete, you can access a value identical
in meaning to the return value of GciExecuteStrFetchBytes by using the argument to GciNbEnd.

Description
This function sends an expression (or sequence of expressions) to GemStone for execution. The
execution result, which should be a byte format object is returned in the *result buffer.
GemTalk Systems 247

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciErr, page 148
GciExecuteStrFetchBytes, page 155
GciNbContinue, page 240
GciNbEnd, page 242
GciNbExecute, page 245
GciNbExecuteStr, page 246
GciNbExecuteStrFromContext, page 249
248 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbExecuteStrFromContext
GciNbExecuteStrFromContext_

Execute a Smalltalk expression contained in a C string as if it were a message sent to an object
(nonblocking).

Syntax
void GciNbExecuteStrFromContext(

const char source[],
OopType contextObject,
OopType symbolList);

void GciNbExecuteStrFromContext_(
const char source[],
OopType contextObject,
OopType symbolList,
ushort environmentId);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
The GciNbExecuteStrFromContext function, unlike GciExecuteStrFromContext, does not have a
return value. However, when the executed operation is complete, you can access a value identical
in meaning to the return value of GciExecuteStrFromContext by using the argument to GciNbEnd.

Description
The GciNbExecuteStrFromContext function is equivalent in effect to GciExecuteStrFromContext.
However, GciNbExecuteStrFromContext permits the application to proceed with non-GemStone
tasks while the Smalltalk expression is executed, and GciExecuteStrFromContext does not.

See Also
GciContinue, page 120
GciErr, page 148
GemTalk Systems 249

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciExecuteStrFromContext, page 157
GciNbContinue, page 240
GciNbEnd, page 242
GciNbExecute, page 245
GciNbExecuteStr, page 246
250 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbExecuteStrTrav
GciNbExecuteStrTrav_

First execute a Smalltalk expression contained in a C string as if it were a message sent to an object,
then traverse the result of the execution (nonblocking).

Syntax
void GciNbExecuteStrTrav(

const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs);

void GciNbExecuteStrTrav_(
const char source[],
OopType contextObject,
OopType symbolList,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments
source A null-terminated string containing a sequence of one or more statements to

be executed.
contextObject The OOP of any GemStone object. A value of OOP_ILLEGAL means no

context.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

travArgs Pointer to an instance of GciClampedTravArgsSType. See
GciExecuteStrTrav on page 159 for field definitions.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
The GciNbExecuteStrTrav function, unlike GciExecuteStrTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciExecuteStrTrav by using the argument to GciNbEnd.

Description
The GciNbExecuteStrTrav function is equivalent in effect to GciExecuteStrTrav. However,
GciNbExecuteStrTrav permits the application to proceed with non-GemStone tasks while the
traversal is completed, and GciExecuteStrTrav does not.
GemTalk Systems 251

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciExecuteStrTrav, page 159
GciExecuteStr, page 153
GciMoreTraversal, page 234
GciPerformTraverse, page 306
252 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbMoreTraversal

Continue object traversal, reusing a given buffer (nonblocking).

Syntax
void GciNbMoreTraversal(

GciTravBufType * travBuff);

Result Arguments
travBuff A buffer in which the results of the traversal will be placed.

Return Value
The GciNbMoreTraversal function, unlike GciMoreTraversal, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciMoreTraversal by using the argument to GciNbEnd.

Description
The GciNbMoreTraversal function is equivalent in effect to GciMoreTraversal. However,
GciNbMoreTraversal permits the application to proceed with non-GemStone tasks while the
traversal is completed, and GciMoreTraversal does not.

GciNbMoreTraversal provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is
used to disable swizzling. For more about byte swizzling, see “Byte-Swizzling of Binary Floating-
Point Values” on page 25.

See Also
GCI_ALIGN, page 94
GciFindObjRep, page 200
GciMoreTraversal, page 234
GciNbTraverseObjs, page 265
GciObjRepSize_, page 282
GciTraverseObjs, page 408
GemTalk Systems 253

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbPerform
GciNbPerform_

Send a message to a GemStone object (nonblocking).

Syntax
void GciNbPerform(

OopType receiver,
const char selector[],
const OopType args[],
int numArgs);

void GciNbPerform_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument for

the message. If there are no message arguments, use a dummy OOP here.
numArgs The number of arguments to the message. For unary selectors (messages

with no arguments), numArgs is zero.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
The GciNbPerform function, unlike GciPerform, does not have a return value. However, when the
performed operation is complete, you can access a value identical in meaning to the return value
of GciPerform by using the argument to GciNbEnd.

Description
The GciNbPerform function is equivalent in effect to GciPerform. However, GciNbPerform
permits the application to proceed with non-GemStone tasks while the message is executed, and
GciPerform does not.
254 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciNbContinue, page 240
GciNbExecute, page 245
GciNbPerformNoDebug, page 256
GciPerform, page 298
GemTalk Systems 255

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbPerformNoDebug
GciNbPerformNoDebug_

Send a message to a GemStone object, and temporarily disable debugging (nonblocking).

Syntax
void GciNbPerformNoDebug(

OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags);

void GciNbPerformNoDebug_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument for

the message. If there are no message arguments, use a dummy OOP here.
numArgs The number of arguments to the message. For unary selectors (messages

with no arguments), numArgs is zero.
flags Flags to disable or permit asynchronous events and debugging in Smalltalk.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
The GciNbPerformNoDebug function, unlike GciPerformNoDebug, does not have a return
value. However, when the performed operation is complete, you can access a value identical in
meaning to the return value of GciPerformNoDebug by using the argument to GciNbEnd.

Description
The GciNbPerformNoDebug function is equivalent in effect to GciPerformNoDebug. However,
GciNbPerformNoDebug permits the application to proceed with non-GemStone tasks while the
message is executed, and GciPerformNoDebug does not.
256 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciNbContinue, page 240
GciNbExecute, page 245
GciNbPerform, page 254
GciPerformNoDebug, page 300
GemTalk Systems 257

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbPerformTrav
GciNbPerformTrav_

First send a message to a GemStone object, then traverse the result of the message (nonblocking).

Syntax
BoolType GciNbPerformTrav(

OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs);

BoolType GciNbPerformTrav_(
OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A pointer to a character collection containing the message selector. For

keyword selectors, all keywords are concatenated in the String. (For
example, at:put:).

args An array of OOPs. Each element in the array corresponds to an argument for
the message. If there are no message arguments, use a dummy OOP here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

travArgs Pointer to an instance of GciClampedTravArgsSType. See
GciClampedTrav on page 108 for documentation of the fields in travArgs.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80

Result Arguments
The result of the GciNbPerformTrav is the first object in the resulting travBuffs field in travArgs.

Return Value
The GciNbPerformTrav function, unlike GciPerformTrav, does not have a return value. However,
when the traversal operation is complete, you can access a value identical in meaning to the return
value of GciPerformTrav by using the argument to GciNbEnd.
258 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Description
The GciNbPerformTrav function is equivalent in effect to GciPerformTrav. However,
GciNbStoreTrav permits the application to proceed with non-GemStone tasks while the traversal
is done, and GciPerformTrav does not.

See Also
GciPerformTrav, page 304
GciPerform, page 298
GciClampedTrav, page 108
GemTalk Systems 259

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbStoreTrav

Stores multiple traversal buffer values in objects (nonblocking).

Syntax
void GciNbStoreTrav(

GciTravBufType * travBuff,
int behaviorFlag);

Input Arguments
travBuff A buffer that contains the object reports to be stored. The first element in the

buffer is an integer that indicates how many bytes are stored in the buffer.
The remainder of the traversal buffer consists of a series of object reports,
each of which is of type GciObjRepSType.

behaviorFlag A flag specifying whether the values returned by GciStoreTrav should be
added to the values in the traversal buffer or should replace the values in the
traversal buffer. Flag values, predefined in the gci.ht header file, are
GCI_STORE_TRAV_NSC_ADD (add to the traversal buffer) and
GCI_STORE_TRAV_NSC_REP (replace traversal buffer contents).

Description
The GciNbStoreTrav function is equivalent in effect to GciStoreTrav. However, GciNbStoreTrav
permits the application to proceed with non-GemStone tasks while the traversals are stored, and
GciStoreTrav does not.

GciNbStoreTrav provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is used
to disable swizzling. For more about byte swizzling, see “Byte-Swizzling of Binary Floating-Point
Values” on page 25.

See Also
GciMoreTraversal, page 234
GciNbMoreTraversal, page 253
GciNbTraverseObjs, page 265
GciStoreTrav, page 384
GciTraverseObjs, page 408
260 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbStoreTravDo_

Store multiple traversal buffer values in objects, execute the specified code, and return the resulting
object (non-blocking).

In GemStone/S 64 Bit releases earlier than 3.0, this function was named GciNbStoreTravDo
(without the underscore).

Syntax
void GciNbStoreTravDo_(

GciStoreTravDoArgsSType *stdArgs);

Input Arguments
stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the

discussion of GciStoreTravDo_ on page 387.

Return Value
Unlike GciStoreTravDo_, the GciNbStoreTravDo_ function does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciStoreTravDo_ by using the argument to GciNbEnd.

Description
The GciNbStoreTravDo_ function is equivalent in effect to GciStoreTravDo_. However,
GciNbStoreTravDo_ permits the application to proceed with non-GemStone tasks while the
traversal is done, and GciStoreTravDo_ does not.

See Also
GciNbClampedTrav, page 238
GciNbEnd, page 242
GciNbStoreTrav, page 260
GciNbStoreTravDoTrav_, page 262
GciStoreTravDo_, page 387
GemTalk Systems 261

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbStoreTravDoTrav_

Combine in a single function the calls to GciNbStoreTravDo_ and GciNbClampedTrav, to store
multiple traversal buffer values in objects, execute the specified code, and traverse the result object
(non-blocking).

In GemStone/S 64 Bit releases earlier than 3.0, this function was named GciNbStoreTravDoTrav
(without the underscore).

Syntax
void GciNbStoreTravDoTrav_(

GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments
stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the

discussion of GciStoreTravDo_ on page 387.
ctArgs An instance of GciClampedTravArgsSType. For details, see the discussion

of GciClampedTrav on page 108.

Return Value
The GciNbStoreTravDoTrav_ function, unlike GciStoreTravDoTrav_, does not have a return
value. However, when the traversal operation is complete, you can access a value identical in
meaning to the return value of GciStoreTravDoTrav_ by using the argument to GciNbEnd.

Description
This function allows the client to execute behavior on the Gem and return the traversal of the result
object in a single network round-trip.

The GciNbStoreTravDoTrav_ function is equivalent in effect to GciStoreTravDoTrav_. However,
GciNbStoreTravDoTrav_ permits the application to proceed with non-GemStone tasks while the
traversals are stored, and GciStoreTravDoTrav_ does not.

See Also
GciNbClampedTrav, page 238
GciNbEnd, page 242
GciNbStoreTrav, page 260
GciStoreTravDoTrav_, page 390
262 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbStoreTravDoTravRefs_

Combine in a single function modifications to session sets, traversal of objects to the server,
optional Smalltalk execution, and traversal to the client of changed objects and (optionally) the
result object (non blocking).

In GemStone/S 64 Bit releases earlier than 3.0, this function was named
GciNbStoreTravDoTravRefs (without the underscore).

Syntax
void GciNbStoreTravDoTravRefs_(

const OopType * oopsNoLongerReplicated,
int numNotReplicated,
const OopType * oopsGcedOnClient,
int numGced,
GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments
oopsNoLongerReplicatedAn Array of objects to be removed from the PureExportSet and added to the

ReferencedSet.
numNotReplicated The number of elements in oopsNoLongerReplicated.
oopsGcedOnClient An Array of objects to be removed from both the PureExportSet and

ReferencedSet.
numGced The number of elements in oopsGcedOnClient.
stdArgs An instance of GciStoreTravDoArgsSType. For details, refer to the

discussion of GciStoreTravDo_ on page 387.
ctArgs An instance of GciClampedTravArgsSType. For details, see the discussion

of GciClampedTrav on page 108.

Return Value
The GciNbStoreTravDoTravRefs_ function, unlike GciStoreTravDoTravRefs_, does not have a
return value. However, when the traversal operation is complete, you can access a value identical
in meaning to the return value of GciStoreTravDoTravRefs_ by using the argument to GciNbEnd

Description
This function allows the client to modify the PureExportSet and ReferencedSet, modify or create
any number of objects on the server, execute behavior on the Gem, and return the traversal of the
result object, all in a single network round-trip.

The GciNbStoreTravDoTravRefs_ function is equivalent in effect to GciStoreTravDoTravRefs_.
However, GciNbStoreTravDoTravRefs_ permits the application to proceed with non-GemStone
tasks while the traversals are stored, and GciStoreTravDoTravRefs_ does not.
GemTalk Systems 263

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciNbClampedTrav, page 238
GciNbEnd, page 242
GciStoreTravDoTrav_, page 390
GciStoreTravDoTravRefs_, page 391
264 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNbTraverseObjs

Traverse an array of GemStone objects (nonblocking).

Syntax
void GciNbTraverseObjs(

const OopType theOops[],
int numOops,
GciTravBufType * travBuff,
int level);

Input Arguments
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travBuffSize The number of bytes allocated to the traversal buffer.
level Maximum traversal depth. When the level is 1, an object report is written to

the traversal buffer for each element in theOops. When level is 2, an object
report is also obtained for the instance variables of each level-1 object. When
level is 0, the number of levels in the traversal is not restricted.

Result Arguments
travBuff A buffer in which the results of the traversal will be placed.

Return Value
The GciNbTraverseObjs function, unlike GciTraverseObjs, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciTraverseObjs by using the argument to GciNbEnd.

Description
The GciNbTraverseObjs function is equivalent in effect to GciTraverseObjs. However,
GciNbTraverseObjs permits the application to proceed with non-GemStone tasks while the
traversal is completed, and GciTraverseObjs does not.

GciNbTraverseObjs provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is
used to disable swizzling. For more about byte swizzling, see page 25.

See Also
GciMoreTraversal, page 234
GciNbMoreTraversal, page 253
GciNbStoreTrav, page 260
GciStoreTrav, page 384
GciTraverseObjs, page 408
GemTalk Systems 265

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNewByteObj

Create and initialize a new byte object.

Syntax
OopType GciNewByteObj(

OopType aClass,
const ByteType * value,
int64 valueSize);

Input Arguments
aClass The OOP of the class of which an instance is to be created.
value Pointer to an array of byte values to be stored in the newly-created object.
valueSize The number of byte values in value.

Return Value
The OOP of the newly created object.

Description
Returns a new instance of aClass, of size valueSize, and containing a copy of the bytes located at
value. Equivalent to GciNewOop followed by GciStoreBytes. aClass must be a class whose format
is Bytes.
266 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNewCharObj

Create and initialize a new character object.

Syntax
OopType GciNewCharObj(

OopType aClass,
const char * cString);

Input Arguments
aClass The OOP of the class of which an instance is to be created. aClass must be a

class whose format is BYTE.
cString Pointer to an array of characters to be stored in the newly-created object. The

terminating '\0' character is not stored.

Return Value
The OOP of the newly-created object.

Description
Returns a new instance of aClass which has been initialized to contain the bytes of cString, excluding
the null terminator.
GemTalk Systems 267

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNewDateTime

Create and initialize a new date-time object.

Syntax
OopType GciNewDateTime(

OopType theClass,
const GciDateTimeSType *timeVal);

Input Arguments
theClass The class of the object to be created. theClass must be

OOP_CLASS_DATE_TIME or a subclass thereof.
timeVal The time value to be assigned to the newly-created object.

Return Value
Returns the OOP of the newly-created object. If an error occurs, returns OOP_ILLEGAL.

Description
Creates a new instance of theClass having the value that timeVal points to.
268 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNewOop

Create a new GemStone object.

Syntax
OopType GciNewOop(

OopType oclass);

Input Arguments
oclass The OOP of the class of which the new object is an instance. This may be the

OOP of a class that you have created, or it may be one of the Smalltalk kernel
classes, such as OOP_CLASS_STRING for an object of class String. It may not
be Symbol or DoubleByteSymbol. Appendix A, “Reserved OOPs” lists the C
constants that are defined for each of the Smalltalk kernel classes.

Return Value
Returns the OOP of the new object. In case of error, this function returns OOP_NIL.

Description
This function creates a new object of the specified class and returns the object’s OOP. It cannot be
used to create instances of Symbol or DoubleByteSymbol.

Example
OopType newOop_example(void)
{
 // create a new instance of String
 OopType result = GciNewOop(OOP_CLASS_STRING);
 return result;
}

See Also
GciNewOops, page 270
GciNewOopUsingObjRep, page 272
GciReleaseAllOops, page 320
GciReleaseGlobalOops, page 322
GemTalk Systems 269

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNewOops

Create multiple new GemStone objects.

Syntax
void GciNewOops(

int numOops,
const OopType oclass[],
const int64 idxSize[],
OopType result[]);

Input Arguments
numOops The number of new objects to be created.
oclass For each new object, the OOP of its class. This should not be the OOP of

Symbol or DoubleByteSymbol.
idxSize For each new object, the number of its indexed variables. If the specified

oclass of an object is not indexable, its idxSize is ignored.

Result Arguments
result An array of the OOPs of the new objects created with this function.

Return Value
If an error is encountered, this function will stop at the first error and the contents of the result array
will be undefined.

Description
This function creates multiple objects of the specified classes and sizes, and returns the OOPs of the
new objects.

Each OOP in oclass may be the OOP of a class that you have created, or it may be one of the
Smalltalk kernel classes, such as OOP_CLASS_STRING for an object of class String. This function
cannot be used to create instances of Symbol or DoubleByteSymbol. If oclass contains the OOP of a
class with special implementation (such as Boolean), then the corresponding element in result is
OOP_NIL. Appendix A, “Reserved OOPs” lists the C constants that are defined for each of the
Smalltalk kernel classes.

GciNewOops generates an error when either of the following conditions is TRUE for any object:

 • idxSize < 0

 • (idxSize + number_of_named_instance_variables) > maxSmallInt

Example
void newOops_example(void)
{

270 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 enum { num_objs = 3 };
 OopType classes[num_objs];
 classes[0] = OOP_CLASS_STRING;
 classes[1] = OOP_CLASS_IDENTITY_SET;
 classes[2] = OOP_CLASS_ARRAY;

 int64 sizes[num_objs];
 sizes[0] = 50;
 sizes[1] = 0; /* ignored for NSCs anyway */
 sizes[2] = 3;

 OopType newObjs[num_objs];

 GciNewOops(num_objs, classes, sizes, newObjs);
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf("objIds of new objects are "FMT_OID" "FMT_OID"
"FMT_OID"\n",
 newObjs[0], newObjs[1], newObjs[2]);
 }
}

See Also
GciNewOop, page 269
GciNewOopUsingObjRep, page 272
GciReleaseAllOops, page 320
GciReleaseGlobalOops, page 322
GciStoreTrav, page 384
GemTalk Systems 271

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNewOopUsingObjRep

Create a new GemStone object from an existing object report.

Syntax
void GciNewOopUsingObjRep(

GciObjRepSType * anObjectReport);

Input Arguments
anObjectReport A pointer to an object report.

Result Arguments
anObjectReport A modified object report that contains the OOP of the new object (hdr.objId),

the ID of the object’s security policy (hdr.objectSecurityPolicyId), the number
of named instance variables in the object (hdr.namedSize), the updated
number of the object’s indexed variables (hdr.idxSize), and the object’s
complete size (the sum of its named and unnamed variables, hdr.objSize).

Description
This function allows you to submit an object report that creates a GemStone object and specifies the
values of its instance variables. You can use this function to define a String, pointer, or NSC object
with known OOPs.

The object report consists of two parts: a header (a GciObjRepHdrSType structure) followed by a
value buffer (an array of values of the object’s instance variables). For more information on object
reports, see “The Object Report Structure” on page 74.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

GciNewOopUsingObjRep provides automatic byte swizzling for Float and SmallFloat objects.
(For more about byte swizzling, see “Byte-Swizzling of Binary Floating-Point Values” on page 25.)
272 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Error Conditions

In addition to general GemBuilder error conditions, this function generates an error if any of the
following conditions exist:

 • If (idxSize < 0)

 • If (idxSize + namedSize) > maxSmallInt

 • If firstOffset > (objSize + 1)

 • For pointer objects and NSCs, if valueBuffSize is not divisible by 4

 • If the specified oclass is not the OOP of a Smalltalk class object

 • If the specified oclass and implementation (objImpl) do not agree

 • If objId is a Float or SmallFloat, then startIndex must be one and valueBuffSize must be the actual
size for the class of objId.

Note that you cannot use this function to create new special objects (instances of SmallInteger,
Character, Boolean, SmallDouble, or UndefinedObject).

Example
void newOopUsingObjRep_example(void)
{
 int arrSize = 100;
 size_t bodySize = sizeof(OopType) * arrSize ;
 size_t rptSize = GCI_ALIGN(sizeof(GciObjRepSType) + bodySize);
 GciObjRepSType *rpt = (GciObjRepSType*) malloc(rptSize);
 if (rpt == NULL) {
 printf("malloc failure\n");
 return;
 }
 rpt->hdr.objId = OOP_NIL; // ignored by GciNewOopUsingObjRep
 rpt->hdr.oclass = OOP_CLASS_ARRAY;
 rpt->hdr.setObjImpl(GC_FORMAT_OOP);
 rpt->hdr.segmentId = WORLD_RW_SEGMENT_ID ;
 rpt->hdr.firstOffset = 1;
 rpt->hdr.namedSize = 0; // ignored by GciNewOopUsingObjRep
 rpt->hdr.setIdxSize(arrSize);
 rpt->hdr.valueBuffSize = bodySize ;

 OopType *body = rpt->valueBufferOops();
 for (int i = 0; i < arrSize; i += 1) {
 body[i] = GciI32ToOop(i);
 }
 GciNewOopUsingObjRep(rpt);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 }
}

GemTalk Systems 273

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciNewOop, page 269
GciReleaseAllOops, page 320
GciReleaseGlobalOops, page 322
GciTraverseObjs, page 408
274 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNewString

Create a new String object from a C character string.

Syntax
OopType GciNewString(

const char * cString);

Input Arguments
cString Pointer to a character string.

Return Value
The OOP of the newly created object.

Description
Returns a new instance of OOP_CLASS_STRING with the value that cString points to.
GemTalk Systems 275

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNewSymbol

Create a new Symbol object from a C character string.

Syntax
OopType GciNewSymbol(

const char * cString);

Input Arguments
cString Pointer to a character string.

Return Value
The OOP of the newly-created object.

Description
Returns a new instance of OOP_CLASS_SYMBOL with the value that cString points to.
276 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciNewUtf8String

Create a new Unicode string object from a UTF-8 encoded C character string.

Syntax
OopType GciNewUtf8String(

const char * unicodeCString,
BoolType utf8OrUnicode);

Input Arguments
unicodeCString Pointer to a null-terminated UTF-8 encoded character string.
utf8OrUnicode Boolean indicating whether to create an instance of Utf8 or of a Unicode

class. If utf8OrUnicode = 0, return an instance of Utf8. If utf8OrUnicode=1,
return an instance of Unicode7, Unicode16, or Unicode32, the minimal
character size required to represent unicodeCString

Return Value
The OOP of the newly created object.

Description
Returns a new instance of Utf8, Unicode7, Unicode16, or Unicode32, with the value that the UTF-8
encoded unicodeCString points to.
GemTalk Systems 277

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciNscIncludesOop

Determines whether the given OOP is present in the specified unordered collection.

Syntax
BoolType GciNscIncludesOop(

OopType theNsc,
OopType theOop);

Input Arguments
theNsc The unordered collection in which to search.
theOop The OOP to search for.

Return Value
True if the OOP was found; false otherwise.

Description
GciNscIncludesOop searches the specified unordered collection to determine if it includes the
specified object. It is equivalent to the GemStone Smalltalk method UnorderedCollection >>
includesIdentical:.

Example
BoolType nscIncludesOop_example(OopType nscOop, OopType anOop)
{
 if (!GciIsKindOfClass(nscOop, OOP_CLASS_IDENTITY_BAG)) {
 printf("first argument is not an Nsc\n");
 return FALSE; /* error: nscOop is not an NSC */
 }

 return GciNscIncludesOop(nscOop, anOop);
}

See Also
GciAddOopToNsc, page 92
GciAddOopsToNsc, page 93
GciRemoveOopFromNsc, page 326
GciRemoveOopsFromNsc, page 327
278 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciObjExists

Determine whether or not a GemStone object exists.

Syntax
BoolType GciObjExists(

OopType theObject);

Input Arguments
theObject The OOP of an object.

Return Value
Returns TRUE if theObject exists, FALSE otherwise.

Description
This function tests an OOP to see if the object to which it points is a valid object.
GemTalk Systems 279

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciObjInCollection

Determine whether or not a GemStone object is in a Collection.

Syntax
BoolType GciObjInCollection(

OopType anObj,
OopType aCollection);

Input Arguments
anObj The OOP of an object for which to check.
aCollection The OOP of a collection.

Return Value
Returns TRUE if anObj exists in aCollection, FALSE otherwise.

Description
Searches the specified collection for the specified object. If aCollection is an NSC (such as a Bag or
Set), this is a tree lookup. If aCollection is a kind of Array or String, this is a sequential scan. This
function is equivalent to the GemStone Smalltalk method Object >> in:.
280 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciObjIsCommitted

Determine whether or not an object is committed.

Syntax
BoolType GciObjIsCommitted(

OopType oop);

Input Arguments
oop The OOP of an object.

Return Value
GciObjIsCommitted returns TRUE if the object is committed, FALSE otherwise.

Description
The GciObjIsCommitted function determines if the given object is committed or not.

See Also
GciObjExists, page 279
GemTalk Systems 281

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciObjRepSize_

Find the number of bytes in an object report.

Syntax
size_t GciObjRepSize_(anObjectReport)

const GciObjRepHdrSType *anObjectReport;

Input Arguments
anObjectReport A pointer to an object report returned by GciFindObjRep.

Return Value
Returns the size of the specified object report.

Description
This function calculates the number of bytes in an object report. Before your application allocates
memory for a copy of the object report, it can call this function to obtain the size of the report.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

void objRepSize_example(void)
{

 // Assumes topaz code for GciFetchVaryingOops example has run

 OopType rootObj = GciResolveSymbol("AllComponents", OOP_NIL);
 GciTravBufType *buf = GciTravBufType::malloc(8000);

 GciTraverseObjs(&rootObj, 1, buf, 10);
 GciObjRepHdrSType *rpt = buf->firstReportHdr();
 GciObjRepHdrSType *limit = buf->readLimitHdr();
 if (rpt < limit) {
 size_t reportSize = GciObjRepSize_(rpt);
 printf("size of first report is %ld bytes\n", reportSize);
 } else {
 printf("error, GciTraverseObjs returned empty buffer\n");
 }
}

282 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciFindObjRep, page 200
GciMoreTraversal, page 234
GciTraverseObjs, page 408
GemTalk Systems 283

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciOldOopToNewOop

Return a GemStone/S 64 Bit v2.0 OopType corresponding to a GemStone/S 64 Bit v1.1 OOP.

Syntax
OopType GciOldOopToNewOop(

unsigned int oldOop);

Input Arguments
oldOop The GemStone/S 64 Bit v1.1.1 OOP.

Return Value
Returns an OopType that corresponds to the GemStone/S 64 Bit v1.1 OOP. Returns
OOP_ILLEGAL if the argument is not a valid GemStone/S 64 Bit v1.1 OopType.

Description
This function converts a v1.1 OOP into the equivalent v2.0 OopType. If the result is not a special
OOP, this function does not check for the existence of the object.

This function returns OOP_ILLEGAL if the argument is not a legal special OOP or if the current
session is not valid.

This function does not convert LargeIntegers to new SmallIntegers.
284 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GCI_OOP_IS_BOOL

(MACRO) Determine whether or not a GemStone object represents a Boolean value.

Syntax
GCI_OOP_IS_BOOL(theOop)

Input Arguments
theOop The OOP of the object to test.

Return Value
A C Boolean value. Returns TRUE if the object represents a Boolean, FALSE otherwise.

Description
This macro tests to see if theOop represents a Boolean value.

See Also
GCI_OOP_IS_SMALL_INT, page 286
GCI_OOP_IS_SPECIAL, page 287
GemTalk Systems 285

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GCI_OOP_IS_SMALL_INT

(MACRO) Determine whether or not a GemStone object represents a SmallInteger.

Syntax
GCI_OOP_IS_SMALL_INT(theOop)

Input Arguments
theOop The OOP of the object to test.

Return Value
A C Boolean value. Returns TRUE if the object represents a SmallInteger, FALSE otherwise.

Description
This macro tests to see if theOop represents a SmallInteger.

See Also
GCI_OOP_IS_BOOL, page 285
GCI_OOP_IS_SPECIAL, page 287
286 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GCI_OOP_IS_SPECIAL

(MACRO) Determine whether or not a GemStone object has a special representation.

Syntax
GCI_OOP_IS_SPECIAL(theOop)

Input Arguments
theOop The OOP of the object to test.

Return Value
A C Boolean value. Returns TRUE if the object has a special representation, FALSE otherwise.

Description
This macro tests to see if theOop has a special representation.

See Also
GCI_OOP_IS_BOOL, page 285
GCI_OOP_IS_SMALL_INT, page 286
GemTalk Systems 287

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciOopToBool

Convert a Boolean object to a C Boolean value.

Syntax
BoolType GciOopToBool(

OopType theObject);

Input Arguments
theObject The OOP of the Boolean object to be translated into a C Boolean value.

Return Value
Returns the C Boolean value that corresponds to the GemStone object. In case of error, this function
returns FALSE.

Description
This function translates a GemStone Boolean object into the equivalent C Boolean value.

Example
BoolType oopToBoolExample(OopType anObj)
{
 BoolType aBool = GciOopToBool(anObj);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // argument was not a Boolean
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 return 0;
 }
 return aBool;
}

See Also
GCI_BOOL_TO_OOP, page 103
288 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GCI_OOP_TO_BOOL

(MACRO) Convert a Boolean object to a C Boolean value.

Syntax
GCI_OOP_TO_BOOL(theObject)

Input Arguments
theObject The OOP of the Boolean object to be translated into a C Boolean value.

Return Value
A C Boolean value. Returns the C Boolean value that corresponds to the GemStone object. In case
of error, this macro returns FALSE.

Description
This macro translates a GemStone Boolean object into the equivalent C Boolean value.

Provided for compatibility only. New code should use GciOopToBool (page 288). For the
definition of GCI_OOP_TO_BOOL, see $GEMSTONE/include/gcicmn.ht

See Also
GCI_BOOL_TO_OOP, page 103
GemTalk Systems 289

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciOopToChar16

Convert a Character object to a 16-bit C character value.

Syntax
unsigned int GciOopToChar16(

OopType theObject);

Input Arguments
theObject The OOP of theCharacter or JisCharacter object to be translated into a 16-bit

C character value.

Return Value
Returns the 16-bit C character value that corresponds to the GemStone object. In case of error, this
function returns zero.

Description
This function translates a GemStone Character object into the equivalent 16-bit C character value.

See Also
GciOopToChar32, page 291
GciOopToChr, page 292
290 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciOopToChar32

Convert a Character object to a 32-bit C character value.

Syntax
unsigned int GciOopToChar32(

OopType theObject);

Input Arguments
theObject The OOP of the Character or JisCharacter object to be translated into a 32-bit

C character value.

Return Value
Returns the 32-bit C character value that corresponds to the GemStone object. In case of error, this
function returns zero.

Description
This function translates a GemStone Character object into the equivalent 32-bit C character value.

See Also
GciOopToChar16, page 290
GciOopToChr, page 292
GemTalk Systems 291

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciOopToChr

Convert a Character object to a C character value.

Syntax
char GciOopToChr(

OopType theObject);

Input Arguments
theObject The OOP of the Character object to be translated into a C character value.

Return Value
Returns the C character value that corresponds to the GemStone object. In case of error, this
function returns zero.

Attempting to convert a GemStone Character that is outside the range of C characters will result in
an error.

Description
This function translates a GemStone Character object into the equivalent C character value.

Example
char oopToChar_example(OopType arg)
{
 char aChar = GciOopToChr(arg);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // argument was not a Character
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 return 0;
 }
 return aChar;
}

See Also
GCI_CHR_TO_OOP, page 107
GciOopToChar16, page 290
292 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GCI_OOP_TO_CHR

(MACRO) Convert a Character object to a C character value.

Syntax
GCI_OOP_TO_CHR(theObject)

Input Arguments
theObject The OOP of the Character object to be translated into a C character value.

Return Value
The GCI_OOP_TO_CHR macro returns the C character value that corresponds to the GemStone
object. In case of error, it returns zero.

Description
Provided for compatibility only. New code should use GciOopToChr or GciOopToChar16.

See Also
GciOopToChar16, page 290
GciOopToChr, page 292
GemTalk Systems 293

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciOopToFlt

Convert a SmallDouble, Float, or SmallFloat object to a C double.

Syntax
double GciOopToFlt(

OopType theObject);

Input Arguments
theObject The OOP of the SmallDouble, Float, or SmallFloat object to be translated into

a C floating point value.

Return Value
Returns the C double precision value that corresponds to the GemStone object. In case of any error
other than HOST_ERR_INEXACT_PRECISION, this function returns a PlusQuietNaN.

Description
This function translates a GemStone Float object into the equivalent C double precision value.

If your C compiler’s floating point package doesn’t have a representation that corresponds to one
of the values listed below, GciOopToFlt may generate the following errors when converting
GemStone Float objects into C values:

HOST_ERR_INEXACT_PRECISION
when called to convert a number whose precision exceeds that of the C double type

HOST_ERR_MAGNITUDE_OUT_OF_RANGE
when called to convert a number whose exponent is too large (or small) to be held in a C double
precision value

HOST_ERR_NO_PLUS_INFINITY
when called to convert a value of positive infinity

HOST_ERR_NO_MINUS_INFINITY
when called to convert a value of negative infinity

HOST_ERR_NO_PLUS_QUIET_NAN
when called to convert a positive quiet NaN

HOST_ERR_NO_MINUS_QUIET_NAN
when called to convert a negative quiet NaN

HOST_ERR_NO_PLUS_SIGNALING_NAN
when called to convert a positive signaling NaN

HOST_ERR_NO_MINUS_SIGNALING_NAN
when called to convert a negative signaling NaN
294 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Example
double oopToFlt_example(OopType arg)
{
 double d = GciOopToFlt(arg);

 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 // argument was not a Float, SmallFloat or SmallDouble
 printf(“error category “FMT_OID” number %d, %s\n”,
 errInfo.category, errInfo.number, errInfo.message);
 return 0.0 ;
 }
 return d;
}

See Also
GciFltToOop, page 203
GciGetFreeOopsEncoded, page 208
GemTalk Systems 295

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciOopToI32
GciOopToI32_

Convert a GemStone object to a C 32-bit integer value.

Syntax
int GciOopToI32(

OopType theObject);

int GciOopToI32_(
OopType theObject,
BoolType * error);

Input Arguments
theObject The OOP of the object to be translated into a C 32-bit integer value.

Result Arguments
error TRUE if theObject does not fit in the result type or is not an Integer. Otherwise

unchanged.

Return Value
The GciOopToI32 and GciOopToI32_ functions return the C 32-bit integer value that is equivalent
to the value of theObject.

Description
The GciOopToI32 and GciOopToI32_ functions translate a GemStone object into the equivalent C
32-bit integer value. The GemStone object must be a SmallInteger within the range of C integers.

Otherwise, GciOopToI32 generates an error; GciOopToI32_ does not generate an error, but places
a boolean in the error argument.

See Also
GciOopToI64, page 297
296 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciOopToI64
GciOopToI64_

Convert a GemStone object to a C 64-bit integer value.

Syntax
int64 GciOopToI64(

OopType theObject);

int64 GciOopToI64_(
OopType theObject,
BoolType * error);

Input Arguments
theObject The OOP of the object to be translated into a C 64-bit integer value.

Result Arguments
error TRUE if theObject does not fit in the result type or is not an Integer. Otherwise

unchanged.

Return Value
The GciOopToI64 and GciOopToI64_ functions return the C int64_t value that is equivalent to the
value of theObject.

Description
The GciOopToI64 and GciOopToI64_ functions translate a GemStone object into the equivalent C
64-bit integer value.

The object identified by theObject must be a SmallInteger or a LargeInteger. If the object is not one
of these kinds, GciOopToI64 generates an error; GciOopToI64_ places a boolean in the argument
error.

See Also
GciOopToI32, page 296
GemTalk Systems 297

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPerform
GciPerform_

Send a message to a GemStone object.

Syntax
OopType GciPerform(

OopType receiver,
const char selector[],
const OopType args[],
int numArgs);

OopType GciPerform_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument for

the message. If there are no message arguments, use a dummy OOP here.
numArgs The number of arguments to the message. For unary selectors (messages

with no arguments), numArgs is zero.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description
This function sends a message (that is, the selector along with any keyword arguments and their
corresponding values) to the specified receiver (an object in the GemStone database). Because
GciPerform calls the virtual machine, you can issue a soft break while this function is executing.
For more information, see “Interrupting GemStone Execution” on page 27.
298 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciContinue, page 120 GciNbPerform, page 254
GciErr, page 148 GciPerformNoDebug, page 300
GciExecute, page 149 GciPerformSymDbg, page 302
GemTalk Systems 299

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPerformNoDebug
GciPerformNoDebug_

Send a message to a GemStone object, and temporarily disable debugging.

Syntax
OopType GciPerformNoDebug(

OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags);

OopType GciPerformNoDebug_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
int flags,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument for

the message. If there are no message arguments, use a dummy OOP here.
numArgs The number of arguments to the message. For unary selectors (messages

with no arguments), numArgs is zero.
flags Flags to disable or permit asynchronous events and debugging in Smalltalk.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description
This function is a variant of GciPerform that is identical to it except for just one difference.
GciPerformNoDebug disables any breakpoints and single step points that currently exist in
GemStone while the message is executing. This feature is typically used while implementing a
Smalltalk debugger.
300 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
The value of flags may be 0 for default behavior, or can be given by using one or more of these
GemBuilder mnemonics:

 • GCI_PERFORM_FLAG_ENABLE_DEBUG makes GciPerformNoDebug behave like
GciPerform with respect to debugging.

 • GCI_PERFORM_FLAG_DISABLE_ASYNC_EVENTS disables asynchronous events.

 • GCI_PERFORM_FLAG_SINGLE_STEP places a single-step breakpoint at the start of the
method to be performed, and then executes to hit that breakpoint.

These flags can either be used alone or logically “or”ed together.

See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciNbContinue, page 240
GciNbExecute, page 245
GciNbPerform, page 254
GciNbPerformNoDebug, page 256
GciPerform, page 298
GciPerformSymDbg, page 302
GemTalk Systems 301

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPerformSymDbg
GciPerformSymDbg_

Send a message to a GemStone object, using a String object as a selector.

Syntax
OopType GciPerformSymDbg(

OopType receiver,
OopType selector,
const OopType args[],
int numArgs,
int flags);

OopType GciPerformSymDbg_(
OopType receiver,
OopType selector,
const OopType args[],
int numArgs,
int flags,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector The OOP of a String object that defines the message selector. For keyword

selectors, all keywords are concatenated in the String. (For example,
at:put:).

args An array of OOPs. Each element in the array corresponds to an argument for
the message. If there are no message arguments, use a dummy OOP here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

flags Flags to disable or permit asynchronous events and debugging in Smalltalk.
environmentId The compilation environment for method lookup. Used with Ruby

applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Return Value
Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description
If the isNoDebug flag is FALSE, this function is a variant of GciPerform; if the flag is TRUE, this
function is a variant of GciPerformNoDebug. In either case, its operation is identical to the other
function. The difference is that GciPerformSymDbg takes an OOP as its selector instead of a C
string.
302 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciPerform, page 298
GciPerformNoDebug, page 300
GemTalk Systems 303

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPerformTrav
GciPerformTrav_

First send a message to a GemStone object, then traverse the result of the message.

Syntax
BoolType GciPerformTrav(

OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs);

BoolType GciPerformTrav_(
OopType receiver,
const char * selector,
const OopType * args,
int numArgs,
GciClampedTravArgsSType *travArgs,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A pointer to a character collection that defines the message selector. For

keyword selectors, all keywords are concatenated in the String. (For
example, at:put:).

args An array of OOPs. Each element in the array corresponds to an argument for
the message. If there are no message arguments, use a dummy OOP here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

travArgs Pointer to an instance of GciClampedTravArgsSType. See
GciClampedTrav on page 108 (page 108) for documentation of the fields in
travArgs.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Result Arguments
The result of the GciPerform is the first object in the resulting travBuff field in travArgs.

Return Value
Returns TRUE if the result is complete and no errors occurred. Returns FALSE if the traversal is not
yet completed. You can then call GciMoreTraversal to proceed, if there is no GciError.
304 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Description
This function is does the equivalent of a GciPerform using the first four arguments, and then
performs a GciClampedTrav, starting from the result of the perform, and doing a traversal as
specified by travArgs. In all GemBuilder traversals, objects are traversed post depth first.

See Also
GciPerform, page 298
GciClampedTrav, page 108
GemTalk Systems 305

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPerformTraverse
GciPerformTraverse_

First send a message to a GemStone object, then traverse the result of the message.

Syntax
BoolType GciPerformTraverse(

OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
GciTravBufType * travBuff,
int level);

BoolType GciPerformTraverse_(
OopType receiver,
const char selector[],
const OopType args[],
int numArgs,
GciTravBufType * travBuff,
int level,
ushort environmentId);

Input Arguments
receiver The OOP of the receiver of the message.
selector A pointer to a character collection that defines the message selector. For

keyword selectors, all keywords are concatenated in the String. (For
example, at:put:).

args An array of OOPs. Each element in the array corresponds to an argument for
the message. If there are no message arguments, use a dummy OOP here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

level Maximum traversal depth. When the level is 1, an object report is written to
the traversal buffer for each element in theOops. When level is 2, an object
report is also obtained for the instance variables of each level-1 object. When
level is 0, the number of levels in the traversal is not restricted.

environmentId The compilation environment for method lookup. Used with Ruby
applications, but not with Smalltalk applications. For details, see
“environmentId” on page 80.

Result Arguments
travBuff A buffer in which the results of the traversal are placed.
306 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Return Value
Returns FALSE if the traversal is not yet completed, but further traversal would cause the
travBuffSize to be exceeded. If the travBuffSize is reached before the traversal is complete, you can
then call GciMoreTraversal to proceed from the point where travBuffSize was exceeded.

Returns TRUE if there are no more objects to be returned by subsequent calls to GciMoreTraversal.

Description
Consider the following function call:

BoolType performTrav_1(void)
{
 OopType receiver = GciResolveSymbol(“AllComponents”, OOP_NIL);
 OopType arg = GciI32ToOop(1);
 GciTravBufType *buf = GciTravBufType::malloc(8000);

 BoolType atEnd = GciPerformTraverse(receiver, “at:”, &arg, 1, buf,
10);
 return atEnd;
}

It is equivalent to the following code:

BoolType performTrav_2(void)
{
 OopType receiver = GciResolveSymbol("AllComponents", OOP_NIL);
 OopType arg = GciI32ToOop(1);
 OopType obj = GciPerform(receiver, "at:", &arg, 1);

 GciTravBufType *buf = GciTravBufType::malloc(8000);
 BoolType atEnd = GciTraverseObjs(&obj, 1, buf, 10);
 return atEnd;
}

GciPerformTraverse provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is
used to disable swizzling. For more about byte swizzling, see page 25.

See Also
GciContinue, page 120
GciErr, page 148
GciExecute, page 149
GciMoreTraversal, page 234
GciPerform, page 298
GciPerformNoDebug, page 300
GciPerformSymDbg, page 302
GciStoreTrav, page 384
GciTraverseObjs, page 408
GemTalk Systems 307

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPointerToByteArray

Given a C pointer, return a SmallInteger or ByteArray containing the value of the pointer.

Syntax
OopType GciPointerToByteArray(

void * pointer);

Input Arguments
pointer A C pointer.

Return Value
Returns a GemStone SmallInteger or ByteArray containing the value of the pointer.

If the argument is a 64-bit pointer aligned on an 8-byte boundary, or is a 32-bit pointer, the result is
a SmallInteger. Otherwise, the result is a ByteArray.

Description
The result has a machine-dependent byte order and is not intended to be committed.

See Also
GciByteArrayToPointer, page 104
308 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciPollForSignal

Poll GemStone for signal errors without executing any Smalltalk methods.

Syntax
BoolType GciPollForSignal()

Return Value
This function returns TRUE if a signal error or an asynchronous error exists, and FALSE otherwise.

Description
GemStone permits selective response to signal errors: RT_ERR_SIGNAL_ABORT,
RT_ERR_SIGNAL_COMMIT, and RT_ERR_SIGNAL_GEMSTONE_SESSION. The default
condition is to leave them all invisible. GemStone responds to each single kind of signal error only
after an associated method of class System has been executed: enableSignaledAbortError,
enableSignaledObjectsError, and enableSignaledGemStoneSessionError
respectively.

After GciInit executes successfully, the GemBuilder default condition also leaves all signal errors
invisible. The GciPollForSignal function permits GemBuilder to check signal errors manually.
However, GemStone must respond to each kind of error in order for GemBuilder to respond to it.
Thus, if an application calls GciPollForSignal, then GemBuilder can check exactly the same kinds
of signal errors as GemStone responds to. If GemStone has not executed any of the appropriate
System methods, then this call has no effect until it does.

GemBuilder treats any signal errors that it finds just like any other errors, through GciErr or the
GciLongJmp mechanism, as appropriate. Instead of checking manually, these errors can be
checked automatically by calling the GciEnableSignaledErrors function.

GciPollForSignal also detects any asynchronous errors whenever they occur, including but not
limited to the following errors: ABORT_ERR_LOST_OT_ROOT,
GS_ERR_SHRPC_CONNECTION_FAILURE, GS_ERR_STN_NET_LOST,
GS_ERR_STN_SHUTDOWN, and GS_ERR_SESSION_SHUTDOWN.

See Also
GciEnableSignaledErrors, page 145
GciErr, page 148
GemTalk Systems 309

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPollSocketForRead

Wait for the specified socket to be read-ready.

Syntax
int GciPollSocketForRead(

int socketFd,
int timeoutMs);

Return Value
This function returns 0 if timed out, 1 if socket is ready for read, and an int < 0 if an error occurred.
The result in this cases is the negated errno value.

Description
Wait timeoutMs milliseconds for the specified socket to be read-ready or to have an error.

This function retrys the poll on EINTR , even if a SIGTERM was received.

Thread safe function, has no relationship to the current GCI session .

See Also
GciEnableSignaledErrors, page 145
GciErr, page 148
310 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciPopErrJump

Discard a previously saved error jump buffer.

Syntax
void GciPopErrJump(

GciJmpBufSType * jumpBuffer);

Input Arguments
jumpBuffer A pointer to a jump buffer specified in an earlier call to GciPushErrJump.

Description
This function discards one or more jump buffers that were saved with earlier calls to
GciPushErrJump. Your program must call this function when a saved execution environment is no
longer useful for error handling.

GemBuilder maintains a stack of error jump buffers. After your program calls GciPopErrJump, the
jump buffer at the top of the stack will be used for subsequent GemBuilder error handling. If no
jump buffers remain, your program will need to call GciErr and test for errors locally.

To pop multiple jump buffers in a single call to GciPopErrJump, specify the jumpBuffer argument
from an earlier call to GciPushErrJump. See the following example.

Example
void popErr_example(void)
{
 GciJmpBufSType jumpBuff1, jumpBuff2, jumpBuff3, jumpBuff4;

 GciPushErrJump(&jumpBuff1);

 GciPushErrJump(&jumpBuff2);

 GciPushErrJump(&jumpBuff3);

 GciPushErrJump(&jumpBuff4);

 GciPopErrJump(&jumpBuff1); /* pops buffers 1-4 */
}

See Also
GciErr, page 148
GciPushErrJump, page 314
GciSetErrJump, page 343
GciLongJmp, page 233
GemTalk Systems 311

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciProcessDeferredUpdates_

Process deferred updates to objects that do not allow direct structural update.

Syntax
int64 GciProcessDeferredUpdates_()

Return Value
Returns the number of objects that had deferred updates.

Description
This function processes updates to instances of classes that have the noStructuralUpdate bit set,
including AbstractDictionary, Bag, Set, and their subclasses. After operations that modify an
instance of once of these classes, either GciProcessDeferredUpdates_ must be called, or the final
GciStoreTrav must have GCI_STORE_TRAV_FINISH_UPDATES set.

The following GemBuilder calls operate on instances whose classes have noStructuralUpdate set:
GciCreateOopObj, GciStoreTrav, GciStore...Oops, GciAdd...Oops, GciReplace...Oops. Behavior
of other GemBuilder update calls on such instances is undefined.

An attempt to commit automatically executes a deferred update.

Executing a deferred update before all forward references are resolved can produce errors that
require the application to recover by doing a GciAbort or GciLogout.

An OOP buffer used to update the varying portion of an object with noStructuralUpdate must
contain the OOPs to be added to the varying portion of the object, with two exceptions:

 • If the object is a kind of KeyValueDictionary that does not store Associations, the buffer must
contain (key, value) pairs.

 • If the object is a kind of AbstractDictionary that stores Associations or (key, Association) pairs,
the value buffer must contain Associations.

See Also
GciStoreTrav, page 384
312 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciProduct

Return an 8-bit unsigned integer that indicates the GemStone/S product.

Syntax
unsigned char GciProduct();

Return Value
Returns an 8-bit unsigned integer indicating the GemStone/S product to which the client library
belongs. Currently-defined integers are:

1 — GemStone/S

2 — GemStone/S 2G

3 — GemStone/S 64 Bit

Description
GciProduct allows a GemBuilder client to determine which GemStone/S product it is talking to.
Combined with GciVersion, it allows the client to adapt to differences between GemBuilder
features across different products and versions.

Although GciProduct can be used by any GemBuilder client, it is specifically provided for the use
of GemBuilder for Smalltalk.

Future products in the GemStone/S line will be assigned integers beginning with 4.

The integer zero is reserved, and will never be assigned to any product.

See Also
GciVersion, page 415
GemTalk Systems 313

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciPushErrJump

Associate GemBuilder error handling with a jump buffer by pushing a jump buffer onto the stack.

Syntax
void GciPushErrJump(

GciJmpBufSType * jumpBuffer);

Result Arguments
jumpBuffer A pointer to a jump buffer, as described below. The jumpBuffer must have

been initialized by passing it as the argument to the macro Gci_SETJMP.

Description
Associate GemBuilder error handling with a jump buffer by pushing a jump buffer onto the stack.

This function allows your application program to take advantage of the setjmp/longjmp style of
error-handling mechanism from within any GemBuilder function call. However, you cannot use
this mechanism to handle errors within GciPushErrJump itself, or within the related functions
GciPopErrJump and GciSetErrJump.

Rather than using setjmp and longjmp directly, this style of error handling in GemBuilder requires
you to use Gci_SETJMP and GciLongJmp.

When your program calls Gci_SETJMP, the context of the C environment is saved in a jump buffer
that you designate. To associate subsequent GemBuilder error handling with that jump buffer, you
would then call GciPushErrJump.

GemBuilder maintains a stack of up to 20 error jump buffers. A buffer is pushed onto the stack
when GciPushErrJump is called, and popped when GciPopErrJump is called. When an error
occurs during a GemBuilder call, the GemBuilder implementation calls GciLongJmp using the
buffer currently at the top of GemBuilder’s error jump stack, and pops that buffer from the stack.

For functions with local error recovery, your program can call GciSetErrJump to temporarily
disable the GciLongJmp mechanism (and to re-enable it afterwards).

Whenever the jump stack is empty, the application must use GciErr to poll for GBC errors.

Example
For an example of how GciPushErrJump is used, see GciPopErrJump on page 311.

See Also
GciErr, page 148
GciPopErrJump, page 311
GciSetErrJump, page 343
314 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciRaiseException

Signal an error, synchronously, within a user action.

Syntax
void GciRaiseException(

const GciErrSType * err);

Input Arguments
err A pointer to the error type to raise.

Description
When executed from within a user action, this function raises an exception and passes the given
error to the error signaling mechanism, causing control to return to Smalltalk. In order to signal an
error on the Smalltalk client, this function must be invoked.

This function has no effect when executed outside of a user action.

Example
OopType res = GciNewOop(anOopClass);
GciErrSType theErr;
// the term res==OOP_NIL is a performance optimization
if (res == OOP_NIL && GciErr(&theErr)) {

GciRaiseException(&theErr);
}

See Also
GciErr, page 148
GemTalk Systems 315

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciReadSharedCounter

Lock and fetch the value of a shared counter.

Syntax
BoolType GciReadSharedCounter(

int counterIdx,
int64_t * value);

Input Arguments
counterIdx The offset into the shared counters array of the value to fetch.

Result Arguments
value Pointer to a value that indicates the value at this shared counter.

Return Value
Returns a C Boolean value indicating whether the value was successfully read. Returns TRUE if
successful, FALSE if an error occurred.

Description
Lock the shared counter indicated by counterIdx, and fetch its value. The contents of the value
pointer will be set to the value of the shared counter.

Not supported for remote GCI interfaces.

See Also
GciFetchNumSharedCounters, page 177
GciDecSharedCounter, page 134
GciIncSharedCounter, page 214
GciSetSharedCounter, page 353
GciReadSharedCounterNoLock, page 317
GciFetchSharedCounterValuesNoLock, page 190
316 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciReadSharedCounterNoLock

Fetch the value of a shared counter without locking it.

Syntax
BoolType GciReadSharedCounterNoLock(

int counterIdx,
int64_t * value);

Input Arguments
counterIdx The offset into the shared counters array of the value to fetch.

Result Arguments
value Pointer to a value at this shared counter.

Return Value
Returns a C Boolean value indicating whether the value was successfully read. Returns TRUE if
successful, FALSE if an error occurred.

Description
Fetch the value of the shared counter indicated by counterIdx. The contents of the value pointer will
be set to the value of the shared counter. This function is faster than GciReadSharedCounter, but
may be less accurate.

Not supported for remote GCI interfaces.

See Also
GciFetchNumSharedCounters, page 177
GciDecSharedCounter, page 134
GciIncSharedCounter, page 214
GciSetSharedCounter, page 353
GciReadSharedCounter, page 316
GciFetchSharedCounterValuesNoLock, page 190
GemTalk Systems 317

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciRealloc

Reallocates memory.

Syntax
void* GciRealloc(

void * p,
size_t length,
int lineNumber,
const char * fileName,
);

Description
Return NULL if the underlying realloc() fails.
318 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciReleaseAllGlobalOops

Remove all OOPS from the PureExportSet, making these objects eligible for garbage collection.

Syntax
void GciReleaseAllGlobalOops()

Description
The GciReleaseAllGlobalOops function removes all OOPs from the PureExportSet, thus
permitting GemStone to consider removing them as a result of garbage collection. Objects that are
referenced from persistent objects are not removed during garbage collection, even if they are not
in PureExportSet. If invoked from a user action, this function does not affect the user action’s export
set.

GciReleaseAllGlobalOops is similar to GciReleaseAllOops, with the exception that OOPs are
removed from the PureExportSet regardless of whether it is called from within a user action or not.

The GciSaveGlobalObjs or GciSaveGlobalObjs functions may be used to make objects ineligible
for garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically added to the PureExportSet. You must release those
objects explicitly if they are to be eligible for garbage collection.

CAUTION
Before releasing all objects, be sure that you do not need to retain any of them for
any reason.

See Also
“Garbage Collection” on page 40
GciReleaseAllOops, page 320
GciReleaseGlobalOops, page 322
GciSaveGlobalObjs, page 337
GciSaveObjs, page 338
GemTalk Systems 319

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciReleaseAllOops

Remove all OOPS from the PureExportSet, or if in a user action, from the user action’s export set,
making these objects eligible for garbage collection.

Syntax
void GciReleaseAllOops()

Description
The GciReleaseAllOops function removes all OOPs from the applicable export set, thus permitting
GemStone to consider removing them as a result of garbage collection. If called from within a user
action, GciReleaseAllOops releases only those objects that have been saved since the beginning of
the user action and are therefore in the user action’s export set. If not called from within a user
action, GciReleaseAllOops removes all OOPs from the PureExportSet. To remove all objects from
the PureExportSet, regardless of user action context, use GciReleaseAllGlobalOops.

Objects that are referenced by persistent objects are not removed during garbage collection, even if
they are not in an export set. It is typical usage to call GciReleaseAllOops after successfully
committing a transaction.

The GciSaveObjs or GciSaveGlobalObjs functions may be used to make objects ineligible for
garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically ineligible. You must release those objects explicitly if they
are to be eligible.

CAUTION
Before releasing all objects, be sure that you do not need to retain any of them for
any reason.

See Also
“Garbage Collection” on page 40
GciReleaseAllGlobalOops, page 319
GciReleaseGlobalOops, page 322
GciReleaseOops, page 323
GciSaveGlobalObjs, page 337
GciSaveObjs, page 338
320 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciReleaseAllTrackedOops

Clear the GciTrackedObjs set, making all tracked OOPs eligible for garbage collection.

Syntax
void GciReleaseAllTrackedOops()

Description
The GciReleaseAllTrackedOops function removes all OOPs from the user session’s
GciTrackedObjs set, thus making them eligible to be garbage collected. This function does not affect
the export sets; objects that are also in an export set will remain protected from garbage collection.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them
for any reason.

See Also
GciHiddenSetIncludesOop, page 211
GciReleaseAllGlobalOops, page 319
GciReleaseAllOops, page 320
GciReleaseTrackedOops, page 325
GciSaveAndTrackObjs, page 336
GemTalk Systems 321

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciReleaseGlobalOops

Remove an array of GemStone OOPs from the PureExportSet, making them eligible for garbage
collection.

Syntax
void GciReleaseGlobalOops(

const OopType theOops[],
int numOops);

Input Arguments
theOops An array of OOPs. Each element of the array corresponds to an object to be

released.
numOops The number of elements in theOops.

Description
The GciReleaseGlobalOops function removes the specified OOPs from the PureExportSet, thus
making them eligible to be garbage collected.

This function differs from GciReleaseOops in that it operates the same if invoked from within a
user action or not.

The GciSaveObjs or GciSaveGlobalObjs functions may be used to make objects ineligible for
garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically ineligible. You must release those objects explicitly if they
are to be eligible.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them
for any reason.

See Also
“Garbage Collection” on page 40
GciReleaseAllGlobalOops, page 319
GciReleaseOops, page 323
GciSaveGlobalObjs, page 337
322 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciReleaseOops

Remove an array of GemStone OOPs from the PureExportSet, or if in a user action, remove them
from the user action’s export set, making them eligible for garbage collection.

Syntax
void GciReleaseOops(

const OopType theOops[],
int numOops);

Input Arguments
theOops An array of OOPs. Each element of the array corresponds to an object to be

released.
numOops The number of elements in theOops.

Description
The GciReleaseOops function removes the specified OOPs from the applicable export set, thus
making them eligible to be garbage collected. If invoked from within a user action, the specified
OOPs are removed from the user action’s export set, otherwise the OOPs are removed from the
PureExportSet.

To remove OOPs from the PureExportSet, regardless of user action context, use
GciReleaseGlobalOops.

The GciSaveObjs or GciSaveGlobalObjs functions may be used to make objects ineligible for
garbage collection. Note that results of the GciNew..., GciCreate..., GciPerform..., and
GciExecute... functions are automatically ineligible. You must release those objects explicitly if they
are to be eligible.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them
for any reason.

Example
void releaseOops_example(void)
{
 // assumes topaz code for GciFetchVaryingOops example has run.

 OopType oClass = GciResolveSymbol("Component", OOP_NIL);

 OopType namedIvs[3];
 namedIvs[0] = GciI32ToOop(5699); // a SmallInteger , don't need to
release
 namedIvs[1] = GciNewString("cfm56-99");
 namedIvs[2] = GciFltToOop(9.0e6); // a Float or SmallDouble

 OopType newComp = GciNewOop(oClass);
GemTalk Systems 323

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 GciStoreOops(newComp, 1, namedIvs, 3);

 OopType oColl = GciResolveSymbol("AllComponents", OOP_NIL);
 GciAddOopToNsc(oColl, newComp); // new objects now reachable from
AllComponents

 // release newly created objects so that if aComp is removed from
 // AllComponents by other application code, these new objects can
 // be garbage collected.
 OopType releaseBuf[3];
 releaseBuf[0] = namedIvs[1]; // a String
 releaseBuf[1] = namedIvs[1]; // might be a Float
 releaseBuf[2] = newComp; // a Component
 GciReleaseOops(releaseBuf, 3);
}

See Also
“Garbage Collection” on page 40
GciReleaseAllGlobalOops, page 319
GciReleaseAllOops, page 320
GciReleaseGlobalOops, page 322
GciSaveGlobalObjs, page 337
GciSaveObjs, page 338
324 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciReleaseTrackedOops

Remove an array of OOPs from the GciTrackedObjs set, making them eligible for garbage
collection.

Syntax
void GciReleaseTrackedOops(

const OopType theOops[],
int numOops);

Input Arguments
theOops An array of OOPs. Each element of the array corresponds to an object to be

released.
numOops The number of elements in theOops.

Description
The GciReleaseTrackedOops function removes the specified OOPs from the user session’s
GciTrackedObjs set, thus making them eligible to be garbage collected. This function does not affect
the export sets; objects that also appear in an export set will remain protected from garbage
collection.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them
for any reason.

See Also
GciHiddenSetIncludesOop, page 211
GciReleaseAllTrackedOops, page 321
GciSaveAndTrackObjs, page 336
GciTrackedObjsInit, page 407
GemTalk Systems 325

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciRemoveOopFromNsc

Remove an OOP from an NSC.

Syntax
BoolType GciRemoveOopFromNsc(

OopType theNsc,
OopType theOop);

Input Arguments
theNsc The OOP of the NSC from which to remove an OOP.
theOop The OOP of the object to be removed.

Result Arguments
theNsc The OOP of the modified NSC.

Return Value
Returns FALSE if theOop was not present in the NSC. Returns TRUE if theOop was present.

Description
This function removes an OOP from the unordered variables of an NSC, using structural access.

Example
BoolType removeOop_example(void)
{
 // assumes topaz code for GciFetchVaryingOop has run
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);

 OopType aColl = GciResolveSymbol("AllComponents", OOP_NIL);

 BoolType wasPresent = GciRemoveOopFromNsc(aColl, aComponent);

 GciReleaseOops(&aComponent, 1); // release because it was a result
 // from an execute

 return wasPresent;
}

See Also
GciAddOopToNsc, page 92 GciNscIncludesOop, page 278
GciAddOopsToNsc, page 93 GciRemoveOopsFromNsc, page 327
326 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciRemoveOopsFromNsc

Remove one or more OOPs from an NSC.

Syntax
BoolType GciRemoveOopsFromNsc(

OopType theNsc,
const OopType theOops[],
int numOops);

Input Arguments
theNsc The OOP of the NSC from which to remove the OOPs.
theOops The array of OOPs to be removed from the NSC.
numOops The number of OOPs to remove.

Result Arguments
theNsc The OOP of the modified NSC.

Return Value
Returns FALSE if any element of theOops was not present in the NSC. Returns TRUE if all elements
of theOops were present in the NSC.

Description
This function removes multiple OOPs from the unordered variables of an NSC, using structural
access. If any individual OOP is not present in the NSC, this function returns FALSE, but it still
removes all OOPs that it finds in the NSC.

Example
BoolType removeOops_example(void)
{
 // assumes topaz code for GciFetchVaryingOop has run
 OopType subColl = GciExecuteStr(
 "AllComponents select:[i|i partNumber > 1000]", OOP_NIL);

 OopType buf[10];
 int numRet = GciFetchVaryingOops(subColl, 1, buf, 10);
 // buf contains at most 10 components with partNumber > 1000 .

 OopType aColl = GciResolveSymbol("AllComponents", OOP_NIL);
 BoolType allPresent = GciRemoveOopsFromNsc(aColl, buf, numRet);

 GciReleaseOops(&subColl, 1);// release because it was result of an
execute
GemTalk Systems 327

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 return allPresent;
}

See Also
GciAddOopToNsc, page 92
GciAddOopsToNsc, page 93
GciNscIncludesOop, page 278
GciRemoveOopFromNsc, page 326
328 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciReplaceOops

Replace all instance variables in a GemStone object.

Syntax
void GciReplaceOops(

OopType theObj,
const OopType theOops[],
int numOops);

Input Arguments
theOops The array of OOPs used as the replacements.
numOops The number of OOPs in theOops.

Result Arguments
theObj The object whose instance variables are replaced.

Description
GciReplaceOops uses structural access to replace all the instance variables in the object. However,
it does so in a context that is external to the object. Hence, it completely ignores private named
instance variables in its operation.

If theObj is of fixed size, then it is an error for numOops to be of a different size. If theObj is of a
variable size, then it is an error for numOops to be of a size smaller than the number of named
instance variables (namedSize) of the object. For variable-sized objects, GciReplaceOops resets the
number of unnamed variables to numOops - namedSize.

GciReplaceOops is not recommended for use with variable-sized objects unless they are indexable
or are NSCs. Other variable-sized objects, such as KeyValue dictionaries, do not store values at
fixed offsets.

See Also
GciReplaceVaryingOops, page 330
GciStoreIdxOops, page 369
GciStoreNamedOops, page 373
GciStoreOops, page 377
GemTalk Systems 329

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciReplaceVaryingOops

Replace all unnamed instance variables in an NSC object.

Syntax
void GciReplaceVaryingOops(

OopType theNsc,
const OopType theOops[],
int numOops);

Input Arguments
theOops The array of objects used as the replacements.
numOops The number of objects in theOops.

Result Arguments
theNsc The NSC object whose unnamed instance variables are replaced.

Description
GciReplaceVaryingOops uses structural access to replace all unnamed instance variables in the
NSC object.

See Also
GciReplaceOops, page 329
GciStoreIdxOops, page 369
GciStoreNamedOops, page 373
GciStoreOops, page 377
330 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciResolveSymbol

Find the OOP of the object to which a symbol name refers, in the context of the current session’s
user profile.

Syntax
OopType GciResolveSymbol(

const char * cString,
OopType symbolList);

Input Arguments
cString The name of a symbol as a character string.
symbolList The OOP of an instance of OOP_CLASS_SYMBOL_LIST or OOP_NIL.

Return Value
The OOP of the object that corresponds to the specified symbol.

Description
Attempts to resolve the symbol name cString using symbol list symbolList. If symbolList is OOP_NIL,
this function searches the symbol list in the user’s UserProfile. If the symbol is not found or an error
is generated, the result is OOP_ILLEGAL. If result is OOP_ILLEGAL and GciErr reports no error,
then the symbol could not be resolved using the given symbolList. If an error such as an
authorization error occurs, the result is OOP_ILLEGAL and the error is accessible by GciErr.

This function is similar to GciResolveSymbolObj, except that the symbol argument is a C string
instead of an object identifier.

See Also
GciResolveSymbolObj, page 332
GemTalk Systems 331

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciResolveSymbolObj

Find the OOP of the Symbol to which a String object refers, in the context of the current session’s
user profile.

Syntax
OopType GciResolveSymbolObj(

OopType aStringObj,
OopType symbolList);

Input Arguments
aStringObj The OOP of a kind of String or MultibyteString. That is, this object’s class

must be OOP_CLASS_STRING or a subclass thereof.
symbolList The OOP of an instance of OOP_CLASS_SYMBOL_LIST,

OOP_CLASS_MultiByteString, or OOP_NIL.

Return Value
The OOP of the Symbol that corresponds to the specified String.

Description
Attempts to resolve aStringObj using symbol list symbolList. If symbolList is OOP_NIL, this function
searches the symbol list in the user’s UserProfile. If the symbol is not found or an error is generated,
the result is OOP_ILLEGAL. If the result is OOP_ILLEGAL and GciErr reports no error, then the
symbol could not be resolved using the given symbolList. If an error such as an authorization error
occurs, the result is OOP_ILLEGAL and the error is accessible by GciErr.

This function is similar to GciResolveSymbol, except that the symbol argument is an object
identifier for a String instead of a C string.

See Also
GciResolveSymbol, page 331
332 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciRtlIsLoaded

Report whether a GemBuilder library is loaded.

Syntax
BoolType GciRtlIsLoaded()

Return Value
Returns TRUE if a GemBuilder library is loaded and FALSE if not.

Description
The GciRtlIsLoaded function reports whether an executable has loaded one of the versions of
GemBuilder. The GemBuilder library files are dynamically loaded at run time. See “The
GemBuilder for C Shared Libraries” on page 44 for more information.

See Also
GciRtlLoad, page 334
GciRtlUnload, page 335
GemTalk Systems 333

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciRtlLoad

Load a GemBuilder library.

Syntax
BoolType GciRtlLoad(

BoolType useRpc,
const char * path,
char errBuf[],
size_t errBufSize);

Input Arguments
useRpc A flag to specify the RPC or linked version of GemBuilder.
path A list of directories (separated by ;) to search for the GemBuilder library.
errBuf A buffer to store any error message.
errBufSize The size of errBuf.

Return Value
Returns TRUE if a GemBuilder library loads successfully. If the load fails, the return value is
FALSE, and a null-terminated error message is stored in errBuf, unless errBuf is NULL.

Description
The GciRtlLoad function attempts to load one of the GemBuilder libraries. If useRpc is TRUE, the
RPC version of GemBuilder is loaded. If useRpc is FALSE, the linked version of GemBuilder is
loaded. See “The GemBuilder for C Shared Libraries” on page 44 for more information.

If path is not NULL, it must point to a list of directories to search for the library to load. If path is
NULL, then a default path is searched.

If a GemBuilder library is already loaded, the call fails.

See Also
GciRtlIsLoaded, page 333
GciRtlUnload, page 335
334 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciRtlUnload

Unload a GemBuilder library.

Syntax
void GciRtlUnload()

Description
The GciRtlUnload function causes the library loaded by GciRtlLoad to be unloaded. Once the
current library is unloaded, GciRtlLoad can be called again to load a different GemBuilder library.
See “The GemBuilder for C Shared Libraries” on page 44 for more information.

See Also
GciRtlLoad, page 334
GciRtlIsLoaded, page 333
GemTalk Systems 335

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSaveAndTrackObjs

Add objects to GemStone’s internal GciTrackedObjs set to prevent them from being garbage
collected.

Syntax
void GciSaveAndTrackObjs(

const OopType theOops[],
int numOops);

Input Arguments
theOops An array of OOPs.
numOops The number of elements in theOops.

Description
The GciSaveAndTrackOops function adds the specified OOPS to GemStone’s GciTrackedObjs set.
This prevents the GemStone garbage collector from causing the objects to disappear during a
session if they become unreferenced, and enables changes to these objects to show up in the
TrackedDirtyObjs set.

This function does not cause the objects to be referenced from a permanent object; there is no
guarantee that they will be saved to disk at commit.

The results of GciNew..., GciCreate..., GciSend..., GciPerform..., and GciExecute... calls are
automatically added to the export set, which also prevents them from being garbage collected.

This function may only be called after GciTrackedObjsInit has been executed.

You can use GciReleaseTrackedOops or GciReleaseAllTrackedOops calls to cancel the effect of a
GciSaveAndTrackOops call, thereby making objects eligible for garbage collection. Objects that
have been added to the GciTrackedObjs set and have been modified can be retrieved using
GciTrackedDirtyObjs, GciDirtySaveObjs, or GciTrackedObjsFetchAllDirty.

See Also
GciHiddenSetIncludesOop, page 211
GciDirtySaveObjs, page 138
GciDirtyTrackedObjs, page 140
GciReleaseAllTrackedOops, page 321
GciReleaseTrackedOops, page 325
GciTrackedObjsInit, page 407
GciTrackedObjsFetchAllDirty, page 405
336 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSaveGlobalObjs

Add an array of OOPs to the PureExportSet, making them ineligible for garbage collection.

Syntax
void GciSaveGlobalObjs(

const OopType theOops[],
int numOops);

Input Arguments
theOops An array of OOPs.
numOops The number of elements in theOops.

Description
The GciSaveGlobalObjs function places the specified OOPs in the PureExportSet, thus preventing
GemStone from removing them as a result of garbage collection. GciSaveGlobalObjs can add any
OOP to the PureExportSet. It differs from GciSaveObjs in that OOPs are placed in the
PureExportSet regardless of user action context.

The GciSaveGlobalObjs function does not itself make objects persistent, and it does not create a
reference to them from a persistent object so that the next commit operation will try to do so either.
It only protects them from garbage collection.

Note that results of the GciNew..., GciCreate..., GciPerform..., GciExecute..., and GciResolve...
functions are automatically added to the export set. The GciRelease... functions may be used to
make objects eligible for garbage collection.

See Also
“Garbage Collection” on page 40
GciReleaseAllGlobalOops, page 319
GciReleaseAllOops, page 320
GciReleaseGlobalOops, page 322
GciReleaseOops, page 323
GciSaveObjs, page 338
GemTalk Systems 337

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSaveObjs

Add an array of OOPs to the PureExportSet, or if in a user action to the user action’s export set,
making them ineligible for garbage collection.

Syntax
void GciSaveObjs(

const OopType theOops[],
int numOops);

Input Arguments
theOops An array of OOPs.
numOops The number of elements in theOops.

Description
The GciSaveObjs function places the specified OOPs in the applicable export set, thus preventing
GemStone from removing them as a result of garbage collection. If invoked from within a user
action, the OOPs are added to the user action’s export set; otherwise the OOPs are added to the
PureExportSet. To add OOPS to the PureExportSet, regardless of the user action context, use
GciSaveGlobalObjs. GciSaveObjs can add any OOP to the export set.

The GciSaveObjs function does not itself make objects persistent, and it does not create a reference
to them from a persistent object so that the next commit operation will try to do so either. It only
protects them from garbage collection.

Note that results of the GciNew..., GciCreate..., GciPerform..., GciExecute..., and GciResolve...
functions are automatically added to the export set. The GciRelease... functions may be used to
make objects eligible for garbage collection.

See Also
“Garbage Collection” on page 40
GciReleaseGlobalOops, page 322
GciReleaseOops, page 323
GciSaveGlobalObjs, page 337
338 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciServerIsBigEndian

Determine whether or not the server process is big-endian.

Syntax
BoolType GciServerIsBigEndian();

Return Value
Returns TRUE if the session is RPC and the server process is big-endian, or if the session is linked
and this process is big-endian. Returns FALSE otherwise.

Description
This function determines whether the server process is big-endian. If the current session is invalid,
this generates an error.
GemTalk Systems 339

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSessionIsRemote

Determine whether or not the current session is using a Gem on another machine.

Syntax
BoolType GciSessionIsRemote()

Return Value
Returns TRUE if the current GemBuilder session is connected to a remote Gem. It returns FALSE if
the current GemBuilder session is connected to a linked Gem.

GciSessionIsRemote raises an error if the current session is invalid.
340 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetCacheName_

Set the name that a linked application will be known by in the shared cache.

Syntax
BoolType GciSetCacheName_(

const char * name);

Input Arguments
name The processName reported by System cacheStatistics.

Return Value
Returns FALSE if called before GciInit and GciIsRemote returns FALSE.

Description
This function sets the name that a linked application will be known by in the shared cache. This
function has no effect if GciIsRemote returns TRUE.
GemTalk Systems 341

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSetDynLib

Swap the byte order of an array of uint.

Syntax
void GciSetDynLib(

void * handle);

Description
Used by the topaz.c main program to save the result of dlopen() which loaded the GCI
shared library.
342 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetErrJump

Enable or disable the current error handler.

Syntax
BoolType GciSetErrJump(

BoolType aBoolean);

Input Arguments
aBoolean TRUE enables error jumps to the execution environment saved by the most

recent GciPushErrJump; FALSE disables error jumps.

Return Value
Returns TRUE if error handling was previously enabled for the jump buffer at the top of the error
jump stack. Returns FALSE if error handling was previously disabled. If your program has no
buffers saved in its error jump stack, this function returns FALSE. (This function cannot generate
an error.)

For most GemBuilder functions, calling GciErr after a successful function call will return zero (that
is, false). In such cases, the GciErrSType error report structure will contain some default values.
(See GciErr on page 148 for details.) However, a successful call to GciSetErrJump does not alter
any previously existing error report information. That is, calling GciErr after a successful call to
GciSetErrJump will return the same error information that was present before this function was
called.

Description
This function enables or disables the error handler at the top of GemBuilder’s error jump stack.

Example
void setErrJump_example(void)
{
 GciJmpBufSType jumpBuf1;
 GciPushErrJump(&jumpBuf1);

 if (Gci_SETJMP(&jumpBuf1)) {
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("LONGJMP, error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf("GCI longjmp, but no error found\n"); // should not
happen
 }
 GciPopErrJump(&jumpBuf1);
 return;
GemTalk Systems 343

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 }
 BoolType prevVal = GciSetErrJump(FALSE); // disable error jumps
 printf("error jumps previously %s\n", prevVal ? "enabled" :
"disabled");

 OopType oRcvr = GciI32ToOop(3);
 GciPerform(oRcvr, "frob", NULL, 0); // expect does-not-understand
error
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 printf("error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 } else {
 printf("expected error but found none\n");
 }

 GciSetErrJump(TRUE);
 GciPerform(oRcvr, "frob", NULL, 0); // expect a longjmp

 printf("GCI longjmp did not happen\n"); // should not reach here
}

See Also
GciErr, page 148
GciPopErrJump, page 311
GciPushErrJump, page 314
344 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetHaltOnError

Halt the current session when a specified error occurs.

Syntax
int GciSetHaltOnError(

int errNum);

Input Arguments
errNum When this error occurs, halt the current session.

Return Value
Returns the previous error number on which the session was to halt.

Description
The GciSetHaltOnError function causes the current session to halt for internal debugging when
the specified GemBuilder error occurs. When errNum is zero, halt on error is disabled.

See Also
GciErr, page 148
GemTalk Systems 345

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Gci_SETJMP

(MACRO) Save a jump buffer in GemBuilder’s error jump stack.

Syntax
void Gci_SETJMP(

GciJmpBufSType * jumpBuffer);

Input Arguments
jumpBuffer A pointer to a jump buffer.

Description
When your program calls this macro, the context of the C environment is saved in a jump buffer
that you designate. GemBuilder maintains a stack of up to 20 error jump buffers.

Except for the difference in argument type, the semantics of this function are the same as for
setjmp() on Solaris and _setjmp() on HP-UX.

See Also
GciErr, page 148
GciLongJmp, page 233
GciPopErrJump, page 311
GciPushErrJump, page 314
GciSetErrJump, page 343
346 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetNet

Set network parameters for connecting the user to the Gem and Stone processes.

Syntax
void GciSetNet(

const char StoneName[],
const char HostUserId[],
const char HostPassword[],
const char GemService[]);

Input Arguments
StoneName Network resource string for the database monitor process.
HostUserId UNIX host login name.
HostPassword password of the UNIX user.
GemService Network resource string for the GemStone service.

Description
Your application, your GemStone session (Gem), and the database monitor (Stone) can all run in
separate processes, on separate machines in your network. GciSetNet specifies the network
parameters that are used to connect the current user to GemStone on the host, whenever GciLogin
is called. Network resource strings specify the information needed to establish communications
between these processes . See the System Administration Guide for GemStone/S 64 Bit for complete
information on NRS Syntax and the network environment.

StoneName identifies the name and network location of the database monitor process (Stone), which
is the final arbiter of all sessions that access a specific database. Every session must communicate
with a Stone, in both linked and remote applications. Hence, StoneName is a required argument.

A Stone process called “gs64stone” on node “lichen” could be described in a network resource
string as:

!@lichen!gs64stone

A Stone of the same name that is running on the same machine as the application could be
described in shortened form simply as:

gs64stone

GemService identifies the name and network location of the GemStone service that creates a session
process (Gem), which then arbitrates data access between the database and the application. Every
GemStone session requires a Gem. In linked applications, one Gem is present within the same
process as the application; in remote applications the Gem is a separate process specific to that login
session. Therefore, each time an application user logs in to GemStone (after the first time in linked
applications), the GemStone service must create a new Gem. Hence, GemService is a required
argument, except in the special case of a linked application that limits itself to one GemStone login
per application process. In this special case, specify GemService as an empty string.
GemTalk Systems 347

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
For most installations, the GemStone service name is gemnetobject. Specify, for example:

!@lichen!gemnetobject

HostUserId and HostPassword are your login name and password, respectively, on the machines that
host the Gem and Stone processes. Do not confuse these values with your GemStone username and
password - the GemStone username and password will be provided as arguments to GciLogin.
HostUserId and HostPassword provide authentication for such tasks as creating a Gem and
establishing communications with a Stone, and are optional in some configuration. When such
authentication is required, an application user cannot login to GemStone until the host login is
verified for the machine running the Stone or Gem, in addition to the GemStone login itself.

Authentication is always required if the NetLDI process that is related to the Stone is running in
secure mode. In this case, it makes no difference whether the application is linked or remote.
Authentication is also required to create a remote Gem, unless the NetLDI process is running in
guest mode.

If the HostUserId argument is set to an empty C string or a NULL pointer, GemBuilder will try to
find a username and password for authentication on a host machine in your network initialization
file. To prevent GemBuilder from looking for authentication information in the network
initialization file, supply a valid non-empty C string for the HostUserId argument, and a non-empty
string for the HostPassword argument to provide a password. An empty string and a NULL pointer
both mean that no password will be used for authentication.

Example
For an example of how GciSetNet is used, see the example for GciLogin on page 229.

See Also
GciLogin, page 229
GciLoginEx, page 231
GciSetNetEx, page 349
348 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetNetEx
GciSetNetEx_

Set network parameters for connecting the user to the Gem and Stone processes, allowing
encryption.

Syntax
void GciSetNetEx(

const char StoneName[],
const char HostUserId[],
const char HostPassword[],
const char GemService[] ,
BoolType passwordIsEncrypted);

BoolType GciSetNetEx_(
const char StoneName[],
const char HostUserId[],
const char HostPassword[],
const char GemService[] ,
BoolType passwordIsEncrypted,
char * errString,
size_t maxErrSize);

Input Arguments
StoneName Network resource string for the database monitor process.
HostUserId UNIX host login name.
HostPassword password of the UNIX user.
GemService Network resource string for the GemStone service.
passwordIsEncrypted Whether the password has been encrypted.

Result Arguments
errString If there is a snytax error in the NRS for the StoneName or GemService,

GciSetNetEx_ returns FALSE and sets erroString to the details of the error. .
maxErrSize Maximum size of errString.

Return Value
GciSetNetEx has no return value. GciSetNetEx_ returns TRUE if the network parameters were set
correctly, FALSE if there was a syntax error in StoneName or GemService.

Description
This funtion is similar to GciSetNet, but allows specifying additional behavior. For details on how
to specify the StoneName and GemService using NRS, and the requirements for HostUserId,
HostPassword, see GciSetNet on page 347.
GemTalk Systems 349

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSetNetEx allows you to specify that the host password you send is encyrpted. The host
password may be encyrpted using GciEncrypt.

Example
For an example of how GciSetNet is used, see GciLogin on page 229.

See Also
GciEncrypt, page 147
GciLogin, page 229
GciLoginEx, page 231
GciSetNet, page 347
350 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetSessionId

Set an active session to be the current one.

Syntax
void GciSetSessionId(

GciSessionIdType sessionId);

Input Arguments
sessionId The session ID of an active (logged-in) GemStone session.

Description
This function can be used to switch between multiple GemStone sessions in an application program
with multiple logins.

Example
void setSession_example(void)
{
 // assume topaz code for GciFetchVaryingOop has run
 // see GciLogin for login_example()
 if (! login_example())
 return;
 GciSessionIdType sess1 = GciGetSessionId();

 if (! login_example())
 return;
 GciSessionIdType sess2 = GciGetSessionId();

 { OopType aColl = GciResolveSymbol("AllComponents", OOP_NIL);
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 GciRemoveOopFromNsc(aColl, aComponent);
 GciReleaseOops(&aComponent, 1);
 printf("session %d , size after removal "FMT_I64"\n",

sess2, GciFetchVaryingSize_(aColl));
 }
 // other session will still see the original size before removal
 // because it has an independent transactional view of the
repository.
 GciSetSessionId(sess1);
 { OopType aColl = GciResolveSymbol("AllComponents", OOP_NIL);
 printf("session %d , current size "FMT_I64"\n",
 sess1, GciFetchVaryingSize_(aColl));
 }
}

GemTalk Systems 351

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciGetSessionId, page 209
GciLogin, page 229
352 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetSharedCounter

Set the value of a shared counter.

Syntax
BoolType GciSetSharedCounter(

int counterIdx,
int64_t * value);

Input Arguments
counterIdx The offset into the shared counters array of the value to modify.
value Pointer to a value that containing the new value for this shared counter.

Return Value
Returns a C Boolean value indicating whether the value was successfully changed. Returns TRUE
if the modification succeeded, FALSE if it failed.

Description
Set the value of the shared counter indicated by counterIdx. The contents of the value pointer
indicate the new value of the shared counter.

Not supported for remote GCI interfaces.

See Also
GciFetchNumSharedCounters, page 177
GciDecSharedCounter, page 134
GciIncSharedCounter, page 214
GciReadSharedCounter, page 316
GciReadSharedCounterNoLock, page 317
GciFetchSharedCounterValuesNoLock, page 190
GemTalk Systems 353

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSetTraversalBufSwizzling

Control swizzling of the traversal buffers.

Syntax
BoolType GciSetTraversalBufSwizzling(

BoolType enabled);

Input Arguments
enabled If TRUE, enable normal byte-order swizzling of traversal buffers for the

current RPC session. This is the default state for a session created by
successful GciLogin().
If FALSE, the application program (for example, GemBuilder for Smalltalk)
is responsible for subsequent swizzling of traversal buffers if needed.

Return Value
Returns the previous value of swizzling of traversal buffers. When called on a linkable session,
returns FALSE and has no effect. If the current session is invalid, generates an error and returns
FALSE.

Description
GciSetTraversalBufSwizzling controls swizzling of the traversal buffers used by these calls in an
RPC session:

GciStoreTrav, GciNbStoreTrav
GciStoreTravDo_, GciNbStoreTravDo_
GciStoreTravDoTrav_, GciNbStoreTravDoTrav_
GciClampedTrav, GciNbClampedTrav
GciMoreTraversal, GciNbMoreTraversal
GciPerformTrav, GciNbPerformTrav
GciExecuteStrTrav, GciNbExecuteStrTrav
354 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSetVaryingSize

Set the size of a collection.

Syntax
void GciSetVaryingSize(

OopType collection,
int64 size);

Input Arguments
collection The OOP of the collection whose size you are specifying.
size The desired number of elements in the collection.

Description
GciSetVaryingSize changes the size of a collection, adding nils to grow it, or truncating it, as
necessary. It is equivalent to the Smalltalk method Object >> size:. It does not change the
number of any named instance variables.

Example
void setVaryingSize_example(void)
{
 OopType oArr = GciNewOop(OOP_CLASS_ARRAY); // create new Array of size 0

 GciSetVaryingSize(oArr, 1000000);
 // logical size now 1 million

 GciStoreOop(oArr, 500000, GciI32ToOop(5678));
}

See Also
GciFetchVaryingSize_, page 199
GemTalk Systems 355

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciShutdown

Logout from all sessions and deactivate GemBuilder.

Syntax
void GciShutdown()

Description
This function is intended to be called by image exit routines, such as the on_exit system call. In the
linkable GemBuilder, GciShutdown calls GciLogout. In the RPC version, it logs out all sessions
connected to the Gem process and shuts down the networking layer, thus releasing all memory
allocated by GemBuilder.

It is especially important to call this function explicitly on any computer whose operating system
does not automatically deallocate resources when a process quits. This effect is found on certain
small, single-user systems.
356 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSoftBreak

Interrupt the execution of Smalltalk code, but permit it to be restarted.

Syntax
void GciSoftBreak()

Description
This function sends a soft break to the current user session (set by the last GciLogin or
GciSetSessionId).

GemBuilder allows users of your application to terminate Smalltalk execution. This is useful, for
example, if the a Smalltalk method is invoked that enters an infinite loop.

GciSoftBreak interrupts only the Smalltalk virtual machine (if it is running), and does so in such a
way that the it can be restarted. The only GemBuilder functions that can recognize a soft break
include GciSendMessage, GciPerform, and GciContinue, and the GciExecute... functions.

GciHardBreak has no effect if called from within a User Action.

In order for GemBuilder functions in your program to recognize interrupts, your program will
need a signal handler that can call the functions GciSoftBreak and GciHardBreak. Since
GemBuilder does not relinquish control to an application until it has finished its processing, soft
and hard breaks must be initiated from another thread.

If GemStone is executing when it receives the break, it replies with the error message
RT_ERR_SOFT_BREAK. Otherwise, it ignores the break.

Example

#include "signal.h"

extern "C" {
 static void doSoftBreak(int sigNum, siginfo_t* info, void* ucArg)
 {
 GciSoftBreak();
 }
}

void softBreakExample(void)
{
 // save previous SIGINT handler and install ours
 struct sigaction oldHandler;
 struct sigaction newHandler;
 newHandler.sa_handler = SIG_DFL;
 newHandler.sa_sigaction = doSoftBreak;
 newHandler.sa_flags = SA_SIGINFO | SA_RESTART ;
 sigaction(SIGINT, &newHandler, &oldHandler);

GemTalk Systems 357

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 // execute a loop that will take 120 seconds to execute and
 // return the SmallInteger with value 11 .
 OopType result = GciExecuteStr(
 "| a | a := 1 . 10 timesRepeat:[System sleep:10. a := a + 1]. ^ a",
 OOP_NIL/*use default symbolList for execution*/);

 BoolType done = FALSE;
 int breakCount = 0;
 do {
 // assume the user may type ctl-C or issue kill -INT from
 // another shell process during the 120 seconds .
 GciErrSType errInfo;
 if (GciErr(&errInfo)) {
 if (errInfo.number == RT_ERR_SOFT_BREAK) {
 // GciExecuteStr was interrupted by a GciSoftBreak .
 breakCount++ ;
 // now continue the execution to finish the computation
 result = GciContinue(errInfo.context);
 } else {
 // FMT_OID format string is defined in gci.ht
 printf("unexpected error category "FMT_OID" number %d, %s\n",
 errInfo.category, errInfo.number, errInfo.message);
 // terminate the execution
 GciClearStack(errInfo.context);
 done = TRUE;
 }
 } else {
 // GciExecuteStr or GciContinue completed without error
 done = TRUE;
 BoolType conversionErr = FALSE;
 int val = GciOopToI32_(result, &conversionErr);
 if (conversionErr) {
 printf("Error converting result to C int\n");
 } else {
 printf("Got %d interrupts, result = %d\n", breakCount, val);
 }
 }
 } while (! done);

 // restore previous SIGINT handler
 sigaction(SIGINT, &oldHandler, NULL);
}

See Also
GciClearStack, page 113
GciContinue, page 120
GciExecute, page 149
GciHardBreak, page 210
GciPerform, page 298
358 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStep
GciStep_

Continue code execution in GemStone with specified single-step semantics.

Syntax
OopType GciStep(

OopType process,
int level);

OopType GciStep_(
OopType process,
int level
BoolType through);

Input Arguments
process The OOP of a GsProcess object (obtained as the value of the context field of

an error report returned b y GciErr).
level One of the following values:

0 — step-into semantics starting from top of stack
1 — step-over semantics starting from top of stack
> 1 — step-over semantics from specified level on stack

through When level =1 and this argument is TRUE, provides step through semantics,
stopping in blocks for which the top of the stack frame is the home method.

Return Value
Returns the OOP of the result of the Smalltalk execution. Returns OOP_ILLEGAL in case of error.

Description
This function continues code execution in GemStone using the specified single-step semantics. This
function is intended for use by debuggers.

If you specify a level that is either less than zero or greater than the value represented by
GciPerform(process, "stackDepth", NULL, 0), this function generates an error.

See Also
GciPerform, page 298
GemTalk Systems 359

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStoreByte

Store one byte in a byte object.

Syntax
void GciStoreByte(

OopType theObject,
int64 atIndex,
ByteType theByte);

Input Arguments
theObject The OOP of the GemStone byte object.
atIndex The index into theObject at which to store the byte.
theByte The 8-bit value to be stored.

Result Arguments
theObject The resulting GemStone byte object.

Description
This function stores a single element in a byte object at a specified index, using structural access.

GciStoreByte raises an error if theObject is a Float or SmallFloat. You must store all the bytes of a
Float or SmallFloat if you store any.

Example
void storeByte_example(void)
{
 OopType oString = GciNewOop(OOP_CLASS_STRING);

 for (int j = 0; j < 200; j++) {
 ByteType val = j;
 GciStoreByte(oString, j + 1 , val);
 }
}

See Also
GciFetchByte, page 161
GciFetchBytes_, page 162
GciStoreBytes, page 361
360 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreBytes

(MACRO) Store multiple bytes in a byte object.

Syntax
void GciStoreBytes(

OopType theObject,
int64 startIndex,
const ByteType theBytes[],
int64 numBytes);

Input Arguments
theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing bytes.
theBytes The array of bytes to be stored.
numBytes The number of elements to store.

Result Arguments
theObject The resulting GemStone byte object.

Description
This macro uses structural access to store multiple elements from a C array in a byte object,
beginning at a specified index. A common application of GciStoreBytes would be to store a text
string. For an object with multiple bytes per character or digit, theBytes is expected to be in client
native byte order, and will be swizzled if needed by the server.

Error Conditions

GciStoreBytes raises an error if theObject is a Float or SmallFloat. Use GciStoreBytesInstanceOf
instead for Float or SmallFloat objects.

Example
void storeBytes_example(void)
{
 OopType oString = GciNewOop(OOP_CLASS_STRING);

 enum { buf_size = 2000 };
 ByteType buf[buf_size];
 for (int j = 0; j < buf_size; j++) {
 buf[j] = (ByteType)j;
 }
 GciStoreBytes(oString, 1, buf, buf_size);
}

GemTalk Systems 361

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciFetchByte, page 161
GciFetchBytes_, page 162
GciStoreByte, page 360
GciStoreBytesInstanceOf, page 363
GciStoreChars, page 365
362 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreBytesInstanceOf

Store multiple bytes in a byte object.

Syntax
void GciStoreBytesInstanceOf(

OopType theClass,
OopType theObject,
int64 startIndex,
const ByteType theBytes[],
int64 numBytes);

Input Arguments
theClass The OOP of the class of the GemStone byte object.
theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing bytes.
theBytes The array of bytes to be stored.
numBytes The number of elements to store.

Result Arguments
theObject The resulting GemStone byte object.

Description
This function uses structural access to store multiple elements from a C array into a byte object,
beginning at a specified index. A common application of GciStoreBytesInstanceOf would be to
store a Float or LargeInteger object.

GciStoreBytesInstanceOf provides automatic byte swizzling for objects such as Float,
LargeInteger, and DoubleByteString that use multiple bytes per digit or character. For more about
byte swizzling, see “Byte-Swizzling of Binary Floating-Point Values” on page 25. For these objects,
theBytes is assumed to be in client native byte order. For DoubleByteStrings, startIndex must be
aligned on character boundaries and numbytes must be a multiple of the number of bytes per
character; for numeric objects startindex must be one and the numBytes the size of the numeric class.

The presence of the argument theClass enables the swizzling to be implemented more efficiently. If
theObject is a Float or SmallFloat, then theClass must match the actual class of theObject, startIndex
must be one, and numBytes must be the actual size for theClass. If any of these conditions are not
met, then GciStoreBytesInstanceOf raises an error as a safety check.

If theObject is not a Float or SmallFloat, then theClass is ignored. Hence, you must supply the correct
class for theClass if theObject is a Float or SmallFloat, but you can use OOP_NIL otherwise.

Example
void storeBytesInstof_example(void)
{
 double pi = 3.1415926;
GemTalk Systems 363

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 OopType oFloat = GciNewOop(OOP_CLASS_FLOAT);
 GciStoreBytesInstanceOf(OOP_CLASS_FLOAT, oFloat, 1,
 (ByteType *)&pi, sizeof(pi));
}

See Also
GciFetchByte, page 161
GciFetchBytes_, page 162
GciStoreByte, page 360
GciStoreBytes, page 361
GciStoreChars, page 365
364 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreChars

Store multiple ASCII characters in a byte object.

Syntax
void GciStoreChars(

OopType theObject,
int64 startIndex,
const char * aString);

Input Arguments
theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing the string.
aString The string to be stored.

Result Arguments
theObject The resulting GemStone byte object.

Description
This function uses structural access to store a C string in a byte object, beginning at a specified
index.

GciStoreChars raises an error if theObject is a Float or SmallFloat. ASCII characters have no
meaning as bytes in a Float or SmallFloat object.

Example
void storeChars_example(void)
{
 OopType oString = GciNewOop(OOP_CLASS_STRING);

 GciStoreChars(oString, 1, "some string data");
}

See Also
GciFetchByte, page 161
GciFetchBytes_, page 162
GciStoreByte, page 360
GciStoreBytes, page 361
GemTalk Systems 365

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStoreDynamicIv

Create or change the value of an object’s dynamic instance variable.

Syntax
void GciStoreDynamicIv(

OopType theObject,
OopType aSymbol,
OopType value);

Input Arguments
theObject The OOP of the GemStone object.
aSymbol Specifies the dynamic instance variable of the object.
value The value to store in the dynamic instance variable.

Return Value
Creates or changes the value of the dynamic instance variable specified by aSymbol within theObject.

Description
This function stores a value into the dynamic instance variable specified by aSymbol.

Dynamic instance variables are not allowed in instances of ExecBlock, Behavior, GsNMethod, or
special objects.

To delete a dynamic instance variable, pass OOP_REMOTE_NIL as the value.

See Also
GciFetchDynamicIv, page 168
GciFetchDynamicIvs, page 169
366 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreIdxOop

Store one OOP in an indexable pointer object’s unnamed instance variable.

Syntax
void GciStoreIdxOop(

OopType theObject,
int64 atIndex,
OopType theOop);

Input Arguments
theObject The pointer object.
atIndex The index into theObject at which to store the object.
theOop The OOP to be stored.

Result Arguments
theObject The resulting pointer object.

Description
This function stores a single OOP into an indexed variable of a pointer object at the specified index,
using structural access. Note that this function cannot be used for NSCs. (To add an OOP to an
NSC, use GciAddOopToNsc on page 92.)

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storeIdxOop_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);

 OopType otherComp = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1333]", OOP_NIL);

 // store new value into 3rd element of aComponent's parts list
 GciStoreIdxOop(aComponent, 3, otherComp);

 GciReleaseOops(&aComponent, 1); // release results of execution
 GciReleaseOops(&otherComp, 1);
}

GemTalk Systems 367

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
See Also
GciAddOopToNsc, page 92
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 197
GciStoreIdxOops, page 369
368 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreIdxOops

Store one or more OOPs in an indexable pointer object’s unnamed instance variables.

Syntax
void GciStoreIdxOops(

OopType theObject,
int64 startIndex,
const OopType theOops[],
int numOops);

Input Arguments
theObject The pointer object.
startIndex The index into theObject at which to begin storing OOPs.
theOops The array of OOPs to be stored.
numOops The number of OOPs to store.

Result Arguments
theObject The resulting pointer object.

Description
This function uses structural access to store multiple OOPs from a C array into the indexed
variables of a pointer object, beginning at the specified index. Note that this call cannot be used with
NSCs. (To add multiple OOPs to an NSC, use GciAddOopsToNsc on page 93.)

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storeIdxOops_example(void)
{
 // retrieve a random instance of class Component
 OopType firstC = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);

 OopType secondC = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1333]", OOP_NIL);

 // make first component's parts list be identical to second
component's list
 enum { buf_size = 100 };
 OopType buf[buf_size];
 int64 firstSize = GciFetchVaryingSize_(firstC);
 int64 idx = 1;
 while (idx <= firstSize) {
GemTalk Systems 369

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 int numRet = GciFetchVaryingOops(firstC, idx, buf, buf_size);
 GciStoreIdxOops(secondC, idx, buf, numRet);
 idx += numRet;
 }
 // truncate second component's parts list if it was larger than
first's
 GciSetVaryingSize(secondC, firstSize);

 GciReleaseOops(&firstC, 1); // release results of executions
 GciReleaseOops(&secondC, 1);
}

See Also
GciAddOopsToNsc, page 93
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 197
GciReplaceOops, page 329
GciReplaceVaryingOops, page 330
GciStoreIdxOop, page 367
GciStoreIdxOops, page 369
GciStoreNamedOops, page 373
GciStoreOops, page 377
370 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreNamedOop

Store one OOP into an object’s named instance variable.

Syntax
void GciStoreNamedOop(

OopType theObject,
int64 atIndex,
OopType theOop);

Input Arguments
theObject The object in which to store the OOP.
atIndex The index into theObject’s named instance variables at which to store the

OOP.
theOop The OOP to be stored.

Result Arguments
theObject The resulting object with the new OOP.

Description
This function stores a single OOP into an object’s named instance variable at the specified index,
using structural access.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storeNamedOop_example(void)
{
 // C constants to match Smalltalk class definition
 enum { COMPONENT_OFF_PARTNUMBER = 1,
 COMPONENT_OFF_NAME = 2,
 COMPONENT_OFF_COST = 3 };

 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 // error during execution or detect found nothing
 return;
 }

 // assign a new value to the name instance variable of aComponent
 OopType newName = GciNewString("compressor blade");
 GciStoreNamedOop(aComponent, COMPONENT_OFF_NAME, newName);
GemTalk Systems 371

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 // alternate approach: assign a new value to a named instance
 //variable without knowing its offset at compile time
 GciStoreNamedOop(aComponent,
GciIvNameToIdx(GciFetchClass(aComponent), "name"), newName);

 GciReleaseOops(&newName, 1);
 GciReleaseOops(&aComponent, 1);
}

See Also
GciFetchNamedOop, page 170
GciFetchNamedOops, page 172
GciStoreIdxOop, page 367
GciStoreNamedOops, page 373
372 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreNamedOops

Store one or more OOPs into an object’s named instance variables.

Syntax
void GciStoreNamedOops(

OopType theObject,
int64 startIndex,
const OopType theOops[],
int numOops);

Input Arguments
theObject The object in which to store the OOPs.
startIndex The index into theObject’s named instance variables at which to begin storing

OOPs.
theOops The array of OOPs to be stored.
numOops The number of OOPs to store. If (numOops+startIndex) exceeds the

number of named instance variables in theObject, an error is generated.

Result Arguments
theObject The resulting object with the new OOPs.

Description
This function uses structural access to store multiple OOPs from a C array into an object’s named
instance variables, beginning at the specified index.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storeNamedOops_example(void)
{
 // retrieve a random instance of class Component
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 // execution error, or detect: found nothing
 return;
 }

 // fetch name instance variables without knowing offset at C
compile time
 int namedSize = GciFetchNamedSize(aComponent);
 if (namedSize == 0) {
 // error during fetch
GemTalk Systems 373

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 return;
 }
 OopType *oBuffer = (OopType*) malloc(sizeof(OopType) * namedSize
);
 if (oBuffer == NULL) {
 printf("malloc failure\n");
 return;
 }
 int numRet = GciFetchNamedOops(aComponent, 1, oBuffer, namedSize);
 if (numRet != namedSize) {
 printf("error during fetch\n");
 return;
 }

 // alter one of the instVars and then store them all
 OopType newName = GciNewString("compressor blade");
 int ivOffset = GciIvNameToIdx(GciFetchClass(aComponent), "name");
 if (ivOffset <= 0) {
 printf("error during GciIvNameToIdx\n");
 return;
 }
 oBuffer[ivOffset - 1] = newName;
 GciStoreNamedOops(aComponent, 1, oBuffer, namedSize);

 GciReleaseOops(&newName, 1);
 GciReleaseOops(&aComponent, 1);
}

See Also
GciFetchNamedOop, page 170
GciFetchNamedOops, page 172
GciReplaceOops, page 329
GciReplaceVaryingOops, page 330
GciStoreIdxOop, page 367
GciStoreIdxOops, page 369
GciStoreNamedOop, page 371
GciStoreNamedOops, page 373
GciStoreOops, page 377
374 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreOop

Store one OOP into an object’s instance variable.

Syntax
void GciStoreOop(

OopType theObject,
int64 atIndex,
OopType theOop);

Input Arguments
theObject The object in which to store the OOP.
atIndex The index into theObject at which to store the OOP. This function does not

distinguish between named and unnamed instance variables. Indices are
based at the beginning of an object’s array of instance variables. In that array,
the object’s named instance variables are followed by its unnamed instance
variables.

theOop The OOP to be stored.

Result Arguments
theObject The resulting object.

Description
This function stores a single OOP into an object at the specified index, using structural access. Note
that this function cannot be used for NSCs. To add an object to an NSC, use GciAddOopToNsc on
page 92.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storeOop_example(void)
{
 /* C constants to match Smalltalk class definition */
 enum { COMPONENT_OFF_NAME = 2 };

 /* retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);

 OopType newName = GciNewString("vane");

 /* Two ways to assign new value to name instance variable of
aComponent */
 GciStoreOop(aComponent, COMPONENT_OFF_NAME, newName);
GemTalk Systems 375

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 GciStoreNamedOop(aComponent, COMPONENT_OFF_NAME, newName);

 OopType subPart = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1333]", OOP_NIL);

 /* Two ways to assign a new value to the 3rd element of
 aComponent's parts list without knowing exactly how many named
 instance variables exist */

 GciStoreOop(aComponent, GciFetchNamedSize(aComponent) + 3,
subPart);
 GciStoreIdxOop(aComponent, 3, subPart);
}

See Also
GciAddOopToNsc, page 92
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 197
GciFetchOops, page 183
GciStoreOops, page 377
376 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreOops

Store one or more OOPs into an object’s instance variables.

Syntax
void GciStoreOops(

OopType theObject,
int64 startIndex,
const OopType theOops[],
int numOops);

Input Arguments
theObject The object in which to store the OOPs.
startIndex The index into theObject at which to begin storing OOPs. This function does

not distinguish between named and unnamed instance variables. Indices are
based at the beginning of an object’s array of instance variables. In that array,
the object’s named instance variables are followed by its unnamed instance
variables.

theOops The array of OOPs to be stored.
numOops The number of OOPs to store.

Result Arguments
theObject The resulting object.

Description
This function uses structural access to store multiple OOPs from a C array into a pointer object,
beginning at the specified index. Note that this call cannot be used with NSCs. To add multiple
OOPs to an NSC, use GciAddOopsToNsc on page 93.

Example
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storeOops_example(void)
{
 /* retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);

 int namedSize = GciFetchNamedSize(aComponent);
 int64 instSize = GciFetchSize_(aComponent);
 // allow space in buffer for storing into first varying instVar
plus
 // appending a new varying instVar
 int64 bufVaryingSize = instSize - namedSize + 1;
GemTalk Systems 377

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 if (bufVaryingSize < 2)
 bufVaryingSize = 2;

 int64 bufSize = namedSize + bufVaryingSize;
 OopType *buf = (OopType*) malloc(sizeof(OopType) * bufSize);
 if (buf == NULL) {
 printf("malloc failure");
 return;
 }
 GciFetchOops(aComponent, 1, buf, instSize);

 OopType newName = GciNewString("strut");
 int nameOfs = GciIvNameToIdx(GciFetchClass(aComponent), "name");
 buf[nameOfs - 1] = newName;

 OopType firstSubPart = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1333]", OOP_NIL);

 OopType lastSubPart = GciExecuteStr(
"AllComponents detect:[i|i partNumber = 1555]", OOP_NIL);

 // assign first element of parts list
 buf[namedSize] = firstSubPart;

 // append lastSubPart to aComponent's parts list
 int64 newSize = instSize + 1;
 buf[newSize - 1] = lastSubPart;

 // now store all the instVars back to the repository
 GciStoreOops(aComponent, 1, buf, newSize);
}

See Also
GciAddOopsToNsc, page 93
GciFetchNamedOops, page 172
GciFetchOop, page 181
GciFetchOops, page 183
GciFetchVaryingOop, page 195
GciReplaceOops, page 329
GciReplaceVaryingOops, page 330
GciStoreIdxOops, page 369
GciStoreNamedOops, page 373
GciStoreOop, page 375
GciStoreOops, page 377
378 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStorePaths

Store selected multiple OOPs into an object tree.

Syntax
BoolType GciStorePaths(

const OopType theOops[],
int numOops,
const int paths[],
const int pathSizes[],
int numPaths,
const OopType newValues[],
int * failCount);

Input Arguments
theOops A collection of OOPs into which you want to store new values.
numOops The size of theOops.
paths An array of integers. This one-dimensional array contains the elements of all

constituent paths, laid end to end.
pathSizes An array of integers. Each element of this array is the length of the

corresponding path in the paths array (that is, the number of elements in each
constituent path).

numPaths The number of paths in the paths array. This should be the same as the
number of integers in the pathSizes array.

newValues An array containing the new values to be stored into theOops.

Result Arguments
failCount A pointer to an integer that indicates which element of the newValues array

could not be successfully stored. If all values were successfully stored,
failCount is 0. If the ith store failed, failCount is i. If any of the objects in
newValues does not exist, or is not an OOP allocated to GemBuilder, failCount
is 1.

Return Value
Returns TRUE if all values were successfully stored. Returns FALSE if the store on any path fails
for any reason.

Description
This function allows you to store multiple objects at selected positions in an object tree with a single
GemBuilder call, exporting only the desired information to the database.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
GemTalk Systems 379

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

Each path in the paths array is itself an array of longs. Those longs are offsets that specify a path
along which to store objects. In each path, a positive integer x refers to an offset within an object’s
named instance variables, while a negative integer -x refers to an offset within an object’s indexed
instance variables.

The newValues array contains (numOops * numPaths) elements, stored in the following order:

[0,0]..[0,numPaths-1]..[1,0]..[1,numPaths-1]..
[numOops-1,0]..[numOops-1,numPaths-1]

The first element of this newValues array is stored along the first path into the first element of
theOops. New values are then stored into the first element of theOops along each remaining element
of the paths array. Similarly, new values are stored into each subsequent element of theOops, until
all paths have been applied to all its elements.

The new value to be stored into object i along path j is thus represented as:

newValues[((i-1) * numPaths) + (j-1)]

The expressions i-1 and j-1 are used because C has zero-based arrays.

If the store on any path fails for any reason, this function stops and generates a GemBuilder error.
Any objects that were successfully stored before the error occurred will remain stored.

Example 1: Calling sequence for a single object and a single path
void storePath1(void)
{
 enum { path_size = 5 };
 int aPath[path_size]; /* the path itself */
 int aSize = path_size; /* the size of the path */

 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr("AllComponents detect:[:i|i partNumber =
1234]", OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during resolve
 }

 OopType newValue = GciNewString("a new value");
 int failCount;

 GciStorePaths(&anOop, 1, aPath, &aSize, 1, &newValue, &failCount);
}

Example 2: Calling sequence for multiple objects with a single path
void storePath2(void)
{

380 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
 OopType coll = GciResolveSymbol("AllComponents", OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }
 enum { num_roots = 3 ,
 path_size = 5 };
 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int aPath[path_size];
 int aSize = path_size;
 for (int j = 0; j < path_size; j++) {
 aPath[j] = 1; // arbitrary offsets
 }

 OopType newValues[num_roots];
 for (int j = 0; j < num_roots; j++) {
 newValues[j] = GciI32ToOop(1345600 + j);
 }
 int failCount;
 GciStorePaths(oops, num_roots, aPath, &aSize, 1, newValues,
&failCount);
}

Example 3: Calling sequence for a single object with multiple paths
void storePath3(void)
{
 OopType anOop; // the OOP to use as the root of the path
 anOop = GciExecuteStr("AllComponents detect:[:i|i partNumber =
1234]", OOP_NIL);
 if (anOop == OOP_NIL) {
 return; // error during execution
 }

 enum { num_paths = 10,
 path_size = 5 };

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }
 OopType newValues[num_paths];
GemTalk Systems 381

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
 for (int j = 0; j < num_paths; j++) {
 newValues[j] = GciI32ToOop(1345600 + j);
 }
 int failCount;

 GciStorePaths(&anOop, 1, paths, pathSizes, num_paths, newValues,
&failCount);
}

Example 4: Calling sequence for multiple objects with multiple paths
void storePaths4(void)
{
 OopType coll = GciResolveSymbol("AllComponents", OOP_NIL);
 if (coll == OOP_NIL) {
 return ; // error during resolve
 }

 enum { num_roots = 10,
 num_paths = 3,
 path_size = 5 ,
 num_new_values = num_roots * num_paths
 };
 OopType oops[num_roots];
 int numRet = GciFetchVaryingOops(coll, 1, oops, num_roots);
 if (numRet != num_roots) {
 return; // error during fetch or collection too small
 }

 int pathSizes[num_paths];
 int paths[path_size * num_paths];
 int idx = 0;
 for (int j = 0; j < num_paths; j++) {
 for (int k = 0; k < path_size; k++) {
 paths[idx++] = k + 1; // arbitrary offset
 }
 }

 OopType newValues[num_new_values];
 for (int j = 0; j < num_new_values; j++) {
 newValues[j] = GciI32ToOop(1345600 + j);
 }
 int failCount;
 GciStorePaths(oops, num_roots, paths, pathSizes, num_paths,
newValues,

&failCount);
}

382 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Example 5: Integrated Code
In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for GciFetchVaryingOop on page 195.

void storePaths5(void)
{
 // retrieve a random instance of class Component */
 OopType aComponent = GciExecuteStr(
 "AllComponents detect:[i|i partNumber = 1234]", OOP_NIL);
 if (aComponent == OOP_NIL) {
 return; // error in execute, or detect: found nothing
 }

 // assign a new value to the name instVar of 5th element of
 // aComponent's parts list
 enum { path_size = 2 };
 int path[path_size];
 path[0] = -5; // 5th varying instVar
 path[1] = GciIvNameToIdx(GciFetchClass(aComponent), "name");
 int pathSizes = path_size;

 OopType newValue = GciNewString("pump");
 int failCount;
 GciStorePaths(&aComponent, 1, path, &pathSizes, 1, &newValue,
&failCount);
}

See Also
GciFetchPaths, page 185
GemTalk Systems 383

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStoreTrav

Store multiple traversal buffer values in objects.

Syntax
void GciStoreTrav(

GciTravBufType * travBuff,
int behaviorFlag);

Input Arguments
travBuff A traversal buffer, which contains object data to be stored.
behaviorFlag A flag that determines how the objects should be handled.

Description
This function stores data from the traversal buffer travBuff (a C-language structural description)
into multiple GemStone objects. The first element in the traversal buffer is an integer that indicates
how many bytes are stored in the buffer. The remainder of the traversal buffer consists of a series
of object reports. Each object report is a C structure of type GciObjRepSType, which includes a
variable-length data area. GciStoreTrav stores data object by object, using one object report at a
time. GciStoreTrav raises an error if the traversal buffer contains a report for any object of special
implementation format.

GciStoreTrav allows you to reduce the number of GemBuilder calls that are required for your
application program to store complex objects in the database.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

The value of behaviorFlag should be given by using one or more of the following GemBuilder
mnemonics: GCI_STORE_TRAV_DEFAULT, GCI_STORE_TRAV_NSC_REP,
GCI_STORE_TRAV_CREATE, and GCI_STORE_TRAV_FINISH_UPDATES. The first of these
must be used alone. The others can either be used alone or can be logically “or”ed together. The
effect of the mnemonics depends somewhat upon the implementation format of the objects that are
stored.

GciStoreTrav can create new objects and store data into them, or it can modify existing objects with
the data in their object reports, or a combination of the two. By default
(GCI_STORE_TRAV_DEFAULT), it can only modify existing objects, and it raises an error if an
object does not already exist.

When GCI_STORE_TRAV_CREATE is used, it modifies any object that already exists and creates
a new object when an object does not exist. Naturally, any new object is initialized with the data in
its object report.
384 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
When GCI_STORE_TRAV_FINISH_UPDATES is used, GciStoreTrav automatically executes
GciProcessDeferredUpdates_ after processing the last object report in the traversal buffer.

When GciStoreTrav modifies an existing object of byte or pointer format, it replaces that object’s
data with the data in its object report, regardless of behaviorFlag. All instance variables, named (if
any) or indexed (if any), receive new values. Named instance variables for which values are not
given in the object report are initialized to nil or to zero. Indexable objects may change in size; the
object report determines the new number of indexed variables.

Contrast byte and pointer object handling with the default when GciStoreTrav modifies an existing
NSC. It replaces all named instance variables of the NSC (if any), but adds further data in its object
report to the unordered variables, increasing its size. If behaviorFlag indicates
GCI_STORE_TRAV_NSC_REP, then it removes all existing unordered variables and adds new
unordered variables with values from the object report.

GciStoreTrav provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is used to
disable swizzling. For more about byte swizzling, see “Byte-Swizzling of Binary Floating-Point
Values” on page 25.

Use of Object Reports

GciStoreTrav stores values in GemStone objects according to the object reports contained in
travBuff. Each object report is an instance of the C++ class GciObjRepSType (described in “The
Object Report Structure” on page 74). GciStoreTrav uses the fields in each object report as follows:

rpt->hdr.valueBuffSize
The size (in bytes) of the value buffer, where object data is stored. If objId is a Float or SmallFloat
and valueBuffSize differs from the actual size for objects of objId’s class, then GciStoreTrav
raises an error.

rpt->hdr.namedSize
Ignored by this function.

rpt->hdr.setIdxSize()
Only needs to be called if the object is indexable. The number of indexed variables in the object
stored by GciStoreTrav is never less than this quantity. It may be more if the value buffer
contains enough data. GciStoreTrav stores all the indexed variables that it finds in the value
buffer. If an existing object has more indexed variables, then it also retains the extras, up to a
total of idxSize, and removes any beyond idxSize. If idxSize is larger than the number of indexed
variables in both the current object and the value buffer, then GciStoreTrav creates slots for
elements in the stored object up to index idxSize and initializes any added elements to nil.

rpt->hdr.firstOffset
Ignored for NSC objects. The absolute offset into the target object at which to begin storing
values from the value buffer. The absolute offset of the object’s first named instance variable (if
any) is one; the offset of its first indexed variable (if any) is one more than the number of its
named instance variables. Values are stored into the object in the order that they appear in the
value buffer, ignoring the boundary between named and indexed variables. Variables whose
offset is less than firstOffset (if any) are initialized to nil or zero. For nonindexable objects,
GciStoreTrav raises an error if valueBuffSize and firstOffset imply a size that exceeds the actual
size of the object. If objId is a Float or SmallFloat and firstOffset is not one, then GciStoreTrav
raises an error.

rpt->hdr.objId
The OOP of the object to be stored.
GemTalk Systems 385

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
rpt->hdr.oclass
Used only when creating a new object, to identify its intended class.

rpt->hdr.objectSecurityPolicyId
The ID of the object’s security policy.

rpt->hdr.clearBits()
Must be called before any of the following:

rpt->hdr.setObjImpl()
You must call rpt->hdr.setObjImpl to set this field to be consistent with the object’s
implementation.

rpt->hdr.setInvariant()
Boolean value. Call rpt->hdr.setInvariant(TRUE) if you want this object to be made invariant
after the store specified by rpt* is completed.

rpt->hdr.setIndexable()
Ignored by this function.

rpt->valueBufferBytes()
The value buffer of an object of byte format.

rpt->valueBufferOops()
The value buffer of an object of pointer or NSC format.

Handling Error Conditions

If you get a runtime error while executing GciStoreTrav, the recommended course of action is to
abort the current transaction.

See Also
GciMoreTraversal, page 234
GciNbMoreTraversal, page 253
GciNbStoreTrav, page 260
GciNbTraverseObjs, page 265
GciNewOopUsingObjRep, page 272
GciProcessDeferredUpdates_, page 312
GciStoreTravDo_, page 387
GciTraverseObjs, page 408
386 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreTravDo_

Store multiple traversal buffer values in objects, execute the specified code, and return the resulting
object.

In GemStone/S 64 Bit releases earlier than 3.0, this function was named GciStoreTravDo (without
the underscore).

Syntax
OopType GciStoreTravDo_(

GciStoreTravDoArgsSType *args);

Input Arguments
args An instance of GciStoreTravDoArgsSType (as described in $GEMSTONE/

include/gcicmn.ht) containing the following fields:

GciTravBufType* storeTravBuff
The traversal buffer. For details, see “GciStoreTrav” on
page 384.

int storeTravFlags
A flag that determines how the objects should be handled.
For details, see “GciStoreTrav” on page 384.

int doPerform
If this field is 0, this function executes a string using args-
>u.executesr, with the semantics of
“GciExecuteStrFromContext” on page 157.
If this field is 1, then executes a perform using args-
>u.perform, with the semantics of “GciPerformNoDebug”
on page 300. Other values of this field are only for use
with GciStoreTravDoTravRefs_ or
GciNbStoreTravDoTravRefs_

int doFlags
Flags to disable or permit asynchronous events and
debugging in Smalltalk, as described in
“GciPerformNoDebug” on page 300. These flags apply
whatever the value of doPerform.

union u
One of two structures containing appropriate input fields
for the specified operation. The structure u.perform should
be used when doPerform is set to 1, and u.executestr should
be used when doPerform is set to 0. For more information
on these structs and how to use them, see gcicmn.ht.

OopType* alteredTheOops
An array allocating memory for OOPs of objects that will
be modified as a consequence of executing the specified
code. For more information, see “GciAlteredObjs” on
page 97.
GemTalk Systems 387

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
int alteredNumOops
The number of OOPs in the previous array. On input, the
caller must set this to the maximum number of OOPs that
will fit in alteredTheOops. Upon completion, this field
indicates the number of OOPs actually written to
alteredTheOops.

BoolType alteredCompleted
Upon output, TRUE if the alteredTheOops contains the
complete set of objects modified as a result of executing
the specified code; false otherwise. If FALSE, call
GciAlteredObjs for the rest of the modified objects.

const OopType* execBlock_args
This field is ignored.

int execBlock_numArgs
This field is ignored.

Return Value
Returns the OOP of the result of executing the specified code. In case of error, this function returns
OOP_NIL.

Description
GciStoreTravDo_ works exactly as “GciStoreTrav” on page 384, and also executes the supplied
code in the same network round-trip.

The description of “GciStoreTrav” on page 384 explains the first two arguments. If the value of the
third argument is 1, see “GciPerformNoDebug” on page 300 for details of the next five
arguments—flags to enable or disable asynchronous events, and the first nested structure.

If the value of the third argument is 2, see “GciExecuteStrFromContext” on page 157 for details on
next set of arguments—flags to enable or disable asynchronous events, and the second nested
structure of five arguments.

If the value of the third argument is 3, the arguments are similar to those for
GciExecuteStrFromContext, but source must be a String that when compiled will return a Block. In
this case, the last two arguments also are used, which provide the arguments, and the count of
arguments, to be used to execute the compiled block.

The next five input arguments supply needed output after the function has completed. Read
alteredTheOops to get the OOPs of the objects that were modified; read alteredSymbolBuf to get the
pairs of symbols and symbol dictionaries for symbol canonicalization; finally, read alteredCompleted
to determine if the array as originally allocated was large enough to hold all the modified objects.
If the value is false, the array was too small and holds only some of the modified objects; in this
case, call GciAlteredObjs for the rest.

Similarly to GciStoreTrav, GciStoreTravDo_ provides automatic byte swizzling, unless
GciSetTraversalBufSwizzling is used to disable swizzling. For more about byte swizzling, see
page 25.
388 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Handling Error Conditions

If you get a run time error while executing GciStoreTravDo_, we recommend that you abort the
current transaction.

See Also
GciAlteredObjs, page 97
GciExecuteStrFromContext, page 157
GciMoreTraversal, page 234
GciNbMoreTraversal, page 253
GciNbStoreTrav, page 260
GciNbTraverseObjs, page 265
GciNewOopUsingObjRep, page 272
GciPerformNoDebug, page 300
GciProcessDeferredUpdates_, page 312
GciStoreTrav, page 384
GciTraverseObjs, page 408
GemTalk Systems 389

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStoreTravDoTrav_

Combine in a single function the calls to GciStoreTravDo_ and GciClampedTrav, to store multiple
traversal buffer values in objects, execute the specified code, and traverse the result object.

In GemStone/S 64 Bit releases earlier than 3.0, this function was named GciStoreTravDoTrav
(without the underscore).

Syntax
BoolType GciStoreTravDoTrav_(

GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments
stdArgs An instance of GciStoreTravDoArgsSType. For details, see page 387.
ctArgs An instance of GciClampedTravArgsSType. For details, see page 108.

Return Value
Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more objects to
be returned by subsequent calls to GciMoreTraversal (that is, an object report was constructed for
each object, minus the special objects).

Description
This function allows the client to execute behavior on the Gem and return the traversal of the result
object in a single network round-trip. See the descriptions for GciStoreTravDo_ on page 387 and
GciClampedTrav on page 108 for details.

See Also
GciClampedTrav, page 108
GciStoreTrav, page 384
GciStoreTravDo_, page 387
390 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStoreTravDoTravRefs_

Combine in a single function modifications to session sets, traversal of objects to the server,
optional Smalltalk execution, and traversal to the client of changed objects and (optionally) the
result object.

In GemStone/S 64 Bit releases earlier than 3.0, this function was named GciStoreTravDoTravRefs
(without the underscore).

Syntax
int GciStoreTravDoTravRefs_(

const OopType * oopsNoLongerReplicated,
int numNotReplicated,
const OopType * oopsGcedOnClient,
int numGced,
GciStoreTravDoArgsSType *stdArgs,
GciClampedTravArgsSType *ctArgs);

Input Arguments
oopsNoLongerReplicatedAn Array of objects to be removed from the PureExportSet and added to the

ReferencedSet.
numNotReplicated The number of elements in oopsNoLongerReplicated.
oopsGcedOnClient An Array of objects to be removed from both the PureExportSet and

ReferencedSet.
numGced The number of elements in oopsGcedOnClient.
stdArgs An instance of GciStoreTravDoArgsSType (as described in $GEMSTONE/

include/gcicmn.ht) containing the following fields:

GciTravBufType* storeTravBuff
The traversal buffer. For details, see “GciStoreTrav” on
page 384.

int storeTravFlags
A flag that determines how the objects should be handled.
For details, see “GciStoreTrav” on page 384.

int doPerform
If this field is 0, this function executes a string using args-
>u.executestr, with the semantics of
“GciExecuteStrFromContext” on page 157.
If this field is 1, then executes a perform using args-
>u.perform, with the semantics of “GciPerformNoDebug”
on page 300. If this field is 2, execute a string that is the
source code for a Smalltalk block using stdArgs-
>u.executestr, passing the block arguments in
execBlock_args. If this field is 3, perform no server
Smalltalk execution, but traverse the object specified in
stdArgs->u.perform.receiver as if it was the results of
execution. If this field is 4, resume execution of a
GemTalk Systems 391

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
suspended Smalltalk Process using stdArgs-
>u.continueArgs, with the semantics of
“GciContinueWith” on page 121.

int doFlags
Flags to disable or permit asynchronous events and
debugging in Smalltalk, as described in
“GciPerformNoDebug” on page 300. These flags apply
whatever the value of doPerform.

union u
One of three structures containing appropriate input
fields for the specified operation. The structure u.perform
should be used when doPerform is set to 1 or 3, u.executestr
should be used when doPerform is set to 0 or 2, and
u.continueArgs should be used when doPerform is set to 4.
For more information on these structs and how to use
them, see gcicmn.ht.

OopType* alteredTheOops
This field is ignored.

int alteredNumOops
This field is ignored.

BoolType alteredCompleted
This field is not used.

const OopType* execBlock_args
An array of the arguments to the block to be executed.
Only applies if doPerform is 2, ignored otherwise.

int execBlock_numArgs
The number of the arguments provided in execBlock_args.
This must match the declared number of arguments in the
block source string. Only applies if doPerform is 2, ignored
otherwise.

ctArgs An instance of GciClampedTravArgsSType. For details, see the discussion
of GciClampedTrav on page 108, with one exception. The valid retrievalFlags
are limited to:
GCI_RETRIEVE_DEFAULT GCI_TRAV_REFS_EXCLUDE_RESULT_OBJ
will suppress traversal of the result object. The altered objects will still be
traversed to the specified level.
No other retrievalFlags values should be used with this function.

Return Value
Returns an int with the following meaning:

0 — traversal of both altered objects and execution result completed.

1 — traversal buffer became full. You must call GciMoreTraversal to finish traversal of the
altered and result objects.
392 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Description
This function allows the client to modify the PureExportSet and ReferencedSet, modify or create
any number of objects on the server, execute behavior on the Gem, and return the traversal of the
changed objects and the result object, all in a single network round-trip.

The elements in oopsGcedOnClient are removed from both PureExportSet and ReferencedSet, and
the elements in oopsNoLongerReplicated are removed from the PureExportSet and added to the
ReferencedSet.

Objects in the ReferencedSet are protected from garbage collection, but may be faulted out of
memory. Dirty tracking is not done on objects in the ReferencedSet.

Then per the stdArgs, a GciStoreTrav is done, which may modify or create any number of objects
on the server. Newly created objects are added to the PureExportSet.

Then, if specified, Smalltalk execution is performed as in GciPerformNoDebug,
GciExecuteStrFromContext, or executing the block code with the given arguments.

Finally, this function does a special GciClampedTrav starting with altered objects, followed by the
execution result from the previous step. If no execution was specified, the specified object is
traversed as if it was an execution result. Altered objects are those that would be returned from a
GciAlteredObjs after the code execution step. This traversal both relies on the contents of the
PureExportSet and ReferencedSet does not, and also modifies those sets in ways that
GciClampedTrav does not. For details, see the comments in gci.hf.

GciStoreTravDoTravRefs_ is not intended for use within a user action.

See Also
GciClampedTrav, page 108
GciStoreTrav, page 384
GciStoreTravDo_, page 387
GciStoreTravDoTrav_, page 390
GemTalk Systems 393

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStringToInteger

Convert a C string to a GemStone SmallInteger or LargeInteger object.

Syntax
OopType GciStringToInteger(

const char* string,
int64 stringSize);

Input Arguments
string The C string to be translated into a GemStone SmallInteger or LargeInteger

object.
stringSize The length of string.

Return Value
Returns the OOP of the GemStone SmallInteger or LargeInteger object. If string has an invalid
format, this function returns OOP_NIL without an error.

Description
The GciStringToInteger function translates a C string to a GemStone SmallInteger or LargeInteger
object that has the same value.

Leading blanks are ignored. Trailing non-digits are ignored.
394 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStrKeyValueDictAt

Find the value in a symbol KeyValue dictionary at the corresponding string key.

Syntax
void GciStrKeyValueDictAt(

OopType theDict,
const char * keyString,
OopType * value);

Input Arguments
theDict The OOP of a SymbolKeyValueDictionary.
keyString The OOP of a key in the SymbolKeyValueDictionary.

Result Arguments
value A pointer to the variable that is to receive the OOP of the returned value.

Description
Returns the value in symbol KeyValue dictionary theDict that corresponds to key keyString. If an
error occurs or keyString is not found, value is OOP_ILLEGAL. KeyValue dictionaries do not have
associations, so no association is returned. GciStrKeyValueDictAt is equivalent to
GciStrKeyValueDictAtObj except that the key is a character string, not an object.

See Also
GciStrKeyValueDictAtObj, page 396
GciStrKeyValueDictAtObjPut, page 397
GciStrKeyValueDictAtPut, page 398
GemTalk Systems 395

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStrKeyValueDictAtObj

Find the value in a symbol KeyValue dictionary at the corresponding object key.

Syntax
void GciStrKeyValueDictAtObj(

OopType theDict,
OopType keyObj,
OopType * value);

Input Arguments
theDict The OOP of a SymbolKeyValueDictionary.
keyObj The OOP of a key in the SymbolKeyValueDictionary.

Result Arguments
value A pointer to the variable that is to receive the OOP of the returned value.

Description
Returns the value in symbol KeyValue dictionary theDict that corresponds to key keyObj. If an error
occurs or keyObj is not found, value is OOP_ILLEGAL. KeyValue dictionaries do not have
associations, so no association is returned. Equivalent to the GemStone Smalltalk expression:

^ { theDict at:keyObj }

See Also
GciStrKeyValueDictAt, page 395
GciStrKeyValueDictAtObjPut, page 397
GciStrKeyValueDictAtPut, page 398
396 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciStrKeyValueDictAtObjPut

Store a value into a symbol KeyValue dictionary at the corresponding object key.

Syntax
void GciStrKeyValueDictAtObjPut(

OopType theDict,
OopType keyObj,
OopType theValue);

Input Arguments
theDict The OOP of the SymbolKeyValueDictionary into which the object is to be

stored.
keyObj The OOP of the key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolKeyValueDictionary.

Description
Adds object theValue to symbol KeyValue dictionary theDict with key keyObj. Equivalent to the
Smalltalk expression:

theDict at: keyObj put: theValue

See Also
GciStrKeyValueDictAt, page 395
GciStrKeyValueDictAtObj, page 396
GciStrKeyValueDictAtPut, page 398
GemTalk Systems 397

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciStrKeyValueDictAtPut

Store a value into a symbol KeyValue dictionary at the corresponding string key.

Syntax
void GciStrKeyValueDictAtPut(

OopType theDict,
const char * keyString,
OopType theValue);

Input Arguments
theDict The OOP of the SymbolKeyValueDictionary into which the object is to be

stored.
keyString The string key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolKeyValueDictionary.

Description
Adds object theValue to symbol KeyValue dictionary theDict with key keyString.
GciStrKeyValueDictAtPut is equivalent to GciStrKeyValueDictAtObjPut, except the key is a
character string, not an object.

See Also
GciStrKeyValueDictAt, page 395
GciStrKeyValueDictAtObj, page 396
GciStrKeyValueDictAtObjPut, page 397
398 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSwapBytesUint

Swap the byte order of an array of uint.

Syntax
void GciSwapBytesUint(

uint * buf,
intptr_t numChars);

Input Arguments
buf An array of uint.
numChars The size of the array.

Description
Swaps the byte order of the specified array of uint.

See Also
GciSwapBytesUshort, page 400
GemTalk Systems 399

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSwapBytesUshort

Swap the byte order of an array of ushort.

Syntax
void GciSwapBytesUshort(

ushort * buf,
intptr_t numChars);

Input Arguments
buf An array of ushort.
numChars The size of the array.

Description
Swaps the byte order of the specified array of ushort.

See Also
GciSwapBytesUint, page 399
400 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSymDictAt

Find the value in a symbol dictionary at the corresponding string key.

Syntax
void GciSymDictAt(

OopType theDict,
const char * keyString,
OopType * value,
OopType * association);

Input Arguments
theDict The OOP of a SymbolDictionary.
keyString The OOP of a key in the SymbolDictionary.

Result Arguments
value A pointer to the variable that is to receive the OOP of the returned value.
association A pointer to the variable that is to receive the OOP of the association.

Description
Returns the value in symbol dictionary theDict that corresponds to key keyString. If an error occurs
or keyString is not found, value is OOP_ILLEGAL. If association is not NULL and an error does not
occur, stores the OOP of the association for keyString at *association, or stores OOP_ILLEGAL if
keyString was not found. Equivalent to GciSymDictAtObj except that the key is a character string,
not an object.

To operate on kinds of Dictionary other than SymbolDictionary, such as KeyValueDictionary, use
GciPerform, since the KeyValueDictionary class is implemented in Smalltalk. If your dictionary
will be large (greater than 20 elements) a KeyValueDictionary is more efficient than a
SymbolDictionary.

See Also
GciSymDictAtObj, page 402
GciSymDictAtObjPut, page 403
GciSymDictAtPut, page 404
GemTalk Systems 401

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSymDictAtObj

Find the value in a symbol dictionary corresponding to the key object.

Syntax
void GciSymDictAtObj(

OopType theDict,
OopType keyObj,
OopType * value,
OopType * association);

Input Arguments
theDict The OOP of a SymbolDictionary.
keyObj The OOP of a key in the SymbolDictionary.

Result Arguments
value A pointer to the variable that is to receive the OOP of the returned value.
association A pointer to the variable that is to receive the OOP of the association.

Description
Fetches the value in symbol dictionary theDict that corresponds to key keyObj. If an error occurs or
keyObj is not found, value is OOP_ILLEGAL. If association is not NULL and an error does not occur,
stores the OOP of the association for keyObj at *association, or stores OOP_ILLEGAL if keyObj was
not found. Similar to the GemStone Smalltalk expression:

^ { theDict at: keyObj . theDict associationAt: keyObj }

See Also
GciSymDictAt, page 401
GciSymDictAtObjPut, page 403
GciSymDictAtPut, page 404
402 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciSymDictAtObjPut

Store a value into a symbol dictionary at the corresponding object key.

Syntax
void GciSymDictAtObjPut(

OopType theDict,
OopType keyObj,
OopType theValue);

Input Arguments
theDict The OOP of the SymbolDictionary into which the value is to be stored.
keyObj The OOP of the key under which the value is to be stored.
theValue The OOP of the object to be stored in the SymbolDictionary.

Description
Adds object theValue to symbol dictionary theDict with key keyObj. Equivalent to the Smalltalk
expression:

theDict at: keyObj put: theValue

See Also
GciSymDictAt, page 401
GciSymDictAtObj, page 402
GciSymDictAtPut, page 404
GemTalk Systems 403

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciSymDictAtPut

Store a value into a symbol dictionary at the corresponding string key.

Syntax
void GciSymDictAtPut(

OopType theDict,
const char * keyString,
OopType theValue);

Input Arguments
theDict The OOP of the SymbolDictionary into which the object is to be stored.
keyString The string key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolDictionary.

Description
Adds object theValue to symbol dictionary theDict with key keyString. Equivalent to
GciSymDictAtObjPut, except the key is a character string, not an object.

See Also
GciSymDictAt, page 401
GciSymDictAtObj, page 402
GciSymDictAtObjPut, page 403
404 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciTrackedObjsFetchAllDirty

Find all exported or tracked objects that have changed and are therefore in the ExportedDirtyObjs
or TrackedDirtyObjs sets.

Syntax
void GciTrackedObjsFetchAllDirty(

OopType exportedDirty,
int64 * numExportedDirty,
OopType trackedDirty,
int64 * numTrackedDirty);

Input Arguments
exportedDirty OOP of the collection (an instance of either IdentitySet or IdentityBag) that

will contain the objects in the ExportedDirtyObjs set.
trackedDirty OOP of the collection (an instance of either IdentitySet or IdentityBag) that

will contain the objects in the TrackedDirtyObjs set.

Result Arguments
numExportedDirty Pointer to an integer that returns the number of objects in the exportedDirty

collection.
numTrackedDirty Pointer to an integer that returns the number of objects in the trackedDirty

collection.

Description
GciTrackedObjsFetchAllDirty fetches all dirty objects and sorts them into two categories:

Objects in the ExportedDirtyObjs set - objects in the PureExportSet that have been
changed since the ExportedDirtyObjs set was initialized or cleared.

Objects in the TrackedDirtyObjs set - objects in the GciTrackedObjs set that have been
changed since the TrackedDirtyObjs set was initialized or cleared.

The ExportedDirtyObjs set is initialized by GciDirtyObjsInit; it is cleared by calls to
GciDirtyAlteredObjs, GciDirtyExportedObjs, GciDirtySaveObjs, or
GciTrackedObjsFetchAllDirty (this function). The TrackedDirtyObjs set is initialized by
GciTrackedObjsInit and cleared by calls to GciDirtyAlteredObjs, GciDirtySaveObjs,
GciDirtyTrackedObjs, or GciTrackedObjsFetchAllDirty (this function).

An object is considered dirty (changed) under one or more of the following conditions:

The object was changed by Smalltalk execution.

The object was changed by a call to any GemBuilder function from within a user
action.

The object was changed by a call to one or more of the following functions:
GciStorePaths, GciSymDictAtObjPut, GciSymDictAtPut,
GciStrKeyValueDictAtObjPut, or GciStrKeyValueDictAtPut.
GemTalk Systems 405

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
A change to the object was committed by another transaction since it was read by this
one.

The object is persistent, but was modified in the current session before the session
aborted the transaction. (When the transaction is aborted, the modifications are
destroyed, thus changing the state of the object in memory).

You must call both GciDirtyObjsInit and GciTrackedObjsInit once after GciLogin before calling
GciTrackedObjsFetchAllDirty.

Note that the ExportedDirtyObjs and TrackedDirtyObjs sets are cleared when this function is
executed.

See Also
Garbage Collection, page 40
GciDirtyExportedObjs, page 135
GciDirtyObjsInit, page 137
GciDirtySaveObjs, page 138
GciDirtyTrackedObjs, page 140
GciTrackedObjsInit, page 407
406 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciTrackedObjsInit

Reinitialize the set of tracked objects maintained by GemStone.

Syntax
void GciTrackedObjsInit();

Description
The GciTrackedObjsInit function permits an application to request GemStone to maintain a set of
tracked objects. GciTrackedObjsInit must be called once after GciLogin before other tracked
objects functions in order for those functions to operate properly, because they depend upon
GemStone’s set of tracked objects.

See Also
GciDirtySaveObjs, page 138
GciDirtyTrackedObjs, page 140
GciHiddenSetIncludesOop, page 211
GciTrackedObjsFetchAllDirty, page 405
GemTalk Systems 407

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciTraverseObjs

Traverse an array of GemStone objects.

Syntax
BoolType GciTraverseObjs(

const OopType theOops[],
int numOops,
GciTravBufType * travBuff,
int level);

Input Arguments
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
level Maximum traversal depth. When the level is 1, an object report is written to

the traversal buffer for each element in theOops. When level is 2, an object
report is also obtained for the instance variables of each level-1 object. When
level is 0, the number of levels in the traversal is not restricted.

Result Arguments
travBuff A buffer in which the results of the traversal will be placed.

Return Value
Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more objects to
be returned by subsequent calls to GciMoreTraversal.

Description
This function allows you to reduce the number of GemBuilder calls that are required for your
application program to obtain information about complex objects in the database.

NOTE
This function is most useful with applications that are linked with the "remote
procedure call" version of GemBuilder. If your application will be linked with the
"linkable" GemBuilder, you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“RPC and Linked applications” on page 43.

There are no built-in limits on how much information can be obtained in the traversal. You can use
the level argument to restrict the size of the traversal.

GciTraverseObjs provides automatic byte swizzling, unless GciSetTraversalBufSwizzling is
used to disable swizzling. For more about byte swizzling, see “Byte-Swizzling of Binary Floating-
Point Values” on page 25.
408 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Organization of the Traversal Buffer

The first element placed in a traversal buffer is an integer that indicates how many bytes were
actually stored in the buffer by this function. The remainder of the traversal buffer consists of a
series of object reports, each of which is of type GciObjRepSType, as described on page 385.

In order for the traversal buffer to accommodate m objects, each of which is of size n bytes, your
application should allocate at least enough memory so that the traversal buffer’s size can be
assigned according to the following formula:

GciTravBufType* travBufAllocation_example(void)
{
 int numObjs = 100;
 int bodyBytesPerObj = 1000;
 size_t allocationSize =
numObjs * GCI_ALIGN(sizeof(GciObjRepHdrSType) + bodyBytesPerObj);

 GciTravBufType *buf = GciTravBufType::malloc(allocationSize);
 return buf;
}

The macro GCI_ALIGN ensures that the value buffer portion of each object report begins at a word
boundary.

This function ensures that each object report header and value buffer begins on a word boundary.
To provide proper alignment, 0 to 7 bytes may be inserted between each header and value buffer.

The Value Buffer

The object report’s value buffer begins at the first byte following the object report header. For byte
objects, the value buffer rpt->valueBufferBytes() is an array of type ByteType; for pointer objects and
NSCs, the buffer rpt->valueBufferOops() is an array of type OopType. The size of the report’s value
buffer (rpt->hdr.valueBuffSize) is the number of bytes of the object’s value returned by this traversal.
That number is no greater than the size of the object.

How This Function Works

This section explains how GciTraverseObjs stores object reports in the traversal buffer and values
in the value buffer.

1. First, GciTraverseObjs verifies that the traversal buffer is large enough to
accommodate at least one object report header (GciObjRepHdrSType). If the buffer is
too small, GemBuilder returns an error.

2. For each object in the traversal, GciTraverseObjs discovers if there is enough space left
in the traversal buffer to store both the object report header and the object’s values. If
there isn’t enough space remaining, the function returns FALSE, and your program
can call GciMoreTraversal to continue the traversal. Otherwise (if there is enough
space), the object’s values are stored in the traversal buffer.

3. When there are no more objects left to traverse, GciTraverseObjs returns TRUE to
indicate that the traversal is complete.
GemTalk Systems 409

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
Special Objects

For each occurrence of an object with a special implementation (that is, an instance of SmallInteger,
Character, Boolean, or UndefinedObject) contained in theOops, this function will return an accurate
object report. For any special object encountered at some deeper point in the traversal, no object
report will be generated.

Authorization Violations

If the user is not authorized to read some object encountered during the traversal, the traversal will
continue. No value will be placed in the object report’s value buffer, but the report for the forbidden
object will contain the following values:

hdr.valueBuffSize 0
hdr.namedSize 0
hdr.idxSize 0
hdr.firstOffset 1
hdr.objId theOop
hdr.oclass OOP_NIL
hdr.objectSecurityPolicyId 0
hdr.objImpl GC_FORMAT_SPECIAL
hdr.isInvariant 0

Incomplete Object Reports

It is possible for an object report to not contain all the instance variables of an object, due to traversal
specifications or buffer size limitations. The value buffer is incomplete when hdr.isPartial() returns
non-zero.

Continuing the Traversal

When the amount of information obtained in a traversal exceeds the amount of available memory,
your application can break the traversal into manageable amounts of information by issuing
repeated calls to GciMoreTraversal. Generally speaking, an application can continue to call
GciMoreTraversal until it has obtained all requested information.

During the entire sequence of GciTraverseObjs and GciMoreTraversal calls that constitute a
traversal, any single object report will be returned exactly once. Regardless of the connectivity of
objects in the GemStone database, only one report will be generated for any non-special object.

When Traversal Can’t Be Continued

Naturally, GemStone will not continue an incomplete traversal if there is any chance that changes
to the database in the intervening period might have invalidated the previous report or changed
the connectivity of the objects in the path of the traversal. Specifically, GemStone will refuse to
continue a traversal if, in the interval before attempting to continue, you:

 • Modify the objects in the database directly, by calling any of the GciStore... or GciAdd...
functions;

 • Call one of the Smalltalk message-sending functions GciPerform, GciContinue, or any of the
GciExecute... functions;

 • Abort your transaction, thus invalidating any subsequent information from that traversal.
410 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
Any attempt to call GciMoreTraversal after one of these actions will generate an error.

Note that this holds true across multiple GemBuilder applications sharing the same GemStone
session. Suppose, for example, that you were holding on to an incomplete traversal buffer and the
user moved from the current application to another, did some work that required executing
Smalltalk code, and then returned to the original application. You would be unable to continue the
interrupted traversal.

Example
For an example of how GciTraverseObjs is used, see GciMoreTraversal on page 234.

See Also
GciFindObjRep, page 200
GciMoreTraversal, page 234
GciNbMoreTraversal, page 253
GciNbStoreTrav, page 260
GciNbTraverseObjs, page 265
GciNewOopUsingObjRep, page 272
GciObjRepSize_, page 282
GciStoreTrav, page 384
GemTalk Systems 411

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciUncompress

Uncompress the supplied data, assumed to have been compressed with GciCompress.

Syntax
int GciUncompress(

char * dest,
uint * destLen,
const char * source,
uint sourceLen);

Input Arguments
dest Pointer to the buffer intended to hold the resulting uncompressed data.
destLen Length, in bytes, of the buffer intended to hold the uncompressed data.
source Pointer to the source data to uncompress.
sourceLen Length, in bytes, of the source data.

Result Arguments
dest The resulting uncompressed data.

Return Value
GciUncompress returns Z_OK (equal to 0) if the decompression succeeded, or various error values
if it failed; see the documentation for the uncompress function in the GNU zlib library at http:/
/www.gzip.org.

Description
GciUncompress passes the supplied inputs unchanged to the uncompress function in the GNU
zlib library Version 1.2.3, and returns the result exactly as the GNU uncompress function returns
it.

See Also
GciCompress, page 118
412 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciUserActionInit

Declare user actions for GemStone.

Syntax
void GciUserActionInit()

Description
GciUserActionInit is implemented by the application developer, but it is called by GciInit. It
enables Smalltalk to find the entry points for the application’s user actions, so that they can be
executed from the database.

See Also
Chapter 3, “Writing C Functions To Be Called from GemStone”‚ starting on page 47
“The User Action Information Structure” on page 78
GciDeclareAction, page 132
GciInstallUserAction, page 218
GciUserActionShutdown, page 414
GemTalk Systems 413

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
GciUserActionShutdown

Enable user-defined clean-up for user actions.

Syntax
void GciUserActionShutdown()

Description
GciUserActionShutdown is implemented by the application developer, and is called when a
session user action library is unloaded. It enables user-defined clean-up for the application’s user
actions.

See Also
Chapter 3, “Writing C Functions To Be Called from GemStone”‚ starting on page 47
“The User Action Information Structure” on page 78
GciDeclareAction, page 132
GciInstallUserAction, page 218
GciUserActionInit, page 413
414 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C Function Summary Tables
GciVersion

Return a string that describes the GemBuilder version.

Syntax
const char* GciVersion()

Description
GciVersion returns a string terminated by 0, containing fields that describe the specific release of
GemBuilder. Fields in the string are delimited by a period (.).

For more version information, use the methods in class System in the Version Management
category.

See Also
GciProduct, page 313
GemTalk Systems 415

Function Summary Tables GemStone/S 64 Bit 3.3 GemBuilder for C
416 GemTalk Systems

Chapter

A Reserved OOPs
The GemStone/S 64 Bit distribution includes the file gcioop.ht, which defines C
mnemonics for the OOPs of certain GemStone objects that are already defined in your
GemStone software package. Your C application can compare all these mnemonics with
any value of type OopType. However, the value of any mnemonic is subject to change
without notice in future software releases. Your C application should refer to the OOPs of
predefined GemStone objects by mnemonic name only.

The following mnemonic names for predefined GemStone objects are available to C
programs. Refer to $GEMSTONE/include/gcioop.ht for more information.

 A value that, strictly speaking, is not an object at all, but that represents a value that is
never used to represent any object in the database. You can use this mnemonic to test
whether or not an OOP is valid, that is, whether or not it actually points to any
GemStone object.

 OOP_ILLEGAL

 Special objects

 OOP_NIL (nil)

 OOP_FALSE (FALSE)

 OOP_TRUE (true)

 Instances of SmallInteger

 OOP_MinusOne

 OOP_Zero

 OOP_One

 OOP_Two

 Instances of Character

 OOP_ASCII_NUL represents the first ASCII character OOP. Other Characters
have specific OOPs, but no mnemonics.
GemTalk Systems 417

GemStone/S 64 Bit 3.3 GemBuilder for C
 The GemStone Smalltalk kernel classes

 OOP_CLASS_className. In reserved OOP mnemonics, most class names are in
capital letters, with words separated by underscore characters; most recently
added class names are in the same case as their Smalltalk class name. Refer to
gcioop.ht for specific names.

 OOP_LAST_KERNEL_OOP (which has the same value as the last class)

 The GemStone error dictionary

 OOP_GEMSTONE_ERROR_CAT

 The global cluster bucket

 OOP_ALL_CLUSTER_BUCKETS
418 GemTalk Systems

Chapter

B GemStone C Statistics
Interface
This appendix describes the GemStone C Statistics Interface (GCSI), a library of functions
that allow your C application to collect GemStone statistics directly from the shared page
cache without starting a database session.

B.1 Developing a GCSI Application
The command lines in this appendix assume that you have set the GEMSTONE
environment variable to your GemStone installation directory.

Required Header Files
Your GCSI program must include the following header files:

$GEMSTONE/include/shrpcstats.ht — Defines all cache statistics. (For a list of
cache statistics, refer to the “Monitoring GemStone” chapter of the System
Administration Guide.)

$GEMSTONE/include/gcsi.hf — Prototypes for all GCSI functions.

$GEMSTONE/include/gcsierr.ht — GCSI error numbers.

Your program must define a main() function somewhere.

The GCSI Shared Library
GemStone provides a shared library, $GEMSTONE/lib/libgcsi-3.3.0-64.so, that
your program will load at runtime.

Make sure that $GEMSTONE/lib is included in your LD_LIBRARY_PATH
environment variable, so that the runtime loader can find the GCSI library. For
example:

export LD_LIBRARY_PATH=$GEMSTONE/lib:$LD_LIBRARY_PATH
GemTalk Systems 419

Developing a GCSI Application GemStone/S 64 Bit 3.3 GemBuilder for C
$GEMSTONE/lib/libgcsi-3.3.0-64.so is a multi-threaded library, so your
program must also be compiled and linked as a multi-threaded program.

Compiling and Linking
The $GEMSTONE/examples directory includes the sample GCSI program gsstat.cc,
along with a set of sample makefiles that show how to compile the sample GCSI program,
using the compilers that are used to build the GemStone product.

NOTE
It may still be possible to build your program with another compiler, as long as
you specify the appropriate flags to enable multi-threading.

Whenever you upgrade to a new GemStone version, you must re-compile and re-link all
your GCSI programs. This is because the internal structure of the shared cache may change
from version to version. Assuming you’ve created a makefile, all you should need to do is
change $GEMSTONE and rebuild.

Connecting to the Shared Page Cache
The GCSI library allows your program to connect to a single GemStone shared page cache.
Once the connection is made, a thread is started to monitor the cache and disconnect from
it if the cache monitor process dies. This thread is needed to prevent your program from
"holding on" to the shared cache after all other processes have detached from it. In this
way, your program can safely sleep for a long time without preventing the operating
system from freeing and recycling shared memory should the Stone be unexpectedly shut
down.

The Sample Program
The sample program gsstat.cc (in $GEMSTONE/examples) monitors a running
GemStone repository by printing out a set of statistics at a regular interval that you specify.
The program prints the following statistics:

Sess — TotalSessionsCount; the total number of sessions currently logged in to the
system.

CR — CommitRecordCount; the number of outstanding commit records that are
currently being maintained by the system.

PNR — PagesNeedReclaimSize; the amount of reclamation work that is pending, that
is, the backlog waiting for the GcGem reclaim task.

PD — PossibleDeadSize; the number of objects previously marked as dereferenced in
the repository, but for which sessions currently in a transaction might have created a
reference in their object space.

DNR — DeadNotReclaimedSize; the number of objects that have been determined to
be dead (current sessions have indicated they do not have a reference to these objects)
but have not yet been reclaimed.

 FP — The number of free pages in the Stone.

OCS — OldestCrSession; the session ID of the session referencing the oldest commit
record. Prints 0 if the oldest commit record is not referenced by any session, or if there
is only one commit record.
420 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
FF — FreeFrameCount; the number of unused page frames in the shared page cache.

To invoke gsstat, supply the name of a running Stone (or shared page cache, if running
on a Gem server) and a time interval in seconds. For example:

% gsstat myStone 2

To stop the gsstat program and detach from the cache, issue a CTRL-C.

B.2 GCSI Data Types
The following C types are used by GCSI functions. The file shrpcstats.ht defines each
of the GCSI types (shown in capital letters below). That file is in the $GEMSTONE/include
directory.

ShrPcMonStatSType
Shared page cache monitor statistics.

ShrPcStnStatSType
Stone statistics.

ShrPcPgsvrStatSType
Page server statistics.

ShrPcGemStatSType
Gem session statistics.

ShrPcStatUnion
The union of all four statistics structured types: shared page cache
monitor, page server, Stone, and Gem.

ShrPcCommonStatSType
Common statistics collected for all processes attached to the shared
cache.

The Structure for Representing the GCSI Function Result
The structured type GcsiResultSType provides a C representation of the result of
executing a GCSI function. This structure contains the following fields:

typedef struct {
 signed int processId;
 signed int sessionId;
 ShrPcCommonStatSType cmn;
 union ShrPcStatUnion u;
} ShrPcStatsSType;

class GcsiResultSType {
public:
 char vsdName[SHRPC_PROC_NAME_SIZE + 1];
 unsigned int statType;
 ShrPcStatsSType stats;
};
GemTalk Systems 421

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
In addition, a set of C mnemonics support representation of the count of each process-
specific structured type.

#define COMMON_STAT_COUNT (sizeof(ShrPcCommonStatSType)/
sizeof(int))

#define SHRPC_STAT_COUNT (sizeof(ShrPcMonStatSType)/sizeof(int)
+ COMMON_STAT_COUNT)

#define GEM_STAT_COUNT (sizeof(ShrPcGemStatSType)/sizeof(int) +
 COMMON_STAT_COUNT)

#define PGSVR_STAT_COUNT (sizeof(ShrPcPgsvrStatSType)/
sizeof(int) + COMMON_STAT_COUNT)

#define STN_STAT_COUNT (sizeof(ShrPcStnStatSType)/sizeof(int) +
COMMON_STAT_COUNT)
422 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GcsiAllStatsForMask

Get all cache statistics for a specified set of processes.

Syntax
int GcsiAllStatsForMask(mask, result, resultSize);

unsigned int mask;
GcsiResultSType * result;
int * resultSize;

Input Arguments
mask Indicates what types of processes to collect statistics for.
result Address of an array of kind GcsiResultSType where statistics will be stored.
resultSize Pointer to an integer that indicates the size of the result in elements (not

bytes). On return, indicates the number of that were stored into result.
Indicates the maximum number of processes for which statistics can be
returned.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

Example
Mask bits should be set by a bitwise OR of the desired process types. For example, to get statistics
for the stone and Shared Page Cache Monitor:

unsigned int mask = SHRPC_MONITOR | SHRPC_STONE;
GemTalk Systems 423

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
GcsiAttachSharedCache

Attach to the specified shared page cache.

Syntax
int GcsiAttachSharedCache(fullCacheName, errBuf, errBufSize);

const char * fullCacheName;
char * errBuf;
size_t errBufSize;

Input Arguments
fullCacheName Full name of the shared page cache, in the format

stoneName@stoneHostIpAddress. To determine the full name of the shared
cache, use the gslist -x utility.

errBuf A buffer that will contain a string describing an error.
errBufSize Size (in bytes) of errBuf.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
GcsiAttachSharedCacheForStone, page 425
GcsiDetachSharedCache, page 426
424 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GcsiAttachSharedCacheForStone

Attaches this process to the specified shared page cache.

Syntax
int GcsiAttachSharedCacheForStone(stoneName, errBuf, errBufSize);

const char * stoneName;
char * errBuf;
size_t errBufSize;

Input Arguments
stoneName Name of the Stone process.
errBuf A buffer that will contain a string describing an error.
errBufSize Size (in bytes) of errBuf.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

Description
This function assumes that the cache name is <stoneName>@<thisIpAddress> where
thisIpAddress is the IP address of the local machine. This function may fail if the host is multi-
homed (has more than one network interface). In that case, use GcsiAttachSharedCache (page 424)
to specify the full name of the shared cache.

See Also
GcsiAttachSharedCache, page 424
GcsiDetachSharedCache, page 426
GemTalk Systems 425

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
GcsiDetachSharedCache

Detach from the shared page cache.

Syntax
int GcsiDetachSharedCache (void);

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
GcsiAttachSharedCache, page 424
GcsiAttachSharedCacheForStone, page 425
426 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GcsiFetchMaxProcessesInCache

Return the maximum number of processes that can be attached to this shared cache at any instant.
The result may be used to allocate memory for a calls to the GcsiFetchStatsForAll* family of
functions.

Syntax
int GcsiFetchMaxProcessesInCache(maxProcesses);

int * maxProcesses;

Input Arguments
maxProcesses The maximum number of processes that can be attached to this shared cache

at any instant.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.
GemTalk Systems 427

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
GcsiInit

Initialize the library. This function must be called before all other GCSI functions.

Syntax
GcsiInit(void);
428 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GcsiStatsForGemSessionId

Get the cache statistics for the given Gem session id.

Syntax
int GcsiStatsForGemSessionId(sessionId, result);

int sessionId;
GcsiResultSType * result;

Input Arguments
sessionId Session ID of the Gem for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
GcsiStatsForGemSessionWithName, page 430
GcsiStatsForPgsvrSessionId, page 431
GcsiStatsForProcessId, page 432
GcsiStatsForShrPcMon, page 433
GcsiStatsForStone, page 434
GemTalk Systems 429

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
GcsiStatsForGemSessionWithName

Get the cache statistics for the first Gem in the cache with the given cache name.

Syntax
int GcsiStatsForGemSessionWithName(gemName, result);

char * gemName;
GcsiResultSType * result;

Input Arguments
gemName The case-sensitive name of the Gem for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
, page 428
GcsiStatsForPgsvrSessionId, page 431
GcsiStatsForProcessId, page 432
GcsiStatsForShrPcMon, page 433
GcsiStatsForStone, page 434
430 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GcsiStatsForPgsvrSessionId

Get the cache statistics for the given page server with the given session id. Remote Gems have page
servers on the Stone’s cache that assume the same session ID as the remote Gem.

Syntax
int GcsiStatsForPgsvrSessionId(sessionId, result);

int sessionId;
GcsiResultSType * result;

Input Arguments
sessionId Session ID of the page server for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
GcsiStatsForGemSessionId, page 429
GcsiStatsForGemSessionWithName, page 430
GcsiStatsForProcessId, page 432
GcsiStatsForShrPcMon, page 433
GcsiStatsForStone, page 434
GemTalk Systems 431

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
GcsiStatsForProcessId

Get the cache statistics for the given process ID.

Syntax
int GcsiStatsForProcessId(pid, result);

int pid;
GcsiResultSType * result;

Input Arguments
pid Process ID for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
GcsiStatsForGemSessionId, page 429
GcsiStatsForGemSessionWithName, page 430
GcsiStatsForPgsvrSessionId, page 431
GcsiStatsForShrPcMon, page 433
GcsiStatsForStone, page 434
432 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GcsiStatsForShrPcMon

Get the cache statistics for the shared page cache monitor process for this shared page cache.

Syntax
int GcsiStatsForShrPcMon(result);

GcsiResultSType * result;

Input Arguments
result Pointer to a GcsiResultSType structure.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
GcsiInit, page 428
GcsiStatsForGemSessionId, page 429
GcsiStatsForGemSessionWithName, page 430
GcsiStatsForPgsvrSessionId, page 431
GcsiStatsForProcessId, page 432
GcsiStatsForStone, page 434
GemTalk Systems 433

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
GcsiStatsForStone

Get the cache statistics for the Stone if there is a Stone attached to this shared page cache.

Syntax
int GcsiStatsForStone(result);

GcsiResultSType * result;

Input Arguments
result Pointer to a GcsiResultSType structure.

Return Value
Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also
, page 428
GcsiStatsForGemSessionId, page 429
GcsiStatsForGemSessionWithName, page 430
GcsiStatsForPgsvrSessionId, page 431
GcsiStatsForProcessId, page 432
GcsiStatsForStone, page 434
434 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C GCSI Data Types
GCSI Errors

The following errors are defined for the GemStone C Statistics Interface.

Table 1 GCSI Errors

Error Name Definition

GCSI_SUCCESS The requested operation was successful.

GCSI_ERR_NO_INIT GcsiInit() must be called before any
other Gcsi functions.

GCSI_ERR_CACHE_ALREADY_ATTACHED The requested shared cache is already
attached.

GCSI_ERR_NOT_FOUND The requested session or process was
not found.

GCSI_ERR_BAD_ARG An invalid argument was passed to a
Gcsi function.

GCSI_ERR_CACHE_CONNECTION_SEVERED The connection to the shared cache was
lost.

GCSI_ERR_NO_STONE Stone statistics were requested on a
cache with no stone process.

GCSI_ERR_CACHE_NOT_ATTACHED No shared page cache is currently
attached.

GCSI_ERR_NO_MORE_HANDLES The maximum number of shared caches
are attached.

GCSI_ERR_CACHE_ATTACH_FAILED The attempt to attach the shared cache
has failed.

GCSI_ERR_WATCHER_THREAD_FAILED The cache watcher thread could not be
started.

GCSI_ERR_CACHE_WRONG_VERSION The shared cache version does not
match that of the libgcsixx.so library.
GemTalk Systems 435

GCSI Data Types GemStone/S 64 Bit 3.3 GemBuilder for C
436 GemTalk Systems

Index
A
aborting transactions 21
adding

OOPs to an indexable object (Collection) 375,
377

OOPs to an NSC 92, 93
alignment of traversal buffer 94
allocating

multiple OOPs 206, 208
OOPs 204

altered objects
finding 97

appending
to a byte object 99, 100
to a collection 101

application
binding 44, 66
compiling 63
improving performance 34, 36, 185, 234, 253,

260, 261, 265, 319, 320, 321, 322, 325,
379, 384, 387, 390, 408

linking 18
authorization

traversal 410
violation, what to do 21

B
beginning

a transaction 102
binding to GemBuilder 44, 66
boolean

converting to an object 103
represented as a special object 23

byte array
converting to a C pointer 104

byte object
creating 266
fetching bytes from 161, 162
fetching characters from 164
fetching the size 174, 191
implementation type 29, 30, 180
initializing 266
storing bytes in 360, 361, 363

bytes
appending 99

C
C mnemonic

sizes and offsets into objects 70
C types defined for GemBuilder functions 70
call

determining if in progress 105
call stack

clearing 40, 113
calling

the virtual machine 120, 149, 153, 157, 240,
245, 246, 249, 254, 298, 300, 302, 304,
306

user actions from GemStone 53
changed object, and re-reading 106
changing class definitions 28
character

converting to an object 107
GemTalk Systems 437

GemStone/S 64 Bit 3.3 GemBuilder for C
instance defined in GemStone 417
represented as a special object 23

character object
creating 267
initializing 267

characters
converting to objects 107

checking for GemBuilder errors 39, 148
clamped object traversal 108, 110, 239, 262, 390,

391
structured type 108, 160

class
compiling methods 19, 110, 116
fetching an object’s 29, 165
modifying 28
object report 200

clearing the call stack 40
cluster bucket

mnemonic for category 418
committing transactions 21, 115, 239
compiling

applications 63
C code 62
class methods 19, 110, 116
instance methods 19, 219
methods 19, 219
user actions 63

compressing objects 118, 412
concurrency conflict 115, 239

what to do 21
configuration files 216
constraint violation, what to do 21
context

call stack 113
error handling 40
of GemStone system 120, 121, 240, 241

continuable error 120, 121, 240, 241
continuing

after an error 39, 120, 121, 240, 241
traversal 234, 410

controlling
sessions 115, 229, 231, 232, 239, 347
transactions 91, 115, 236, 239

converting between
byte arrays and pointers 104, 308
objects and booleans 103, 288, 289
objects and characters 107, 290, 291, 292, 293
objects and floating point numbers 142, 203,

294
objects and integers 213, 296, 297
special objects and C values 23
strings and integers 394

v1.1.1 oops and OopTypes 284
creating

byte object 266
character object 267
class methods 110, 116
database objects 18
DateTime object 268
GemStone sessions 21, 229, 231, 347
instances of a GemStone class 28
objects 33, 269, 270, 272
OOPs 269, 270

current session, defined 21

D
date, time

structured type 71
DateTime object

creating 268
fetching contents of 167
initializing 268

debugging 345
function, enabling 128, 130, 131
information, finding 314, 339, 341, 343
use GciRpc 43, 66
user action 54

decoding
an OOP array 133

decrementing shared counter 134
default

directory, host file access 39
login parameter value 215, 347

defining
new methods 19

deprecated functions
GciPathToStr 298
GciStrToPath 399

developing a user action 48
dirty objects 97, 135, 137, 138, 140, 405, 407
disabling

error handlers 339, 341, 343
dynamic instance variable

fetching contents of 168, 169, 366

E
enabling

debugging functions 128, 130, 131
error handlers 339, 341, 343
full compression 144
run-length encoding 143
signaled errors 145
438 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
encoding
an OOP array 146
free OOPs 143

enumerating named instance variables 112, 227
environmentId 80
error

checking 39, 148, 345
continuing execution after 120, 121, 240, 241
dictionary 23, 418
handling 311, 314, 339, 341, 343
jump buffer 40, 311, 314, 339, 341, 343
mnemonics 69, 70
polling 39, 148, 309, 310

error report
structured type 72

errors 233, 345, 346
signaled 145

executing code in
GemBuilder, advantages over GemStone 19
GemStone 19, 26, 149, 151, 153, 155, 157, 159,

245, 246, 249, 251, 258, 304
advantages over GemBuilder 19

host file access method 39
executing user action 54
execution environment

and Ruby 80
export set 97, 135, 137, 138, 140, 336, 337, 338,

405, 407
exporting objects to GemStone 18, 28

F
false, GemStone special object 23, 24, 103, 417
fetching

bytes from a byte object 161, 162
characters from a byte object 164
class 29, 165
DateTime 167
dynamic instance variables 168, 169
number of shared counters 177
object implementation format 29, 180
object information 178
object size 174, 191, 199
objects by using paths 36, 185
OOPs from a pointer object 170, 172, 195, 197
OOPs from an indexable object (Collection)

31, 181, 183
OOPs from an NSC 181, 183
shared counter value 190, 316, 317

finding
debugging information 314, 339, 341, 343
object reports in a traversal buffer 200
objects in a traversal buffer 36

float kind 202
floating point number

as a byte object 30
converting to an object 203

format of an object
fetching 180

format of an object, fetching 29
free OOPs

run-length encoding 143
full compression

enabling 144

G
garbage collection 319, 320, 321, 322, 325, 336,

337, 338
saving and releasing objects 40

GciAbort 91
GciAddOopsToNsc 93
GciAddOopToNsc 92
GCI_ALIGN 94
GciAll7Bit 95
GciAllocTravBuf 96
GciAlteredObjs 97
GciAppendBytes 25, 26, 27, 33, 99
GciAppendChars 100
GciAppendOops 101
GciBegin 102
GCI_BOOL_TO_OOP 103
GciByteArrayToPointer 104
GciCallInProgress 38
GciCheckAuth 106
GCI_CHR_TO_OOP 107
GciClampedTrav 108
GciClampedTravArgsSType 108, 160
GciClassMethodForClass 110
GciClassNamedSize 112
GciClearStack 113
GciCommit 115
GciCompileMethod 116
GciCompress 118
GciContinue 120
GciContinueWith 121
GciCreateByteObj 122
GciCreateOopObj 124
GciCTimeToDateTime 126
GciDateTimeSType 71
GciDateTimeToCTime 127
GciDbgEstablish 128
GciDbgEstablishToFile 130
GciDbgLogString 131
GciDeclareAction 50, 132
GemTalk Systems 439

GemStone/S 64 Bit 3.3 GemBuilder for C
GciDecodeOopArray 133
GciDecSharedCounter 134
GciDirtyExportedObjs 135
GciDirtyObjsInit 137
GciDirtySaveObjs 138
GciDirtyTrackedObjs 140
Gci_doubleToSmallDouble 142
GciEnableFreeOopEncoding 143
GciEnableFullCompression 144
GciEnableSignaledErrors 145
GciEncodeOopArray 146
GciErr 148
GciErrSType 72
GciExecute 149
GciExecute_ 149
GciExecuteFromContext 151
GciExecuteFromContext_ 151
GciExecuteStr 153
GciExecuteStr_ 153
GciExecuteStrFetchBytes 155
GciExecuteStrFromContext 157
GciExecuteStrFromContext_ 157
GciExecuteStrTrav 159
GciFetchByte 161
GciFetchBytes_ 162
GciFetchChars_ 164
GciFetchClass 165
GciFetchDateTime 167
GciFetchDynamicIv 168
GciFetchDynamicIvs 169
GciFetchNamedOop 170
GciFetchNamedOops 172
GciFetchNamedSize 174
GciFetchNameOfClass 175
GciFetchNumEncodedOops 176
GciFetchNumSharedCounters 177
GciFetchObjectInfo 178
GciFetchObjImpl 180
GciFetchObjInfoArgsSType 178
GciFetchOop 31, 181
GciFetchOops 183
GciFetchPaths 185
GciFetchSharedCounterValuesNoLock 190
GciFetchSize_ 191
GciFetchVaryingOop 195
GciFetchVaryingOops 197
GciFetchVaryingSize_ 199
GciFindObjRep 200
GciFloatKind 202
GciFloatKindEType 202
GciFltToOop 203
GciGetFreeOop 204

GciGetFreeOops 206
GciGetFreeOopsEncoded 208
GciGetSessionId 209
GciHardBreak 38, 210
GciHiddenSetIncludesOop 211
GCI_I64_IS_SMALL_INT 212
GciI64ToOop 213
GciIncSharedCounter 214
GciInit 38, 215
GciInstallUserAction 218
GciInstallUserAction_ 218
GciInstMethodForClass 219
GciInUserAction 221
GciIsKindOf 222
GciIsKindOfClass 223
GciIsRemote 224
GciIsSubclassOf 225
GciIsSubclassOfClass 226
GciIvNameToIdx 227
GciLnk

configuration file 216
GciIsRemote 224
Loading 333, 334, 335
object traversal function 44
path access function 44
use only with debugged applications 66
user action 56

GciLoadUserActionLibrary 228
GciLogin 229, 231
GciLogout 232
GciLongJmp 40, 314
GciMoreTraversal 234
GciNbAbort 236
GciNbBegin 237
GciNbClampedTrav 238
GciNbCommit 239
GciNbContinue 240
GciNbContinueWith 241
GciNbEnd 242
GciNbEnd_ 242
GciNbExecute 245
GciNbExecute_ 245
GciNbExecuteStr 246
GciNbExecuteStr_ 246
GciNbExecuteStrFromContext 249
GciNbExecuteStrFromContext_ 249
GciNbExecuteStrTrav 251
GciNbMoreTraversal 253
GciNbPerform 254
GciNbPerformNoDebug 256
GciNbPerformNoDebug_ 256
GciNbPerformTrav 258
440 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
GciNbStoreTrav 260
GciNbStoreTravDoTrav 262
GciNbStoreTravDoTravRefs 263
GciNbTraverseObjs 265
GciNewByteObj 266
GciNewCharObj 267
GciNewDateTime 268
GciNewOop 269
GciNewOops 270
GciNewOopUsingObjRep 272
GciNewString 275
GciNewSymbol 276
GciNscIncludesOop 278
GciObjExists 279
GciObjInCollection 280
GciObjInfoSType 72
GciObjIsCommitted 281
GciObjRepHdrSType 75
GciObjRepSize_ 282
GciObjRepSType 74, 160
GciOldOopToNewOop 284
GCI_OOP_IS_BOOL 285
GCI_OOP_IS_SMALL_INT 286
GCI_OOP_IS_SPECIAL 287
GCI_OOP_TO_BOOL 289
GciOopToBool 288
GciOopToChar16 290
GciOopToChar32 291
GCI_OOP_TO_CHR 293
GciOopToChr 292
GciOopToFlt 294
GciOopToI32 296
GciOopToI32_ 296
GciOopToI64 297
GciOopToI64_ 297
GciPerform 298
GciPerform_ 298
GciPerformNoDebug 300
GciPerformNoDebug_ 300
GciPerformSymDbg 302
GciPerformSymDbg_ 302
GciPerformTrav 304
GciPerformTraverse 304, 306
GciPointerToByteArray 308
GciPollForSignal 309
GciPollSocketForRead 310
GciPopErrJump 311
GciProcessDeferredUpdates_ 312
GciProduct 313
GciPushErrJump 314
GciRaiseException 315
GciReadSharedCounter 316

GciReadSharedCounterNoLock 317
GciRealloc 318
GciReleaseAllGlobalOops 319
GciReleaseAllOops 320
GciReleaseAllTrackedOops 321
GciReleaseGlobalOops 322
GciReleaseOops 323
GciReleaseTrackedOops 325
GciRemoveOopFromNsc 326
GciRemoveOopsFromNsc 327
GciReplaceOops 329
GciReplaceVaryingOops 330
GciResolveSymbol 331
GciResolveSymbolObj 332
GciRpc 144

GciIsRemote 224
loading 333, 334, 335
multiple GemStone sessions 44
object traversal function 43
path access function 43

GciRtlIsLoaded 333
GciRtlLoad 334
GciRtlUnLoad 335
GciSaveAndTrackObjs 336
GciSaveGlobalObjs 337
GciSaveObjs 338

in user actions 49
GciServerIsBigEndian 339
GciSessionIsRemote 340
GciSetCacheName_ 341
GciSetDynLib 342
GciSetErrJump 343
GciSetHaltOnError 345
Gci_SETJMP 40, 314
GciSetNet 347
GciSetSessionId 351
GciSetSharedCounter 353
GciSetTraversalBufSwizzling 354
GciSetVaryingSize 355
GciShutdown 356
GciSoftBreak 38, 357
GciStep 359
GciStep_ 359
GciStoreByte 360
GciStoreBytes 25, 26, 27, 361
GciStoreBytesInstanceOf 363
GciStoreChars 25, 365
GciStoreDynamicIv 366
GciStoreIdxOop 367
GciStoreIdxOops 369
GciStoreNamedOop 371
GciStoreNamedOops 373
GemTalk Systems 441

GemStone/S 64 Bit 3.3 GemBuilder for C
GciStoreOop 375
GciStoreOops 377
GciStorePaths 379
GciStoreTrav 384
GciStoreTravDo_ 387
GciStoreTravDoTrav_ 390
GciStoreTravDoTravRefs 391
GciStringToInteger 394
GciStrKeyValueDictAt 395
GciStrKeyValueDictAtObj 396
GciStrKeyValueDictAtObjPut 397
GciStrKeyValueDictAtPut 398
GciSwapBytesUint 399
GciSwapBytesUshort 400
GciSymDictAt 401
GciSymDictAtObj 402
GciSymDictAtObjPut 403
GciSymDictAtPut 404
GciTrackedObjs 211

and garbage collection 321, 325
GciTrackedObjsFetchAllDirty 405
GciTrackedObjsInit 407
GciTravBufType 79

allocating 96
GciTraverseObjs 408
GciUncompress 412
GciUserActionInit 50
GCIUSER_ACTION_INIT_DEF 50
GciUserActionShutdown 50, 51
GCIUSER_ACTION_SHUTDOWN_DEF 51
GciUserActionSType 78
GciVersion 415
GCSI

compiling and linking 420
connecting to shared page cache 420
data types 421
errors 435
function library 419
sample program

explained 420
introduced 420

shared library 419
GcsiAllStatsForMask 423
GcsiAttachSharedCache 424
GcsiDetachSharedCache 426
GcsiFetchMaxProcessesInCache 427
GcsiInit 428
GcsiResultSType 421
GcsiResultSType (structured type) 421
GcsiStatsForGemSessionId 429
GcsiStatsForGemSessionWithName 430
GcsiStatsForPgsvrSessionId 431

GcsiStatsForProcessId 432
GcsiStatsForShrPcMon 433
GcsiStatsForStone 434
GemBuilder

initializing 215
libraries 44
library file

gcirpc50.* 44
libgcklnk.* 44

loading 333, 334, 335
run-time binding 44, 66
starting 215
stopping 356

GemBuilder errors 233, 345, 346
GemRpc, user action 57
GemStone C Statistics Interface, see GCSI 419
GemStone service name 347
GemStone-defined object, making available to

applications 23
gssstat.cc, sample GCSI program 420

H
handling errors 311, 314, 339, 341, 343
hard break 91, 210, 236

defined 27
hidden set 211
host

file access, default directory 39
password 347
username 347

host-specific C definition 70

I
implementation of an object

fetching 29, 180
object report 110, 200, 239, 262, 306

implementing a user action 48
importing objects

from GemStone 18, 28
improving application performance 34, 36, 185,

234, 253, 260, 261, 265, 319, 320, 321, 322,
325, 379, 384, 387, 390, 408

include file (GCI)
gci.ht 70
gcioop.ht 417

include file (GemBuilder)
flag.ht 70
gcicmn.ht 70
gcierr.ht 70
gcifloat.hf 69
gci.hf 69
442 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
gci.ht 22, 70
gcioc.ht 70
gcioop.ht 23, 24, 70
gcirtl.hf 69, 70
gcisend.hf 70
gciua.hf 69
gciuser.hf 70
version.ht 70

incomplete
object report 410

incrementing shared counter 214
indexable instance variable, fetching the value of

an object’s 197
indexable object (Collection)

adding OOPs to 375, 377
fetching OOPs from 31, 181, 183

initializing
byte object 266
character object 267
DateTime object 268
objects 269, 270
OOPs 269, 270

initializing GemBuilder 20, 215
initiating a GemStone session 229, 231
installing a user action 132, 218
instance

GemStone-defined 417
method, compiling 19, 219
variable 30

enumerating for a class 112, 227
interrupt

GemStone (hard break) 27
handling 27, 38
issuing 27, 91, 210, 236, 357
virtual machine (soft break) 27, 120, 240, 357

interrupts 105

J
jump buffer, error handling in GemBuilder 40,

311, 314, 339, 341, 343

K
kernel class 269, 270

mnemonics 23, 418
kind

of a class 222, 223

L
level traversal 35, 234, 253, 265, 408
library

GemBuilder 44
run-time loading 52
search 45
user action 49

linkable GemBuilder (GciLnk)
GciIsRemote 224

linking
applications 18
applications and user actions 56

loading
user action 52

loading GemBuilder 333, 334, 335
logging in to GemStone 21, 229, 231, 347
logging out from GemStone 21, 232
logical access to objects 19, 26
login parameter 229, 231
longjmp, setjmp

equivalent functionality 40, 233, 314, 339,
341, 343, 346

M
macros defined 70
memory

reallocating 318
message

GemBuilder function 26
sending 26, 254, 298, 300, 302, 304, 306

method
calling C functions from 132, 218
compiling 19, 110, 116, 219

mnemonic
GemStone error 39, 69, 70

modifying
objects directly in C 18, 28

caution 29
multiple GemStone sessions 57

GciRpc 44
switching among 209, 351, 354

multiple objects
defining 272
exporting 200, 234, 253, 260, 261, 262, 265,

379, 384, 387, 390, 391, 408
importing 185, 200, 234, 253, 260, 261, 262,

265, 384, 387, 390, 391, 408

N
named instance variable

fetching 170, 172
number of 112, 174, 227
pointer object 30
GemTalk Systems 443

GemStone/S 64 Bit 3.3 GemBuilder for C
network 347
minimizing traffic 34, 36, 185, 234, 253, 260,

261, 265, 379, 384, 387, 390, 408
node 347
parameter 229, 231, 347
traffic, minimizing 36

nil, GemStone special object 23, 24, 417
node name, network 347
nonblocking functions 36
non-sequenceable collection

searching 278
non-sequenceable collection (NSC) 32

adding OOPs to 92, 93
fetching OOPs from 181, 183
fetching the size 174, 191
implementation type 29, 32, 180
removing OOPs from 326, 327

number of an object’s instance variables
object report 110, 200, 239, 262, 306

number of named instance variables in a class 112
number, converting to an object 203
numeric representation of a path 185, 379

O
object

byte implementation type 30
control function 319, 320, 321, 322, 325, 336,

337, 338
converting to

boolean 288, 289
character 290, 291, 292, 293
floating-point number 294
integer 213, 296, 297

creating 33, 272
identity 22
importing or exporting multiple 34
mnemonic 23
NSC implementation type 32
pointer implementation type 30
releasing 40, 232, 319, 320, 321, 322, 325
report 110, 200, 234, 239, 253, 260, 261, 262,

265, 272, 306, 384, 387, 408
finding in a traversal buffer 200
incomplete 410
size 282
special objects 410
structure summary 35
traversal buffer 35
word alignment 94

representation in C 18, 28
saving 40

sending messages 254, 298, 300, 302, 304, 306
object information

fetching 178
structured type 72, 178

object report
structured type 74, 160

object report header
structured type 75

object traversal 304
objects

creating 269, 270
initializing 269, 270
saving from garbage collection 336, 337, 338

objectSecurityPolicyId, in GciObjRepHdrSType
75

OOP (object-oriented pointer)
adding to an indexable object (Collection)

375, 377
adding to an NSC 92, 93
defined 22
fetching from an indexable object

(Collection) 31, 181, 183
fetching from an NSC 181, 183, 195, 197
removing from an NSC 326, 327
searching an NSC for 278
searching for 211

OOP array
decoding 133
encoding 146
obtaining the size of 176

OOPs
allocating 204, 206, 208
appending 101
creating 269, 270
initializing 269, 270

operating system considerations 38

P
password

GemStone 229, 231, 347
host 347

path access
function, GciLnk 44
function, GciRpc 43
to objects 36, 185, 379

pause message 120, 121, 240, 241
performance, improving application 34, 36, 185,

234, 253, 260, 261, 265, 319, 320, 321, 322,
325, 379, 384, 387, 390, 408

pointer
converting to a byte array 308

pointer object
444 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
fetching OOPs from 170, 172, 195, 197
fetching the size 174, 191
implementation type 29, 30, 180
storing OOPs in 367, 369, 371, 373, 375, 377

polling for GemBuilder errors 39, 148
polling for signal errors 309, 310
primitive, user-defined 132, 218
private method, compilation restrictions 110,

116, 219
ProfMonitor

and signals 80
PureExportSet 211

R
reallocating

memory 318
reclaiming storage 319, 320, 321, 322, 325
ReferencedSet 393
releasing objects 40, 232, 319, 320, 321, 322, 325
remote procedure call GemBuilder (GciRpc) 224
removing OOPs from an NSC 326, 327
report, of an object 110, 200, 234, 239, 253, 260,

261, 262, 265, 272, 282, 306, 384, 387, 408
re-reading objects from the database 21
reserved OOP 23
resolving symbols 27, 110, 116, 149, 153, 157,

159, 219, 245, 246, 249, 251
Ruby

and GCI execution environment 80
run-length encoding 133, 146, 176

enabling 143
run-time binding

GemBuilder 44, 66
run-time loading 52

S
saving objects 40

export set 41
schema 18
security policy

GciCheckAuth function 106
security policy ID in Object Information Structure

73
security policy, in data structure 75
sending messages to GemStone objects 19, 26,

254, 298, 300, 302, 304, 306
service name, GemStone 347
session

control 20, 229, 231, 232, 347
creating (logging in) 21, 347
current 21

defined 20
finding the current ID number 209
halting on error 345
setting the current ID number 351, 354
switching among multiple 209, 351, 354
terminating (logging out) 21, 232

setjmp, longjmp
equivalent functionality 40, 233, 314, 339,

341, 343, 346
shared counter

decrementing 134
fetching value 190, 316, 317
finding how many 177
incrementing 214
setting value 353

shared libraries
GemBuilder 44
user action 47

SIGIO 38
signal

handling 38
signal (system function) 38
signal errors 309, 310
signal handling

UNIX 80
signaled errors 145
single-step execution 359
size of an object

fetching 174, 191
object report 200

size of an object report, calculating 282
size of an OOP array 176
SmallInteger

represented as a special object 23
soft break 120, 240, 357

defined 27
special object

implementation type 29, 180
object report 410
traversal of 410

stack
clearing the call 113

starting GemBuilder 20, 215
statistics, collecting directly from shared page

cache 419
stopping GemBuilder 20, 356
storing

bytes in a byte object 360, 361, 363
dynamic instance variables 366
objects by using paths 36, 379
OOPs in a pointer object 367, 369, 371, 373,

375, 377
GemTalk Systems 445

GemStone/S 64 Bit 3.3 GemBuilder for C
string
appending 100
as a byte object 30
converting to an integer 394
fetching 161, 162, 164
storing 360, 361, 365

structural access 28, 92, 93, 112, 161, 162, 164,
165, 170, 172, 174, 180, 181, 183, 191, 195,
197, 222, 223, 227, 269, 270, 272, 326, 327,
360, 361, 363, 365, 367, 369, 371, 373, 375,
377

function 80
caution when using 80, 87

structured types
GciClampedTravArgsSType 108, 160
GciDateTimeSType 71
GciErrSType 72
GciFetchObjInfoArgsSType 178
GciObjInfoSType 72
GciObjRepHdrSType 75
GciObjRepSType 74, 160
GciTravBufType 79
GciUserActionSType 78

subclass
determining 225, 226

switching among multiple GemStone sessions
209, 351, 354

symbol
as a byte object 30
creating 276
resolution 27, 110, 116, 149, 151, 153, 157,

159, 219, 245, 246, 249, 251

T
terminating GemStone sessions 232
testing an application

use GciRpc 66
tracing a GemBuilder call while debugging 128,

130, 131
tracked objects 405, 407
transaction

aborting 21, 91, 236
beginning a 102
committing 21, 115, 239
control 91, 115, 236, 239
management 106
workspace, creating 229, 231, 347
workspace, terminating 232

traversal 34, 108, 110, 200, 234, 239, 251, 253, 258,
260, 261, 262, 265, 304, 306, 384, 387, 390,
391, 408

buffer 35, 234, 253, 260, 261, 262, 265, 384,

387, 390, 391, 408
finding object reports 36, 200
word alignment 94

function
GciLnk 44
GciRpc 43

inability to continue 234, 410
level 35, 234, 253, 265, 408
special object 410
structured type 108, 160
threshold 110, 234, 239, 253, 260, 261, 262,

265, 304, 384, 387, 390, 391, 408
word alignment 94

traversal buffer
allocating 96
structured type 79

true, GemStone special object 23, 24, 103, 417

U
uncommitted object, releasing 40, 232, 319, 320,

321, 322, 325
uncompressing objects 412
underscore character, private method 110, 116,

219
UNIX signal handling 80
unnamed instance variable, fetching 195, 197
updating the C representation of database objects

96, 97, 106, 107
user action 47–59, 221

calling from GemStone 53
compiling 63
debugging 54
defined 47
executing 54
GciDeclareAction 132
GciInstallUserAction 218
GciUserActionInit 413
GciUserActionShutdown 414
implementing 48
include file 70
installation macro defined 70
installing 132, 218
kinds of 54
library 49

loading 228
linked application 56
loading 52
making results persistent 49
RPC application 56
run-time loading 52
structured type 78

user action libraries 47
446 GemTalk Systems

GemStone/S 64 Bit 3.3 GemBuilder for C
user name
GemStone 229, 231, 347
host 347

user profile, searching the symbol list in 110, 116,
149, 153, 157, 219, 245, 246, 249

user session
creating 229, 231, 347
terminating 232

user, searching the symbol list for 27

V
value buffer

object report 200, 234, 253, 260, 261, 262, 265,
272, 384, 387, 408

word alignment 94
value of an instance variable, object report 110,

200, 239, 262, 306
version

GemBuilder 415
virtual machine

call stack 40
clearing 40, 113

control function 120, 121, 149, 153, 157, 240,
241, 245, 246, 249, 254, 298, 300, 302,
304, 306

W
word alignment 94
GemTalk Systems 447

	1 Introduction
	1.1 GemBuilder Application Overview
	Deciding Where to Do the Work
	Representing GemStone Objects in C
	Smalltalk Access to Objects
	Calling C Functions from Smalltalk Methods

	The GemBuilder Functions

	1.2 Session Control
	Starting and Stopping GemBuilder
	Remote Login Setup
	Logging In and Out
	Transaction Management
	Committing a Transaction
	Aborting a Transaction
	Controlling Transactions Manually

	1.3 Representing Objects in C
	GemStone-Defined Object Mnemonics
	Converting Between Special Objects and C Values
	Byte-Swizzling of Binary Floating-Point Values

	1.4 Manipulating Objects in GemStone
	Sending Messages to GemStone Objects
	Executing Code in GemStone
	Interrupting GemStone Execution
	Modification of Classes

	1.5 Manipulating Objects Through Structural Access
	Direct Access to Metadata
	Byte Objects
	Pointer Objects
	Nonsequenceable Collections (NSC Objects)

	1.6 Creating Objects
	1.7 Fetching and Storing Objects
	Efficient Fetching and Storing with Object Traversal
	How Object Traversal Works
	The Object Traversal Functions

	Efficient Fetching And Storing with Path Access

	1.8 Nonblocking Functions
	1.9 Operating System Considerations
	Signal Handling in Your GemBuilder Application
	Executing Host File Access Methods
	Writing Portable Code

	1.10 Error Handling and Recovery
	Polling for Errors
	Error Jump Buffers
	The Call Stack
	GemStone System Errors

	1.11 Garbage Collection
	1.12 Preparing to Execute GemStone Applications
	GemStone Environment Variables

	2 Building Applications with GemBuilder for C
	2.1 RPC and Linked applications
	RPC for Debugging
	Linked for Performance
	Multiple GemStone Sessions
	The GemBuilder for C Shared Libraries

	2.2 GemBuilder Applications that load Shared Libraries
	Building the Application
	Searching for the Library
	How UNIX Matches Search Names with Shared Library Files

	2.3 Building Statically Linked Applications

	3 Writing C Functions To Be Called from GemStone
	3.1 Shared User Action Libraries
	3.2 How User Actions Work
	3.3 Developing User Actions
	Write the User Action Functions
	Create a User Action Library
	The gciua.hf Header File
	The Initialization and Shutdown Functions
	Compiling and Linking Shared Libraries
	Using Existing User Actions in a User Action Library
	Using Third-party C Code with a User Action Library

	Loading User Actions
	Loading User Action Libraries At Run Time
	Specifying the User Action Library
	Creating User Actions in Your C Application
	Verify That Required User Actions Have Been Installed

	Write the Code That Calls Your User Actions
	Remote User Actions
	Limit on Circular Calls Among User Actions and Smalltalk

	Debug the User Action

	3.4 Executing User Actions
	Choosing Between Session and Application User Actions
	Running User Actions with Applications
	With an RPC Application
	With a Linked Application

	Running User Actions with Gems
	Running User Actions with Applications and Gems

	4 Compiling and Linking
	4.1 Development Environment and Standard Libraries
	4.2 Compiling C Source Code for GemStone
	The C++ Compiler
	Listing the Version of Your Compiler

	Compilation Options
	Compilation Command Lines

	4.3 Linking C/C++ Object Code with GemStone
	Risk of Database Corruption
	Linker
	Link Options
	Command Line Assumptions
	Linking User Actions into Shared Libraries
	Linking Applications That Bind to GemBuilder at Run Time

	5 GemBuilder for C Files and Data Structures
	5.1 GemBuilder for C Include Files
	5.2 GemBuilder Data Types
	The Structure for Representing the Date and Time
	The Error Report Structure
	The Object Information Structure
	The Object Report Structure
	The Object Report Header Class
	The User Action Information Structure
	The Traversal Buffer Type

	5.3 Structural Access Functions
	5.4 environmentId
	5.5 UNIX Signal Handling

	6 GemBuilder C Functions
	6.1 Function Summary Tables
	GciAbort
	GciAddOopToNsc
	GciAddOopsToNsc
	GCI_ALIGN
	GciAll7Bit
	GciAllocTravBuf
	GciAlteredObjs
	GciAppendBytes
	GciAppendChars
	GciAppendOops
	GciBegin
	GCI_BOOL_TO_OOP
	GciByteArrayToPointer
	GciCallInProgress
	GciCheckAuth
	GCI_CHR_TO_OOP
	GciClampedTrav
	GciClassMethodForClass
	GciClassNamedSize
	GciClearStack
	GciCommit
	GciCompileMethod
	GciCompress
	GciContinue
	GciContinueWith
	GciCreateByteObj
	GciCreateOopObj
	GciCTimeToDateTime
	GciDateTimeToCTime
	GciDbgEstablish
	GciDbgEstablishToFile
	GciDbgLogString
	GciDeclareAction
	GciDecodeOopArray
	GciDecSharedCounter
	GciDirtyExportedObjs
	GciDirtyObjsInit
	GciDirtySaveObjs
	GciDirtyTrackedObjs
	Gci_doubleToSmallDouble
	GciEnableFreeOopEncoding
	GciEnableFullCompression
	GciEnableSignaledErrors
	GciEncodeOopArray
	GciEncrypt
	GciErr
	GciExecute
	GciExecuteFromContext
	GciExecuteStr
	GciExecuteStrFetchBytes
	GciExecuteStrFromContext
	GciExecuteStrTrav
	GciFetchByte
	GciFetchBytes_
	GciFetchChars_
	GciFetchClass
	GciFetchDateTime
	GciFetchDynamicIv
	GciFetchDynamicIvs
	GciFetchNamedOop
	GciFetchNamedOops
	GciFetchNamedSize
	GciFetchNameOfClass
	GciFetchNumEncodedOops
	GciFetchNumSharedCounters
	GciFetchObjectInfo
	GciFetchObjImpl
	GciFetchOop
	GciFetchOops
	GciFetchPaths
	GciFetchSharedCounterValuesNoLock
	GciFetchSize_
	GciFetchUtf8Bytes_
	GciFetchVaryingOop
	GciFetchVaryingOops
	GciFetchVaryingSize_
	GciFindObjRep
	GciFloatKind
	GciFltToOop
	GciGetFreeOop
	GciGetFreeOops
	GciGetFreeOopsEncoded
	GciGetSessionId
	GciHardBreak
	GciHiddenSetIncludesOop
	GCI_I64_IS_SMALL_INT
	GciI64ToOop
	GciIncSharedCounter
	GciInit
	GciInitAppName
	GciInstallUserAction
	GciInstMethodForClass
	GciInUserAction
	GciIsKindOf
	GciIsKindOfClass
	GciIsRemote
	GciIsSubclassOf
	GciIsSubclassOfClass
	GciIvNameToIdx
	GciLoadUserActionLibrary
	GciLogin
	GciLoginEx
	GciLogout
	GciLongJmp
	GciMoreTraversal
	GciNbAbort
	GciNbBegin
	GciNbClampedTrav
	GciNbCommit
	GciNbContinue
	GciNbContinueWith
	GciNbEnd
	GciNbEndPoll
	GciNbExecute
	GciNbExecuteStr
	GciNbExecuteStrFetchBytes
	GciNbExecuteStrFromContext
	GciNbExecuteStrTrav
	GciNbMoreTraversal
	GciNbPerform
	GciNbPerformNoDebug
	GciNbPerformTrav
	GciNbStoreTrav
	GciNbStoreTravDo_
	GciNbStoreTravDoTrav_
	GciNbStoreTravDoTravRefs_
	GciNbTraverseObjs
	GciNewByteObj
	GciNewCharObj
	GciNewDateTime
	GciNewOop
	GciNewOops
	GciNewOopUsingObjRep
	GciNewString
	GciNewSymbol
	GciNewUtf8String
	GciNscIncludesOop
	GciObjExists
	GciObjInCollection
	GciObjIsCommitted
	GciObjRepSize_
	GciOldOopToNewOop
	GCI_OOP_IS_BOOL
	GCI_OOP_IS_SMALL_INT
	GCI_OOP_IS_SPECIAL
	GciOopToBool
	GCI_OOP_TO_BOOL
	GciOopToChar16
	GciOopToChar32
	GciOopToChr
	GCI_OOP_TO_CHR
	GciOopToFlt
	GciOopToI32
	GciOopToI64
	GciPerform
	GciPerformNoDebug
	GciPerformSymDbg
	GciPerformTrav
	GciPerformTraverse
	GciPointerToByteArray
	GciPollForSignal
	GciPollSocketForRead
	GciPopErrJump
	GciProcessDeferredUpdates_
	GciProduct
	GciPushErrJump
	GciRaiseException
	GciReadSharedCounter
	GciReadSharedCounterNoLock
	GciRealloc
	GciReleaseAllGlobalOops
	GciReleaseAllOops
	GciReleaseAllTrackedOops
	GciReleaseGlobalOops
	GciReleaseOops
	GciReleaseTrackedOops
	GciRemoveOopFromNsc
	GciRemoveOopsFromNsc
	GciReplaceOops
	GciReplaceVaryingOops
	GciResolveSymbol
	GciResolveSymbolObj
	GciRtlIsLoaded
	GciRtlLoad
	GciRtlUnload
	GciSaveAndTrackObjs
	GciSaveGlobalObjs
	GciSaveObjs
	GciServerIsBigEndian
	GciSessionIsRemote
	GciSetCacheName_
	GciSetDynLib
	GciSetErrJump
	GciSetHaltOnError
	Gci_SETJMP
	GciSetNet
	GciSetNetEx
	GciSetSessionId
	GciSetSharedCounter
	GciSetTraversalBufSwizzling
	GciSetVaryingSize
	GciShutdown
	GciSoftBreak
	GciStep
	GciStoreByte
	GciStoreBytes
	GciStoreBytesInstanceOf
	GciStoreChars
	GciStoreDynamicIv
	GciStoreIdxOop
	GciStoreIdxOops
	GciStoreNamedOop
	GciStoreNamedOops
	GciStoreOop
	GciStoreOops
	GciStorePaths
	GciStoreTrav
	GciStoreTravDo_
	GciStoreTravDoTrav_
	GciStoreTravDoTravRefs_
	GciStringToInteger
	GciStrKeyValueDictAt
	GciStrKeyValueDictAtObj
	GciStrKeyValueDictAtObjPut
	GciStrKeyValueDictAtPut
	GciSwapBytesUint
	GciSwapBytesUshort
	GciSymDictAt
	GciSymDictAtObj
	GciSymDictAtObjPut
	GciSymDictAtPut
	GciTrackedObjsFetchAllDirty
	GciTrackedObjsInit
	GciTraverseObjs
	GciUncompress
	GciUserActionInit
	GciUserActionShutdown
	GciVersion

	A Reserved OOPs
	B GemStone C Statistics Interface
	B.1 Developing a GCSI Application
	Required Header Files
	The GCSI Shared Library
	Compiling and Linking
	Connecting to the Shared Page Cache
	The Sample Program

	B.2 GCSI Data Types
	The Structure for Representing the GCSI Function Result

	GcsiAllStatsForMask
	GcsiAttachSharedCache
	GcsiAttachSharedCacheForStone
	GcsiDetachSharedCache
	GcsiFetchMaxProcessesInCache
	GcsiInit
	GcsiStatsForGemSessionId
	GcsiStatsForGemSessionWithName
	GcsiStatsForPgsvrSessionId
	GcsiStatsForProcessId
	GcsiStatsForShrPcMon
	GcsiStatsForStone
	GCSI Errors

