
GemStone®
GemStone/S 64 Bit™

X509-Secured GemStone
Adminstration Guide
S Y S T E M S

Version 3.5
June 2019

GemStone/S 64 Bit 3.5 X509-Secured GemStone Adminstration Guide
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems LLC
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.
This software is provided by GemTalk Systems LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2019 GemTalk Systems LLC. All rights reserved by
GemTalk Systems.

PATENTS
GemStone software is or has been covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture” (1998-
2018), Patent Number 6,360,219 “Object queues with concurrent updating” (1998-2018), Patent Number 6,567,905 “Generational
garbage collector with persistent object cache” (2001-2021), and Patent Number 6,681,226 “Selective pessimistic locking for a
concurrently updateable database” (2001-2021).

TRADEMARKS
GemTalk, GemStone, GemBuilder, GemConnect, and the GemTalk logo are trademarks of GemTalk Systems LLC, or of
VMware, Inc., previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Solaris, Java, and Oracle are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a registered
trademark of SPARC International, Inc.
Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, Windows, and Windows Server are registered trademarks of Microsoft Corporation in the United States and other
countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
Ubuntu is a registered trademark of Canonical Ltd., Inc., in the U.S. and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER6, POWER7, and POWER8 and VisualAge are trademarks or registered trademarks of International Business
Machines Corporation.
Apple, Mac, MacOS, and Macintosh are trademarks of Apple Inc., in the United States and other countries.
CINCOM, Cincom Smalltalk, and VisualWorks are trademarks or registered trademarks of Cincom Systems, Inc.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
GemTalk Systems LLC
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems

Preface
About This Documentation
This manual describes the features that support GemStone’s X509-Secured Environment.
It is intended for users who are familiar with administration of a GemStone/S 64 Bit™
environment, and provides the additional information needed to administer an X509-
Secured environment.

Refer to the System Administration Guide for GemStone/S 64 Bit for fundamental details on
administering a GemStone environment.

The X509 features is licenced in addition to the GemStone/S 64 Bit product, and requires a
keyfile that specifically enables the X509 features.

Technical Support

Support Website
gemtalksystems.com

GemTalk’s website provides a variety of resources to help you use GemTalk products:

 Documentation for the current and for previous released versions of all GemTalk
products, in PDF form.

 Product download for the current and selected recent versions of GemTalk software.

 Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

 Supplemental Documentation and TechTips, providing information and instructions
that are not in the regular documentation.

 Compatibility matrices, listing supported platforms for GemTalk product versions.

We recommend checking this site on a regular basis for the latest updates.
GemTalk Systems 3

https://gemtalksystems.com

GemStone/S 64 Bit 3.5 X509-Secured Adminstration
Help Requests
GemTalk Technical Support is limited to customers with current support contracts.
Requests for technical assistance may be submitted online (including by email), or by
telephone. We recommend you use telephone contact only for urgent requests that require
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: techsupport.gemtalksystems.com

Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702

Please include the following, in addition to a description of the issue:

 The versions of GemStone/S 64 Bit and of all related GemTalk products, and of any
other related products, such as client Smalltalk products, and the operating system and
version you are using.

 Exact error message received, if any, including log files and statmonitor data if
appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.

24x7 Emergency Technical Support
GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.

Training and Consulting
GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.
4 GemTalk Systems

http://techsupport.gemtalksystems.com

Table of Contents
Chapter 1. Introduction to X.509-based Security Features 9
1.1 Overview . 10

Chapter 2. X.509 Certificates 13
2.1 Utilities to create Certificates . 14

Certificate Utilities . 14
Limiting the period for which a certificate is valid 15
Limiting the IP addresses for Hosts and Users 15
Example certificate creation . 16

2.2 Examine and delete certificates . 17
Certificate directory structure . 17
Duplicates and Deleting certificates . 17

2.3 Certificate revocation list . 18

Chapter 3. Getting Connected 21
3.1 Setup and Login . 21

1. Configuring the Stone and the remote node . 21
2. Setup script and log directories . 22
3. Start certificate-only NetLDI on the Stone’s Node 23
4. Start certificate-only NetLDI on the Remote Node 23
5. Start the HostAgent on the Stone’s node. 24

Flow of Operations during HostAgent startup 25
6. Login . 26

Flow of Operations during Login. 27
Troubleshooting startup failures . 28

3.2 X509 logins from Topaz . 29
GemTalk Systems 5

GemStone/S 64 Bit 3.5 X509-Secured Adminstration
X509 login parameters . 29
topaz arguments to configure X509 parameters on command line 30

3.3 X509 logins using the GCI interface. . 31
3.4 X509 logins using GBS . 31
3.5 X509 logins using External Sessions . 32
3.6 Local Logins . 32

Chapter 4. Remote Cache Object Filtering 33
4.1 Overview . 33

Overview of Object level security . 33
Object Filtering . 34
Object Filtering support classes . 34

4.2 Details on Classes that implement Object Filtering . 35
IPv4Subnet . 35
ObjectFilteringPolicy . 36
ObjectFilteringPolicyMap . 37
UnauthorizedObjectStub . 38

4.3 ObjectFilter internal and usage details . 38
Changing the ObjectFilter . 39
Filtering and mid level caches . 39

Chapter 5. X509 Mid Level Cache 41
5.1 Overview . 41

X509-secured Mid-level caches . 41
5.2 Configuring and Starting the X509 Mid Level Cache 42

Starting the mid-level cache NetLDI . 42
Flow of Operations . 45

5.3 Connecting to a mid-level cache. . 46
Flow of Operations . 47
Example . 48
Reconnecting. . 49

Chapter 6. Administration 51
6.1 Managing HostAgents . 51

Information about HostAgents . 51
Stopping HostAgents . 52

6.2 Managing Caches . 53
Timeout of the secure remote cache . 53
Mid level caches require explicit stop . 53
Information on caches . 53
Warming caches on startup . 53
6 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration
Keeping mid-level caches warm . 54
6.3 Managing NetLDIs. 55

Stopping certificate-only NetLDIs . 55
Multiple NetLDIs . 55

6.4 Log Files. 55
Netldi default log file directory . 55
Gem logs. 55
HostAgent logs . 56
Other process log files . 56

6.5 Other Administration . 56
Requiring UserProfiles to use X509 Authentication 56
Disallowed Operations in a X509 session . 56

Appendix A. X509-related Utilities and Configurations 57
A.1 Configuration Parameters specific to X509-Secured GemStone 57

NetLDI configuration Parameters . 57
Configuration parameters used for x509 remote caches 58
Gem Configuration Parameters . 58
Other parameters with specific behavior in X509-secured processes 59

A.2 Utility details for X509 . 59
gslist . 59
starthostagent . 60
startnetldi . 60
stophostagent . 61
GemTalk Systems 7

GemStone/S 64 Bit 3.5 X509-Secured Adminstration
8 GemTalk Systems

Chapter

1 Introduction to X.509-
based Security Features
While GemStone/S 64 Bit has a number of security features, the GemStone server is
normally run within a secured environment that is not at risk for malicious attack. Starting
with v3.5, GemStone/S 64 Bit also includes support for highly secured remote logins, in
which each connection to a process on the Stone’s node is authenticated and the
communication is protected by X509 certificates.

The security features in X509-Secured GemStone allows user applications in the cloud, for
example, to login to a Stone on a secure node without any risk of compromising the Stone
or any sensitive data.

GemStone/S 64 Bit also includes support for generating X509 Certificates, including self-
signed Certificate Authority Certificates that allow the use of X509-Secure GemStone in a
test configuration. For security, applications should generate certificate-requests and
submit these to a external certificate authority. Correct security procedures must be
followed in order to create a secure application.

The X509-secured GemStone feature is separately licensed; you must have a keyfile with
appropriate permissions in order to use X509-secured logins.
GemTalk Systems 9

Overview GemStone/S 64 Bit 3.5 X509-Secured Adminstration
1.1 Overview
X509 logins and associated processes, such as X509-secured NetLDIs and X509-secured
remote shared page caches, use a different architectural model than ordinary GemStone
logins.

Figure 1.1 Overview of components in X509-Secure GemStone

���������	�

�������	
���
������

�������	�

��������	�

������
����
��	�

�������
���	�����
�������

���	�����

����������
�������

����

����������
��	���������

����� ����
!�	��������"����
#�"������������$��"����	�	�

�����������

�������	
���
%��&'(

 �"����������
���	
����

�������������
)�����"��������

�������	
���
%��&'(

 �"������������������
%��&'(�*���
�����������
���
"����

 �"������������������
%��&'(�*���
�����������
���
"����

�������	
���
#�"

 ��+�	�����

 ��+�	�����
��,
�����
�����&����

��&������	�����*���"
�
�+�
�-����	����)�	�����
�����	�����

��������.�
%��&'(���
��,
����
)��"�

���� ����

Both kinds of logins are supported to a single Stone. However, the supporting processes
such as the NetLDI and remote shared page cache are not shared between these two kinds
of logins, which places some restrictions on the topography for configurations that will use
both regular and X509-secured logins.

X509-Secured NetLDIs
To mediate the secure login, NetLDIs must be started in certificate-only mode on both
the remote Gem host and the Stone’s node, configured with the appropriate
certificates. X509-Secured NetLDIs only support X509-Secured login, and X509-
Secured logins require X509-Secured NetLDIs; you may run both X509-Secured and
regular NetLDIs on the same node.

New Host Agent process
Each remote node that will hold an X509-Secured process needs to have a Host Agent
running on the Stone’s node. An additional script, starthostagent, must be executed
on the Stone’s node after both NetLDI are started, and before logging in.
starthostagent executes for a single specific remote node, and requires the
appropriate certificates.
10 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Overview
Startup of the remote cache
The act of starting up a remote cache is initiated when the (starthostagent) script is
executed for that remote node.

When instructed by the newly started HostAgent, the remote shared page cache that
supports the secure login is started up by the remote NetLDI. The remote cache is
configured based on specific new arguments to startnetldi that were passed in when
the remote NetLDI was started.

Login Parameters
Both secured and ordinary logins can be done to the same Stone at the same time, but
they must use different NetLDIs. Secure logins are performed using new C calls that
require a different set of login parameters than ordinary logins. Specific set
commands in topaz, new GCI functions, and GemBuilder for Smalltalk parameter
editor and classes added in GBS v8.4 support X509-secured logins.

X509-Secured login only can be done for RPC logins. Linked logins do not use
certificates.

Connections initiated from Stone’s node
All interprocess connections are initiated from the Stone’s node. So, for example,
when an application logs in, it provides a listening socket to the HostAgent on the
Stone’s node, but the secure connection is initiated by the HostAgent.

This also means that if the X509-Secured remote cache times out and shuts down
(which occurs after a timeout, when no sessions are logged in and using that remote
cache), which shuts down the Host Agent on the Stone’s node, you must execute
starthostagent again on the Stone’s node before further X509-Secure logins are
possible on that remote node.

Mid-level caches must also be X509-Secured
If a remote node is to be used as a Mid-Level cache by X509-Secured Gems, it must
also be started in certificate-only mode with specific configuration values that give it
the ability to act as a mid-level cache.

Object Filters
Additional object-level security is provided in an X509-Secured GemStone, which
allows you to define object access security by IP address. This allows applications to
avoid the risk that sensitive data may be present in a remote cache.

There are no differences in the way the Stone is configured and started up, although some
configuration parameters (such as those managing the use of SSL) are not relevant for
X509-secured sessions.
GemTalk Systems 11

Overview GemStone/S 64 Bit 3.5 X509-Secured Adminstration
12 GemTalk Systems

Chapter

2 X.509 Certificates
For an X509 login, X.509 certificates are required for authentication for all interprocess
connections between any remote process and the Stone. These certificates are passed in as
arguments on the command line, or as login parameters.

Different kinds of certificates are required.

The Stone CA certificate, which acts as a trust anchor. This can be a self-signed
certificate or an certificate signed by an external certificate authority.

Host and User CA certificates, which are used to create chained certificates for the
Host and User certificates

Host certificates and private keys, which authenticate a remote node to allow remote
processes to authenticate with the Stone during startup. Host certificates are named,
but the name is optionally restricted to a specific host or set of hosts by an additional
CIDR-based address restriction.

User certificates and private keys, which are used to authenticate logins as specific
users. When performing an X509 login, the login parameters do not specify a
username; the user name is determined from the certificate. The certification also
controls the name of the Stone, so the login parameters also do not include the Stone
name.

A (CRLs) certificate revocation list. This allows certificates to be reliably revoked. For
more information on CRLs, see the section starting on page 18.

The GemStone distribution includes scripts that generate the required certificates.
Alternatively, you can create certificates using any tools you wish, provided that the
required information is included.

This chapter describes the process of creating certificates using the GemStone scripts.
GemTalk Systems 13

Utilities to create Certificates GemStone/S 64 Bit 3.5 X509-Secured Adminstration
2.1 Utilities to create Certificates
GemStone’s utilities to create certificates require OpenSSL, but otherwise do not require
GemStone or a running Stone. You may use the OpenSSL that is distributed with the
GemStone server, or your own OpenSSL installation.

Specific utilities include:
newstone
newstone_csr
newhostCA
newhost
newuserCA
newuser

Trust Anchor Certificate Authority
To create a self-signed stone CA, use the newstone script. If you want an external CA to
produce the CA, use the script newstone_csr, which generates a certificate signing
request (CSR) which can be used by the external CA to create the stone CA certificate.

While this externally generated stone CA certificate is not self-signed, it is accepted as a
trust anchor by GemStone logins, the same way a self-signed stone CA is used.

Either the newstone or the newstone_csr script must be run before the other scripts,
since all other scripts are specific to a particular Stone name (and require the -s argument
to specify that Stone name).

User and Host Certificates
Each Stone requires certificates for each user and each host, which are specific to that stone.

Before creating user or host certificates, you must generate user and host CA certificates,
using the scripts newuserCA and newhostCA. This allows separate control over
certificate validity for these different types of entities.

The newuser and newhost scripts then create a chained certificate that is used for
authentication.

Certificate Utilities
The GemStone scripts to create X509 certificates for the stone, hosts, and users, are located
in the directory $GEMSTONE/bin/x509. It is not required to use these scripts to create
certificates, provided the necessary information is included.

These scripts require the following environment variables to be set.

$GEMSTONE or $OPENSSL_PREFIX_DIR
This specifies where to find the OpenSSL executable. $GEMSTONE indicates to use
the OpenSSL executable in the GemStone distribution; $OPENSSL_PREFIX_DIR is
used to specify your own custom OpenSSL executables. If both variables are defined
then $OPENSSL_PREFIX_DIR is used.

$GEMSTONE_CERT_DIR
A writable directory that will be the root directory for the hierarchical directory
structure holding certificates and keys that are generated for all stones, users and
hosts.
14 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Utilities to create Certificates
There is an additional, optional environment variable $GEMSTONE_CERT_DEBUG. If
this is set, then debugging information is printed to stdout.

The certificate creation scripts include:

newstone -h | [-d daysValid] stoneName
create self-signed certificates for the stone with the given name.

newstone_csr -h | stoneName
create a certificate-signing-request for the stone with the given name.

newhostCA -h | [-d daysValid] -s stoneName
Create a CA certificate for the hosts associated with the Stone named stoneName. The
Stone’s certificates must already exist.

newhost -h | [-d daysValid] [-a addr_restriction] -s stoneName certName
Create certificates for the host or hosts described by hostName, specifically associated
with the Stone named stoneName. The Stone’s certificates must already exist and the
host CA certificate must already exist. By default, the certs named certName can be
used on any host to authenticate with stoneName; to restrict the host certs, you must
use the -a argument. The -a addr_restriction must be in CIDR notation and will limit
the IP address on which this certificate can be used to the specified range. If this
argument is omitted, there is no restriction (0.0.0.0/0).

newuserCA -h | [-d daysValid] -s stoneName
Create a CA certificate for the user userName, specifically associated with the Stone
named stoneName. The Stone’s certificates must already exist.

newuser -h | [-d daysValid] [-a addr_restriction] -s stoneName userName
Create certificates for the GemStone user userName, allowing login to a stone named
stoneName. The Stone’s certificates must already exist and the user CA certificate
must already exist. addr_restriction must be in CIDR notation and will limit the IP
address from which users can login (note that this limits the nodes for both the client
application and the Gem). If this argument is omitted, there is no restriction
(0.0.0.0/0).

The newstone script must be run before the other scripts. They can be run on any node,
they do not need to be run on the specific host.

If the certificates are created correctly, the command returns status code 0, and prints no
results. If an error occurs, the details are displayed.

Limiting the period for which a certificate is valid
Certificates generated by GemStone scripts are by default valid for 30 days. You can specify
the period of validity for certificates and CA certificates by using the -d argument to any of
the scripts. For a login to succeed, all chained certs and CA certs must be valid.

A day is a 24-hour period starting from the time the certificate is created. You may examine
the validity period of a pem file, along with other details, using:

unix> openssl x509 -in certfilename.pem -text

Limiting the IP addresses for Hosts and Users
You may also further control access by specifying the subnet for a certificate, so that only
nodes on that subnet may use that certificate. These authorizations are embedded in the
certificates, and are configured using an argument to the newhost and newuser scripts.
GemTalk Systems 15

Utilities to create Certificates GemStone/S 64 Bit 3.5 X509-Secured Adminstration
Address restrictions are specified using subnet masking with CIDR (Classless Inter-
Domain Routing) notation. This notation includes a final /N with the number of bits to
mask in the IP address. So for example, 0.0.0.0/0 indicates no restriction, 10.94.141.45/32
limits to a single IP address, and 10.94.141.0/24 limits to any host in the subnet 10.94.141.x.

Restricting nodes on which a host certificate can be used
By default, host certificates can be used to start an X509-secured NetLDI on any node. You
can restrict the certificates so that they are only valid for a single node or for a subnet of
nodes, using the -a argument to the newhost script. For example:

unix> $GEMSTONE/bin/x509/newhost -s gs64stone
-a "10.94.141.0/24" stn_host

The resulting certificate and private key can be used on any node that has an IP address
within the subnet 10.94.141.x.

Restricting nodes on which Gem or Application can run
Likewise, you can limit the nodes from which a particular user can login by creating the
user certificates using the newuser -a argument.

Note that the user certificate subnet limits the nodes for the application client, as well as
the Gem host node, if the application client and Gem host are different nodes.

When the user certificate is restricted to a limited address range, the login parameters may
still specify the NetLDI using localhost or other 127.x.x.x addresses (loopback addresses,
and therefore always the same host on both ends of the connection). The remote NetLDI
will not apply the subnet restriction to the loopback address, and will fork the Gem. The
remote Gem uses the same user certificate to authenticate with the HostAgent on the
Stone’s node, using the IP address of the node it is on, that is, the remote Gem’s node. As
long as the user certificate address restriction allows the IP address of the Gem’s node, this
connection will be allowed.

Example certificate creation
If you have a stone named gs64stone that will be running on the node named stn_host,
and will be starting the remote cache on another node named remote_host, the minimal
set of certificates to login as DataCurator can be created using the following:

unix> setenv GEMSTONE_CERT_DIR $GEMSTONE/data

unix> $GEMSTONE/bin/x509/newstone gs64stone
unix> $GEMSTONE/bin/x509/newhostCA -s gs64stone
unix> $GEMSTONE/bin/x509/newhost -s gs64stone stn_host
unix> $GEMSTONE/bin/x509/newhost -s gs64stone remote_host
unix> $GEMSTONE/bin/x509/newuserCA -s gs64stone
unix> $GEMSTONE/bin/x509/newuser -s gs64stone DataCurator

These operations create the certificates and private keys and empty CRL (certificate
revocation list) that are needed for both the remote NetLDI, the Stone’s NetLDI, and the
X509 login.
16 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Examine and delete certificates
2.2 Examine and delete certificates
A hierarchy of certificates and other supporting files is created within the directory
specified by $GEMSTONE_CERT_DIR. Once the certificates are generated by the scripts,
there is no specific meaning to location within the hierarchy, and you may move these files
elsewhere, or use them where they are via the full path within the hierarchy.

Certificate directory structure
The scripts create a directory structure under $GEMSTONE_CERT_DIR, holding the
various certificate files that are needed as well as other OpenSSL generated files. This
structure is:
$GEMSTONE_CERT_DIR

stones
aStoneName

stoneCA
stoneCA-aStoneName.cert.pem
stoneCA-aStoneName.privkey.pem
hostCA-userCA-combined-aStoneName.crl.pem
<other file/s>

hosts
aHostname

aHostname.chain.pem
aHostname.privkey.pem
<other file/s>

users
aUserName

aUserName.chain.pem
aUserName.privkey.pem
<other file/s>

You may copy the files from the given locations or use them in place, or rename them as
needed.

For clarity, the instructions recommend putting the files into a new directory and defining
another environment variable, to avoid long directory paths, and to make commands more
readable.

Duplicates and Deleting certificates
You may not create a certificate if a certificate for the given stone, host or user already
exists.

You can delete an existing certificate, or all certificates, manually from the directories. This
keeps the certificate directories less cluttered, but to ensure that a certificate was not copied
and cannot be used, you will need to revoke the certificate.

The following scripts are provided for convenience in reporting and removing
unnecessary certificate flies:

lsstone -h | stoneName
List the Stone names for which certificates have been created.

lshost -h | -s stoneName
List the host names for which certificates have been created for the given Stone.
GemTalk Systems 17

Certificate revocation list GemStone/S 64 Bit 3.5 X509-Secured Adminstration
lsuser -h | -s stoneName
List the user names for which certificates have been created for the given Stone.

rmstone -h | [-f] stoneName
Remove the certificates for the stone with the given name. This will prompt for
confirmation; use the -f option to force remove without confirmation.

rmhost -h | [-f] -s stoneName hostName
Remove the certificates for the host hostName associated with the given Stone. This
will prompt for confirmation; use the -f option to force remove without confirmation.

rmuser -h | [-f] -s stoneName userName
Remove the certificates for the user userName associated with the given Stone. This
will prompt for confirmation; use the -f option to force remove without confirmation.

2.3 Certificate revocation list
A CRL (Certificate revocation list) is a list of digital certificates that have been revoked by
the CA (certificate issuing certificate authority), and should no longer be trusted. CRLs are
PEM files and like certificates, multiple CRLs can be combined in a single CRL file.

Only leaf certificates (certificates for users and hosts) can be revoked.

A CRL is now required by startnetldi for an x509-secured NetLDI on the Stone’s node; this
may initially be an empty CRL. An empty CRL file contains no revoked certs, but is a PEM
file signed by the CA; this is necessary to ensure that the CRL is genuine.

The GemStone x509 certificate creation scripts now will automatically create an empty CRL
when the host and user CAs are created. These are automatically combined into a single
PEM file with the name

hostCA-userCA-combined-stoneName.crl.pem

When a host or user certificate is revoked, use the new scripts revokehost or revokeuser to
revoke the cert; you must then restart the NetLDI on the Stone’s node, passing in the
updated CRL file.

You will also need to manually stop the HostAgent supporting the revoked remote host,
and any logged in sessions for the revoked user.

scripts to revoke host and user
The following scripts have been added, to allow you to revoke a host or user certificate.

revokehost -h | -s stoneName hostName
revoke a host certificate.

revokeuser -h | -s stoneName userName
revoke a user certificate

Revoking a cert causes the cert and key to be moved into the revoked directory. There, a
new subdirectory is created with a the name of the host or user, and a timestamp in the
directory name.
18 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Certificate revocation list
For example:
unix> $GEMSTONE/bin/x509/revokehost -s gs64stone lark
[Info]: Certificate /certs/stones/gs64stone/hosts/lark/lark.ce
rt.pem has been revoked.
[Info]: Combined Certificate Revocation List (CRL) /certs/stone
s/gs64stone/stoneCA/hostCA-userCA-combined-gs64stone.crl.pem
has been updated.
[Info]: Please distribute the new CRL to all appropriate
locations.

After this, the directory /certs/stones/gs64stone/hosts/lark/ has been moved
to /certs/stones/gs64stone/hosts/revoked/lark.revokedOn.May-22-
2018-17-23-14/.

Applying updated CRL
Revoking a cert updates the file hostCA-userCA-combined-stoneName.crl.pem.

1. This updated CRL file should get copied into the directory in which your certs are
located, overwriting the existing one.

2. Stop the Stone’s NetLDI and restart it using the -L option, passing in the updated CRL.

3. You must stop and restart the HostAgent process for the revoked host, or all
HostAgents, by killing the process or using methods such as:

System stopHostAgents
System stopHostAgentSession:

Note that as of this alpha version, the HostAgents must be manually restarted using
the starthostagent script.

Login failures related to revoked certificates will be logged in the HostAgent log file.
GemTalk Systems 19

Certificate revocation list GemStone/S 64 Bit 3.5 X509-Secured Adminstration
20 GemTalk Systems

Chapter

3 Getting Connected
X509 logins require a number of steps to ensure the supporting processes are setup with
the appropriate certificates.

This chapter is organized to provide a summary of the instructions, followed by examples.
The examples describe a Stone named devstone running on a node named alcatraz, the
Stone’s node. The remote x509 Gem is running on fiji.
GemStone NetLDIs can be named, or accessed via port numbers. Named NetLDIs must be
setup in the hosts NIS for each node. For simplicity, the following examples use a port
number, 54321.

3.1 Setup and Login
The following instructions will help you setup the Stone and NetLDI and login an X509-
secure session.

It is assumed you have generated scripts has described in the previous chapter. You may
use certificates that were generated using GemStone scripts, or certificates generated in
other ways provided they are correctly composed.

1. Configuring the Stone and the remote node
To begin with, you should have a GemStone/S 64 Bit installation on both the Stone’s node
and on the remote cache node, and you should have setup and started a Stone process.

Before starting the process of setting up a X509 login, you might want to verify that your
system is configured so you can perform a remote, non-X509 login between the remote and
Stone’s node.

Since unsecured NetLDIs do not support X509 logins, and vice versa, you must either use
a different port to start the X509-secured NetLDI on the Stone and remote nodes, or shut
down the unsecured NetLDIs and restart using the process described in this chapter.
GemTalk Systems 21

Setup and Login GemStone/S 64 Bit 3.5 X509-Secured Adminstration
2. Setup script and log directories
X509 logins require a number of certificates to be available; some are needed on the Stone’s
node, some on the remote node, and some on both nodes.

While there are a number of ways to manage the certificates, the simplest is to create new
flat directories in which to place the required certificate files, and access these via an
environment variable. These examples use $MyStoneCertDir and $MyRemoteCertDir.

On the Stone’s Node
Create a directory on the Stone’s node, and define an environment variable, for example
$MyStoneCertDir, that points to the directory. Then copy the required certificate files to
that directory.

Using the example certificates created in the previous step, on the Stone’s node, you would
perform the following copy operations:

export MyStoneCertDir=dirName

cp $GEMSTONE_CERT_DIR/stones/devstone/stoneCA/stoneCA-
devstone.cert.pem $MyStoneCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/stoneCA/hostCA-userCA-
combined-devstone.crl.pem $MyStoneCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/hosts/alcatraz/alcatraz.chain
.pem $MyStoneCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/hosts/alcatraz/alcatraz.privk
ey.pem $MyStoneCertDir

On the Remote Node
Likewise, create a directory on the remote node, and define an environment variable there
to point to this directory, $MyRemoteCertDir. Copy the following files to that directory:

export MyRemoteCertDir=dirName

cp $GEMSTONE_CERT_DIR/stones/devstone/stoneCA/stoneCA-
devstone.cert.pem $MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/hosts/fiji/fiji.chain.pem
$MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/hosts/fiji/fiji.privkey.pem
$MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/users/DataCurator/DataCur
ator.chain.pem $MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/users/DataCurator/DataCur
ator.privkey.pem $MyRemoteCertDir
22 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Setup and Login
Setup log directories
There are a few differences in how X509 process handle child process log files.

With X509-secured NetLDIs, the startnetldi -D argument, which specifies a directory for
child process logs, is required. Since the -D argument overrides the default use of the home
directory, this means that gem log files do not get written to the home directory

To make log management easier, it is recommended to create log file directories for the
Stone’s node and the remote node, and direct all related logs to that directory.

These examples use the environment variables $remoteLogDir and $stoneLogDir to
refer to these directories.

For example:
fiji> mkdir $GEMSTONE/logs
fiji> export remoteLogDir=$GEMSTONE/logs

alcatraz> mkdir $GEMSTONE/logs
alcatraz> export stoneLogDir=$GEMSTONE/logs

3. Start certificate-only NetLDI on the Stone’s Node
The Stone must be running before you start the x509-secured NetLDI.

On the Stone’s node, you must start the NetLDI in certificate-only mode, using the
arguments -S -U -R -J and -L in addition to any other startnetldi arguments. The -D
argument is also required, to set the directory for log files. Do not use the -E argument.

For details on the startnetldi arguments, see “Utility details for X509” on page 59.

This NetLDI should be started as the same user as the one that started the Stone.

Example
This example specifies that the NetLDI’s log file and the log files created by child processes
should be written under $stoneLogDir.
 alcatraz> startnetldi -D $stoneLogDir -l $stoneLogDir/54321.log

-S -U $MyStoneCertDir/alcatraz.chain.pem
-R $MyStoneCertDir/alcatraz.privkey.pem
-J $MyStoneCertDir/stoneCA-devstone.cert.pem
-L $MyStoneCertDir/hostCA-userCA-combined-devstone.crl.pem 54321

4. Start certificate-only NetLDI on the Remote Node
With X509 logins, the certificate-only remote cache on a particular node must be started up
and running before it can be used by a Gem to login. This is unlike ordinary logins in which
the remote cache is only started up when a Gem logs in.

The NetLDI on the remote node has the responsibility of starting up the remote cache,
which it does on instructions by the starthostagent utility on the Stone’s node.

Define or select a configuration file
Since the NetLDI is starting the remote cache, not the Gem, you must include a
configuration file for the NetLDI, which includes the parameters used to configure the
GemTalk Systems 23

Setup and Login GemStone/S 64 Bit 3.5 X509-Secured Adminstration
remote cache. To use the default configuration parameter values, you may pass in an
empty file, or any configuration file.

The list of options used by remote caches is on page 58.

In addition to cache configuration, the NETLDI_PORT_RANGE is specific to remote x509-
secured NetLDIs. You may include a value for NETLDI_PORT_RANGE to specify the
upper and lower bounds (inclusive) of the sockets that the remote Gem will listen on for
connections initiated from its Host Agent on the Stone’s node.

For example,
NETLDI_PORT_RANGE = 50000, 50020;

Start the Remote NetLDI
For the remote certificate-only startnetldi, you must include the arguments -S -U -R -J
which allow you to pass in the required certificates, and the -D argument for the log file
location.

In addition, unlike with the startnetldi that is executed on the Stone’s node, you must also
pass in the remote configuration file using the -E argument.

For details on the startnetldi arguments, see “startnetldi” on page 60.

Example
 fiji> startnetldi -E remote.conf -S -D $remoteLogDir

-l $remoteLogDir/54321.log
-U $MyRemoteCertDir/fiji.chain.pem
-R $MyRemoteCertDir/fiji.privkey.pem
-J $MyRemoteCertDir/stoneCA-devstone.cert.pem 54321

5. Start the HostAgent on the Stone’s node
Once the remote and Stone’s NetLDI are running, you must execute the starthostagent
utility, on the Stone’s node, to complete the startup.

Executing starthostagent initiates a number of important tasks. It requests that the Stone’s
x509 NetLDI do the following:

The Stone’s NetLDI mutually authenticates with the remote x509 NetLDI;

The Host Agent on the Stone’s node starts up and log in;

The remote NetLDI starts the remote cache

The starthostagent utility requires a number of arguments to allow it to securely connect
the local and remote NetLDIs:

the name (or IP) of the remote node, using argument to -m.

the name (or port) that the remote NetLDI is listening on, using argument to -n.

the name (or port) that the Stone’s NetLDI is listening on, using argument to -N.

credentials to authenticate with the remote NetLDI, using -U -R -J
24 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Setup and Login
Example
Note that since in our examples the Stone and Remote NetLDIs are both using the same
port number, the -N stoneNetLDI and -n remoteNetLDI arguments are the same.
 alcatraz> starthostagent -m fiji -N 54321 -n 54321

-U $MyStoneCertDir/alcatraz.chain.pem
-R $MyStoneCertDir/alcatraz.privkey.pem
-J $MyStoneCertDir/stoneCA-devstone.cert.pem

Flow of Operations during HostAgent startup
The following diagram lists the internal steps that occur as a results of starthostagent.

Figure 3.1

���������	�

������
�������	�

��������	�

������
����
��	�

�������
���	�����
�������

���	�����

����������
�������

/

0001
00�

0002

����

000�

����������
��	���������

����������� ����

���� ����
+��������
�����

���"�+
	�	�
�����
�

���� ����
����	��
�������

3�����������%��&'(
*���������������
���
"����

0000

	������+�
%��&'(

����� ����
!�	��������"����
#�"������������$

0004

�������
��"���
	�	�

�����	������
+������������������
�
�����	����

5��"����	�	�
�����������

0006
�����	��������
	������!5$�������,
�����
�����������"����	�	�

	������+�
%��&'(

0007

3�������	
����
�������������
*���������������
���
"����

Remote Cache and NetLDI startup

In this diagram, the steps are as follows:

1. The user starts the remote NetLDI using appropriate flags including the certificate
flags. These arguments configure the NetLDI to start in certificate-only mode, listen on
a public port, and await connection.

2. The user invokes starthostagent with the appropriate arguments, specifying the node
and remote NetLDI to connect to, and the required certificate files. The starthostagent
process contacts the already-running cert-only NetLDI on the Stone's node.

3. The Stone’s NetLDI starts (forks) the HostAgent.

4. The HostAgent creates the session in the Stone (logs in) as the user HostAgentUser.
GemTalk Systems 25

Setup and Login GemStone/S 64 Bit 3.5 X509-Secured Adminstration
5. The HostAgent attaches the extents (similar to the way the pages servers for a remote
node attach the extents).

6. The HostAgent contacts the remote NetLDI on its public port, and performs mutual
authentication using host credentials, creating secure connection (A).

7. The HostAgent connects and authenticates with the remote NetLDI again, and
requests to fork a remote cache pageserver. The secure connection this creates, (B), is
for the remote cache page server.

8. The remote NetLDI forks the remote cache page server. The secure socket (B) from the
remote NetLDI to the HostAgent is inherited by the cache pageserver.

9. The cache page server starts associated processes to support the remote cache, as in
ordinary remote cache startup.

Secure connection (A) between the HostAgent and the remote NetLDI remains active for
use during logins.

6. Login
Logins can be done from topaz, GBS, GCI commands, and GemStone Smalltalk external
session classes. Only RPC logins can be done using the secure protocol.

The X509 login requires a set of parameters that are distinct from those used for ordinary
logins. The Stone name, GemStone user name and password, and host username and
password are not required and must not be set, and NetLDI details are not included in the
Gem’s NRS (e.g., gemnetid); the NetLDI (of the Gem host) is specified in the form
hostname:netldiName.

In topaz, there are commands to set these parameters. For example:
topaz > set cert $MyRemoteCertDir/DataCurator.chain.pem
topaz > set key $MyRemoteCertDir/DataCurator.privkey.pem
topaz > set cacert $MyRemoteCertDir/stoneCA-devstone.cert.pem
topaz > set netldi localhost:54321
topaz > login

Setting any of these X509 login parameters clears the login parameters used for ordinary
logins (gemstone, username, password, etc.). Likewise, setting any of the ordinary login
parameters unsets the X509 login parameters.

The Gem will run on the host specified by the set netldi command, which does not need to
be the same host as the topaz client. Rather than localhost, you may specify the host
name or IP of another host that is running a certificate-only NetLDI.

If there are no gems running on the remote cache, after the timeout specified by
STN_REMOTE_CACHE_TIMEOUT, the remote cache and HostAgent are shut down. You
must execute the starthostagent script again (Step 5., above) to restart the remote cache and
HostAgent.

Both ordinary and X509 logins are allowed to the stone, but ordinary logins cannot use the
certificate-only NetLDIs. The X509-secured remote shared page cache does not support
ordinary Gems, so ordinary logins cannot start a Gem on a node where a certificate-based
remote shared page cache exists.
26 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Setup and Login
Flow of Operations during Login
The following diagram shows the flow of operations when a remove X509 secured Gem
logs in.

Figure 3.2 Remote

���������	�

������
�������	�

��������	�

������
����
��	�

�������
���	�����
�������

���	�����

0002

����������
��	���������

0000 	������+�
%��&'(

�
&�����
	�"�+����

 ��+�	������
��,
�����

�����+����
%��&'(�
)��8�
#�" ����� �����

���������������
������)���
��"����#�"

0001	������+�
%��&'(

#�"

 ��+�	�����
#�(�+�.����

'

�0

����

/&�������
��,
�����

���

%��&'(�+������
��������%004

9���+����+������
+��������	�"�+���

�����	������+��������������%�
�����
�����	����

����� ����
�����
�����
�����
�����
�����
�����

6

�

7

(�)��"������ ����
�)�#�":��
+�������������

��"����	�	�
�����������

5

�4

 X509 Login

The X509 login process differs considerably from ordinary remote cache login, since the
NetLDI startup has already created the remote cache processes, and the socket connections
are initiated from the Stone’s node.

Secure connections (A) and (B) are established during the setup step in the previous
diagram.

1. The application (via GCI library code) requests an X509 login. The remote NetLDI
performs mutual authentication with the application, and establishes the secure
connection (C1).

2. The remote NetLDI listens on port N, selected from the range specified by
NETLDI_PORT_RANGE. The Gem will accept a connection on that port in step (5).

3. The remote NetLDI forks the Gem, which inherits connection (C), now (C2), and
listening port N.

4. The NetLDI informs the HostAgent via pre-existing persistent secure connection (A)
that there is a Gem awaiting login at port N.
GemTalk Systems 27

Setup and Login GemStone/S 64 Bit 3.5 X509-Secured Adminstration
5. The HostAgent contacts the Gem on listening port N, and the connection is mutually
authenticated; the Gem using user credentials and the HostAgent using host
credentials, establishing secure connection (D).

6. The HostAgent creates the session in the Stone (logs in), for the userId provided in the
user certificate. No GemStone password is used. The Gem does not maintain a
connection directly to the Stone.

7. The HostAgent starts a page server thread to service the remote Gem.

8. The HostAgent provides a final reply to the Gem (on the secure connection (D)),
indicating that the login is complete. The Gem returns from the login call, and the
application is logged in.

Troubleshooting startup failures
In most cases, details of login failures are not reported, for security reasons.

If you have trouble starting the Stone’s NetLDI, check the log file, and verify the
existence, location, and validity of the certificate files.

If you have trouble starting the Remote NetLDI, first check the remote NetLDI log
file. Note that some errors, such as not being able to find the -E configuration file, are
reported earlier in the log; be sure to read the entire log file, not merely the final
statements.

If the starthostagent script fails, verify that the Stone was started using a keyfile that
allows X509 logins.

Check the HostAgent log file on the Stone’s node, which may contain error reports. The
HostAgent log is located in the directory specified by -D argument to startnetldi, and
has the name hostagent-StoneName-RemoteNode-PIDStoneNodeName.log.

If the topaz login fails, check your parameters. The set netldi hostname must be the
name of the Gem’s node, not the Stone’s node. The error message will also let you
know if one or another of the required certs is missing.

Objects hidden by Object filtering
Default object filtering restricts the objects you can access in your remote session, and may
make your application objects inaccessible. See Chapter 4 for a full description of object
filtering.

An example script to allow objects to be transmitted to X509 remote caches is on page 35.
28 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration X509 logins from Topaz
3.2 X509 logins from Topaz

X509 login parameters
The login command now can be used with two distinct sets of parameters.

For classic logins, the parameters are unchanged.

For secure X509 logins, new and distinct parameters are required.

The required parameters for X509 certificate login (RPC only) are:

SET CERT: certfilepath
SET CACERT: cacertfilepath
SET KEY: privkeyfilepath
SET NETLDI: host:port

The following parameters are optional, but if used, apply only to X509 logins:
LOGFILE: gemlogfilepath
EXTRAGEMARGS: gemargs
DIRECTORY: dirname

The GemStone user name and the stone name are specified in the certificates, and are not
entered in topaz by the user, and the GemStone user’s password is not needed.

With X509 logins, NRS is not used in any of the parameters. To specify the directory and
log file name and any arguments to be passed to the gem, specific set commands are used.

If any of the X509 login parameters are set, the ordinary parameters are cleared, and the
login command will perform an X509 login; if any of the ordinary parameters are set, the
X509 parameters are cleared, and login performs a classic login.

The full set of new set commands are:

CACERT[:] cacertfilepath
Sets the path to the X509 certificate authority (CA) certificate to be used for login.
The certificate must be in PEM format.

CERT[:] certfilepath
Sets the path to the X509 certificate to be used for login. The certificate must be in
PEM format.

DIRECTORY[:] dirname
Set the name of the working directory for the RPC gem created by a certificate
login. Also specifies the directory in which the Gem log will be written; if not
specified, the log file is put into the directory provided in the startnetldi -D
argument.

EXTRAGEMARGS[:] gemargs
Sets a list of extra command line arguments to be used when starting an RPC gem
for a certificate login.

KEY[:] privkeyfilepath
Sets the path to the private key for the certificate specified by the SET CERT:
command. The key must be in PEM format and must not be protected by a
passphrase.
GemTalk Systems 29

X509 logins from Topaz GemStone/S 64 Bit 3.5 X509-Secured Adminstration
LOGFILE[:] gemlogfilepath
Set the name of the RPC gem's log file for certificate logins. If not specified, the
default log file name is used.

NETLDI[:] hostname:port
Sets the hostname and port number for the certificate-only NetLDI to be used for
X509 login. The format must include a the name or IP of the host, a colon, and the
port or NetLDI service name. For example,

topaz> set netldi fiji.gemtalksystems.com:54321

That this is the Gem host’s NetLDI. The Gem will be started on the specified node
fiji. You may use localhost to specify the Gem should be on the same node as the
topaz process.

While the user certificate may include an address restriction, using localhost
and other addresses 127.x.x.x (loopback addresses) are allowed, for running Gems
on the same node. The address restrictions are applied when the Gem
authenticates with the HostAgent.

The commands to set X509 parameters may be set in the .topazini file, or may be passed in
on the command line using -X -n.

topaz arguments to configure X509 parameters on command line
Rather than specifying the certificates using the set command, you may pass them in on the
command line using the topaz -X argument. The -X is only valid for RPC sessions, and
takes a string containing three semicolon-delimited paths. For example:

'stoneCA-devstone.cert.pem;DataCurator.chain.pem;DataCurato
r.privkey.pem'

The order is significant; the CA, cert, and private key must be in that order.

To set all the X509 login parameters required for login, you must also use the -n argument
to specify the NetLDI name and port.

For example:
topaz -X '$MyCertDir/stoneCA-devstone.cert.pem;$MyCertDir/DataC

urator.chain.pem;$MyCertDir/DataCurator.privkey.pem'
-n localhost:54321

Status command
The topaz status command includes a section with the parameter information:
X509 Login Certificate Information:
Certificate________ '$MyRemoteCertDir/DataCurator.chain.pem'
CaCertificate______ '$MyRemoteCertDir/stoneCA-devstone.cert.pem'
Key________________ '$MyRemoteCertDir/DataCurator.privkey.pem'
Netldi_____________ 'localhost:54321'
Directory__________ ''
LogFile____________ ''
ExtraGemArgs_______ ''
30 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration X509 logins using the GCI interface
3.3 X509 logins using the GCI interface
To perform X509 logins, use the GciX509Login function, which uses an instance of the
C++ class GciX509LoginArg to hold the login parameters.

(BoolType) GciX509Login(
GciX509LoginArg *args);

class CLS_EXPORT GciX509LoginArg
public:

const char *netldiHostOrIp;
const char *netldiNameOrPort;
const char *privateKey;
const char *cert;
const char *caCert;
const char *extraGemArgs;
const char *dirArg;
const char *logArg;
unsigned int loginFlags;
BoolType argsArePemStrings;
BoolType executedSessionInit; // output

If argsArePemStrings is true, the privateKey, cert, and caCert are strings in PEM
format. If false, these are strings containing the name of a file that is in PEM format.

3.4 X509 logins using GBS
GemBuilder for Smalltalk/VW v8.4 supports X509-Secured logins with a parameters class,
GbsX509SessionParameters. Instances of this class may be created programmatically, or by
using the GUI tools. Once instances are created and added to the set of available login
parameters, login and logout can be done as usual using the GBS Launcher.

When creating an instance of GbsX509SessionParameters using the GBS Launcher, a dialog
asks if the new parameters are for X509 login, and brings up the appropriate dialog.

To programmatically create a new instance of GbsX509SessionParameters, execute an
expression such as:

| params |
params := GbsX509SessionParameters new.
params
 caCert: 'stoneCA-devstone.cert.pem';
 cert: 'DataCurator.chain.pem';
 privateKey: 'DataCurator.privkey.pem';
 netldiHostOrIp: 'fiji';
 netldiNameOrPort: '54321'.
GBSM addParameters: params.

Once the parameters are created, they can be used in the GBS Launcher or
programmatically as ordinary parameters. For example, you can login using an expression
such as:

session := GBSM loginWithParameters: params.
GemTalk Systems 31

X509 logins using External Sessions GemStone/S 64 Bit 3.5 X509-Secured Adminstration
As with topaz, there are additional option arguments to allow you to configure the Gem
log and other arguments. The following are also may be set in an instance of
GbsX509SessionParameters. Currently, these can only be specified programmatically.

extraGemArgs:
dirArg:
logArg:

GemBuilder for Smalltalk/VA does not support X509-Secured logins.

3.5 X509 logins using External Sessions
The classes GsX509ExternalSession and GemStoneX509Parameters are variant of
GsExternalSession and GemStoneParameters, which allow you to specify X509 certificates
as login credentials rather than user id and password.

GsX509ExternalSessions are not supported on AIX.

For example:
topaz 1> run
| params session |
params := GemStoneX509Parameters

newFromPemFilesWithNetldiPort: '54321'
netldiHost: 'localhost'
certificate: 'DataCurator.chain.pem'

 caCertificate: 'stoneCA-devstone.cert.pem'
 privateKey: 'DataCurator.privkey.pem'.
session := GsX509ExternalSession newWithX509Parameters: params.
session login.
%

3.6 Local Logins
The preceding instructions describe how to login a remote session, that is, with the Gem
process on a different node than the Stone’s node; remote logins constitute the greater
security exposure.

X509-secured logins are also with the Gem on the Stone’s node. This configuration can
include a client that is also on the Stone’s note, or on a remote node.

For a user certificate to be used for GciX509Login where the Gem is on the Stone’s node,
any -a argument to the certificate creation script newuser must specify either 0.0.0.0/0 or
an address 127.0.x.x.

X509 logins with Gem on the Stone’s node are not allowed by SystemUser.
32 GemTalk Systems

Chapter

4 Remote Cache Object
Filtering
GemStone provides object-level security by associating specific objects with an
ObjectSecurityPolicy. By managing ObjectSecurityPolicies, you can prevent users from
reading or modifying protected objects.

However, this does not prevent all risk of data exposure on a remote node. GemStone’s
database pages may contain multiple objects, and when pages containing objects that are
allowed to be read by the user session are transmitted to a remote cache, objects that cannot
be read may still "ride along".

Object filtering in X509-secured environments provides specific control over exactly which
objects are allowed to be transmitted to any given remote cache.

4.1 Overview

Overview of Object level security
The previously existing object level security associated each object in the repository with
an instance of ObjectSecurityPolicy (known as Segments in older versions of GemStone),
or with nil, which means there are no restrictions. GemStone base defines ten system
ObjectSecurityPolicies, and users may define up to 64K application-specific policies.

ObjectSecurityPolicy permissions are based on the GemStone user ID. Sessions that are
logged in with a specific userId will be allowed to read or modify objects if the policy
associated with that object give that user read or write permission for the owner, group or
world.

Persistent objects in the extents and cache are on pages, and a page may contain multiple
unrelated objects. When an object is read, the entire page holding that object is loaded into
the shared page cache, and/or transmitted to the remote cache. When a Gem session
accesses an object, the policy for that object is checked against the Gem’s userId, before
allowing the object on the page to be faulted into the application’s object space.
GemTalk Systems 33

Overview GemStone/S 64 Bit 3.5 X509-Secured Adminstration
While this effectively prevents the user f rom accessing sensitive data, the sensitive data
may still be present in a remote shared page cache. Using Object Filtering, it is possible to
prevent sensitive data from being transmitted out of the Stone’s shared page cache at all.

Object Filtering
Object filtering adds another layer of protection for sensitive data. This is implemented by
associating GemStone’s existing object-level security mechanism, with IP address range-
based filtering policies. By configuring the IP address range to which each object may be
transmitted, you can control exactly where that data can be present.

Object filtering is performed by the HostAgent on the Stone’s node, and only applies
to X509-secured remote caches.

Filtering only applies to remote caches; there is (of necessity) no restriction on what is
loaded into the Stone’s shared page cache

Objects associated with the SecurityDataObjectSecurityPolicy may never be
transmitted to any host that is using x509 logins, regardless of any filtering
configuration.

If a Smalltalk application with a X509-secured Gem attempts to access an object that is not
allowed to be transmitted to the Gem’s host, then the application cannot read that object,
regardless of the object’s object security policy read and write permissions.

If that application attempts to access an object that is allowed to be transmitted, then the
object’s object security policy applies, which may allow that object to be read or not, just as
in previous GemStone versions.

Object Filtering support classes
The classes IPv4Subnet, ObjectFilteringPolicy, and ObjectFilteringPolicyMap allow object
filtering to be configured.

IPv4Subnet allows naming of CIDR address masks, to make management easier. (IPv6
networks are not currently supported with GemStone x509 logins).

An instance of ObjectFilteringPolicy maps every possible GsObjectSecurityPolicy to an
action of ALLOW or PROHIBIT. A single instance of ObjectFilteringPolicy specifies
filtering for every single object in the repository; but different remote caches may use
different instances of ObjectFilteringPolicy.

There is one ObjectFilteringPolicyMap installed, which maps every possible IP address to
an instance of ObjectFilteringPolicy, which is what would be used for a remote node on
that IP address.

The keys in the ObjectFilteringPolicyMap are instances of IPv4Subnet, which specify
ranges rather than specific IP addresses. This allows the application to define multiple
overlapping policies, including policies that apply to all IP address, one specific IP address,
or various ranges of IP address. When looking up the IP address for a specific remote cache,
the most specific IP address range that contains that IP address is used.

The global instance of ObjectFilteringPolicyMap is installed in the image by DataCurator,
using the method

ObjectFilteringPolicyMap >> installObjectFilter

The map is stored under the key named #ObjectFilter in the HostAgentUser’s
UserGlobals.
34 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Details on Classes that implement Object Filtering
Note that a new instance of ObjectFilteringPolicyMap, including the instance in new or
newly upgraded repositories, has a default action of DISALLOW and may not be very
usable; users with object security problems may not be able to login at all. Applications are
expected to execute code to install an appropriately configured instance of
ObjectFilteringPolicyMap. This default avoids inadvertent exposures at the cost of extra
effort on the initial setup.

You can define and install a filter that allows all objects to be sent to remote caches on any
of your organization’s internal network nodes (with IP addresses 10.*.*.*), by logging in as
DataCurator and executing code such as this:

topaz 1> run
| snet pol |
snet := IPv4Subnet named: 'internal_ips' forSubnet: '10.0.0.0/8'.
pol := ObjectFilteringPolicy new

name: 'policy_allow_internal'; allowByDefault;
yourself.

(ObjectFilteringPolicyMap new)
atSubnet: snet putPolicy: pol;
installObjectFilter.

System commit.
%

The newly added filtering classes and objects are themselves in a new
GsObjectSecurityPolicy, HostAgentDataSecurityPolicy. This security policy is mapped to
PROHIBIT, since they are never needed outside of the Stone’s node.

4.2 Details on Classes that implement Object Filtering
Object filtering is implemented using several classes that allow you to specify the
particular filtering requirements, and map these to one or more GsObjectSecurityPolicies.

IPv4Subnet
An IPv4Subnet allows subnets to be associated with names. This avoids the need to
remember IP specific address ranges in a large network, and reduces the risk of errors.

Public class messages:

IPv4Subnet class >> named: nameString forSubnet: cidrString
This is the public instance creation message. The nameString argument can be any
string. The cidrString must be a string specifying a valid CIDR subnet.

IPv4Subnet >> name
Answers the receiver’s name string.

IPv4Subnet >> cidrString
Answers the receiver’s CIDR string.
GemTalk Systems 35

Details on Classes that implement Object Filtering GemStone/S 64 Bit 3.5 X509-Secured Adminstration
ObjectFilteringPolicy
An instance of ObjectFilteringPolicy maps all possible GsObjectSecurityPolicies to a
filtering action of ALLOW or PROHIBIT.

When a particular ObjectFilteringPolicy is in use for a remote cache, an object’s
GsObjectSecurityPolicy will map to either ALLOW or PROHIBIT, which will determine if
that particular object will be transmitted to that remote cache.

Creation
ObjectFilteringPolicies are created using ObjectFilteringPolicy class >>
new. A newly-created ObjectFilteringPolicy maps all GsObjectSecurityPolicies to an
action of PROHIBIT (with some exceptions).

Each ObjectFilteringPolicy has a name, by default nil. It is recommended to give each
ObjectFilteringPolicy a unique name to make them easier to manage and validate.

name: aString
Sets the name of the policy.

name
Answers the name of the policy, or nil if no name has been set.

Specifying mappings
An ObjectFilteringPolicy has two collections of GsObjectSecurityPolicies: one
collection whose action should be ALLOW and another whose action should be
PROHIBIT. There is a default action of ALLOW or PROHIBIT which applies to any
GsObjectSecurityPolicy that has not specifically been added to either collection.

The following methods are used to define the mappings:

allowByDefault
Sets the default action of the receiver to ALLOW.

prohibitByDefault
Sets the default action of the receiver to PROHIBIT.

allow: aGsObjectSecurityPolicy
Adds the given security policy to the ALLOW collection, and removes it from the
PROHIBIT collection (if there).

prohibit: aGsObjectSecurityPolicy
Adds the given security policy to the PROHIBIT collection, and removes it from
the ALLOW collection (if there).

allowAll: aCollection
Add every security policy in aCollection to the ALLOW collection, and remove
from the PROHIBIT collection if present.

prohibitAll: aCollection
Add every security policy in aCollection to the PROHIBIT collection, and remove
from the ALLOW collection if present.
36 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Details on Classes that implement Object Filtering
ObjectFilteringPolicyMap
An ObjectFilteringPolicyMap maps every possible IPv4 address to an
ObjectFilteringPolicy that should be used for a host at that IPv4 address.

The ObjectFilteringPolicyMap keys are subnet masks (instance of IPv4Subnet), rather than
specific IPv4 addresses. There may be more than one mapping that applies to a specific
address, if the keys have different mask integers.

At runtime, when the map is queried for the ObjectFilteringPolicy to be used for a specific
IP address, it returns the most selective entry, which is the entry with the largest mask
integer that includes the argument.

For example, a ObjectFilteringPolicyMap may includes entries for the following subnets:
0.0.0.0/0 -> anObjectFilterPolicy1

10.0.0.0/8 -> anObjectFilterPolicy2

10.12.0.0/16 -> anObjectFilterPolicy3

10.12.241.0/24 -> anObjectFilterPolicy4

10.12.241.67/32 -> anObjectFilterPolicy5

In this case, querying for the IP address 10.12.241.67 would return
anObjectFilterPolicy5, and for the IP address 10.12.112.17 would return
anObjectFilterPolicy3.

Each instance of ObjectFilteringPolicyMap always contains a mapping for subnet 0.0.0.0/0
(which is the CIDR subnet containing the entire IPv4 address space). This mapping will
normally be overridden, but ensures that any well-formed IPv4 address has a mapping.

Specifying and looking up policies within a map
ObjectFilteringPolicyMap >> atSubnet: anIPv4Subnet putPolicy:

anObjectFilteringPolicy
Add a mapping for the given subnet, or replace the mapping for the subnet if the
receiver already has a mapping for that subnet.

ObjectFilteringPolicyMap >> policiesForSubnet: anIPv4Subnet
Answer a collection of Associations. Each association’s key is an IPv4Subnet, and
its value is an ObjectFilteringPolicy. The result will include mappings for all the
policies in effect for all addresses in the subnet anIPv4Subnet.

This will always include the mapping for 0.0.0.0/0, and may include multiple
mappings that apply to some or all of the addresses described by anIPv4Subnet. If
there was no policy specified for the given anIPv4Subnet, then there will be no
mapping with that key; only the mappings that cover that particular range are
returned.

ObjectFilteringPolicyMap >> policyForIP: ipAddrString
Answers the policy for the given IP address string, which must be a valid dotted-
quad string. The policy answered will be the policy defined for the smallest
mapped subnet which contains the given IP address, that is, the one with the
largest mask integer. Any well-formed IPv4 address string will always map to a
policy, since the mapping for 0.0.0.0/0 covers all possible addresses.
GemTalk Systems 37

ObjectFilter internal and usage details GemStone/S 64 Bit 3.5 X509-Secured Adminstration
Note that there is no API for removing mappings. It is recommended to maintain Smalltalk
scripts to build and rebuild the map as security properties are updated. Reviewing
Smalltalk code is less error-prone than making ad-hoc adjustments to a complex data
structure.

Installing and finding out about the defined map/ObjectFilter
The following methods allow you to set and fetch the information about the current
instance of ObjectFilteringPolicyMap. Note that these names are subject to change in later
alpha versions.

ObjectFilteringPolicyMap >> mappingReport
Answers a string detailing the policies for all subnets.

ObjectFilteringPolicyMap >> installObjectFilter
Install the receiver into HostAgentUser’s UserGlobals at: #ObjectFilter. Once
committed, this will be the filter for newly started HostAgents.

Note that this does NOT affect existing HostAgents. You must restart the
HostAgent on the Stone’s node in order for the new filter map to be in effect.

ObjectFilteringPolicyMap class >> installedObjectFilter
Return the currently installed instance of ObjectFilteringPolicyMap, from
HostAgentUser’s UserGlobals at: #ObjectFilter.

UnauthorizedObjectStub
When the HostAgent filters objects from the results sent to the remote node, an instance of
UnauthorizedObjectStub represent objects for which an object fault would signal a
SecurityError for no read authorization.

This instance is in the data page, and will only be visible to a Gem on that node if the Gem
attempts to access the object. If the UnauthorizedObjectStub is replacing an object on a
page that happens to be "riding along" with data that a user does have authorization to see,
the presence of the UnauthorizedObjectStub will be unnoticeable to the user.

4.3 ObjectFilter internal and usage details
GemStone may have a maximum of 65536 (64K) GsObjectSecurityPolicies, which allows a
ObjectFilteringPolicy to be converted into a 8192-byte ByteArray, which has 64K bits. Each
bit represents a possible GsObjectSecurityPolicy. It is likely most of them will not be in use,
and be set according to the default action for the ObjectFilteringPolicy. Each bit is either 0
to allow objects with the associated security policy to be transmitted, or 1 to disallow
transmission.

When a HostAgent is started up for a specific remote node, it looks up that node’s IP
address in the installed ObjectFilter. This returns the object filtering policy that applies for
the remote node.

The filter is converted into a ByteArray, which is passed to the page server thread in the
HostAgent that serves that remote node. As processes on the remote node request pages,
each object on the page is examined, and for any objects that are disallowed for
transmission, it will replace an UnauthorizedObjectStub for that object on that portion of
the page.
38 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration ObjectFilter internal and usage details
Changing the ObjectFilter
Changes to ObjectFilter during the lifetime of a HostAgent have no effect, since the
ObjectFilter map is only consulted at HostAgent startup. After an ObjectFilter is
reinstalled, all existing HostAgents will continue to use the old policies, but any newly-
created HostAgents will use the new policies.

To update the policy for a remote node, shut down all Gems and the shared page cache on
the remote node machine, then stop the HostAgent’s session. The next restart of the NetLDI
on the remote node, or new login using the existing NetLDI, will restart the cache and
HostAgent, which will use the new ObjectFilter.

Filtering and mid level caches
When a mid level cache is used, there can be two transmissions of objects:
from the stone host to the mid level cache host
from the mid level cache host to the leaf cache host.

To prevent inconsistencies between the contents of pages in the mid level cache and pages
in the leaf caches it serves, ObjectFilteringPolicy for the mid level cache host must be equal
to the ObjectFilteringPolicy of each of its leaf caches. This restriction is enforced by
HostAgents on the Stone’s node.

When a Gem on a leaf cache attempts to connect to a mid-level cache, and the
ObjectFilteringPolicy for the Gem’s leaf cache does not match the ObjectFilteringPolicy for
the mid-level cache node, the Stone’s HostAgent will reject the request.

Since the mid level cache and all of the leaf cache hosts it serves have equivalent
ObjectFilteringPolicies, mid level cache hosts do not need to perform filtering when
sending pages to leaf hosts. The Mid-level cache HostAgent does not do any filtering.
GemTalk Systems 39

ObjectFilter internal and usage details GemStone/S 64 Bit 3.5 X509-Secured Adminstration
40 GemTalk Systems

Chapter

5 X509 Mid Level Cache
This chapter describes how to setup and login using an X509-secured mid level cache
(MLC).

5.1 Overview
In a distributed system over a Wide Area Network (WAN), with many remote nodes that
are topographically distant from the Stone but close to each other, a mid-level cache can
improve performance for the remote sessions.

This configuration involves not at least three nodes, which of which will contain a shared
page cache:

the Stone's node, which contains the Stone’s SPC

the mid level cache node, containing the mid-level cache. Gems may run on the mid-
level cache node in which case the mid-level cache acts as the Gem's cache.

the leaf node where the Gem is running; the Gem's client application and be on the
leaf node or on yet another node. This node contains the remote cache; it is remote
from the Stone, but local to the Gem, so the term "leaf" is used to avoid confusion.

When the Gem needs a page but can't find it in its leaf cache, it first looks in the mid-level
cache. If the page is not in found in the mid-level cache, it then forwards the request to the
page server on the Stone’s host.

X509-secured Mid-level caches
You may configure your system to use an X509-secured mid-level cache on a node that will
service X509-secured Gems on other leaf nodes.

As with ordinary remote caches, x509-secured mid-level caches are not compatible with
non-secured mid-level caches, remote caches, NetLDIs, or Gems.
GemTalk Systems 41

Configuring and Starting the X509 Mid Level Cache GemStone/S 64 Bit 3.5 X509-Secured Adminstration
X509-secured mid level caches, like secured remote caches, require the NetLDI be started
up and the full authentication initiated from the Stone’s node, before a Gem can connect
and start using the mid-level cache.

The following are additional differences from X509-secured remote caches:

An X509-secured NetLDI must be started on the mid-level cache node, before the
connection from the Gem is initiated. This must be started with a configuration file
including NETLDI_START_MIDCACHE, which specifically allows this Netldi to
start a mid-level cache.

During startup of the MLC cache, the MLC node’s NetLDI starts a HostAgent process
on the mid-level cache node; this is distinct from the HostAgent on the Stone’s node.
To allow login as HostAgentUser, the HostAgentUser’s certificates and private key
must be configured. This extra HostAgent allows this cache to operate as a mid-level
cache.

The extra MLC HostAgent is counted as a session and will prevent the mid-level
cache from automatically timing out and shutting down the way ordinary remote
caches do.

5.2 Configuring and Starting the X509 Mid Level Cache
The following instructions provide the steps to startup, then connect to, a mid-level cache
node.

The examples use the name brisbane for the mid-level cache node name, and as with the
examples in Chapter 3, the Stone named devstone running on a node named alcatraz, and
a remote x509 Gem is running on fiji. The NetLDI is accessed via the port number 54321.

Starting the mid-level cache NetLDI

1. Create Certificates and configure on mid-cache host

Create certificates
A HostAgent is started on the mid-level cache node, which logs into the Stone as
HostAgentUser. This requires cert files for the HostAgentUser on the mid-level cache
node.

The mid-level cache node also requires Host certificates.

For example:
unix> $GEMSTONE/bin/x509/newuser -s devstone HostAgentUser

unix> $GEMSTONE/bin/x509/newhost -s devstone brisbane

Copy to a conveniently accessible location
For convenience, you may create a new flat directory in which to place the required
certificate files, and access it via an environment variable. These examples use
$MyRemoteCertDir.

export MyRemoteCertDir=dirName
42 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Configuring and Starting the X509 Mid Level Cache
cp $GEMSTONE_CERT_DIR/stones/devstone/stoneCA/stoneCA-
devstone.cert.pem $MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/hosts/brisbane/brisbane.chai
n.pem $MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/hosts/brisbane/brisbane.priv
key.pem $MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/users/HostAgentUser/HostA
gentUser.chain.pem $MyRemoteCertDir

cp $GEMSTONE_CERT_DIR/stones/devstone/users/HostAgentUser/HostA
gentUser.privkey.pem $MyRemoteCertDir

Set up log directories
To make it easier to locate the log files and diagnose connection issues, it is recommended
to create a log file directory, and direct all related logs to that directory.

These examples use the environment variables $remoteLogDir to refer to these
directories

For example:
brisbane> mkdir $GEMSTONE/logs
brisbane> export remoteLogDir=$GEMSTONE/logs

2. Start the mid-level cache’s NetLDI
As with leaf X509 NetLDIs, the mid-level cache NetLDI has the responsibility of starting
up the remote cache, which it does on instructions by the starthostagent utility on the
Stone’s node.

Define a configuration file
One of the arguments to a X509-secured remote cache is a configuration file, which
includes the parameters used to configure the remote cache, and for mid-level caches, there
are additional configuration parameters required.

NETLDI_START_MIDCACHE = true ;
NETLDI_HostAgentUser_cert = pathForHostAgentUserCert ;
NETLDI_HostAgentUser_key = pathForHostAgentUserPrivateKey ;

You may also optionally include NETLDI_PORT_RANGE and other remote cache
configuration options in this configuration file. Supported options are listed on page 58.

Start the Mid-Cache NetLDI
The Stone must be running before you start the x509-secured mid-cache NetLDI.

For the mid-cache certificate-only NetLDI, you must include the arguments -S -U -R -J
which allow you to pass in the required certificates, and the required -D argument to set
the directory for log files.

In addition, you must also pass in the remote configuration file using the -E argument,
which must include the configuration parameter settings NETLDI_START_MIDCACHE
(set to true), NETLDI_HostAgentUser_cert and NETLDI_HostAgentUser_key.

For details on the startnetldi arguments, see “Utility details for X509” on page 59.
GemTalk Systems 43

Configuring and Starting the X509 Mid Level Cache GemStone/S 64 Bit 3.5 X509-Secured Adminstration
Example
To start a mid-level cache on node brisbane, the configuration file midcache.conf could
contain:

NETLDI_START_MIDCACHE = true;
NETLDI_HostAgentUser_cert =

$MyRemoteCertDir/HostAgentUser.chain.pem;
NETLDI_HostAgentUser_key =

$MyRemoteCertDir/HostAgentUser.privkey.pem;

and the following would start the NetLDI on the mid-level cache node:
brisbane> startnetldi -E midcache.conf -S -D $remoteLogDir

-U $MyRemoteCertDir/brisbane.chain.pem
-R $MyRemoteCertDir/brisbane.privkey.pem
-J $MyRemoteCertDir/stoneCA-devstone.cert.pem 54321

3. Start the two HostAgents from the Stone’s node
When starthostagent is executed on the Stone’s node, and the -m argument node is
running a mid-cache enabled X509-secured NetLDI, then connections are initiated that
setup the argument node to use for a mid-level cache.

As with regular x509-secured remote nodes, a HostAgent is started on the Stone’s node to
service that remote node, and the remote NetLDI is instructed to start a remote shared
cache on its node.

In addition, the mid-cache NetLDI starts a HostAgent on the mid-level cache node. This
remote HostAgent allows this node to act as a mid-level cache.

Internal Details
The MLC NetLDI starts the MLC HostAgent by initiating a topaz -r session, and executing
the .ini file $GEMSTONE/sys/midhostagenttopaz.ini.

The Gem session logs in securely as HostAgentUser, using the CA cert passed in to
startnetldi with the -J argument and the HostAgentUser’s certificate and private key as
configured in the -E configuration file.

Once a secure login is established, the topaz session executes code to become the
HostAgent.

Log files
The topaz and gem logs will be located in the directory specified by the -D argument to
startnetldi, with names:

midcacheHostagentGemPIDnodeName.log
midcacheHostagentTopazPIDnodeName.log

Example
alcatraz> starthostagent -m brisbane -N 54321 -n 54321

-U $MyStoneCertDir/alcatraz.chain.pem
-R $MyStoneCertDir/alcatraz.privkey.pem
-J $MyStoneCertDir/stoneCA-devstone.cert.pem
44 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Configuring and Starting the X509 Mid Level Cache
Flow of Operations
The following diagrams shows the order of operations in the startup of a mid-level cache.

Figure 5.1

��	���������������	�

������
����
��	�

��������	�

������
����
��	�

�������
���	�����
�������

���	�����

0001

����

	������+�
%��&'(

�������
����
 ����

����
 �����
+������

���������"���
	�	�

3�����������%��&'(
*���������������
���
"����

0000

����� ����
!�	��������"������"�

�����������$

�
7

0006

)��8�
����;

0�

�

����;���

)��8�
����
 ����
#�"

��,
����
����
+����

��"����	�	�
�����������

!�����������"����
	�	�����	�����$

0004

3�������	
����
�������������
*���������������
���
"����

00000

04

(�)��"���)�
���� ����:��
+�������������

0002
000�

�����	������+�������������
�����
�����	����

/ �����	������
+������������������
�
�����	����

�����	���������
��,
��������������
��"����	�	�

5

(�)��"�
������
�
�����
������&�

�4

�0

����� ����
!�	��������"������"�

�����������$

	������+�
%��&'(

��
01

02

Mid-Level Cache startup

In this diagram, the steps are as follows:

1. The user starts the remote NetLDI using appropriate flags including the certificate
flags, and the -E configuration file with NETLDI_START_MIDCACHE = true. These
arguments configure the NetLDI to start in certificate-only mode, listen on a public
port, and await connection.

2. The user invokes starthostagent with the appropriate arguments, specifying the node
and mid-level NetLDI to connect to, and the required certificate files. The
starthostagent process contacts the already-running cert-only NetLDI on the Stone's
node.

3. The Stone’s NetLDI starts (forks) the HostAgent.

4. As is done for any X509 remote cache, the HostAgent logs in.
GemTalk Systems 45

Connecting to a mid-level cache GemStone/S 64 Bit 3.5 X509-Secured Adminstration
5. The HostAgent contacts the mid-level NetLDI on its public port, and performs mutual
authentication using host credentials, creating secure connection (A).

6. The HostAgent connects and authenticates with the mid-level NetLDI again, and
requests to fork a remote cache pageserver. The secure connection creates (B), which
will be inherited by the remote cache page server.

7. As for any remote X509 cache, the mid-level NetLDI forks the remote cache pageserver
based the -E configuration values, and starts the associated processes.

8. The remote NetLDI spawns a topaz process that will be used to start the Mid Level
Cache HostAgent, passing along the location of the cert files for the login in step (9),
which are in the NetLDI’s -E configuration file and its -J CA cert.

9. topaz requests the X509 secured login as HostAgentUser, using the supplied certs. This
authentication creates secure connection (C), which will remain active, since topaz is
the GCI client for the HostAgent.

10. The remote NetLDI selects and listens on a port N, which will be used by the mid-level
HostAgent to accept a connection from the Stone’s HostAgent, in step (12). The NetLDI
spawns the MLC HostAgent Gem on the mid-level cache node.

11. The remote NetLDI informs the HostAgent on the Stone’s node of listening port N for
the HostAgent Gem, via secure connection (A).

12. The Stone’s HostAgent contacts the MLC HostAgent on listening port N and
authenticates, establishing secure connection (E). Note that (D) is skipped, to make the
following mid-level cache connection diagram clearer.

13. The MLC HostAgent, via secure connection (E), requests the Stone’s HostAgent to
update the Stone, indicating it is running as a mid-level cache node.

14. The Stone’s HostAgent passes the information to the Stone.

NetLDI, cache, and HostAgent startup are complete, and a Gem can now connect to the
mid-level cache on this node.

5.3 Connecting to a mid-level cache
Connecting a Gem to a mid-level cache is operationally much like connecting an ordinary
session to an ordinary mid-level cache.

The Gem must perform an x509-secured login. After successful login, the Gem session
connects to a mid-level cache using:

System class >> midLevelCacheConnect:

You may use the same mid level cache connect methods that were used in previous
versions to make connections between an ordinary gem and an ordinary mid-level cache.
These methods include keywords with arguments for configure the mid-cache; these
arguments are ignored when connecting an X509-secured Gem to an x509-secured mid
level cache.

You may execute:
System class >> midLevelCachesReport

To see that the cache type x509mid is present.
46 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Connecting to a mid-level cache
Flow of Operations
The following diagrams shows the order of operations when a Gem connects to a mid-level
cache.

Figure 5.2

������
����
��	���"����	�	�

�����������
!�����������"����
	�	�����	�����$

�������	�

��������	�

������
����
��	�

�������
���	�����
�������

���	�����

#�"���,
�����
"���+���+�	�	�<�
������&������ �����
����

0

 ��+�	�����
#�(�+�.����

��	���������������	�

������
����
��	�

��"����	�	�
�����������

!�����������"����
	�	�����	�����$

0004

	����	������
+�������������

�����
�����
�����
�����
�����
�����

����� ����
��"������"������
)����&������

����

�����
�����
�����
�����
�����
�����

����� ����
��"������"������
)���+��)�����

�����
�����
�����
�����
�����
�����

����� ����
�
��������

"���+���+�	�	�

'

9

�

0002

0001���� ����
������������

"��&���+��	������	�=

6 �������������	����	�

#

� ��)��"��)�
���� ������
+�������������

#�"

/
��������
���� ������
+�������������

Connecting Leaf Gem to Mid-level cache

When an X509 mid-level cache connection is requested, the mid-level cache and associated
processes must already have been started, so it is a matter of starting a thread on the mid-
level cache to act as a pageserver, and connecting it securely to the Gem and the Gem’s
HostAgent pgsvr thread.

This diagram is simplified to avoid details that are shown in previous diagrams. The (D)
and (E) secure connections are existing secured connections setup during the initial login
GemTalk Systems 47

Connecting to a mid-level cache GemStone/S 64 Bit 3.5 X509-Secured Adminstration
of the remote X509 Gem (Figure 3.2) and during the startup of the Mid Level cache
(Figure 5.1).

1. The application calls System midLevelCacheConnect:, specifying the mid-level
cache node.

2. Via secure connection (D), the Gem requests the mid-level cache connection. The
Stone’s HostAgent knows that there is a mid-level cache on that node, and returns the
listening port for that MLC HostAgent to the Gem.

3. The Gem contacts the MLC HostAgent on the listening port returned by the Stone in
Step (2). The Gem presents the certificates and private key used for the X509 login that
started that Gem to the MLC HostAgent, to establish secure connection (F).

4. The MLC HostAgent starts a pgsvr thread for the Gem.

5. The MLC HostAgent passes the listening port for the mid-cache pgsvr thread to the
Gem.

6. The Gem passes the listening port for the mid-cache pgsvr thread to the HostAgent on
the Stone.

7. The HostAgent on the Stone’s node contacts the mid-cache pgsvr thread in the MLC
HostAgent, and they authenticate, establishing secure connection (G). This connection
is between the MLC’s HostAgent pgsvr thread and the pgsvr thread for that session in
the HostAgent on the Stone’s node.

The mid level cache is now connected and used by the Gem for page accesses.

You can verify that a session is using a mid-level cache by sending
System >> midLevelCacheAddress

Which returns the IP address of a mid-level cache that this session is connected to, or nil if
this session is not using a mid-level cache.

Example
In this example, the topaz application is running on remote leaf node fiji, logging into the
Stone on alcatraz. After login, it connects to the mid-level cache on brisbane.

fiji> topaz
<startup>
topaz > set cert $MyRemoteCertDir/DataCurator.chain.pem
topaz > set key $MyRemoteCertDir/DataCurator.privkey.pem
topaz > set cacert $MyRemoteCertDir/stoneCA-devstone.cert.pem
topaz > set netldi localhost:54321
topaz > login
<login details>
topaz 1 > run
System midLevelCacheConnect: 'brisbane'
%
true
topaz 1> run
System midLevelCacheAddress
%
10.94.162.81
48 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Connecting to a mid-level cache
Reconnecting
When there are multiple mid-level caches connected to the Stone, you can disconnect from
one mid-level cache and reconnect to a different one in a single operation, using the
method:

System class >> midLevelCacheReconnect: hostName
This is similar to midLevelCacheConnect:, but if the current session is connected to a
mid-level cache, it will be disconnected before it tries to connect to the new mid-level cache.
GemTalk Systems 49

Connecting to a mid-level cache GemStone/S 64 Bit 3.5 X509-Secured Adminstration
50 GemTalk Systems

Chapter

6 Administration
This chapter contains additional information that may be useful in managing an X509-
Secure GemStone system.

Administering an X509-Secure GemStone system includes additional responsibilities over
a regular GemStone environment. The significant tasks are covered in the earlier chapters
of this document. You should also be familiar with the basic administration tasks, such as
garbage collection, backups, and so on, as described in System Administration Guide.

Topics in this chapter include:

 Managing HostAgents (page 51) – Getting information about HostAgents and
stopping HostAgents.

 Managing Caches (page 53) – Remote cache timeout, getting details about remote
caches, and warming remote caches.

 Managing NetLDIs (page 55) – Additional information on managing NetLDIs in
an X509-Secured configuration.

 Log Files (page 55) – The location and names of log files in X509-Secured
GemStone.

 Other Administration (page 56)– Other useful information related to
administration in X509-Secure Gemstone configurations.

6.1 Managing HostAgents

Information about HostAgents
HostAgents are included in the gslist report on the Stone’s or mid-cache node, when the
gslist -H flag is used. gslist on the Stone’s node reports lines of the form:

exists 3.5.0 gsadmin Feb 26 16:24 hostagent hostagent-
gs64stone-10.95.143.15

Where the IP is the IP of the remote node that is being serviced by this HostAgent.
GemTalk Systems 51

Managing HostAgents GemStone/S 64 Bit 3.5 X509-Secured Adminstration
From Smalltalk, System class >> hostAgentSessions reports the sessions IDs of
running HostAgents.

System class >> descriptionOfSession: for a HostAgent session ID reports
'hostagent' in slot #17, and its listening port in slot #24. The other slots provide the usual
details for the HostAgent session.

To find out if the current session is using a HostAgent (and therefor is X509-secured), use

System class >> sessionIsUsingHostagent

To get a report of all HostAgent sessions, use System >> hostAgentSessionsReport.
This produces a report with lines containing Host Agent session details, for example:

session 5 hostagent servicing: 10.94.141.15 gemPid:
9848 listeningPort: 46627

Stopping HostAgents

Stopping from the command line
The stophostagent utility will stop a HostAgent process. The command line arguments are
the same as the ones used by starthostagent, except -n is not used.

For example,
alcatraz> stophostagent -m fiji -N 54321

-U $MyStoneCertDir/alcatraz.chain.pem
-R $MyStoneCertDir/alcatraz.privkey.pem
-J $MyStoneCertDir/stoneCA-gs64stone.cert.pem

Stopping from within the image
System class >> stopUserSessions will stop secure gem sessions, but does not stop
the HostAgent session itself.

HostAgents can be stopped using the following methods. The stopHostAgent* methods
attempt a graceful shutdown, and return an error if unable to complete. The
killhostAgent* methods terminate the HostAgent with a fatal error.

System class >> stopHostAgents

System class >> stopHostAgentSession: sessionId

System class >> stopHostAgentForHost: hostNameOrIp

System class >> killHostAgents

System class >> killHostAgentSession: sessionId
Stopping a HostAgent also stops all x509 sessions using that HostAgent.

Restarting after stopping host agent
When the HostAgent has been shut down, either by timeout or manually, you must run
startnetldi on the remote host, then execute starthostagent on the Stone’s node, to
reestablish the connection and allow logins to complete.
52 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Managing Caches
6.2 Managing Caches

Timeout of the secure remote cache
With regular GemStone, remote caches can be automatically started or 0restarted when a
remote Gem logs in; but with X509-Secured GemStone, since connections are initiated from
the Stone’s host, the remote cache must be explicitly started (or restarted, if it has timed out
and shut down), by executing utilities on the Stone’s node.

If there are no Gems on the remote node, the remote shared page cache will shut down
according to the STN_REMOTE_CACHE_TIMEOUT configuration (by default, 5
minutes).

This also causes the HostAgent on the stone’s node to shut down.

When the HostAgent has been shut down, either by timeout or manually, you must restart
the NetLDI on the remote host, then execute starthostagent on the Stone’s node, to
reestablish the connection and allow logins to complete.

Mid level caches require explicit stop
Because a mid-level HostAgent is running on the remote node, mid-level remote caches do
not timeout. You must manually stop a mid-level cache when you are done with it.

When a mid level cache is connected, stopstone will report that users are logged in; either
stop the mid level cache remote hostagents, or use stopstone -i.

Information on caches
The results of the methods:

System class >> midLevelCachesReport

System class >> remoteCachesReport

include cache types 'x509mid' and 'x509remote', in addition to the existing types 'mid' and
'remote'.

Warming caches on startup
You can configure cache warming on a remote X509-secured cache (leaf cache) or X509-
secured mid-level cache by setting a configuration parameter in the configuration file
passed with the -E argument to startnetldi.

The configuration parameter NETLDI_WARMER_ARGS can be set to a String, which
provide the arguments that control out the cache will be warmed. Cache warming will be
done by the page server or host agent on the newly started cache.
GemTalk Systems 53

Managing Caches GemStone/S 64 Bit 3.5 X509-Secured Adminstration
If the argument string is empty, no warming is done; otherwise the argument string may
contain the following options:

-d include data pages. If not included, only warm object table pages.

-M midCacheHostName
Include this argument if you wish to warm the newly started cache from an
already running mid level cache.

If -M specifies a host on which a mid-level cache is running (that is associated with
the same Stone), the newly started mid-level cache will be warmed with the pages
from the other mid-level cache.

If no -M argument is provided, or if the specified host resolves to localhost or the
mid level cache is not found, then pages will be pulled from the stone cache to
warm the newly started mid-level cache. Pages pulled from the Stone are based on
the current view as of the login of the warmer session.

-n int
the integer number of threads. These must be in the range 1..20 for warming a mid-
level cache and in the range 1..2 for warming a leaf cache. This further limits the
value for SHR_PUSH_TO_MIDCACHES_THREADS.

For example,
NETLDI_WARMER_ARGS = '-d -M adelaide -i4';

When the remote cache is a mid-level cache (NETLDI_START_MIDCACHE=true),
multiple pusher threads are started in either the mid cache host agent for the source of the
pages, or in the HostAgent on stone host, and those threads scan the source cache pushing
pages to the newly started mid cache.

When the remote cache is a leaf cache (that is, it is not a mid-level cache, so
NETLDI_START_MIDCACHE=false), the number of threads is limited to 2, since a
warmer session on an x509 leaf cache has only a single threaded connection to a mid or
stone cache.

You must specify the NETLDI_HostAgentUser_cert and NETLDI_HostAgentUser_key
configuration parameters when using cache warming.

Keeping mid-level caches warm
As changes are committed by X509-secured sessions, you can configure your system to
have these changes pushed to mid-level caches, ensuring that the mid-level caches contain
the latest used pages.

This feature is limited to X509-secured mid level caches and commits performed by X509-
secured sessions; changes made, for example, by administrative sessions running in linked
mode on the Stone’s node will not get pushed to mid-level caches.

To enable, set the configuration parameter SHR_PUSH_TO_MIDCACHES_THREADS to
the number of threads to use. This is normally set in the range 2-5, depending on the
network bandwidth between the Stone and mid-level cache hosts.

For example
SHR_PUSH_TO_MIDCACHES_THREADS = 3;
54 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Managing NetLDIs
6.3 Managing NetLDIs

Stopping certificate-only NetLDIs
Shutting down the certificate-only NetLDI on the Stone’s node does not disrupt existing
HostAgents for remote caches.

If the certificate-only NetLDI on a remote node is shut down, the associated HostAgent and
all x509 sessions using that HostAgent will be shut down.

You must restart the NetLDI on the remote host, then execute starthostagent on the Stone’s
node, to restart the cache on the remote node.

Multiple NetLDIs
For a given Stone and host, you may have only one certificate-only NetLDI, and each Stone
on a given host must have its own separate certificate-only NetLDI.

This differs from ordinary NetLDIs, for which you may have multiple NetLDIs per Stone,
or one ordinary NetLDI that services multiple Stones.

You may start one or more ordinary NetLDIs in addition to one certificate-only NetLDI on
a host, although this may compromise the security of Stone access.

6.4 Log Files
Processes that support X509-secured GemStone write log files with additional connection
information. These can be useful to detect problems in a multi-node system. It is
recommended that all log files are written to a single log directory.

Netldi default log file directory
X509-secured NetLDIs require the -D argument to startnetldi, specifying the default log
file directory. This simplifies management of log files in a distributed system.

The -D argument is required both for the Stone’s and the remote NetLDIs, and is used for
system log files, as well as in composing Gem log file names and locations. It is not used
for the NetLDI log itself; this is specified using the -l argument.

The -D directory for the Stone’s NetLDI is used for HostAgent log files.

The -D directory for the remote NetLDI is used for the remote cache process log files,
and is the default directory for the log files for Gems on that node. It also is the
working directory for Gems on that node.

Gem logs
X509-secured Gem logs are not written in the user’s home directory.

The Gem created by an X509 login is located by default in the directory supplied to the
startnetldi -D argument, and has the default log file name gemPIDnodename.log.

The X509 login parameters include a field directory (Unlike regular GemStone
parameters, X509 parameters do not include the Gem NRS, but instead have specific fields
for supported features). This directory field overrides the -D setting in startnetldi.
GemTalk Systems 55

Other Administration GemStone/S 64 Bit 3.5 X509-Secured Adminstration
If this directory field is set to a value that includes a %D, the startnetldi -D argument
replaces the %D to compose the log and working directory.

HostAgent logs
The HostAgent log is located in the directory specified by -D argument to startnetldi on
the Stone’s node (or on the mid-cache node, for mid-cache HostAgents), and has the name:

hostagent-StoneName-RemoteNodeName-PIDStoneNodeName.log

Other process log files
The other processes associated with the X509-secured remote cache also have different
default log file names than those for ordinary remote caches, and are located in the
directory specified by the startnetldi -D option.

pgsvrmainPIDnodeName.log

remoteCacheName_PIDpgsvrff_nodeName.log

remoteCacheName_PIDpcmon_nodeName.log

These log files are not deleted on logout.

6.5 Other Administration

Requiring UserProfiles to use X509 Authentication
You may specify that individual UserProfiles may only authenticate using X509 logins.
Configuring UserProfiles in this way means that no other means of authentication is
allowed, ensuring that all accesses are always certificate-based and secure.

System accounts may not be configured in this way.

Note that since X509 does not support linked sessions, users configured with this
authentication will not be able to log in a linked.

The following methods set and report the status of this authentication scheme.
UserProfile >> enableX509Authentication

UserProfile >> authenticationSchemeIsX509

The following method has also been added
UserProfile >> x509loginStatus

This method creates a new UserProfile that can only log in using X509 authentication.
UserProfile class >> newX509WithUserId:

Disallowed Operations in a X509 session
Some operations may not be run in an X509 sessions. This includes operations such as
markForCollection, objectAudit, fullBackupTo:, and similar operations. These
operations will return an error including the phrase. "not allowed when gem is remote with
an X509 login".

To run a multi-threaded scan operation in a secure environment, login linked on the
Stone’s node.
56 GemTalk Systems

Chapter

A X509-related Utilities
and Configurations
A.1 Configuration Parameters specific to X509-Secured
GemStone

This section includes configuration parameters that are specific to X509-Secured
GemStone. Refer to the System Administration Guide for information on additional
configuration parameters that apply to all GemStone systems.

NetLDI configuration Parameters
The following configuration parameters only apply to X509 NetLDIs. They are used in a
configuration file passed into the startnetldi -E argument.

NETLDI_PORT_RANGE
Specifies the range of port numbers, which will be used for listening sockets for remote
X509 Gems during login. The two elements must be in the port range 1..65535, and the
second element must be greater than the first.

For example:
NETLDI_PORT_RANGE = 50000, 50020;

If this is not set, or set with the pair of values 10000,65535, random ports in the range used
by ephemeral ports will be used. On Linux the ephemeral port range is in
/proc/sys/net/ipv4/ip_local_port_range.

NETLDI_START_MIDCACHE
This should be set to true only when starting an X509 secured mid-level cache node.

When set to true, the startnetldi processing, after starting the shared cache on the mid-
cache node, then starts a HostAgent process on the mid-cache node, which will log into the
Stone’s HostAgent.
GemTalk Systems 57

Configuration Parameters specific to X509-Secured GemStone GemStone/S 64 Bit 3.5 X509-Secured
NETLDI_HostAgentUser_cert
Required when starting an X509 secured mid-level cache node, or when doing cache
warming. The path and name of the cert file for HostAgentUser,
HostAgentUser.chain.pem.

NETLDI_HostAgentUser_key
Required when starting an X509 secured mid-level cache node, or when doing cache
warming. The path and name of the private key file for HostAgentUser,
HostAgentUser.privkey.pem.

NETLDI_WARMER_ARGS
Enables warming a remote X509 leaf or mid-level cache, either from the Stone’s cache or
from another mid-level cache. For details, see the description on page 53.

SHR_PUSH_TO_MIDCACHES_THREADS
Enables pushing of pages committed by X509-secured Gems to a mid-level cache. Specified
as the number of threads to do the pushing. The allowed range is 0..20. This is normally set
in the range 2-5, depending on the network bandwidth between the Stone and mid-level
cache hosts. For details, see the description on page 54.

Configuration parameters used for x509 remote caches
In addition to the x509-specific configuration parameters listed above, the following
configuration parameters, if set in the configuration file provided with the startnetldi -E
argument, are used to configure how the remote cache is started:

GEM_STATMONITOR_ARGS
GEM_STATMONITOR_MID_CACHE_ARGS
SHR_NUM_FREE_FRAME_SERVERS
SHR_PAGE_CACHE_LARGE_MEMORY_PAGE_POLICY
SHR_PAGE_CACHE_LARGE_MEMORY_PAGE_SIZE_MB
SHR_PAGE_CACHE_LOCKED
SHR_PAGE_CACHE_NUM_PROCS
SHR_PAGE_CACHE_NUM_SHARED_COUNTERS
SHR_PAGE_CACHE_PERMISSIONS
SHR_PAGE_CACHE_SIZE
SHR_PUSH_TO_MIDCACHES_THREADS
SHR_SPIN_LOCK_COUNT
SHR_TARGET_FREE_FRAME_COUNT
SHR_WELL_KNOWN_PORT_NUMBER

Gem Configuration Parameters
GemRemoteCommit
If TRUE, a gem on a remote gem will execute the critical region of commit in the session's
thread in the pgsvr or HostAgent on stone host. This avoids latency and decreases network
traffic between the Stone and Gem hosts. Can only be enabled, and is the default, if gem
and stone host have same byte order.

Runtime name: #GemRemoteCommit
Default: true (for remote X509 Gem on a host with the same byte order as stone host.
58 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Utility details for X509
Other parameters with specific behavior in X509-secured processes
GEM_PGSVR_COMPRESS_PAGE_TRANSFERS is always true, regardless of the
configuration parameter setting, for X509-secured Gems.

GEM_PGSVR_USE_SSL is always true for X509-secured sessions.

When a remote cache is started by a X509-secured NetLDI, the default computation for
SHR_PAGE_CACHE_NUM_PROCS on Linux is half of the smaller of the maximum open
files or the maximum size of a semaphore array. On other platforms the default is 256.

A.2 Utility details for X509
This section includes additional features of utilities that are specific to X509-Secured
GemStone. Refer to the System Administration Guide for information on these utilities, and
other utilities that are required to manage a GemStone installation.

gslist
gslist (without -v) reporting on processes the local machine uses only the lock file. Since it
does not need to connect to any NetLDI, it treats X509-secured processes no differently
than regular GemStone processes.

On the local machine, gslist -v option attempts to connect to a process to verify status. For
X509-secured processes, gslist -v reports "OK" if gslist gets a response indicating that an
SSL handshake is requested. It does not complete the handshake, and does not require
credentials.

gslist for remote nodes
When using gslist -m to request the status of processes on a different node, gslist must
have credentials that allow it to connect to the NetLDI on the other node. The following
arguments are required to gslist:

-J Specify an X.509 CA certificate file.
-R Specify a private key file.
-U Specify an X.509 certificate file.

For example, on the host remote_host, to query for the GemStone processes running on
the Stone’s node stn_host, with the certificate-only NetLDI at port 54321:

unix> gslist -m stn_host -v -N 54321
-U $MyCertDir/remote_host.chain.pem
-R $MyCertDir/remote_host.privkey.pem
-J $MyCertDir/stoneCA-gs64stone.cert.pem

HostAgent information
HostAgents are included in the gslist report on the Stone’s or mid-cache node only when
the -H option is used. This avoids an excessive amount of information if there a very large
number of HostAgents for remote nodes.

When the -H option to gslist is included, gslist on the Stone’s node includes lines of the
form:
GemTalk Systems 59

Utility details for X509 GemStone/S 64 Bit 3.5 X509-Secured Adminstration
exists 3.5.0 gsadmin Feb 26 12:24 hostagent hostagent-
gs64stone-10.95.143.15

Mid-level cache HostAgents are:

exists 3.5.0 gsadmin Feb 26 16:49 hostagent hostagent-
gs64stone-midcache-remote_host

gslist -x reports detailed information on the HostAgent only if the -H flag is also included.

starthostagent
Once the Stone and the remote NetLDI are started, you execute starthostagent on the
Stone’s node. This initiate the steps to authenticate with the remote node, start the
HostAgent, and start the remote shared page cache.

starthostagent requires the following arguments:
-J CACertFilePath

Specifies a certificate authority certificate (CA) in PEM format.
-m remoteNodeNameOrIP

The name or IP address of the remote node for which the HostAgent is to be
started. A startnetldi -E must have been executed on that remote node.

-N stoneNetLDInameOrPort
The name or port of the NetLDI running on the Stone’s node (the node this script
is executing on).

-n remoteNetLDInameOrPort
The name or port of the NetLDI on the remote node remoteNodeNameOrIP. This
must have been started using the startnetldi -E (along with other appropriate
arguments).

-R privateKeyFilePath
Specifies the host private key chain certificate (for the host named
remoteNodeNameOrIP), in PEM format.

-U publicKeyFilePath
Specifies host public key chain certificate (for the host named
remoteNodeNameOrIP) in PEM format.

Note that there is no argument to pass in the name of the Stone; the Stone name is
determined from the certificate file CACertFilePath, which is passed in with the -J
argument.

starthostagent also accepts -h to print help information, and -V to print version
information.

startnetldi
The X509-secure NetLDI process has a number of different behaviors and requirements
than an ordinary NetLDI. X509-secured NetLDIs only work with X509 remote caches and
Gems, and do not support ordinary caches and Gems, and vice versa.

The X509-secured NetLDI on the Stone’s node and the one on the remote node have quite
different responsibilities; the Stone’s NetLDI is responsible for starting the HostAgents for
remote nodes, and the remote NetLDI is responsible for starting the remote cache and
remote Gems.

To start a Netldi using startnetldi, use the -S argument to specify an X509-Secured Netldi,
and include the arguments that provide the X509 credentials.
60 GemTalk Systems

GemStone/S 64 Bit 3.5 X509-Secured Adminstration Utility details for X509
Using startnetldi with the -S argument also requires that you include the -D argument,
which provides the default log directory for the processes started during X509 logins.

The following are the startnetldi arguments that specifically support certificate-only mode:

-E configFileName
For use in secure certificate-only mode for a remote NetLDI, not for the Stone’s
NetLDI. This enables startup of a remote shared page cache or a mid-level cache
on this node.

The specified configuration file includes parameters that define settings for the
shared page cache. For mid-level caches, it includes parameters for the mid-level
cache.

-J path
Specifies a certificate authority certificate (CA) in PEM format to use. Requires -S.

-L path
Specifies a certificate revocation list (CRL) file in PEM format.Used on the Stone’s
NetLDI, not with remote NetLDIs. Requires -S.

-R path
Specifies the host private key in PEM format to use. Requires -S.

-S
start NetLDI in secure certificate mode; must include -D, -J, -R, and -U, and on the
remote node, also -E.

-U path
Specifies the host X.509 certificate in PEM format to use. Requires -S.

startnetldi has a number of other command line options, which are required, such as the
-D argument to specify log file locations. Refer to the System Administration Guide for
details, or see startnetldi -h output.

stophostagent
Stopping a HostAgent requires the same arguments as starting a HostAgent, except the -n
is not used. The arguments are:

-J CACertFilePath
Specifies a certificate authority certificate (CA) in PEM format.

-m remoteNodeNameOrIP
The name or IP address of the remote node that the HostAgent is servicing.

-N stoneNetLDInameOrPort
The name or port of the NetLDI running on the Stone’s node (the node this script
is executing on).

-R privateKeyFilePath
Specifies the host private key chain certificate (for the host named
remoteNodeNameOrIP), in PEM format.

-U publicKeyFilePath
Specifies host public key chain certificate (for the host named
remoteNodeNameOrIP) in PEM format.

stophostagent also accepts -h to print help information, and -V to print version
information.
GemTalk Systems 61

	1 Introduction to X.509- based Security Features
	1.1 Overview

	2 X.509 Certificates
	2.1 Utilities to create Certificates
	Certificate Utilities
	Limiting the period for which a certificate is valid
	Limiting the IP addresses for Hosts and Users
	Restricting nodes on which a host certificate can be used
	Restricting nodes on which Gem or Application can run

	Example certificate creation

	2.2 Examine and delete certificates
	Certificate directory structure
	Duplicates and Deleting certificates

	2.3 Certificate revocation list
	scripts to revoke host and user
	Applying updated CRL

	3 Getting Connected
	3.1 Setup and Login
	1. Configuring the Stone and the remote node
	2. Setup script and log directories
	On the Stone’s Node
	On the Remote Node
	Setup log directories

	3. Start certificate-only NetLDI on the Stone’s Node
	Example

	4. Start certificate-only NetLDI on the Remote Node
	Define or select a configuration file
	Start the Remote NetLDI
	Example

	5. Start the HostAgent on the Stone’s node
	Example

	Flow of Operations during HostAgent startup
	6. Login
	Flow of Operations during Login
	Troubleshooting startup failures
	Objects hidden by Object filtering

	3.2 X509 logins from Topaz
	X509 login parameters
	topaz arguments to configure X509 parameters on command line
	Status command

	3.3 X509 logins using the GCI interface
	3.4 X509 logins using GBS
	3.5 X509 logins using External Sessions
	3.6 Local Logins

	4 Remote Cache Object Filtering
	4.1 Overview
	Overview of Object level security
	Object Filtering
	Object Filtering support classes

	4.2 Details on Classes that implement Object Filtering
	IPv4Subnet
	ObjectFilteringPolicy
	Creation
	Specifying mappings

	ObjectFilteringPolicyMap
	Specifying and looking up policies within a map
	Installing and finding out about the defined map/ObjectFilter

	UnauthorizedObjectStub

	4.3 ObjectFilter internal and usage details
	Changing the ObjectFilter
	Filtering and mid level caches

	5 X509 Mid Level Cache
	5.1 Overview
	X509-secured Mid-level caches

	5.2 Configuring and Starting the X509 Mid Level Cache
	Starting the mid-level cache NetLDI
	1. Create Certificates and configure on mid-cache host
	2. Start the mid-level cache’s NetLDI
	3. Start the two HostAgents from the Stone’s node

	Flow of Operations

	5.3 Connecting to a mid-level cache
	Flow of Operations
	Example
	Reconnecting

	6 Administration
	6.1 Managing HostAgents
	Information about HostAgents
	Stopping HostAgents
	Stopping from the command line
	Stopping from within the image
	Restarting after stopping host agent

	6.2 Managing Caches
	Timeout of the secure remote cache
	Mid level caches require explicit stop
	Information on caches
	Warming caches on startup
	Keeping mid-level caches warm

	6.3 Managing NetLDIs
	Stopping certificate-only NetLDIs
	Multiple NetLDIs

	6.4 Log Files
	Netldi default log file directory
	Gem logs
	HostAgent logs
	Other process log files

	6.5 Other Administration
	Requiring UserProfiles to use X509 Authentication
	Disallowed Operations in a X509 session

	A X509-related Utilities and Configurations
	A.1 Configuration Parameters specific to X509-Secured GemStone
	NetLDI configuration Parameters
	Configuration parameters used for x509 remote caches
	Gem Configuration Parameters
	Other parameters with specific behavior in X509-secured processes

	A.2 Utility details for X509
	gslist
	gslist for remote nodes
	HostAgent information

	starthostagent
	startnetldi
	stophostagent

