
GemStone®
GemStone/S 64 Bit™

Programming Guide
S Y S T E M S

Version 3.6
November 2020

GemStone/S 64 Bit 3.6 Programming Guide
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems LLC
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.
This software is provided by GemTalk Systems LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2020 GemTalk Systems LLC. All rights reserved by
GemTalk Systems.

PATENTS
GemStone software is or has been covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture” (1998-
2018), Patent Number 6,360,219 “Object queues with concurrent updating” (1998-2018), Patent Number 6,567,905 “Generational
garbage collector with persistent object cache” (2001-2021), and Patent Number 6,681,226 “Selective pessimistic locking for a
concurrently updateable database” (2001-2021).

TRADEMARKS
GemTalk, GemStone, GemBuilder, GemConnect, and the GemTalk logo are trademarks of GemTalk Systems LLC, or of
VMware, Inc., previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Solaris, Java, and Oracle are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a registered
trademark of SPARC International, Inc.
Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, Windows, and Windows Server are registered trademarks of Microsoft Corporation in the United States and other
countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
Ubuntu is a registered trademark of Canonical Ltd., Inc., in the U.S. and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER6, POWER7, and POWER8 and VisualAge are trademarks or registered trademarks of International Business
Machines Corporation.
Apple, Mac, MacOS, and Macintosh are trademarks of Apple Inc., in the United States and other countries.
CINCOM, Cincom Smalltalk, and VisualWorks are trademarks or registered trademarks of Cincom Systems, Inc.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
GemTalk Systems LLC
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems

Preface
About This Documentation
This manual describes the GemStone Smalltalk language and programming environment
provided by the GemStone/S 64 Bit™ product, and how to use many of the features
available in GemStone Smalltalk.

This manual is intended for users that are at least somewhat familiar with the Smalltalk
programming language and with its programming environment. Appendix A includes an
overview of the Smalltalk language syntax.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit and
GemStone/S, and the GemStone family of products; the GemStone Smalltalk
programming language; and may also be used to refer to the company, now GemTalk
Systems, previously GemStone Systems, Inc. and a division of VMware, Inc.

Typographical Conventions
This document uses the following typographical conventions:

 Smalltalk methods, GemStone environment variables, operating system file names and
paths, listings, and prompts are shown in monospace typeface.

 Responses from GemStone commands are shown in an underlined typeface.

 Place holders that are meant to be replaced with real values are shown in italic typeface.

 Optional arguments and terms are enclosed in [square brackets].

 Alternative arguments and terms are separated by a vertical bar (|).
GemTalk Systems 3

GemStone/S 64 Bit 3.6 Programming Guide
Executing the Examples
This manual includes many examples. These can be executed using either the Topaz
command-line interface, or using tools such as GemBuilder for Smalltalk (GBS) or another
interface to the GemStone/S server. GBS or other IDE tools provide browsers and related
tools that make it easier to define classes and methods.

The text of the GemStone Smalltalk code examples themselves (excluding the Topaz
commands) is the same whichever way you enter it. The example results commonly but
not always use topaz display conventions, and may be simplified for clarity.

When using Topaz, you must include extra commands to begin and end an example. An
“%” is used to indicate the command is completed and executed, including in examples
that omit a topaz start execution command. Refer to the Topaz Users Guide for more
information on executing code in topaz.

Technical Support

Support Website
gemtalksystems.com

GemTalk’s website provides a variety of resources to help you use GemTalk products:

 Documentation for the current and for previous released versions of all GemTalk
products, in PDF form.

 Product download for the current and selected recent versions of GemTalk software.

 Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

 Supplemental Documentation and TechTips, providing information and instructions
that are not in the regular documentation.

 Compatibility matrices, listing supported platforms for GemTalk product versions.

We recommend checking this site on a regular basis for the latest updates.

Help Requests
GemTalk Technical Support is limited to customers with current support contracts.
Requests for technical assistance may be submitted online (including by email), or by
telephone. We recommend you use telephone contact only for urgent requests that require
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: techsupport.gemtalksystems.com

Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702
4 GemTalk Systems

http://techsupport.gemtalksystems.com
https://gemtalksystems.com

GemStone/S 64 Bit 3.6 Programming Guide
Please include the following, in addition to a description of the issue:

 The versions of GemStone/S 64 Bit and of all related GemTalk products, and of any
other related products, such as client Smalltalk products, and the operating system and
version you are using.

 Exact error message received, if any, including log files and statmonitor data if
appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.

24x7 Emergency Technical Support
GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.

Training and Consulting
GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.
GemTalk Systems 5

GemStone/S 64 Bit 3.6 Programming Guide
6 GemTalk Systems

Table of Contents
Chapter 1. Introduction to GemStone 23

1.1 GemStone Overview. 23
Multi-User . 23
Programmable . 23
Scalable . 24
Object Database . 24
Partition Between Client and Server . 24
Connect to Outside Data Sources . 25

1.2 GemStone Services . 26
Transactions and Concurrency Control . 26
Login Security and Account Management. 26
Services To Manage the GemStone Repository 27

1.3 GemStone Smalltalk . 27
GemStone Sessions . 27
Monitoring your application . 28
Interapplication Communications . 29

1.4 Process Architecture . 29
Gem Process. 29
Stone Process . 29
NetLDI . 30
Shared Page Cache . 30
Extents and Repositories. 30
Transaction Log. 30

Chapter 2. Class Creation 31

2.1 Subclass Creation. 31
Implementation Formats. 32
GemTalk Systems 7

GemStone/S 64 Bit 3.6 Programming Guide
Class Variables and Other Types of Variables . 33
Dynamic Instance Variables . 34
Additional Class Creation Protocol . 35

2.2 Creating Classes With Invariant Instances . 37
Per-Object Invariance . 37
Invariance for All Instances of a Class . 37

2.3 Creating Classes with Special Cases of Persistence . 37
Non-Persistent Classes . 38
DbTransient . 38

Chapter 3. Resolving Names and Sharing Objects 41

3.1 Sharing Objects . 41
3.2 The UserProfile’s Symbol List . 42

What’s In Your Symbol List? . 42
Examining Your Symbol List. . 42
Inserting and Removing Dictionaries from Your Symbol List 44
Finding Out Which Dictionary Names an Object 46
The Transient Symbol List . 47
Updating Symbol Lists . 48

3.3 Using Your Symbol Dictionaries . 48
Publishers, Subscribers and the Published Dictionary 49

Chapter 4. Collection and Stream Classes 51

4.1 Introduction to Collections. . 51
Protocol Common to All Collections . 53

Creating Instances . 53
Enumerating . 53

Collections in multi session environment . 54
Conflicting updates . 54
Visibility and ordering . 54

Collection classes . 54
Dictionary classes . 55

Internal Dictionary Structure . 55
Dictionary and KeyValueDictionary . 55
KeySoftValueDictionary . 55

SequenceableCollection classes . 56
Copying. . 56
Array . 57
SortedCollection . 57

Stream Classes . 58
PositionableStream and Position. . 58
AppendStream . 59

UnorderedCollection classes . 59
8 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
Union, Intersection, and Difference . 60
4.2 Reduced-Conflict Collection Classes. 61

RcArray . 61
NSC/UnorderedCollection classes . 61

RcIdentityBag . 61
RcLowMaintenanceIdentityBag . 62
RcIdentitySet . 62

RcKeyValueDictionary. 62
Queue classes . 62

GsPipe . 63
RcPipe . 63
RcQueue . 63

4.3 GsBitmap . 64
GsBitmaps and C Heap memory . 65
GsBitmaps and their objects . 65
GsBitmaps methods for repository analysis . 65
Bitmap files . 66

4.4 Sorting the objects in a collection . 66
Default Sort . 66
Sorting Application objects . 67

Sorting in multiple orders . 69
SortBlocks . 69
Sorting Large Collections . 70

Chapter 5. String Classes and Collation 71

5.1 Characters and Unicode . 71
Unicode and the Unicode Database . 72

5.2 String classes . 73
Traditional Strings . 73
Unicode Strings . 74
String equality, ordering, and interoperation 74

Other String-like classes . 74
Symbol . 74
ByteArray . 75
Utf8 . 75

String protocol . 75
Creating Strings . 75
Concatenating Strings . 76
Converting between String classes and encodings 76
String Transformations . 77
Equality and Identity . 77
Searching and Pattern matching . 78

5.3 String Sorting and Collation . 79
Comparison Mode . 79

StringConfiguration . 80
GemTalk Systems 9

GemStone/S 64 Bit 3.6 Programming Guide
Legacy String Comparison Mode for Traditional Strings. 80
Unicode Comparison Mode and ICU Collation 81

IcuLocale . 81
IcuCollator . 82
Customizing Sort . 83
IcuSortedCollection . 85

ICU libraries and versioning . 86
ICU and Unicode versioning . 86
IcuLibraryVersion . 86

5.4 Encrypting Strings . 87

Chapter 6. Numeric Classes 89

6.1 Integers. . 89
SmallInteger . 90
LargeInteger . 90
Printing Integers. . 90

6.2 Binary Floating Point . 90
SmallDouble . 91
Float. . 91

Signalling Exception rather than returning Exceptional Float 92
Literal Floats . 93
Printing Binary Floating Points . 93

6.3 Other Rational Numbers . 94
Fractions . 94

SmallFraction. . 95
Fraction . 95

ScaledDecimals . 95
SmallScaledDecimal . 95
ScaledDecimal . 96

FixedPoints. . 96
DecimalFloat . 96
Summary of literal syntax . 97
Custom numeric literals . 97

6.4 Dates and Times. . 98
Date . 98

SmallDate . 98
Instance Creation . 98
Formatting for Instance Creation and Printing 98

Time. . 99
SmallTime . 99
Instance Creation . 99
Formatting for Instance Creation and Printing 99
Time offset . 100

DateTime . 100
Instance Creation . 100
10 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
Formatting for Instance Creation and Printing 100
DateAndTime . .101

SmallDateAndTime. .101
Instance Creation .102
Formatting for Instance Creation and Printing 102

TimeZone .103
6.5 Internationalizing .103

Dates in GemStone log files . .103
Internationalizing Decimal Points using Locale. 104

6.6 Random Numbers .105
Universally unique identifiers (UUIDs) .105
Random Number Generator .105

Chapter 7. Indexes and Querying 109

7.1 Overview .110
GemStone Indexes and Queries. .111

Indexes . .111
GsQueries .111
Deciding what to optimize. .112
Overview of the steps in creating and using indexed queries112
Managing Indexes .113

Special Syntax for Indexing .113
Historic indexing syntax . .114

Last Element Class .114
Optimized classes . .114
Using other classes .115
Comparing data types .115
Strings in indexes . .115
Redefining Comparison Messages .116

7.2 Defining Queries . .117
Query Predicate Syntax .117

Predicate Terms . .117
Combining Predicates using Boolean Logic 118
Combining Range Predicates .118

Creating a GsQuery .118
Query Variables . .118

7.3 Creating Indexes . .119
Equality and Identity Indexes . .119
Btree and Legacy Indexes .120
Creating the Index .120
Equality Indexes on strings .121

Repositories in Legacy String Comparison mode122
Repositories in Unicode Comparison Mode122

Implicit Indexes. .123
GsIndexOptions .123
GemTalk Systems 11

GemStone/S 64 Bit 3.6 Programming Guide
Combining options . 124
Default options. . 124
The Options in GsIndexOptions . 124
Reduced-Conflict . 125
Optional pathTerms . 125

7.4 Results of Executing a GsQuery . 126
GsQuery’s Collection protocol . 126
GsQuery enumeration methods accepting blocks 127

Query results as Streams . 129
Limitations on streamable queries . 129

7.5 Enumerated and Set-valued Indexes . 131
Enumerated path terms in indexes and queries 131

Restrictions on predicates with enumerated pathTerms 131
Indexes and Queries with collections on the path 131

Set-valued query results . 132
Restrictions on predicates in set-valued queries 132

7.6 Managing Indexes . 132
While Indexes are Being Created . 132

Queries during index creation . 133
Auto-commit . 133

Indexes on temporary collections . 134
Inquiring About Indexes . 134
Removing Indexes. . 134

To remove indexes based on a GsIndexSpec 134
To remove indexes using IndexManager 135
Rebuilding Indexes . 135

Indexing Errors . 136
Auditing Indexes . 136

7.7 Indexing and Performance. . 137
Type of index . 137
Data updates . 137
Formulating queries and performance . 138

Auto-optimize . 138
7.8 Historic Indexing API differences. . 138

Index creation using UnorderedCollection protocol 138
Internal legacy vs. btreePlus indexing structures 139
String and Unicode Equality Indexes 139
Reduced-conflict Equality Indexes. . 139

Queries using Selection Blocks. . 139
Executing Selection Block Queries . 140

Managing indexes . 141
Information about indexes . 141
Removing Indexes . 141
12 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
Chapter 8. Transactions and Concurrency Control 143

8.1 GemStone’s Conflict Management . .143
Views and Transactions . .143
Transaction State and Transaction Modes . .145
Reading and Writing in Transactions .146
Reading and Writing Outside of Transactions 147
When Should You Commit a Transaction? .147
Nested In-memory Transactions .147

8.2 How GemStone Detects and Manages Conflict . .148
Concurrency Management .148
Committing Transactions .149
Handling Commit Failure in a Transaction .149
Transaction Conflicts. .150
More details about transaction conflicts . .151
Indexes and Concurrency Control .152
Aborting Transactions . .152

Updating the View Without Committing or Aborting 153
Being Signaled To Abort . .153
Being Signaled to continueTransaction. 154

Handlers for abort or continueTransaction notifications. 154
8.3 Controlling Concurrent Access with Locks . .154

Lock Types .155
Read Locks. .155
Write Locks .155

Acquiring Locks .156
Lock Denial .156
Deadlocks .157
Dirty Locks .157
Locking Collections of Objects Efficiently 158
Upgrading Locks .160

Locking and Indexed Collections . .160
Removing or Releasing Locks . .161

Releasing Locks Upon Aborting or Committing 161
Inquiring About Locks . .162
Application Write Locks . .163

8.4 Classes That Reduce the Chance of Conflict .164
RcCounter . .164
Reduced-Conflict Collection Classes . .165

RcArray .166
RcIdentityBag . .166
RcLowMaintenanceIdentityBag and RcIdentitySet167
RcKeyValueDictionary . .167
GsPipe .167
RcPipe .167
RcQueue . .168
GemTalk Systems 13

GemStone/S 64 Bit 3.6 Programming Guide
Chapter 9. Object Security and Authorization 169

9.1 How GemStone Security Works. . 169
Login Authorization . 170

The UserProfile. . 170
System Privileges . 170
Object-level Security . 170

GsObjectSecurityPolicy . 171
9.2 Assigning Objects to Security Policies . 173

Default Security Policy and Current Security Policy 173
Objects and Security Policies . 174
Configuring Authorization for an Object Security Policy. 174

How GemStone Responds to Unauthorized Access 175
Owner, Group, and World Authorization 175

Predefined GsObjectSecurityPolicies . 176
GsObjectSecurityPolicy names . 177
Changing the Security Policy for an Object 177
Revoking Your Own Authorization: a Side Effect 179
Finding Out Which Objects Are Protected by a Security Policy 180

9.3 Application Example . 180
9.4 Development Example . 184
9.5 Planning Security Policies for User Access. . 184

Protecting the Application Classes. . 184
CodeModification privilege . 184
Planning Authorization for Data Objects 185
Planning Groups . 186
Planning Security Policies . 188

Developing the Application . 188
Setting Up Security Policies for Joint Development 188
Making the Application Accessible for Testing 190
Moving the Application into a Production Environment 191

Security Policy Assignment for User-created Objects 191
9.6 Privileged Protocol for Class GsObjectSecurityPolicy 192

Chapter 10. Class versions and Instance Migration 195

10.1 Versions of Classes . 195
Defining a New Version . 196
New Versions and Subclasses . 196
New Versions and References in Methods . 196
Class Variables and Class Instance Variables 197
Class versioning and Class options . 197

10.2 ClassHistory . 197
Defining a Class as a new version of an existing Class 197
Accessing a Class History . 199
Assigning to a Class History . 199
14 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
10.3 Migrating Objects . .199
Migration Destinations. .200

Bypassing the Migration Destination200
Migrating Instances that Participate in an Index 201
Default Instance Variable Mappings . .202
Customized Instance Variable Mappings .203
Transforming Variable Values .204
Finding Instances . .205
Tuning migration and managing memory. .206

Using GsBitmaps to manage memory for large result sets207
Tuning system resource use when finding instances207
Committing the migration in chunks207
Migrating instances in Page Order .208

Chapter 11. Encryption and Validation 209

11.1 Overview for SSL keys and certificates. .210
GsTlsCredential. .210
Creating a GsTlsCredential .210
Verifying public/private key pairs . .211
Encryption and signing algorithms. .211

11.2 Checksums and HMAC .212
Checksums .212
HMAC (Hash-based message authentication codes)212

11.3 Symmetric-Key Encryption .213
Encryption . .213
Example .214

11.4 Digital Signatures . .214
11.5 Digital Envelopes . .215

Creating the GsDigitalEnvelope. .216
Using the GsDigitalEnvelope .217

Chapter 12. File I/O and Operating System Access 219

12.1 Accessing Files .219
Specifying Files . .220
Creating a File. .220
Opening a File .221
Closing a File or Files .221
Writing to a File. .222
Reading from a File. .223

Positioning. .224
Testing Files . .224
Renaming Files .224
Removing Files .225
GemTalk Systems 15

GemStone/S 64 Bit 3.6 Programming Guide
Examining a Directory . 225
GsFile Errors . 226

12.2 Executing Operating System Commands . 227
Simple Commands . 227

Using other shells . 227
More complex interactions . 227
Restictions on OS access . 228

12.3 Setting environment variables . 228
12.4 File In and File Out . 229

Fileout . 229
Filein . 229

12.5 PassiveObject. . 230
12.6 Creating and Using Sockets . 231

GsSocket . 232
Establishing the connection. . 232
Communication on the socket . 232
Closing the socket . 232
Socket Configuration . 232

GsSecureSocket . 233
Certificates, keys, and passphrases . 233
Enable or disable verifying CA Certificate 234
Set certificate, private key, and passphrase 235
Setup the Cipher list . 236
Establishing the connection. . 236
Communication on the socket . 237
Closing the socket . 237
HTTPS connection . 237

Error handling . 238
GsSocket . 238
GsSecureSocket . 238

Chapter 13. Signals and Notifiers 241

13.1 Communicating Between Sessions . 241
13.2 Object Change Notification. . 242

Setting Up a Notify Set . 242
Adding an Object to a Notify Set. . 242
Adding a Collection to a Notify Set . 244
Listing Your Notify Set . 245
Removing Objects From Your Notify Set 245

Notification of New Objects . 245
Receiving Object Change Notification. 246
Reading the Set of Signaled Objects . 247

Polling for Changes to Objects . 247
Troubleshooting . 248

Frequently Changing Objects. . 248
16 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
Special Classes. .248
Methods for Object Notification .250

13.3 Gem-to-Gem Signaling . .250
Sending a Signal .251

Receiving a Signal. .253
13.4 Other Signal-Related Issues .254

Inactive Gem .254
Dealing With Signal Overflow .255

Sending Large Amounts of Data .255
Maintaining Signals and Notification When Users Log Out. 255

Chapter 14. Handling Exceptions 257

14.1 The Exception Class Hierarchy .257
14.2 Signaling Exceptions . .259
14.3 Handling Exceptions . .260

Dynamic (Stack-Based) Handlers . .260
Selecting a Handler. .261
Flow of Control . .263
Default Handlers . .264
Default Actions . .265

14.4 The Legacy Exception Handling Framework .266
Dynamic (Stack-Based) Exception Handler .266

Installing a Dynamic (Stack-Based) Exception Handler 266
Default (Static) Exception Handlers .267

Installing a Default (Static) Exception Handler 267
GemStone Event Exceptions . .268

Flow of Control . .269
Signaling Other Exception Handlers .271
Removing Exception Handlers .271
Recursive Errors. .272

Raising Exceptions . .272
ANSI Integration . .273

Chapter 15. Performance and Optimization 275

15.1 Profiling Smalltalk Execution .276
Time to execute a block .276

CPU Time .276
Elapsed Time .276

ProfMonitor . .277
Sample intervals. .277
Reporting limits . .277
Reports . .278
Temporary results file .278
GemTalk Systems 17

GemStone/S 64 Bit 3.6 Programming Guide
Real vs. CPU time . 278
Profiling Code . 279

Convenience Profiling of a Block of Code. 279
Background Profiling . 280
Manual Profiling . 280
Saving a ProfMonitor for later analysis 281

The Profile Report . 282
Profiling Beyond Performance . 285

Object Creation Tracking . 286
Memory Use Profiling. . 286

15.2 Clustering Objects for Faster Retrieval . 287
Will Clustering Solve the Problem? . 287
Cluster Buckets . 288

Using Existing Cluster Buckets. . 288
Creating New Cluster Buckets . 289
Cluster Buckets and Concurrency . 289
Cluster Buckets and Indexing . 290

Clustering Objects . 290
The Basic Clustering Message . 290
Depth-First Clustering . 292
Assigning Cluster Buckets . 292
Clustering and Memory Use . 293
Using Several Cluster Buckets . 293
Clustering Class Objects . 293

Maintaining Clusters . 294
Determining an Object’s Location . 294
Why Do Objects Move? . 295

15.3 Modifying Cache Sizes for Better Performance . 296
GemStone Caches . 296

Temporary Object Space . 296
Shared Page Cache . 296

Getting Rid of Non-Persistent Objects . 297
15.4 Managing VM Memory . 298

Large Working Set . 298
Class Hierarchy . 298
UserAction Considerations . 298
Exported Set . 299

Debugging out of memory errors . 299
Signal on low memory condition . 299
Methods for Computing Temporary Object Space 300
Statistics for monitoring memory use . 301

15.5 NotTranloggedGlobals . 303
15.6 Other Optimization Hints . 304
18 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
Chapter 16. Working with Classes and Methods 307

16.1 Creating and Removing Methods. .307
Defining Simple Accessing and Updating Methods 307
Compiling Methods .308
Removing Methods. .309
Pragmas .309

Pragma class . .310
16.2 Information about Class and Methods . .311

Information about the Class . .311
Information about Instance, Class, and Shared Pool variables 311
Information about Method Selectors . .311
Accessing and Managing Method Categories312
Specific Methods .312

16.3 Transient Methods .312
16.4 ClassOrganizer .313
16.5 Handling Deprecated Methods . .314

Deprecated handling . .315
Deprecation log . .316
Listing deprecated methods . .316
Determining senders of deprecated methods316

Chapter 17. GemStone System Features 317

17.1 Hidden Sets .317
Sets still accessed via System methods . .318

NotifySet . .318
ExportedDirtyObjs and TrackedDirtyObjs. 318
PureExportSet and GciTrackedObjs .318

17.2 SessionTemps and access to Session State .319
SessionState .319

17.3 Shared Counters .319
AppStat Shared Counters .320
Persistent Shared Counters .320

17.4 GsEventLog .321
Adding events . .321
Querying and reporting .321
Deleting events .322

Chapter 18. The Foreign Function Interface 323

18.1 Overview of the Foreign Function Interface . .323
18.2 FFI Core Classes. .324

CLibrary . .324
CCallout . .324
GemTalk Systems 19

GemStone/S 64 Bit 3.6 Programming Guide
C type symbols . 325
Limitations with native code disabled . 326
CCallin . 326
CByteArray . 326
CFunction . 327
CPointer . 327

18.3 FFI Wrapper Utilities . 327
CHeader . 327
Creating a Smalltalk class . 332

Chapter 19. External Sessions 335

19.1 Overview . 335
19.2 External Sessions . 336

Setup the External Session . 336
Creating the External Session . 336

Log in the External Session. . 337
Executing Code . 338
Important caution on Export Set of remote session 340
Exceptions . 340

19.3 NRS and Login Parameter Support . 341
For a Stone . 341
For a Gem. . 341
Convenience methods for common arguments 342

19.4 Special Cases of External Sessions . 342
Solo external sessions . 342
Primitive-based external sessions on AIX . 343
X509 external sessions . 343

Chapter 20. The SUnit Framework 345

20.1 Why SUnit?. . 345
20.2 Testing and Tests . 346
20.3 SUnit by Example . 347

Examining the Value of a Tested Expression. 349
Finding Out If an Exception Was Raised . 349

20.4 The SUnit Framework. . 350
20.5 Understanding the SUnit Implementation . 351

Running a Single Test . 351
Running a TestSuite . 352

Appendix A. GemStone Smalltalk Syntax 355

A.1 GemStone and ANSI Smalltalk . 355
20 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide
GemStone and ANSI limits .356
A.2 GemStone Smalltalk. .356

How to Create a New Class . .357
Statements . .357
Comments . .357
Expressions .358

Literals . .358
Numeric Literals .359
Character Literals . .359
String Literals .360
Symbol Literals .360
Array Literals .360

Variables and Variable Names .361
Assignment .362
Message Expressions . .362
Reserved and Optimized Selectors . .363
Combining Message Expressions . .365
Cascaded Messages .366
Array Constructors . .366
Path Expressions .367
Returning Values . .368

A.3 Blocks . .368
Blocks with Arguments .369
Blocks and Conditional Execution .370
Formatting Code .372

A.4 GemStone Smalltalk BNF. .373
GemTalk Systems 21

GemStone/S 64 Bit 3.6 Programming Guide
22 GemTalk Systems

Chapter

1 Introduction to
GemStone
This chapter introduces you to the GemStone/S 64 Bit™ (GemStone) system. GemStone
provides a distributed, server-based, multi-user, transactional Smalltalk runtime system,
with the ability to partition the application between client and server.

GemStone provides enterprise-quality security, scalability, availability, and services for
managing and monitoring the repository.

1.1 GemStone Overview

Multi-User
GemStone can support thousands of concurrent users, object repositories of hundreds of
gigabytes, and sustained object transaction rates of hundreds of transactions per second.
Server processes manage the system, while user sessions support individual user activities.
Repository and server processes can be distributed among multiple machines, leveraging
shared memory and SMP.

Multiple user sessions can be active at the same time, and each user may have multiple
sessions open. A flexible naming scheme allows separate or shared namespaces for
individual users. Changes that users make to objects are committed in transactions, with
concurrency controls and locks ensuring that multi-user changes to objects are
coordinated. Security is provided at several levels, from login authorization to method
execution privileges and object access privileges.

Programmable
GemStone provides data definition, data manipulation, and query facilities in a single,
computationally complete language — GemStone Smalltalk. The GemStone Smalltalk
language offers built-in data types (classes), operators, and control structures comparable
in scope and power to those provided by languages such as C or Java, in addition to multi-
user concurrency and repository management services. All system-level facilities, such as
transaction control, user authorization, and so on, are accessible from GemStone Smalltalk.
GemTalk Systems 23

GemStone Overview GemStone/S 64 Bit 3.6 Programming Guide
Scalable
Object programming languages such as Smalltalk are highly efficient development tools.
Smalltalk exploits inheritance and code reuse and provides the flexibility of modeling real
world objects with self-contained software modules. Most Smalltalk implementations,
however, are memory based, and objects exist only in a single user’s image.

Like a single-user Smalltalk image, GemStone consists of classes, methods, instances and
meta objects. Persistence is established by attaching new objects to other persistent objects.
All objects are derived from a named root (AllUsers). Objects that have been attached and
committed to the repository are visible to all other authorized users.

However, since the GemStone repository is accessed through disk caches, it is not limited
in size by available memory. A GemStone repository can contain billions of objects, each
with a unique object identifier (known as an OOP—object-oriented pointer).

Object Database
GemStone lets you model information in structures as simple or complex as application
data requires. You can represent data objects in tables, hierarchies, networks, queues, or
any other structure or nested combination of structures that is appropriate.

Because you can represent information in forms that mirror the information’s natural
structure, the translation of user requests into executable queries can be much easier in
GemStone. You do not need to translate users’ keystrokes or menu selections into relational
algebra formulas, calculus expressions and procedural statements before the query can be
executed. See Chapter 7‚ “Indexes and Querying”.

Partition Between Client and Server
GemStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, Java, or any language that makes C calls. Objects created
from any of these languages are interoperable with objects created from the other
languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk classes,
Java classes, and C functions. These GemBuilder™ language interfaces allow you to move
objects between an application program and the GemStone repository, and to connect
client objects to GemStone objects. GemBuilder also provides remote messaging
capabilities, client replicates, and synchronization of changes.

GemStone’s interfaces include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone programming tools,
and a programming interface between the client application code and GemStone.
GemBuilder for Smalltalk contains a set of classes installed in a client Smalltalk image
that provides access to objects in a GemStone repository. Many of the client Smalltalk
kernel classes are mapped to equivalent GemStone classes, and additional class
mappings can be created by the application developer.

GemBuilder for Smalltalk is a separate product, and includes documentation
describing installation and use.
24 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Overview
GemBuilder for Java
GemBuilder for Java also has two parts: a set of GemStone programming tools, and a
programming interface between the client application code and GemStone.
GemBuilder for Java is a Java runtime package that provides a message-forwarding
interface between a Java client and a GemStone server, allowing access to objects in a
GemStone repository.

GemBuilder for Java is distributed as a separate product, and includes documentation
describing installation and use.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows programmers
to work with GemStone objects by importing them into the C program using structural
access, or by sending messages to objects in the repository through GemStone
Smalltalk.

GemBuilder for C is distributed with the server product. For more information on
GemBuilder for C, see the GemBuilder for C manual.

GsDevKit
GsDevKit, the open-source development kit for GemStone/S 64 Bit (formerly referred
to as GLASS or Seaside), provides a Pharo-compatible GemStone Smalltalk
environment. With the optional Seaside framework, you can create and deploy
desktop-like web applications.

GsDevKit and Seaside for GemStone are distributed as open-source products via
GitHub. For more information, see gemtalksystems.com/small-business/gsdevkit/.

In addition to these interfaces, GemStone provides a command-line tool that allows you to
interact with server objects, execute code, and perform limited scripting:

Topaz
Topaz is a GemStone programming environment that provides a scriptable command-
line interface to GemStone Smalltalk. Topaz is most commonly used for performing
repository maintenance operations. Topaz offers access to GemStone without
requiring a window manager or additional language interfaces. You can use Topaz in
conjunction with other GemStone development tools such as GemBuilder for C to
build comprehensive applications.

Topaz is part of the server distribution. For more information on Topaz, see the Topaz
User’s Guide.

Connect to Outside Data Sources
The productivity value of GemStone comes from coding in Smalltalk, but you may need or
want to call out to logic written elsewhere, as for instance specialized C libraries. GemStone
provides several ways to access external code from a GemStone session.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks. You can use
GemBuilder for C to write these user actions, and invoke these user actions from
GemStone Smalltalk. The tools supporting user actions are part of the GemStone
kernel, and are documented in the GemBuilder for C manual.
GemTalk Systems 25

http://gemtalksystems.com/small-business/gsdevkit/

GemStone Services GemStone/S 64 Bit 3.6 Programming Guide
Foreign Function Interface (FFI)
FFI classes with GemStone allow you to invoke functions in existing C libraries. The
argument and return data types are defined within GemStone Smalltalk to conform to
the C function definition. The FFI interface is part of the GemStone kernel, and is
documented in Chapter 18‚ “The Foreign Function Interface”.

GemConnect (Access to Oracle database)
GemStone uses the User Action mechanism to build the GemConnect™ product,
which provides access to relational database information from GemStone objects.
GemConnect is fully encapsulated and maintained in the GemStone object server.
GemConnect is distributed as a separate product, and includes documentation
describing installation and use.

1.2 GemStone Services

Transactions and Concurrency Control
Each GemStone session defines and maintains a consistent working environment for its
application program, presenting the user with a consistent view of the object repository.
The user works in an environment in which only his or her changes to objects are visible.
These changes are private to the user until the transaction is committed. The effects of
updates to the object repository by other users are minimized or invisible during the
transaction. GemStone then checks for consistency with other users’ changes before
committing the transaction, and refuses to commit conflicting changes.

GemStone provides both optimistic and pessimistic approaches to managing concurrent
transactions, and supports explicit object locking for read or write. To allow users to
modify the same object in ways that do not actually conflict, such as two users adding to a
collection, GemStone extends the Collection class hierarchy by providing reduced-conflict
(Rc) classes that can be used in place of standard collection classes.

For more on transactions and reduced-conflict classes, See Chapter 8‚ “Transactions and
Concurrency Control”.

Login Security and Account Management
Compared to a single-user Smalltalk system, GemStone requires substantially more
security mechanisms and controls. As a tool for server implementation, multi-user
Smalltalk must handle requests from many users running a variety of applications, each of
which can require different accessibility of objects. Authentication and authorization are
the cornerstones of GemStone Smalltalk security.

Login Authentication
Before users can access system resources, they must be authenticated. Logins can be
done from any of the interfaces; in each case, GemStone requires a user ID and a
password, and a corresponding UserProfile must exist in GemStone. Authentication of
the user ID and password can be done using GemStone’s encryption, using UNIX, by
Lightweight Directory Access Protocol (LDAP), or using Kerberos. GemStone uses
SRP and SSL/TLS to establish secure logins and certain types of interprocess
connections. Authentication and login security features are described in the System
Administration Guide.
26 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
Object-level Authorization
To control access to individual objects, GemStone provides object-level authorization.
Authorization enforcement is implemented at the lowest level of basic object access to
prevent users from circumventing the authorization checking. Read and write
authorization can be granted to single objects or groups of objects, for single users or
groups of users. See Chapter 9‚ “Object Security and Authorization”.

User Privileges
GemStone defines a set of privileges for controlling the use of certain system services.
Privileges determine whether the specific user is allowed to execute certain system
functions, usually ones only performed by the system administrator. Privileges are
described in the System Administration Guide.

Services To Manage the GemStone Repository
GemStone is capable of managing objects shared by thousands of users, running methods
that access billions of objects, and handling queries over large collections of objects by
using indexes. It can support large-scale deployments on multiple machines in a variety of
network configurations. All of this functionality requires a wide array of services for
management of the repository, the system processes, and user sessions. These services are
described in the System Administration Guide.

1.3 GemStone Smalltalk
GemStone Smalltalk is tailored to operate in a multi-user environment, with transaction
throughput and client communication as chief considerations. GemStone’s class library is
designed for multi-user access to objects. At the same time, its common characteristics with
other Smalltalks allow you to implement shared business objects with the same language
you use to build client applications. Since the same code can execute either on the client or
on the object server, you can easily move behavior from the client to the server for
application partitioning.

With a limited number of exceptions, GemStone Smalltalk supports the ANSI Smalltalk
standard.

No User Interface
Because GemStone is an object server, GemStone Smalltalk does not provide any classes for
screen presentation or user interface development. Graphical user interfaces, including
those for developing classes and methods as well as runtime user interfaces, are provided
by the client application. The client application uses a GemBuilder interface or a web
interface such as Seaside to communicate and interact with the GemStone server.

A significant part of programming with GemStone is designing the interactions between
various client runtime systems and the GemStone classes, methods, and objects on the
server.

GemStone Sessions
The GemStone interfaces provide access to GemStone objects and mechanisms for running
GemStone methods in the server. This access is accomplished by establishing a session
with the GemStone object server. The process for establishing a session is tailored to the
GemTalk Systems 27

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
language or user of each interface. In all cases, however, this process requires identification
of the GemStone object server to be used, the user ID for the login, and other information
required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of that
session, be it low-level object access and creation, or invocation of GemStone Smalltalk
methods.

Sessions allow multiple users to share objects. In fact, different sessions can access the same
repository in different ways, depending on the needs of the applications or users they are
supporting. For example, an employee may only be able to access employee names,
telephone extensions and department names through the human resources application,
while a manager may be able to access and change salary information as well.

Sessions also control transactions, which are the only way changes to the repository can be
committed. However, a passive session can run outside a transaction for better performance
and lower overhead. For example, a stock portfolio application that reports the current
value of a collection of stocks may run in a session outside a transaction until notified that
a price has changed in a stock object. The application would then start a transaction,
commit the change, and recalculate the portfolio value. It would then return to a passive
session state until the next change notification.

A session can be integrated with the application into a single process, called a linked
application. Each application can have only one linked session.

Alternatively, the session can run as a separate process and respond to remote procedure
calls (RPC calls) from the application. These sessions are called RPC applications. An
application may have multiple RPC sessions running simultaneously with each other and
a linked session.

System Management Classes
GemStone Smalltalk provides a number of classes that offer system management
functionality.

The class System, which has no instances, provides class protocol to manage the
repository and individual session.

The class Repository, which has a single instance named SystemRepository, provides
protocol for data management functions, such as extent creation and access, backup
and restore, and garbage collection.

The class UserProfileSet, which has a single instance named AllUsers, provides
protocol to create and manage users.

Monitoring your application
GemStone includes statmonitor and Visual Stat Display (VSD) utilities, which allow you to
monitor and record, and view statistics about your application performance. This allows
precise tuning as well as detecting potential problems before they occur. GemStone also
includes profiling classes that allow you to optimize and tune your Smalltalk code for
maximum performance.
28 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Process Architecture
File In and File Out
GemStone Smalltalk allows you to file out source code for classes and methods, save the
resulting text file, and file it in to another repository. The GemStone class PassiveObject
also allows you to create a text representations of the binary objects, which can be written
to a file and read into another repository.

Interapplication Communications
GemStone Smalltalk provides several ways to send information from one currently logged-
in session to another:

GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for the
application to repeatedly query the Gem for this information. Notification is optional,
and can be enabled for only those objects in which you are interested.

Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

1.4 Process Architecture
GemStone provides the technology to build and execute applications that are designed to
be partitioned for execution over a distributed network. GemStone’s architecture provides
both scalability and maintainability. The following sections describe the main aspects of
GemStone architecture.

Gem Process
For each login, a GemStone session is established with a Gem process. The Gem runs
GemStone Smalltalk and processes messages from the client session. It provides the user
with a consistent view of the repository, and it manages the user’s session, keeping track
of the objects the users has accessed, paging objects in and out of memory as needed, and
performing dynamic garbage collection of temporary objects. A user application is always
connected to at least one Gem, and may have connections to many Gems. Gems can be
distributed on multiple, heterogeneous servers.

In addition to Gem Processes for user sessions, a running GemStone system includes a
number of maintenance Gem processes. These system Gems include the GcGems, which
handle the tasks of collecting objects that are no longer referenced and the SymbolGem,
which centralizes the creation of unique, canonical symbols.

Stone Process
The Stone process is the resource coordinator. One Stone process manages one repository.
The Stone synchronizes activities and ensures consistency as it processes requests to
commit transactions. Individual Gem processes communicate with the Stone through
interprocess channels.
GemTalk Systems 29

Process Architecture GemStone/S 64 Bit 3.6 Programming Guide
NetLDI
Most GemStone configurations will includes a network server process, known as a NetLDI
(Network Long Distance Information). The NetLDI is responsible for starting up
GemStone processes such as Gems, and coordinates startup when GemStone processes are
needed on a node other than the one the Stone is running on.

Shared Page Cache
The shared page cache (SPC) provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. The SPC is a large, contiguous area of
shared memory that is shared by the Stone and each Gem process on that host. Memory is
managed and allocated on pages within this shared memory. A cache is started on each
machine that runs a Stone monitor, Gem session process, or linked application.

The SPC also contains buffers for communications between Gems and the Stone. The
Shared Cache Monitor process initializes the shared memory cache, manages allocation to
the sessions, and dynamically adjusts this allocation to fit the workload. It also makes sure
that frequently accessed objects remain in memory, and that large objects queries do not
flush data from the cache. These controls allow complex applications to be run on the same
repository by multiple users without performance degradation.

Extents and Repositories
Extents are composed of multiple disk files or raw partitions. A repository, which is the
logical storage unit in which GemStone stores objects, is actually an ordered collection of
one or more extents.

Transaction Log
GemStone’s transaction log provides complete point-in-time roll-forward recovery. The
transaction log contents are composed by the Gem, and the Stone writes the tranlog using
asynchronous I/O. Commit performance is improved through I/O reduction, because
only log records need to be written, not many object pages. In addition, the object pages
stay in memory to be reused. Transaction logs may be on file systems or on raw devices.
30 GemTalk Systems

Chapter

2 Class Creation
The first thing you will want to do is create the classes that will implement your
application. This chapter describes class creation protocol, including some special features
that can apply to all instances of a class.

Subclass Creation (page 31)
explains how to define new GemStone classes, class implementation formats and other
ways classes can store data.

Creating Classes With Invariant Instances (page 37)
describes how to make objects invariant.

Creating Classes with Special Cases of Persistence (page 37)
explains how classes can be defined so that their instances or instance variables are not
stored in the repository.

2.1 Subclass Creation
Almost every class in the GemStone system understands a message that causes it to create
a subclass of itself.

Example 2.1

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #('AllAnimals')
classInstVars: #('AllOfSpecies')
poolDictionaries: #()
inDictionary: UserGlobals

This subclass creation message establishes a name ('Animal') for the new class and
provides for three named instance variables ('habitat', 'name', and 'predator'), a
class variable ('AllAnimals'), and a class instance variable ('AllOfSpecies'). The
GemTalk Systems 31

Subclass Creation GemStone/S 64 Bit 3.6 Programming Guide
new class is installed in the symbolDictionary UserGlobals of the user who executes this
code. You may also include reference to poolDictionaries, if this is useful for your
application. Pool dictionaries are included by value, not by name; in other words, you use
the reference to the pool dictionary, not a String.

The String used for the new class’s name must follow the general rule for variable names
— that is, it must begin with an alphabetic character and its length must not exceed 1024
characters.

There are a number of subclass creation methods. The first keyword (in the example above,
subclass:) defines the implementation format — more on this in the next section.
Subclass creation methods with additional keywords are provided to provide other
information to use when creating the class.

Some GemStone server classes cannot be subclassed. This is an attribute of the class.
Execute class subclassesDisallowed to determine if a specific class can be subclassed.

Implementation Formats
Objects typically encapsulate data and behavior. The behavior is defined as methods on a
class and the data is stored in the object. The data may be stored in named instance
variables, indexed instance variables (Collection elements), or by value in specialized
internal structures.

The implementation format refers to how the basic structure of the objects are defined by
the class, which is done when the class is created. Implementation may be inherited from
the superclass, or by using specific subclass creation methods you can specify the
implementation format of the class.

Non-Indexable objects
Many types of objects have named instance variables, but no indexable variables. Objects
may have up to 2030 named instance variables, which are referred to by name in the code
for that class. This limit includes all inherited instance variables as well as instance
variables defined by the class.

This is the default format; subclass creation methods that begin with the subclass:
keyword will create classes of this format, if another format is not inherited.

Indexable Objects
Indexable objects have a variable number of elements, essentially instance variables that
are referenced by an Integer index; these are may be referred to as indexed instance
variables, varying instance variables, or unnamed instance variables. The number of an
object’s indexed instance variables can increase dynamically at run time, up to 240-1 (about
a trillion). There are two general cases of indexable objects:

Pointer-format
Pointer-format indexable objects allow the instance variables to refer to any other
object. Pointer-format objects may also have named instance variables.

Subclass creation methods that create indexed classes with pointer objects begin with
the keyword indexableSubclass:.

Byte-format
This format is used for objects with indexed instance variables that are specialized for
storing byte values, SmallIntegers in the range 0...255. Byte-format objects may not
have named instance variables.
32 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Subclass Creation
Subclass creation methods that create byte indexable classes begin with
byteSubclass:.

You may not create byte-indexable subclasses of pointer-indexable classes, nor vice-versa,
nor can you create indexable subclasses of NSCs.

NonSequencableCollection (NSC)
These classes store data with neither names nor indexes. They are suited to applications in
which access is by value, rather than by name or position. Classes with this format are
subclasses of UnorderedCollection, and are the classes for which Indexes are implemented.

You cannot directly define classes with this format, although you can subclass from
existing kernel classes. Subclasses of NSC classes may have named instance variables, but
not indexed instance variables.

Special
Instances of a number of kernel classes are encoded entirely in the object identifier. Special
objects do not use up an object ID (i.e., are not in the object table), do not take up separate
space in the repository (beyond the original reference itself), and equal values always
compare as identical.

Specials include:
Character, Boolean, UndefinedObject,
SmallInteger, SmallDouble, SmallFraction,
SmallScaledDecimal, SmallDate, SmallTime, SmallDateAndTime

Many of these have a limited range in which instances are special, and a corresponding
non-special class for out of range values.

You may not create your own specials nor may you subclass existing special classes.

Class Variables and Other Types of Variables
The implementation formats defined in the last section define several types of instance
variables. Class definitions also include the following variable types:

Class variables
A class variable is a variable whose name and value are shared by a class, all of its
instances, its subclasses, and all of their instances. Both class and instance methods of
the class and its subclasses can refer to the variable. You can think of these variables as
falling somewhere between local and global in their scope.

Class instance variables
A class instance variable is a variable whose name and value are shared by a class, but
not by its instances. Subclasses inherit the variable’s name but not its value. Only class
methods of a class and its subclasses can refer to class instance variables. Class instance
variables are useful when a class and its subclasses need to share the same structure,
but not the same value, for a variable.

Pool variables
The pool variables are an Array of SymbolDictionary instances that are searched when
attempting to bind a variable name during instance method compilation. Pool
variables come after class variables and before globals in precedence. They are
typically used when methods in a number of classes share values.
GemTalk Systems 33

Subclass Creation GemStone/S 64 Bit 3.6 Programming Guide
For example, one could define a SymbolDictionary with a key of #'CR' and a value of
(Character codePoint: 13). If this SymbolDictionary were included in the class
definition as a pool dictionary, then instance methods in the class could use CR as a
way to reference the value and make the code more readable.

Global variables
Global variables are not tied to a class. They may be entries in a SymbolDictionary
referenced in the UserProfile’s SymbolList.

Dynamic Instance Variables
In addition to the fixed instance variables, which are the same for every instance of that
class, you may also add dynamic instance variables to most instances.

Dynamic instance variables are key/value pairs that are stored with the instance like other
instance variables, but may be added to specific instances of a class and not to other
instances, without changing the class definition.

You cannot add dynamic instance variables to invariant objects, nor to Specials, nor to
classes or metaclasses.

The maximum number of dynamic instance variables that can be added to an object is 255.
However, the maximum may be lower for classes with many instance variables, since an
object cannot be changed to a large object by adding dynamic instance variables. So, more
exactly, the actual limit for the number of dynamic instance variables is calculated:

(255 min: ((2034 - self class instSize) / 2)

To add a dynamic instance variable, set the value using:

anObject dynamicInstVarAt: nameSymbol put: value

For example, say you have an instance of Animal representing the Bald Eagle. Bald Eagles
are an endangered species, so you might want to add the legal and conservation
information to this instance, but not to other instances of Animals.

theBaldEagle dynamicInstVarAt: #legalStatus
put: 'Bald and Golden Eagle Protection Act'.

You can check what dynamic instance variables have been defined for an object:
topaz 1> printit
theBaldEagle dynamicInstanceVariables
%
an Array
 #1 legalStatus

and retrieve the stored value for a dynamic instance variable:
topaz 1> printit
theBaldEagle dynamicInstVarAt: #legalStatus
%
Bald and Golden Eagle Protection Act

If the Bald Eagle was no longer protected and this information was no longer needed, you
could remove the dynamic instance variable

theBaldEagle removeDynamicInstVar: #legalStatus

The name and data for dynamic instance variables are persisted in the repository like any
other instance variable data. Dynamic instance variables allow you to add instance
variables to instance of a class, without the need to migrate. However, dynamic instance
34 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Subclass Creation
variables are less efficient than named instance variables, and make for code that is more
difficult to maintain.

Note that if you add a dynamic instance variable to an object, it does not impact any
existing equality semantics. If the dynamic instance variable should be considered when
determining if two objects are equal, you must add or update the implementation of = that
applies for that object (which may also involve updating hash); this is not recommended
for GemStone kernel classes, and should be done with caution if there may be existing
instance, since it can cause collection lookup problems.

Additional Class Creation Protocol
In addition to implementation format and variables, there are other features of classes that
can be, or must be, defined when the class is created. These are provided via subclass
creation methods with additional keywords.

The subclass creation methods follow the form in Example 2.2.

Example 2.2

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #('AllOfSpecies')
classInstVars: #('AllAnimals')
poolDictionaries: #()
inDictionary: UserGlobals
newVersionOf: Animal
description: 'Class describing Animals'
options: #()

The newVersionOf: allows you to create a new class that has the same classsHistory as
an existing class; this is covered in detail in Chapter 10. See “Versions of Classes” on
page 195.

The description: keyword allows you to provide documentation as part of the class
definition. You can also explicitly set the comment after the class has been created by using
the comment: method. For example:
Animal comment: 'Class describing Animal, created for the
Programmers Guide'.

The options: keyword allows you to specify a collection of symbols to defined specific
features of the new subclass. The options can include any of these:

#dbTransient See “DbTransient” on page 38 for details. This
option cannot be used in combination with
#instancesNonPersistent or
#instancesInvariant

#disallowGciStore For internal use
GemTalk Systems 35

Subclass Creation GemStone/S 64 Bit 3.6 Programming Guide
Note that some of these options are handled in specific ways when new versions of classes
are created. Class versioning and history are described in Chapter 10.

For more details on class creation protocol, refer to methods in the image.

In addition to the subclass creation methods described here, there are many other subclass
creation methods in the image, including methods with the keywords
inClassHistory:, isInvariant:, constraints:, isModifiable:, and
instancesInvariant:. These methods are deprecated, and should not be used,
although they remain to avoid problems with filing older code into the current image.

#instancesInvariant All instances of this class will be made invariant as
soon as they are committed. If any class is defined
with instancesInvariant, all its subclasses must
also have instancesInvariant.

Cannot be used in combination with
#instancesNonPersistent or #dbTransient

#instancesNonPersistent See “Non-Persistent Classes” on page 38 for
details. This option cannot be used in combination
with #dbTransient or #instancesInvariant

#logCreation Log class creation, including expressions that are
the same as an existing class and do not create a
new class instance or version, to the gem log or
linked topaz output using GsFile
class>>gciLogServer:

#modifiable If this symbol is included, the class remains
modifiable after creation. No instances can be
created until you make the class unmodifiable by
sending it the message immediateInvariant.

#noInheritOptions If this symbol is included, it must be first, and in
this case options are not inherited from the
superclass nor from an existing version of the
class. This applies to the options
#subclassesDisallowed,
#disallowGciStore, #traverseByCallback,
#dbTransient, #instancesNonPersistent,
and #instancesInvariant

#selfCanBeSpecial This is needed only when modifying superclass
hierarchy above classes with special format. It is
never inherited.

#subclassesDisallowed No subclasses of the newly created class are
permitted.

#traverseByCallback For internal use.
36 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating Classes With Invariant Instances
2.2 Creating Classes With Invariant Instances
For data that must not ever be changed, GemStone provides two ways to make objects
invariant or unchangeable. These are object-level invariance, and class-level invariance.

Per-Object Invariance
Any object can be made invariant by sending it the message immediateInvariant (a
method defined by class Object). This mechanism provides a form of write-protecting
objects that is useful for maintaining the integrity of your database. Once
immediateInvariant is sent to an object, no modifications can be made to any of the
object’s instance variables, nor can the size or class of the object be changed. The
immediateInvariant message takes effect immediately, but can be reversed by
aborting the transaction in which it was sent. Once the transaction has been committed,
you cannot reverse the effect of this message. The message isInvariant returns true if
the receiver is invariant; false otherwise.

Invariance for All Instances of a Class
In class-level invariance, the definition of the class specifies that all instances of the class
are invariant. Such an instance can be modified only during the transaction in which it is
created. When the transaction is committed, the instance becomes invariant and no further
modifications can be made to any of its instance variables, nor can the size or class of the
object be changed. This mechanism is useful for supporting literals in methods and in other
limited situations, but is generally more cumbersome than object-level invariance.

Class-level invariance can be specified during class creation by including the
#instancesInvariant symbol in the options: keyword argument. You cannot also
define the class with non-persistent instances (#instancesNonPersistent), nor with
non-persistent instances variable data (#dbTransient).

The following example creates a subclass of Animal whose instances are invariant:

Example 2.3

Animal subclass: 'InvariantAnimal'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
options: (#instancesInvariant)

2.3 Creating Classes with Special Cases of Persistence
In some cases, you may want either objects or the instance variables of objects to not be
persistent, that is, not be written to disk. For example, you may want to include session-
dependent information that shouldn’t be read by another session, or data that is bulky and
can be recreated easily. There are several ways to handle this.
GemTalk Systems 37

Creating Classes with Special Cases of Persistence GemStone/S 64 Bit 3.6 Programming Guide
Non-Persistent Classes
You can define a class as having only non-persistent instances. This means that instances
of this class cannot be committed, so you cannot include references to instances of non-
persistent classes within a persistent data structure.
To create a class with non-persistent instances, in the options: keyword argument,
include the symbol #instancesNonPersistent. You cannot also define the class with
non-persistent instances variables (#dbTransient), nor with invariant instances
(#instancesInvariant).
As discussed under “KeySoftValueDictionary” on page 55, GemStone provides a class
called KeySoftValueDictionary, which allows you to manage non-persistent objects that
are large and take time to create, but can be recreated whenever needed from small, readily
available objects (tokens).

You cannot commit instances of a non-persistent class. If you attempt to do so, GemStone
issues an error that indicates whether the object’s class or a superclass is non-persistent.
(The non-persistent status of a class is inherited by all of its subclasses.)

To determine whether a class’s instances are non-persistent, you can send the following
message:

theClass instancesNonPersistent

This message returns true if the class is non-persistent, false otherwise.

To make all instances of a class non-persistent, send the message:
theClass makeInstancesNonPersistent

Similarly, send this message to make all instances of a class persistent:
theClass makeInstancesPersistent

To make all instances of a class (and all of its subclasses) non-persistent, even if the class is
non-modifiable:

ClassOrganizer makeInstancesNonPersistent: theClass

Similarly, you can send this message to make all instances of a class persistent, even if the
class is non-modifiable:

ClassOrganizer makeInstancesPersistent: theClass

DbTransient
Classes can also be defined as DbTransient. Instances of classes that are DbTransient can
be committed — that is, there is no error if they are committed — but their instance
variables are not written to disk. This is useful if you need to encapsulate objects that
should not be persistent, such as semaphores, within object structures that do need to be
persistent and shared.
To create a class with DbTransient instances, in the options: keyword argument, include
the symbol #dbTransient. You cannot also define the class with non-persistent instances
(#instancesNonPersistent), nor with invariant instances (#instancesInvariant).
When a data structure containing an instance of a DbTransient class is committed, the
instance variables of the DbTransient object are written to the repository as nil. Whenever
a DbTransient object is read into a session, all of its instance variables are nil.
Since DbTransient instances are stored only in memory, they are affected by the in-memory
GC operations. (See “Managing VM Memory” on page 298. Also see Chapter 11 of the
System Administration Guide.)
38 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating Classes with Special Cases of Persistence
If memory becomes low, the transient objects may be stubbed out of memory. When
needed, it is re-read from the repository. However, all the instance variables will be nil after
a re-read. To prevent losing non-nil instance variable values, you should keep a reference
to DbTransient instances in session state.
Since the DbTransient object will remain in memory while referenced from session state,
the reference from session state should be removed when the DbTransient object is no
longer needed, to avoid filling up memory and causing an out of memory error.
Note that while DbTransient objects are only committed once (on creation), and so do not
normally cause concurrency conflicts, if they are clustered the object will be written (still
with all instance variables nil), and could potentially cause a concurrency conflict.
To set a class so all instances are DbTransient, send:

aClass makeInstancesDbTransient

aClass must be a non-indexable pointer class. This will cause any instance of aClass to be
DbTransient. The change takes place immediately.
The following message:

aClass makeInstancesNotDbTransient

will cause instances to be non-DbTransient, that is, allow instance variables to be written
to disk.
GemTalk Systems 39

Creating Classes with Special Cases of Persistence GemStone/S 64 Bit 3.6 Programming Guide
40 GemTalk Systems

Chapter

3 Resolving Names and
Sharing Objects
This chapter describes how GemStone Smalltalk finds the objects to which your programs
refer and explains how you can arrange to share (or not to share) objects with other
GemStone users.

Sharing Objects (page 41)
 explains how GemStone Smalltalk allows users to share objects of any kind.

The UserProfile’s Symbol List (page 42)
describes the mechanism that the GemStone Smalltalk compiler uses to find objects
referred to in your programs.

Using Your Symbol Dictionaries (page 48)
discusses how you can enable other users of your application to share information.

3.1 Sharing Objects
GemStone Smalltalk permits concurrent access by many users to the same data objects. For
example, all GemStone Smalltalk programmers can make references to the kernel class
Object. These references point directly to the single class Object—not to copies of Object.

GemStone allows shared access to objects without regard for whether those objects are
files, scalar variables, or collections representing entire databases. This ability to share data
facilitates the development of multi-user applications.

To find the object referred to by a variable, GemStone follows a well-defined search path:

1. The local variable definitions: temporary variables and arguments.

2. Those variables defined by the class of the current method definition: instance, class,
class instance, or pool variables.

3. The symbol list assigned to your current session.

If GemStone cannot find a match for a name in one of these areas, you are given an error
message.
GemTalk Systems 41

The UserProfile’s Symbol List GemStone/S 64 Bit 3.6 Programming Guide
3.2 The UserProfile’s Symbol List
Each GemStone user is associated with an instance of the class UserProfile. This UserProfile
stores such information as the GemStone user name, the encrypted password, and access
privileges. Your UserProfile also contains the instance variable symbolList.

This UserProfile can be used to login multiple sessions at the same time, including logins
by different people in different locations. The way the symbolLists are handled includes
options to accommodate this situation.

What’s In Your Symbol List?
When creating the UserProfile’s symbol list, the administrator adds specific
SymbolDictionaries to the SymbolList. The SymbolDictionaries contain associations that
define the names of all objects that are globally resolvable by your UserProfile. While this
will vary by application, your symbol list contains at least two dictionaries:

A “system globals” dictionary called Globals. This dictionary contains some or all of
the GemStone Smalltalk kernel classes (Object, Class, Collection, etc.) and any other
objects to which all of your GemStone users need to refer. Although you can read the
objects in Globals, normally only SystemUser is permitted to modify them.

A dictionary that is specific to your UserProfile, called UserGlobals. This dictionary
can be used to store objects for your own use and new classes you do not need to
share with other GemStone users. This dictionary also contains GemStone
infrastructure that is UserProfile specific.

Your symbol list will usually include other application-specific dictionaries to hold the
code you are developing. These may be shared with other users, so that you can all read
and modify the objects they contain. An administrator can arrange for a dictionary to be
shared by inserting a reference to that dictionary in each user’s UserProfile symbol list.

While every user will have the shared Globals and a private UserGlobals dictionary, and
by default most users will have the Published dictionary, the list of SymbolDictionaries in
each user’s SymbolList may otherwise be completely different.

Examining Your Symbol List
To get a list of the dictionaries in your symbol list, send your UserProfile the message
dictionaryNames. For example:

Example 3.1

topaz 1> run
System myUserProfile dictionaryNames
%
 1 UserGlobals
 2 ClassesForTesting
 3 Globals
 4 Published
 5 UserClasses
42 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The UserProfile’s Symbol List
The SymbolDictionaries listed in the example have the following function:

UserGlobals
Contains per-user application and application service objects.

ClassesForTesting
A user-defined dictionary.

Globals
Provides access for the GemStone kernel classes.

Published
Provides space for globally visible shared objects created by a user.

UserClasses
Usually only present if you are using GemBuilder for Smalltalk (GBS) to replicate
classes to the server. Putting this dictionary before the Globals dictionary allows an
application or user to override kernel classes without changing them. Keeping it
separate from UserGlobals allows a distinction between classes and application
objects.

To list the contents of a symbol dictionary:

If you are using Topaz, execute an expression that returns the dictionary. Example 3.2
lists the dictionary keys. Alternatively, you could just execute UserGlobals to
examine all keys and values.

If you are running GBS, select the expression UserGlobals in a GemStone
workspace and execute GS-Inspect it.

Example 3.2

topaz 1> run
UserGlobals keys
%
a SymbolSet
 ...
 #1 GcUser
 #2 UserGlobals
 #3 GsPackagePolicy_Current
 #4 PackageLibrary
 ...

If you examine all of your symbol list dictionaries, you’ll see that most of the kernel classes
are listed. In addition, there are global variables, both public and for internal use. For a
description of GemStone kernel objects, see the appropriate appendix of the System
Administration Guide.

You’ll discover that most of the dictionaries refer to themselves. Since the symbol list must
contain all source code symbols that are not defined locally nor by the class of a method,
the symbol list dictionaries need to define names for themselves so that you can refer to
them in your code. Figure 3.1 illustrates that the dictionary named UserGlobals contains an
association for which the key is UserGlobals and the value is the dictionary itself.
GemTalk Systems 43

The UserProfile’s Symbol List GemStone/S 64 Bit 3.6 Programming Guide
The object server searches symbol lists sequentially, taking the first definition of a symbol
it encounters. Therefore, if a name, say “#BillOfMaterials,” is defined in the first dictionary
and in the last, GemStone Smalltalk finds only the first definition.

Figure 3.1

�������	
��
�������
������	���	��

����
������

������	���	��

��
��	����

���

��
��	������������

Self-Referencing Symbol Dictionary

You can get the name of a SymbolDictionary by sending name. For example,
topaz 1> run
System myUserProfile symbolList collect: [:ea | ea name]
%
a Array
 #1 UserGlobals
 #2 Globals
 #3 Published

Inserting and Removing Dictionaries from Your Symbol List
Note that, to insert or remove a SymbolDictionary to/from your symbol list, you must
have the necessary system privilege. For details, see "User Accounts and Security" in the
System Administration Guide.

Creating a dictionary is like creating any other object, as the following example shows.
Once you’ve created the new dictionary, you can add it to your symbol list by sending your
UserProfile the message insertDictionary: aSymbolDict at: anInt.

For example:
System myUserProfile symbolList

createDictionaryNamed: #NewDict at: 1.

When you specify an index for a new SymbolDictionary, the existing symbol list
dictionaries are shifted as needed to accommodate the new dictionary.

Because the GemStone Smalltalk compiler searches symbol lists sequentially, taking the
first definition of a symbol it encounters, your choice of the index at which to insert a new
dictionary is significant.

The following example places the object MyCollection (a class) in the user’s private
dictionary named MyClassDict. Then it inserts MyClassDict in the first position of the
current Session’s symbolList, which causes the object server to search MyClassDict prior
44 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The UserProfile’s Symbol List
to UserGlobals. This means that the GemStone object server will always find
MyCollection in MyClassDict, not in UserGlobals.

Example 3.3

Object subclass: 'MyCollection'
instVarNames: #('snakes' 'snails' 'tails')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

! Resolves to UserGlobals
MyCollection instVarNames printString

| myClassDict |
(System myUserProfile resolveSymbol: #MyClassDict) isNil

ifTrue:[myClassDict := (System myUserProfile createDictionary:
#MyClassDict)]

ifFalse:[myClassDict := (System myUserProfile resolveSymbol:
#MyClassDict) value].

GsSession currentSession userProfile
insertDictionary: myClassDict at: 1.

Object subclass: 'MyCollection'
instVarNames: #('this' 'that' 'theOther')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: MyClassDict.

! Now resolves to different class in MyClassDict
MyCollection instVarNames printString

Recall that the object server returns only the first occurrence found when searching the
dictionaries listed by the current session’s symbol list. When you subsequently refer to
MyCollection, the object server returns only the version in MyClassDict (which you
inserted in the first position of the symbol list) and ignores the version in UserGlobals.
If you had inserted MyClassDict after UserGlobals, the object server would only find
the version of MyCollection in UserGlobals.

You may redefine any object by creating a new object of the same name and placing it in a
dictionary that is searched before the dictionary in which the matching object resides.
Therefore, inserting, reordering, or deleting a dictionary from the symbol list may cause
the GemStone object server to return a different object than you may expect.
GemTalk Systems 45

The UserProfile’s Symbol List GemStone/S 64 Bit 3.6 Programming Guide
This situation also happens when you create a class with a name identical to one of the
kernel class names.

To remove a symbol dictionary, send your UserProfile the message
removeDictionaryAt: anInteger, passing in the index of the dictionary you want to
remove.

Finding Out Which Dictionary Names an Object
To find out which dictionary defines a particular object name, send your UserProfile the
message symbolResolutionOf: aSymbol. If aSymbol is in your symbol list, the result is a
string giving the symbol list position of the dictionary defining aSymbol, the name of that
dictionary, and a description of the association for which aSymbol is a key. For example:

Example 3.4

topaz 1> run
System myUserProfile symbolResolutionOf: #Bag
%
2 Globals
 Bag Bag

If aSymbol is defined in more than one dictionary, symbolResolutionOf: finds only the
first reference.

To find out which dictionaries stores a name for an object and what that name is, send your
UserProfile the message dictionariesAndSymbolsOf: anObject. This message returns
an array of arrays containing the dictionaries in which anObject is stored, and the symbols
which name that object in that dictionary.

Example 3.5 uses dictionariesAndSymbolsOf: to find out which dictionaries in the
symbol list stores a reference to class DateTime.

Example 3.5

topaz 1 > run
| anArray myUserPro |
myUserPro := System myUserProfile.

"Find the first SymbolDictionary containing DateTime."
anArray := (myUserPro dictionariesAndSymbolsOf: DateTime) first.

"Get the name of the SymbolDictionary, which is a key within
itself"
(anArray at: 1) keyAtValue: (anArray at: 1)
%

Avoid redefining any kernel classes in other SymbolDictionaries. Their
implementation may change from one version of GemStone to the next. Creating
a subclass of a kernel class to redefine or extend that functionality is usually more
appropriate.
46 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The UserProfile’s Symbol List
Globals

Note that dictionariesAndSymbolsOf: may return zero, one, or multiple dictionaries.

The Transient Symbol List
Since the persistent symbolList is shared between all sessions that use that UserProfile to
login, you must use caution in making updates that you don’t want to be picked up by
other logins using the same UserProfile.

This is possible by using the transient symbolList. In releases before 3.6, a transient
symbolList was created by default, but in 3.6 and later, you must execute code that specifies
use of a transient symbolList.

The transient symbolList is kept in the singleton instances GsCurrentSession, which you
can access using GsSession currentSession or GsCurrentSession >>
currentSession. The instance of GsCurrentSession is not copied into any client interface
nor committed as a persistent object. Since the transient copy of the symbolList is transient,
changes to it cannot incur concurrency conflicts, nor are they subject to rollback after an
abort.

Executing any of the following methods will create a copy of the transient symbolList in
session state:

System class >> refreshTransientSymbolList

GsCurrentSession >> transientSymbolList: aSymbolList

GsCurrentSession >> transientSymbolList

Before executing any of these methods, GsSession currentSession symbolList
refers to the persistent SymbolList (System myUserProfile symbolList).

After executing any of these methods, GsSession currentSession symbolList
refers to a transient copy of the persistent SymbolList.

Figure 3.2

���������	�

���������
������
�������

�������

�����	 ��

�����	
��
������

!�����
��

�����	 ��

�����	 ��

�������
�����	 ��

��!������
�����
"��
�#���
��������	 ��

The GsSession symbolList — a copy of the UserProfile symbolList
GemTalk Systems 47

Using Your Symbol Dictionaries GemStone/S 64 Bit 3.6 Programming Guide
Changes to the current session’s symbolList (the transient symbolList) do not affect the
UserProfile symbolList (the persistent symbolList). Thus, the UserProfile symbolList can
continue to serve as a default list for other logins.

Updating Symbol Lists
GsCurrentSession >> symbolList is used to resolve global names in the image. If
you application may use transient symbolLists, this is the most reliable route to determine
how symbols will resolve in the current session, since it will provide the persistent
symbolList if there is no transient symboList, otherwise the current transient symboList.

When you have a transient symbolList (that is, if you have executed any of the methods
listed on page 47), then you will need to be conscious of how you are updating the
symbolList, to make sure you get the expected behavior.

If you add a new symbolDictionary to the persistent symbolDictionary but not to the
transient symbolDictionary, and these are different instances, then the new
symbolDictionary is not resolvable using GsCurrentSession >> symbolList,
and so not readily usable by name. This is the case, for example, if you make changes
to the result of System myUserProfile symboList. after executing
GsCurrentSession transientSymbolList.

If you add a new symbolDictionary to the transient symbolDictionary but not to the
persistent symbolDictionary, the new symbolDictionary will be available for the
session, but will disappear when the session logs out. This expression will insert a
dictionary into the transient symbolList, and create the transient symbolList if it was
not previously different than the persistent symbolList:

GsSession currentSession transientSymbolList
createDictionaryNamed:at:

If you add a new symbolDictionary to both the transient symbolDictionary and to the
persistent symbolDictionary, and you abort your transaction, the new
symbolDictionary will disappear from the persistent symbolDictionary, but remain in
the transient symbolDictionary until the session logs out.

If you want to make changes to both the persistent symbolList, and the transient
symbolList, methods such as this update both the persistent and transient
symbolLists.:

System myUserProfile insertDictionary:at:

3.3 Using Your Symbol Dictionaries
As you know, all GemStone users have access to such objects as the kernel classes Integer
and Collection because those objects are referred to by the Globals dictionary that is present
in every user’s symbol list.

If you want GemStone users to share other objects as well, you need to arrange for
references to those objects to be added to the users’ symbol lists.

NOTE
To insert or remove a SymbolDictionary to/from your symbol list, or to make any
changes to a UserProfile that is not your own, you must have the necessary system
48 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Using Your Symbol Dictionaries
privilege. For details, see "User Accounts and Security" in the System
Administration Guide.

Publishers, Subscribers and the Published Dictionary
The Published Dictionary, PublishedObjectSecurityPolicy, and the groups Subscribers and
Publishers together provide an example of how to set up a system for sharing objects.

The Published Dictionary is an initially empty dictionary referred to by your UserProfile.
You can use the Published dictionary to "publish" application objects to all users — for
example, symbols that most users might need to access. The Published Dictionary is not
used by GemStone classes; rather, it is available for application use.

The PublishedObjectSecurityPolicy is owned by the Data Curator and has World access set
to none. Two groups have access to the PublishedObjectSecurityPolicy:

Subscribers have read-only access.

Publishers have read-write access.

Publishers can create objects in the PublishedObjectSecurityPolicy and enter them in the
Published Dictionary. Then members of the Subscribers group can access the objects.

For example, your system administrator might add each member of a programming team
to the group Publishers. After completing the definition of a new class, a programmer
could make the class available to colleagues by adding it to the Published dictionary.
Because this dictionary is already in each user’s symbol list, whatever you add becomes
visible to users the next time they obtain a fresh transaction view of the repository. Using
the Published dictionary lets you share these objects without having to put them in
Globals, which contains the GemStone kernel classes, and without the necessity of adding
a special dictionary to each user’s symbol list.
GemTalk Systems 49

Using Your Symbol Dictionaries GemStone/S 64 Bit 3.6 Programming Guide
50 GemTalk Systems

Chapter

4 Collection and Stream
Classes
Collections of objects are key features in an application. GemStone provides a variety of
Collection classes, including both subclasses of Collection, and other implementations of
structures with collection semantics. This chapter describes the main types of collections
that are available.

Strings and ByteArrays are kinds of collections that are specialized to hold characters or
bytes; these are described separately in Chapter 5.

Introduction to Collections (page 51)
introduces the GemStone Smalltalk objects that store groups of other objects, and
describes the different kinds of collections that are available.

Reduced-Conflict Collection Classes (page 61)
describes specialized kinds of classes that avoid conflicts in a multi-user system.

GsBitmap (page 64)
describes GsBitmap, a specialized kind of collection.

Sorting the objects in a collection (page 66)
describes the ways to sort elements in collections.

4.1 Introduction to Collections
Instances of the Collection subclasses are specialized to manage an indeterminate number
of objects as a group using unnamed instance variables.

Collections can be classified by whether or not they maintain a specified order for their
elements, whether or not key-based lookup is supported, and the kinds of objects they can
reference.

Collections can be broadly classified into basic categories:

Access by Key — the Dictionary Classes

Instances of AbstractDictionary subclasses do not support a specific order for their
elements; elements are stored and retrieved via the at:put: and at: messages, using
GemTalk Systems 51

Introduction to Collections GemStone/S 64 Bit 3.6 Programming Guide
arbitrary objects for an element's key. Subclasses of AbstractDictionary are specialized
based on whether key-based lookup uses equality comparison or identity comparison,
the type of key, and the type of value.

Dictionaries can also have named instance variables, if you choose to define them.

Access by Position — the SequenceableCollection Classes

Instances of SequenceableCollection classes maintain a specific order for their elements
and support storage and retrieval via the at:put: and at: messages using an integer
key (the one-based offset into the elements).

Byte-format classes such as ByteArray and String cannot have named instance
variables. You may define named instance variables for pointer-format subclasses,
such as Array and OrderedCollection.

Access by Value — the UnorderedCollection Classes

Instances of UnorderedCollection classes—also referred to as Non-Sequenceable
Collections or NSCs—do not have a specific order for their elements, and do not
support storage or retrieval via the at:put: and at: messages. Objects in these
collections are accessed by iterating the collection. UnorderedCollections support
indexes, which allow ordered iteration and fast key-based lookup.

You may define named instance variables for subclasses of one of the
UnorderedCollections subclasses.

Other kinds of Collection

GemStone includes some collection-like classes that do not inherit from Collection,
such as GsBitmap. The generalizations about collections made in this chapter may or
not apply to such classes.

Efficient Implementations of Large Collections
When you create a collection of more than about 2K objects, or a byte collection larger than
16K, GemStone internally uses a sparse tree implementation to make more efficient use of
resources. These are referred to as "Large Objects", and use internal classes such as
LargeObjectNode. This behavior occurs in a manner that is transparent to you, and you
interact with Large Collections the same as smaller collections; however, these internal
objects may be visible when performing object-based audit and analysis.

Modifying objects in collections
Different kinds of collections use different criteria in which to store and locate objects. Most
dictionaries use a hashed value, the result of sending the #hash message to each key object.
If the result of sending #hash changes, the key may not be found in the collection using
methods such as at:.

The ordering of a SortedCollection depends on the results of sending comparison methods
to the objects in the collection.

If a hash method or comparison method is defined that depends on values in the instance
variables of the objects, and these instance variables are modified, the object may not be
found using lookup methods in the dictionary or sorted collection, though iteration will
still find them. If you change the value of an instance variable of an object in such a
collections, you should remove and re-insert the object in the collection so the lookup
methods will work.
52 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Introduction to Collections
Protocol Common to All Collections
Collection classes understand common protocol, inherited from the abstract superclass
Collection. Collection defines methods that enable you to perform the general collection
operations described in the following sections.

Creating Instances
Collections can be creating using new, new:, with:, and similar protocol. The most basic
way to create a new collection is using the message new. When sent to a Collection class,
this message causes a new instance of the class with no elements (size zero) to be created.
Most kinds of collections can expand as you add additional objects.

new: anInteger, causes many Collection subclasses to create an instance that is pre-sized
to hold anInteger elements. This avoids the need to expand the collection when elements
are added. Pre-defining the size during creation is particularly important when creating a
hashed collection that will hold a large number of objects. Hashed collections store
elements in buckets, and the number of buckets must be increased when the number of
objects in the collection reaches a threshold for the number of buckets. These expansions
are expensive, since it requires that each element be re-added to the expanded collection at
the recomputed hashed location.

Several kinds of Collections can be created as literals, using Smalltalk syntax. Arrays,
ByteArrays, Strings and Symbols have literal syntax, and Arrays can also be created at
runtime using Array constructors. ByteArrays, Strings and Symbols are discussed in
Chapter 5.

Enumerating
Collection defines several methods that enable you to loop through a collection’s elements,
evaluating a block for each element in the collection.

The message do: aBlock is the most general; it evaluates aBlock for each element.

Methods that iterate through the elements and return collections are collect:,
select:, and reject:.

The class of the result collection is often, but not always, the same kind of collection as
the receiver. The class methods species, speciesForSelect, and
speciesForCollect determine the class of the result.

When sent to SequenceableCollections, these messages preserve the ordering of the
receiver in the result. That is, if element a comes before element b in the receiver, then
element a will come before b in the result.

The messages detect:, detect:ifNone:, and any iterate to return a single
element, based on the order the collection is enumerated. Enumeration stops after the
an element is found.

The message anySatisfy: enumerates each element, stopping if any is found that
meet the block criteria; allSatisfy: enumerates, stopping if any is found that does
not meet the block criteria.

To avoid unpredictable consequences, do not add elements to or remove them from a
collection while you are enumerating it.
GemTalk Systems 53

Introduction to Collections GemStone/S 64 Bit 3.6 Programming Guide
Collections in multi session environment
In many cases, you will have collections that need to be accessed by multiple sessions in an
application. Different sessions may need to read the contents or to add, remove, or modify
elements.

Conflicting updates
Due to the transactional nature of GemStone (see Chapter 8‚ “Transactions and
Concurrency Control”), overlapping updates by two sessions may conflict, in which case
the second update has failed and the work needs to be repeated.

There are some kinds of conflicts that, while they modify the same object, are not really
conflicts in a logical sense. GemStone provides a number of different collection classes that
avoid specific kinds of conflicts; these are described under “Reduced-Conflict Collection
Classes” on page 61.

Visibility and ordering
When you add an element to a collection, this change does not become visible to other users
until you have successfully committed the transaction. While it is important in a multiuser
system to avoid long periods in a transaction prior to commit, the requirements are
application specific and there may be minutes or hours between the time an object is
created and when it is finally committed and visible to other users. Other users, in turn,
must abort or commit before they see the changes.

For ordinary (non-reduced conflict) collections, this means that object changes may
become visible to other users some time after the change is actually made.

For reduced-conflict sequenceable and queue classes, the order of objects in the collection
may depend on the order of the commit, rather than the order of the time in which the
object was created.

Collection classes
Collection classes can be grouped by the kinds of access methods they provide and the
kinds of objects their instances can store.

Dictionary classes, including Dictionary, KeyValueDictionaries, and
KeySoftValueDictionary

SequenceableCollection classes, including Array, OrderedCollection, and
SortedCollection,

UnorderedCollection classes, including Bag, IdentityBag, Set, and IdentitySet

Stream Classes, including ReadStream, WriteStream, and ReadWriteStream.

Reduced-Conflict Collection Classes, including RcArray, RcIdentityBag,
RcIdentitySet, RcKeyValueDictionary, RcPipe, and RcQueue.

Classes that aren’t subclasses of Collection, including GsBitmap.

String classes, including Traditional and Unicode string classes and Symbols, are also
kinds of Collections and understand many kinds of Collection messages. Concerns that are
specific to Strings, including String collation, are described in Chapter 5.
54 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Introduction to Collections
This chapter does not attempt to describe all collection classes or all methods that are
available; it highlights the most commonly used protocol and describes special features.
Review the methods in the image for more details.

Dictionary classes
Dictionaries provide their special facilities by storing key-value pairs instead of simple,
linear lists of objects. The elements in a Dictionary collection are stored and accessed via a
key; each key must be unique within that Dictionary.

While some types of dictionaries are implemented as “a collection of Associations”, the
interface methods return results based on the logical contents, which are the values. Other,
specialized protocol allows you to refer to the key or the value portions of the logical
associations.

Internal Dictionary Structure
For performance reasons, the internal implementation of Dictionary classes varies.
Instances of Dictionary itself consist of a collection of Association objects.
KeyValueDictionary subclasses are implemented differently, as a sequence of keys and
values, which may use CollisionBuckets to hold the actual values. IdentityDictionary is a
sequence of keys and Associations. All these dictionaries understand common protocol,
regardless of implementation.

Dictionary and KeyValueDictionary
Dictionary class uses Associations to store the key/value pair, while subclasses of
KeyValueDictionary are slot-based. KeyValueDictionary has several subclasses, divided
according to the type of key used to access the information:

IdentityKeyValueDictionary

IntegerKeyValueDictionary

StringKeyValueDictionary

SymbolKeyValueDictionary

IdentityDictionary

SymbolDictionary

KeySoftValueDictionary
A KeySoftValueDictionary is a subclass of KeyValueDictionary that allows the virtual
machine to remove entries as needed to free up memory.

Typically, you might use a KeySoftValueDictionary to manage non-persistent objects that
are large and take time to create, but that can be recreated whenever needed from small,
readily available objects (tokens). For example, you might create a KeySoftValueDictionary
to serve as a cache to hold large, expensive objects that are needed repeatedly. Within that
dictionary, the values would be the large calculated objects, and the keys would be the
corresponding tokens. If your application needs a large, expensive object but does not find
it in the KeySoftValueDictionary, you can create the object and add it to the cache so that it
might be available the next time it is needed.
GemTalk Systems 55

Introduction to Collections GemStone/S 64 Bit 3.6 Programming Guide
As memory fills up, the virtual machine might remove some objects from the cache.
(Remember, the contents of the cache are non-persistent and can be recreated.) The virtual
machine may remove keys and values from the KeySoftValueDictionary until adequate
memory is available. For details about how to manage the number of
KeySoftValueDictionary entries, see “Getting Rid of Non-Persistent Objects” on page 297.

Keep in mind the following:

Entries are removed from a KeySoftValueDictionary only if there are no strong
references to the entry’s value.

If an entry in a KeySoftValueDictionary is cleared, all other entries that reference this
value directly or indirectly will also have been cleared.

Before generating an OutOfMemory error, the virtual machine removes all
KeySoftValueDictionary entries that are eligible for removal.

KeySoftValueDictionary entries are cleared during a mark/sweep operation, but are
not cleared during a scavenge. For more about mark/sweep and scavenge operations,
see the “Managing Growth” chapter of the System Administration Guide.

A corresponding subclass, IdentityKeySoftValueDictionary, uses identity (rather than
equality) comparison on keys. For details, see the image.

A KeySoftValueDictionary frequently contains instances of SoftReference. Do not be
tempted to confuse this with the notion of WeakReference found in many Smalltalk
dialects; the two mechanisms are quite different.

SequenceableCollection classes
SequenceableCollections, such as Array and OrderedCollection, let you refer to their
elements with integer indexes, and they understand messages such as first and last
that refer to the order of those indexed elements. Adding by default adds to the end of the
collection.

Copying
When copying a very large instance of a subclass of SequenceableCollection, it can be more
efficient to use the method replaceFrom:to:with:startingAt:, which does not fault
the contents into memory. This can improve performance significantly for very large
collections.

This example copies two elements of an array into a different array, overwriting the target
array’s original contents:

| numericArray |
numericArray := Array with: 55 with: 66 with: 77 with: 88.
numericArray replaceFrom: 2 to: 3

with: #(1 2 3 4 5) startingAt: 4.
numericArray
%
an Array
 #1 55
 #2 4
 #3 5
 #4 88
56 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Introduction to Collections
Note that, while the replace method does not itself fault the contents into memory,
displaying the results as in the example also faults the objects into memory.

Array
One of the most important differences between client Smalltalk arrays and a GemStone
Smalltalk array is that GemStone arrays are extensible; you can increase the size of an array
at any time. Sending at:put: will increase the size of the array, as long as the index is only
one greater than the current array size. Other protocol such as addAll: also increase the
size while adding elements.

It’s also possible to change the size without explicitly storing or removing elements, using
the message size: inherited from class Object. When you lengthen an array with size:,
the new elements are set to nil.

Literal Array and Array Constructors
Arrays can also be created in code without sending instance creation messages, by using
literal array or array constructor syntax.

Since Array constructors perform code at runtime, it is more efficient to use Array literals
if the contents are literals.

Array Literals are created at compile time, and hold other literal objects. These start with
the pound sign, are enclosed in parenthesis and separated by white space. Array literals
are defined by ANSI; syntax is described on page 360. They are invariant.

#('carrot' 'tomato' 'celery')

Array constructors are created at runtime. These are enclosed in curly braces and separated
by a period. Array constructors are GemStone-specific, not defined by ANSI; syntax is
described on page 366.

{ Date today . Time now }

SortedCollection
SortedCollection is a type of SequenceableCollection in which the elements are ordered by
a specific sort order, not by the order in which they were added or by the method used to
add the element. You may not send at:put:, addLast:, or similar methods to a
SortedCollection.

Each instance of SortedCollection is associated with a sortBlock. The default block will sort
elements that can be compared using <=, which includes strings and numbers. You can
also define your own sortBlock, if you want elements ordered by some other criteria, such
as the value of an instance variable.

For more on comparison, sorting, and sort blocks, see “Sorting the objects in a collection”
on page 66.
GemTalk Systems 57

Introduction to Collections GemStone/S 64 Bit 3.6 Programming Guide
Example 4.1

| scrabbleWords |
scrabbleWords := SortedCollection sortBlock:

[:a :b | a size < b size].
scrabbleWords add: 'able'; add: 'zebra'; add: 'jumper';

add: 'yet'.
scrabbleWords
%
aSortedCollection('yet', 'able', 'zebra', 'jumper')

There is overhead in always keeping the collection sorted, so it usually more efficient to
sort the elements only when you need them to be sorted for presentation. Especially for
large collections or collections in which objects are frequently added and removed,
consider using another kind of class to store the elements, then using methods such as
sortWithBlock: to create a new Array with the elements in sorted order.

SortedCollection sortBlocks are compiled code, and as such, may need to be recompiled on
GemStone upgrade. Provided the sortBlock is simple—that it, it does not contain
references to variables outside the scope of the block, nor iterative methods—the recompile
can be done automatically. Since the sortBlock executes for many element pairs during sort,
keeping the sortBlock simple and fast is important for performance in any case.

Stream Classes
A Stream acts like a SequenceableCollection that keeps track of the index most recently
accessed. Streams are often used for reading characters from strings or files, but any kind
of collection can be used with a Stream, and any type of object can be in that collection.

Commonly used Stream classes are ReadStream, WriteStream, and ReadWriteStream,
which come in two variants; the traditional Smalltalk 1-based positional offset, and the
ANSI-compliant portable streams with an 0-based offset.

PositionableStream and Position
PositionableStream, with its subclasses ReadStream and WriteStream, was traditionally
implemented in GemStone with the position indicating an offset from 1; that is, the first
position in the stream was 1.

ANSI specifies, and other Smalltalk dialects use, an offset of 0, so the first position in the
stream is 0.

To allow both sets of classes to be available for use, while either one or the other uses the
actual class name, GemStone includes the multiple sets of classes, implementing both
interfaces. There are four sets of classes, which all exist in the image (and therefore, may
have instances), with only three sets being visible at any time. The following two sets are
always visible:

Legacy-style PositionableStream classes, compatible with previous GemStone
version’s PositionableStream classes:

PositionableStreamLegacy
ReadStreamLegacy
WriteStreamLegacy
58 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Introduction to Collections
ANSI-compliant and portable PositionableStream classes:

PositionableStreamPortable
ReadStreamPortable
WriteStreamPortable
ReadWriteStreamPortable

In addition, only one of the following sets is visible, depending on how your system is
configured. These are two distinct sets of instances of Class, with the same name, but
different implementations.

PositionableStream (with legacy definition and methods)
ReadStream
WriteStream

PositionableStream (with portable definition and methods)
ReadStream
WriteStream

The legacy versions are stored in Globals at: #GemStone_Legacy_Streams. The portable,
ANSI-compatible versions are stored in Globals at: #GemStone_Portable_Streams.

To check what is currently installed, use the following methods:
PositionableStream class >> isLegacyStreamImplementation
PositionableStream class >> isPortableStreamImplementation

To install the portable version, use the method:
Stream class >> installPortableStreamImplementation

To install the legacy version, use the method:
Stream class >> installLegacyStreamImplementation

AppendStream
AppendStream is a kind of Stream that does not maintain a position. It is designed to
optimize a common use-case for streams: composing long, complex blocks of text and
returning the resulting string.

Like WriteStream, you can add strings and characters to an AppendStream, and like any
stream, you can get the entire contents. Many other methods commonly associated with
Stream classes are not available, however.

UnorderedCollection classes
Instances of UnorderedCollection store their elements as an internal, tree-based structure
referred to as an Non-Sequenceable Collection (NSC). The elements have no defined order
within the collection, so methods such as at: and at:put: are disallowed.

UnorderedCollection implements protocol for indexing, which allows for large collections
to be queried and sorted efficiently. Chapter 7‚ “Indexes and Querying”, describes the
querying/sorting functions in detail. The most efficient way to handle very large
collections is using UnorderedCollection, using GemStone indexes to access the contents.

UnorderedCollections cannot contain nil as an element; adding nil has no effect.

Commonly used UnorderedCollection concrete classes are Bag, Set, IdentityBag and
IdentitySet. Since Bag and Set use equality for comparisons, for large collections it is much
more efficient to use IdentityBag or IdentitySet, which perform comparisons based on
identity (OOP).
GemTalk Systems 59

Introduction to Collections GemStone/S 64 Bit 3.6 Programming Guide
Union, Intersection, and Difference
Subclasses of UnorderedCollection provide messages that perform set arithmetic: union,
set intersection, and set difference.

+ union, returning elements that are in either one, the other, or both.

- difference, returning elements that are in the receiver but not the argument.

* intersection, returning elements that are in both

Example 4.2

| pets rodents |
pets := IdentityBag with: 'dog' with: 'cat' with: 'gerbil'.
rodents := IdentityBag with: 'rat' with: 'gerbil' with: 'beaver'.
pets * rodents
%
 anIdentityBag('gerbil')

pets + rodents
%
 anIdentityBag('beaver', 'rat', 'gerbil', 'gerbil', 'cat', 'dog')

pets - rodents
%
 anIdentityBag('cat', 'dog')

Avoiding faulting contents into memory
If the argument to addAll: is an Array or OrderedCollection, the elements in the
collection are not faulted into memory. For very large collections, or if the objects in the
collection are not in the shared page cache and must be read from disk, this can be a
significant advantage. Using an IdentityBag as an argument to
replaceFrom:to:with:startingAt: allows you to get a copy of the elements without
faulting the contents into memory.

Example 4.3

| bagOfRodents |
bagOfRodents := IdentityBag withAll: #('beaver' 'rat' 'agouti'

'chipmunk' 'guinea pig').
(Array new: 5) replaceFrom: 3 to: 5

with: bagOfRodents startingAt: 1.
 anArray(nil, nil, 'guinea pig', 'chipmunk', 'agouti')
60 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Reduced-Conflict Collection Classes
4.2 Reduced-Conflict Collection Classes
GemStone provides a variety of reduced-conflict collection classes. These classes are
similar to the standard collection classes already described, but include additional
processing to avoid transaction conflicts in a multi-user environment.

Each reduced-conflict class has specific types of conflicts they are designed to avoid, and
the amount of internal infrastructure or the cost of resolving a conflict varies. Selection of
an RC class should consider the demands of the application, and also the costs of the
automatic conflict resolution.

For more on transactions and transaction conflicts, see Chapter 8. Further information on
the transactional behavior of these RC classes is under the section “Classes That Reduce the
Chance of Conflict” on page 164.

RcArray
The class RcArray is similar to Array, but no conflict occurs when multiple users add
objects to an RcArray. If a conflict with another update operation on the RcArray occurs,
the add is replayed so that the commit can succeed.

Only the following methods support concurrent updates:
add:
addAll:
at:put: (where no other session affects the element at the at: index)
size: (when size is increased)

NSC/UnorderedCollection classes

RcIdentityBag
The class RcIdentityBag provides much of the same functionality as IdentityBag, but with
no conflict for multiple sessions that add objects to the bag, and a single session that
removes objects.

Internal implementation
RcIdentityBag is internally implemented using an Array of IdentityBags. Each session
number corresponds to two IdentityBags, one for additions to the RcIdentityBag, and one
for removed elements. Each logged-in session only modifies the IdentityBags
corresponding to its own session number. Computing the current contents of an
RcIdentityBag means combining the add bags, and removing all the remove bags.

Maintenance
The implementation of RcIdentityBag means that reclaiming the storage of objects that
have been removed from the bag actually occurs when a session performs later adds or
removes, or after that session logs out, another session logs in as that session number and
performs adds or removes.

If a session adds a great many objects to the RcIdentityBag, and then does not do any
further adds or removes; or if it logs out and the following sessions to use that session
number do not perform adds or removes on this bag, then performance can become
degraded and otherwise dereferenced objects in the RcIdentityBag cannot be garbage
collected.
GemTalk Systems 61

Reduced-Conflict Collection Classes GemStone/S 64 Bit 3.6 Programming Guide
The message cleanupBag may be sent to the RcIdentityBag to process removals for
inactive sessions. This may cause conflicts if a session logs in and adds or removes an
object.

RcLowMaintenanceIdentityBag
RcLowMaintenanceIdentityBag is similar to RcIdentityBag in behavior, but does not
require regular cleanup. Rather than using a per-session subcollection of add and remove
elements, RcLowMaintenanceIdentityBag relies on replay to resolve conflicts. Like
RcIdentityBag, it has no conflict for multiple sessions that add objects to the bag, and a
single session that removes objects.

The cumbersome name is intended to be temporary, with this implementation replacing
RcIdentityBag’s subcollection-based implementation in some future release.

RcIdentitySet
The class RcIdentitySet is similar to IdentitySet, but no conflict occurs when multiple users
add objects to an RcIdentitySet. If a conflict with other update operations on the
RcIdentitySet occur, the add is replayed so that the commit can succeed.

RcKeyValueDictionary
The class RcKeyValueDictionary provides the same functionality as KeyValueDictionary,
but with no conflict for operations that involve different keys in the dictionary. As long as
the keys are different, multiple sessions can add new keys to the dictionary, remove keys,
or update values.

RcKeyValueDictionary avoids conflict by performing a selective abort and replay of the
modifications to the dictionary.

Queue classes
The Queue classes implement a first-in-first-out (FIFO) queue. These are a kind of
collection that is ordered by the sequence in which objects are added to the collection. The
add: message puts an element at the logical end of the queue, and the remove method
returns the element at the logical head of the queue.

The following example has the same semantics for GsPipe, RcPipe, and RcQueue; the
choice of classes depends on the transactional requirements of your application.

Example 4.4 FIFO Queue

| pipe |
pipe := RcPipe new.
pipe add: 'orange'.
pipe add: 'apple'.
pipe add: 'banana'.
pipe remove.
pipe.
%
 aRcPipe('apple', 'banana')
62 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Reduced-Conflict Collection Classes
GsPipe
The class GsPipe implements a first-in-first-out queue, with no conflict when a single
session adds objects to the RcPipe, and only one session removes objects.

Internally, the GsPipe is implemented as a linked list of GsPipeElements. Since adds and
removes only affect the respective ends of the linked list, there is no conflict between add
and remove.

RcPipe
The class RcPipe implements a first-in-first-out queue, with no conflict when multiple
sessions add objects to the RcPipe, and only one session removes objects.

Internally, the RcPipe is implemented as a linked list of GsPipeElements. Unlike with
GsPipe, if a conflict with an add by another session occurs, the add operation is replayed
so that the commit can succeed. Only add: and operations that invoke add: are reduced
conflict.

RcQueue
The class RcQueue implements a first-in-first-out queue, with no conflict when multiple
sessions add objects to the RcQueue, and only one session removes objects.

RcQueue has a more complex internal implementation, which allows it to handle high rates
of concurrent updates without affecting performance. However, some usage conditions
make is necessary to perform manual cleanup

Internal implementation
Internally, RcQueues are implemented using an Array of RcQueueSessionComponents,
each corresponding to a session number. The RcQueueSessionComponents contain
RcQueueEntry instances, one for each object that the session with the corresponding
session number has added to the queue. The RcQueueEntry includes timestamp and
sequence number; the timestamp is used to determine the next object within the entire
queue is next to be returned, and the sequence number is used to track the next element
within the queue for a specific session.

When a next message causes an object to be removed, the removing session updates the
RcQueue’s removal sequence number array corresponding to the
RcQueueSessionComponents in which the removed object was found.

Maintenance
Reclaiming the storage of objects that have been removed from the queue is deferred until
new objects are added by a session with the same session number; this is the way the risk
of conflict is avoided.

If a session adds a great many objects to the queue all at once and then does not add any
more, while another session consumes the objects, performance can become degraded,
particularly from the consumer’s point of view. In order to avoid this, the producer can
send the message cleanupMySession occasionally to the instance of the queue from
which the objects are being removed. This causes storage to be reclaimed from obsolete
objects.

To remove obsolete entries belonging to all inactive sessions, the producer can send the
message cleanupQueue.
GemTalk Systems 63

GsBitmap GemStone/S 64 Bit 3.6 Programming Guide
4.3 GsBitmap
A GsBitmap is quite different than the other collections that have been described. Instances
of GsBitmap are objects that encapsulate an in-memory bitmap, with the presence of an
object in the collection only indicated by the way a bit is set at the index for the oopNumber
of the object.

GsBitmaps cannot be committed, and are designed to optimize performing tasks on very
large numbers of persistent objects. In particular, repository analysis using
allInstances and similar methods can be more easily done using GsBitmaps. The
objects in a GsBitmap are not in temporary object memory, allowing arbitrary large
collections. A number of repository analysis methods return GsBitmap instances, and
instances of GsBitmap can be created from hidden sets (see section 17.1 on page 317).

While GsBitmap can be considered as a collection and implements some Collection
protocol, it does not inherit from Collection. Methods such as add:, remove:, includes:
and do: are implemented specifically for GsBitmap; see the image for specific methods.
You may send asGsBitmap to create a GsBitmap from a collection, provided the collection
only contains objects that are allowed in a GsBitmap; use asArray to collect the objects
corresponding to the OOPs in the GsBitmap.

Since GsBitmap is intended to work with very large collections of objects, it implements set
arithmetic methods, +/union:, -/difference: and */intersect:.

While there are restrictions and caveats to using GsBitmap, there are significant benefits in
memory use. Instances of GsBitmap use C Heap memory, not temporary object memory,
to store the bit array.

The following restrictions apply to GsBitmap:.

Only committed objects can be added to a GsBitmap.

Specials, such as Characters, Integers, and SmallDoubles, cannot be added, since they
do not have POM OOPs.

Objects can appear only once in the bitmap; duplicates are ignored.

GsBitmaps are ordered in OOP order, regardless of the order they are added.

GsBitmaps cannot be committed, since the underlying structure is not an object.

Being in a GsBitmap does not count as a reference to an object, so there is a risk that
objects in a GsBitmap could be garbage collected.

The following example finds all instances of Customer that are not in the AllCustomers
collection:

Example 4.5 GsBitmap

| bmAllInstances bmCustomerColl|
bmAllInstances := SystemRepository allInstances: Customer.
bmCustomerColl := AllCustomers asGsBitmap.
(bmAllInstances difference: bmCustomerColl) asArray.
64 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GsBitmap
GsBitmaps and C Heap memory
While GsBitmaps do not used temporary object memory, they do still use some memory,
and it is possible to run out of C Heap memory if there is extensive use of large GsBitmaps.

An instance of GsBitmap requires a minimum of 16KB (one page) of C Heap memory,
which can hold up to 2K objects. A GsBitmap’s memory use always grows in 16KB
increments. For GsBitmap instances that contain more than 2K elements, the amount of
memory used will vary, depending on how dense the OOP values are within the leaves of
the internal tree structure. The best case, for very large, dense bitmaps, is about 1 bit per
object. A GsBitmap that contains all the OOP in the repository (GsBitmap
allValidOops) will take about (System _oopHighWaterMark // 8) bytes of C heap
memory.

GsBitmaps and their objects
There is an important point to note about GsBitmaps; an object in a GsBitmap is not
"referenced" by the GsBitmap in the usual way.

An object in GemStone that is not referenced by other persistent objects or by references
from a session, is subject to garbage collection. In busy systems, the OOP of that object may
be recycled and no longer be in use; and the OOP may be reused by this or another session
for an entirely new object of any class. GemStone collections (other than GsBitmap) have
references to the objects contained within them, which keeps the objects in temporary
collections safe for the life of a session.

Since the references in a GsBitmap are just to the OOPS, not to the objects, objects in a
GsBitmap are not safe; the reference from the bitmap is not sufficient to preserve content
objects from garbage collection, if they are not referenced somewhere else in the
application or session.

If your session performs commits or aborts (including automatic commits or aborts), and
the objects that you are working with may become dereferenced (for example, removed
from the root collection by another session), then your code should be prepared for objects
to no longer exist, or to be a different object than expected.

If an object was garbage collected, and the OOP reused, it may have been used for a critical
internal object, or an important object in your application. Use caution when modifying the
objects returned from a GsBitmap.

GsBitmaps methods for repository analysis
GsBitmap includes methods that enable repository-wide analysis of objects in the
repository. The following methods are available; see the image for other methods.

GsBitmap >> referencedObjects
Returns a new GsBitmap containing the objects directly referenced by the objects
in the receiver.

GsBitmap class >> allValidOops
Returns a GsBitmap containing the oops of all valid committed objects in the
repository.

GsBitmap class >> transitiveReferences: aCollection
Returns a GsBitmap that contains all the objects which are transitively referenced
from the objects in aCollection.
GemTalk Systems 65

Sorting the objects in a collection GemStone/S 64 Bit 3.6 Programming Guide
GsBitmap class >> allObjectsExcept: aCollection
Returns a GsBitmap that contains all objects that exist in the repository, which are
not contained in the objects transitively referenced from aCollection.

Bitmap files
In addition to standard collection protocol, GsBitmaps can be written to and read from
disk, using the following methods:

GsBitmap >> writeToFile:

GsBitmap >> writeToFileInPageOrder:

GsBitmap >> readFromFile:

GsBitmap >> readFromFile:withLimit:startingAt:

You may also query for information on a given bitmap file, using
GsBitmap >> fileInfo:. This method returns an array containing:
number of oops in the file
whether the file was written in page order
number of valid oops
number of oops that are not allocated, or in the process of being garbage collected

A GsBitmap file contains references to numeric OOPs. The caution about the risk of
unreferenced OOPs being garbage collected and possibly reused, applies even more
strongly when using GsBitmap files. And of course, the likelihood of incorrect results
relates to the amount of garbage collection that has been done during the period between
the time the file was written and when it is read.

4.4 Sorting the objects in a collection
You are likely at some point to want to present the contents of your Collection in a sorted
order. You will have to determine how the objects in your collection should be compared
to each other for the ordering you need.

Default Sort
Many objects, such as strings, numbers, and dates, have an inherent sort ordering; they
respond to <= in a common way, although they cannot always be compared with each
other. If your collection contains only homogenous objects that share an understanding of
<=, you can use messages such as sortAscending, sortDescending, and
asSortedCollection to the collection.

Example 4.6 SmallInteger and String sorting

(Array with: 123 with: 3 with: 99 with: 10) sortDescending
%
 anArray(123, 99, 10, 3)

(Array with: '123' with: '3' with: '99' with: '10') sortAscending
%
anArray('10', '123', '3', '99')
66 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Sorting the objects in a collection
The default sort of Strings is case-insensitive, unless the only difference is case in which
uppercase is first. However, in many cases you may need a different ordering, particularly
when languages other than English and character outside the ASCII range are involved.
GemStone provides specialized tools for this, which are described in Chapter 5.

The options depend on the type of data in your collection.

Sort based on predefined order of the objects. Some objects, such as Strings,
Integers, and DateTimes, have an inherent sort ordering, and GemStone provides
default sorts for Collections that contain only objects that can be compared using <=.

While strings have intuitive sort order, string sorting can be complex. Traditional and
Unicode strings handle some cases differently. String sorting is described in section 5.3
on page 79.

Sort based on one or more of the predefined order of objects’s instance variable
values. The sort you intend is based on the values in application objects instance
variables, and these values have inherent sort order, such as sorting customers by zip
code.

Arbitrary Sort. sortBlocks allow you to specify expressions that can order any type of
object according to your specific requirements.

These issues are the same when using a SortedCollection, which always maintains sort
order as elements are added and removed, or when sorting another kind of collection for
presentation.

Sorting Application objects
Most likely, you will need to sort complex objects in your collection, such as Customers by
name or Addresses by zip code. If the instance variables in your complex objects are objects
that have a defined sort order, you can take advantage of sortAscending:,
sortDescending:, and sortWith:, to provide a specification for the desired sort order.

You may wish to implement <= on your application objects, in which case you can just use
as sortAscending, sortDescending, and asSortedCollection. However, this
provides a single definition of the sort order of your objects that will always be applied.

For example, say we have a class for Employee, and a Globals AllEmployees is a collection
that contains instances of Employee:
GemTalk Systems 67

Sorting the objects in a collection GemStone/S 64 Bit 3.6 Programming Guide
Example 4.7

Object subclass: 'Employee'
instVarNames: #('firstName' 'lastName' 'job' 'age')
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals

Employee compileMissingAccessingMethods

UserGlobals at: #AllEmployees put: (IdentityBag
with: (Employee new firstName: 'Lee'; lastName: 'Smith';

job: #librarian; age: 40)
with: (Employee new firstName: 'Kay'; lastName: 'Adams';

job: #clerk; age: 24)
with: (Employee new firstName: 'Al'; lastName: 'Jones';

job: #busdriver; age: 40)

To sort Employees by age and lastName, we can use the sortAscending: method, passing
in the instance variables against which the ascending sort should be done:

Example 4.8

| sorted str |
str:= String new.
sorted := AllEmployees sortAscending: #('age' 'lastName').
sorted do: [:anEmp |

str add: (anEmp age asString); space; add: anEmp lastName; lf].
str
%
24 Adams
40 Jones
40 Smith
68 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Sorting the objects in a collection
Sorting in multiple orders
For finer control, you can use the sortWith: method, which allows you to define
direction for each instance variable.

Example 4.9

| sorted str |
str := String new.
sorted := AllEmployees sortWith: #('age' 'Ascending'
 'lastName' 'Descending').
sorted do: [:anEmp | str add: (i age asString);

add: ' '; add: anEmp lastName; lf].
str
%
24 Adams
40 Smith
40 Jones

SortBlocks
You can also specify sort ordering by defining a sortBlock. A sortBlock is a two-argument
block that should return true if the first argument should precede the second argument,
and false if not. The expressions within the block are expected to by symmetrical - i.e., for
two specific arguments for which the block returns true, then the block should return false
when the arguments are reversed. If values compare equal, and the block returns the same
results for both argument orders, then the final ordering of the equal elements is arbitrary.

SortedCollection is a type of Collection that includes a sortBlock; SortedCollection class is
discussed under “SortedCollection” on page 57.

You can sort the elements of a collection by creating a SortedCollection using
asSortedCollection: aBlock, or by using methods such as sortWithBlock:. which
return an Array with the sorted contents .

For example, to sort customers by last name:
AllEmployees sortWithBlock: [:a :b |

a lastName <= b lastName]

You can create sort blocks that are as elaborate as you need; however, you should observe
the symmetry of the expression.

For example, this block sorts by lastName, with further sorting by firstName if the
lastNames are the same:

AllEmployees sortWithBlock: [:a :b |
a lastName = b lastName

ifTrue: [a firstName <= b firstName]
ifFalse: [a lastName <= b lastName]

].
GemTalk Systems 69

Sorting the objects in a collection GemStone/S 64 Bit 3.6 Programming Guide
Sorting Large Collections
When sorting using the above methods, the entire collection must fit into memory. This
may not be practical for very large collections.

To avoid out of memory errors when sorting large collections, you can allow the sort to
issue periodic commits, which will make the sort results persistent. Persistent objects don’t
need to stay in memory the way temporary objects do, which reduces the demand on
memory.

These intermediate commits are enabled by specifying a persistentRoot for the sort, and by
taking advantage of the IndexManager’s ability to set up autoCommit. IndexManager is a
class that manages Indexes, which you’ll read more about in Chapter 7. You do not need
to have an index on the collection in order to use this feature. However, you do need to set
IndexManager’s autoCommit setting to true. For more information on autoCommit, see
“Auto-commit” on page 133.

For example, the following code sorts AllEmployees collection using
sortWithBlock:persistentRoot:

Example 4.10 Sorting large collections, committed incremental results

UserGlobals at: #SortedEmployees put: Array new.
System commitTransaction.
AllEmployees

sortWithBlock: [:a :b | a lastName <= b lastName]
persistentRoot: SortedEmployees
70 GemTalk Systems

Chapter

5 String Classes and
Collation
String handling is an important part of most applications. While Strings are a type of
Collection, they have a number of unique features and behavior.

Characters and Unicode (page 71)
Describes Characters.

String classes (page 73)
Introduces the GemStone Smalltalk objects that store collections of Characters.

String Sorting and Collation (page 79)
Describes collation, including Traditional string collation and collation using the ICU
libraries and Unicode strings.

Encrypting Strings (page 87)
Explains how to encrypt strings.

5.1 Characters and Unicode
A Character is a special object: an object whose value is encoded in the OOP. Literal
Characters are formed with a leading $.

Code point
Each Character has a code or codePoint, which for lower order Characters is the ASCII
value. Either of these terms may be used, though ASCII is an incorrect term for the higher
code points. GemStone supports Characters with values from 0 to 16r10FFFF, the full
Unicode range, except for the Unicode reserved range.

The Unicode range of codePoints from 16rD800-16rDFFF is reserved for encoding
leading/trailing surrogate pairs for UTF-16 encoding. These can never be legal Unicode
characters, and as such, it is an error to attempt to create a Character in this range.

To get the Character for a given codePoint, use the Character class methods withValue:
or codePoint:.
GemTalk Systems 71

Characters and Unicode GemStone/S 64 Bit 3.6 Programming Guide
Attributes
Characters have “type”, and know if they are a digit, letter, separator, or other similar kind.
This information is defined in the Unicode database as the Unicode general category, and
a variety of testing methods are available. The Unicode database also defines the upper and
lower case equivalents, and case conversion methods are available. See the image for a full
list of available protocol.

For example,
$Z isUppercase
true

$u isDigit
false

Collation
Characters are ordered (collated) using internal character tables, which provide a Unicode-
like collation order for Characters up to code point 255. Characters above that are collated
by code point. Character collation can be modified by installing character data tables,
although this use is deprecated.

Character collation is used in collating instances of Traditional string classes, in Legacy
String Comparison Mode. This character-based string collation has limitations outside the
ASCII range; the ICU-library based string collation should be used if the default collation
is not sufficient. For more on collation, see “String Sorting and Collation” on page 79.

Unicode and the Unicode Database
The Unicode Consortium is an international standards organization that produces the
Unicode Database. Unicode is a commonly used standard which provides unique codes for
all Characters in all Character sets, in the range 0 to 0x10FFFF. It also describes the category
of each Character and relationship between it and other Characters, and provides a default
collation order with the Default Unicode Collation Element Table (DUCET).

For more information on this database, see
http://www.unicode.org/Public/UNIDATA/UCD.html

The Unicode Consortium provides code charts by script as well as a single master list of all
characters, presented in an ASCII-only, comma-delimited version. The current version of
this database can be found at
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt.
72 GemTalk Systems

http://www.unicode.org/Public/UNIDATA/UCD.html
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

GemStone/S 64 Bit 3.6 Programming Guide String classes
5.2 String classes
A string is a sequence of Characters, implemented as a subclass of CharacterCollection.

Each element in a CharacterCollection is a Character. Since characters may require more
than one byte of storage, the class of string may be transparently converted to an instance
of the class with the appropriate capacity for that Character. The semantics of the
CharacterCollection remain the same; access by index will return the Character at the given
index, regardless of how many bytes the Character actually requires.

A fundamental quality of strings is collation. Since the scope of collation includes equality,
the collation of strings affects a repository in many ways, such as dictionary lookups.
Collation in GemStone has historically been handled using character-based tables. Unicode
string-based collation using ICU open source libraries is included in recent releases and
provides a much richer set of collation features. To ensure that legacy applications function
correctly, GemStone supports both of these encoding/collation schemes.

Traditional strings and Legacy String Comparison Mode. Traditional strings are
instances of String, DoubleByteString, and QuadByteString. In Legacy String
Comparison Mode, they collate using GemStone character-based tables, as in older
GemStone releases.

Unicode strings and Unicode Comparison Mode. Unicode strings are instance of
Unicode7, Unicode16, and Unicode32. These strings use ICU string-based collation. In
Unicode Comparison Mode, they can safely mix with symbols and the Traditional
strings existing in the base image.

Traditional Strings
In Legacy String Comparison Mode, Traditional strings collate using internal character-
based collation tables. When the repository is in Unicode Comparison mode, however,
Traditional strings use ICU-based Unicode collation.

Traditional strings are implemented in three classes:

String
Strings hold Characters with codepoints in the range 0..255 (8 bits).

DoubleByteString
DoubleByteStrings are required when one or more Characters in a string needs more
than one byte of storage. DoubleByteStrings hold Characters with codepoints in the
range 0...16rFFFF (64K).

QuadByteString
QuadByteStrings are required when one or more Characters in a string needs more
than two bytes of storage. QuadByteStrings hold Characters with codepoints in the
range 0...16r10FFFF.

While Traditional strings normally hold human-readable text characters, this is not a
requirement. Generally, raw byte data would be held in an instance of ByteArray, but it
may be more convenient to use a String. In particular, there are cases when an instance of
String will be used to hold raw UTF-8 encoded bytes.
GemTalk Systems 73

String classes GemStone/S 64 Bit 3.6 Programming Guide
Unicode Strings
Unicode strings always use ICU string-based collation. Like Traditional strings, there are
three classes based on range, but note that the codePoint range is different than Traditional
strings.

Unicode7
A subclass of String, limited to holding Characters with codepoints in the range 0..127
that are represented in 7 bits.

Unicode16
A subclass of DoubleByteString, holding Characters with codepoints in the range
0...16rFFFF (64K), excluding the range 16rD800-16rDFFF. This range is reserved for
surrogates that allow encoding into UTF-16.

Unicode32
A subclass of QuadByteString, holding Characters with codepoints in the range
0..16r10FFFF. Again, this excludes the range 16rD800-16rDFFF.

Unicode strings should not hold raw byte data.

String equality, ordering, and interoperation
In Legacy String Comparison Mode, Traditional strings and symbols are compared for
equality and ordered using character-based comparison, and equality includes non-
printing characters as well as printing characters.

Unicode strings use the ICU string-based string collation, in which equality does not
consider non-printing characters.

Since Traditional and Unicode string equality rules are different, Traditional strings and
symbols (when the repository is in Legacy String Comparison Mode) may produce
inconsistent results. In this mode it is an error to mix Unicode strings with Traditional
strings or symbols, either for comparison or equality.

Other String-like classes

Symbol
A symbol is similar to a string, but each symbol with a unique set of Characters is
guaranteed to have only one canonical instance in GemStone. Symbols are created by a
special process, the SymbolGem, to ensure this uniqueness. Creating a new symbol will
return an existing symbol, if one exists; a new symbol is only created if it has not been
previously defined. Existing symbols cannot be modified.

Like strings, symbols may also contain Characters with values that require more than a
byte of storage, and will convert from class Symbol into DoubleByteSymbols or
QuadByteSymbols as needed. Since symbols are canonical, the class of a symbol always
depends on the contents. While you can create a DoubleByteString with only characters in
the range of String, you cannot create a DoubleByteSymbol that does not contain at least
one character in the DoubleByte range, and the same is true for QuadByteString.

All symbols may be viewed by all users. Private information should be maintained in
strings, not in symbols.
74 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide String classes
Symbols, DoubleByteSymbols, and QuadByteSymbols are restricted to 1024 or fewer
characters.

Symbols that have no references from anywhere in the system may eventually be garbage
collected, if the system is configured to do so. See the System Administration Guide for more
information on symbol garbage collection.

Symbols, like strings, collate using character-based tables in Legacy String Comparison
Mode and using ICU string-based collation in Unicode Comparison Mode. As a result, they
cannot be compared to Unicode strings in Legacy String Comparison Mode.

The literal form of a Symbol is specified using a leading #. The body of the symbol may
additionally include single quotes. This is optional for symbols that are legal identifiers
and keywords, but required for symbols that start with a number, include
punctuation/spaces, etc. For example:

#'22 skidoo'
#fooBar

ByteArray
ByteArray is a specialized collection that is restricted to holding Integers between 0 and 255
(inclusive). While ByteArray is not a kind of String, the contents may be interpreted as a
String.

Instances of ByteArray can be creating using literal syntax #[]. For example:
#[1 2 3 4]

Utf8
Utf8 is a subclass of ByteArray. It is not a kind of String, but may easily be converted back
and forth from a traditional or Unicode string. A Utf8 holds the UTF-8 encoded bytes
created by sending encodeAsUTF8 to a string, or by reading encoded data from a GsFile
using contentsAsUTF8. Utf8 instances should not be directly created or edited.

'šamas' encodeAsUTF8
anUtf8(197, 161, 97, 109, 97, 115)

Instances of Utf8 can be read from and written to instance of GsFile, which cannot directly
handle characters with codePoints over 256.

String protocol

Creating Strings
Strings created as literals, that is, in text encased in single quotes, are invariant; they cannot
be modified after they are created.

In addition to creating strings as literals, you can use the inherited instance creation
methods, such as new: and withAll:. For example:

String withAll: #($a $z $u $r $e).
azure
GemTalk Systems 75

String classes GemStone/S 64 Bit 3.6 Programming Guide
Concatenating Strings
A string responds to the comma operator by returning a new string in which the argument
to the comma has been appended to the string’s original contents. For example:

'String ' , 'con' , 'catenation'
String concatenation

Although this technique is handy, it’s not very efficient; each #, message send creates a new
instance of String, so this example creates three Strings, returning the final one.

To build a string efficiently, by appending onto the original object, you can use add:,
which modifies the original string. Note that you cannot start with a literal string, since a
literal string is invariant.

For example:
| resultString |
resultString := String new.
resultString add: 'String ';
 add: 'con';
 add: 'catenation'.
resultString
%
String concatenation

Converting between String classes and encodings
To convert between UTF-8 encoded bytes and the various kinds of string classes, there are
a number of methods:

Instances of Symbols and Traditional strings can be converted to the lowest-storage
type of Unicode string using asUnicodeString.

Instances of Symbols and Unicode strings can be converted to the lowest-storage type
of Traditional strings using asString.

A Traditional string that is composed of raw UTF-8 encoded bytes can be decoded to
a Unicode string using decodeFromUTF8ToUnicode, or to another Traditional
string with decoded bytes, using decodeFromUTF8ToString.

A Traditional string can be encoded into a String containing the raw UTF-8 encoded
bytes, using encodeAsUTF8IntoString.

To convert from a ByteArray containing UTF-8 or from a Utf8 to a Unicode string, use
decodeFromUTF8ToUnicode, or to convert to a Traditional string, use
decodeFromUTF8ToString.

Instances of ByteArray and Utf8 may be converted to a Traditional string without
decoding by using bytesIntoString.

All kinds of strings can be encoded to an instance of Utf8 by using encodeAsUTF8.
76 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide String classes
String Transformations
CharacterCollection and its subclasses define messages that let you perform various
conversions.

Strings can be converted in case:

asUppercase creates a new instance with all uppercase letters

asLowercase creates a new instance with all lowercase letters

asTitlecase creates a new instance with the first letter of each word capitalized,
the remaining letters lowercase.

asFoldcase returns a new instance in “fold case”, which is case-free for
comparison, and usually is similar to the lowercase.

For example:
'abcde' asUppercase
ABCDE

You can remove leading and/or trailing whitespace separators using methods such as
trimSeparators. There are a number of variants; see the image for details.

For example:
' abcde ' trimSeparators
'abcde'

Strings can be split using the subStrings: method, which allows you to specify one or more
characters to use as markers.

For example, to split a text into lines with /:
'owa/tagu/siam' subStrings: '/'
anArray('owa', 'tagu', 'siam')

Strings can be converted to numbers and other types of objects as well. For example:
'15' asFloat
15.0

Note that not all Strings can be converted to all kinds of other objects; if the String does not
contain the representation of a number, for example, it’s meaningless to convert it to an
Integer, so this will return an error.

Equality and Identity
Traditional strings are equal to each other if they contain the exact same Characters in the
same case; equality is case-sensitive.

Unicode strings compared using = follow the ICU library comparison rules for equality,
which are similar, although any non-whitespace control characters (such as null) are
ignored for the comparison.

As mentioned above, Traditional strings and Unicode strings cannot be compared to each
other for equality using =, when the repository is in Legacy String Comparison Mode. To
compare traditional and Unicode strings in any combination, use
compareTo:collator:, specifying nil for the collator to indicate the default collator.

Strings can be compared for case-insensitive equality using the methods isEquivalent:
or equalsNoCase:.
GemTalk Systems 77

String classes GemStone/S 64 Bit 3.6 Programming Guide
Identity in Literal vs. nonliteral
Literal and nonliteral Strings behave differently in identity comparisons. Each nonliteral
String (created, for example, with new, withAll:, or asString) has a unique identity.
That is, two Strings that are equal are not necessarily identical.

| nonlitString1 nonlitString2 |
nonlitString1 := String withAll: #($a $b $c).
nonlitString2 := String withAll: #($a $b $c).
(nonlitString1 == nonlitString2)
false

However, literal strings that contain the same character sequences and are compiled at the
same time are both equal and identical:

| litString1 litString2 |
litString1 := 'abc'.
litString2 := 'abc'.
(litString1 == litString2)
true

This distinction can become significant in building sets. If you add both litString1 and
litString2 to the same IdentitySet, the set will contain only one instance of 'abc'; however,
an IdentitySet would include both nonlitString1 and nonlitString2.

Searching and Pattern matching
CharacterCollection and its subclasses define methods that can tell you whether a string
contains a particular sequence of characters and, if so, where the sequence begins. This
search can be case sensitive, case insensitive, and may include wild cards.

Below are some common methods; see the image for further methods.

Table 5.1 Search and Pattern Match Protocol

Case-sensitive Search
Case-insensitive

Search Description

includesString:
 subString

Return true if the receiver includes
subString.

findString: subString
startingAt: anIndex

findStringNoCase:
 subString
startingAt: anIndex

Return the index of subString if it
exists within the receiver at anIndex
or above, otherwise zero (0).

matchPattern:
 patternArray

Return true if the receiver matches
the specifications in patternArray

findPattern:
 patternArray
startingAt: anIndex

findPatternNoCase:
 patternArray
startingAt: anIndex

Return the index of a substring in the
receiver that matches the
specifications in patternArray at
anIndex or above, otherwise zero (0).
78 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide String Sorting and Collation
Pattern Matching Wild Cards
Pattern matching arguments (patternArray) consist of an Array containing combinations of
Strings and the wildcard characters $* and $?. The character $? matches any single
character in the receiver, and $* matches any sequence of characters in the receiver.

This is an example of the use of wildcard characters in pattern matching.
'weimaraner' matchPattern: #('w' $* 'r')
true

Since $* is interpreted as “any sequence of characters”, this returns true.

Similarly, The following example returns the index at which a sequence of characters
beginning and ending with $r occurs in the receiver.

'weimaraner' findPattern: #('r' $* 'r') startingAt: 1
6

If a wildcard character $* or $? occurs in the receiver or within a string in the argument
array, it is interpreted literally.

The following expressions illustrate what happens when the * is within the string and
interpreted literally:

'w*r' matchPattern: #('weimaraner')
false

'weimaraner' findPattern: #('w*r') startingAt: 1
0

5.3 String Sorting and Collation
While strings clearly have a natural sort order (collation), the details of that order are
complex. Different languages may sort the same set of strings differently, according to the
particular rules in that language. Even within one language, different applications may
want to order string data differently. To complicate matters, some languages may treat
certain sequences of characters as a unit when sorting strings.

Collation depends on the results of a comparison between two strings, which in turn
depends on how the Characters within the string are collated. While this simple view
breaks down with some sorting requirements and linguistic rules, basic string comparison
is adequate for many uses and is faster than the more complete external collation.

Comparison Mode
The Comparison Mode of a repository controls the way comparisons are done between
instance of Traditional strings. The modes are:

Legacy String Comparison Mode, the default for new applications.

Unicode Comparison Mode, enabled in all GsDevKit-based applications.

In Legacy String Comparison Mode, Traditional strings and symbols cannot be compared
to Unicode strings without using special protocol. Collation of Traditional strings and
symbols is using character-based collation.

In Unicode Comparison Mode, Traditional strings and Symbols use ICU string-based
collation, and can interoperate easily with Unicode strings.
GemTalk Systems 79

String Sorting and Collation GemStone/S 64 Bit 3.6 Programming Guide
A new repository can be easily switched to Unicode Comparison Mode. Since the collation
rules may be subtly different, and affect system operations such as looking up class names
in SymbolDictionaries, changing the mode for existing applications should be done with
great care and thorough testing. To be safe, all indexes and sorted collections should be
rebuilt, and all hashed collections re-hashed. The mode of a repository must be managed
as part of System Administration, not by individual developers on a shared repository.

StringConfiguration
The Comparison Mode is controlled by the Global #StringConfiguration. By default,
StringConfiguration is set to String, and the repository is therefore in Legacy String
Comparison Mode.

To enable Unicode Comparison Mode, as SystemUser, execute:
StringConfiguration enableUnicodeComparisonMode

This returns the previous setting for Unicode Comparison Mode. Note that this comments,
but the current session is not affected; the new mode will take effect for all subsequent
logins.

To enable Legacy String Comparison Mode, as SystemUser, execute:
StringConfiguration disableUnicodeComparisonMode

Again, note that this operation commits, but the change does not affect the current session;
the new mode will take effect for all subsequent logins.

To verify the mode in this repository, execute:
StringConfiguration isInUnicodeComparisonMode

Legacy String Comparison Mode for Traditional Strings
Traditional strings (String, DoubleByteString, and QuadByteString) and symbols (Symbol,
DoubleByteSymbol, and QuadByteSymbol) are collated, in Legacy String Comparison
Mode, by individual character. The comparison of characters with values up to 255 are
done according to the Default Unicode Collation Element Table (DUCET), and Character
256 and above are sorted by codePoint, the Unicode numeric value.

Legacy applications may have installed non-default internal character tables, which
modified the character-based collation. This is no longer recommended; if the default
character-based collation is not sufficient for your application, you should integrate the
ICU string-based collation.

Enabling Unicode Comparison Mode (see “Comparison Mode” on page 79) causes
Traditional strings and symbols to collate following the same rules as Unicode strings. This
section only applies when in Legacy String Comparison Mode, not in Unicode Comparison
Mode.

String ordering using <= (as well as <, >, and >=) is not case-sensitive. When instances of
String, DoubleByteString, and QuadByteString are compared using <= or related
operations, the comparison first is done case-insensitive. If they are found to be equal other
than with respect to case—if the only difference is case—then they are collated according
to the Character Data Table, which specifies uppercase comes before lowercase.

For example:
#('MM' 'c' 'Mm' 'mb' 'mM' 'x' 'mm')

sortAscending
anArray('c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x')
80 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide String Sorting and Collation
Since ordering is by character, with only case being excluded, the default ordering is
sensitive to accents and other diacritical marks on characters. Characters with diacritical
marks are not related to the base character.

For example, all words beginning with 'Co' and 'co' would sort before all words beginning
with 'Có' and 'có':

#('Cór' 'COz' 'Coa' 'cóa')
sortAscending

anArray('Coa', 'COz', 'cóa', 'Cór')

Unicode Comparison Mode and ICU Collation
Unicode strings, and all strings when in Unicode Comparison Mode, use the ICU
(International Components for Unicode) libraries to provide string-based collation. The
ICU libraries are a widely-used, open-source implementation of language-specific sorting
and collation.

For a complete explanation of the features and subtleties of language-specific collation, you
should refer to documentation on the ICU website, http://icu-project.org/.

The classes IcuLocale and IcuCollator provide an interface to the ICU libraries. Unicode
strings (instance of Unicode7, Unicode16, and Unicode32) and instances of Utf8 use
IcuCollator and IcuLocale to perform sorting operations using the ICU libraries. The
collation is performed by considering the entire string, not on a character-by-character
basis, and requires a specific language and locale to determine the rules for the comparison.

In addition to specific language rules, ICU sorting is highly configurable for other
application-specific sorting requirements.

While collation will vary according to specific language and locale, in general ICU collation
orders characters with diacritical marks with the base character, and sorts lowercase before
uppercase.

For example, using the sorting examples in the previous section and the default collator for
the US, a different sort ordering is produced from that of legacy collation:

#('MM' 'c' 'Mm' 'mb' 'mM' 'x' 'mm')
sortAscending

anArray('c', 'mb', 'mm', 'mM', 'Mm', 'MM', 'x')

#('Cór' 'COz' 'Coa' 'cóa')
sortAscending

anArray('Coa', 'cóa', 'Cór', 'COz')

This is the default US collation; by configuring the IcuCollator, however, many other
orderings may be produced.

IcuLocale
Instances of IcuLocale represent a specific language, country, and language variant. The
available IcuLocales are in the shared library and can be listed using IcuLocale
class >> availableLocales.

A default instance of IcuLocale is instantiated on first reference, and stored in session state.
The default IcuLocale is based on the operating system locale setting for the gem. The
default IcuLocale affects collation, so some care should be taken in configuring the
operating system locale for the gem processes. In applications with distributed locales, it
GemTalk Systems 81

http://icu-project.org/

String Sorting and Collation GemStone/S 64 Bit 3.6 Programming Guide
may be safer to set a default IcuLocale on login, using UserProfile >> loginHook:
(see the System Administration Guide).

To set a specific default IcuLocale, use the method IcuLocale class >> default:.
This sets the default locale for the session executing this code. While the instance of
IcuLocale can be made persistent, the default IcuLocale does not persist from session to
session.

To determine what IcuLocale is currently in use, use the method IcuLocale >>
default.

IcuLocale default
IcuLocale en_US

IcuCollator
An IcuCollator encapsulates the rules involved in collation for a specific IcuLocale. A
default instance of IcuCollator is instantiated on first reference, based on the default
IcuLocale, and stored in session state.

When comparing instances of Unicode string classes, the comparison always uses an
IcuCollator, using the method compareTo:collator:. If an IcuCollator is not specified,
such as when Unicode string classes are compared using >, the IcuCollator default
is used; which in turn uses IcuLocale default.

You can also create an instance of IcuCollator for a specific locale, if you need to use specific
collation rules other than the default. You can do this using IcuCollator class methods
forLocale: anIcuLocale or forLocaleNamed: aString. For example, to create an
IcuCollator for the German language as used in Germany:

IcuCollator forLocaleNamed: 'de_DE'

The actual string comparison is done by the ICU libraries, and follows the ICU comparison
rules for that locale. Collation rules are similar in most western languages, but there are
differences in specific languages.

For example, in the Hungarian language, ’cs’ is considered a single letter, so words that
start with ’cs’ are sorted together and follow other words beginning with ’c’. The following
example sets up a collection that is sorted according to Hungarian rules:

Example 5.1 Sorting in Hungarian IcuLocale

| hungarianWords collator |
collator := IcuCollator forLocaleNamed: 'hu_HU'.
hungarianWords := IcuSortedCollection newUsingCollator: collator.
hungarianWords

add: 'csak' asUnicodeString;
add: 'cukor' asUnicodeString;
add: 'comb' asUnicodeString.

hungarianWords
a IcuSortedCollection
 sortBlock a ExecBlock2
 collator a IcuCollator
 #1 comb
 #2 cukor
 #3 csak
82 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide String Sorting and Collation
Customizing Sort
IcuCollator includes a number of attributes that can be used to customize the sort. These
attributes work within the specific language rules of the associated IcuLocale.

Keep in mind that while the default values and the descriptions listed in Table 5.2 apply to
most locales, particularly with non-Western scripts, the defaults may be different in
different locales, and the attribute may have different behaviors.

See the ICU site, particularly the pages under http://userguide.icu-project.org/collation,
for more precise descriptions and more detailed documentation.
GemTalk Systems 83

http://userguide.icu-project.org/collation

String Sorting and Collation GemStone/S 64 Bit 3.6 Programming Guide
Table 5.2 IcuCollator Attributes

Attribute name Allowed values Default

alternateHandling true | false false When true, allows space and
punctuation characters within the
string to be ignored.

caseFirst 'off', 'upperFirst', or
'lowerFirst'

'off' When comparing case, determines
if upper or lowercase is sorted first.
Most locales sort lowercase first
when caseFirst is ’off’ as well as
when ’lowerFirst’.

caseLevel true | false false When true, considers case in the
comparison, even if the strength
would normally not consider case.

frenchCollation true | false false When true, sorts secondary
differences (e.g. differences in
diacritical marks) in reverse order.
This is the collation rule for French.

normalization true | false false Determines whether to normalize
input strings. Useful if input data
may not be -normalized, but
impacts performance.

numericCollation true | false false When true, sorts numeric sequences
within the string by numerical
rather than string comparison; e.g.
sort ’100’ after ’2’.

strength PRIMARY - 0
SECONDARY - 1
TERTIARY - 2
QUARTENARY - 4,
or
IDENTICAL - 15

TERTIARY Determines the level of collation
factors to consider, such as
diacritical marks and case. See
discussion below for more details.

Strength allows degrees of sort, to consider or not consider things like accent characters
and case when performing the sort. The default strength is TERTIARY for most locales (the
main exception being Japanese). The following are the sort strengths:

PRIMARY sorts by primary differences, ignoring secondary and later differences. The
base letter represents a primary difference, so for example 'a' and 'b'.

SECONDARY sorts by primary and secondary differences, ignoring tertiary and later
differences. An example of a secondary difference is diacritical differences on the
same base letter, for example 'o' and 'ó'.

TERTIARY sorts by primary, then secondary, then tertiary differences. Uppercase vs.
lowercase is a tertiary differences. TERTIARY is the default sort order for most
locales.
84 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide String Sorting and Collation
QUATERNARY is used in Japanese, where it distinguishes between Japanese
Katakana and Hiragana, and can be used to break ties among separator characters
when alternateHandling is true.

IDENTICAL sorts by the specific character, by codepoints in the NFD (Normalization
Form Canonical Decomposition) form. There is a performance impact with this
strength.

The default sort strength is TERTIARY. As an example, when two strings are compared
using TERTIARY strength, characters in the strings are compared first by the base
character, ignoring any case or diacritical marks. If the base characters are the same, they
are compared by diacritical mark, ignoring case. If both base characters and diacritical
marks are the same, then case is considered. Note that unlike GemStone’s Strings or ASCII
ordering, the default sorts places lowercase before uppercase.

Keep in mind that with lower sort strengths, when a factor such as case is not used, the
relative position in the results of similar strings is not deterministic; the strings compare as
the same, and so their position will depend on the order of the input.

By using the IcuCollator sort attributes, you have a great deal of control over your specific
sorting.

For example, using the alternative handling example, you can sort strings that include
spaces, dashes and other punctuation without considering the punctuation characters
when doing the comparison:

Example 5.2 Sort ignoring punctuation

| blues collator|
collator := IcuCollator forLocale: IcuLocale default.
collator alternateHandling: true.
blues := IcuSortedCollection newUsingCollator: collator.
blues add: (Unicode7 withAll: 'blue berry').
blues add: (Unicode7 withAll: 'blue moon').
blues add: (Unicode7 withAll: 'bluebird').
blues add: (Unicode7 withAll: 'blue bird').
blues add: (Unicode7 withAll: 'blue-bird').
blues add: (Unicode7 withAll: 'bluetooth').
blues
%
a IcuSortedCollection
 sortBlock a ExecBlock2
 collator a IcuCollator
 #1 blue berry
 #2 bluebird
 #3 blue bird
 #4 blue-bird
 #5 blue moon
 #6 bluetooth

IcuSortedCollection
An IcuSortedCollection is a specialized subclass of SortedCollection for which you do not
set the sortBlock. An IcuSortedCollection may only hold instances of subclasses of
GemTalk Systems 85

String Sorting and Collation GemStone/S 64 Bit 3.6 Programming Guide
CharacterCollection. It is associated with a IcuCollator, which in turn is associated with an
IcuLocale, and the sorting behavior is specific to the configuration of these instances.
IcuSortedCollections rely on the open-source ICU libraries to perform the comparisons and
produce correctly collated results.

Using IcuSortedCollection is recommended if you will have sorted collections containing
Unicode strings. This avoids lookup failures if a different collator is used to lookup than
was used to sort the elements in the collection.

ICU libraries and versioning

ICU and Unicode versioning
The Unicode Consortium periodically releases new versions of the Unicode Standard, with
(usually minor) changes in collation and the addition of new characters. The ICU
organization then periodically releases new versions of their libraries reflecting these
changes in the standard. Major GemStone releases include the latest version of the ICU
libraries.

The indexing structures depend on collation encodings from ICU that may change between
versions, even if the collation changes would not otherwise affect the application. So even
in cases where the Unicode differences are minor, the ICU library version loaded in an
application must match the ICU version used to build indexes.

To accommodate the (generally) low value of upgrading to a new ICU library, and the
potentially high cost of rebuilding structures in your application that depend on collation,
GemStone preserves the existing ICU library version over upgrade.

IcuLibraryVersion
The version of the ICU library that is used in a repository is stored under (Globals at:
#IcuLibraryVersion). This is a string, which must correspond to one of the versions of
the ICU libraries in the product distribution. When a session logs in, it will select the ICU
shared libraries to load based on the IcuLibraryVersion value.

As with StringConfiguration, IcuLibraryVersion is a global, repository-wide setting that
can be only changed by SystemUser, to avoid the risk of lookup failures and incorrect
query results. It should be managed as part of System Administration, not by individual
developers on a shared repository.

Updating IcuLibraryVersion
To update the version of ICU libraries in your repository, you will need to follow this
procedure:

1. Ensure no other users are on the system

2. Login as SystemUser and execute

Globals at: #IcuLibraryVersion put: newVersionString

Commit and logout.

3. Shut down and restart the Stone.

4. Login as DataCurator, or a user with the appropriate object access rights. If you are
using a linked session, you may need to restart the application to allow the new version
of the ICU shared library to be loaded
86 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Encrypting Strings
5. Update any persistent data structures that may be affected. This involves dropping
and rebuilding indexes that involve Unicode strings, resorting SortedCollections, and
resorting any application data structures that depend on Unicode string collation.

6. When this is complete and all changes have been committed, other users may be
allowed to login.

5.4 Encrypting Strings
There are times when you may which to encrypt strings in your repository or for
transmittal to other systems. GemStone provides an interface to Advanced Encryption
Standard (AES) encryption/decryption, provided by the OpenSSL open source libraries
included with GemStone.

The AES specification is available at:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

All encryptions/decryptions are in cipher block chaining (CBC) mode; see the AES
specification document for further details.

Encryption and decryption API methods are provided for 128-bit/16-byte keys, 192-
bit/24-byte keys, and 256-bit/32-byte keys, using the following methods.

Encryption can be done on instances of ByteArray or Uft8, or subclasses of
CharacterCollection. For encryption, you must provide a key that is a ByteArray of the
appropriate size (16, 24, or 32 bytes) containing key bytes, and a salt that is a 16-byte
ByteArray containing salt values.

The following methods encrypt or decrypt using the specified key and salt, return the
encrypted or decrypted result:

aesEncryptWith128BitKey: aKey salt: aSalt
aesDecryptWith128BitKey: aKey salt: aSalt

aesEncryptWith192BitKey: aKey salt: aSalt
aesDecryptWith192BitKey: aKey salt: aSalt

aesEncryptWith256BitKey: aKey salt: aSalt
aesDecryptWith256BitKey: aKey salt: aSalt

These methods place the encrypted or decrypted result into aByteObjOrNil, starting at
offset 1, and resizing if necessary. If aByteObjOrNil is nil, a new instance of the same class
as the receiver will be created containing the results.

aesEncryptWith128BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith128BitKey: aKey salt: aSalt into: aByteObjOrNil

aesEncryptWith192BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith192BitKey: aKey salt: aSalt into: aByteObjOrNil

aesEncryptWith256BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith256BitKey: aKey salt: aSalt into: aByteObjOrNil

You may use ByteArray withRandomBytes: N to produce pseudo-random key and
salt values for encryption. For example:
GemTalk Systems 87

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Encrypting Strings GemStone/S 64 Bit 3.6 Programming Guide
Example 5.3 String Encryption

topaz 1> run
| key salt encrypted |
key := ByteArray withRandomBytes: 32.
salt := ByteArray withRandomBytes: 16.
encrypted := 'My secret string' aesEncryptWith256BitKey: key

salt: salt.
encrypted aesDecryptWith256BitKey: key salt: salt.
%
My secret string
88 GemTalk Systems

Chapter

6 Numeric Classes
This chapter describes GemStone’s Numeric and Time-related classes.

This includes Numbers, such as Integers, floating point, fractions. Most numbers can be
specified as literals within your code, and most numbers can be used in expressions with,
or converted to, other types of numbers.

Also included are Time-related classes, such as Date, Time, DateTime, and DateAndTime.

Integers (page 89)
Describes classes that represent whole numbers: SmallInteger and LargeInteger.

Binary Floating Point (page 90)
Describes classes for binary floating point numbers: SmallDouble and Float.

Other Rational Numbers (page 94)
Describes classes for other rational numbers with different ranges and precisions,
including Fraction, FixedPoint, ScaledDecimal, and DecimalFloat.

Dates and Times (page 98)
Describes the classes that represent times.

Internationalizing (page 103)
How to control the display of decimal points.

Random Numbers (page 105)
Information on the set of random number generator classes, providing random
numbers of various purposes.

6.1 Integers
Integers in GemStone are composed of SmallIntegers and LargeIntegers. Most Integers you
are likely to use will be SmallIntegers, in the range of -260 to 260 -1. Integers outside this
range are represented by LargeIntegers. Operations that result in a value outside the
SmallInteger range transparently result in LargeIntegers, and vice-versa

The literal syntax for Integer will create either a SmallInteger or LargeInteger.
GemTalk Systems 89

Binary Floating Point GemStone/S 64 Bit 3.6 Programming Guide
Integers can be specified using radix notation, using the r or # characters.

For example, to specify the hex SmallInteger value FF, the following are all valid:
FFr16
FF#16
Number fromString: 'FFr16'
'ff#16' asNumber

SmallInteger
SmallIntegers are special (immediate) objects, that is, the number itself is encoded in the
OOP, making instances of this class both small (since no further storage is required) and
fast. They are also unique, so SmallIntegers of the same value are always identical (==) as
well as equal (=).

SmallIntegers have a range from -260 to 260 -1. Values outside this range must be
represented as LargeIntegers.

LargeInteger
LargeIntegers are not special objects; they require an OOP.

Each instance of LargeInteger is stored as an array of bytes, where every 4 bytes represents
a base 4294967296 digit. The first 4 bytes are the sign digit (0 or 1), the next 4 bytes in that
array constitute the least significant base 4294967296 digit, and the last 4 bytes are the most
significant base 4294967296 digit.

Instances of LargeInteger have a maximum size of 4067 digits plus the sign. The maximum
absolute value for a LargeInteger is (2130144 - 1). Attempting to create a LargeInteger that
exceeds this maximum will fail with an Integer overflow error.

Printing Integers
Integers are printed by default, using Integer >> asString, in base 10. You may print
using other bases by invoking printStringRadix: or
printStringRadix:showRadix:.

For example,
1234 printStringRadix: 2
%
10011010010

-1234 printStringRadix: 16 showRadix: true
%
-16r4D2

6.2 Binary Floating Point
Floating point values in GemStone are composed of SmallDoubles and Floats. The most
commonly used floating points will be SmallDoubles. While both SmallDouble and Float
represents 8-byte binary floating point numbers, as defined in IEEE standard 754,
SmallDoubles have a reduced exponent range. Some floating point values therefore can
90 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Binary Floating Point
only be represented by instances of Float, rather than SmallDouble. Similarly to
SmallInteger and LargeInteger, GemStone operations return one or the other as needed.

The numerical behavior of instances of Float is implemented by the mathematics package
of the vendor of the machine on which the Gem process is running. There are slight
variations in results with different platform’s implementation of the
IEEE-754 standard.

You can get the components of a floating point value using the methods signBit,
exponent, and mantissa.

SmallDouble
SmallDoubles are special objects; as with SmallIntegers, the number itself is encoded in the
OOP, making instances small and fast. They are also unique, so SmallDoubles of the same
value are identical (==) as well as equal (=).

Each SmallDouble contains a 61 bit value, in IEEE format but with reduced exponent range.
There is 1 sign bit, 8 bits of exponent and 52 bits of fraction. SmallDoubles are always in
big-endian format (both on disk and in memory).

SmallDoubles can represent C doubles that have value zero or that have exponent bits in
range 0x381 to 0x3ff, which corresponds to about 5.0e-39 to 6.0e38; approximately the
range of C 4-byte floats.

Float
Floats are not special objects; they require an OOP.

Each Float contains a 64 bit value in IEEE format, with 1 sign bit, 11 bits of exponent and
52 bits of mantissa. Floats are in cpu-native byte order when in memory, and the byte order
of the extent when on disk.

In addition to the finite numbers, the IEEE standard defines floating point formats to
include Infinity (positive and negative) and NaNs (not a Number), which can be quiet or
signaling. NaNs results from an operations whose result is not a real number, such as:

-23 sqrt
%
PlusQuietNaN

Infinity results from operations that return a value outside the range of representation,
such as:

32.0 / 0
%
PlusInfinity

ExceptionalFloats are named, unique instances of Float, not of SmallDouble. Exceptional
Floats include:

PlusInfinity
MinusInfinity
PlusQuietNaN
MinusQuietNaN
PlusSignalingNaN
MinusSignalingNaN

Since the sign of NaNs is not defined, GemStone operations return only positive NaNs;
they do not return MinusQuietNan or MinusSignalingNan.
GemTalk Systems 91

Binary Floating Point GemStone/S 64 Bit 3.6 Programming Guide
An unusual quality of NaNs is that they are not equal to themselves. This means that NaNs
can cause problems if used as keys of hashed equality-based collections.

PlusQuietNaN = PlusQuietNaN
%
false

Signalling Exception rather than returning Exceptional Float
When performing operations on Floats, an ExceptionalFloat may not always be an
appropriate result.

You can determine if a number is an ExceptionalFloat using the message
#isExceptionalFloat.

You can configure your system to signal an exception, rather than return an
ExceptionalFloat. The following are the types of Floating point error conditions that may
arise:
#divideByZero
#overflow
#underflow
#invalidOperation
#inexactResult

FloatingPointError has protocol to configure signalling for all or none of these error
conditions, or any subset. For example,

FloatingPointError enableAllExceptions.

FloatingPointError enableExceptions: { #divideByZero }

After enabling exceptions, exceptional conditions will signal errors, rather than returning
an exceptional Float, for the duration of that session.

Example 6.1 Enabling floating point exceptions

topaz 1> run
3 / 0.0
%
PlusInfinity
topaz 1> run
FloatingPointError enableAllExceptions.
%
0
topaz 1> run
3 / 0.0
%
ERROR 2724 , a FloatingPointError divideByZero
(FloatingPointError)
92 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Binary Floating Point
Literal Floats
Literal numbers in evaluated code that include a decimal point by default create a
SmallDouble or Float. If the value is in the SmallDouble range, a SmallDouble will be
created, otherwise a Float will be created.

Literal floats may be specified using exponential notation. For example, 5.1e3 and 5.1e-3
are valid SmallDouble literals.

ANSI specifies that float values may have exponents e, d, or q. These exponents, as well as
E and D, are legal in GemStone, but have the same result: a SmallDouble or Float. Likewise,
the ANSI class names FloatE, FloatD, and FloatQ can be used in code, but all resolve to
Float class.

Note that using a plus sign before the exponent is not allowed in literal floats, although it
can be used to create floating points from strings (using Float fromString:). This
avoids ambiguity with Smalltalk dialects that would interpret this as the addition operator.
For example, 5.1E+3, which historically GemStone would interpret as the same as 5.1E3, is
disallowed; code must either omit the +, or include white space to clarify the addition
operator.

Printing Binary Floating Points
SmallDoubles and Floats are printed by default using asString or printString, in the
notation equivalent to the C printf expression %.16g. This provides a maximum of 16
significant digits, rounding the fractional portion and changing to exponent notation if the
whole number portion has more than 16 digits.

You can use asStringUsingFormat: to control the details of how floating point
numbers are formatted when printing. asStringUsingFormat: accepts an Array of
three elements:

an Integer between -1000 and 1000, specifying a minimum number of Characters in
the result String. Negative arguments pad with blanks to the left, positive arguments
pad to the right. Note that if the value of this element is not large enough to
completely represent the Float, a longer String will be generated.

an Integer between 0 and 1000, specifying the number of digits to display to the right
of the decimal point. If the printed representation of the float requires fewer
characters, the result is padded with blanks on the right. If the value is insufficient to
completely specify the float, the value is rounded to fit.

A Boolean indicating whether or not to display the magnitude using exponential
notation. If true, exponential notation is used; if false, decimal notation.
GemTalk Systems 93

Other Rational Numbers GemStone/S 64 Bit 3.6 Programming Guide
For example:
12.3456 asString
%
12.3456

12.3456 asStringUsingFormat: #(-8 2 false)
%
12.35

12.3456 asStringUsingFormat: #(4 10 true)
%
1.2345600000e01

6.3 Other Rational Numbers
For some application, binary floating points are problematic, since there are common
decimal values that cannot be expressed exactly in binary floating point; for example, 5.1
does not have a precise binary floating point representation. This can make computation
results incorrect. For example:

5.1 * 100000
%
509999.9999999999

There are several options to avoid this: Fraction, FixedPoint, ScaledDecimal, and
DecimalFloat. These classes are independent of each other, and each provides different
qualities of precision and range.

Fractions
Fractions precisely represent rational numbers. Fractions are composed of an integer
numerator and an integer denominator. As the ratio of two Integers, fractions can represent
any rational number to an unbounded level of precision.

The display of fractions is as the numerator and denominator separated by the $/
character, which is also the division binary method. Fractions have no literal
representation. An expression such as 1/3, which performs a division of two Integers, will
return a fraction if the result is not an Integer.

(1/3) printString
%
1/3

Any expression, not just division expressions, that could result in fractions will be reduced
automatically, to the lowest fraction or to an Integer.

(5/6) + (1/6)
%
1

94 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Other Rational Numbers
SmallFraction
SmallFractions are special objects, in which the OOP itself encodes the value. As with
SmallDouble and Float, creating a fraction will result in either an instance of SmallFraction
or Fraction, depending on the specific value.

SmallFractions can hold objects with numerators between -536870912 and 536870911, and
denominators from 1 to 134217727.

Fraction
If the numerator or denominator is outside the SmallFraction range, an instance of Fraction
is created. These are not special objects.

ScaledDecimals
ScaledDecimals represent a decimal number to the precision of a fixed number of fractional
digits. ScaledDecimals are composed of an integer mantissa and a power-of-10 scale.

Literal ScaledDecimal or SmallScaledDecimals can be created using the s notation; for
example, 1.53s2. This is not an exponential notation; the 2 here is the scale, and mantissa is
resized appropriately. The values 1.53s2, 1.53s3, and 1.53s4 are all equal.

The number of fractional digits must not be greater than the scale.

For returned values from mathematical operations, ANSI does not precisely specify the
scale of a returned ScaledDecimal. The following rules are used:

For unary messages, the scale of the result equals the scale of the receiver.

For a one-argument message, the scale of the result is the greater of the scale of the
receiver and argument. An integer receiver or argument coerced to a ScaledDecimal
should effectively have a scale of zero, meaning the result will have the scale of the
non-coerced ScaledDecimal argument or receiver.

For some mathematical operations, the returned value type is a ScaledDecimal, but the
returned value cannot always be exactly represented as a ScaledDecimal with the correct
scale. In these cases, the results are rounded using the following rules:

Following the example of IEEE754 float rounding, the ScaledDecimal that is answered
is selected as though we computed the numerically exact value and then chose the
closest representable ScaledDecimal of the scale specified by the rules. If the
numerically exact value falls exactly halfway between two adjacent representable
ScaledDecimal values of the scale specified by the rules, the ScaledDecimal with an
even least significant digit is answered.

SmallScaledDecimal
SmallScaledDecimals are special objects, in which the OOP itself encodes the value. As
with SmallDouble and Float, creating a ScaledDecimal will result in either an instance of
SmallScaledDecimal or ScaledDecimal, depending on the specific value.

SmallScaledDecimals can hold values with a scale <= 31, and a mantissa in the range -2^50
(-1125899906842624) to -2^50 (1125899906842623).
GemTalk Systems 95

Other Rational Numbers GemStone/S 64 Bit 3.6 Programming Guide
ScaledDecimal
If the scale or mantissa is outside the SmallScaledDecimal range, an instance of
ScaledDecimal is created. These are not special objects. The maximum scale of a
ScaledDecimal is 30000.

While ScaledDecimals represent decimal fractions to the precision specified, most floating
point values cannot be represented exactly by ScaledDecimals. The system will error if
there is an attempt to create a ScaledDecimal with more than 39177 decimal digits.

FixedPoints
FixedPoints, like Fractions, represents rational numbers, but also include information on
how they should be displayed. A FixedPoint is composed of an integer numerator, integer
denominator, and an integer scale. Like Fraction, this allows rational numbers to be
represented with unbounded precision, and since fractional arithmetic is used in
calculations, numerical results do not lose precision. The scale provides automatic
rounding when representing the FixedPoint as a String.

FixedPoint is a legacy format provided for backwards compatibility. New code should use
ScaledDecimal or Fraction.

FixedPoint uses a literal notation using p, such as 1.23p2. This is not an exponential
notation; the 2 here specifies scale. The values 1.23p2, 1.23p3, and 1.23p4 are all equal.

DecimalFloat
DecimalFloats represent base 10 floating point numbers, per IEEE standard 854-1987.

Literal DecimalFloats can be specified in exponential notation using the f or F character; for
example, 5.432F2 creates a DecimalFloat equivalent to 543.2.

Objects of class DecimalFloat have 20 digits of precision, with an exponent in the range -
15000 to +15000. The first byte encodes the sign and kind of the floating-point number. Bit
0 is the sign bit. The values in bits 1 through 3 indicate the kind of DecimalFloat:

001x = normal
010x = subnormal
011x = infinity
100x = zero
101x = quiet NaN
110x = signaling NaN

Bytes 2 and 3 encode the exponent as a biased 16-bit number (byte 2 is more significant).
The actual exponent is calculated by subtracting 15000. Bytes 4 through 13 form the
mantissa of the number. Each byte holds two BCD digits, with bits 4 through 7 of byte 4
containing the most significant digit.

Similarly to Float, operations that would not result in a real number, or that produce a
result outside the representable range, result in Exceptional numbers:

DecimalPlusInfinity
DecimalMinusInfinity
DecimalPlusQuietNaN
DecimalMinusQuietNaN
DecimalPlusSignalingNaN
DecimalMinusSignalingNaN
96 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Other Rational Numbers
You can determine if a number is an ExceptionalFloat using the message
#isExceptionalFloat.

Summary of literal syntax
The following table lists the notations that may appear in a literal number.

radix notation

d, D SmallDouble/Float exponential notation

e, E SmallDouble/Float exponential notation

f, F DecimalFloat exponential notation

p FixedPoint notation

q SmallDouble/Float exponential notation

s ScaledDecimal notation

r radix notation

Custom numeric literals
You can instruct the compiler to understand a new numerical literal format by sending a
message to your customized subclass of Number to register that format.

The following method provides this registration:
Number >> parseLiterals: aCharacter exponentRequired: aBoolean

Once this is sent to an instance of a subclass of Number, when the compiler encounters a
numeric value using aCharacter, it will send fromString: to that class.

The subclass of Number must implement fromString: in such a way as to be able
to read the new literal format, and create the new instance.

aCharacter must an alphabetic Character with codePoint <= 127, and may not be an
existing numeric literal character as listed in the table on page 97.

aBoolean indicates if digits following the exponent are required or not.

For example, say you have defined a class ComplexNumber. For the literal format, you
wish to use NiM, where N represent the real part and M represents the imaginary part. So
for example, 4.5+5i would be specified using the literal form 4.5i5.

First, you would define the ComplexNumber>>fromString: method, which will parse
a string of the form NiM and return the new instance of ComplexNumber.

Then, to allow the literals to be included in code, send the following message.
ComplexNumber parseLiterals: $i exponentRequired: true

Now, assuming you have implemented the behavior appropriately, the compiler can
evaluate expressions of the form:

(3.5i5 + 7.1i3) asString
%
10.6i8.0
GemTalk Systems 97

Dates and Times GemStone/S 64 Bit 3.6 Programming Guide
Once invoked, the new literal format will be recognized until the session logs out.

Note that for subsequent logins, compiled references to that literal will continue to be valid,
but unless the method is invoked again, methods with that literal cannot be recompiled.
Including the invocation of parseLiterals:exponentRequired: in session
initialization code (such as using loginHook:) is recommended.

To uninstall a custom literal without logging out, use the same method, passing in nil for
aBoolean. For example,

ComplexNumber parseLiterals: $i exponentRequired: nil

6.4 Dates and Times
GemStone supports the date-time clases Date, Time, and DateTime and DateAndTime.
Using date-time clases requires taking into account the TimeZone, the current local offset
from UTC (GMT).

Date
An instance of Date describes a month, day and year in time.

Date supports dates after December 31, 1900. While Dates earlier than this can be created
and operated on, they are not tested and not officially supported. Technically legal years
are in the range -231 (-2147483648) to 231 - 1 (2147483647).

SmallDate
An instance of SmallDate is a special (that is, the OOP encodes the value), encoding the day
of year and the year within the OOP. Newly created Date instances (as of v3.6) are instances
of SmallDate.

All possible supported Dates can be represented as SmallDates. All newly created
instances of Date, as of v3.6, are returned as instances of SmallDate, but existing instances
of Date remain in upgraded repositories. Date and SmallDate are interoperable with each
other, and the following discussion uses Date to refer to either Date or SmallDate.

Instance Creation
Date instances can be created from formatted strings or streams, or by using instance
creation methods that allow you to specify the properties. See the image for the available
options. For example:

Date today

Date fromString: '23/11/2020'

Date newDay: 11 month: 23 year: 2020

Formatting for Instance Creation and Printing
Date supports printing methods and reading methods that use an explicit string-
formatting Array. For Date, this is a 6-element Array that is passed to Date >>
asStringUsingFormat:, or fromString: usingFormat: and related instance
creation methods.
98 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Dates and Times
Elements 1, 2 and 3 are integers that determine the position of the day (1), month (2),
and year (3). So year, month, day would be 3, 2, 1.

Element 4 is a character for the date separator, such as $/.

Element 5 is an integer that determines if the month format is printed as a number (1),
three-letter abbreviation (2), or the entire name (3).

Element 6 is an integer that determines if the year format is the entire number (1), or
only the last two digits (2).

The default is DD/MM/YYYY, equivalent to #(2 1 3 $/ 1 1). Note that the day is first, not
the US convention of month first.

(Date fromString: '23/01/2020') monthName
 'January'

(Date today) asStringUsingFormat: #(3 2 1 $. 1 1)
 '2020.06.05'

Time
An instance of Time describes a time of day.

SmallTime
An instance of SmallTime is a special (that is, the OOP encodes the value), in microseconds
resolution, using 56 bits of the OOP. Since there are 86400000000 microseconds in a day, all
possible Times can be represented as SmallTimes. All newly created instances of Time, as
of v3.6, are returned as instances of SmallTime, but existing instances of Time remain in
upgraded repositories. Time and SmallTime are interoperable with each other, and the
following discussion uses Time to refer to either Time or SmallTime.

Instance Creation
Time instances can be created from formatted strings or streams, or by using instance
creation methods that allow you to specify details. See the image for the available options.
For example:

Time now

Time fromString: '17:23:05'

Time fromSeconds: 34234

Formatting for Instance Creation and Printing
Explicit string-formatting specifications take the form of a 3-element Array that is passed
to Time >> asStringUsingFormat:, or fromString:usingFormat: and related
instance creation methods. In this array:

Element 1 is a character for the date separator, such as $:

Element 2 is a boolean; if true, seconds are included, or false then they are omitted.

Element 3 is a boolean; if true, then the time is in 12-hour format with am or pm; if
false then the time is in 24-hour format. When using format to create an instance from
a String or Stream, there must be a space before the am/pm.
GemTalk Systems 99

Dates and Times GemStone/S 64 Bit 3.6 Programming Guide
The default is #($: true false), equivalent to HH:MM:SS.

For example
Time fromString: '23.34' usingFormat: #($. false false)
 23:34:00

Time now asStringUsingFormat: #($: false true)
 '02:30 PM'

Time offset
Time instances themselves have no TimeZone. Class creation methods, and methods that
print or display Times, that have "gmt" in the selector, interpret the time as GMT and apply
the offset from the repository setting for TimeZone current.

For example, in the America/LosAngeles TimeZone:
Time fromStringGmt: '11:30:00'
 04:30:00

(Time fromStringGmt: '11:30:00') asStringGmt
 '11:30:00'

DateTime
DateTime represents a point in time with millisecond resolution. DateTime supports
points in time after midnight on December 31, 1900 at midnight GMT. While Dates earlier
than this can be created and operated on, they are not tested and not officially supported.

A DateTime includes the year, day of year, milliseconds, and a TimeZone.

Instance Creation
Date instances can be created from formatted strings or streams, or by using instance
creation methods that allow you to specify the properties. See the image for the available
options. For example,

DateTime now

DateTime fromString: '23/11/2020 23:15:26'

DateTime newWithYear: 2020 month: 11 day: 23 hours: 15
minutes: 26 seconds: 0

Formatting for Instance Creation and Printing
Explicit string-formatting specifications take the form of a Array of elements that is passed
to DateTime >> asStringUsingFormat:, or fromString:usingFormat: and
related instance creation methods.

This Array must have at least 8 elements; 4 additional elements are optional.

In this array:

Elements 1, 2 and 3 are integers that determine the position of the day (1), month (2),
and year (3). So year, month, day would be 3, 2, 1.

Element 4 is a character for the date separator, such as $/.
100 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Dates and Times
Element 5 is an integer that determines if the month format is printed as a number (1),
three-letter abbreviation (2), or the entire name (3).

Element 6 is an integer that determines if the year format is the entire number (1), or
only the last two digits (2).

Element 7 is a character for the time separator, such as $:

Element 8 is a boolean, if true the time is included; if false, the time is omitted and
values for elements 7, 9, and 10 are ignored. Elements following this are optional.

Element 9 is a boolean, if true seconds are included, or false then they are omitted.

Element 10 is a boolean, if true the time is in 12-hour format with am or pm; if false
then the time is in 24-hour format. When using format to create an instance from a
String or Stream, there must be a space before the am/pm.

Element 11 is a boolean, if true the time zone information is included; if false it is
omitted.

Element 12 is a boolean, if true then the print is printed per the time zone in which the
DateTime is created, not in the local time zone. If false then the DateTime is printed
according to the local time zone (TimeZone current).

The default is (1 2 3 $/ 1 1 $: true true false false false), equivalent to (DD/MM/YYYY
HH:MM:SS).

For example, to read a non-default formatted string, and create an instance of DateTime,
which then by default prints in the default format:

DateTime fromString: 'January 7 2020 9:45 pm' usingFormat:
 #(2 1 3 $ 3 1 $: true false true false)
 07/01/2020 21:45:00

DateAndTime
DateAndTime is the ANSI compliant class that is equivalent to DateTime, and represents
a point in time. DateAndTime instances know their microseconds (plus or minus) since
00:00:00 on January 1 2001, UTC (not counting leap seconds), and the TimeZone offset in
seconds.

There is no restriction on the year range for DateAndTime. DateAndTimes are in the
Gregorian calendar (the common calendar adopted in Europe in 1582). Date times prior to
the adoption of this calendar are given in the retrospective astronomical Gregorian
calendar. The year 1 A.D.is astronomical Gregorian year 1, the year 1 B.C. is astronomical
Gregorian year 0, the year 2 B.C. is astronomical Gregorian year -1, and so on.

DateAndTime instances are always created with a resolution of 6 decimal places,
equivalent to microsecond resolution.

SmallDateAndTime
An instance of SmallDateAndTime is a special (that is, the OOP encodes the value), that
represents DateAndTimes in the range of from January 1, 2001 to May 10, 2072, that have
timezone offsets in integer hours, in the range -16..15. Creating a DateAndTime will return
an instance of SmallDateAndTime if it is within the range, otherwise it will return an
instance of DateAndTime.
GemTalk Systems 101

Dates and Times GemStone/S 64 Bit 3.6 Programming Guide
Instance Creation
DateAndTime instances can be created from formatted strings or streams, or by using
instance creation methods that allow you to specify details. See the image for the available
options. For example:

DateAndTime now

DateAndTime fromString: '2020-11-23T15:26:00-08:00')

DateAndTime year: 2020 month: 11 day: 23 hour: 15
minute: 26 second: 0 offset: (Duration seconds: -28800)

Formatting for Instance Creation and Printing
The format for reading and printing DateAndTime is

[-]YYYY-MM-DDTHH:MM:SS[.SSSSSS]±hh:mm

where:

- is a minus sign if the receiver represents a time with a year less than zero, and is
optional.

DD is the number of complete days, with leading zeros to fill two places

HH is the number of complete hours, with leading zeros to fill two places

MM is the number of complete minutes, with leading zeros to fill two places

SS is. the number of complete seconds, with leading zeros to fill two places

..SSSSSS is the fractional part of the number of seconds, and is optional. 1 to 6 digits of
fractional seconds are supported; additional digits may be used but are rounded to 6
digits.

± a + or - is required

hh is the number of complete hours of the offset, with leading zeros to fill two places

mm is the number of complete minutes of the offset, with leading zeros to fill two
places

Sending printString returns all digits of the DateAndTime seconds, while asString
does not print fractional seconds.

For example:
(DateAndTime fromString: '2020-06-08T13:06:15-00:00')
printString
 '2020-06-08T13:06:15+00:00'

(DateAndTime fromString: '2020-06-08T13:06:15.12356789-07:00')
printString

 '2020-06-08T13:06:15.123568-07:00'

(DateAndTime fromString: '2020-06-08T13:06:15.12356789-07:00')
asString

 '2020-06-08T13:06:15-07:00'
102 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Internationalizing
TimeZone
Each instance of DateTime includes a reference to a TimeZone object, which handles the
conversion from the internally stored Greenwich Mean Time (GMT)/Coordinated
Universal Time(UTC) and the local time. TimeZones are also used to determine the local
time offset for instances of DateAndTime now.

TimeZones encapsulate the daylight savings time (DST) rules, so a given GMT/UTC time
is adjusted to local time based on TimeZone and the specific date.

Each session has a current TimeZone, which is used to display times, and to create instance
of date and time classes when using methods that do not explicitly specify the TimeZone.

The current TimeZone (TimeZone current) is set from the default TimeZone (TimeZone
default) during login. The default TimeZone is persistent, and can only be updated by
SystemUser. The GemStone distribution comes with the America/Los_Angeles TimeZone
installed as the default TimeZone. This is described in the GemStone/S 64 Bit Installation
Guide, and instructions for updating the current TimeZone are in the System Administration
Guide.

DateTime method selectors and comments refer to GMT, which is the older term;
DateAndTime refers to UTC, which is the current preferred term.

6.5 Internationalizing
The convention for expressing numbers and dates varies in different countries. GemStone
supports several ways to handle customization from the default display.

Dates in GemStone log files
The timestamps printed in the log headers and in log messages are formatted according to
the current system locale. You can override this using the GS_CFTIME environment
variable. If this is set in the environment for the process, then the setting is used to control
printing in log headers and log messages.

The setting for GS_CFTIME must be a valid strftime format string, and must contain
fields for:

 Month: %m or %b or %B or %h

 Day: %d

 Hour: %H, or %I and %p, or %I and %P

 Minutes: %M

 Seconds: %S

If the criteria are not met, the default date format based on the system’s LOCALE is used,
or otherwise the US-centric date format. See the man page for strftime, for details on the
formats.
GemTalk Systems 103

Internationalizing GemStone/S 64 Bit 3.6 Programming Guide
Internationalizing Decimal Points using Locale
The class Locale allows you to obtain operating system locale information and use or
override it in GemStone. GemStone currently only uses the decimalPoint setting, to
provide localized reading and writing of numbers involving decimal points. Updates to
Locale are stored in session state, and only persist for the lifetime of the session. They are
not affected by commit or abort.

Note that Smalltalk syntax requires the use of “.” as the decimal point separator, so
expressions involving literal floating point numbers within Smalltalk code will still require
use of the period, regardless of Locale.

To override the operating system locale information, use the following message:
Locale class >> setCategory: categorySymbol locale: LocaleString

Note that the LocaleString passed to setCategory:locale: must be defined on the host
machine. If the given locale is not found, this method will return nil. You can use the UNIX
command locale -a to get a list of all available LocaleStrings. To check the decimal point,
the following method returns the decimalPoint setting for the current Locale:

Locale decimalPoint
%
,

While there are a number of Locale category symbols, the only ones that are of use in this
release are #LC_NUMERIC and #LC_ALL, either of which will set the category that affects
the decimal point.

For example, To use decimal localization appropriate for Germany:
Locale setCategory: #LC_NUMERIC locale: 'de_DE'.

To reset to UNIX default value, using period:
Locale setCategory: #LC_ALL locale: 'C'.

In order to be able to export and input numerical values regardless of the Locale of a
particular session, methods whose printed form includes the decimal point provide the
following set of methods:

(instance method) asStringLocaleC
(class method) fromStringLocaleC:

These methods use a period as a decimal separator, regardless of Locale.
104 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Random Numbers
6.6 Random Numbers

Universally unique identifiers (UUIDs)
Universally unique identifiers (UUIDs) provide a practically unique 128-bit number that
does not rely on a registry or a shared resource. UUIDs are generated randomly using the
secure OpenSSL random number generator.

The class GsUuidV4 implements a version 4 UUID as specified in RFC 4122, A Universally
Unique IDentifier (UUID) URN Namespace.

Instances of GsUuidV4 are invariant and cannot be modified.

To create an instance of UUID:

GsUuidV4 class >> new

GsUuidV4 class >> fromString: aUuidString
aUuidString must be a valid UUID version 4 string in the following format:
 xxxxxxxx-xxxx-4xxx-Vxxx-xxxxxxxxxxxx
where x is any valid lower-case hex digit and V is one of 8, 9, a or b.

Random Number Generator
The class Random and its subclasses provide random number generation.

There are two types of random number generation, which correspond to separate subclass
hierarchies. The SeededRandom subclasses provide random numbers generated within
GemStone code, using a starting seed value. The HostRandom subclass provides access to
the host operating system’s /dev/urandom random number generator.

The class hierarchy of the Random classes are:
Object

Random (abstract)
HostRandom
SeededRandom (abstract)

Lag1MwcRandom
Lag25000CmwcRandom

Random
The Random class is an abstract superclass for the random number generators. It also can
be used to create an instance of a default random number generator class.

Random new will return an instance of HostRandom, the most basic kind of generator
based on host OS /dev/urandom.

Random seed: will return an instance of Lag1MwcRandom. HostRandom does not
support seeds.

While an instance of Lag25000CmwcRandom takes some time to create, it can produce a
more fair and longer-period series of random numbers that are generated much more
quickly than is done by the other Random subclasses.

Once you have an instance of a concrete subclass of Random, you can generate random
numbers or collections of random numbers with the following range and type
specifications:

float - a random Float in the range [0,1)
GemTalk Systems 105

Random Numbers GemStone/S 64 Bit 3.6 Programming Guide
floats: n - a collection of n random floats in the range [0,1)

integer - a random non-negative 32-bit integer, in the range [0,232-1]

integers: n - a collection of n random non-negative integers in the range [0,232-1]

integerBetween: l and: h - a random integer in the range [l,h]. l and h should be
less than approximately 231.

integers: n between: l and: h - a collection of n random integers in the range
[l,h]. l and h should be less than approximately 231.

smallInteger - Answer a random integer in the SmallInteger range,
[-260,260-1]

Subsequent calls to the same instance will generate new random numbers.

You should create an instance of a Random subclass and retain that to generate many
random numbers, rather than creating new instances of a Random subclass.

HostRandom
HostRandom allows access to the host operating system's /dev/urandom random
number generator.

HostRandom is much slower to generate numbers than the other subclasses of Random,
but does not have the overhead of creating an instance. On some platforms,
/dev/urandom may be intended to be a cryptographically secure random number
generator, which none of the other subclasses are. It also has the advantage of not needing
an initial seed, and so is good for generating random seeds for other Random subclasses.

HostRandom uses a shared singleton instance, which is accessed by sending #new to the
class HostRandom. Sending #new has the side effect of opening the underlying file
/dev/urandom. This file normally remains open for the life of the session, but if you wish
to close it you can send #close to the instance, and later send #open to reopen it. If you store
a persistent reference to the singleton instance the underlying file will not be open in a new
session and you must send #open to the instance before asking for a random number.

Since HostRandom is a service from the operating system, it cannot be seeded, and should
not be used when a repeatable random sequence of numbers is needed.

SeededRandom
SeededRandom is an abstract superclass for classes that generate sequences of random
numbers that can be generated repeatedly by giving the same initial seed to the generator.

In addition to creating new instances using the class methods new and seed:, the following
instance methods allow repeatable sequences to be generated:

seed: aSmallInteger
Sets the seed of the receiver from the given seed, which can be any SmallInteger.
The subsequent random number sequence generated will be the same as if this
generator had been created with this seed.

fullState, fullState: stateArray
The internal state of a generator is more than can be represented by a single
SmallInteger. These messages allow you to retrieve the full state of a generator at
any time, and to restore that state later. The random number sequence generated
after the restoration of the state will be the same as that generated after the retrieval
106 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Random Numbers
of the state. You might, for instance, allow a generator to get its initial state from
/dev/urandom, then save this state so the random sequence can be repeated later.

Lag1MwcRandom
Lag1MwcRandom is faster to create than Lag25000CmwcRandom, since it can be seeded
by a single 61-bit SmallInteger, rather than a seed of more than 800000 bits as required by
Lag25000CmwcRandom. After creation, however, it is slower, and it is not perfectly fair,
and has a shorter period. It can be used when a small number of seeded random numbers
are needed.

Lag25000CmwcRandom
Lag25000CmwcRandom is a seedable random generator with a period of over 10240833. It
is a lag-25000 generator using the complementary multiply-with-carry algorithm to
generate random numbers. Its period is so long that every possible sequence of 24994
successive 32-bit integers appears somewhere in its output, making it suitable for
generating random n-tuples where n<24994. Its output is fair in that the number of 0 bits
and 1 bits in the full sequence are equal.

While this generator is recommended for most uses, it is not cryptographically secure, so
for applications such as key generation you should consider using HostRandom, once you
satisfy yourself that HostRandom is secure enough on your operating system.

You can also allow the seed bits to be initialized from the HostRandom, then retrieve that
state by sending #fullState. That state can later be restored by sending the retrieved state
as an argument to #fullState:.
GemTalk Systems 107

Random Numbers GemStone/S 64 Bit 3.6 Programming Guide
108 GemTalk Systems

Chapter

7 Indexes and Querying
This chapter describes GemStone Smalltalk’s indexing and querying mechanism, a system
for efficiently retrieving elements of large collections.

Overview (page 110)
Reviews the concept of relations.

Defining Queries (page 117)
Describes the structure of query predicates, the types of queries, and how to
construct a query.

Creating Indexes (page 119)
Discusses GemStone Smalltalk’s facilities for creating indexes on collections.

Results of Executing a GsQuery (page 126)
How to execute a query and the options for working with the results.

Enumerated and Set-valued Indexes (page 131)
Describes how to create enumerated and collection-valued indexes and queries.

Managing Indexes (page 132)
How to perform index management: find out about indexes in your system,
remove existing indexes, handle errors, and audit indexes.

Indexing and Performance (page 137)
Additional factors that can impact the performance of your queries.

Historic Indexing API differences (page 138)
The older indexing API, using UnorderedCollection methods and select blocks.
GemTalk Systems 109

Overview GemStone/S 64 Bit 3.6 Programming Guide
7.1 Overview
Most applications use one or more databases containing business data, which may be very
large. Individual records in these databases may be added, removed, and/or updated, and
need to be queried in multiple ways for different purposes. All these operations must be
performed quickly and efficiently.

Business Objects
In GemStone, a database is represented as an instance of a collection that holds instances
of business objects. You may have thousands or millions of objects in a collection, and these
objects may be complex composite objects holding many individual strings, dates, number
and other basic data types.

The following example shows simple employee data in table form:

Table 7.1 Employees

First
Name Job Age Address

Fred clerk 40 22313 Main, Dexter, OR

Sophie bus driver 24 540 E. Sixth, Renton, WA

Conan librarian 40 999 Walnut, Hilt, CA

Moppet intern 18 17 SW Oak #6, Portland, OR

In Smalltalk, this can be represented as an Employee class, with instance variables
firstName, job, age, and address; and an Address class, with street, city, and state instance
variables.

Database Collection
The collection itself may be an instance of a number of different types of Collection
subclasses. For scaling, and to support indexes, a subclass of UnorderedCollection is
recommended. Hashed collections such as dictionaries may become unbalanced if too
many elements hash to the same value, and as a collection grows, may require the entire
collection to be rebuilt. Indexed collections such as Array have limitations on adding and
removing elements without affecting the entire collection. UnorderedCollections,
particularly IdentityBag, IdentitySet, RcIdentityBag, and RcIdentitySet, use an optimized
internal tree structure to hold the elements and are the recommended Collection classes for
use for large databases. Collection classes are described in Chapter 4.

To make it easy to associate behavior with your set of Employees, it is often useful to define
a class SetOfEmployees that is a subclass of IdentitySet. An instance of SetOfEmployees
then can contain instances of Employee, with a reference from UserGlobals or from a class
variable.
110 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Overview
Queries
Since UnorderedCollections aren’t ordered, lookup is by value. For example, to find a
particular Employee, you use select:, detect: or similar messages. For example,

MyEmployees select: [:ea | ea addess state = 'OR']
MyEmployees detect: [:ea | ea firstName = 'Sophie']

These iterative messages may not scale well. For example, for the above select:
expression, for each employee in the collection, the employee object and the address object
must be faulted into memory, and the messages address, state, and = are sent. While this
doesn’t matter for small collections, it can become unreasonably slow for very large
collections; particularly if objects in the collection are not in the shared page cache, and
need to be read from disk.

GemStone Indexes and Queries

Indexes
Indexes and indexed queries provide a way to locate specific objects in a collection by
value. Indexes are created on specific named instance variables, either by identity or by
equality. Creating an index on a collection (e.g. on the instance variable firstName), creates
parallel internal structures which provide a mapping from the indexed value (such as the
firstName ’Sophie’) to the root object in the collection (the employee). Using this index,
only a few message sends are needed to lookup the collection element that is the same as,
or less or greater than, a particular value.

Identity indexes support queries that are looking for identical values, while equality
indexes support queries that compare using equality, or greater or less than, a particular
value.

Indexes are created on objects based on instance variables, not on message sends; since the
instance variable relationships are known by the system, indexes can be updated
automatically as elements are added and removed from the collection, and when
references on the path are changed. There are some exceptions to this which require
manually updating the indexes.

Indexes may only be created for instance of subclasses of UnorderedCollection.

GsQueries
To take advantage of an index you have built on your collection, you must perform the
query using GsQuery syntax, rather than select: or similar iteration methods. A query
performed using GsQuery will use indexes, as long as an index exists for the particular
instance variable involved in the query. If an index does not exist, then the GsQuery will
be performed iteratively, with performance similar to the comparable select: or
detect: operation.

When the collection is properly indexed, GsQueries can return results without having to
iterate the collection, fault the intermediate objects into memory, or send messages to each
object.

GsQueries can be used on most kinds of Collection, not only UnorderedCollection.
However, the performance benefit only appears on instances of subclasses of
UnorderedCollection for which the appropriate index or indexes exist.
GemTalk Systems 111

Overview GemStone/S 64 Bit 3.6 Programming Guide
Deciding what to optimize
As with any kind of optimization, it’s important to consider the application’s performance
profile, performance requirements, and the entire context, rather than automatically
creating indexes on all possible paths.

The process of creating indexes creates overhead. The additional internal objects created
use some space, and building an index may take some time. As the data in the repository
changes, including objects added to and removed from the collection itself as well as
changes in actual values, the mappings in the index structures need to be updated.
Periodically, indexes should be audit ed to ensure integrity, and rebuilt if necessary;
rebuilds are required for some system upgrades. Indexes must be specifically removed
when the collection is removed, to ensure the internal infrastructure is cleaned up.

While most collections with more than a few thousand objects will see better performance
using indexed queries, it is wise to consider indexes with this overhead in mind. Before
going through the trouble of creating an index, you should determine that the index
provides value. There are a number of factors that strongly influence queries, both iterative
queries and indexed queries. These factors interact with each other and there are other
factors, such as caching, that also influence performance.

The size of the collection. With smaller collections, iterative performance is fast
enough that indexing provides little benefit. Iterative performance grows linearly
with collection size, while indexed performance increases slowly.

The length of the path. Longer paths require more lookups and more infrastructure,
and take longer to complete. For longer paths, it is more efficient to cache the value
higher within the object structure.

The size of the result set. If you have a query that returns a very large number of
results, creating the result set reduces performance; this is particularly so for indexed
queries.

Overview of the steps in creating and using indexed queries
In order to take advantage of efficient indexed queries on your collection, the following
steps need to be done:

a. Determine the queries that can benefit from optimization, and describe them using
query syntax. Query syntax is described starting on page 113.

For example, to query for employees under 21 who live in Oregon, the query string
might be:

(each.age < 21) & (each.address.state = 'OR')

2. Create one or more indexes on the collection, that specify the particular instance
variable path on which you will perform the query. Creating indexes is described
starting on page 120.

To support the above query, you may want to create two indexes, for example:

GsIndexSpec new
 equalityIndex: 'each.age' lastElementClass: SmallInteger;
 equalityIndex: 'each.address.state' lastElementClass:

 String;
 createIndexesOn: myEmployees.
112 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Overview
3. Execute the query on that indexed collection, using query protocol. How to define
and execute queries is described starting on page 118.

For example:

(GsQuery fromString: '(each.age < 21) & (each.address.state =
 ''OR'')')

 on: myEmployees;
 queryResult

Managing Indexes
In addition to creating indexes and queries, you will also need to do some management on
your indexes and queries. For example, you should evaluate your indexes for performance,
remove indexes that are no longer needed, and audit indexes to ensure the structures are
correct. Many of these indexing tasks are handled by IndexManager.

Special Syntax for Indexing
GemStone indexing uses several syntactical elements that are either specific to, or
primarily used for, index creation and indexed queries.

Path-dot syntax
Indexes are created, and queries formed, using special syntactic structure called a path,
which designates variables for indexing and describes certain features of the index. Path
syntax uses a period to represent the object/instance variable name relationship.

For example, given a collection of Employees, in which each employee has an address
instance variable, which refers to an Address that has a state instance variable, the path is:

address.state

A longer path is
account.order.address.state

In the simplest case, a path on an instance variable on the collection elements, this is just
the instance variable name. For example:

firstName

You may also specify an empty path, meaning the elements of the root collection itself.

Each instance variable name on the path is a pathTerm. In the above example, address and
state are each pathTerms. Paths can contain a long string of pathTerms, if the elements
of the collection represent a deeply nested tree of objects.

Path-dot syntax can be used anywhere in GemStone code; it is required in index creation
and queries, for which message sends are not allowed.

Initial each
An initial 'each.', where each represents the elements of the collection, is recommended
but optional for GsIndexSpec index creation, and required for GsQueries. For example:

each.address.state

Enumerated pathTerms
A vertical bar | in the path indicates the presence of two alternate instance variables that
will be indexed together, as if they were a single variable.
GemTalk Systems 113

Overview GemStone/S 64 Bit 3.6 Programming Guide
For example, you might want to search on both name and nickname in a single operation.
This might look like this:

account.name|nickname

Set-value path terms
An asterisk * in the path indicates a collection, which must be an instance of an indexable
class (an instance of a subclass of UnorderedCollection). A set-valued path term may not
be the first term in the path.

For example, if the instance variable children contains an IdentityBag of instances of Child,
and a child has the instance variable age:

children.*.age

Historic indexing syntax
The GsIndexSpec/GsQuery classes provide the general purpose indexing interface. An
older syntax using UnorderedCollection methods to create indexes, and selection blocks
with curly braces to define queries, is an alternate way to use indexes. This older syntax
remains fully supported in order to ensure upgraded applications do not require changes.
However, new features are not available using this historic API.

See section 7.6 on page 132 for information specific to the historic API.

Last Element Class
Creating an equality index creates an internal btree that contains the ordered values of the
instance variable that is indexed. For example, an index on firstName creates a btree
containing ’Conan’, ’Fred’, and so on. This allows fast lookup of a position in this btree
when performing the query, and values that are equal or greater or less than can be
returned in order as needed.

Building this btree and providing predictable lookup requires that the values be
comparable in well-known and efficient ways. When building indexes, there are choice to
make in balancing the restrictivity of the indexed values vs. the impact of comparison on
query performance.

Performing an identity query creates no such restrictions on the index, since the
comparison is by identity (OOP), and any two objects can be compared this way.

To provide the definition of comparison, equality indexes require specifying the
lastElementClass. This generally restricts the indexed values to instance of this class or of
subclasses of this class, although string classes have some special handling.

Optimized classes
The following classes, and subclasses of these classes, are optimized for indexes. In most
cases, the final element you will create an index on will be one of the following. For legacy
indexes, the index structures encode the value; for btreePlusIndexes, they can perform
optimized comparisons. These classes are subclasses of Magnitude or CharacterCollection.

Character, SmallInteger, SmallDouble, SmallFraction,
String, DoubleByteString, QuadByteString,
Unicode7, Unicode16, Unicode32,
Symbol, DoubleByteSymbol, QuadByteSymbol,
114 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Overview
Time, Date, DateTime, DateAndTime,
LargeInteger, Float, DecimalFloat, ScaledDecimal, FixedPoint, Fraction

Boolean is a special case; it is a special, and so does not require looking in legacy indexes.
However, it does not support optimizedComparison.

Using other classes
You can create indexes where the indexed values are instances of classes other than the
above, including classes you have defined yourself.

Identity indexes on instances of your own classes require no extra work, since they
compare on the identity of the objects.

If you wish to create an index where the values that are instance of application classes that
do not subclasses of basic classes, you must ensure these classes implement comparison
operators, as described on page 116.

Comparing data types
Some cases of data type comparison have special handling in indexes.

It may be useful to mix strings and symbols, but there is additional cost. While a
string and a symbol can be ordered using <=, a string and a symbol that contain the
same characters are not equal. There are two solutions: using alternate comparison
methods which reduce performance; or optimizing the comparison operators and not
mixing symbols and strings.

NaN (not a number) are specialized kinds of Float that are not equal to themselves.
As with strings, special handling is required to accommodate NaNs, at the cost of
performance; or NaNs may be disallowed in Float indexes.

The indexed comparison mechanism considers only the first 900 characters of each
string operand, so two strings that differ only beginning at the 901st character are
considered equal.

nil is a special case of object that can be compared to any other object. They also
require special handling in indexes. Since the appearance of nil signifies a value that is
not there, less than and greater than comparison results will not include nil values.
Since accommodating nil requires special protocol, nil may also be disallowed.

A nil along the path to an indexed slot is a different issue; such missing sections of a
reference tree are allowed without special handling.

Strings in indexes
Indexing on strings has complications, due to the different collation orders it is possible to
configure. For more on collation, see Chapter 5.

To summarize, strings come in two "flavors":

Traditional strings (String, DoubleByteString and QuadByteString, which are
interchangeable based on the maximum Character codePoint size). Traditional
strings, in Legacy String Comparison Mode, use character-based collation.

Symbols (Symbol, DoubleByteSymbol and QuadByteSymbol) follow the same
collation rules as Traditional strings.
GemTalk Systems 115

Overview GemStone/S 64 Bit 3.6 Programming Guide
Unicode strings (Unicode7, Unicode16, and Unicode32) always use ICU string-based
collation.

A repository in Legacy String Comparison Mode disallows compare between Unicode
strings and Traditional strings or symbols, to avoid unpredictable results. In this mode,
you cannot mix Traditional and Unicode strings; it is difficult to avoid errors when using
Unicode strings in Legacy String Comparison Mode.

A repository in Unicode Comparison Mode uses Unicode collation for all flavors of strings
and symbols. In this mode, you can use Traditional strings and Unicode strings
interchangeably.

Constraining the indexed variables using lastElementClass is not effective for strings, since
Traditional string, symbol and Unicode string classes inherit by codePoint range rather
than by collation or other behavior. It is allowed, but not recommended, to specify
CharacterCollection (the superclass of all kinds of Strings and Symbols), since (depending
on the mode and index type) it may create an ambiguous indexes.

In both Comparison Modes, specifying a lastElementClass of any of the following will
create an index that includes a cached collator:

Unicode7, Unicode16, Unicode32

In Legacy String Comparison Mode, the lastElementClass of any of the following will
permit instance of any of the classes:

String, DoubleByteString, QuadByteString,
Symbol, DoubleByteSymbol, QuadByteSymbol

In Unicode Comparison Mode, the lastElementClass of any of the following will permit
instance of any of the classes:

String, DoubleByteString QuadByteString,
Symbol, DoubleByteSymbol, QuadByteSymbol
Unicode7, Unicode16, Unicode32

Note that some optimized indexes disallow mixing Symbols with any kinds of Strings.

Redefining Comparison Messages
If you create an index on values that are instances of your application classes, these classes
must implement the basic comparison operators, at least =, >, <, and <=. You can redefine
one or more of these in terms of another.

The operators must be defined to conform to the following rules:

If a < b and b < c, then a < c.

Exactly one of these is true: a < b, or b < a, or a = b.

a <= b if a < b or a = b.

If a = b, then b = a.

If a < b, then b > a.

If a >= b, then b <= a.

While the indexing subsystem does not use hashing itself, note that redefining = does
requires attention to the hash method to be consistent with the new definition of equality.
Object that are equal must return the same hash value to ensure they behave in a consistent
and logical manner in all use cases.
116 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Defining Queries
7.2 Defining Queries
Before you can define indexes on your collection, you need to determine the ways in which
you will need to search your collection to retrieve elements. The queries you need
determine the details of the indexes to create.

At its simplest, a query consists of the specification of an instance variable common to all
the objects in the collection, a comparison operator, and a literal to which the value is
compared. For example, if you wish to be able to find all employees 21 and older, your
query formula could be something like this:

each.age >= 21

In this example, every object in the collection (each) has an instance variable age, which
is specified using dot-path notation. The value of that instance variable is compared,
greater than or equal, to the literal SmallInteger 21.

While this formula is simple, you can formulate queries based on multiple instance
variable values, operators, and constants, and combine them using boolean logic.
However, using this query syntax, you cannot include message sends; the indexes are
based on structural relationships using instance variable names.

For performance and clarity, it is an advantage to use short and simple queries. However,
it may be valuable to compose your queries based on the statement of business logic. This
may mean creating a complicated query that is not in its most efficient form. The final
query will be automatically optimized to a logically equivalent form that is more efficient
for GemStone to execute. See “Formulating queries and performance” on page 138.

Query Predicate Syntax
A query contains a predicate expression, which is a Boolean expression that, when
evaluated with the elements of the collection, returns true or false. In a query, the
expression usually compares an instance variable on the collection objects with another
instance variable or with a constant.

A predicate contains one or more predicate terms—the expressions that specify
comparisons.

Predicate Terms
A term is a Boolean expression containing an operand and usually a comparison operator
followed by another operand. For example, in

each.age >= 18

each.age and 18 are operands, while >= is a comparison operator. The only time you
would not have a comparison operator is if the operand is itself a Boolean (true or false).

Predicate Operands
An operand can be a path (each.age, in this case), a variable name, or a literal (18, in this
example). All GemStone Smalltalk literals except arrays are acceptable as operands.

Predicate Operators
Predicate operators are ==, ~~, =, ~=, <, <=, > and >=. No other operators are permitted in
a GsQuery or selection block query.
GemTalk Systems 117

Defining Queries GemStone/S 64 Bit 3.6 Programming Guide
Combining Predicates using Boolean Logic
If you want retrieval of an element to be contingent on the values of two or more of its
instance variables, you can join several terms using a conjunction operator & (logical AND)
or disjunction operator | (logical OR).

The conjunction operator, &, makes the predicate true if and only if the terms it connects
are true. The disjunction operator, |, makes the predicate true if either one, or both, of the
terms it connects are true.

You may also negate individual predicate terms using not.

Each predicate term must be parenthesized.

For example, the following are legal queries.
(each.name = 'Conan') & (each.job = 'librarian')

(each.age <= 40) | (each.job = 'librarian') not

Combining Range Predicates
Queries that use less than or greater than, such as each.age >= 18, define a starting (or
ending) point in a range query. Specifying both a starting point and ending point creates a
range query. For example,

(18 <= each.age) & (each.age <= 65)

These two terms can be combined into single range predicate.
18 <= each.age <= 65

Range specifications such this can only be defined with this syntax if the operands and
comparison operators truly define a range.

Creating a GsQuery
GsQuery is a programmatic way to define a query, allowing you to easily abstract, store
and reuse various aspects of the query.

To create a GsQuery, you create an instance of GsQuery using query predicate syntax. The
most simple way to create a GsQuery is by passing in a string. For example:

GsQuery fromString: 'each.age >= 18'

Since the fromString: protocol requires a string, if the query includes literal strings, you
must include two single quotes within the string. For example:

GsQuery fromString: 'each.firstName = ''Fred'''.

This message will return an instance of GsQuery. Before it can be executed, it must be
bound to a collection:

Create the GsQuery using fromString:on: creates a GsQuery that is bound to a
particular collection.

Bind the query before executing using the on: method.

Query Variables
The strings used to define GsQuery instances may contain variables—any element of a
predicate that is are not a literal or path-dot expressions. This allows your query to be
stored and executed later using different values.
118 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating Indexes
For example, for a query such as
GsQuery fromString: '18 <= each.age <= 65'

This can be generalized to a query with variables:
GsQuery fromString: 'min <= each.age <= max'.

The resulting formula in the GsQuery includes 'min' and 'max' as variables. These must be
bound to specific values before the query can be executed. Binding is done by sending the
bind:to: message to the query. For the above example, to execute the query:

aQuery := GsQuery fromString: 'min <= each.age <= max'.
aQuery

bind: 'min' to: 18;
bind: 'max' to: 65;
on: myEmployees;
queryResult

Note that the “max” and “min” in the query formula are string elements, and are not
affected by any temporary or instance variables named max or min in the scope of the code
being executed. The only way to resolve max and min are by binding variables.

7.3 Creating Indexes
Queries can be executed without an associated index, but there is no performance benefit.
To execute a query efficiently, you need to also create an index on the instance variables for
the query. These indexes provide a mapping from the specific key values that you are
interested in to the results (the objects in the collection).

The path you provide when creating an index provides the key that is needed to lookup
the value during a query. These keys are the values of a specific instance variables within
the elements of a collection, or the elements of the collection itself. For example, given a
collection of Employees, and the path each.address.state, the objects at the state
instance variable (perhaps two-character Strings) would be the keys.

The values for these keys are the objects in the collection itself, which are the results of the
query using that index. For our example, the values are the instances of Employee in
AllEmployees. When you make an indexed query for Employees with addresses in a given
state, that state key is used to lookup the matching elements (instance of Employee).

Equality and Identity Indexes
Indexes fall into two main types: Equality Indexes and Identity Indexes. Equality indexes
support equality-based queries, including >, >=, <, <=, =, and ~=. Identity indexes support
queries containing identity comparisons, == and ~~.

When creating an index, you specify whether an equality or identity index is created. Since
identity comparisons are done by OOP, not by the object’s contents, they are faster, and the
lastElementClass does not matter; any two objects can be compared for identity.

If you only have an identity index on a variable, but form your query using an equality
operator, the query will not have an index to use (and thus, will iterate the collection).

You may create both equality and identity indexes on the same path.
GemTalk Systems 119

Creating Indexes GemStone/S 64 Bit 3.6 Programming Guide
Btree and Legacy Indexes
GemStone supports two different internal structures; the legacy structures, which includes
a btree and an index dictionary; and the btreePlus structures, which use a btree+ and does
not require the dictionary. The query results are the same for each, of course, but the
performance profile is different.

The decision of which to use impacts your indexing work.

The best query performance is with btreePlusIndexes with optimizedComparison.
However, optimizedComparison places restrictions on lastElementClass data types,
such that, for example, Strings and Symbols cannot be mixed, and nils and NaN floats
may not be present.

If your data does not conform to the data type restrictions, using legacy indexes is
recommended.

With a legacy identity index, the index dictionary provides a identity-based lookup for the
key. In a btreePlus identity index, the keys are in a btree. This allows you to stream over
the results of a identity query only when using a btreePlus index.

The index structure you use can be specified for each index, otherwise it relies on the
system or configured default. Since structures are shared between indexes on a collection,
all indexes on a specific collection must use the same internal structure.

Note this is entirely distinct from the historic indexing API (using UnorderedCollection
methods to create indexes); creating indexes using the historic API may create either kind
of internal structure, depending on the current default.

See page 123 for details on how to configure each index type.

Creating the Index
Creating an index involves creating an instance of GsIndexSpec and sending messages to
define the index and the parameters and options for that index, then use this spec to create
indexes on a specific collection.

Before creating an index, you must know:

the paths for the instance variables that you will query on.

The classes of the values of these instance variables, and if these instances are
homogenous.

If your queries will be by equality or identity

To create an index using GsIndexSpec, do the following:

1. Create the instance of GsIndexSpec
This is done by executing GsIndexSpec new

2. Define one or more indexes on the spec
To define an index, send an index creation message to the GsIndexSpec, including the
path you want indexed, the class of the last element (for equality indexes), and options
(if used).
120 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating Indexes
The most general index creation methods include:
equalityIndex:lastElementClass:
identityIndex:

While these methods can be used to create indexes on strings, there are additional
index creation methods are specific to various kinds of string indexes. These methods
have variants that allow you to specify the index options.

3. Create the index on a specific collection
To actually create the index, send the message createIndexesOn:, providing the
specific collection on which you want to create the indexes.

To put this all together, for example:
GsIndexSpec new

identityIndex: 'each.userId';
equalityIndex: 'each.age' lastElementClass: SmallInteger;
equalityIndex: 'each.address.state' lastElementClass: String;
createIndexesOn: myEmployees.

This creates an identity index on userId, an equality index on age, and another equality
index on address.state, all on the collection myEmployees.

You can view the indexes by recreating the specification from the indexed collection, using
indexSpec. For example:

run
myEmployees indexSpec printString
%
GsIndexSpec new

identityIndex: 'each.userId';
equalityIndex: 'each.age'

lastElementClass: SmallInteger;
equalityIndex: 'each.address.state'

lastElementClass: String;
yourself.

Equality Indexes on strings
Equality indexes on strings present a variety of options and restrictions, depending on:

If the indexed elements will be Traditional strings, Unicode strings, Symbols, or a
mix.

If you are using the GsIndexOptions optimizedComparison feature, which is strongly
recommended with btreePlus indexes and disallowed with legacy indexes.

If the application is in Unicode or Legacy String Comparison Mode.
GemTalk Systems 121

Creating Indexes GemStone/S 64 Bit 3.6 Programming Guide
The following methods can be used to create equality indexes on strings and/or symbols.
Note that each has a variants that allow you to specify the index options.

equalityIndex:lastElementClass:
unicodeIndex:
unicodeIndex:collator:
stringOptimizedIndex:
symbolOptimizedIndex:
symbolOptimizedIndex:collator:
unicodeStringOptimizedIndex:
unicodeStringOptimizedIndex:collator:

Which one you should use, and the rules allowing comparisons between different kinds of
data, are different for repositories in Legacy String Comparison Mode or in Unicode
Comparison Mode.

Comparison Modes are described on on page 79.

Repositories in Legacy String Comparison mode
In Legacy String Comparison mode, it is disallowed to compare Traditional and Unicode
strings, so it’s not possible for the indexed variables to contain a mix of Unicode strings and
Traditional strings or Symbols.

Legacy indexes
To create a legacy index on Traditional strings, symbols, or a mix of the two,

use a equalityIndex:* method specifying a lastElementClass of String.

If you are using Unicode strings in Legacy String Comparison Mode,
use a unicodeIndex:* method.

optimizedComparison (btreePlus) index
You cannot create an optimizedComparison index on a mix of types.

If your indexed elements are all Traditional strings,
use a stringOptimizedIndex:* method.

If your indexed elements are all Unicode strings,
use a unicodeStringOptimizedIndex:* method.

If your indexed elements are all Symbols,
use a symbolOptimizedIndex:* method.

Repositories in Unicode Comparison Mode
In Unicode Comparison Mode, Traditional strings are collated exactly like Unicode strings,
and indexes make no distinction between them.

Symbols are also collated like Unicode strings, but due to the definition of equality,
optimizedComparison indexes do make a distinction between strings and symbols.

Legacy indexes
To create a legacy index in Unicode Comparison Mode on Traditional strings, Unicode
strings, symbols, or any mix, use a unicodeIndex:* method, to ensure the collator is
persisted with the index.
122 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating Indexes
optimizedComparison (btreePlus) index
optimizedComparison indexes may mix Traditional and Unicode strings, but may not
mix strings and symbols.

If your indexed elements are all Traditional or Unicode strings,
use the method unicodeStringOptimizedIndex:*.

If your indexed elements are all Symbols,
use the method symbolOptimizedIndex:*.

Implicit Indexes
With legacy indexes, the indexing internal structures include a dictionary. This dictionary,
as a side effect, provides de facto identity indexes with some equality indexes: specifically,
for non-terminal pathTerms, and where the lastElementClass is a Special (SmallInteger,
SmallDouble, SmallFraction, Character, or Boolean, in which equality and identity are the
same). Such indexes are referred to as implicit indexes.

Since with btreePlusIndexes there is no dictionary, there are also no implicit indexes
defined.

For clarity, and to avoid dependency on side-effects of the internal structures, it is
recommended to explicitly define any identity indexes that you require. There is no risk in
explicitly creating an identity index that would exist as a implicit index.

GsIndexOptions
An instance of GsIndexOptions specifies features that will be used when creating a
particular index on a collection. GsIndexSpec index definition methods all have variants
that accept an instance of GsIndexOptions, although some override certain settings. If no
GsIndexOptions is explicitly provided, the session or repository default is used.

The GsIndexOptions defines if the index is a legacy index or a btreePlus index, as well as
other important indexing features. The options available for GsIndexOptions are:

GsIndexOptions class >> legacyIndex
defines a legacy index structure, and disables btreePlusIndex and
optimizedComparison.

GsIndexOptions class >> btreePlusIndex
defines a btreePlus index structure, and disables legacyIndex.

GsIndexOptions class >> optimizedComparison
adding optimizedComparison is only allowed with btreePlusIndex.

GsIndexOptions class >> reducedConflict
Instructs the index to create the internal structures as reduced-conflict,
recommended when indexing on a reduced-conflict collection.

GsIndexOptions class >> optionalPathTerms
Instructs the index to allow objects that do not include an indexed instance
variables to be present in the indexed collection.

These options are described in more detail starting on page 124.
GemTalk Systems 123

Creating Indexes GemStone/S 64 Bit 3.6 Programming Guide
Combining options
GsIndexOptions can be combined using the plus operator and removed using the minus
or not operators, with the caveat that not all options are compatible with each other. For
example:

GsIndexOptions legacyIndex + GsIndexOptions reducedConflict

GsIndexOptions btreePlusIndex + GsIndexOptions
optimizedComparison not

If you combine two options that conflict, the later one has precedence.

Default options
Creating an instance of GsIndexOptions, using class methods such as GsIndexOptions
>> legacyIndex, begins with the default, repository-wide GsIndexOptions.

The specific value requested by the class method (such as legacyIndex) overwrites the
default only for that setting and its dependents.

For example, using GsIndexOptions legacyIndex will return a GsIndexOptions
instance with legacyIndexes on and both btreePlusIndex and optimizedComparison
disabled, regardless of the default. However, the default GsIndexOptions setting for other
values, such as reducedConflict, will be retained

The initial default GsIndexOptions is:
GsIndexOptions btreePlusIndex + GsIndexOptions optimizedComparison.

In an upgraded application, the system default is set instead to:
GsIndexOptions legacyIndex

to ensure that the behavior does not change from previous releases.

You can manually set the repository-wide default, as SystemUser, by executing
GsIndexOptions class >> default:. Do this with care, since it may affect all indexes that are
created in the future that do not explicitly set all the GsIndexOptions values.

For example, if you have an upgraded application and want to default to btreePlusIndexes
and optimizedComparison, execute

GsIndexOptions default: (GsIndexOptions legacyIndex +
GsIndexOptions reducedConflict)

You may also set a session-wide default that applies only to your session and only until you
log out, using GsIndexOptions class >> sessionDefault:.

The Options in GsIndexOptions
The options btreePlusIndex, optimizedComparison, and legacyIndex are used to specify
the index type.

GsIndexOptions legacyIndex enables the classic legacy btree and disables
btreePlusIndex. legacyIndex is not compatible with optimizedComparison.

GsIndexOptions btreePlusIndex enables the btreePlus structures and disables
legacyIndex. For performance, this is normally used with the optimizedComparison
option. btreePlusIndexes without optimizedComparison are somewhat less
performant than legacy indexes in most cases.
124 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating Indexes
The following table describes the three combinations:

GsIndexOptions
btreePlusIndex +

GsIndexOptions
optimized comparison

Provides the best query performance, with some-
what slower update performance. There are
restrictions on the contents of indexed instance
variables; nil is not allowed, they cannot mix
strings and symbols, and cannot mix floats and
NaNs.

GsIndexOptions
legacyIndex

Provides good performance. Data type restrictions
are less strict.

GsIndexOptions
btreePlusIndex

Data type restrictions are less strict, but the perfor-
mance is not as good as legacyIndex.

Using optimizedComparison, it is disallowed to use a mix of certain kinds of objects in the
collection. The following rules when using optimizedComparison:
 values must be a kind of the last element class.
 nil is not allowed as a value.
 For Float last element class, NaN floats are not allowed as a value.
 For String last element class, Symbols are not allowed as a value.
 For Symbol last element class, Strings are not allowed as a value.

When using the "Optimized" index specification methods to define an index, it overrides
the settings for these three options in the default or argument GsIndexOptions.

Reduced-Conflict
In a multi-user system, reduced-conflict collection classes may help avoid transaction
conflicts if multiple users simultaneously add or remove objects from the collection; for
more on this problem, see “Classes That Reduce the Chance of Conflict” on page 164. For
example, using an RcIdentityBag rather than an IdentityBag allows concurrent updates to
the collection itself.

If there are concurrent updates of the same indexed instance variable for different objects
in the collection (for example, the addresses associated with two different customer objects
are both changed), there is not an application object conflict, since the objects are
independent. However, there may be a transaction conflict due to the indexes, since both
addresses are keys in the same indexing structure.

This doesn’t apply to legacy identity indexes, which are always reduced-conflict.

To avoid transaction conflicts from the indexing internal structures, specify that the
indexes are reducedConflict, using GsIndexOptions reducedConflict.

For example:
GsIndexSpec new

equalityIndex: 'each.address'
options: (GsIndexOptions reducedConflict)

Optional pathTerms
A homogenous collection is one in which each element in the indexed collection defines the
instance variable described by the index, for each pathTerm in the indexed path. By
default, indexes require that the collection be homogeneous. If any element does not have
GemTalk Systems 125

Results of Executing a GsQuery GemStone/S 64 Bit 3.6 Programming Guide
the given instance variable, it will raise an error when the element is added to the
collection.

If you want to create an index on a non-homogenous collection, you can define the indexes
with optional pathTerms. For example:

GsIndexSpec new
equalityIndex: 'each.nickName'
options: (GsIndexOptions optionalPathTerms)

When creating an optional pathTerm index, it is not an error when the objects in the
collection do not implement an instance variable specified by the index. For a multi-
pathTerm index, that includes each pathTerm; objects with missing instance variable
definitions for any of the pathTerms in the indexed path are not considered when creating
query results.

Note that this option bypasses some error detection. If you create an index using an
instance variable that does not exist at all (perhaps due to a typing error), then the index is
created correctly and does not report an error, even if it does not create the index you might
have intended to create.

7.4 Results of Executing a GsQuery
Once you have defined your query, created the GsQuery, and bound it to a collection, there
are further options in how to access the results of the query.

To simply get the results, you can send queryResult to the instance of GsQuery.

GsQuery >> queryResult will, like selection block queries, return a new instance of
collection of the same class as the base collection, unless protocol such as asArray are used
to specify the class of the results.

Also similarly to selection block queries, queries on instances of reduced-conflict (Rc)
collections, return the equivalent non-Rc collection.

The collection returned from a query has no index structures. Indexes belong to specific
instances of collections, rather than the classes. If you want to perform indexed selections
on the new collection, you must build the necessary indexes on the new collection.

GsQuery’s Collection protocol
GsQuery accepts other Collection protocol, and, provided the query has bound to a
collection and to query variables, the GsQuery instance responds to as if the GsQuery was
a collection of the results of the query. This means that rather than having to put the results
of a query into a temporary variable for further processing, GsQuery can respond directly
to the kinds of message you are likely to send to the query results.

You can convert the type of collection, for example, using asArray or asIdentityBag:
(GsQuery fromString: 'each.address.state = ''OR'''

on: Employees) asArray

Or fetch a single instance from the results:
(GsQuery fromString: 'each.firstName = ''Sophie'''

on: Employees) any
126 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Results of Executing a GsQuery
Performing one of the collection operations that are provided for GsQuery simplifies your
code, since you may not have to put results in temporary variables. It may or may not allow
you to avoid creating query result objects.

Enumeration methods also allows you to perform code while the query is executing, rather
than waiting for the results.

Caching Query Results
While GsQuery responds to messages as if it was a collection, the results of a query are not
a static collection. By default, each time you execute any GsQuery collection protocol, the
query is performed again. So, for example, sending isEmpty to a GsQuery before sending
asArray will execute the underlying query twice.

You can cache the results of your GsQuery using GsQueryOptions cacheQueryResult.
By default, it is false. Using this option allows the resultSet of the GsQuery to be cached.
Note that this cache will not reflect changes in the root collection that occurred after the
query was executed; you are responsible for re-running the query if current results are
required.

To create an instance of GsQueryOptions with cacheQueryResult true, use this expression:
GsQueryOptions cacheQueryResult

And use this instance with GsQuery methods that includes the options: keyword.

For example:
query := (GsQuery fromString: 'each.address.state = ''OR'''

options: (GsQueryOptions cacheQueryResult)
on: Employees).

query isEmpty ifTrue: [^'no results'].
report := self createReportingStructure.
query do: [:ea | report updateDataWith: ea].
...

GsQuery enumeration methods accepting blocks
Among the collection protocol that GsQuery understands are the methods do:, select:,
reject:, collect:, detect: and detect:ifNone:. These may look similar to
iterative queries on the root collection, but since the actual query is already provided by the
GsQuery, the action is quite different.

With GsQuery, these will operate on the result set of the initial query. In essence, you are
adding an additional, non-indexed search criteria to the indexed query. This additional
code will be executed for each element in the collection for which the indexed query
matches, at the time that the index query is examining that result element.

For example, if you have an index on Employee age, and a query such as:
(GsQuery fromString: 'each.age <= 18' on: Employees)

Using this query, you can add an additional search criteria using select:, so that only
Employees who live in Oregon are returned.

(GsQuery fromString: 'each.age <= 18' on: Employees) select:
[:each | each address state = 'OR']

This will return a result set that includes Employees under 18 who live in Oregon.
GemTalk Systems 127

Results of Executing a GsQuery GemStone/S 64 Bit 3.6 Programming Guide
The address message is only sent to the elements (Employees) who are under 18, it is not
executed for every element in the collection. Also note that the state comparison does not
use an index; these are message sends.

Order of results
Provided there is an index on the query path, the enumeration block operates on each
object in the result set in the order specified by the index. However, if you wish to use the
result of the select: or other enumeration method, the result will necessarily be a kind
of UnorderedCollection, and the objects in the returned collection will be not be ordered.

You can still use the enumeration protocol to produce results that are ordered according to
the index, by adding each element to a temporary Array. However, for ordered results, you
may want to stream over the results instead.

Efficiency of query vs. enumeration
It is more efficient to perform an indexed query with multiple predicates using GsQuery,
than to add additional criteria using enumeration methods.

For example, the following code returns a collection of all employees who are 26 or
younger, and who respond false to hasOtherHealthInsurance.

GsQuery fromString: 'each.age <= 26' on: myEmployees)
reject: [:each | each hasOtherHealthInsurance]

This may be useful if you have predicates that require message sends. However, if you can
formulate the second statement as an indexable predicate, it would be more efficient as a
query. If hasOtherHealthInsurance was actually an instance variable, you could write
this as:

(GsQuery fromString: '(each.age <= 26) &
(each.hasOtherHealthInsurance) not' on: myEmployees)
queryResults

Early exit from execution
Since the code in the block provided to select: (and similar methods) is executed for
each element that the indexed query itself would return, this provides a way to exit the
indexed query early. In this block, you can execute any code (as long as it does not modify
the collection or the objects in the collection, in ways that would change the result set). If
it’s no longer useful to continue the search, you can exit the block and potentially save a lot
of time.

For example, say you have a collection of purchase orders, and you are generating a report
of all open purchase orders. If a new order arrives during the period you are executing this
operation, you might want not want to bother producing the already-obsolete report.

(GsQuery fromString: 'each.isOpen' on: MyOrders) do:
[:anOrder |
report add: anOrder description.
self checkForNewOrders ifTrue: [^'report canceled']
]

128 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Results of Executing a GsQuery
Query results as Streams
It may be more useful to return the result of an equality query as a stream, instead of a
collection, especially if the result set is large. Returning the result as a stream not only is
faster, is also avoids the need to have all the result objects in memory simultaneously.

You can stream on an identity query only when using a btreePlusIndex. You cannot stream
on the results of an identity legacyIndex.

Streaming on index results return the results in order that is defined by the index, so you
can iterate over the elements that are returned in the order defined by the index, with no
extra effort.

To get the results as a stream, use the message GsQuery >> readStream or
GsQuery >> reversedReadStream.

These methods return an instance of a specialized subclass of Stream that understand a
limited number of ReadStream protocol. Legal messages to an index stream are:

atEnd
do:
next
reversed
size
skip:

Streams do not automatically save the resulting objects. If you do not save them as you read
them, the results of the query are lost. You should not modify the objects in the base
collection while streaming, nor add or remove objects; doing so can cause an error or
corrupt the stream.

For example, suppose your company wishes to send a congratulatory letter to anyone who
has worked there for thirty years or more. Once you have sent the letter, you have no
further use for the data. Assuming that each employee has an instance variable called
lengthOfService, and there is an index on this, you can use a stream to formulate the query
as follows:

oldTimers := (GsQuery fromString: 'each.lengthOfService >= 30'
on: myEmployees) readStream.

[oldTimers atEnd] whileFalse: [
| anEmployee |
anEmployee := oldTimers next.
anEmployee sendCongratuations.].

Limitations on streamable queries
Streams on query results have certain limitations; for example, the predicate in the query
must be logically streamable. The following restrictions apply:

It takes a single predicate only; no conjunction of predicate terms is allowed. The
exception is range predicates, which can be combined into a single predicate. For
GemTalk Systems 129

Results of Executing a GsQuery GemStone/S 64 Bit 3.6 Programming Guide
example (each.age > 18) & (each.age <= 65) is legal, since it can be
reformulated as a single range predicate, (18 < each.age <= 65).

The predicate can contain only one path.

The collection you are streaming over must have an equality index on the path
specified in an equality predicate; or have an identity btreePlusIndex on the path
specified by an identity predicate.
130 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Enumerated and Set-valued Indexes
7.5 Enumerated and Set-valued Indexes

Enumerated path terms in indexes and queries
Enumerated path terms allow you query over more than one instance variable value in a
single query. This is specified using the vertical bar | in the path term, between the instance
variable names.

The instance variables are treated as alternate choices; if any one of the specified instance
variables matches the search criteria, the predicate evaluates to true.

For example, you might want to search on both first name and nickname in a single
operation. The query might look like this:

(GsQuery fromString: 'each.firstName|nickName = ''Freddie'''
on: MyEmployees) queryResult

When this is executed, the results will include all instances that have either the firstName
equal to ‘Freddie’, or the nickName ‘Freddie’, or both.

In order to optimize this query with an index, you need to create an index on the specific
enumeration, e.g. 'each.firstName|nickName'. An enumerated path term query will
not use an index on the individual instance variables that are enumerated.

Restrictions on predicates with enumerated pathTerms
The semantics of enumerated pathTerms do not allow multiple conjoined predicates using
the same enumerated pathTerm, since each predicate is evaluated separately. (conjoined
predicates are those connected using &).

Indexes and Queries with collections on the path
Your business objects may themselves contain collections; for example, an employee may
contain a collection of children; and you may want to search based on some criteria of the
objects in that collection. As long as this collection is itself indexable, indexes and queries
can include all elements within these contained collections.

Index paths that include collections, and the queries that use these indexes, are generally
referred to as Set-valued indexes and queries for historical reasons, although any kind of
indexable collection, not just Sets, may be used.

When you wish to specify a path containing an instance of a subclass of
UnorderedCollection, the collection is represented by an asterisk *. This syntax may be
used to create indexes and perform queries. Only GsQuery may be used to perform set-
valued queries.

For example, suppose you want to know which of your employees has children of age 18
or younger. To facilitate such queries, each of your employees has an instance variable
named children, which is implemented as a set. This set contains instances of a class that has
an instance variable named age.

To create the index:
GsIndexSpec new

equalityIndex: 'each.children.*.age'
lastElementClass: SmallInteger;

createIndexesOn: myEmployees.
GemTalk Systems 131

Managing Indexes GemStone/S 64 Bit 3.6 Programming Guide
Set-valued query results
When you execute a set-valued query, the results you get will follow the particular
semantics of Set-valued queries. Since there are potentially multiple “true” query results for a
given element in the base collection, the result of a set-valued query such as this can be larger than
the original collection.
For example, consider the following query, using the index created above:

(GsQuery fromString: 'each.children.*.age <= 18'
on: myEmployees) queryResult

In this example, if the root collection myEmployees is a Bag or IdentityBag (rather than a
Set or IdentitySet), and an employee has two children that are under 18, then that employee
will appear in the results (a Bag or IdentityBag) twice. Employees with three minor
children appear in the results three times, and so on. The resulting collection may be
several times as large as the original collection, depending on the details of the query and
data.

If the root collection myEmployees is a Set, which does not allow multiple instances of the
same object, this potential source of confusion does not occur.

Restrictions on predicates in set-valued queries
The semantics of set-valued indexes do not allow multiple conjoined predicates that use
the same set-valued pathTerm, since each predicate is evaluated separately. (conjoined
predicates are those connected using &).

In general, it is recommended to avoid using multiple- set-valued predicate queries,
although some multiple-predicate set-valued queries can be optimized, or avoid the
problem cases, and are safe and therefor allowed.

7.6 Managing Indexes
You may need to find out about all the indexes in your system, and to remove selected
indexes or clean up indexes that were not successfully created. This functionality is
provided by the class IndexManager.

IndexManager has a single instance which provides much of the functionality, accessible
via IndexManager current.

This instance is lazy initialized, and stored in the IndexManager class instance variable
after it is created. Any configuration you do on IndexManager current, therefore, will be
used by all affected operations, if you commit after making the change.

While Indexes are Being Created
Indexing a large collection will take some amount of time to create the infrastructure and
tracking for each indexed object.

The message progressOfIndexCreation returns a description of the current status for
an index as it is created.
132 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Managing Indexes
Queries during index creation
While the index is being created, the index is write-locked. Any query that would normally
use the index is performed directly on the collection, by brute force. If a concurrent user
modifies an object that is actively participating in the index at the same time, index creation
is terminated with an error.

Auto-commit
Creating or removing an index creates and/or modifies many objects related to the internal
structures that support indexes. These modifications are uncommitted changes that must
be kept in the session’s memory until these changes are committed. Many uncommitted
changes place a large demand on memory and creates a risk of out of memory conditions.
Chapter 8‚ “Transactions and Concurrency Control”, explains uncommitted objects and
transactions in more detail, while Chapter 15‚ “Performance and Optimization” includes
information on object memory use.

To avoid problems during index creation, it is often necessary to set the IndexManager to
autoCommit. When IndexManager is set to autoCommit, it will commit the partially
created index, rather than risk running out of resources and failing the index operation.

By default, autoCommit is false. When you send the following message:
IndexManager autoCommit: true

it configures your IndexManager such that the current transaction is committed during an
indexing operation, whenever any of the following occur:

The current session receives a signal indicating temporary object memory is almost
full.

The percentage of temporary object memory in use reaches the IndexManager’s
setting for percentTempObjSpaceCommitThreshold.

The default is 60. This threshold can be changed using IndexManager >>
percentTempObjSpaceCommitThreshold: anInt

The current session receives a signal to FinishTransaction. This occurs when the
commit record backlog is larger than STN_SIGNAL_ABORT_CR_BACKLOG, and
this session is holding the commit record.

The number of modified objects in the current transaction reaches the
IndexManager’s setting for dirtyObjectCommitThreshold.

The default is SmallInteger maximum value, which means this limit is effectively
disabled.This limit can be changed using IndexManager >>
dirtyObjectCommitThreshold: anInt

When autoCommit is true, a transaction will be started (if necessary) before the indexing
operation begins, and the IndexManager will commit at the completion of the indexing
operation. Note that this means that, even if you are in manual transaction mode and not
in a transaction, index operations will cause changes to be committed to the repository
without you explicitly beginning a transaction.

If you want to enable autoCommit only for the current session, not for all index creation,
you can use

IndexManager sessionAutoCommit: true
GemTalk Systems 133

Managing Indexes GemStone/S 64 Bit 3.6 Programming Guide
Indexes on temporary collections
You may create indexes on temporary collections containing temporary and persistent
objects. However, on abort, any indexes on temporary collections are removed.

Inquiring About Indexes
For a full description of the indexes on a particular collection, send indexSpec to the
collection. This produces a string containing the GsIndexSpec code that would recreate the
same indexes, and provides useful documentation on those indexes.

For example,
myEmployees indexSpec printString
%
GsIndexSpec new

equalityIndex: 'each.age'
lastElementClass: SmallInteger;

equalityIndex: 'each.address.state'
lastElementClass: String;
options: GsIndexOptions reducedConflict;

identityIndex: 'each.userId';
yourself.

The following IndexManager messages allow you to inquire about all indexes in the
repository.

getAllNSCRoots

Returns a collection of all UnorderedCollections in the repository that have indexes.

usageReport

Returns a report on all indexes on all UnorderedCollections in the repository.

Removing Indexes
There are a number of ways to remove indexes.

Since indexing internal structures create references to the indexed collection and to objects
in the collection, before dereferencing a collection, you should be sure to remove all
indexes on the collection. This allows the collection to be garbage collected.

To remove indexes based on a GsIndexSpec
As you can create indexes based on an instance of GsIndexSpec, you can also use that
specification to remove these indexes.

GsIndexSpec >> removeIndexesFrom: aCollection

This method removes the indexes described by the GsIndexSpec from the collection
aCollection. If any of the indexes do not exist, they are not removed and no error is returned.

This is most useful in combination with the method that creates the spec from the existing
collection. For example:

(MyEmployees indexSpec)
removeIndexesFrom: MyEmployees.
134 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Managing Indexes
To remove a single index, you may edit the specification code printed by indexSpec, or
create a simple GsIndexSpec with information to remove a single index:

(GsIndexSpec new
equalityIndex: 'each.age' lastElementClass: Object)

removeIndexesFrom: MyEmployees.

To remove indexes using IndexManager
IndexManager, which provides a system-wide view of all the indexes in the repository,
provides a number of methods to remove indexes both individually, by collection, and
globally.
IndexManager >> removeEqualityIndexFor: aCollection on: aPathString

Removes an equality index from the collection aCollection with the indexed path
described by aPathString. If the path specified does not exist, this method returns an
error. Implicit indexes are not removed.

IndexManager >> removeIdentityIndexFor: aCollection on: aPathString

Removes the identity index from the collection aCollection with the indexed path
described by aPathString. If the path specified does not exist, this method returns an
error. Implicit indexes are not removed.

IndexManager >> removeAllIndexesOn: aCollection

Removes all explicitly created indexes from the collection aCollection. Implicit indexes
that were created by these elements participating in other indexed collections are not
removed.

IndexManager >> removeAllIndexes

Removes all indexes on all UnorderedCollections, including all implicit and partial
indexes.

IndexManager >> removeAllTracking

Removes all indexes on all UnorderedCollections, and all object tracking. While this is
the fastest way and most complete way to remove indexing infrastructure, if you are
using modification tracking for any other purpose, that tracking will be removed as
well.

Rebuilding Indexes
When objects that participate in an index are modified, the related indexing infrastructure
must be updated. This causes some overhead. If you are performing an operation that will
modify a large number of objects that participate in multiple indexes, such as a large
migration, it may be more efficient to remove some or all of the indexes on the collection
before performing the migrate, and rebuild those indexes after the migration is complete.

It is also sometimes required to remove and rebuild indexes as part of a GemStone
upgrade; certain changes in GemStone kernel classes require you to either rebuild specific
kinds of, or all, indexes. Any requirement to do this will be included in upgrade
instructions in the Installation Guide for the version of GemStone to which you are
upgrading.

To remove and rebuild indexes, you can extract and save the GsIndexSpec, and reuse that
after the operation is complete.
GemTalk Systems 135

Managing Indexes GemStone/S 64 Bit 3.6 Programming Guide
For example:
| mySpec |
mySpec := myCollection indexSpec.
mySpec removeAllIndexesFrom: myCollection.
<perform migration or other operation>
mySpec createIndexesOn:myCollection

Using IndexManager >> getAllNSCRoots, you may extend this example to retrieve
the GsIndexSpec for each collection in the repository, which will allow you to remove and
rebuild the indexes.

Indexing Errors
To ensure that indexing structures are consistent, some kinds of errors that may occur
during index creation will disable commits. Before creating an index, it is advisable to
commit any work in progress, to avoid losing any work if an indexing error does occur.

For example, if you create an index on a collection and one or more of the objects that
participate in the index do not implement the instance variable on the path, it will raise an
error (unless using optionalPathTerms, as described on page 125).

If an error occurs partly through index creation, and the autoCommit status (see “Auto-
commit” on page 133) means that some portion of the index creation was committed, a
collection may have unusable partial indexes. These indexes must be manually removed.

The following IndexManager instance methods allow you to remove incomplete indexes,
while not affecting any complete, usable indexes:

IndexManager current removeAllIncompleteIndexes

Removes all incomplete indexes on all UnorderedCollections.

IndexManager current removeAllIncompleteIndexesOn: anNSC

Removes all incomplete indexes on the specified UnorderedCollection.

If you modify objects that participate in an index, try to commit your transaction, and your
commit operation fails, query results can become inconsistent. If this occurs, abort the
transaction and try again.

Auditing Indexes
Indexes should be audited regularly, as part of your regular application maintenance, to
ensure there are no problems.

You can audit the internal indexing structures for a particular collection by executing:
aCollection auditIndexes

This audits all the indexes, explicit and implicit, on the given collection. If indexes are
correct, this method returns 'Indexes are OK' or 'Indexes are OK and the receiver
participates in one or more indexes.'. If there are no indexes on the collection, a message
such as 'No indexes are present.' is returned.

In the case of failure, a list of specific problems is returned.

You can audit all indexes in the entire repository at once using:
IndexManager current nscsWithBadIndexes
136 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Indexing and Performance
which will return an IdentitySet containing all collections that fail auditIndexes.
Depending on the number of indexed collections in your system, this may take a
considerable time to run.

In the rare case of a problem reported, the usual way to resolve the problem is to remove
and rebuild the affected indexes. In some cases, removing all indexes on the collection may
succeed even if the internal problems prevent a single index being removed.

7.7 Indexing and Performance
The value of Indexes is to improve performance, of course. It is always recommended to
perform tests to verify performance improvements.

Indexing improves query performance dramatically (in most cases), but does have a
negative impact on updating the indexed data, since the indexes must be kept up to date.

Type of index
The performance characteristics of btreePlus and legacy indexes are quite different.

btreePlus indexes without optimized comparison are usually slower than other kinds of
indexes. If your desired index cannot support optimizedComparison, you should use a
legacyIndex.

btreePlus optimizedComparison indexes are usually considerably faster than a legacy
index, but they create a somewhat larger negative impact on data updates.

Data updates
As your application is in use and the data in the indexed collection changes, the index must
be updated. While normally indexing a large collection speeds up queries performed on
that collection and has little effect on other operations, there are cases in which maintaining
the index can cause a performance bottleneck.

For example, you may notice slower than acceptable performance if you are making a great
many modifications to the instance variables of objects that participate in an index, and
more than one of the following is true:

the path of the index is long;

the object occurs many times within the indexed IdentityBag or Bag

the object participates in many indexes

Even so, indexing a large collection is still likely to improve performance unless more than
one of these circumstances holds true. If you do experience a performance problem, you
can work around it in one of two ways:

If you have created relatively few indexes but are modifying many indexed objects, it may
be worthwhile to remove the indexes, modify the objects, and then re-create the indexes.

If you are making many modifications to only a few objects, or if you have created a great
many indexes, it is more efficient to commit frequently during the course of your work.
That is, modify a few objects, commit the transaction, modify a few more objects, and
commit again.
GemTalk Systems 137

Historic Indexing API differences GemStone/S 64 Bit 3.6 Programming Guide
Formulating queries and performance
The most efficient queries are the ones in which the first predicate will return the smallest
result set. This is sometimes easy for a human to determine, but the query cannot predict
this without actually running the query. Queries should be manually reviewed for these
kinds of domain-specific optimizations.

For example, you might want to query for current orders for a particular customer.
(each.status = #current) & (each.customer.name = 'Smith')

If your application is likely to have only a few current orders, then this is more efficient.
However, if you are likely to have many current orders, but only a few customers named
Smith, it would be more efficient for you to write the formula in reverse order.

Auto-optimize
Queries, by default, are optimized before execution; for example, the not operator is
transformed into the logical equivalent by changing the comparison operator.

In addition, the predicates are reordered as follows, from left to right:

1. predicates involving indexed paths.

2. predicates with identity comparisons on paths without indexes.

3. predicates with equality comparisons on paths without indexes.

Auto-optimize can be disable using the instance of GsQueryOptions that is associated with
each query. The GsQueryOptions instance controls optimization and other query features.
In addition to the various specific optimizations performed, GsQueryOptions controls if
automatic query optimization is done; the default is to do auto-optimization.

7.8 Historic Indexing API differences
In older versions of GemStone/S and GemStone/S 64 Bit, indexes and queries used a more
limited API based on UnorderedCollection methods and a block-like query syntax. This
API remains fully supported and interoperates with the GsIndexSpec/GsQuery API, with
some limitations. A number of features are not supported by the older API.

Index creation using UnorderedCollection protocol
UnorderedCollection provides protocol to create indexes. This creates the same index
structures as GsIndexSpec, but does not provide access to some index features.

The following index creation methods are defined on UnorderedCollection:
createIdentityIndexOn:
createEqualityIndexOn:withLastElementClass:

The path argument is the same as the path used to create a GsIndexSpec index, however
you may not include the initial "each".
138 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Historic Indexing API differences
For example, the following three statements create the same indexes that were created on
page 121.

myEmployees createIdentityIndexOn: 'userId'.
myEmployees

createEqualityIndexOn: 'age'
withLastElementClass: SmallInteger.

myEmployees
createEqualityIndexOn: 'address.state'
withLastElementClass: String.

Enumerated and set-value indexes and queries are not supported using historic API.

Internal legacy vs. btreePlus indexing structures
The used of legacyIndex or btreePlusIndex/optimizedComparison is based on the default
GsIndexOptions. Whatever the session or system default is will determine the type of
index being created

String and Unicode Equality Indexes
Indexes on various kinds of strings follow the same rules as GsIndexSpec string indexes,
with the exception that the optimized indexes cannot be created this way.

To create unicode indexes, specify a lastElementClass of any Unicode string class
(Unicode7, Unicode 16, or Unicode32). Since no collator can be specified, the index will be
created using the current default IcuCollator.

Reduced-conflict Equality Indexes
An Rc Equality Index is a type of Equality Index in which internal indexing structures are
reduced-conflict. This avoids some transaction conflicts when creating an index on a
reduced-conflict (RC) collection, such as RcIdentityBag. Reduced-conflict classes are
described in “Indexes and Concurrency Control” on page 152. Rc Equality indexes are
described under “Reduced-Conflict” on page 125.

Using UnorderedCollection index creation protocol to create an index, the message is:
createRcEqualityIndexOn:withLastElementClass:

Queries using Selection Blocks
Selection blocks are a kind of block specialized for queries, using curly braces instead of
brackets. The compiler understands this syntax and creates the selection block instance
when the code or method is compiled.

A selection block query might be written like this:
{:each | each.address.state = 'OR'}

Selection blocks are quite restrictive:

A selection block has exactly one argument

Message sends are not allowed in a selection block; you can only use the dot syntax to
specify instance variables of the argument.

The code inside the block is limited to predicates as described under “Query
Predicate Syntax” on page 117, with additional limitations below.
GemTalk Systems 139

Historic Indexing API differences GemStone/S 64 Bit 3.6 Programming Guide
Set valued and enumerated syntax are not allowed in a selection bock

Range predicate syntax are not allowed in a selection block, although you may
specify the same operation by conjoining two separate predicates.

Selection block queries do not allow the | (disjunction operator), nor the not
operator.

Selection block can only be used as arguments to the methods select:, reject:,
detect:, detect:ifNone:, or selectAsStream:.

Selection block queries are not optimized.

In selection block queries, you can reference temporary, instance or other variables within
the block, and these are resolved at runtime as in ordinary blocks.

Executing Selection Block Queries
A selection block is used with select:, reject:, detect:, detect:ifNone:, or
selectAsStream: to perform the query over a collection.

For example:
Employees select: {:each | each.address.state = 'OR'}

These have the same semantics as with standard blocks executed on a collection. For
example, reject: will return a result set that includes all elements for which the block
evaluation would return false. The results are in a collection the same class as the base
collection (unless species or speciesForSelect specifies a different class, as with the
RC classes).

The collection returned from a query has no index structures. If you want to perform
indexed selections on the new collection, you must build the necessary indexes on the new
collection.

Results as a stream
To get the results as a stream, use UnorderedCollection >> selectAsStream:. This
returns an instance of RangeIndexReadStream, which understands the following
messages:

next
Returns the next value on a stream of range index values.

atEnd
Returns true if there are no more elements to return through the logical iteration of
the stream.

reversed
Create a ReversedRangeIndexReadStream based on the receiver, allowing you to
stream over the results from last to first.

Creating a GsQuery from a selection block
If you have existing code that includes selection block queries, you can use those selection
blocks to create the instances of GsQuery.

For example,
GsQuery fromSelectBlock: {:each | each.address.state = 'OR'}
140 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Historic Indexing API differences
This can be bound using on:, or created using fromSelectBlock:on:, similar to how
you create and bind a GsQuery from a string.

Managing indexes

Information about indexes
Sending indexSpec to the collection provides a complete description of the indexes on a
collection, and can be used for information without using the GsIndexSpec API; the extra
details provided by indexSpec can be ignored.

You can also send messages to the collection that will return quick information on indexed
paths.

equalityIndexedPaths and identityIndexedPaths
Returns, respectively, the equality indexes and the identity indexes on the
receiver’s contents. Each message returns an array of strings representing the
paths in question.

For example, the following expression returns the paths into myEmployees that
bear equality indexes:

myEmployees equalityIndexedPaths
%
anArray('age', 'address.state')

kindsOfIndexOn: aPathNameString
Returns information about the kind of index present on an instance variable within
the elements of the receiver. The information is returned as one of these symbols:
#none, #identity, #equality, #identityAndEquality.

equalityIndexedPathsAndConstraints
Returns an array in which the odd-numbered elements are the elements of the
path, and the even-numbered elements are the constraints specified when creating
an index using the keyword withLastElementClass:.

Removing Indexes
Removing indexes can be done using the GsIndexSpec

You may send methods to the indexed collection directly to remove one or all indexes.

UnorderedCollection >> removeEqualityIndexOn: aPathString
Removes an equality index from the path indicated by aPathString. If the path
specified does not exist, this method returns an error. Implicit indexes are not
removed.

UnorderedCollection >> removeIdentityIndexOn: aPathString
Removes the identity index on the specified path. If the path specified does not
exist, this method returns an error. Implicit indexes are not removed.

UnorderedCollection >> removeAllIndexes
Removes all explicitly created indexes from the receiver. Implicit indexes that were
created by these elements participating in other indexed collections are not
removed.
GemTalk Systems 141

Historic Indexing API differences GemStone/S 64 Bit 3.6 Programming Guide
142 GemTalk Systems

Chapter

8 Transactions and
Concurrency Control
GemStone users can share code and data objects by maintaining common dictionaries that
refer to those objects. However, if operations that modify shared objects are interleaved in
any arbitrary order, inconsistencies can result.

This chapter describes how GemStone manages concurrent sessions to prevent
inconsistencies resulting from multiple concurrent updates.

GemStone’s Conflict Management (page 143)
introduces the concept of a transaction and describes how it interacts with each user’s
view of the repository.

How GemStone Detects and Manages Conflict (page 148)
describes how commit conflicts are detected and reported and how to handle and
avoid conflicts.

Controlling Concurrent Access with Locks (page 154)
discusses the kinds of lock you can use to prevent conflict.

Classes That Reduce the Chance of Conflict (page 164)
describes the classes that help reduce the likelihood of a conflict.

8.1 GemStone’s Conflict Management
GemStone prevents conflict between users by encapsulating each session’s operations
(computations, stores, and fetches) in units called transactions. The operations that make up
a transaction act on what appears to you to be a private view of GemStone objects. When
you tell GemStone to commit the current transaction, GemStone tries to merge the modified
objects in your view with the shared object store.

Views and Transactions
As shown in Figure 8.1, every user session maintains its own consistent view of the
repository state. Objects that the repository contained at the beginning of your session are
preserved in your view, even if you are not using them—and even if other users’ actions
GemTalk Systems 143

GemStone’s Conflict Management GemStone/S 64 Bit 3.6 Programming Guide
have rendered them obsolete. The storage that those objects are using cannot be reclaimed
until you commit or abort your transaction. Depending upon the characteristics of your
particular installation (such as the number of users and the commit frequency), this burden
can be trivial or significant.

When you log in to GemStone, you get a view of repository state. After login, you may start
a transaction automatically or manually, or remain outside of transaction. The repository
view you get on login is updated when you begin a transaction or abort. When you commit
a transaction, your changes are merged with other changes to the shared data in the
repository, and your view is updated. When you obtain a new view of the repository, by
commit, abort, or continuing, any new or modified objects that have been committed by
other users become visible to you.

The transaction mode controls if a transaction is automatically started, or if you must
manually begin a transaction. For details, see “Committing Transactions” on page 149.)

Figure 8.1 View States

$��%��������
��#��

$��%��������
��������
����

$��%���������
��������
���������
�!��
�����&��
��
�������������
"���

$��%����������

�����

�����!���
���

�
��

	�'���

	�'���

	�'���

����������
��&��

���
�����

������
���

	�'���

����
�
�����
���

�����������
��&��

�����������
��&��

�����
����

������
���

����

������
���

���������

�������()��

*�

�����
�

������
���

�����
�

������
���
144 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone’s Conflict Management
Transaction State and Transaction Modes
A GemStone session is always either in a transaction or not in a transaction. When in
transaction, changes can be committed to the repository. When not in transaction, you can
make changes in your view but these changes cannot be committed.

A session that is in transaction may be in one of a number of transaction levels, depending
on if nested transactions are involved.

When not in transaction, the session may merely be not in transaction, or it may be in the
specialized transactionless mode. In transactionless mode, the session is not in transaction,
but its view may be updated automatically at any time. Transactionless mode is primarily
for idle sessions that do not need a reliable view of repository data; the topics that this
chapter discusses for the most part do not apply to transactionless mode sessions.

The transaction modes provide different behavior with respect to starting new
transactions. When in automatic transaction mode, the session is always in transaction.
When in manual transaction mode, you may be in transaction or not in transaction,
depending on specific messages your session sends.

The following are the GemStone transaction modes:

Automatic transaction mode

In this mode, GemStone begins a transaction when you log in, and starts a new one after
each commit or abort message. In this default mode, you are in a transaction the entire time
you are logged into a GemStone session. Use caution with this mode in busy production
systems, since your session will not receive the signals that your view is causing a strain on
system resources.

This is the default transaction mode on login.

To change to automatic transaction mode, send the message:

System transactionMode: #autoBegin

This aborts the current transaction and starts a new transaction.

Manual transaction mode

In this mode, you can be logged in and be outside of a transaction. You explicitly control
whether your session starts a transaction, makes changes, and commits. Although a
transaction is started for you when you log in, you can set the transaction mode to manual,
which aborts the current transaction and leaves you outside a transaction. You can
subsequently start a transaction when you are ready to start making changes that you wan
to commit. Manual transaction mode provides a method of minimizing the transactions,
while still managing the repository for concurrent access.

In manual transaction mode, you can view the repository, browse objects, and make
computations based upon object values. You cannot, however, make your changes
permanent, nor can you add any new objects you may have created while outside a
transaction. You can start a transaction at any time during a session; you can carry
temporary results that you may have computed while outside a transaction into your new
transaction, where they can be committed, subject to the usual constraints of conflict-
checking.

To change to manual transaction mode, send the message:
System transactionMode: #manualBegin

This aborts the current transaction and leaves the session not in transaction.
GemTalk Systems 145

GemStone’s Conflict Management GemStone/S 64 Bit 3.6 Programming Guide
To begin a transaction, execute
System beginTransaction

This message gives you a fresh view of the repository and starts a transaction. When you
commit or abort this new transaction, you will again be outside of a transaction until you
either explicitly begin a new one or change transaction modes.

Transactionless mode

In transactionless mode, you remain outside a transaction. This mode is intended primarily
for idle sessions. If all you need to do is browse objects in the repository, transactionless
mode can be a more efficient use of system resources. However, you are at risk of obtaining
inconsistent views.

To change to transactionless transaction mode, send the message:
System transactionMode: #transactionless

Determining transaction mode and transaction state
To determine the transaction mode you are in, send the message:

System transactionMode

To determine the transaction level you are at, send the message:
System transactionLevel

To determine if you are in transaction, send the message
System inTransaction

A transaction level of 1 or more means your session is in transaction, with values greater
than 1 indicating the number of levels of transaction. A transaction level of 0 is not in
transaction, while -1 indicates transactionless.

You can determine whether you are currently in a transaction by sending the message:
System inTransaction

This message returns true if you are in a transaction and false if you are not.

Reading and Writing in Transactions
GemStone considers the operations that take place in a transaction (or view) as reading or
writing objects. Any operation that sends a message to an object, or accesses any instance
variable of an object, is said to read that object. An operation that stores something in one
of an object’s instance variables is said to write the object. While you can read without
writing, writing an object always implies reading it. GemStone must read the internal state
of an object in order to store a new value in the object.

Operations that fetch information about an object also read the object. In particular,
fetching an object’s size, class, or security policy reads the object. An object also gets read
in the process of being stored into another object.

The following expression sends a message to obtain the name of an employee and so reads
the object:

theName := anEmployee name. "reads anEmployee"

The following example reads aName in the same operation that anEmployee is written:
anEmployee name: aName. "writes anEmployee, reads aName"

Some less common operations cause objects to be read or written. For example, assigning
an object to a new object security policy, using the message
146 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone’s Conflict Management
assignToObjectSecurityPolicy:, writes the object and reads both the old and the
new GsObjectSecurityPolicy. Modifying an object that participates in an index may write
support objects built and maintained as part of the indexing mechanism.

For the purposes of detecting conflict among concurrent users, GemStone keeps separate
sets of the objects you have written during a transaction and the objects you have only read.
These sets are called the write set and the read set; the read set is always a superset of the
write set.

Reading and Writing Outside of Transactions
Outside of a transaction, reading an object is accomplished precisely the same way. You
can write objects in the same way as well, but you cannot commit these changes to make
them a permanent part of the repository.

When Should You Commit a Transaction?
Most applications create or modify objects in logically separate steps, combining trivial
operations in sequences that ultimately do significant things. To protect other users from
reading or using intermediate results, you want to commit after your program has
produced some stable and usable results. Changes become visible to other users only after
you’ve committed.

Your chance of being in conflict with other users increases with the time between commits.

Nested In-memory Transactions
Within a transaction, GemStone allows you to group units of work into logical transactions,
which can be committed or aborted within the given session. These logical transactions can
be nested with up to 16 levels of nesting (including the outer level actual transaction).
When the full set of changes are ready to be committed, committing the outer transaction
will make the changes persistent and detect any conflicts.

While the same protocol is used to commit the actual (outer) transaction and the nested
transactions, the semantics are different. A commit of a nested transaction does not detect
conflicts with changes by other users, does not update current session state, and does not
make the changes persistent if the session exits unexpectedly or recoverable on system
shutdown. Abort of a nested transaction returns the session to the state it was in at the
beginning of the nested transaction, without updating the session’s view with any changes
by other users.

When transactions are discussed, unless specified otherwise, it only refers to an outer level
actual transaction, not to a nested transaction.

To begin a nested transaction, use
System beginNestedTransaction

You should be already in transaction when executing this method.

Executing commit, commitTransaction, abort, or abortTransaction when in a
nested transaction preserve or discard in-memory changes and return to the parent level
of transaction. The same protocol is used at the outer level, actual transaction to perform
the commit or abort.

continueTransaction cannot be used when in a nested transaction.
GemTalk Systems 147

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.6 Programming Guide
You can commit or abort all levels of nested transactions at once, including performing the
outer level actual commit or abort, using the messages:

System commitAll
System abortAll

8.2 How GemStone Detects and Manages Conflict
GemStone detects conflict by comparing your write set with those of all other transactions
that committed since your transaction began. The following conditions signal a possible
concurrency conflict:

An object in your write set is also in the write set of another transaction—a write-write
conflict. Write-write conflicts can involve only a single object.

An object in your write set is also in another session’s dependency list—a write-
dependency conflict. An object belongs to a session’s dependency list if the session has
added, removed, or changed a dependency (index) for that object. For details about
how GemStone creates and manages indexes on collections, see Chapter 7‚ “Indexes
and Querying”.

If a write-write or write-dependency conflict is detected, then your transaction cannot
commit; you must abort, and try again. The following section describes some approaches
to handling this kind of situation.

Concurrency Management
As the application designer, you determine your approach to concurrency control.

Using the optimistic approach to concurrency control, you simply read and write
objects as if you were the only user. The object server detects conflicts with other
sessions only at the time you try to commit your transaction. Your chance of being in
conflict with other users increases with the time between commits and the size of your
write set.

Although easy to implement in an application, this approach entails the risk that you
might lose the work you’ve done if conflicts are detected and you are unable to
commit.

Using the pessimistic approach to concurrency control, you detect and prevent
conflicts by explicitly requesting locks that signal your intentions to read or write
objects. By locking an object, other users are unable to use the object in a way that
conflicts with your purposes. If you are unable to acquire a lock, then someone else
has already locked the object and you cannot use the object. You can then abort the
transaction immediately instead of doing work that can’t be committed.

Using reduced-conflict (RC) classes in places where write-write conflicts are likely. RC
classes use internal structures and additional logic to allow a commit to succeed in
spite of a write-write conflict, when the changes do not actually conflict with each
other.

The GemStone reduced-conflict classes include: RcCounter, RcIdentityBag,
RcIdentitySet, RcArray, RcPipe, RcQueue, and RcKeyValueDictionary. See “Classes
That Reduce the Chance of Conflict” on page 164.
148 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide How GemStone Detects and Manages Conflict
Committing Transactions
Committing a transaction has two effects:

It makes your new and changed objects visible to other users as a permanent part of
the repository.

It makes visible to you any new or modified objects that have been committed by
other users in an up-to-date view of the repository.

When you tell GemStone to commit your transaction, the object server performs these
actions:

1. Checks whether other concurrent sessions have committed transactions that modify an
object that you modified during your transaction.

2. Checks to see whether other concurrent sessions have added, removed, or changed
indexes on an object that you have modified during your transaction.

3. Checks for locks set by other sessions that indicate the intention to modify objects that
you have read.

If none of these conditions is found, GemStone commits the transaction. The messages
commit or commitTransaction commit the current transaction:

Example 8.1

UserGlobals at: #SharedDictionary put: SymbolDictionary new.

SharedDictionary at: #testData put: 'a string'.
"modifies private view"
System commitTransaction.

"commit the transaction, merging my private view
 of SharedDictionary with the committed repository"

%

The message System commitTransaction returns true if GemStone commits your
transaction and false if it can’t. The message System commit performs the same commit,
but returns true if GemStone commits your transaction and signals an error if it fails to
commit.

Handling Commit Failure in a Transaction
If GemStone refuses to commit your transaction, the transaction read or wrote an object
that another user modified and committed to the repository (or involved in indexing
operations) since your transaction began. Because you can’t undo a read or a write
operation, simply repeating the attempt to commit will not succeed.

You must abort the transaction in order to get a new view of the repository and, along with
it, an empty read set and an empty write set. A subsequent attempt to run your code and
commit the view can succeed. If the competition for shared data is heavy, subsequent
transactions can also fail to commit. In this situation, locking objects that are frequently
modified by other transactions gives you a better chance of committing.
GemTalk Systems 149

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.6 Programming Guide
Transaction Conflicts
To find why your transaction failed to commit, you can send the message:

System transactionConflicts

This method returns a symbol dictionary that contains an Association whose key is
#commitResult and whose value is one of the following symbols:

#commitResult value Meaning

#readOnly There were no modified objects to commit, so the
commit did not do writes.
In this case, commitTransaction returns true.

#success Commit was successful.

#rcFailure The replay of changes to instances of Rc classes
failed.

#dependencyFailure Commit failed, concurrency conflict on
dependencyMap.

#failure Commit failed.

#retryFailure Commit failed, and the previous commit attempt
failed with an rcFailure.

#commitDisallowed Commits were disallowed for other errors.

#retryLimitExceeded Up to 15 retry attempts are allowed.

#symbolFailure Commit failed due to a Symbol creation failure.

#lockFailure Commit failed to do a lock failure.

The remaining Associations in the dictionary, if any, are used to report the conflicts found.
Each Association’s key indicates the kind of conflict detected; its associated value is an
Array of OOPs for the objects that are conflicting.

Table 8.1 lists the possible keys for the conflict.

Table 8.1 Transaction Conflict Keys

Key Meaning

 #'Read-Write' StrongReadSet and WriteSetUnion conflicts, with
the RcReadSet subtracted.

#'Write-Write' WriteSet and WriteSetUnion conflicts.

#'WriteWrite_minusRcReadSet' the same as #'Write-Write', but with the RcReadSet
subtracted.

#'Write-Dependency' WriteSet and DependencyChangeSetUnion conflicts.

#'Write-WriteLock' WriteSet and WriteLockSet conflicts.

#'Write-ReadLock' WriteSet and ReadLockSet conflicts.

#'Rc-Write-Write' Logical Write-Write conflict on instances of a
reduced conflict class.

#'RcReadSet' The RcReadSet

#'Synchronized-Commit' Details of the synchronized commit failure.
150 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide How GemStone Detects and Manages Conflict
If there are no conflicts for the transaction, the returned symbol dictionary has no
additional Associations.

Conflict sets are cleared at the beginning of a commit or abort and thus can be examined
until the next commit, continue, or abort.

NOTE
If you save a reference to the conflict set, be sure to clear this references to avoid
making the conflict set persistent.

To determine whether the current transaction has write-write conflicts, you can send the
following message before attempting to commit the transaction:

System currentTransactionHasWWConflicts

Similarly, to determine whether the current transaction has write-dependency conflicts,
you can send this message:

System currentTransactionHasWDConflicts

If the above message returns true, you can send the appropriate message to obtain a list of
write-write (or write-dependency) conflicts in the current transaction:

System currentTransactionWWConflicts (write-write)

or:
System currentTransactionWDConflicts (write-dependency)

More details about transaction conflicts
The information provided by transactionConflicts lets you know the objects that
were committed by another session, but does not help in tracking down which session or
user committed the changes that were the cause of the conflict. You can enable tracking in
your session that lets you collect these details, but this must be enabled before your commit
performs a commit that fails. Determining the session whose commit caused the conflict
has performance overhead, so it is not recommended that you run this way by default, but
it can be useful when you have ongoing conflicts that are difficult to track down.

To enable tracking, set the runtime-only configuration parameter
GemCommitConflictDetails to true. For example,

System gemConfigurationAt: #GemCommitConflictDetails put: true

Then, once the commit fails, execute the method System class >>
detailedConflictReportString, which returns a string containing information
about the conflicting other commit. For example,

System detailedConflictReportString
%
Commit failed , failure
Attempt to commit at: 2019-05-14 15:39:55.959
1 Write-Write Conflicts
 (12200193(a SymbolDictionary))
 1 commits by other sessions
 session 7 at 2019-05-14 15:39:45.607 userId DataCurator
 (12200193(a SymbolDictionary))
GemTalk Systems 151

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.6 Programming Guide
Indexes and Concurrency Control
It is also possible that you can encounter conflict on the internal indexing structures used
by GemStone. For example, if two transactions modify the salaries of different employees
that participate in the same indexed set, it is possible that both transactions will modify the
same internal indexing structure and therefore conflict, despite the fact that neither
transaction has explicitly accessed an object written by the other transaction. It is true even
if the collection itself is an Rc collection and does not encounter transaction conflicts.

To check this possibility, examine the dictionary returned by evaluating System
transactionConflicts (described on page 150). If that dictionary includes any
Associations whose key is #'Write-Dependency', you have experienced a conflict on some
portion of an indexing structure. In that case, you can abort the transaction and try the
modification again.

If you encounter conflicts in the internal indexing structures, you can create a reduced-
conflict index. See “Reduced-Conflict” on page 125.

Aborting Transactions
If GemStone refuses to commit your modifications, your view remains intact with all of the
new and modified objects it contains. However, your view now also includes other users’
modifications to objects that are visible to you, but that you have not modified. You must
take some action to save the modifications in your session or in a file outside GemStone.

Then you need to abort the transaction. This discards all of the modifications from the
aborted transaction, and gives you a new view containing the shared, committed objects.
Depending on the activities of other users, you can repeat your operations using the new
values and commit the new transaction without encountering conflicts.

The messages abort or abortTransaction discard the modified objects in your view.
If you are in automatic transaction mode, these messages also begin a new transaction.

Example 8.2

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System abortTransaction.
"discard the modified copy of SharedDictionary
 and all other modified objects, get a new view,
 and start a new transaction"

Aborting a transaction discards any changes you have made to shared objects during the
transaction. However, work you have done within your own object space is not affected by
an abortTransaction. GemStone gives you a new view of the repository that does not
include any changes you made to permanent objects during the aborted
transaction—because the transaction was aborted, your changes did not affect objects in
the repository. The new view, however, does include changes committed by other users
since your last transaction started. Objects that you have created in the GemBuilder for
Smalltalk object space, outside the repository, remain until you remove them or end your
session.
152 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide How GemStone Detects and Manages Conflict
Updating the View Without Committing or Aborting
The message System continueTransaction gives you a new, up-to-date view of other
users’ committed work without discarding the objects you have modified in your current
session.

The message continueTransaction returns true if a commit on your transaction would
succeed, or false if a commit would fail. After continueTransaction returns false, you
may view System transactionConflicts to see what objects have conflicts.

Unlike commitTransaction and abortTransaction, continueTransaction does
not end your transaction. It has no effect on object locks, and it does not discard any
changes you have made or commit any changes. Objects that you have modified or created
do not become visible to other users.

Work you have done locally within your own interface is not affected by a
continueTransaction. Objects that you have created in your own application remain.
Similarly, any execution that you have begun continues, unless the execution explicitly
depends upon a successful commit operation.

Note that if you were unable to commit your transaction due to conflicts, you cannot use
continueTransaction until you abort the transaction.

Being Signaled To Abort
As mentioned earlier, being in a transaction incurs certain costs. When you are in a
transaction, GemStone waits until you commit or abort before it attempts to reclaim
obsolete objects in your view. While you are in a transaction, your session will not be
signalled to abort, nor is it subject to losing it’s view of the repository or being terminated
as a result of sigAbort mechanisms. A session in transaction may cause your repository to
grow until it runs out of disk space.

When you are outside of a transaction, GemStone warns you when your view is outdated
and this is imposing a burden on the system, by sending your session the
TransactionBacklog notification. You are allowed a certain amount of time to abort
your current view, as specified in the STN_GEM_ABORT_TIMEOUT parameter in your
configuration file. When you abort your current view (by sending the message System
abortTransaction), GemStone can reclaim storage and you get a fresh view of the
repository.

If you do not respond within the specified time period, the object server sends your session
the exception RepositoryViewLost and then terminates the Gem.

Work that you have done locally (such as references to objects within your application) is
retained, and you still cannot commit work to the repository when running outside of a
transaction. However, you must read again those objects that you had previously read
from the repository, and recompute the results of any computations performed on them,
because the object server no longer guarantees that the application values are valid.

Your GemStone session controls whether it is signalled to abort by receiving the
TransactionBacklog notification when it is out of transaction. To enable receiving it, send
the message:

System enableSignaledAbortError

To disable receiving it, send the message:
System disableSignaledAbortError
GemTalk Systems 153

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.6 Programming Guide
To determine whether receiving this notification is currently enabled or disabled, send the
message:

System signaledAbortErrorStatus

This method returns true if the notification is enabled, and false if it is disabled. By default,
GemStone sessions disable receiving this notification. The GemBuilder interfaces may
change this default. If you wish to be notified, then you must explicitly enable the signaled
abort error, and re-enable it after each time the signal is received.

Being Signaled to continueTransaction
As described earlier, when you are in a transaction, GemStone does not signal the session
to abort, nor are you subject to losing your view of the repository. This entails a risk that
your repository may grow until it runs out of disk space.

To avoid this problem, you can enable your GemStone session to receive the
TransactionBacklog notification when you are in transaction. This prompts your
session that it is now holding the oldest view of the repository, and potentially causing
your repository to grow. When your session receives this signal, it may execute a
continueTransaction, or abort or commit its changes.

Your GemStone session controls whether it receives the TransactionBacklog
notification when in transaction. To enable receiving it, send the message:

System enableSignaledFinishTransactionError

To disable receiving it, send the message:
System disableSignaledFinishTransactionError

To determine whether receiving this error message is currently enabled or disabled, send
the message:

System signaledFinishTransactionErrorStatus

This method returns true if the notification is enabled, and false if it is disabled. By default,
GemStone sessions disable receiving this notification. If you wish to be notified, then you
must explicitly enable it after each time the signal is received.

Handlers for abort or continueTransaction notifications
Not only do you need to enable the receipt of the notification to abort or
continueTransaction, you must also set up a signal handler to take the appropriate action.
Sending enableSignaledAbortError and
enableSignaledFinishTransactionError control whether you receive the
TransactionBacklog notification when you are not in transaction or when you are in
transaction, respectively. The handler for the TransactionBacklog notification needs to take
both possible situations into account.

8.3 Controlling Concurrent Access with Locks
If many users are competing for shared data in your application, or you can’t tolerate even
an occasional inability to commit, then you can implement pessimistic concurrency control
by using locks.

Locking an object is a way of telling GemStone (and, indirectly, other users) your intention
to read or write the object. Holding locks prevents transactions whose activities would
154 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Controlling Concurrent Access with Locks
conflict with your own from committing changes to the repository. Unless you specify
otherwise, GemStone locks persist across aborts as well as commits. If you lock on an object
and then abort, your session still holds the lock after the abort. Aborting the current
transaction (and starting another, if you are in manual transaction mode) gives you an up-
to-date value for the locked object without removing the lock.

Remember, locking improves one user’s chances of committing only at the expense of other
users. Use locks sparingly to prevent an overall degradation of system performance.

Lock Types
GemStone provides two kinds of locks you may use on any objects: read and write. A
session may hold only one kind of lock on an object at a time.

GemStone also provides another type of lock, applicationWriteLock, which is limited to a
single unique lock object; it provides similar locking, but is used to provide a mutex. While
the applicationWriteLock behaves similarly to read and write locks, it is used differently is
discussed separately starting on page 163.

Read Locks
Holding a read lock on an object means that you can use the object’s value, and then
commit without fear that some other transaction has committed a new value for that object
during your transaction. Another way of saying this is that holding a read lock on an object
guarantees that other sessions cannot:

acquire a write lock on the object, or

commit if they have written the object.

To understand the utility of read locks, imagine that you need to compute the average age
of a large number of employees. While you are reading the employees and computing the
average, another user changes an employee’s age and commits (right at the end of a
birthday party). You have now performed the computation using out-of-date information.
You can prevent this frustration by read-locking the employees at the outset of your
transaction; this prevents changes to those objects.

Multiple sessions can hold read locks on the same object. A maximum of 1 million read
locks can be held concurrently. Because locking incurs a cost at commit time, you should
keep the aggregate number of locked objects as small as possible.

NOTE
If you have a read lock on an object and you try to write that object, your attempt
to commit that transaction will fail.

Write Locks
Holding a write lock on an object guarantees that you can write the object and commit. That
is, it ensures that you won’t find that someone else has prevented you from committing by
writing the object and committing it before you, while your transaction was in progress.
Another way of looking at this is that holding a write lock on an object guarantees that
other sessions cannot:

acquire either a read or write lock on the object, or

commit if they have written the object.
GemTalk Systems 155

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.6 Programming Guide
Write locks are useful, for example, if you want to change the addresses of a number of
employees. If you write-lock the employees at the outset of your transaction, you prevent
other sessions from modifying one of the employees and committing before you can finish
your work. This guarantees your ability to commit the changes.

Write locks differ from read locks in that only one session can hold a write lock on an object.
In fact, if a session holds a write lock on an object, then no other session can hold any kind
of lock on the object. This prevents another session from receiving the assurance implied
by a read lock; that the value of the object it sees in its view will not be out of date when it
attempts to commit a transaction.

Acquiring Locks
The kernel class System is the receiver of all lock requests. The following statements
request one lock of each kind:

Example 8.3

System readLock: SharedDictionary.
System writeLock: myEmployees.

When locks are granted, these messages return System.

Commits and aborts do not necessarily release locks, although locks can be set up so that
they will do so. Unless you specify otherwise, once you acquire a lock, it remains in place
until you log out or remove it explicitly. (Subsequent sections explain how to remove
locks.)

When a lock is requested, GemStone grants it unless one of the following conditions is true:

You do not have suitable authorization. Read locks require read authorization; write
locks require write authorization.

The object is an instance of SmallInteger, Boolean, Character, SmallDouble, or nil.
Trying to lock these special objects is meaningless.

The object is already locked in an incompatible way by another session (remember,
only read locks can be shared).

Variants of the readLock: and writeLock: messages allow you to lock collections of
objects en masse. For details, see “Locking Collections of Objects Efficiently” on page 158.

Lock Denial
If you request a lock on an object and another session already holds a conflicting lock on it,
then GemStone denies your request; GemStone does not automatically wait for locks to
become available.

If you use one of the simpler lock request messages (such as readLock:), lock denial
generates an error. If you want to take some automatic action in response to the denial, use
a more complex lock request message, such as this:
System readLock: anObject

ifDenied: [block1]
ifChanged: [block2].
156 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Controlling Concurrent Access with Locks
A lock denial causes GemStone to execute the block argument to ifDenied:. The method
in Example 8.4 uses this technique to request a lock repeatedly until the lock becomes
available.

Example 8.4

Object subclass: #Dummy
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
options: #()

%
method: Dummy
getReadLockOn: anObject tries: numTries

"This method tries to lock anObject. If the lock is denied,
it tries again, making up to numTries attempts."

| n |
n := 1.
[n <= numTries] whileTrue: [

System readLock: anObject
ifDenied: [System sleep: 1.]
ifChanged: [System abortTransaction.].

n := n + 1].
^(System myLockKind: anObject) = #read
%
UserGlobals at: #testObject put: Object new.
System commitTransaction.
%

Dummy new getReadLockOn: testObject tries: 3
%

Deadlocks
You may never succeed in acquiring a lock, no matter how long you wait. Furthermore,
because GemStone does not automatically wait for locks, it does not attempt deadlock
detection. It is your responsibility to limit the attempts to acquire locks in some way. For
example, you can write a portion of your application in such a way that there is an absolute
time limit on attempts to acquire a lock. Or you can let users know when locks are being
awaited and allow them to interrupt the process if needed.

Dirty Locks
If another user has written an object and committed the change since your transaction
began, then the value of the object in your view is out of date. Although you may be able
to acquire a lock on the object, it is a dirty lock because you cannot use the object and
commit, despite holding the lock.
GemTalk Systems 157

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.6 Programming Guide
This condition is trapped by the argument to the ifChanged: keyword following read
lock request message:
System readLock: anObject

ifDenied: [block1]
ifChanged: [block2].

Like its simpler counterpart, this message returns System if it acquires a lock on anObject
without complications. It generates an error if the user has no authorization for acquiring
the lock, or selects one of the blocks passed as arguments and executes that block, returning
the block’s value.

For example, if a conflicting lock is held on anObject, this message executes the block given
as an argument to the keyword ifDenied:. Similarly, if anObject has been changed by
another session, it executes the argument to ifChanged:. The following sections provide
some suggestions about the code such blocks might contain. For example:

Example 8.5

System readLock: anObject
ifDenied: []
ifChanged: [System abortTransaction]

To minimize your chances of getting dirty locks, lock the objects you need as early in your
transaction as possible. If you encounter a dirty lock in the process, you can keep track of
the fact and continue locking. After you finish locking, you can abort your transaction to
get current values for all of the objects whose locks are dirty. See Example 8.6.

Example 8.6

| dirtyBag |
dirtyBag := IdentityBag new.
myEmployees do: [:anEmp |
 System readLock: anEmp
 ifDenied: []
 ifChanged: [dirtyBag add: anEmp]].
dirtyBag isEmpty
 ifTrue: [^true]
 ifFalse: [System abortTransaction].

Your new transaction can then proceed with clean locks.

Locking Collections of Objects Efficiently
In addition to the locking request messages for single objects, GemStone provides
messages to request locks on an entire collection of objects. If the objects you need to lock
are already in collections, or if they can be gathered into collections without too much
work, it is more efficient to use the collection-locking methods than to lock the objects
individually.

The following statements request locks on each of the elements of two different collections:
158 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Controlling Concurrent Access with Locks
Example 8.7

UserGlobals at: #myArray put: Array new;
 at: #myBag put: IdentityBag new.

System readLockAll: myArray.
System writeLockAll: myBag.

The messages in Example 8.7 are similar to the simple, single-object locking-request
messages (such as readLock:) that you’ve already seen. If a clean lock is acquired on each
element of the argument, these messages return System. If you lack the proper
authorization for any object in the argument, GemStone generates an error and grants no
locks.

The difference between these methods and their single-object counterparts is in the
handling of other errors. The system does not immediately halt to report an error if an
object in the collection is changed, or if a lock must be denied because another session has
already locked the object. Instead, the system continues to request locks on the remaining
elements, acquiring as many locks as possible. When the method finishes processing the
entire collection, it generates an error. In the meantime, however, all locks that you
acquired remain in place.

You might want to handle these errors from within your GemStone Smalltalk program
instead of letting execution halt. For this purpose, class System provides collection-locking
methods that pass information about unsuccessful lock requests to blocks that you supply
as arguments. For example:

System writeLockAll: aCollection ifIncomplete: aBlock

The argument aBlock that you supply to this method must take three arguments. If locks
are not granted on all elements of aCollection (for any reason except authorization failure),
the method passes three arrays to aBlock and then executes the block.

The first array contains all elements of aCollection for which locks were denied.

The second array contains all elements for which dirty locks were granted.

The third array is empty, and is there for compatibility with previous versions of
GemStone.

You can then take appropriate actions within the block. See Example 8.8.
GemTalk Systems 159

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.6 Programming Guide
Example 8.8

classmethod: Dummy
handleDenialOn: deniedObjs
^ deniedObjs
%
classmethod: Dummy
getWriteLocksOn: aCollection
System writeLockAll: aCollection
 ifIncomplete: [:denied :dirty :unused |
 denied isEmpty ifFalse: [self handleDenialOn: denied].
 dirty isEmpty ifFalse: [System abortTransaction]]
%
System readLockAll: myEmployees
%
Dummy getWriteLocksOn: myEmployees
%

Upgrading Locks
On occasion, you might want to upgrade a read lock to a write lock. For example, you might
initially intend to read an object, only to discover later that you must also write the object.

However, if you have a read lock on an object, you cannot successfully write that object. If
you attempt to do so, your attempt to commit that transaction will fail.

GemStone currently provides no built-in support for upgrading locks. However, to ensure
your ability to commit, you can remove the read lock you currently hold on an object and
then immediately request a write lock.

It is important to request the upgraded lock immediately, because between the time that
the lock is removed, and the time that the upgraded lock is requested, another session has
the opportunity to lock the object, or to write it and commit.

Locking and Indexed Collections
When indexes are present, locking can fail to prevent conflict. The reasons are similar to
those discussed in the section “Indexes and Concurrency Control” on page 152. Briefly,
GemStone maintains indexing structures in your view and does not lock these structures
when an indexed collection or one of its elements is locked. Therefore, despite having
locked all of the visible objects that you touched, you can be unable to commit.

Specifically, this means that:

if an object is either an element of an indexed collection, or participates in an index
(meaning it is a component of an element bearing an index);

and another session can access the object, an indexed collection of which the object is a
member, or one of its predecessors along the same indexed path;

then locking the object does not guarantee that you can commit after reading or
writing the object.

Therefore, don’t rely on locking an object if the object participates in an index.
160 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Controlling Concurrent Access with Locks
Removing or Releasing Locks
Once you lock an object, its default behavior is to remain locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through aborts and
commits. In general, remove a lock on an object when you have used the object, committed
the resulting values to the repository, and no longer foresee an immediate need to maintain
control of the object.

Class System provides the following messages for removing locks:
System removeLock: anObject

Removes any lock you might hold on a single object. If anObject is not locked,
GemStone does nothing. If another session holds a lock on anObject, this message has
no effect on the other session’s lock.

System removeLockAll: aCollection

Removes any locks you might hold on the elements of a collection.

If you intend to continue your session, but the next transaction is to work on a different set
of objects, you might wish to remove all the locks held by your session. Class System
provides two mechanisms for doing so.
System commitTransaction; removeLocksForSession

Attempts to commit the present transaction and removes all locks it holds, even if the
commit does not succeed.

System commitAndReleaseLocks

Attempts to commit your transaction and release all the locks you hold in a single
operation. If your transaction fails to commit, all locks are held instead of released.

Releasing Locks Upon Aborting or Committing
After you have locked an object, you can add it to either of two special sets. One set
contains objects whose locks you wish to release as soon as you commit your current
transaction. The other set contains objects whose locks you wish to release as soon as you
either commit or abort your current transaction. Executing continueTransaction does
not release the locks in either set.

The following statement adds a locked object to the set of objects whose locks are to be
released upon the next commit:

System addToCommitReleaseLocksSet: aLockedObject

The following statement adds a locked object to the set of objects whose locks are to be
released upon the next commit or abort:

System addToCommitOrAbortReleaseLocksSet: aLockedObject

The following statement adds the locked elements of a collection to the set of objects whose
locks are to be released upon the next commit:

System addAllToCommitReleaseLocksSet: aLockedCollection

The following statement adds the locked elements of a collection to the set of objects whose
locks are to be released upon the next commit or abort:
System addAllToCommitOrAbortReleaseLocksSet: aLockedCollection

NOTE
If you add an object to one of these sets and then request an updated lock on it, the
object is removed from the set.
GemTalk Systems 161

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.6 Programming Guide
You can remove objects from these sets without removing the lock on the object. The
following statement removes a locked object from the set of objects whose locks are to be
released upon the next commit:

System removeFromCommitReleaseLocksSet: aLockedObject

The following statement removes a locked object from the set of objects whose locks are to
be released upon the next commit or abort:

System removeFromCommitOrAbortReleaseLocksSet: aLockedObject

The following statement removes the locked elements of a collection from the set of objects
whose locks are to be released upon the next commit:

System removeAllFromCommitReleaseLocksSet: aLockedCollection

The following statement removes the locked elements of a collection from the set of objects
whose locks are to be released upon the next commit or abort:

System removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

You can also remove all objects from either of these sets with one message. The following
statement removes all objects from the set of objects whose locks are to be released upon
the next commit:

System clearCommitReleaseLocksSet

The following statement removes all objects from the set of objects whose locks are to be
released upon the next commit or abort:

System clearCommitOrAbortReleaseLocksSet

The statement System commitAndReleaseLocks also clears both sets if the transaction
was successfully committed.

Inquiring About Locks
GemStone provides messages for inquiring about locks held by your session and other
sessions. Most of these messages are intended for diagnostic use, but some may be useful
to ordinary applications.

The message sessionLocks gives you a complete list of all the locks held by your session.
This message returns a three-element array. The first element is an array of read-locked
objects; the second is an array of write-locked objects, and the third is "deferred unlocks",
objects that have been unlocked, but the request is waiting for another session to release
the commit token.

For example, the following code uses this information to remove all write locks held by the
current session:

System removeLockAll:
(System sessionLocks at: 2)

Other useful messages systemLocksQuick, systemLocks, systemLocksReport, and
systemLocksDetailedReport, which report locks on all objects held by all sessions
currently logged in to the repository. Note that these methods do not report on locks that
other sessions are holding on their temporary objects—that is, objects that they have never
committed to the repository. These objects are not visible to your session, so they are
unlikely to be a cause of commit conflict.

Another lock inquiry message, lockOwners: anObject, is useful if you’ve been unable to
acquire a lock because of conflict with another session. This message returns an array of
SmallIntegers representing the sessions that hold locks on anObject. The method in
162 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Controlling Concurrent Access with Locks
Example 8.9 uses lockOwners: to build an array of the userIDs of all users whose
sessions hold locks on a particular object.

Example 8.9

classmethod: Dummy
getNamesOfLockOwnersFor: anObject
| userIDArray sessionArray |
sessionArray := System lockOwners: anObject.
userIDArray := Array new.
sessionArray do:

[:aSessNum | userIDArray add:
 (System userProfileForSession: aSessNum) userId].

^userIDArray
%

Dummy getNamesOfLockOwnersFor:
(myEmployees detect: {:e | e.name = ’Conan’ })

%

You can test to see whether an object is included in either of the sets of locked objects whose
locks are to be released upon the next abort or commit operation. The following statement
returns true if anObject is included in the set of objects whose locks are to be released upon
the next commit:

System commitReleaseLocksSetIncludes: anObject

The following statement returns true if anObject is included in the set of objects whose locks
are to be released upon the next commit or abort:

System commitOrAbortReleaseLocksSetIncludes: anObject

For information about the other lock inquiry messages, see the methods on System class in
the image.

Application Write Locks
Unlike read and write locks, application write locks can only be placed on a single object
per lock queue (there are ten lock queues available). The object can be any persistent non-
special object; the first time an application lock write is invoked on a lock queue, the object
that is locked is registered for that lock queue, and all subsequent uses of that lock queue
can only lock this particular object until the next Stone restart.

This allows it to be used as a mutex, or simplifies serializing modifications to a single
critical object, such as a collection.

The call to acquire an application write lock also does not return until the lock is acquired,
or the lock wait times out. This frees you from having to repeatedly request a lock if it is
not immediately available. The timeout is controlled by the configuration parameter
STN_OBJ_LOCK_TIMEOUT.

To set an application write lock on an object, send the message:
System waitForApplicationWriteLock: lockObject

queue: lockIdx
autoRelease: aBoolean
GemTalk Systems 163

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.6 Programming Guide
lockIdx must be a SmallInteger between 1 and 10, depending on which lock queue is being
used. If aBoolean is true, the lock is released automatically on commit or abort, otherwise
you must manually remove the lock when you are done.

This method errors if you attempt to lock a temporary object or AllSymbols, otherwise
returns an integer code, one of the following:

1 - lock granted
2071 - undefined lock (lockIdx out of range)
2074 - dirty; the lock object written by other session since start of this transaction
2075 - lock denied (lockObject is an invalid object)
2418 - lock not granted, deadlock
2419 - lock not granted, wait for lock timed out

8.4 Classes That Reduce the Chance of Conflict
Often, concurrent access to an object is structural, but not semantic. GemStone detects a
conflict when two users access the same object, even when respective changes to the objects
do not collide.

For example, when two users both try to add something to a bag they share, GemStone
perceives a write-write conflict on the second add operation, although there is really no
reason why the two users cannot both add their objects. As human beings, we can see that
allowing both operations to succeed leaves the bag in a consistent state, even though both
operations modify the bag. A situation such as this causes commit conflicts that could
potentially be avoided.

GemStone provides a number of reduced-conflict classes that you can use instead of their
regular counterparts in applications that might otherwise experience too many
unnecessary conflicts. Using these classes allows a greater number of transactions to
commit successfully, but “reduced conflict” does not mean “no conflict.” For example,
while two users should be able to add different objects to a shared collection, the code can’t
be expected to resolve the problem of two users attempting to remove the same object.

When a conflict does occur - for example, two users attempting to remove the same object -
 this is a normal conflict. The second user will see a commit failure with a transaction
conflict. When the commit fails, the user loses all changes made to the Rc object during the
current transaction, and the persistent state remains in the state left by the earlier user who
made the conflicting changes.

Reduced-conflict classes are not always appropriate; some of them require more storage,
and may require maintenance under some usage conditions, or may cause commits to take
longer to complete under some usage conditions.

RcCounter
The class RcCounter can be used instead of a simple number in order to keep track of the
amount of something. It allows multiple users to increment or decrement the amount at the
same time without experiencing conflicts.

The class RcCounter is not a kind of number. It encapsulates a number—the counter—but
it also incorporates other intelligence; you cannot use an RcCounter to replace a number
anywhere in your application. It only increments and decrements a counter.
164 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Classes That Reduce the Chance of Conflict
For example, imagine an application to keep track of the number of items in a warehouse
bin. Workers increment the counter when they add items to the bin, and decrement the
counter when they remove items to be shipped. This warehouse is busy; if each concurrent
increment or decrement operation produced a conflict, work slows unacceptably.

Furthermore, the conflicts are mostly unnecessary. Most of the workers can tolerate a
certain amount of inaccuracy in their views of the bin count at any time. They do not need
to know the exact number of items in the bin at every moment; they may not even worry if
the bin count goes slightly negative from time to time. They may simply trust that their
views are not completely up-to-date, and that their fellow workers have added to the bin
in the time since their views were last refreshed. For such an application, an RcCounter is
helpful.

Instances of RcCounter understand messages such as increment, decrement, and
value. For additional protocol, see the image.

For example, assuming that binCount refers to an instance of RcCounter, the following
operations can take place concurrently from different sessions without causing a conflict:

Example 8.10

!session 1
binCount incrementBy: 36.
System commitTransaction.
%
!session 2
binCount incrementBy: 24.
System commitTransaction.
%
!session 3
binCount decrementBy: 48
 ifLessThan: 0
 thenExecute: [^'Not enough widgets to ship today.'].
System commitTransaction.
%

This can result in some variable behavior, depending on the timing of the operations.

For example, if the starting binCount is 0, and these operations happen concurrently, then
session 3 will not perform the decrement, and the final binCount will be 60. However, if
session 1 and 2 have committed their increment operations, and session 3 updated its view
prior to executing the code, then session 3 will perform the decrement and the final
binCount will be 12.

Reduced-Conflict Collection Classes
GemStone provides a variety of reduced-conflict collection classes:

RcArray, providing Array-like semantics

RcKeyValueDictionary, producing dictionary-like semantics

RcIdentityBag, RcLowMaintenanceIdentityBag, and RcIdentitySet, providing
IdentityBag- and IdentitySet-like semantics.
GemTalk Systems 165

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.6 Programming Guide
GsPipe, RcPipe, and RcQueue, providing queue semantics

In addition to varying collection semantics, individual classes have specific types of
conflicts they are designed to avoid, and the amount of internal infrastructure or the cost
of resolving a conflict varies. Selection of an RC class should consider the demands of the
application and also the costs of the automatic conflict resolution.

RcArray, GsPipe, RcPipe, RcKeyValueDictionary, RcIdentitySet and
RcLowMaintenanceIdentityBag provide reduced-conflict by automatic replay; when
performing specific supported operations, if conflict occurs, the changes can be replayed,
slowing down the commit by the second session but allowing the commit to occur.

In cases where there are likely to be many concurrent updates, there is a risk of developing
a backlog of sessions replaying the operations; application in which a high degree of
concurrent operations are expected may benefit by using an RcQueue or RcIdentityBag.
RcIdentityBag and RcQueue provide add and remove sets for each session. This avoids the
risk of conflict between sessions at the cost of additional time required to access elements,
and some use patterns may require periodic manual cleanup.

RcArray
The class RcArray provides much of the same functionality as Array. However, no conflict
occurs on instances of RcArray with:
Multiple producers: any number of users are adding objects to the array.

If a conflict with other update operations on the RcArray occur, the add is replayed so that
the commit can succeed. Only methods that add elements at the end of the RcArray
support concurrent updates. During conflict resolution, commit order determines the
order of the elements in the RcArray.

Because implementation relies on the replay of the adds when there are conflicts, high
levels of concurrency have a risk of creating a backlog, when a convoy of sessions are all
trying to commit their additions to the RcArray. For applications with expected high rates
of concurrency, consider using an RcQueue to accumulate the additions, and have a single
gem process remove elements from the RcQueue, and put them in an RcArray.

RcIdentityBag
The class RcIdentityBag provides much of the same functionality as IdentityBag. No
conflict occurs on instances of RcIdentityBag with:
Multiple producers: any number of users are adding objects .
Limited multiple consumers: one user removes an object from the bag, or multiple

users remove objects but only one tried to remove the last or only occurrence of an
object.

When multiple sessions remove different occurrences of the same object, it may take a little
longer to commit the second transaction.

RcIdentityBag uses per-session add and remove subcollections to avoid conflict. Each
session adds to its individual subcollection, and removals of these items are tracked in a
parallel bag.

If you create an index on an RcIdentityBag, you should also create a reduced-conflict index,
otherwise the underlying index structure may have a conflict. However, even an indexed
instance of RcIdentityBag reduces the possibility of a transaction conflict, compared to an
instance of IdentityBag, indexed or not.
166 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Classes That Reduce the Chance of Conflict
RcLowMaintenanceIdentityBag and RcIdentitySet
The class RcLowMaintenanceIdentityBag and RcIdentitySet provide much of the same
functionality as IdentityBag and IdentitySet. No conflict occurs on instances of
RcLowMaintenanceIdentityBag or RcIdentitySet with:
Multiple producers: any number of users are adding objects.
Single consumer: one user removes objects.

RcLowMaintenanceIdentityBag and RcIdentitySet avoid conflict by performing a selective
abort and replay of adds. If more than one user removes objects, they are likely to
experience a commit failure with a transaction conflict. Instances of
RcLowMaintenanceIdentityBag and RcIdentitySet may have indexes on their contents. It
is recommended to create a reduced-conflict index.

RcKeyValueDictionary
The class RcKeyValueDictionary provides the same functionality as KeyValueDictionary.
No conflict occurs on instances of RcKeyValueDictionary with:
Limited multiple producers: any number of users add keys and values to the

dictionary, as long as the keys do not already exist in the dictionary.
Limited multiple consumers: any number of users remove keys from the dictionary, as

long as only one user removes the same key at a time.

RcKeyValueDictionary avoids conflict by performing a selective abort and replay of the
modifications to the dictionary. A session that would otherwise have a commit failure due
to a transaction conflict may take slightly longer to complete the commit.

GsPipe
The class GsPipe implements a first-in-first-out queue with a single producer and a single
consumer. No conflict occurs on instances of GsPipe with:
Single producer: only one user at a time adds objects to the pipe.
Single consumer: only one user at a time removes an object from the pipe.

GsPipe avoids commit conflict between adds and removes by the nature of its
implementation, since modifying the head or tail of a linked list doesn’t cause conflict.

RcPipe
The class RcPipe implements a first-in-first-out queue with multiple producers and a single
consumer. No conflict occurs on instances of RcPipe with:
Multiple producers: any number of users are adding objects to the RcPipe.
Single consumer: only one user at a time removes an object from the RcPipe.

RcPipe avoids conflict by performing a selective abort and replay of adds to the pipe. If
more than one user removes objects from the pipe, they are likely to experience a commit
failure with a transaction conflict. When the commit fails, the user loses all changes made
to the pipe during the current transaction, and the pipe remains in the state left by the
earlier user who made the conflicting changes.
GemTalk Systems 167

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.6 Programming Guide
RcQueue
The class RcQueue approximates the functionality of a first-in-first-out queue. RcQueues
are multiple-producer, single-consumer. No conflict occurs with:
Multiple producers: any number of users are adding objects to the queue.
Single consumer: only one user at a time removes an object from the queue.

RcQueue uses per-session add and remove subcollections to avoid conflict. Each session’s
modifications are only to its own add and remove subcollections; the RcQueue calculates
the next element based on the contents of the individual session subcollections.

RcQueue approximates a first-in-first-out queue, but it cannot implement such
functionality exactly because of the nature of repository views during transactions.

An object added to an RcQueue is ordered in the queue according to the time it is added to
the RcQueue, but it only becomes visible to other sessions when the session commits. If
objects in the RcQueue are "consumed" as soon as they appear, then it is possible for more
recently created elements to be consumed before older ones that were not yet committed.

For example, suppose one user adds object A at 10:20, but waits to commit until 10:50.
Meanwhile, another user adds object B at 10:35 and commits immediately. A third user
viewing the queue at 10:30 will see neither object A nor B. At 10:35, object B will become
visible to the third user. At 10:50, object A will also become visible to the third user, and
will furthermore appear earlier in the queue, because it was created first.
168 GemTalk Systems

Chapter

9 Object Security and
Authorization
This chapter explains how to set up object security policies to restrict read and write
access to application objects.

It covers:

How GemStone Security Works (page 169)
describes the Gemstone object security model.

Assigning Objects to Security Policies (page 173)
summarizes the messages for reporting your current security policy, changing your
current policy, and assigning a policy to simple and complex objects.

Application Example (page 180) and Development Example (page 184)
provides examples for defining and implementing object security for your projects.

Privileged Protocol for Class GsObjectSecurityPolicy (page 192)
defines the system privileges for creating or changing security policy authorization.

9.1 How GemStone Security Works
GemStone provides security at several levels:

Login authorization keeps unauthorized users from gaining access to the repository;

Privileges limit ability to execute special methods affecting the basic functioning of
the system (for example, the methods that reclaim storage space); and

Object level security allows individual users, specific groups of users, and all users to
have read, write, or no access to each object in the repository.

Object Filtering provides further object level security, by allowing you to control the
transmission of each object to a remote cache. This features is only available with X509
logins, which include additional security for Gems running on insecure remote nodes.
See the GemStone/S 64 Bit X509-Secured GemStone System Administration Guide for more
information.
GemTalk Systems 169

How GemStone Security Works GemStone/S 64 Bit 3.6 Programming Guide
Login Authorization
You log into GemStone through any of the interfaces provided: GemBuilder for Smalltalk,
GemBuilder for Java, Topaz, or the C interface (see the appropriate interface manual for
details). Whichever interface you use, GemStone requires the presentation of a user ID (a
name or some other identifying string) and a password. If the user ID and password pair
match the user ID and password pair of someone authorized to use the system, GemStone
permits interaction to proceed; if not, GemStone severs the logical connection.

The GemStone system administrator, or someone with equivalent privileges (see below),
establishes your user ID and (depending on the login authentication used) your password,
when he or she creates your UserProfile. The GemStone system administrator can also
configure a GemStone system to monitor failures to log in, and to note the attempts in the
Stone log file after a certain number of failures have occurred within a specified period of
time. A system can also be configured to disable a user account after a certain number of
failed attempts to log into the system through that account. See the GemStone System
Administration Guide for details.

The UserProfile
Each instance of UserProfile is created by the system administrator. The UserProfile is
stored with a set of all other UserProfiles in a set called AllUsers. The UserProfile contains:

Your UserID and Password.

The SymbolList used for resolving symbols when compiling, including
SymbolDictionaries such as Globals and UserGlobals. Chapter 3‚ “Resolving Names
and Sharing Objects”, discuses these topics.

The groups to which you belong

The privileges you may have.

A default GsObjectSecurityPolicy to assign your session at login, or nil.

See the System Administration Guide for instructions on creating UserProfiles, defining
groups, and assigning users to groups.

System Privileges
Actions that affect the entire GemStone system are tightly controlled by privileges to use
methods or access instances of the System, UserProfile, GsObjectSecurityPolicy, and
Repository classes, and to modify code. Privileges are given to individual UserProfile
accounts to access various parts of GemStone or perform important functions such as
storage reclamation.

The privileged messages for the System, UserProfile, GsObjectSecurityPolicy and
Repository Classes are described in the image, and their use is discussed in the System
Administration Guide.

Object-level Security
GemStone object-level security allows you to:

abstractly group objects;

specify who owns the objects;
170 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide How GemStone Security Works
specify who can read them; and

specify who can write them.

Each site designs a custom scheme for its data security. Objects can be secured for selective
read or write access by a group or individual users. Objects can also be left unsecured, so
any user can read or modify them. Not restricting access will improve performance for sites
with fewer security requirements.

The GemStone class GsObjectSecurityPolicy facilitates this security.

GsObjectSecurityPolicy
Each object's header includes a 16-bit unsigned security policy Id that specifies the
GsObjectSecurityPolicy to which the object has been assigned. (In previous releases, object
security policies were known as Segments; references to Segment now mean
GsObjectSecurityPolicy).

All objects assigned the same security policy have exactly the same protection. That is, if
you can read or write one object assigned to a certain policy, you can read or write them all.

There are several ways that access to objects is controlled by the security policy:

Each policy is owned by a single user, and all objects assigned the same security
policy have the same owner. The owner has write and read access to all objects
associated with the security policy.

A security policy has a setting for world; this allows every authorized GemStone user
to have read, write, or no access to all the objects associated with a security policy

Groups of users can be defined, and these groups can be configured to have read,
write, or no access to all the objects associated with a security policy.

In addition, an object may also have no security policy, in which case its security policy Id
is zero. This means that there are no restrictions on access to this object; any logged-in user
can read and write this object.

Whenever an application tries to access an object, GemStone compares the object’s
authorization attributes in the security policy associated with the object with those of the
user whose application is attempting access. If the user is appropriately authorized, the
operation proceeds. If not, GemStone returns an error notification.

The user’s group membership and security policy authorization control access to objects,
as shown by Figure 9.1.
GemTalk Systems 171

How GemStone Security Works GemStone/S 64 Bit 3.6 Programming Guide
Figure 9.1 User Access to Application ObjectSecurityPolicyA

���������	
���
������
+%���,��������-�.��
��������
����!�/���,
����!�.��
�,���������	
.��	�,�/����������

���
��
�������

���
��

����!�,������		-
����������

���
��

����!�,������-�
������������	

����%��
��0�!	�����
��
�-���������������	�
'���!�"���%��
���������

���������0�!	�����
��
�-��������
����%��	��
�����

����%��
��0�!	�����
��
�-�������+%����"���
%��
��������� ��	�����0�!	����

��	�����0�!	����

��	�����0�!	����

Three users access this application:

The System Administrator, GsAdmin, owns ObjectSecurityPolicyA and can read and
write the objects assigned with it.

User3 belongs to the Personnel group, which authorizes read and write access to
ObjectSecurityPolicyA’s objects.

User2 doesn’t belong to a group that can access ObjectSecurityPolicyA, but can still
read those objects, because ObjectSecurityPolicyA gives read authorization to all
GemStone users.

Because security policies are objects, access to a GsObjectSecurityPolicy object is controlled
by the security policy it is assigned to, exactly like access to any other object.
GsObjectSecurityPolicy instances are usually assigned to the
DataCuratorObjectSecurityPolicy. The authorization information stored in the
GsObjectSecurityPolicy instance, which controls access to the objects assigned with that
security policy, does not control access to the policy object itself.

Objects do not “belong” to an security policy. It is more correct to say that objects are
associated with a security policy. Although objects know which policy they are assigned
to, security policies do not know which objects are assigned to them. Security policies are
not meant to organize objects for easy listing and retrieval. For those purposes, you must
turn to symbol lists, which are described in Chapter 3‚ “Resolving Names and Sharing
Objects”.
172 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Assigning Objects to Security Policies
9.2 Assigning Objects to Security Policies
For security policy authorizations to have any effect, you must assign some objects to the
security policies whose authorizations you have set up.

Default Security Policy and Current Security Policy
In your UserProfile, you may be assigned a default security policy, or this may be left
empty. When you login to GemStone, your Session uses this default security policy as your
current security policy. Any objects you create are assigned to your current security policy;
if you do not have a current security policy, the new objects do not have a security policy,
and so have world read and write access.

Class UserProfile has the message defaultObjectSecurityPolicy, which returns
your default GsObjectSecurityPolicy (or nil). Sending the message
currentObjectSecurityPolicy: to System changes your current security policy:

Example 9.1

| aPolicy myPolicy |
myPolicy := System myUserProfile

defaultObjectSecurityPolicy.
aPolicy := GsObjectSecurityPolicy new.
System commitTransaction.
"change my current security policy to aPolicy"
System currentObjectSecurityPolicy: aPolicy

Only committed instances of GsObjectSecurityPolicy can be used.

If you commit after changing the security policy, the new GsObjectSecurityPolicy remains
your current security policy until you change the security policy again or log out. If you
abort after changing your current security policy, your current security policy is reset from
your UserProfile’s default security policy.

Unnamed GsObjectSecurityPolicies are often stored in a UserProfile, but named
GsObjectSecurityPolicies are stored in symbol dictionaries like other named objects.
Private security policies are typically kept in a user’s UserGlobals dictionary; security
policies for groups of users are typically kept in a shared dictionary.

Example 9.2

| myPolicy |
"get default security policy"
myPolicy := System myUserProfile defaultObjectSecurityPolicy.
"compare with current"
myPolicy = System currentObjectSecurityPolicy
%
true
GemTalk Systems 173

Assigning Objects to Security Policies GemStone/S 64 Bit 3.6 Programming Guide
Objects and Security Policies
GemStone object security is defined for objects. Your security scheme must be defined to
protect sensitive data in separate objects, either by itself or as a member object of a
customer class. Since each object has separate authorization, each object must be assigned
separately.

Compound Objects
Usually, the objects you are working with are compound, and each part is an object in its
own right, with its own security policy assignment. For example, look at anEmployee in
Figure 9.2. The contents of its instance variables (name, salary, and department) are
separate objects that can be assigned to different security policies. Salary is assigned to
ObjectSecurityPolicyC, which enforces more restricted access than ObjectSecurityPolicyA.

Figure 9.2 Multiple Security Policy Assignments for a Compound Object

���������	
���
������
+%���,��������-�.��
��������
����!�/���,
����!�.��
�,���������	
.��	�,�/����������

���������	
���
������
+%���,��������-�.��
��������
����!�/���,���������	
����!�.��
�,������		
.��	�,�*���

����

��	���1��
���

��!��
���

��0�!	����

Collections
When you assign collections of objects to security policies, you must distinguish the
container from the items it contains. Each of the items must also be assigned to the proper
policy. Distinguishing between a collection and the objects it contains allows you to create
collections most elements of which are publicly accessible, while some elements are
sensitive.

Configuring Authorization for an Object Security Policy
Object security polices store authorization information that defines what a particular user
or group member can do to the objects with that policy. Three levels of authorization are
provided:

write — A user can read and modify any of the objects with that security policy and
create new objects associated with the policy.

read — A user can read any of the objects with that security policy, but cannot modify
(write) them or add new ones.

none —A user can neither read nor write any of the objects with that security policy.

By assigning a security policy to an object, you give the object the access information
associated with that policy. Thus, all objects with a security policy have exactly the same
174 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Assigning Objects to Security Policies
protection; that is, if you can read or write one object with to a certain policy, you can read
or write them all.

Controlling authorizations at the security policy level rather than storing the information
in each object makes them easy to change. Instead of modifying a number of objects
individually, you just modify one security policy object. This also keeps the repository
smaller, eliminating the need for duplicate information in each of the objects.

How GemStone Responds to Unauthorized Access
GemStone immediately detects an attempt to read or write without authorization and
responds by stopping the current method and issuing an error. When you successfully
commit your transaction, GemStone verifies that you are still authorized to write in your
current security policy. If you are no longer authorized to do so, GemStone issues an error,
and your default security policy once again becomes your current security policy. If you
are no longer authorized to write in your default security policy, GemStone terminates
your session, and you are unable to log back in to GemStone. If this happens, see your
system administrator for assistance.

Owner, Group, and World Authorization
A GsObjectSecurityPolicy controls what access a user has to associated objects. Access can
be separately assigned for:

a security policy’s owner

groups of users (by name)

the world of all GemStone users

Whenever a program tries to read or write an object, GemStone compares the object’s
authorization attributes with those of the user who is attempting to do the reading or
writing. If the user has authorization to perform the operation, it proceeds. If not,
GemStone returns an error notification.

These categories overlap. The owner of a security policy is also in the world of all
GemStone users, and may also be in one or more groups that have other access
authorization. When determining a user's authorization, the most permissive or generous
authorization will be allowed and other, more restrictive authorizations, will be ignored.
Thus, if world authorization is #read, but the user is a member of a group with #write
authorization, then the world authorization will be ignored.

Owner Authorization
Each GsObjectSecurityPolicy has an owner. The owner of a policy may be assigned read,
write, or no access in the security policy, and therefore to the objects associated with this
security policy. Usually, the owner of a policy has write authorization, but this isn’t
required (unless this is the default security policy for that user). Users may own more than
one security policy.

The message GsObjectSecurityPolicy >> ownerAuthorization:
anAuthorizationSymbol is used to set and clear authorization for the owner of the security
policy. The message GsObjectSecurityPolicy >> ownerAuthorization returns
the authorization for the owner of the security policy.
GemTalk Systems 175

Assigning Objects to Security Policies GemStone/S 64 Bit 3.6 Programming Guide
Group Authorization
Groups are an efficient way to ensure that a number of GemStone users all will share the
same level of access to objects in the repository, and all will be able to manipulate certain
objects in the same ways.

Groups are typically organized as categories of users who have common interests or needs;
for example, Payroll or Personnel.

The global collection AllGroups, a collection of instances of UserProfileGroup, defines all
groups in the system. Membership in a group is granted either by adding the UserProfile
to the UserProfileGroup, by adding the group to the user’s UserProfile groups.

The message GsObjectSecurityPolicy>>authorizationForGroup: group
returns the rights for users in that group.

The message GsObjectSecurityPolicy>>groupsWithAuthorization:
anAuthSymbol returns the names of groups that have a particular level of access (#read,
#write, or #none) for the receiver security policy.

To set group access, use the message GsObjectSecurityPolicy>>group:
groupNameString authorization: anAuthSymbol. For example, to set the group
authorization as shown in Example 9.3, use the following:
anObjectSecurityPolicy group: 'Managers' authorization: #read

World Authorization
In addition to storing authorization for its owner and for groups, a security policy can also
be told to authorize or to deny access by all GemStone users (the world.)

The message GsObjectSecurityPolicy>>worldAuthorization returns the rights
for all users. A corresponding message,
GsObjectSecurityPolicy>>worldAuthorization: anAuthSymbol, sets the
authorization for all GemStone users. For example:
anObjectSecurityPolicy worldAuthorization: #none

Predefined GsObjectSecurityPolicies
The initial GemStone repository has eight GsObjectSecurityPolicies, with the following Ids:

1. SystemObjectSecurityPolicy

This security policy is defined in the Globals dictionary, and is owned by the
SystemUser. All GemStone users, represented by world access, are authorized to read,
but not write, objects associated with this security policy. The group #System is
authorized to write to objects in this policy.

2. DataCuratorObjectSecurityPolicy

This security policy is defined in the Globals dictionary, and is owned by the
DataCurator. All GemStone users, represented by world access, are authorized to read,
but not write, objects associated with this security policy. The group
#DataCuratorGroup is authorized to write in this security policy.

Objects in the DataCuratorObjectSecurityPolicy include the Globals dictionary, the
SystemRepository object, all GsObjectSecurityPolicy objects, AllUsers (the set of all
176 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Assigning Objects to Security Policies
GemStone UserProfiles), AllGroups (the collection of groups authorized to read and
write objects in GemStone security policies), and each UserProfile object.

NOTE:
When GemStone is installed, only the DataCurator is authorized to write in this
security policy. To protect the objects in DataCuratorObjectSecurityPolicy from
unauthorized modification, only administrative users should have write access.

3. GsTimeZoneObjectSecurityPolicy

The initial repository does not use this Id. Repositories that have been converted from
earlier GemStone/S server products use this for the
GsTimeZoneObjectSecurityPolicy.

4. GsIndexingObjectSecurityPolicy

This security policy is used by the indexing subsystem.

5. SecurityDataObjectSecurityPolicy

This security policy is used by the system for passwords for UserProfiles, and other
highly protected information.

6. PublishedObjectSecurityPolicy

This security policy is used for objects in the Published symbol dictionary.

7. GcUserObjectSecurityPolicy, the GsObjectSecurityPolicy for the GcUser user.

8. NamelessObjectSecurityPolicy, the GsObjectSecurityPolicy for the Nameless user.

9. CodeLibrarianUserObjectSecurityPolicy, the GsObjectSecurityPolicy for the
CodeLibrarianUser.

10. HostAgentUserObjectSecurityPolicy, the GsObjectSecurityPolicy for the
HostAgentUser.

11. ObjectFiltersObjectSecurityPolicy

The GsObjectSecurityPolicy that contains ObjectFilters, which are used for further
object protection with X509 logins.

For repositories that have been converted from certain earlier versions, there may also be
GsObjectSecurityPolicy with id 20, with world write.

GsObjectSecurityPolicy names
Most of the system security policies have Symbolic references in Globals and can the name
can be used in code. SecurityPolicies may have names (which are stored in a dynamic
instance variable); most system security policies have names set. When defining a new
object security policy, you may send name: to make it more easily identifiable. This does
not itself create a global reference.

Changing the Security Policy for an Object
If you have the authorization, you can change the accessibility of an individual object by
assigning a different security policy to it.

The message Object >> objectSecurityPolicy returns the security policy that
protects that receiver, or nil if the receiver does not have an associated security policy:
GemTalk Systems 177

Assigning Objects to Security Policies GemStone/S 64 Bit 3.6 Programming Guide
Example 9.3

UserGlobals objectSecurityPolicy
DataCuratorObjectSecurityPolicy(#2 in Repository SystemRepository,
Owner DataCurator write, Group DataCuratorGroup write, World read)

The message Object >> objectSecurityPolicy: anObjectSecurityPolicy assigns
anObjectSecurityPolicy as the security policy for the receiver. You also use this method to
remove the security policy, so the receiver object has world read and write access. You
must have write authorization for both security policies, that of the receiver and the
argument. Assuming the necessary authorization, this example assigns a new security
policy to class Employee:
Employee objectSecurityPolicy: aPolicy.

You may override the method objectSecurityPolicy: for your own classes,
especially if they have several components.

For objects having several components, such as collections, you may assign all the
component objects to a specified security policy when you reassign the composite object.
You can implement the message objectSecurityPolicy: to perform these multiple
operations. Within the method objectSecurityPolicy: for your composite class, send
the message assignToObjectSecurityPolicy: to the receiver and each object of
which it is composed.

For example, an objectSecurityPolicy: method for the class Menagerie might
appear as shown in Example 9.4. The object itself is assigned to another security policy
using the method assignToObjectSecurityPolicy:. Its component objects, the
animals themselves, have internal structure (names, habitats, and so on), and therefore call
Animal’s objectSecurityPolicy: method, which in its turn sends the message
assignToObjectSecurityPolicy: to each component of anAnimal, ensuring that
each animal is properly and completely reassigned to the new security policy.

Example 9.4

Array subclass: 'Menagerie'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

%

method: Menagerie
objectSecurityPolicy: aPolicy

self assignToObjectSecurityPolicy: aPolicy.
self do: [:eachAnimal |

eachAnimal objectSecurityPolicy: aPolicy]
%

Special objects — SmallInteger, SmallDouble, Character, Boolean, and nil — are assigned
the SystemObjectSecurityPolicy and cannot be assigned another security policy.
178 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Assigning Objects to Security Policies
Security Policy Ownership
Each GsObjectSecurityPolicy has an owner—by default, the user who created it. An
security policy’s owner always has control over who can access the security policy’s
objects. As a security policy’s owner, you can alter your own access rights at any time, even
forbidding yourself to read or write objects with that security policy.

You might not be the owner of your default security policy. To find out who owns a
security policy, send it the message owner. The receiver returns the owner’s UserProfile,
which you may read, if you have the authorization:

Example 9.5

"Return the userId of the owner of the default security policy for
the current Session."
| aUserProf myDefaultPolicy |
"get default security policy"
myDefaultPolicy := System myUserProfile

defaultObjectSecurityPolicy.
myDefaultPolicy notNil ifTrue:

["return its owner’s UserProfile"
aUserProf := myDefaultPolicy owner.
"request the userId"
aUserProf userId]

%
user1

Every security policy understands the message owner: aUserProfile. This message assigns
ownership of the receiver to the person associated with aUserProfile. The following
expression, for example, assigns the ownership of your default security policy to the user
associated with aUserProfile:
System myUserProfile defaultObjectSecurityPolicy owner:
aUserProfile

In order to reassign ownership of a security policy, you must have write authorization for
the DataCuratorObjectSecurityPolicy. Because of the way separate authorizations for
owners, groups and world combine, changing access rights for the any one of them may or
may not alter a particular user’s rights to a security policy.

CAUTION
Do not, under any circumstances, attempt to change the authorization of the
SystemObjectSecurityPolicy.

Revoking Your Own Authorization: a Side Effect
You may occasionally want to create objects and then take away authorization for
modifying them.

CAUTION
Do not remove your write authorization for your default security policy or your
current security policy. If you lose write authorization for your default security
policy, you will not be able to log in again.
GemTalk Systems 179

Application Example GemStone/S 64 Bit 3.6 Programming Guide
Finding Out Which Objects Are Protected by a Security Policy
It may be useful for you to be able to find all the objects that are protected by a particular
security policy. An expression of the form:
SystemRepository listObjectsInObjectSecurityPolicies: anArray

takes as its argument an array of security policy IDs, and returns an array of arrays. Each
inner array contains all objects whose security policy ID is equal to the corresponding
security policy ID element in the argument anArray. Instances to which you lack read
authorization are omitted without notification.

Note that this method aborts the current transaction and scans the object header of each
object in the repository.

If the result set is very large, there is a risk of out of memory errors. To avoid the need to
have the entire result set in memory, the following methods are provided:
Repository >> listObjectsInObjectSecurityPolicyToHiddenSet:
anObjectSecurityPolicyId

This method puts the set of all objects in the specified security policy in the
ListInstancesResult hidden set. (a hidden set is an internal memory structure that, while
not an object, is treated as one).

To enumerate the hidden set, you can use this method:
System >> hiddenSetEnumerate: hiddenSetId limit: maxElements

using a hiddenSetId of 1, which is the number of the “ListInstancesResult” hidden set in
GemStone/S 64 Bit v3.6. This hidden set number is subject to change in new releases; to
determine which hidden sets are in a particular release, use the GemStone Smalltalk
method System Class >> HiddenSetSpecifiers. For more on hidden sets, see
“Other Optimization Hints” on page 304.

You can also list objects that are protected by a particular security policies to an external
binary file, which can later be read into a hidden set. To do this, use the method:
Repository >> listObjectsInObjectSecurityPolicies: anArray
toDirectory: aString

This method scans the repository for the instances protected by the security policies in
anArray and writes the results to binary bitmap files in the directory specified by aString.
Binary bitmap files have an extension of .bm and may be loaded into hidden sets using
class methods in System.
Bitmap files are named:

objectSecurityPolicy<ObjectSecurityPolicyId>-objects.bm

where ObjectSecurityPolicyId is the security policy ID.
The result is an Array of pairs. For each element of the argument anArray, the result array
contains ObjectSecurityPolicyId, numberOfInstances. The numberOfInstances is the total
number written to the output bitmap file.

9.3 Application Example
The structure of the user community determines how your data is stored and accessed.
Regardless of their job titles, users generally fall into three categories:
180 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Application Example
Developers define classes and methods.

Updaters create and modify instances.

Reporters read and output information.

When you have a group of users working with the same GemStone application, you need
to ensure that everyone has access to the objects that should be shared, such as the
application classes, but you probably want to limit access to certain data objects.

Figure 9.3 shows a typical production situation. In this example, all the application users
need access to the data, but different users need to read some objects and write others. So
most data goes into ObjectSecurityPolicyA, which anyone can look at, but only the
Personnel group or owner can change. ObjectSecurityPolicyC is set up for sensitive salary
data, which only the Payroll group or owner can change, and only they and the Personnel
group can see. You don’t want anyone to accidentally corrupt the application classes, so
they go into ObjectSecurityPolicyF, which no one can change.

Figure 9.3 Application Objects Assigned with Three Security Policies

���������	
���
������
+%���,��������-�.��
��������
����!�/���,
����!�.��
�,���������	
.��	�,�/����������

���������	
���
������
+%���,��������-�.��
��������
����!�/���,���������	
����!�.��
�,������		
.��	�,�*���

���������	
���
�������
+%���,��������-�/����������
.��	�,�/���

!���
���

��	�����!��
���

��	�����0�!	����
����

��	���0�!	����
�	���

��	���

����
������������
����

02�������������
�����
�������
���-���
���	��
��������	������!��
��

����
������
3��!�!��2�
�4���	�

��������	����������		�
��������-�������	��
�����		�����%��
�

������������
�������

02�������������
�����-�
��
����!�����
����

�������"��	��������� ��	����������
�	���

��	���
�!��
���

�	���

Given a set of users with different roles in the application, Figure 9.4 and Figure 9.5
indicate how group membership and security policy authorization control access to
application objects:
GemTalk Systems 181

Application Example GemStone/S 64 Bit 3.6 Programming Guide
Figure 9.4 User Access to Application ObjectSecurityPolicyA

���������	
���
������
+%���,��������-�.��
��������
����!�/���,
����!�.��
�,���������	
.��	�,�/����������

�������� ���

�����
��
����!�,������		-
����������

������
�����
����!�,������

�����!�"��
����!�,������-�
������������	

Four users access this application:

The System Administrator, GsAdmin, owns both security policies and can read and
write the objects assigned with them.

Logan belongs to the Personnel group, which authorizes her to read and write objects
associated with ObjectSecurityPolicyA, and read objects associated with
ObjectSecurityPolicyC.

Pat can read and write the objects assigned with ObjectSecurityPolicyC, because he
belongs to the Payroll group. He doesn’t belong to a group that can access
ObjectSecurityPolicyA, but he can still read those objects, because
ObjectSecurityPolicyA gives read authorization to all GemStone users.

Frances does not belong to a group that can access either security policy. She can read
the objects assigned with ObjectSecurityPolicyA, because it allows read access to all
GemStone users. She has no access at all to ObjectSecurityPolicyC.

Pat and Logan are sometimes updaters and sometimes reporters, depending on the type of
data. Frances is strictly a reporter.
182 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Application Example
Figure 9.5 User Access to Application ObjectSecurityPolicyC

���������	
���
������
+%���,��������-�.��
��������
����!�/���,���������	
����!�.��
�,������		
.��	�,�*���

�������� ���

�����
��
����!�,������		-
����������

������
�����
����!�,������

�����!�"��
����!�,������-�
������������	

ObjectSecurityPolicyB is associated with the classes and methods for the application. These
are world read, so all users can read these objects. No one, not even GsAdmin, can modify
the classes.
GemTalk Systems 183

Development Example GemStone/S 64 Bit 3.6 Programming Guide
9.4 Development Example
Up to now, this discussion has been limited to applications in a production environment,
but issues of access and security arise at each step of application development. During the
design phase you need to consider the security policies needed for the application life
cycle: development, testing, and production.

The access required at each stage is a subset of the preceding one, as shown in Figure 9.6.

Figure 9.6

��#�����
�,�%��
���������
���		��!!	���
������&��
�

$����
�,�������������
���	������������
"���-
�����%��
���������
��
��
���
�

���
�,�������������
���	����������!��	���
�������
"���-�����-�%��
���������������
��
������!���������
��

Access Requirements During an Application’s Life Cycle

9.5 Planning Security Policies for User Access
As you design your application, decide what kind of access different end users will need
for each object.

Protecting the Application Classes
All the application users need read access to the application classes and methods, so they
can execute the methods. To prevent accidental damage to them, however, you probably
want to limit write access. The CodeModification privilege is required to create or modify
classes and methods. You can further limit write access using security policies. You may
even want to change the owner’s authorization to read, until changes are required.

Like other objects, classes and their methods are assigned to security policies on an object-
by-object basis. You may keep separate subsections of your application in different security
policies, with different write authorizations, if you want.

CodeModification privilege
All application developers will need to have CodeModification privilege. This is in
addition to the ability to read and write the appropriate security policies. Without
CodeModification privilege, you cannot compile methods or classes, add new methods,
184 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Planning Security Policies for User Access
add a Class to a SymbolDictionary, or perform other operations required for application
development.

Application users, on the other hand, should not have CodeModification privilege, since
they will not be modifying methods or classes. This allows you to protect the application
code for inadvertent (or intentional) damage or modification, even if you do not want to
implement object level security.

Planning Authorization for Data Objects
Authorization for data objects means protecting the instances of the application’s classes,
which will be created by end users to store their data. You can begin the planning process
by creating a matrix of users and their required access to objects. Table 9.1 shows part of
such a matrix, which maps out access to instances of the class Employee and some of its
instance variables.

Security is easier to implement if it is built into the application design at the beginning, not
added later. In the following sections, planning for the third stage, end user access, comes
first. Following the planning discussion comes the implementation instructions, which
explain how to set up security policies for the developers, extend the access to the testers,
and finally move the application into production.

Remember that in effect you have four options, shown on the matrix as:

W — need to write (also allows reading)

R — need to read, must not write

N — must not read or write

blank — don’t need access, but it won’t hurt

Table 9.1 Access for Application Objects Required by Users

Users

Objects
System
Admin.

Human
Resource

Employee
Records Payroll Mktg Sales

Customer
Support

anEmployee W W W R R R R

name W W W R R R R

position W W W R R

dept. W W W R R

manager W W W R R

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N
GemTalk Systems 185

Planning Security Policies for User Access GemStone/S 64 Bit 3.6 Programming Guide
World Access
To begin analyzing your access requirements, check whether the objects have any Ns. For
objects that do, world authorization must be set to none.

If you have people who need read access to nonsensitive information, give world read
authorization to those objects. In this example, world can have read access to anEmployee,
name, position, dept., and manager. The objects can still be protected from casual browsing
by storing them in a dictionary that does not appear in everyone’s symbol list. This does
not absolutely prevent someone from finding an object, but it makes it difficult. For more
information, see Chapter 3‚ “Resolving Names and Sharing Objects”.

Owner
By default, the owner has write access to the objects protected by a security policy. To
choose an owner, look for a user who needs to modify everything. In terms of the basic user
categories described earlier, the owner could be either an administrator or an updator. This
depends on the type of objects that will be assigned to the security policy.

In Table 9.1 the system administrator is the user who needs write access. So the system
administrator is made the owner, with full control of all the objects. The DataCurator and
SystemUser logins are available to the system administrator. The DataCurator is not
automatically authorized to read and write all objects, however. Like any other user
account, it must be explicitly authorized to access objects in security policies it does not
own. Although the SystemUser can read and write all objects, it should not be used for
these purposes.

Planning Groups
The rest of the access requirements must be satisfied by setting up groups. The thing to
remember about groups is that they do not reflect the organization chart; they reflect
differences in access requirements. Because the number of possible authorization
combinations is limited, the number of groups required is also limited.

First look at the existing access to anEmployee, name, position, dept., and manager, as
shown in Table 9.2. By making the system administrator the owner with write
authorization and assigning read authorization to world, you have already satisfied the
needs of five departments.

Table 9.2 Access to the First Five Objects Through Owner and World Authorization

Users

Objects

Employee W W

name W W

position W W

dept. W W

manager W W

write access as owner or no access as world

System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

W R R

W R R

W R R

W R R

W R R
186 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Planning Security Policies for User Access
You still need to provide authorization for the Human Resources and Employee Records
departments. In every case, they need the same access (see Table 9.1) so you only have to
create one group for the two departments. This group, named Personnel, requires write
authorization for the objects in Table 9.2.

Now look at the existing access to the rest of the objects. These objects store more sensitive
information, so access requirements of different users are more varied. Assigning write
authorization to owner and none to world has completely satisfied the needs of three
departments, as shown in Table 9.3.

Table 9.3 Access to the Last Six Objects Through Owner and World Authorization

Users

Objects

dateHired W W R R

salary R R W

salesQuarter R R R W

salesYear R R R W

vacationDays W W

sickDays W W

write access as owner or no access as world

Two more departments, Human Resources and Employee Records, are already set up to
access as the Personnel group. As shown in Table 9.4, this group needs write authorization
to dateHired, vacationDays, and sickDays, which they must be able to read and modify.
They need read authorization to salary, salesQuarter, and salesYear, which they must read
but cannot modify.

Table 9.4 Access to the Last Six Objects Through the Personnel Group

Users

Objects
System
Admin.

dateHired W R N R N

salary W W N N N

salesQuarter W R N W N

salesYear W R N W N

vacationDays W N N N N

sickDays W N N N N

read or write access as Personnel group

System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

W N N

W N N N

W N N

W N N

W N N N N

W N N N N

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
Support

W W

R R

R R

R R

W W

W W
GemTalk Systems 187

Planning Security Policies for User Access GemStone/S 64 Bit 3.6 Programming Guide
Now the Payroll and Sales departments still require access to the objects, as shown in
Table 9.3. Because these departments’ needs don’t match anyone else’s, they must each
have a separate group.

Table 9.5 Access to the Last Six Objects Through the Payroll and Sales Groups

Users

Objects
System
Admin.

Human
Resource

Employ.
Records

dateHired W W W R N R N

salary W R R N N N

salesQuarter W R R N N

salesYear W R R N N

vacationDays W W W N N N N

sickDays W W W N N N N

read or write access as Payroll or Sales group

In all, this example only requires three groups: Personnel, Payroll, and Sales, even though
it involves seven departments.

Planning Security Policies
When you have been through this exercise with all your application’s prospective objects
and users, you are ready to plan the security policies. For easiest maintenance, use the
smallest number of security policies that your required combinations of owner, group, and
world authorizations allow. You don’t need different security policies with duplicate
functionality to separate particular objects, like the application classes and data objects.
Remember that symbol lists, not security policies, are used to organize objects for listing
and retrieval.

In this example you need six security policies, as shown in Figure 9.7. Notice that each one
has different authorization.

Developing the Application
During application development you implement two separate schemes for object
organization: one for sharing application objects by the development team and one
controlling access by the end users. In addition, you may need to allow access for the
testers, who may need different access to objects.

Once you have planned the security policies and authorizations you want for your project,
you can refer to procedures in the System Administration Guide for implementing that plan.

Setting Up Security Policies for Joint Development
To make joint development possible, you need to set up authorization and references so
that all the developers have access to the classes and methods that are being created. Create
a new symbol dictionary for the application and put it in everyone’s symbol list; make sure
it includes references to any shared security policies. If only developers are using the

Payroll Mktg Sales
Customer
Support

W

R W

R W
188 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Planning Security Policies for User Access
repository, you can give world access to shared objects, but if other people are using the
repository, you must set up a group for developers.

You can organize security policy assignments in various ways:

Full access to all personal security policies. Give all the developers their own default
security policies to work in. Give everyone in the team write access to all the security
policies. Because the objects you create are typically assigned to your default security
policy, this method may be the simplest way to organize shared work.

Read access to all personal security policies. Set up the same as above, except give
everyone read access to the security policies. If each developer is doing a separate
module, read access may be enough. Then everyone can use other people’s classes,
but not change them. This has the advantage of enforcing the line between application
and data.

Full access to a shared security policy. Give all developers the same default security
policy, writable by everyone. This is an easy, informal way to share objects.

Full access to a shared security policy plus private security policies. Developers
work in their own default security policies and reassign their objects to the shared
security policy when they are finished. This lets you share a collection, for example,
but keep the existing elements private, so that other developers could add elements
but not modify the elements you have already created. To share a collection this way,
assign the collection object itself to the accessible security policy. The collection has
references to many other objects, which can be associated with other security policies.
Everyone has the references, but they get errors if they try to access objects with non-
readable security policies. You might also choose to share an application symbol
dictionary, so that other developers can put objects in it, without making the objects
themselves public.
GemTalk Systems 189

Planning Security Policies for User Access GemStone/S 64 Bit 3.6 Programming Guide
Figure 9.7 Security Policies Required for User Access to Application Objects

���������	
���
�����%
+%���,��������-�.��
��������
����!�/���,������		-���	��
����!�.��
�,���������	
.��	�,�*���

���������	
���
������
+%���,��������-�.��
��������
����!�/���,
����!�.��
�,���������	
.��	�,�/����������

���������	
���
������
+%���,��������-�.��
��������
����!�/���,���������	
����!�.��
�,������		
.��	�,�*���

���������	
���
������
+%���,��������-�.��
��������
����!�/���,���������	-������		
����!�.��
�,���	��
.��	�,�*���

���������	
���
������
+%���,��������-�.��
��������
����!�/���,�*���
����!�.��
�,���������	
.��	�,�*���

���������	
���
�������
+%���,��������-�/����������
.��	�,�/���

��	�����
�1����

��	������5
���

��	�����	��6���
��

!���
���
��	�����!��
���

����'��

��	�����0�!	����
����

��	�����!��
���

��	�����	��)���

��	���2���
���
���

��	���0�!	����
�	���

��	���

Making the Application Accessible for Testing
Testers need to be able to alternate between two distinct levels of access:

Full access. As members of the development team, they need read access to all the
classes and methods in the application, including the private methods. Testers also
need write access to their test data.

User-level access. They need a way to duplicate the user environment, or more
likely several environments created for different user groups.
190 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Planning Security Policies for User Access
This can be done by setting up a tester group and one or more sample user groups during
the development phase. For testing the user environment, the application must already be
set up for multi-user production use, as explained in the following section.

Moving the Application into a Production Environment
When you have created the application, it is time to set it up for a multi-user environment.
A GemStone application is developed in the repository, so all you have to do to install an
application is to give other users access to it. This means implementing the rest of your
application design, in roughly the reverse order of the planning exercise. To give other
users authorization to use the objects in the application:

1. Create the security policies.

2. Create the necessary user groups specified in up-front development, if they don’t exist.

3. Assign the required owner, world, and group authorizations to the security policies.

4. Assign testers to the user groups and complete multi-user testing.

5. Assign any end users that need group authorization to the user groups.

6. Assign the application’s objects to the security policies you created.

You also have to give users a reference to the application so they can find it. An application
dictionary is usually created with references to the application objects, including its
security policies. A reference to this dictionary usually must appear in the users’ symbol
lists. For more information on the use of symbol dictionaries, see the discussion of symbol
resolution and object sharing in Chapter 3‚ “Resolving Names and Sharing Objects”.

Security Policy Assignment for User-created Objects
Because security policy assignment is on an object-by-object basis, it is important to know
how objects are assigned. When the objects are being created by end users of an
application, as in this example, you may want to partially or fully automate the process of
security policy assignment. Depending on the needs of the local site, you can implement
various mechanisms to ensure data security, prevent accidental damage to existing data,
or simply avoid misplaced data.

Assign a Specified Security Policy to the User Account
Set up users with the proper security policy by default. This is a simple way to assure that
someone who creates objects in a single security policy doesn’t misplace them. To make it
impossible to change security policies, rather than just unlikely, you also have to close
write access for group and world to all the other security policies.

This solution would work for the Sales and Payroll groups in the example (Figure 9.7).
They need read access to several security policies, but they only write in one.

The drawback of this solution is that the user can only use one security policy.

Develop the Application to Create the Data Objects
Your best choice is to create objects in the correct security policy, using the
GsObjectSecurityPolicy>>setCurrentWhile: method. With this method, the
application stores data objects in the proper security policies. This provides the most
protection. Besides guaranteeing that the objects end up in the proper security policy, this
prevents users from accidentally modifying objects they have created. It also prevents
GemTalk Systems 191

Privileged Protocol for Class GsObjectSecurityPolicy GemStone/S 64 Bit 3.6 Programming Guide
them from reading the data that other users enter, even when everyone is creating
instances of the same classes.

9.6 Privileged Protocol for Class GsObjectSecurityPolicy
Privileges stand apart from the security policy and authorization mechanism. Privileges are
associated with certain operations: they are a means of stating that, ordinarily, only the
DataCurator or SystemUser is to perform these privileged operations. The DataCurator
can assign privileges to other users at his or her discretion, and then those users can also
perform the operations specified by the particular privilege.

NOTE
Privileges are more powerful than security policy authorization. Although the
owner of a security policy can always use read/write authorization protocol to
restrict access to objects protected by a security policy, the DataCurator can
override that protection by sending privileged messages to change the
authorization scheme.

The following message to GsObjectSecurityPolicy always requires special privileges:
new (class method)
newInRepository: (class method)

You can always send the following messages to the security policies you own, but you
must have special privileges to send them to other security policies:

group:authorization:

ownerAuthorization:

worldAuthorization:

For changing privileges, UserProfile defines two messages that also work in terms of the
privilege categories described above. The message addPrivilege: aPrivString takes a
number of strings as its argument, including the following:

'DefaultObjectSecurityPolicy'

'ObjectSecurityPolicyCreation'

'ObjectSecurityPolicyProtection'

For a full list of privileges, see the System Administration Guide chapter on User
Management.

To add security policy creation privileges to your UserProfile, for example, you might do
this:
System myUserProfile addPrivilege: 'ObjectSecurityPolicyCreation'.

This gives you the ability to execute GsObjectSecurityPolicy new.

A similar message, privileges:, takes an array of privilege description strings as its
argument. The following example adds privileges for security policy creation and
password changes:
System myUserProfile privileges:

#('ObjectSecurityPolicyCreation' 'UserPassword')
192 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Privileged Protocol for Class GsObjectSecurityPolicy
To withdraw a privilege, send the message deletePrivilege: aPrivString. As in
preceding examples, the argument is a string naming one of the privilege categories. For
example:
System myUserProfile deletePrivilege:

'ObjectSecurityPolicyCreation'

Because UserProfile privilege information is typically protected by a security policy that
only the data curator can modify, you might not be able to change privileges yourself. You
must have write authorization to the DataCuratorObjectSecurityPolicy, or be a member of
DataCuratorGroup, in order to do so.

For direction and information about configuring user accounts, adding user accounts and
assigning security policies to those accounts, and checking authorization for user accounts,
see the System Administration Guide.
GemTalk Systems 193

Privileged Protocol for Class GsObjectSecurityPolicy GemStone/S 64 Bit 3.6 Programming Guide
194 GemTalk Systems

Chapter

10 Class versions and
Instance Migration
Although you designed your schema with care and thought, after using it for a while you
will probably find a few things you would like to improve. Furthermore, even if your
design was perfect, real-world changes usually require changes to the schema sooner or
later.

This chapter discusses the mechanisms GemStone Smalltalk provides to allow you to
make changes in your schema and manage the migration of existing objects to the new
schema.

Versions of Classes (page 195)
defines the concept of a class version and describes two different approaches you can
take to specify one class as a version of another.

ClassHistory (page 197)
describes the GemStone Smalltalk class that encapsulates the notion of class
versioning.

Migrating Objects (page 199)
explains how to migrate either certain instances, or all of them, from one version of a
class to another while retaining the data that these instances hold.

10.1 Versions of Classes
In order to create instances of a class, the class must be invariant, and invariant classes
cannot be modified, except in some specific ways. While you defined your schema to be as
complete as you could at the time you created the classes, inevitably further changes are
needed. You may now have instances of invariant classes populating your database and a
need to modify your schema by redefining certain of these classes.

To support this schema modification, GemStone allows you to define different versions of
classes. Every class in GemStone has a class history—an object that maintains a list of all
versions of the class—and every class is listed in at least one class history, the class history
for the class itself. You can define as many different versions of a class as required, and
declare that the different versions belong to the same class history. You can migrate some
GemTalk Systems 195

Versions of Classes GemStone/S 64 Bit 3.6 Programming Guide
or all instances of one version of a class to another version when you need to. The values
of the instance variables of the migrating instances are retained if you have defined the new
version to do so.

Defining a New Version
In GemStone Smalltalk classes have versions. Each version is a unique and independent
class object, but the versions are related to each other through a common class history. The
classes need not share a similar structure, nor even a similar implementation. The classes
need not even share a name, although it is less confusing if they do, or if you establish and
adhere to some naming convention.

If you define a new class in a SymbolDictionary that already contains an existing class with
the same name, it automatically becomes a new version of the previously existing class.
This is the most common way of creating new class versions. Instances that predate the
creation of the new version remain unchanged, and continue to access the old class’s
methods, although tools such as GemBuilder may provide options to automatically
migrate instances to the new class. Instances created after the redefinition have the new
class’s structure and access to the new class’s methods.

When you define a class, the class creation protocol includes an option to specify the
existing class of which the new class is a version. See the keyword newVersionOf:.

New Versions and Subclasses
When you create a new version of a class—for example, Animal—subclasses of the old
version of Animal still point to the old version of Animal as their superclass (unless you
are using a tool which provides the option to automatically version and recompile
subclasses). If you wish these classes to become subclasses of the new version, you need to
recompile the subclass definitions to make new versions of the subclasses, specifying the
new version of Animal as their superclass.

One way to do this is to file in the subclasses of Animal after making the new version of
Animal (assuming the new version of the superclass has the same name).

New Versions and References in Methods
When you create a new version of a class (such as Animal) you typically want your
existing code to use the new version rather than the old version. That is, without being
recompiled, existing methods containing code like the following should create an instance
of the new version rather than of the old version of Animal class:

pet := Animal new.

As long as the new class version replaces an existing class in the same SymbolDictionary,
then references from existing methods will be automatically updated to the new class
version.

This works because a compiled method does not directly reference a global (e.g., the class
Animal), but references a SymbolAssociation in a SymbolDictionary. When you originally
compile the method, it resolves the name using an expression similar to the following:

System myUserProfile resolveSymbol: #theClassName

The compiled method includes the resulting SymbolAssociation, whose key is the name of
the global and whose value is the class (or other object). The value can be updated at any
time, for example when you create a new version of a class.
196 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide ClassHistory
This tiny performance penalty is what allows global variables to vary. If you have a global
that you know will be constant, then you can reference the value directly from a compiled
method by making the SymbolAssociation invariant before compiling the method.

While the SymbolAssociation is updated with the new value by versioning the class within
the same SymbolDictionary, keep in mind that under some circumstances you may have a
SymbolAssociation that does not reference the latest version, or the version you expect. If
you have a newer class with the same name in a different SymbolDictionary, or if you
delete and recreate the class, the SymbolAssociation will continue to point to the older
class.

Class Variables and Class Instance Variables
Adding a Class Variable does not require a new version of your class, but adding a class
instance variable does.

When you create a new version of a class, the values in any Class variables or Class
Instances variables in the old class are referenced by the new class as well. By default, all
versions of a class refer to the same objects referenced from Class or Class instance
variables.

Class versioning and Class options
When you define a class with the same name and variables, but with a different set of
options (passed in via the options: keyword to the class creation method), it does not
always need to create a new version of the class.

See page 35 for a description of the class options and how they can be used for specific class
behavior.

Class options are automatically inherited by new version or by an updated version, unless
the first element in options: array is #noInheritOptions.

If the new definition includes #instancesNonPersistent, then the existing class will
be modified to add #instancesNonPersistent.

If the new definition includes #subclassesDisallowed, #disallowGciStore,
#traverseByCallback, #dbTransient, or #instancesInvariant, and if
#noInheritOptions is not the first element, the options will not be removed.

To remove an unwanted option, you may need to include #noInheritOptions as the
first element of the options: array.

10.2 ClassHistory
In GemStone Smalltalk, every class has a class history, represented by the system as an
instance of the class ClassHistory. A class history is an array of classes that are meant to be
different versions of each other. While they often have the same class name, this is not a
requirement; you can rename classes as well as change their structure.

Defining a Class as a new version of an existing Class
When you define a new class in the same symbol dictionary as an existing class with the
same name, it is by default created as the latest version of the existing class and shares its
class history.
GemTalk Systems 197

ClassHistory GemStone/S 64 Bit 3.6 Programming Guide
When you define a new class by a name that is new to a symbol dictionary, the class is by
default created with a unique class history. If you use a class creation message that includes
the keyword newVersionOf:, you can specify an existing class whose history you wish
the new class to share. This is useful if you want to create a version of a class with a
different name or in a different symbol dictionary. If the new class version has the same
name and is in the same symbol dictionary, it is not necessary to use newVersionOf:,
since the new class will become a version of the existing class automatically.

For example, suppose your existing class Animal was defined like this:

Example 10.1

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'favoriteFood' 'predator')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

Animal compileMissingAccessingMethods.

Example 10.2 creates a class named NewAnimal and specifies that the class shares the class
history used by the existing class Animal.

Example 10.2

Object subclass: 'NewAnimal'
instVarNames: #('name' 'diet' 'predator' 'species')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals
newVersionOf: Animal
description: nil
options: #().

NewAnimal compileMissingAccessingMethods.

If you wish to define a new class Animal with its own unique class history—in other words,
the new class Animal is not a version of the old class Animal—you can add it to a different
symbol dictionary, and specify the argument nil to the keyword newVersionOf:.
However, this can easily create confusion, and make it difficult to diagnose problems. It is
only recommended when the two symbol dictionaries will not normally both be loaded
and in use at the same time.

If you try to define a new class with the same name as an existing class that you did not
create, you will most likely get an error, because you are trying to modify the class history
of that class — an object which you are probably not permitted to modify.
198 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Migrating Objects
Accessing a Class History
You can access the class history of a given class by sending the message classHistory to
the class. For example, the following expression returns the class history of the class
Employee:

Animal classHistory

This is a collection that includes all older versions of the class, in order, with the most recent
version being the last one on the collection. For example:

Animal classHistory last == NewAnimal
true
Animal classHistory first == Animal
true

In the usual case, in which all classes in the class history have the same name, the compiler
will resolve that name as the last one in the classHistory.

In some cases (such as in GemBuilder for Smalltalk) a class with a class history size that is
larger than one these will be displayed with the position, for example:

Animal [1]
NewAnimal [2]

Assigning to a Class History
You can assign a class to a class history by sending the message addNewVersion: to the
class whose class history you wish to amend; the argument to this message is the class
whose history is to be reassigned.

For example, suppose that we created NewAnimal using the regular class creation
protocol, and did not use the method with the keyword newVersionOf:. To later specify
that it is a new version of Animal, execute the following expression:

Animal addNewVersion: NewAnimal

10.3 Migrating Objects
Once you have defined a new version of your class, you may want to migrate your existing
instances from the old class version to the new version. Migration in GemStone Smalltalk
is a flexible, configurable operation.

Instances of any class can migrate to any other. The two classes need not be similarly
named, or, indeed, have much else in common, although it will usually make more
sense if they represent the same conceptual object.

Not all instances of a class need to migrate at the same time; you can migrate a single
instance, a specific sets of instances, or all instances of the original class. Other
instances need never migrate. However, instances that are versions of these older
classes will not understand new methods that are added to the new version of the
class, and may require special consideration during some GemStone upgrades, if you
manage code using fileout, or if you use passivation.

During migration, the value of instance variables in the new instance are initialized
from values in the old instance. The mapping from the old instance variables to the
new instance variables is under your control, and can be arbitrarily complex. A
GemTalk Systems 199

Migrating Objects GemStone/S 64 Bit 3.6 Programming Guide
default mapping mechanism is provided for simple migrations, such as when adding
new instance variables.

Migration Destinations
You can establish the default destination class for migration, for use in later instance
migration operations. To do so, send a message of the form:

OldClass migrateTo: NewClass

This configures the old class so it knows to migrate its instances to become instances of the
new class. Migration does not occur as a result of sending the above message; this only sets
the destination of migration.

It is not necessary to set a migration destination ahead of time; other protocol will allow
you to specify the migration class for a specific instance migration. If you use methods that
includes a specific migration destination class, the default destination is ignored.

Once you have set the migration destination, you can migrate a single specific instance,
using a message of the form:

anInstanceOfOldClass migrate

Provided the object is an instance of a class for which a migration destination has been
defined, the object becomes an instance of the new class. If no destination has been defined,
no change occurs.

The following series of expressions, for example, creates a new instance of Animal, sets
Animal’s migration destination to be NewAnimal, and then causes the new instance of
Animal to become an instance of NewAnimal.

Example 10.3

| aLemming |
aLemming := Animal new.
Animal migrateTo: NewAnimal.
aLemming migrate.

Other instances of Animal remain unchanged, until such time as they receive the message
to migrate.

Bypassing the Migration Destination
You can bypass the migration destination, or migrate instances of classes for which no
migration destination has been specified. To do so, specify the destination directly in the
message that performs the migration.

OldClass migrateInstances: setOfInstancesOfOldClass to: NewClass
Migrate the specific instances in setOfInstancesOfOldClass, which are instances of
OldClass, to become instances of NewClass. Ignores any existing migration
destination, and does not set the default migration destination.

OldClass migrateInstancesTo: NewClass
Migrate all instances of OldClass to become instances of NewClass. Ignores any
existing migration destination, and does not set the default migration destination.
200 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Migrating Objects
Example 10.4 uses migrateInstances:to: to migrate all instances of all versions of a
class, except the latest version, to the latest version.

For more on listing instances, see “Finding Instances” on page 205.

Example 10.4

| animalHist allAnimals |
animalHist := Animal classHistory.
allAnimals := SystemRepository listInstances: animalHist.
1 to: animalHist size-1 do: [:index |

(animalHist at: index)
migrateInstances:(allAnimals at: index)
to: Animal currentVersion].

When you migrate a set of instances, it is possible that not all instances in the set can be
successfully migrated.

The migration methods migrateInstancesTo: and migrateInstances:to: return
an array of collections:

1. The set of objects for which the current user does not have read permission.

2. The set of objects for which the current user has read permission but not write
permission.

3. The set of objects that could not be migrated due to index incompatibilities.

4. The set of objects whose class was not identical to the receiver (presumably,
incorrectly gathered instances) and therefore were not migrated; this will always
be empty if using migrateInstancesTo:.

5. The set of object that failed migration by signalling a MigrationError. This error
may be signalled, for example, by customized migration code that encounters an
object that cannot be migrated.

If all these collections are empty, all requested migrations have occurred.

Migrating Instances that Participate in an Index
If an instance participates in an index (for example, because it is part of the path on which
that index was created), then the indexing structure can, under certain circumstances,
cause migration to fail. Three scenarios are possible:

Migration succeeds. In this case, the indexing structure you have made remains
intact. Commit your transaction.

GemStone examines the structures of the existing version of the class and the version
to which you are trying to migrate, and determines that migration is incompatible
with the indexing structure. In this case, GemStone raises an error notifying you of the
problem, and migration does not occur.
GemTalk Systems 201

Migrating Objects GemStone/S 64 Bit 3.6 Programming Guide
You can commit your transaction, if you have done other meaningful work since you
last committed, and then follow these steps:

1. Remove the index in which the instance participates.

2. Migrate the instance.

3. Modify the indexing code as appropriate for the new class version and re-create
the index.

4. Commit the transaction.

In the final case, GemStone fails to determine that migration is incompatible with the
indexing structure, and so migration occurs and the indexing structure is corrupted.
In this case, GemStone raises an error notifying you of the problem, and you will not
be permitted to commit the transaction. Abort the transaction and then follow the
steps explained above.

Default Instance Variable Mappings
The purpose of migration is to retain the data contained in the old object, while updating
the object to a possibly entirely new structure.

In most cases, it makes sense for the object contents at particular instance variable names
to have the same values as before the migration, and this is the default behavior.

There are cases in which you might want to change the use of a particular instance variable
name, and relocate the data to a new instance variable slot. This is described under
“Customized Instance Variable Mappings” on page 203.

The default migration behavior:

If the new class has an instance variable with the same name as the old class, data at
that instance variable in the instance of the old class is moved to the instance variable
in the migrated instance.

If the new class has an instance variable that was not present in the old class, the
migrated instance has that instance variable set to nil

If the new class does not have an instance variable that was present in the old class,
the value at that instance variable is dereferenced. The data it represents is no longer
accessible from this object

Values of dynamic instance variables in the instance of the old class remain as
dynamic instance variables in the migrated instance.

Suppose, for example, you create two instances of class Animal and initialize their instance
variables as shown in Example 10.5.
202 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Migrating Objects
Example 10.5

| aLemming |
aLemming := Animal new

name: 'Leopold';
favoriteFood: 'grass';
habitat: 'tundra';
predator: 'owl';
yourself.

UserGlobals at: #aLemming put: aLemming.

You then decide that class Animal needs an additional instance variable, predator. You
create the class called NewAnimal (as described in Example 10.2, with four instance
variables: name, favoriteFood, habitat, and predator. You then migrate aLemming.

Example 10.6 performs the migration, and then shows the results of printing the values of
the instance variables.

Example 10.6

Animal migrateInstances: { aLemming } to: NewAnimal.

aLemming name.
Leopold

aLemming predator.
owl

aLemming diet.
nil

Customized Instance Variable Mappings
To initialize an instance variable with the value of a variable that has a different name, you
must provide an explicit mapping from the instance variable names of the older class to the
instance variable names of the migration destination.

This can be done by overriding the implementation of the method
migrateFrom:instVarMap: in the destination class.

When you migrate an object, migrateFrom:instVarMap: is sent to the new instance
with the argument of the old instance. The instVarMap: argument is a mapping structure
that can be further customized, but is usually left at the default.

In our example, the class Animal has the instance variables: habitat, name,
favoriteFood, and predator, and NewAnimal has variables: name, diet,
predator, and species.

When instances of Animal migrate to NewAnimal, the value of diet ought to be initialized
with the value presently held in favoriteFood.

Also, we will keep habitat, by making it a dynamic instance variable on the new instance.
GemTalk Systems 203

Migrating Objects GemStone/S 64 Bit 3.6 Programming Guide
To accomplish this, NewAnimal implements migrateFrom:instVarMap:, as in
Example 10.7.

Example 10.7 NewAnimal class >> instVarMappingTo:

method NewAnimal
migrateFrom: anOldInstance instVarMap: aMap

super migrateFrom: anOldInstance instVarMap: aMap.
self diet: anOldInstance favoriteFood.
self dynamicInstVarAt: #habitat put: anOldInstance habitat.

%

Animal migrationDestination: NewAnimal.
aLemming migrate
%
a NewAnimal
 name Leopold
 diet grass
 predator owl
 species nil
 t1 habitat
 t2 tundra

Transforming Variable Values
Another kind of customization is required when the format of data changes. For example,
suppose that you have a class named Point, which defines two instance variables x and y.
These instance variables define the position of the point in Cartesian two-dimensional
coordinate space.

Suppose that you define a class named NewPoint to use polar coordinates. The class has
two instance variables named radius and angle. Obviously the default mapping strategy is
not going to be helpful here; migrating an instance of Point to become an instance of
NewPoint loses its data (the actual position) completely. Nor is it correct to map x to radius
and y to angle. Instead, what is needed is a method that implements the appropriate
trigonometric function to transform the point to its appropriate position in polar
coordinate space.

In this case, the method to override is migrateFrom:instVarMap:, which you
implement as an instance method of the class NewPoint. Then, when you request an
instance of Point to migrate to an instance of NewPoint, the migration code that calls
migrateFrom:instVarMap: executes the method in NewPoint instead of in Object.
204 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Migrating Objects
Example 10.8 Point >> migrateFrom:instVarMap:

Object subclass: #OldPoint
instVarNames: #(x y)
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

OldPoint compileMissingAccessingMethods.

Object subclass: #Point
instVarNames: #(radius angle)
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

Point compileMissingAccessingMethods.

method: Point
migrateFrom: oldPoint instVarMap: aMap

| x y |
super migrateFrom: oldPoint instVarMap: aMap.
x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (y/x) asFloat arcTan.
^self

OldPoint migrationDestination: Point.
(OldPoint new x: 123; y: 456) migrate.
%
a Point
 radius 472.2975756871932
 angle 1.307329785759979

If you may be migrating instances from a completely separate version of class Point, that
does not have the instance variables x and y, nor use the Cartesian coordinate system, then
you should add behavior to the old class to make it polymorphic to the new class.

Finding Instances
Preparing the set of objects that needs to be migrated can be done in a number of ways. You
may, for example, have application collections of the instances that need to be migrated.

Alternatively, there are several methods available to allow you to find instances of one or
more classes.

Finding instances requires scanning the entire repository, which can take significant time
for very large repositories. Likewise, in a large repository there may be many instances in
GemTalk Systems 205

Migrating Objects GemStone/S 64 Bit 3.6 Programming Guide
the result set, potentially more than can fit into memory. The choice of methods to use to
locate objects for migration depends on the size of the repository and the number of
instances.

The following tables list the methods and some considerations for use. Other methods are
available; see the image for details.

Tuning migration and managing memory
Your session is configured to have a certain amount of object memory, defined by the
configuration parameter GEM_TEMPOBJ_CACHE_SIZE. The collection containing the
instances you are going to migrate must fit into memory, as well as the instances
themselves. If the number of instances you are going to migrate is large, you will likely not
have enough memory to hold everything.

For a large migration, you will want to:

Increase the amount of temporary object memory by tuning
GEM_TEMPOBJ_CACHE_SIZE. See the System Administration Guide for details.

Commit your transaction after migrating some number of instances. This allows that
memory to be reused.

Use GsBitmaps to hold the collections of objects to be migrated, and bring them into
memory (fault them in) in manageable chunks. See Example 10.10.

Table 10.9 Finding instances

Expression Return value Utility

SystemRepository
listInstances:
anArrayOfClasses

SystemRepository
fastListInstances:
anArrayOfClasses

Returns an Array of Arrays;
each contains all instances
whose class is equal to the
corresponding element in
anArrayOfClasses.
anArrayOfClasses may
include multiple classes
with the same class name,
such as versions of the
same class.

Performs one repository
scan finding instances of all
the specified classes. The
result set objects are in-
memory.
Both temporary instances
and persistent instances are
included in the results.

SystemRepository
allInstances:
classOrCollOfClasses

SystemRepository
fastAllInstances:
classOrCollOfClasses

Returns an instance of
GsBitmap, or a set of
class/GsBitmap instances
corresponding to the
elements of the argument.

Performs one repository
scan finding instances of all
the specified classes.
Only committed objects are
included in the results.
GsBitmap and its content
objects do not consume
object memory, but you
will still need to bring each
instance into memory in
order to migrate.
206 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Migrating Objects
When finding instances, consider the time it will take to scan your repository.
Repository scans can be tuned; a fast variant may be more appropriate, or a reduced-
impact scans that can run in the background.

Dividing the work between multiple gem sessions allows migrate to complete more
quickly.

Migration generates shadowed objects, and large migrations should tune reclaim to
make sure these shadow objects do not cause the repository to grow excessively. See
the System Administration Guide for how to manage reclaim.

In some cases, migrating in page order can provide benefit. See Example 10.11 below.

Using GsBitmaps to manage memory for large result sets
For large result sets, it may be helpful to use Repository >> allInstances:, which
returns one or more instances of GsBitmap. A GsBitmap uses heap memory, not object
memory, and the result can be arbitrarily large.

Once you have the GsBitmap or GsBitmaps, you may enumerate them using do:, or
retrieve objects from them using methods such as removeCount:, and perform the
migration. For more on how to use GsBitmaps, see the section “GsBitmap” on page 64.

While a GsBitmap cannot be committed, it can be saved to a file and reloaded later.
However, note that if any of the objects become dereferenced in the period after this file is
written, and becomes garbage collected, this cannot be detected. When you read in the
GsBitmap file, the oopNumber may reference an entirely different object. It is important to
read and process the file as soon as possible after it is created.

Tuning system resource use when finding instances
Repository-wide scans such as the ones described above use a multi-threaded scan that can
be tuned to use more or less resources of the system, thereby impacting performance of
anything else running on this system to a greater or lesser degree.

The regular methods use a conservative amount of system resources, while the "fast"
variants allow the scan to complete faster and use a greater percentage of system resources.
If you are performing a scan in an offline or single-user system, the fast variants may be
more appropriate. It is also possible to tune the scan to use fewer resources.

For details on tuning the multi-threaded scan, see the System Administration Guide.

Committing the migration in chunks
You will, of course, always commit or abort immediately before starting the migration and
commit at the end, to ensure all your migrations are committed successfully.

For larger migrations, you will likely need to perform periodic commits to avoid running
out of memory, since the migrated objects must be kept in memory until they are
committed.

Example 10.10 brings instances into memory and commits in chunks of 10000 objects. The
appropriate chunk size will depend on your memory and result set size; much larger
chunks may be more appropriate.
GemTalk Systems 207

Migrating Objects GemStone/S 64 Bit 3.6 Programming Guide
Example 10.10 Migration using GsBitmap in chunks

| searchResults startIndex limit |
searchResults := (SystemRepository fastAllInstances: { Animal }).
searchResults do: [:entry | | bm |

bm := entry last.
[bm isEmpty] whileFalse:

[| chunk |
chunk := bm removeCount: 10000.
entry first migrateInstances: chunk to: NewAnimal.
System commitTransaction

ifFalse: [self error: 'commit failed'].
]

]

Migrating instances in Page Order
For the most efficient migration of large sets of objects of multiple classes, you should
perform the migration in page order—the same order as the objects are stored on disk. This
allows multiple objects of several different classes on the same page in the repository to be
migrated at the same time.

If the repository is in active use, the objects will move from page to page (reclaim moves
the live objects off of a page, in order to reclaim the page). If there has been movement such
as this, than the page-order efficiency will be lost.

Getting the collection of objects to migrate in page order uses GsBitmap file protocol:
GsBitMap >> writeToFileInPageOrder: aFileName
GsBitMap >> readFromFile: aFileName withLimit: int startingAt: startIndex

For example, to migrate all instances of Animal in page order, in chunks of 2000;

Example 10.11 Page order migration

| searchResults bm startIndex limit |
searchResults := (SystemRepository allInstances: { Animal })
first.
searchResults last writeToFileInPageOrder: 'animal_instances.bm'.
limit := bm size.
startIndex := 1.
Animal migrationDestination: NewAnimal.
[startIndex <= limit] whileTrue:

[bm := GsBitmap new.
(bm readFromFile: 'animal_instances.bm' withLimit: 2000

startingAt: startIndex).
bm do: [:ea | ea migrate].
startIndex := startIndex + 2000.
System commitTransaction

ifFalse: [self error: 'commit failed'].
].
208 GemTalk Systems

Chapter

11 Encryption and
Validation
Many modern systems require encryption and authentication, to ensure that sensitive
material remains private, and that no questions can arise about where the material
originated. OpenSSL is a robust, widely used toolkit for the Transport Layer Security
(TLS) and Secure Sockets Layer (SSL) protocols, and contains support for general-purpose
cryptography.

The GemStone distribution includes OpenSSL executables and libraries, which are used
internally within GemStone. For many OpenSSL functions, you may use your own
OpenSSL installation if you prefer.

This chapter describes the tools and features that GemStone provides that make working
with SSL keys easier.

Overview for SSL keys and certificates (page 210)
How to create example keys, and the GemStone classes that encapsulated keys and
certificates.

Checksums and HMAC (page 212)
Ways to verifying the consistency of text.

Symmetric-Key Encryption (page 213)
Encrypting text

Digital Signatures (page 214)
Digitally signing text.

Digital Envelopes (page 215)
How to create and use digital envelopes to transmit information with both encryption
and signing.
GemTalk Systems 209

Overview for SSL keys and certificates GemStone/S 64 Bit 3.6 Programming Guide
11.1 Overview for SSL keys and certificates
GemStone provides the OpenSSL executable and shared libraries, which can be used to
generate keys and support the GemStone features that authenticate SSL.

A full explanation of SSL key algorithms and the choice of which to use, and the details of
generating keys, is outside the scope of this document, and SSL and security algorithms are
under active development. Simple examples are provided here to illustrate the use of the
tools. You should review your application security requirements with the latest security
recommendations and ensure that your security is sufficiently strong. GemStone provides
access to the OpenSSL security tools; you are responsible for using these tools correctly
such that you are using encryption and authentication that is appropriate for your needs.

The openssl executable enables you to generate a private key. A public key can always
be extracted from a private key. The following lines will create a private key and extract the
public key, providing the public/private key pairs used in the examples.

Example 11.1 Generate RSA public and private keys

unix> $GEMSTONE/bin/openssl genrsa -out privKey.pem 2048
unix> $GEMSTONE/bin/openssl rsa -in privKey.pem -pubout -out pubKey.pem

An X509 certificate contains a public SSL key as well as validation information, so the
public key can be extracted from an X509 certificate file.

GsTlsCredential
The classes GsTlsCredential, with subclasses GsTlsPrivateKey, GsTlsPublicKey, and
GsX509Certificate, encapsulate TLS (SSL) private keys, public keys, and X509 certificates,
respectively. Instances contain a hidden reference to C pointer to the OpenSSL
representation of the TLS object.

Instances of GsTlsPublicKey and GsTlsPrivateKey are used for digital signing and digital
envelopes, as well as in X509-Secured external sessions.

Creating a GsTlsCredential
Instances are created by reading the PEM from a file or String. The class methods

newFromPemFile:
newFromPemString:

Private keys, which may have an optional (but generally recommended) passphrase, have
additional methods:

GsTlsPrivateKey >> newFromPemFile:withPassphrase:
GsTlsPrivateKey >> newFromPemFile:withPassphraseFile:
GsTlsPrivateKey >> newFromPemString::withPassphrase:
GsTlsPrivateKey >> newFromPemString::withPassphraseFile:

For applications that are not limited to internal, secure networks,
security is a critical. The usage in these examples is NOT sufficient
to provide complete security.
210 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Overview for SSL keys and certificates
These methods can used to instantiate subclasses of GsTlsCredential from string or disk file
arguments. For example,

GsTlsPublicKey newFromPemFile: 'pubKey.pem'

You can get the public key from an instance of GsTlsPrivateKey or GsX509Certificate by
sending asPublicKey.

Verifying public/private key pairs
The following method can be used to verify that two keys or X509 certificates form a
matching public/private key pair:

matches: anotherKey
Return true if the receiver and anotherKey match each other as a valid public key-
private key or certificate pair.

RSA and DSA key pairs match if both keys use the same modulus. Elliptic curve
key pairs match if both keys use the same curve and the same point on that curve.

Encryption and signing algorithms
OpenSSL 1.1.1 supports a number of encryption and signing algorithms. To query an
instance of a kind of GsTlsCredential for the algorithm, the following methods are
available:

algorithm
Answers a Symbol indicating the type of high-level PKI (Public Key Infrastructure)
algorithm the receiver uses. The high-level PKI algorithms supported are:

#RSA - Rivest-Shamir-Adleman
#DSA - Data Signature Algorithm
#EC - Elliptic Curve Cryptography

All high-level algorithms have various sub-types. Use the sslAlgorithm method
to obtain information about the specific PKI algorithm of the receiver.

sslAlgorithm
Answers a Symbol indicating the SSL type of PKI algorithm the receiver uses. See
the image comment for details.
GemTalk Systems 211

Checksums and HMAC GemStone/S 64 Bit 3.6 Programming Guide
11.2 Checksums and HMAC

Checksums
A checksum in the form of a LargeInteger or hexadecimal String can be computed for a
String or ByteArray, with the following algorithms:

The methods are of the form algorithmSum to compute the numeric checksum, and
asalgorithmString to compute the checksum as a string. See the image for the full list of
methods on classes ByteArray and CharacterCollection.

For example,
aByteArray md5Sum

aString asSha1String

HMAC (Hash-based message authentication codes)
For Strings or ByteArrays, a hash-based authentication code can be computed. This can be
returned as a LargeInteger or as a string of hex digits and letters.

The HMAC can be computed with:

HMAC uses a secret key, which must be a single byte object: a String, ByteArray or
Unicode7.

See the image for the full list of methods on classes ByteArray and Character.

For example:
'Fourscore and seven years ago our fathers brought forth on
this continent a new nation, conceived in liberty and dedicated
to the proposition that all men are created equal'

asMd5HmacWithKey: 'Lincoln'
%
198049353258401870159700056328212954477

'It was the best of times, it was the worst of times, it was
the age of wisdom, it was the age of foolishness, it was the
epoch of belief, it was the epoch of incredulity'

asSha3_224HmacStringWithKey: 'Dickens'
%
'a80a577c5ca6d29455a7ad168d92b91b59242907f9a254696e8675ce'

md5
sha1
sha256
sha512

sha3-224
sha3-256
sha3-384
sha3-256

md5
sha1
sha256
sha512

sha3-224
sha3-256
sha3-384
sha3-256
212 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Symmetric-Key Encryption
11.3 Symmetric-Key Encryption
Symmetric key encryption uses the same key to perform the encryption and the decryption
(in contrast to asymmetric-key encryption, which use separate public and private keys).

AES encryption/decryption (Advanced Encryption Standard) is a block symmetric cipher,
while ChaCha20 is a stream symmetric cipher.

AES supports several modes:

CBC is an acronym for cipher block chaining.

OCB is an acronym for Offset Cookbook Mode.

GCM is an acronym for Galois Counter Mode.

ChaCha20 supports:

Poly1305

OCB, GCM and Poly1305 are Authenticated Encryption with Associated Data (AEAD)
modes. AEAD provides data authenticity, confidentiality, and integrity.

AEAD also supports Additional Authenticated Data (AAD). AAD is not encrypted and
therefore not confidential, but its authenticity and integrity are guaranteed. If AAD is used,
it is not included in the encrypted payload, but must be provided in order to decrypt the
data. The additional data is optional, so the argument for this may be nil, in which cases it
is not needed for decryption.

Encryption
Both kinds of CharacterCollection (Strings and Unicode Strings) and ByteArrays can be
encrypted.

AlgorithmEncryptWithNNNBitKey: aKey salt: aSalt into: destObjOrNil
tag: aTag extraData: eData

AlgorithmDecryptWithNNNBitKey: aKey salt: aSalt into: destObjOrNil
tag: aTag extraData: eData

These methods encrypt or decrypt the receiver, respectively, using NNN bits and the
algorithm Algorithm.

Algorithm may be:

 aesOcb for AES-OCB.

 aesGcm for AES-GCM.

 chacha20Poly1305 for CHACHA20-Poly1305.

NNN may be:

 128. In this case aKey must be a ByteArray of size 16.

 192. In this case aKey must be a ByteArray of size 24.

 256. In this case aKey must be a ByteArray of size 32.

See the image for the specific methods that are available. The example below uses
aesOcbEncryptWith256BitKey:salt:into:tag:extraData: and
aesOcbDecryptWith256BitKey:salt:into:tag:extraData:
GemTalk Systems 213

Digital Signatures GemStone/S 64 Bit 3.6 Programming Guide
destObjOrNil must be nil or an instance of a byte object (that is not invariant). If
destObjOrNil is nil, the result of the operation will be placed into a new instance of
ByteArray (encryption) or String (decryption); otherwise the result will be placed into
the given byte object starting at offset 1.

The size of destObjOrNil will be modified to correctly contain all encrypted or
decrypted data, and may differ from the size of the receiver due to the automatic
addition or removal of padding by the cipher algorithm.

aSalt must be a ByteArray of size 12. aKey must be a ByteArray with the appropriate
size for the method. The same key and salt must be used to decrypt as were used to
encrypt.

During AEAD encryption, a tag is generated which is used during decryption to
ensure data integrity. The tag data will be stored into the aTag argument, which must
an instance of a byte object. The extra data eData must be nil or a byte object with a
character size of one (a ByteArray, String, or Unicode7) containing additional data to
be used in generating the tag value. On decryption, the tag argument aTag must be the
bytes generated during encryption, and the same bytes of eData must be provided, or
nil.

When encrypting a receiver that a character size greater than one, data is placed into
big-endian byte order before encryption. On decryption into a destObjOrNil object that
has a character size greater than one, data is converted to big-endian byte order after
decrypting.

Example
The following code encrypts the String in textToBeEncrypted using AES-OCB with 256
bits, which requires a 32-byte key.

| textToBeEncrypted myKey mySalt myTag encoded decoded |
textToBeEncrypted := 'In sooth, I know not why I am so sad'.
myKey := ByteArray withRandomBytes: 32.
mySalt := ByteArray withRandomBytes: 12.
myTag := ByteArray new.
encoded := textToBeEncrypted aesOcbEncryptWith256BitKey: myKey

salt: mySalt into: nil tag: myTag extraData: 'shakespeare'.
decoded := encoded aesOcbDecryptWith256BitKey: myKey

salt: mySalt into: nil tag: myTag extraData: 'shakespeare'.

11.4 Digital Signatures
Digitally signing allows data (in the form of a String or ByteArray) to be transmitted to a
remote destination, and the receiver to be certain that the data originated with the receiver
and has not been altered during transmission. Signing data does not encrypt it.

The originating server signs the data using their private key. The originating server’s
public key can be used by any recipient to verify the signature.
214 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Digital Envelopes
A number of signing algorithms are supported:
Ec (Elliptic Curve key)
Sha1AndDsa(PKCS1 padding)
Sha1AndRsaPss(PSS padding)
Sha1AndRsa(PKCS1 padding)
Sha256AndDsa(PKCS1 padding)
Sha256AndRsaPss (PSS padding)
Sha256AndRsa (PKCS1 padding)
Sha3_224AndRsaPss (PSS padding)
Sha3_224AndRsa (PKCS1 padding)

Sha3_256AndRsaPss (PSS padding)
Sha3_256AndRsa(PKCS1 padding)
Sha3_384AndRsaPss (PSS padding)
Sha3_384AndRsa(PKCS1 padding)
Sha3_512AndRsaPss (PSS padding)
Sha3_512AndRsa(PKCS1 padding
Sha512AndDsa(PKCS1 padding)
Sha512AndRsaPss (PSS padding)
Sha512AndRsa(PKCS1 padding)

Data is signed on the originating server with a method of the form:

signWithAlgorithmAndKeyTypePaddingPrivateKey: aGsTlsPrivateKey
into: aByteArrayOrNil
Hashes the receiver using Algorithm and signs the resulting hash with the KeyType
and Padding. Returns a ByteArray containing the resulting signature.

After transmission to the destination, it is verified with the matching method of the form:

verifyWithAlgorithmAndKeyTypePaddingPublicKey: aGsTlsPublicKey
signature: aByteArray
Hashes the receiver using Algorithm and verifies the resulting hash using the
KeyType and Padding. Returns true if the signature is correct.

For example,

signWithSha3_256AndRsaPssPrivateKey:into:
verifyWithSha3_256AndRsaPublicKey:signature:

signWithSha512AndDsaPrivateKey:into:
verifyWithSha512AndDsaPublicKey:signature:

11.5 Digital Envelopes
GsDigitalEnvelopes allow both encryption and signing in a single operation. A
GsDigitalEnvelope has the following security features:

Confidentiality -- the message is encrypted using a randomly generated AES
encryption session key and initialization vector. The session key is then encrypted
with the provided public encryption key.

Integrity -- authenticated encryption guarantees the cipher text has not been altered.
The digital signature guarantees the encrypted key, initialization vector and tag have
not been altered.

Authentication -- the receiver of the envelope is assured that the sender signed the
envelope with the private key matching the public key used to successfully verify the
signature.

NOTE: In order to guarantee authentication, the receiver must confirm that the public
verification key actually belongs to the sender. Normally this confirmation is done by
GemTalk Systems 215

Digital Envelopes GemStone/S 64 Bit 3.6 Programming Guide
verifying that an X509 certificate containing the sender's public key has been signed by a
reputable certificate authority.

GsDigitalEnvelope does NOT do this public key/certificate signature verification; it is up
to the envelope’s recipient to ensure that the public key or X509 certificate used to verify
the signature is trustworthy.

Creating the GsDigitalEnvelope
Digital Envelopes are created using the following methods:

GsDigitalEnvelope class >> encryptMessage: messageBytes
withPublicEncryptionKey: publicEncryptionKey
cipherId: cipherOpCode
withPrivateSigningKey: privateSigningKey

GsDigitalEnvelope class >> encryptMessage: messageBytes
withPublicEncryptionKeys: arrayOfPublicEncryptionKey
cipherId: cipherOpCode
withPrivateSigningKey: privateSigningKey

With the following arguments:

messageBytes

The message to be encrypted may be any kind of String or ByteArray. The name of
the class is stored in the envelope so when the envelope is opened, an instance of
the same kind of object is returned. Internally, if the message is a multi-byte String,
the string is converted into big-endian form, but this is transparent to the user. It is
an error if the class of object that was encrypted into the envelope is not resolvable
at the destination.

publicEncryptionKey and privateSigningKey

The message is encrypted using a public encryption key, and signed using a
private signing key, which should be distinct. The envelope can only be "opened"
(decrypted) by a recipient with the private key that matches the public encryption
key, and the public key that matches the private signing key.

Providing an array of multiple encryption keys allows a message to encrypted by
multiple public keys into multiple envelopes in one operation. Each envelope can
be opened by the single matching private key, and the public signing key.

The encryption and signing keys can be instances of GsTlsPublicKey or
GsX509Certificate. Encryptions keys must be RSA; signing keys may be DSA, RSA,
Ed25519, ECDSA, EC, or Ed448.

For signing algorithms that require a message digest algorithm, the SHA2-256
message digest is used. Signatures generated with RSA keys are padded using the
RSA_PKCS1_PSS_PADDING scheme.
216 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Digital Envelopes
cipherOpCode

The cipherId: argument accepts a numeric code specifying the AEAD
(Authenticated Encryption with Additional Data) of the cipher; legal values are in
the following table.

opCode Cipher Mode bits/Bytes

4 AES OCB 128/16

5 AES OCB 192/24

6 AES OCB 256/32

7 AES GCM 128/16

8 AES GCM 192/24

9 AES GCM 256/32

10 CHACHA20 Poly1305 256/32

Ciphers corresponding to 6 and 10 are considered the most secure and are
recommended for most applications.

Using the GsDigitalEnvelope
Support has also been added to allow GsDigitalEnvelopes to be passivated into string
form, for ease of transmission to the destination.

Once a GsDigitalEnvelope object is created, it can be converted to a passive object (String)
for transmission to the recipient. Decrypting ("opening") the given envelope requires the
private key matching the argument public key, and the public signing key matching the
private key used to sign the envelope. The recipient activates the GsDigitalEnvelope object,
and then opens it using the matching keys.

A detailed example is provided in class methods in GsDigitalEnvelope. The example
follows the following form, first creating the envelope and then passivating it on the
originating server, and activating and decryption on the destination.

On the originating server
origEnvelope := GsDigitalEnvelope

encryptMessage: messageText
withPublicKey: aGsTlsPubEncrKey
cipherId: 10
withPrivateSigningKey: aGsTlsPrivSigKey.

aStream := WriteStream on: String new.
PassiveObject passivate: origEnvelope toStream: aStream.
aPassiveString := aStream contents.
GemTalk Systems 217

Digital Envelopes GemStone/S 64 Bit 3.6 Programming Guide
On the destination server
destEnvelope := (PassiveObject newWithContents: aPassiveString)

activate.
decryptedMsg := destEnvelope

decryptWithPrivateKey: aGsTlsPrivEncrKey
withPublicVerificationKey: aGsTlsPubSigKey.
218 GemTalk Systems

Chapter

12 File I/O and Operating
System Access
A GemStone application will generally need to interact with services provided outside of
GemStone—for example, to work with text files, includes filing out and in source code
and object representations. Other capabilities that rely on the operating system include
communicating with other processes via sockets.

This chapter explains how to access and update disk files, execute operating system
operations, and communicate over sockets to other machines.

Accessing Files (page 219)
describes the protocol provided by class GsFile to open and close files, read their
contents, and write to them.

Executing Operating System Commands (page 227)
how to execute operating system commands from GemStone.

File In and File Out (page 229)
filing out your application source code.

PassiveObject (page 230)
describes the mechanism that GemStone provides for creating serialized versions of
the objects that represent your data.

Creating and Using Sockets (page 231)
describes the protocol provided by class GsSocket and GsSecureSocket to create
operating system sockets and exchange data between two independent interface
processes.

12.1 Accessing Files
The class GsFile provides the protocol to create and access operating system files. This
section provides a few examples of the more common operations for text files. For a
complete description of the functionality available, including the set of messages for
manipulating binary files, see the comment for the class GsFile in the image.

Instances of GsFile understand most protocol common to Streams.
GemTalk Systems 219

Accessing Files GemStone/S 64 Bit 3.6 Programming Guide
Specifying Files
Many of the methods in the class GsFile take as arguments a file specification, which is any
string that constitutes a legal file specification in the operating system under which
GemStone is running. Wildcard characters are legal in a file specification if they are legal
in the operating system.

Many of the methods in the class GsFile distinguish between files on the client versus the
server machine. In this context, the term client refers to the machine on which the interface
is executing, and the server refers to the machine on which the Gem is executing. (This may
not necessarily be the same machine on which the Stone is executing.) In the case of a linked
interface, the interface and the Gem execute as a single process, so the client machine and
the server machine are the same. In the case of an RPC interface, the interface and the Gem
are separate processes, and the client machine can be different from the server machine.

Specifying Files Using Environment Variables
If you supply an environment variable instead of a full path when using the methods
described in this chapter, the way in which the environment variable is expanded depends
upon whether the process is running on the client or the server machine.

If you are running a linked interface or you are using methods that create processes
on the server, the environment variables accessed by your GemStone Smalltalk
methods are those defined in the shell under which the Gem process is running.

If you are running an RPC interface and using methods that create processes on a
separate client machine, the environment variables are instead those defined by the
remote user account on the client machine on which the application process is
running.

Creating a File
You can create a new operating system file from GemStone Smalltalk using several class
methods for GsFile. Example 12.1 creates a file named aFileName in the current directory
on the client machine.

Example 12.1

| myFile myFilePath |
myFilePath := 'aFileName'.
myFile := GsFile openWrite: myFilePath.
"Here would go code to write data to the file"
myFile close

Example 12.2 creates a file named aFileName in the current directory on the server.

Example 12.2

myFile := GsFile openWriteOnServer: mySpec
"Here would go code to write data to the file"
myFile close
220 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Accessing Files
These methods return the instance of GsFile that was created, or nil if an error occurred.
Common errors include invalid paths or insufficient permissions. To determine the specific
problem, use the techniques described under “GsFile Errors” on page 226.

Opening a File
GsFile provides a wide variety of protocol to open files. For a complete set of methods, see
the image. These methods return the GsFile instance if successful, or nil if an error occurs

Table 12.1 GsFile Class Methods to Open Files

Method Description

openRead:

openReadCompressed:

Opens a file on the client machine for reading.

openWrite:

openWriteCompressed:

Opens a file on the client machine for writing.
Creates a new file if one does not exist, or
truncates an existing file to 0.

openAppend: Opens a file on the client machine for writing,
appending the new contents instead of
replacing the existing contents. Creates the file
if it does not exist.

openUpdate: Opens a file on the client machine for both
reading and writing. Creates the file if it does
not exist.

openReadOnServer:

openReadOnServerCompressed:

Opens a file on the server for reading.

openWriteOnServer:

openWriteOnServerCompressed:

Opens a file on the server for writing. Creates a
new file if one does not exist, or truncates an
existing file to 0.

openAppendOnServer: Opens a file on the server for reading,
appending the new contents instead of
replacing the existing contents. Creates the file
if it does not exist.

openUpdateOnServer: Opens a file on the server for both reading and
writing. Creates the file if it does not exist.

.

Closing a File or Files
The following methods close the current instance, or multiple open files:

Table 12.2 GsFile Method Summary

Method Description

GsFile >> close Closes the receiver.

GsFile class >> closeAll Closes all open GsFile instances on the client
machine except stdin, stdout, and stderr.
GemTalk Systems 221

Accessing Files GemStone/S 64 Bit 3.6 Programming Guide
Your operating system limits the number of files a process can concurrently access. Using
GemStone classes to open, read or write, and close files does not lift your application’s
responsibility for closing open files. Make sure you write and close files as soon as possible.

Writing to a File
After you have opened a file for writing, you can add new contents to it in several ways.

For example, the instance methods addAll: and nextPutAll: take strings as arguments
and write the string to the end of the file specified by the receiver. The method add: takes
a single character as argument and writes the character to the end of the file. And various
methods such as cr, lf, and ff write specific characters to the end of the file—in this case,
a carriage return, a line feed, and a form feed character, respectively.

The write methods return the number of bytes that were written to the file, or nil if an error
occurs.

For example, the following code writes the two strings specified to the file myFile.txt,
separated by end-of-line characters.

Example 12.3

myFile := GsFile openWrite: 'myFile.txt'.
myFile nextPutAll: 'All of us are in the gutter,'.
myFile cr.
myFile nextPutAll: 'but some of us are looking at the stars.'.
myFile close.

If the text you wish to write contains characters outside the ASCII range (that is, with
codePoints greater than 127), then there are additional considerations.

Text with Characters with codePoints greater than 255 require more than one byte to
represent. These must be encoded before they can be written to a GsFile. Encoding to UTF-
8 is done by using GsFile >> nextPutAllUtf8: or by passing an instance of Utf8 to
the write methods.

GsFile class >>
closeAllOnServer

Closes all open GsFile instances on the server
except stdin, stdout, and stderr.

Table 12.2 GsFile Method Summary

Method Description
222 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Accessing Files
For example, the Euro character € has the Unicode value U+20AC.

Example 12.4 Writing the Extended Character € to a File

| myfile str |
myfile := GsFile openWrite: 'extendedCharacterExample.txt'.
str := String new.
str add: 'How to write a Euro character '.
str add: (Character codePoint: 16r20AC).
str add: ' to a file'; lf.
myfile nextPutAllUtf8: str.
myfile close.

Text with Characters with codePoints in the range of 128..254 have ambiguity between the
legacy output and UTF-8 encoding. Traditionally, GsFiles write Characters as byte data
without encoding or decoding. Most modern systems encode files as UTF-8, and expect
files to be encoded as UTF-8. However, to ensure legacy uses of GsFile do not create invalid
Strings, the GsFile write methods continue to write data as bytes.

While unlikely, it is possible that Characters with codePoints in the range 128..254 could be
either a portion of a UTF-8 encoding or an 8-bit character. Most often, specifying to default
to the incorrect format will result in a badly formed UTF-8 error, or un-decoded bytes.

Since for ASCII Characters (codePoints in the 7-bit range), the legacy output and the UTF-
8 encoding are the same, encoding all writes (and decoding all reads) is an effective way to
remove ambiguity.

Reading from a File
Instances of GsFile can be accessed in many of the same ways as instances of Stream
subclasses. Like streams, GsFile instances also include the notion of a position, or pointer
into the file. When you first open a file, the pointer is positioned at the beginning of the file.
Reading or writing elements of the file ordinarily repositions the pointer as if you were
processing elements of a stream.

A variety of methods allow you to read some or all of the contents of a file from within
GemStone Smalltalk. For example, the contents method (at the end of Example 12.3)
returns the entire contents of the specified file and positions the pointer at the end of the
file.

In Example 12.5, next: into: takes the 12 characters after the current pointer position
and places them into the specified string object. It then advances the pointer by 12
characters.

Example 12.5

| result |
result := String new.
myFile := GsFile openRead: 'myFileName'.
myFile next: 12 into: result.
myFile close
result.
GemTalk Systems 223

Accessing Files GemStone/S 64 Bit 3.6 Programming Guide
To read a file containing data encoded in UTF-8, you may read the file as usual, and then
send decodeFromUTF8ToString or decodeFromUTF8ToUnicode to decode the
results. Alternatively, you may use the method

GsFile >> contentsAsUtf8

which you can then decode from the instance of Utf8 similarly using decodeToString
or decodeToUnicode.

Note that when reading files whose contents logically contain Characters with codePoints
larger than 127, you must be aware of the whether the file is encoded in order to decode
appropriately. GsFile reads the bytes and does not distinguish between encoded or un-
encoded contents. A UTF-8 encoded file when read in using a GsFile and not explicitly
decoded will be garbled, and a file written as 8-bit characters that you attempt to decode
will almost always result in a badly formed UTF-8 error.

If the file will be read into GemStone using the topaz input command, you may include a
header line in the output file, either:

fileformat utf8
fileformat 8bit

to instruct topaz of the file encoding.

Positioning
You can also reposition the pointer without reading characters, or peek at characters
without repositioning the pointer. The method:

GsFile peek

allows you to view the next character in the file without advancing the pointer.

To advance the pointer without reading the intervening characters, use:
GsFile skip: anInteger

Testing Files
The class GsFile provides a variety of methods that allow you to determine facts about a
file.

To test for existence of a file, use:
GsFile exists: aFileNameString
GsFile existsOnServer: aFileNameString

These methods returns true if the file exists, false if it does not, and nil if an error occurred.

Renaming Files
Files on the client or server can be renamed or moved. For example:
GsFile rename: '/tmp/myfile.txt' to: '/tmp/newname.txt'.

GsFile renameFileOnServer: '$GEMSTONE/data/system.conf' to:
'/users/david/mysystem.conf'.
224 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Accessing Files
Removing Files
To remove a file from the client machine, use an expression of the form:
GsFile closeAll.
GsFile removeClientFile: mySpec.

To remove a file from the server machine, use the method removeServerFile: instead.
These methods return the receiver or nil if an error occurred.

Examining a Directory
To get a list of the names of files in a directory, send GsFile the message
contentsOfDirectory: aFileSpec onClient: aBoolean. This message acts very much
like the UNIX ls command, returning an array of file specifications for all entries in the
directory.

If the argument to the onClient: keyword is true, GemStone searches on the client
machine. If the argument is false, it searches on the server instead.

For example:

Example 12.6

GsFile contentsOfDirectory: '$GEMSTONE/examples/admin' onClient:
false
%
an Array
 #1 /dbf/gsadmin/GS6435/examples/admin/.
 #2 /dbf/gsadmin/GS6435/examples/admin/..
 #3 /dbf/gsadmin/GS6435/examples/admin/onlinebackup.sh
 #4 /dbf/gsadmin/GS6435/examples/admin/archivelogs.sh

If the argument is a directory name, this message returns the full pathnames of all files in
the directory, as shown in Example 12.6. However, if the argument is a filename, this
message returns the full pathnames of all files in the current directory that match the
filename. The argument can contain wildcard characters such as *. The following example
shows a different use of this message.
GsFile contentsOfDirectory: '$GEMSTONE/ver*' onClient: false
%
an Array
 #1 /dbf/gsadmin/GS6432/version.txt

If you wish to distinguish between files and directories, you can use the message
contentsAndTypesOfDirectory:onClient: instead. This method returns an array
of pairs of elements. After the name of the directory element, a value of true indicates a file;
a value of false indicates a directory. For example:

Example 12.7

GsFile contentsAndTypesOfDirectory: '$GEMSTONE/ualib' onClient:
false
%
a Array
GemTalk Systems 225

Accessing Files GemStone/S 64 Bit 3.6 Programming Guide
 #1 /dbf/gsadmin/GS6433/ualib/.
 #2 false
 #3 /dbf/gsadmin/GS6433/ualib/..
 #4 false
 #5 /dbf/gsadmin/GS6433/ualib/liboraapi23-643.so
 #6 true

All the above methods, like most GsFile methods, return nil if an error occurs.

GsFile Errors
GsFile operations return nil in cases where an error occurs during the operation. For this
reason, most GsFile operations should check for nil return. There are separate methods to
check for errors within file operations on server files and client files.

To check for errors in an operation on a server file, the method is GsFile >>
serverErrorString. It is nil if no error has occurred. This error is available until the
next GsFile operation is executed.

Example 12.8

| myFile |
myFile := GsFile openReadOnServer: 'nonexistentfile'.
myFile isNil
 ifTrue: [GsFile serverErrorString]
 ifFalse: ['Succesfully opened'].
%
errno=2,ENOENT, The file or directory specified cannot be found

To check for similar errors for a client file, use the method lastErrorString. For
example:

Example 12.9

| myFile |
myFile := GsFile openRead: 'privatefile'.
myFile isNil
 ifTrue: [GsFile lastErrorString]
 ifFalse: ['Succesfully opened'].
%
errno=13,EACCES, Authorization failure (permission denied)
226 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Executing Operating System Commands
12.2 Executing Operating System Commands

Simple Commands
System also understands the message performOnServer: aString, which causes the
UNIX shell commands given in aString to execute in a subprocess of the current GemStone
process. The output of the commands is returned as an instance of String. For example:

System performOnServer: 'date'
%
Fri Sep 18 13:10:21 PDT 2020

The commands in the argument to performOnServer: can have exactly the same form
as a shell script; for example, new lines or semicolons can separate commands, and the
character “\” can be used as an escape character. The string returned is whatever an
equivalent shell command writes to stdout. If the command or commands cannot be
executed successfully by the subprocess, the interpreter halts and GemStone returns an
error message.

The GemStone (reverse) privilege NoPerformOnServer controls the ability to execute this
method. If a user account is given this privilege, that user cannot execute
performOnServer:.

The String returned from the performOnServer: command is always composed of 8-bit
Characters. If the operating system command produces UTF-8 encoded results, then the
Smalltalk String will be UTF-8 encoded. You will need to send decodeFromUTF8ToString
or decodeFromUTF8ToUnicode to decode the results. performOnServer: may also return
results as 8-bit non-encoded, extended ASCII, if that is what was returned by the operating
system commands that were executed.

Using other shells
By default, performOnServer: executes using /bin/sh. To use other shells, specify the
full path to the shell executabl using System class >> performOnServer: aString
withShell: aShellOrNil.

Not all shells will work as an argument to performOnServer:withShell:. bash
(/bin/bash), Korn Shell (/bin/ksh), Z Shell (/bin/zsh) and are known to work. C
Shell (/bin/csh) and its variants (/bin/tcsh) are known to not work.

More complex interactions
System >> performOnServer: can execute arbitrary OS code on the server, but only
operates synchronously; Smalltalk will block until the command has completed.

To provide an asynchronous perform, and to allow Smalltalk to read from stdout or write
to stdin, you can use the class GsHostProcess.

To use this, use the class method fork:, passing the command line you wish to execute.
This will return immediately with an instance of GsHostProcess with sockets on stdin,
stdout, and stderr. You can use socket protocol to read from or write to these sockets.

Note that pathname resolution is not provided. You must fully qualify executable paths.
GemTalk Systems 227

Setting environment variables GemStone/S 64 Bit 3.6 Programming Guide
For example:

run
GsHostProcess execute: '/bin/date'.
%
Fri Sep 18 13:10:21 PDT 2020

run
| hostprocess |
hostprocess := GsHostProcess fork: '/bin/date'.
hostprocess stdout read: 1024
%
Fri Sep 18 13:10:21 PDT 2020

The GsHostProcess can report its status using childStatus; you may kill the child
process using killChild or killChild: timeoutSeconds.

Restictions on OS access
GemStone user privileges, which are described in the System Administration Guide, may
restrict who can execute OS commands, and which OS commands can be executed.
GemStone UserProfiles that have the NoPerformOnServer privilege cannot execute any OS
commands using performOnServer or GsHostProcess, except for OS commands that have
been explicitly added to the whitelist for that UserProfile.

See the System Administration Guide for more information.

12.3 Setting environment variables
You can ask about and set environment variables in the server or client environments using
the following methods:

System class >> clientEnvironmentVariable: varName

System class >> clientEnvironmentVariable: varName put: valueStr

System class >> gemEnvironmentVariable: varName

System class >> gemEnvironmentVariable: varName put: valueStr

These methods cannot be used if the NoGsFileOnServer privilege is set for the UserProfile.

For example,
run
System gemEnvironmentVariable: 'GS_MY_INDEX_KEY' put: '47'.
System clientEnvironmentVariable: 'GS_MY_KEY' put: '84'.

System performOnServer: 'env | grep GS_MY'
%
GS_MY_KEY=84
GS_MY_INDEX_KEY=47

When methods that accept a filename, such as GsFile methods, include an environment
variable, environment variables set in this way are used in the expansion.
228 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide File In and File Out
12.4 File In and File Out
To archive your application or transfer GemStone classes to another repository you can file
out GemStone Smalltalk source code for classes and methods to a text file. To port your
application to another repository, you can file in that text file, and the source code for your
classes and methods is immediately available in the new repository.

Fileout
Methods in behavior allow you to file out a class, category, or method. For example, to file
out a single class named Customer:

| myFile |
myFile := GsFile openWrite: 'CustomerClassFileout.gs'.
myFile isNil
 ifTrue: [^GsFile serverErrorString].
Customer fileOutClassOn: myFile.
myFile close.
%

Using ClassOrganizer, you can file out all the classes and methods in a SymbolDictionary,
ordered correctly for filein. For example, to file out UserGlobals:

| myFile |
myFile := GsFile openWrite: 'UserGlobalsFileout.gs'.
myFile isNil
 ifTrue: [^GsFile serverErrorString].
ClassOrganizer new fileOutClassesAndMethodsInDictionary:

UserGlobals on: myFile.
myFile close.
%

File out can also be done using the topaz command fileout. See the Topaz User’s Guide for
more information.

Filein
File in is done using topaz input command, or facilities provided by GBS.

For example, to file in the fileout of UserGlobals from the previous example:
topaz 1> input UserGlobalsFileout.gs
GemTalk Systems 229

PassiveObject GemStone/S 64 Bit 3.6 Programming Guide
12.5 PassiveObject
To archive your data, you can passivate objects themselves to a file. Objects representing
your data are stored into a serialized, text-based form by the GemStone class PassiveObject.
PassiveObject starts with a root object and traces through its instance variables, and their
instance variables, recursively until it reaches special objects (instances of SmallInteger,
Character, Boolean, SmallDouble, or UndefinedObject), or classes that can be reduced to
special objects (strings and numbers that are not integers), creating a representation of the
object that preserves all of the values required to re-create it. The resulting network of object
descriptions can be written to a file, stream, or string. Each file can hold only one
network—you cannot append additional networks to an existing passive object file,
stream, or string.

A few objects and aspects of objects are not preserved:

Instances of UserProfile cannot be preserved in this way, for obvious security reasons.

SystemRepository cannot be preserved.

Blocks that refer to globals or other variables outside the scope of the block cannot be
reactivated correctly.

Blocks that can be associated with objects (such as the sort block in SortedCollections)
are not preserved.

Any indexes you have created on the object are lost as well.

Identities (OOPs) are not preserved.

The relationship between two objects is conserved only so long as they are described in the
same network. Similarly, if two separate objects A and B both refer to the same third object
C, then making A and B passive in two separate operations will result in duplicating the
object C, which will be represented in both A’s and B’s network. Because the resulting
network of objects can be quite large anyway, you want to avoid such unnecessary
duplication. For this reason, it is usually a good idea to create one collection to hold all the
objects you wish to preserve before invoking one of the PassiveObject methods.

In addition, since object identity is not preserved, behavior that depends on identity may
not work as expected. For example, for objects that implement = using ==, the re-activated
object will not be = to the original.

The class PassiveObject implements the method passivate: anObject toStream:
aGsFileOrStream to write objects out to a stream or a file. To write the object AllEmployees
out to the file allEmployees.obj in the current directory, execute an expression of the form
shown in Example 12.10.

Example 12.10

| empFile |
empFile := GsFile openWriteOnServer: 'allEmployees.obj'.
PassiveObject passivate: AllEmployees toStream: empFile.
empFile close.
230 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating and Using Sockets
The class PassiveObject implements the method newOnStream: aGsFileOrStream to read
objects from a stream or file into a repository. The method activate then restores the
object to its previous form.

The following example reads the file allEmployees.obj into a GemStone repository:

Example 12.11

| empFile passivatedEmployees |
empFile := GsFile openReadOnServer: 'allEmployees.obj'.
passivatedEmployees := PassiveObject newOnStream: empFile.
AllEmployees := passivatedEmployees activate.
empFile close.

12.6 Creating and Using Sockets
Sockets open a connection between two processes, allowing a two-way exchange of data.
The class GsSocket provides a mechanism for manipulating operating system sockets from
within GemStone Smalltalk.

Methods in the class GsSocket do not use the terms client and server in the same way as the
methods in class GsFile. Instead, these terms refer to the roles that two processes play with
respect to the socket: the server process creates the socket, binds it to a port number, and
listens for the client, while the client connects to an already created socket. Both client and
server are processes created (or spawned) by a Gem process.

In addition to standard sockets created by GsSocket, you can create secure SSL sockets
using the class GsSecureSocket. GsSecureSocket is a subclass of GsSocket that adds
protocol to specify certificates and require authentication.

Both GsSocket and GsSecureSocket contain class methods such as clientExample and
serverExample. These methods provide examples of how to create a socket connection
between two sessions. The example methods work together; they require two separate
sessions running from two independently executing interfaces, one running the server
example and one running the client example. You can execute these methods from Topaz
or from GemBuilder for Smalltalk, but note that serverExample, which should be started
first, will take control of the interface until the clientExample completes the socket
connection.
GemTalk Systems 231

Creating and Using Sockets GemStone/S 64 Bit 3.6 Programming Guide
GsSocket
GsSocket is the class representing a basic socket.

Establishing the connection
To setup a socket connection, you create instances of GsSocket in both the client and server
processes.

1. On the server side, create an instance of GsSocket, and call makeServerAtPort: This
creates a listening socket on the given port.

To have the operating system select a port, use a wildcard bind using makeServer:,
or pass nil as the port argument. You will then need to determine the port that the
client should connect at using the port method.

2. On the client side, create an instance of a GsSocket and call one of the following:

 connectTo: for a connection to a process on the same host

 connectTo:on: if the server is on a different machine

 connectTo:on:timeoutMs: to specify a timeout for the connection

Provided there was a listening server socket setup as in step 1, this will initiate the
connection to the server.

3. The server then does an accept, or acceptTimeoutMs: (to specify a timeout) . This
returns a new instance of GsSocket for the client connection.

Note that the server side has two sockets; a listening socket and the established socket
with the client.

Communication on the socket
Each process can write and read to the socket using protocol such as write: and read:.
See the image methods in the categories Reading and Writing for specific methods.

Writes and reads are of byte objects such as String or ByteArray. Read operations are for a
specified number of bytes, and return the actual number of bytes read if fewer bytes were
available (if fewer bytes were written to the socket by the peer). A return value of nil means
an error occurred, and for read operations, a return value of 0 means the socket EOF was
reached.

Closing the socket
When completed, the client should close its socket and the server close the listening and
established sockets. This is done by simply sending close to the sockets.

Socket Configuration
Socket configuration can be done using the method

GsSocket >> option:put:

See the comments in this method for details on socket configuration.

The most common option is blocking.
232 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating and Using Sockets
Blocking
Sockets can be made blocking or non-blocking, and the blocking status checked, using the
following methods:

GsSocket >> makeNonBlocking

GsSocket >> makeBlocking

GsSocket >> isNonBlocking

GsSocket >> isBlocking

GsSecureSocket
GsSecureSocket creates a secure socket Secure Sockets Layer (SSL), providing access to the
open-source OpenSSL library. This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/).

The protocol is Transport Layer Security (TLS), the successor to SSL; GemStone continues
to use the term "SSL" in most cases, since SSL remains commonly used to refer to both,.

To create a secure socket, you create instances of the GsSecureSocket class and first
establish the connection as a regular socket. Then, further protocol authenticates the
connection to make the socket secure.

GsSecureSocket class protocol includes setup of certificates and types of authentication,
which can be set for general socket operations, so each new socket does not have to be
separately configured.

Certificates, keys, and passphrases
GsSecureSocket instances must be configured with the CA certificates, private key files,
and passphrases, to allow them to complete the secure handshake. This can be done using
class methods that apply to all new instances, or you can send instance methods to
configure individual settings.

The required certificates, CA certificates, private key files and passphrases may be
provided by your organization. The GemStone distribution includes example certificates,
keys, and passphrases to verify your code, under the directories:

$GEMSTONE/examples/openssl/certs/
directory containing example public keys

$GEMSTONE/examples/openssl/private/
directory containing example private keys and passphrases

The distribution includes script that will allow you to generate certificates:
$GEMSTONE/examples/openssl/create_ca.sh
$GEMSTONE/examples/openssl/create_new_certs.sh

And the openssl executable, matching the version that GemStone uses:
$GEMSTONE/bin/openssl

Using this openssl executable, rather than any version that may be present on your system,
is recommended. For details on the openssl interface, see
http://www.openssl.org/docs/apps/openssl.html.
GemTalk Systems 233

http://www.openssl.org/
http://www.openssl.org/docs/apps/openssl.html

Creating and Using Sockets GemStone/S 64 Bit 3.6 Programming Guide
Enable or disable verifying CA Certificate
Certificate Authority (CA) certificates should be setup prior to creating instance of
GsSecureSocket. An example CA certificate file is provided here:

$GEMSTONE/examples/openssl/certs/cacert.pem

By default, client sockets verify the certificates presented by the server, and are configured
with the CA certificate. By default, servers do not verify certificates. This is the usual case,
and if this is your preferred behavior you do not need to explicitly enable or disable
verification.

Class methods that configure verification must be executed prior to the creation of the
client or server GsSecureSocket instance.

Client Sockets
By default, client sockets verify connections from the server. You will need to specify
the client certificate file, or the directory containing CA certificates, using one of the
following methods.
GsSecureSocket class >> useCACertificateFileForClients: certfile
GsSecureSocket class >> useCACertificateDirectoryForClients: aDir

A CA certificate file must be in PEM format. It may contain more than one certificate.
The certificate has effect only for the life of the session; the state is not committed to the
repository.

To disable validation on the client, use the methods:
GsSecureSocket disableCertificateVerificationOnClient
aGsSecureClientSocket disableCertificateVerification

Parallel methods exist to re-enable validation after validation is disabled.

Server Sockets
By default, server sockets do not verify the certificate from the client, so you do not
need to specify the CA certificate file or directory.

Setting the CA certificate file or directory also enables verification. To enable, execute
one of the following:
GsSecureSocket class >> useCACertificateFileForServers: certfile
GsSecureSocket class >> useCACertificateDirectoryForServers: aDir

Parallel methods exist to disable validation after validation is enabled.

The server accepts additional verification options. Using the methods
GsSecureSocket setCertificateVerificationOptionsForServer:
aGsSecureServerSocket setCertificateVerificationOptions:

The following options may be set:

 #SSL_VERIFY_FAIL_IF_NO_PEER_CERT
if the client did not return a certificate, the TLS/SSL handshake is immediately
terminated with a 'handshake failure' alert.

#SSL_VERIFY_CLIENT_ONCE
only request a client certificate on the initial TLS/SSL handshake. Do not ask for a
client certificate again in case of a renegotiation.
234 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating and Using Sockets
Set certificate, private key, and passphrase
The certificate, private key, and private key passphrase can be setup by class methods to
apply to all instances, or by sending messages to the instance of GsSecureSocket.

You can pass the certificate and private key either by using pathnames to the files, or by the
string. If a string is used, it must exactly match the contents of the corresponding certificate
file (including white space, line feeds, etc.), or the strings will not be accepted.

Both certificate and private key must be in PEM format, and the private key must match
the certificate. The same file may be specified for the certificate file and the private key file.

The certificate may contain a certificate chain or a single certificate.

If the private key requires a passphrase, it must be specified as a string. If the private key
does not require a passphrase, the argument is expected to be nil.

Example certificates, public and private keys, and passphrases are under the
$GEMSTONE/examples/openssl/ directory. A number of examples are provided, for
example:

$GEMSTONE/examples/openssl/certs/server_1_servercert.pem
$GEMSTONE/examples/openssl/private/server_1_serverkey.pem
$GEMSTONE/examples/openssl/private/server_1_server_passwd.txt

Class setup for server sockets
To specify the server certificates, private key file, and passphrase (if required), that will
be used for all secure server sockets that are created after these methods are invoked,
use the method:
GsSecureSocket class >>

useServerCertificateFile: certFilePathAndName
withPrivateKeyFile: privateKeyFilePathAndName
privateKeyPassphrase: passphraseStringOrNil

A variant is available that allows you to pass in the strings containing the certificate
and key as string; see the image methods. If a string is used, it must exactly match the
contents of the corresponding certificate file (including white space, line feeds, etc.), or
the strings will not be accepted.

Class setup for client sockets
By default, certificates are not verified on the client, so the certificate and private key
do not need to be setup for clients.

If you need to enable client validation, the follow methods specify the client
certificates, private key file, and passphrase, that will be used to validate server
connections for secure client sockets that are created after these methods are invoked:
GsSecureSocket class >>

useClientCertificateFile: certFilePathAndName
withPrivateKeyFile: privateKeyFilePathAndName
privateKeyPassphraseFile: passphraseStringOrNil

A variant that accepts the content strings instead of filenames is available.
GemTalk Systems 235

Creating and Using Sockets GemStone/S 64 Bit 3.6 Programming Guide
Instance setup for client or server sockets
You can specify the certificate, private key, and passphrase for a single specific instance
of GsSecureSocket (either a server socket or a client socket), using instance method:
GsSecureSocket >>

useCertificateFile: certFilePathAndName
withPrivateKeyFile: privateKeyFilePathAndName
privateKeyPassphraseFile: passphraseStringOrNil

Again, a variant that accepts the content strings instead of filenames is available.

Setup the Cipher list
The list of ciphers that are acceptable to use can be configured, either on the class side for
servers and clients, or for specific instances of GsSecureSocket client or server sockets.

The cipher list is specified as a formatted string. See
http://www.openssl.org/docs/apps/ciphers.html for details on the format of this string
(as well as other information on ciphers).

For example, to use all ciphers except NULL ciphers and anonymous Diffie-Hellman (DH),
and sort by strength, use the following string:

'ALL:!ADH:@STRENGTH'

To configure the cipher list for all instances of GsSecureSocket, use the following methods.
These methods return true if the specification finds one or more usable ciphers, false if no
usable ciphers match the specification.

GsSecureSocket class >>
setClientCipherListFromString: aString

GsSecureSocket class >>
setServerCipherListFromString: aString

To configure the cipher list for a specific instance of a server socket or client socket, the
ciphers must be set before secureConnect:/secureAccept are executed. This method
returns true if the specification finds one or more usable ciphers, false if no usable ciphers
match the specification, and nil if the operation has no affect because the receiver is already
connected.

GsSecureSocket class >>
setCipherListFromString: aString

Once an instance of GsSecureSocket is successfully connected, you can fetch the cipher in
use using:

GsSecureSocket >> fetchCipherDescription

Establishing the connection
Rather than creating instances using GsSocket class >> new, with GsSecureSocket
sockets are instantiated using newClient and newServer.

To establish the socket connection, as with regular GsSocket,

1. The server creates the socket using newServer, and calls makeServerAtPort:
on an unused port, to create the server listener socket on that port.

2. The client creates the socket using newClient, and calls connectTo:, specify the
same port as in Step 1.
236 GemTalk Systems

http://www.openssl.org/docs/apps/ciphers.html

GemStone/S 64 Bit 3.6 Programming Guide Creating and Using Sockets
3. The server socket calls accept, or acceptTimeoutMs:, which creates the
connected socket on the given port.

This establishes the standard socket, but the connection is not secure. Another client-server
interaction is required to make this a secure socket.

At this point, you can setup specific certificates and ciphers that will apply to these sockets
only, as described in the preceding sections. This is needed if you have not previously set
up certificates and ciphers that apply to all GsSecureSocket connections.

Then continue with the process that makes the socket secure:

4. The client socket calls secureConnect.

5. The server socket calls secureAccept, or secureAcceptTimeoutMs:.

If these methods return true, then the connection is secure. To determine if you have a
secure connection, use the method:

GsSecureSocket >> hasSecureConnection

Communication on the socket
At this point reads and writes are done as for standard sockets.

Closing the socket
You can either close the socket connection entirely, or close the secure connection and
remain connected for normal (not secure) communication.

To close the socket entirely, use
GsSecureSocket >> close

Which performs both the secure close and the regular close.

Note that the secure close requires a handshake. If the socket is blocking, and the peer
does not respond, then the close will hang. To close the socket, we recommend first making
it non blocking:

mySecureSocket makeNonBlocking.
mySecureSocket close.

To close only the secure socket and leave the connection available for non-secure
communication, you can use the method

GsSecureSocket >> secureClose

Which must be executed by both sockets on the connection. You can then call close later,
to close the connection entirely.

HTTPS connection
The image includes an example of using a GsSecureSocket to setup an HTTPS connection
to a well known search engine URL, verifying of the server certificate, and performing a
simple GET request. See the image for the example method:

GsSecureSocket class >> httpsClientExample
GemTalk Systems 237

Creating and Using Sockets GemStone/S 64 Bit 3.6 Programming Guide
Error handling

GsSocket
Many GsSocket operations return nil if an error occurs.

On a nil return, you can query the system for the details on the error that occurred using
the following methods. These methods are implemented both for the class and instance of
GsSocket. For errors in GsSocket class methods, use the class side error methods, and for
errors in GsSocket instance methods, use the instance methods

lastErrorString
Returns a String containing information about the last error or nil if no error has
occurred. Clears the error information.

lastErrorCode
Returns an integer representing the last OS error or nil if no error has occurred. Does
not clear the error information

lastErrorSymbol
Returns a Symbol representing the last OS error or nil if no error has occurred. Does
not clear the error information.

Signalling errors
You can send raiseExceptionOnError: to a socket, in which case a SocketError is
signalled in cases where a nil was returned from the C code.

GsSecureSocket
Most GsSecureSocket operations signal a SocketError or a SecureSocketError if an error
occurs. Ordinary socket operations will signal a SocketError; errors in the security
configuration will signal a SecureSocketError.

You can query for the last error from an instance operation using the instance methods:

GsSecureSocket >> lastErrorString
GsSecureSocket >> fetchLastIoErrorString

These methods fetch and clear the error string from a call to SSL functions for connect,
accept, read, or write.

On the class side, the following methods return error strings for any SSL function call
errors:

GsSecureSocket class >> fetchErrorStringArray
Returns an Array of error strings generated by the OpenSSL package. The errors
returned are cleared from the SSL error queue. The array is ordered from oldest to
newest error.

GsSecureSocket class >> lastErrorString
Returns a string describing the elements in the SSL error queue, based on the contents
of fetchErrorStringArray. The errors are cleared from the error queue.

GsSecureSocket class >>
fetchLastCertificateVerificationErrorForClient

GsSecureSocket class >>
fetchLastCertificateVerificationErrorForServer
238 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating and Using Sockets
These methods fetch and clear a string representing the last certificate verification error
logged by, respectively, a client SSL socket or a server SSL socket.

To clear the error queue, use the method
GsSecureSocket class >> clearErrorQueue
GemTalk Systems 239

Creating and Using Sockets GemStone/S 64 Bit 3.6 Programming Guide
240 GemTalk Systems

Chapter

13 Signals and Notifiers
This chapter discusses how to communicate between one session and another, and
between one application and another.

Communicating Between Sessions (page 241)
introduces two ways to communicate between sessions.

Object Change Notification (page 242)
describes the process used to enable object change notification for your session.

Gem-to-Gem Signaling (page 250)
describes one way to pass signals from one session to another.

Other Signal-Related Issues (page 254)
describes performance, signal buffer overflow, and other signal related considerations.

13.1 Communicating Between Sessions
Applications that handle multiple sessions often find it convenient to allow one session to
know about other sessions’ activities. GemStone provides two ways to send information
from one current session to another:

Object change notification
Reports the changes recorded by the object server. You set your session to be notified
when specific objects are modified. Once enabled, notification is automatic, but a
signal is not sent until the changed objects are committed.

Gem-to-Gem signaling
Reports events that happen independent of the transaction space. Currently logged-in
users signal to send messages to each other. Gems can also pass information that is
not necessarily visible to users, such as the name of a queue that needs servicing.
Sending a signal requires a specific action by the other Gem; it happens immediately.

Object change notification and Gem-to-Gem signals only reach logged-in sessions. For
applications that need to track processes continuously, you can create a Gem that runs
GemTalk Systems 241

Object Change Notification GemStone/S 64 Bit 3.6 Programming Guide
independently of the user sessions and monitors the system. See the instructions on
creating a custom Gem in the GemBuilder for C manual.

13.2 Object Change Notification
Object change notifiers are signals that can be generated by the object server to inform you
when specified objects have changed. You can request that the object server inform you of
these changes by adding objects to your notify set.

When a reference to an object is placed in a notify set, you receive notification of all changes
to that object (including the changes you commit) until you remove it from your notify set
or end your GemStone session. The notification you receive can vary in form and content,
depending on which interface to GemStone you are running and how the notification
action was defined.

Your application can respond in several ways:

Prompt users to abort or commit for an updated image.

Log the information in an object change report.

Use the notifiers to trigger another action. For example, a package for managing
investment portfolios might check the stock that triggered the notifier and enter a
transaction to buy or sell if the price went below or above preset values.

To set up a simple notifier for an object:

1. Create the object and commit it to the object server.

2. Add the object to your session’s notify set with one of the messages:

System addToNotifySet: aCommittedObject
System addAllToNotifySet: aCollectionOfCommittedObjects

3. Define how to receive the notifier with either a notifier message or by polling.

4. Define what your session will do upon receiving the notifier.

The following section describes each of these steps in detail.

Setting Up a Notify Set
GemStone defines a notify set for each user session to which you add or remove objects.
Except for a few special cases discussed later, any object you can refer to can be added to a
notify set.

Notify sets persist through transactions, living as long as the GemStone session in which
they were created. When the session ends, the notify set is no longer in effect. If you need
notification regarding the same objects for your next session, you must once again add
those objects to the notify set.

Adding an Object to a Notify Set
To add an object to your notify set, use an expression of the form:

System addToNotifySet: aCommittedObject
242 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Object Change Notification
When you add an object to the notify set, GemStone begins monitoring changes to it
immediately.

Most GemStone objects are composite objects, made up of a root object and a few
subobjects. Usually you can just ignore the subobjects. However, there are circumstances
in which the both the root object and subobjects must appear in the notify set. For details,
see “Special Classes” on page 248.

Example 13.1 creates a collection of stock holdings and then creates a notify set for the
stocks in the collection. Finally, the session is set to automatically receive the notifier.

Example 13.1

"Create a Class to record stock name, number and price"
Object subclass: #Holding

instVarNames: #('name' 'number' 'price')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: Published.

"Compile accessing methods"
Holding compileAccessingMethodsFor: Holding instVarNames.

"Add a Collection for Holdings to UserGlobals dictionary"
UserGlobals
 at: #MyHoldings put: IdentityBag new.

"Add some stocks to my collection"
MyHoldings add:
 (Holding new name: #USSteel; number: 1000; price: 50.00).
MyHoldings add:
 (Holding new name: #VMware; number: 50000; price: 95.00).
MyHoldings add:
 (Holding new name: #ATT; number: 100000; price: 30.00).

"Add the collection object to the notify set"
System addToNotifySet: MyHoldings.
(System notifySet) includesIdentical: MyHoldings.

"Enable receipt of signals"
System enableSignaledObjectsError.

Objects That Cannot Be Added
Not every object can be added to a notify set. Objects in a notify set must be visible to more
than one session; otherwise, other sessions could not change them. So, objects you have
created for temporary use or have not committed cannot be added to a notify set.
GemStone responds with an error if you try to add such objects to the notify set.

You also receive an error if you attempt to add special objects, such as true, false, nil, and
instances of Character, SmallInteger and SmallDouble.
GemTalk Systems 243

Object Change Notification GemStone/S 64 Bit 3.6 Programming Guide
Adding a Collection to a Notify Set
To add a collection of objects to your notify set, use an expression like this:

System addAllToNotifySet: aCollectionOfCommittedObjects

This expression adds the elements of the collection to the notify set.

You don’t have to add the collection object itself, but if you do, use addToNotifySet:
rather than addAllToNotifySet:.When a collection object is in the notify set, adding
elements to the collection or removing elements from it trigger notification. Modifications
to the elements do not trigger notification on the collection object; if you want to know
when the elements change, you must add them to the notification set.

Example 13.2 shows the notify set containing both the collection object and the elements in
the collection.

Example 13.2

"Add the stocks in the collection to the notify set"
System addAllToNotifySet: MyHoldings.
System notifySet.
%
an Array
 #1 a Holding
 #2 a Holding
 #3 a Holding

"Add the collection object itself to the notify set"
System addToNotifySet: MyHoldings.
System notifySet.
%
an Array
 #1 a Holding
 #2 a Holding
 #3 a Holding
 #4 an IdentityBag

Very Large Notify Sets
You can register any number of objects for notification, but very large notify sets can
degrade system performance. GemStone can handle thousands of objects without
significant impact. Beyond that, test whether the response times are acceptable for your
application.

If performance is a problem, you can set up a different system of change recording:

1. Have each session maintain its own list of the last several objects updated (a modify
list). The list is a collection written only by that session.

2. Create a global collection of collections that contains every session’s list of changes.

3. Put the global collection and its elements in your notify set, so you receive notification
when a session commits a modified list of changed objects. Then you can check for
changes of interest.
244 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Object Change Notification
If the modify lists are ordered, this preserves the order of the additions, so that the new
objects can be serviced in the correct order. Using the notifySet, notification on a batch of
changed objects is received in OOP order.

Listing Your Notify Set
To determine the objects in your notify set, execute:

System notifySet

Removing Objects From Your Notify Set
To remove an object from your notify set, use an expression of the form:

System removeFromNotifySet: anObject

To remove a collection of objects from your notify set, use an expression of the form:
System removeAllFromNotifySet: aCollection

This expression removes the elements of the collection. If the collection object itself is also
in the notify set, remove it separately, using removeFromNotifySet:.

To remove all objects from your notify set, execute:
System clearNotifySet

Notification of New Objects
In a multi-user environment, objects are created in various sessions, committed, and
immediately open to modification. It may not be sufficient to receive notifiers on the objects
that existed at the beginning of your session. You may also need notification concerning
new objects.

You cannot put unknown objects in your notify set, but you can create a collection for those
kinds of objects and add that collection to the notify set. Then when the collection changes,
meaning that objects have been added or removed, you can stop and look for new objects.
For example, to receive notification when the price of any stock in your portfolio changes,
you can perform the following steps:

1. Create a globally known collection (for example, MyHoldings) and add your existing
stock holdings (instances of class Holding) to it.

2. Place all of these stocks in your notify set:

System addAllToNotifySet: MyHoldings

3. Place the collection MyHoldings in your notify set, so that you receive notification that
the collection has changed when a stock is bought or sold:

System addToNotifySet: MyHoldings

4. Place new stock purchases in MyHoldings by adding code to the instance creation
method for class Holding.

5. When you receive notification that the contents of MyHoldings have changed,
compare the new MyHoldings with the original.

6. When you find new stocks, add them to your notify set, so that you will be notified if
they are changed.

Example 13.3 shows one way to do steps 5 and 6.
GemTalk Systems 245

Object Change Notification GemStone/S 64 Bit 3.6 Programming Guide
Example 13.3

"Make a temporary copy of the set."

| tmp newObjs |
tmp := MyHoldings copy.

"Refresh the view (commit or abort)."
System commitTransaction.

"Get the difference between the old and new sets."
newObjs := (MyHoldings - tmp).

"Add the new elements to the notify set."
newObjs size > 0 ifTrue: [System addAllToNotifySet: newObjs].

You can also identify objects to remove from the notify set by doing the opposite operation:
tmp - MyHoldings

This method could be useful if you are tracking a great many objects and trying to keep the
notify set as small as possible.

Note that only IdentityBag and its subclasses understand “-” as a difference operator.

Receiving Object Change Notification
After a commit, each session view is updated. The object server also updates its list of
committed objects. This list of objects is compared with the contents of the notify set for
each session, and a set of the changed objects for each notify set is compiled.

You can receive notification of committed changes to the objects in your notify set in two
ways:

Enabling automatic notification, which is faster and uses less CPU

Polling for changes
246 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Object Change Notification
Automatic Notification of Object Changes
For automatic notification, you enable your session to receive the exception
ObjectsCommittedNotification. By default, ObjectsCommittedNotification
is disabled (except in GemBuilder for Smalltalk, which enables the signal as part of
GbsSession>>notificationAction:).

To enable the event signal for your session, execute:
System enableSignaledObjectsError

To disable the event signal, send the message:
System disableSignaledObjectsError

To determine whether this error message is enabled or disabled for your session, send the
message:

System signaledObjectsErrorStatus

This method returns true if the signal is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you end
the session, or you receive the signal. The signal is automatically disabled when you
receive it so that the exception handler can take appropriate action.

The receiving session handles the notification with an exception handler. Your exception
handler is responsible for reading the set of signaled objects (by sending the message
System class>>signaledObjects) as well as taking the appropriate action.
ObjectsCommittedNotification addDefaultHandler:

[:ex |
| changes |
changes := System signaledObjects.
"do something with the changed objects"
System enableSignaledObjectsError].

Reading the Set of Signaled Objects
The System class>>signaledObjects method reads the incoming changed object
signals. This method returns an array, which includes all the objects in your notify set that
have changed since the last time you sent signaledObjects in your current session. The
array contains objects changed and committed by all sessions, including your own. If more
than one session has committed, the OOPs are OR’d together. The elements of the array are
arranged in OOP order, not in the order the changes were committed. If none of the objects
in your notify set have been changed, the array is empty.

Use a loop to call signaledObjects repeatedly, until it returns an empty collection. The
empty collection guarantees that there are no more signals in the queue.

Also see the discussion on “Frequently Changing Objects” on page 248.

Polling for Changes to Objects
You also use System class>>signaledObjects to poll for changes to objects in your
notify set.

Example 13.4 uses the polling method to inform you if anyone has added objects to a set or
changed an existing one. Notice that the set is created in a dictionary that is accessible to
other users, not in UserGlobals.
GemTalk Systems 247

Object Change Notification GemStone/S 64 Bit 3.6 Programming Guide
Example 13.4

System disableSignaledObjectsError;
 signaledObjectsErrorStatus.
%

"Create a set."
Published at: #Changes put: IdentitySet new.
System commitTransaction.

System addToNotifySet: Changes.
%

"Login a separate session to perform the following"
Changes add: 'here is a change'.
System commitTransaction
%

"In the original session, see the signal"
| mySignaledObjs count |
System abortTransaction.
count := 0 .
[mySignaledObjs := System signaledObjects.
mySignaledObjs size = 0 and:[count < 50]
]
 whileTrue: [
 System sleep: 10 .
 count := count + 1
].
^ mySignaledObjs.
%

Troubleshooting
Notification on object changes may occasionally produce unexpected results. The
following sections outline areas of concern.

Frequently Changing Objects
If users are committing many changes to objects in your notify set, you may not receive
notification of each change. You might not be able to poll frequently enough, or your
exception handler might not process the errors it receives fast enough. In such cases, you
can miss some intermediate values of frequently changing objects.

Special Classes
Most GemStone objects are composite objects, but for the purposes of notification you can
usually ignore this fact. They are almost always implemented so that changes to subobjects
affect the root, so only the root object needs to go into the notify set.

Common operations that trigger notification on the root object include:
248 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Object Change Notification
Assignment to an instance variable:

name := 'dowJones'

Updating the indexable portion of an object:

self at: 3 put: 'active'.

Adding to a collection:

self add: 3.

In a few cases, however, the changes are made only to subobjects. For the following
GemStone kernel classes, both the object and the subobjects must appear in the notification
set:

 RcQueue

 RcIdentityBag

 RcCounter

 RcKeyValueDictionary

You can also have the problem with your own application classes. Wherever possible, you
should implement objects so that changes modify the root object. You must also balance
the needs of notification with potential problems of concurrency conflicts.

If you are not being notified of changes to a composite object in your notify set, look at the
code and see which objects are actually modified during common operations such as add:
or remove:. When you are looking for the code that actually modifies an object, you may
have to check a lower-level method to find where the work is performed.

Once you know the object’s structure and have discovered which elements are changed,
add the object and its relevant elements to the notify set. For cases where elements are
known, you can add them just like any other object:

System addToNotifySet: anObject

Example 13.5 shows a method that creates an object and automatically adds it to the notify
set in the process.

Example 13.5

method: SetOfHoldings
add: anObject

System addToNotifySet: anObject.
^super add: anObject

%

GemTalk Systems 249

Gem-to-Gem Signaling GemStone/S 64 Bit 3.6 Programming Guide
Methods for Object Notification
Methods related to notification are implemented in class System. Browse the class System
and read about these methods:

addAllToNotifySet:

addToNotifySet:

clearNotifySet

disableSignaledObjectsError

enableSignaledObjectsError

notifySet

removeAllFromNotifySet:

removeFromNotifySet:

signaledObjects

signaledObjectsErrorStatus

See Chapter 14 for more on handling Exceptions such as ObjectsCommittedNotification.

13.3 Gem-to-Gem Signaling
GemStone enables you to send a signal from your Gem session to any other current Gem
session. GsSession implements several methods for communicating between two sessions.
Unlike object change notification, inter-session signaling operates on the event layer and
deals with events that are not being recorded in the repository. Signaling happens
immediately, without waiting for a commit.

An application can use signals between sessions for situations like a queue, when you want
to pass the information quickly. Signals can also be a way for one user who is currently
logged in to send information to another user who is logged in.

NOTE
A signal is not an interrupt, and it does not automatically awaken an idle session.
The signal can be received only when your session is actively executing Smalltalk
code.

You can receive a signal from another session by polling for the signal or by receiving
automatic notification.

As an example of Gem-to-Gem signaling, Figure 13.1 shows the following sequence of
events:

1. session1 enables event signals from other Gem sessions. (For details, see “Receiving a
Notification” on page 254.)

2. session2 sends a signal to session1. (See “Sending a Signal” on page 251.)

3. The Stone sends the exception InterSessionSignal to session1. The receiving
session processes the signal with an exception handler. For details, see
Chapter 14‚ “Handling Exceptions”.
250 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Gem-to-Gem Signaling
Figure 13.1 Communicating from Session to Session

���
�������	���'��	������
����������0����

��������7

7

�
���

��������8

�

8

9�
�����������'��	
���
���������'��	,
�,

%�
"�����'�,

Sending a Signal
To communicate, one session must send a signal and the receiving session must be set up
to receive the signal.

Finding the Session ID
To send a signal to another Gem session, you must know its session ID. To see a description
of sessions that are currently logged in, execute the following method:
System currentSessions

This message returns an array of SmallIntegers representing session IDs for all current
sessions. Example 13.6 shows how you might use this method to find the session ID for
user1 and send a message.

Example 13.6

| sessionId serialNum otherSession signalToSend |
 sessionId := System currentSessions
 detect:[:each |(((System descriptionOfSession: each) at: 1)
 userId = 'user1')]
 ifNone: [nil].
sessionId notNil ifTrue: [
 serialNum := GsSession serialOfSession: sessionId .
 otherSession := GsSession sessionWithSerialNumber: serialNum .
 signalToSend := GsInterSessionSignal signal: 4
 message:'reinvest form is here'.
 signalToSend sendToSession: otherSession.
]

GemTalk Systems 251

Gem-to-Gem Signaling GemStone/S 64 Bit 3.6 Programming Guide
Example 13.6 uses the expression:
signalToSend sendToSession: otherSession.

Alternatively, you might use this method:
otherSession sendSignalObject: signalToSend

Still another alternative is this one, which replaces the final two expressions in
Example 13.6 with a single expression:

System sendSignal: aSignalNumber to: otherSession withMessage: aMessage

No matter how the message is sent, the other session needs to receive it, as shown in
Example 13.7.

Example 13.7

GsSession currentSession signalFromSession message
%
reinvest form is here

Sending the Message
When you have the session ID, you can use the method

GsInterSessionSignal class>>signal: aSignalNumber message: aMessage.

aSignalNumber is determined by the particular protocol you arranged at your site and
the specific message you wish to send. Sending the integer “1,” for example, doesn’t
convey a lot unless everyone has agreed that ”1” means “Ready to trade.” An option
is to create an application-level symbol dictionary of meanings for the different signal
numbers.

aMessage is a String object with up to 1023 characters.

Instead of assigning meanings to aSignalNumber, your site might agree that the integer is
meaningless, but the message string is to be read as a string of characters conveying the
intended message, as in Example 13.8.

For more complex information, the message could be a code where each token conveys its
own meaning.

You can use signals to broadcast a message to every user logged in to GemStone. In
Example 13.8, one session notifies all current sessions that it has created a new object to
represent a stock that was added to the portfolio. In applications that commit whenever a
new object is created, this code could be part of the instance creation method for class
Holding. Otherwise, it could be application-level code, triggered by a commit.

Example 13.8

System currentSessions do: [:each |
System sendSignal: 8 to: each

withMessage: 'new Holding: SallieMae'.].

If the message is displayed to users, they can commit or abort to get a new view of the
repository and put the new object in their notify sets. Or the application could be set up so
that signal 8 is handled without user visibility. The application might do an automatic
252 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Gem-to-Gem Signaling
abort, or automatically start a transaction if the user is not in one, and add the object to the
notify set. This enables setting up a notifier on a new unknown object. Also, because signals
are queued in the order received, you can service them in order.

Receiving a Signal
You can receive a signal from another session in either of two ways: you can poll for such
signals, or you can enable notification from GemStone. Signals are queued in the receiving
session in the order in which they were received. If the receiving session has inadequate
heap space for an incoming signal, the contents of the signal is written to stdout, whether
the receiving session has enabled receiving such signals or not. (Both the structure of the
signal contents and the process of enabling signals are described in detail in the following
sections.)

The method System class >> signalFromGemStoneSession reads the incoming
signals, whether you poll or receive a signal. If there are no pending signals, the array is
empty.

Use a loop to call signalFromGemStoneSession repeatedly, until it returns a nil. This
guarantees that there are no more signals in the queue. If signals are being sent quickly, you
may not receive a separate InterSessionSignal for every signal. Or, if you use polling,
signals may arrive more often than your polling frequency.

Polling
To poll for signals from other sessions, send the following message as often as you require:

System signalFromGemStoneSession

If a signal has been sent, this method returns a four-element array containing:

An instance of GsSession representing the session that sent the signal.

The signal value (a SmallInteger).

The string containing the signal message.

The number of additional pending signals.

If no signal has been sent, this method returns an empty array.

Example 13.9 shows how to poll for Gem-to-Gem signals. If the polling process finds a
signal, it immediately checks for another one until the queue is empty. Then the process
sleeps for 10 seconds.

Example 13.9

| response count |
count := 0 .
[response := System signalFromGemStoneSession.
 response size = 0 and:[count < 50]
] whileTrue: [
 System sleep: 10.
 count := count + 1
].
^response
GemTalk Systems 253

Other Signal-Related Issues GemStone/S 64 Bit 3.6 Programming Guide
Receiving a Notification
To use the exception mechanism to receive signals from other Gem sessions, you must
enable receipt of the InterSessionSignal notification. This exception has the same
three arguments mentioned above:

An instance of GsSession representing the session that sent the signal.

The signal value (a SmallInteger).

The string containing the signal message.

By default, the InterSessionSignal notification is disabled, except in the GemBuilder
for Smalltalk interface, which enables the error as part of
GbsSession>>gemSignalAction:.

To enable this exception, execute:
System enableSignaledGemStoneSessionError

To disable the exception, send the message:
System disableSignaledGemStoneSessionError

To determine whether receiving this exception is presently enabled or disabled, send the
message:

System signaledGemStoneSessionErrorStatus

This method returns true if the notification is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you end
the session, or you receive the error. The error is automatically disabled when you receive
it so that the exception handler can take appropriate action without further interruption.
You must re-enable it afterwards.

13.4 Other Signal-Related Issues
GemStone notifiers and Gem-to-Gem signals use the same underlying implementation.
The following performance and other considerations apply when using either mechanism.

Inactive Gem
Receiving the signal can also be delayed. GemStone is not an interrupt-driven application
programming interface. It is designed to make no demands on the application until the
application specifically requests service. Therefore, Gem-to-Gem signals and object change
notifiers are not implemented as interrupts, and they do not automatically awaken an idle
session. They can be received only when GemBuilder is running, not when you are running
client code, sitting at the Topaz prompt, waiting for activity on a socket, or waiting on a
semaphore (as for a child process to complete). The signals are queued up and wait until
you read them, which can create a problem with signal overflow if the delay is too long and
the signals are coming rapidly.

You can receive signals at reliable intervals by regularly performing some operation that
activates GemBuilder. For example, in a GemStone Smalltalk application, you could set up
a polling process that periodically sends out GbsSession>>pollForSignal. The
pollForSignal method causes GemBuilder for Smalltalk to poll the repository.
GemBuilder for C also provides a function GciPollForSignal.
254 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Other Signal-Related Issues
You should also check in your application to make sure the session does not hang. For
instance, use GsSocket>>readReady to make sure your session won’t be waiting for
nonexistent input at a socket connection.

Dealing With Signal Overflow
Gem-to-Gem signals and object change notification signals are queued separately in the
receiving session. The queues maintain the order in which the signals are received.

NOTE
For object change notification, the queue does not preserve the order in which the
changes were committed to the repository. Each notification signal contains an
array of OOPs, and these changes are arranged in OOP order. See “Receiving
Object Change Notification” on page 246.

Each session has a signal buffer that will accommodate 50 signals. Signals remain in the
signal buffer until they are received and read by the receiving session. If the receiving
session does not read the signals, or if it does not read them fast enough to keep up with
signals that are being sent, the signal buffer will fill up. In this case, further signals will
cause the Exception SignalBufferFull to be signalled on the sender. Set your
application so that the sender gracefully handles this error. For example, the sender might
try to send the signal five times, and finally display a message of the form:

Receiver not responding.

The most effective way to prevent signal overflow is to keep the session in a state to receive
signals regularly, using the techniques discussed in the preceding section. When you do
receive signals, make sure you read all the signals off the queue. Repeat
signaledObjects or signalFromGemStoneSession until it returns a nil. You can
postpone the problem by sending very short messages, such as an OOP pointing to some
string on disk or perhaps an index into a global message table. For a better idea of how the
message queue works, see System class>>sendSignal:to:withMessage: in the
image.

Sending Large Amounts of Data
If you want to pass large amounts of data between sessions, sockets are more appropriate
than Gem-to-Gem signals. Chapter 12‚ “File I/O and Operating System Access”, describes
the GemStone interface to TCP/IP sockets. That solution does not pass data through the
Stone, so it does not create system overload when you send a great many messages or very
long ones.

Maintaining Signals and Notification When Users Log Out
Object change notification and Gem-to-Gem signals only reach logged-in sessions. For
applications that need to track processes continuously, you can create a Gem that runs
independently of the user sessions and monitors the system. For example, such a Gem can
monitor a machine and send a warning to all current sessions when something is out of
tolerance. Or it might receive the information that all the users need and store it where they
can find it when they log in.
GemTalk Systems 255

Other Signal-Related Issues GemStone/S 64 Bit 3.6 Programming Guide
Example 13.10 shows some of the code executed by an error handler installed in a monitor
Gem. It traps Gem-to-Gem signals and writes them to a log file.

Example 13.10

| gemMessage logString |
gemMessage := System signalFromGemStoneSession.
logString := String new.
logString add:
'---
The signal ';

add: (gemMessage at: 2) asString;
add: ' was received from GemStone sessionId = ';
add: (gemMessage at: 1) asString;
add: ' and the message is ';
addAll: (gemMessage at: 3).

(GsFile openWriteOnServer: '$GEMSTONE/gemmessage.txt')
addAll: logString; close.
256 GemTalk Systems

Chapter

14 Handling Exceptions
GemStone Smalltalk implements the ANSI exception handling protocols, with provisions
for signaling that an exception has occurred and for defining handlers for signaled
exceptions.

The Exception Class Hierarchy (page 257)
describes the exception class hierarchy, listing the subclasses that correspond to events
that you may want to handle.

Signaling Exceptions (page 259)
describes the mechanism whereby an application can signal that a some notable event
occurred. The class of the signaled exception determines which handler(s) will be
invoked. A handler might halt execution and report an error to the user.

Handling Exceptions (page 260)
describes how to define handlers in your application to cope with signaled exceptions.
Depending on the type of the exception, your application might be able to handle the
exception gracefully, possibly even without the user being informed of the exception.

The Legacy Exception Handling Framework (page 266)
describes the legacy exception handling framework.

14.1 The Exception Class Hierarchy
GemStone/S 64 Bit supports the ANSI Exception framework. The ANSI Exception
framework defines subclasses to match the granularity of errors that you may want to
handle.

GemStone also supports a Legacy Exception framework, for compatibility with earlier
versions of Gemstone. This can be used to signal and handle ANSI exceptions. The Legacy
Exception framework is described under “The Legacy Exception Handling Framework” on
page 266.

Figure 14.1 shows some of the classes in the ANSI exception handler class hierarchy.
GemTalk Systems 257

The Exception Class Hierarchy GemStone/S 64 Bit 3.6 Programming Guide
Figure 14.1 (Partial) Exception Class Hierarchy

AbstractException
Exception

ControlInterrupt
Break
Breakpoint
ClientForwarderSend
Halt
TerminateProcess

Error
AlmostOutOfMemoryError
AlmostOutOfStackError
CompileError
EndOfStream
ExitClientError
ExternalError

CryptoError
IOError

SocketError
SecureSocketError

GciError
ImproperOperation

ArgumentError
ArgumentTypeError
CannotReturn
LookupError
OffsetError
OutOfRange

FloatingPointError
IndexingErrorPreventingCommit
InternalError

GciTransportError
LockError
MigrationError
NameError

MessageNotUnderstood
NumericError

ZeroDivide
RepositoryError
SecurityError
SignalBufferFull
TransactionError
UncontinuableError
UserDefinedError

Notification
Admonition

AlmostOutOfMemory
AlmostOutOfStack
RepositoryViewLost

Deprecated
FloatingPointException
InterSessionSignal
TransactionBacklog
Warning

CompileWarning

For the complete set of Exception classes, refer to the image.
258 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Signaling Exceptions
14.2 Signaling Exceptions
ANSI Exceptions are class-based: you use a class in the Exception hierarchy to describe
errors and other exceptions in your GemStone Smalltalk programs.

You can extend the built-in exception types by defining new subclasses. You can also
change your new exception’s default behavior by adding method overrides to the new
class (for example, defaultAction and isResumable).

The ANSI exception handling framework provides for zero or more dynamic (stack-based)
handlers and a list of zero or more default handlers, ordered in the sequence they were
installed.

When an application sends a message of the form:
Exception signal: aString

GemStone Smalltalk creates an instance of the signaled class and performs the following
search for a suitable handler:

1. Search the stack for a handler associated with the exception class. In a dynamic
(stack-based) handler (described on page 260), you explicitly identify a block of
application code that might signal an exception to which you wish to respond.

2. Search the default (static) handlers. A default handler (described on page 264) is
invoked if a dynamic handler is not found or if the last dynamic handler passes the
exception.

3. Search the exception class for an implementation of the instance method
defaultAction. Some exception classes redefine this method, thereby establishing a
handler to use in the case that there is no suitable dynamic or default handler or if the
last such handler passes the exception. For example, with Notification, the default
action is to ignore the exception.

If the exception class does not override the implementation of defaultAction in
class AbstractException, halt the GemStone Smalltalk interpreter and pass the
exception back to the client to be handled (by Topaz, GemBuilder, or another
application) as an error.

Example 14.1

method: Employee
age: anInt
(anInt between: 15 and: 65)

ifFalse: [Error signal: 'Employee age out of range'].
age := anInt.
%

GemTalk Systems 259

Handling Exceptions GemStone/S 64 Bit 3.6 Programming Guide
14.3 Handling Exceptions
Other than a few fatal errors, most signaled exceptions can be handled in your GemStone
Smalltalk application. To do so, you identify the type of exception that might be signaled
(Exception or, more often, a subclass of Exception) and provide GemStone Smalltalk code
to handle the exception.

GemStone Smalltalk allows you to define two kinds of exception handlers: dynamic (stack-
based) handlers and default (static) handlers.

Dynamic (Stack-Based) Handlers
A dynamic (stack-based) handler is associated with an executable block (instance of
ExecBlock) and the associated state in which the GemStone Smalltalk virtual machine is
presently executing. These handlers live and die with their associated blocks—when the
block is exited, the handler is gone.

A dynamic handler is associated with exactly one ExecBlock and applies as long as the
ExecBlock is being executed. Because an ExecBlock can be embedded in another ExecBlock
(either directly or via another method), multiple dynamic handlers can be active at one
time. Figure 14.2 illustrates this relationship.

Figure 14.2 ExecBlock and Associated Handlers

0#��:	��5

0#��:	��5 ��������"���	��

�!�����
��5

&&
&

�

�
�5

��

�������
��5

�!
����	

��������"���	���!
����	

To define a dynamic handler for an ExecBlock, send the on:do: message to the block.
Example 14.2 defines an averagePay method for the Employee class. The method
calculates an average by dividing two values. If the division signals a ZeroDivide
exception, the exception handler returns zero as the result of the method. In this
implementation, the method will never result in a “division by zero error” being seen by
the user. (Of course, there are other ways you might write this particular method. This
example simply serves to highlight the on:do: exception handling approach.)
260 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Handling Exceptions
Example 14.2

method: Employee
averagePay

[
^self totalPay / self yearsOfService.
] on: ZeroDivide do: [:ex |

^0.
].

%

The first argument to the on:do: method specifies what types of exception the handler
should catch. The argument can be a class in the Exception hierarchy, or it can be an
ExceptionSet made up of one or more classes in the Exception hierarchy.

The second argument specifies a one-argument ExecBlock that will be invoked when the
specified exception is signaled. The one argument is the newly-created instance of the class
of the exception that was signaled, and can contain additional information about the
exception (including the string that was passed to the signal: method). For example, an
instance of the ZeroDivide error can be queried for the dividend (obviously, the divisor is
zero). Similarly, an instance of the MessageNotUnderstood error can be queried for the
receiver and message (selector and arguments).

Selecting a Handler
When an exception is signaled, GemStone starts at the top of the current process’s stack,
searching down the stack for a handler that handles the exception. Each exception handler
in the stack is examined to see if it was installed (using the on:do: message) as a handler
for the signaled exception’s class. If a handler is found but it does not handle the signaled
exception, it is passed over and the search continues down the stack.

A handler for a superclass will handle subclass exceptions. That is, an exception handler
for the class Error will be invoked for an exception of its subclass ZeroDivide, and an
exception handler for the class Notification will be invoked for an exception of its subclass
Warning.

A subclass does not, however, handle a superclass exception. This means that an exception
handler for the class MessageNotUnderstood will not be invoked for an exception of its
superclass Error.

Example 14.3 contains six blocks, three protected blocks and three handler blocks. Each of
the three on:do: messages creates a new stack frame that has an associated handler block.
GemTalk Systems 261

Handling Exceptions GemStone/S 64 Bit 3.6 Programming Guide
Example 14.3

method: Employee
doStuff

| a b c |
a := [

self doStuffA.
b := [

self doStuffB.
c := [

self doStuffC.
self doStuffD.

] on: ZeroDivide do: [:zdEx |
self handleZeroDivide: zdEx.
^self.

].
self doStuffE.

] on: Warning do: [:wEx |
self handleWarning: wEx.
wEx resume: #ok.

].
self doStuffF.
#good.

] on: Error do: [:erEx |
self handleError: erEx.
erEx return: #bad.

].
%

As shown in Figure 14.3, the handler for Error is installed first, and catches any Error or
subclass exception signaled during the block that begins with self doStuffA.

The handler for Warning is installed next, and catches any Warning or subclass exception
signaled during the block that begins with self doStuffB.

If a ZeroDivide error is signaled during doStuffB, it is handled by the Error handler, not
by the ZeroDivide handler (which is not yet installed).

The handler for ZeroDivide is installed last, and catches any ZeroDivide error or subclass
exception signaled during the block that begins with self doStuffC.

If a MessageNotUnderstood error were signaled during doStuffC, it would not be
handled by either the ZeroDivide or Warning handler, even though they were installed
more recently. Those handlers are not of the proper class; MessageNotUnderstood does
not inherit from ZeroDivide or Warning. Instead, a MessageNotUnderstood error would
be handled by the Error handler associated with the block that begins with self
doStuffA.
262 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Handling Exceptions
Figure 14.3 Selecting a Handler

Handler

doStuffC ZeroDivide Direction
 of
Search

doStuffB Warning

doStuffA Error

Flow of Control
Once control is passed by sending value: to the handler block with the exception instance
as an argument, the handler block can attempt to address the situation.

Keep in mind that a dynamic handler is just an ExecBlock that is defined in a method and
passed as an argument during a message send (like a block sent with a select: message).
As such, the dynamic handler has access to the method context in which it is defined,
including method temporaries and block variables in its scope, as well as the object in
which the method is defined (including instance variables). The handler may, of course,
send messages to any object to which it has access.

In particular, the dynamic handler may return from the method containing the dynamic
handler. In Example 14.3 on page 262, the ZeroDivide handler returns self. If a
ZeroDivide exception were signaled during doStuffC, then the doStuff method would
return and other messages would never be sent (doStuffD, doStuffE, and doStuffF).

Messages That Alter the Flow of Control
In addition to an explicit return from the containing method, a dynamic handler can send
the following messages to the exception instance to cause other changes in the flow of
control. Sending one of these messages is similar to a method return in that there is no
return from these messages (except for outer, which might return).

resume: anObject
Causes anObject to be returned as the result of the signal: message that triggered the
exception. Sending resume: to a non-resumable exception is an error.

In Example 14.3, the Warning handler returns #ok as the result of the signal:
message.

resume
Causes nil to be returned as the result of the signal: message. Sending resume to a
non-resumable exception is an error.

return: anObject
Causes anObject to be returned as the result of the on:do: message to the protected
block. In Example 14.3, the Error handler returns #bad to the local variable ‘a’ as the
result of the on:do: message. If no Error occurred during the protected block, then the
on:do: method would return #good as the result of evaluating the protected block.

Newest or innermost call

Oldest or outermost call
GemTalk Systems 263

Handling Exceptions GemStone/S 64 Bit 3.6 Programming Guide
return
Causes nil to be returned as a result of the on:do: message.

retry
Unwinds the stack and re-evaluates the protected block (by sending the on:do:
message again).

retryUsing: aBlock
Unwinds the stack and evaluates the replacement block as the protected block, sending
it the on:do: message.

pass
Exits the current handler and searches for the next handler. In Example 14.3, if the
ZeroDivide handler sends pass to the ZeroDivide exception instance, control passes
to the Error handler as if the ZeroDivide handler didn’t exist (except that any side
effects of its operation up to the pass message are preserved).

outer
Similar to pass, except that if the outer handler sends resume: or resume to the
exception instance, control returns to the inner handler from the outer message.

resignalAs: replacementException
Sending this message causes GemStone Smalltalk to start searching for an exception
handler for replacementException at the top of the stack as if the original signal:
message had been sent to replacementException instead of the receiver.

NOTE
If none of the above messages are sent to alter the flow of control, the value of the
last expression in the block will be returned as the result of the on:do: message.
(For clarity, you could make this behavior explicit by using the return:
message.)

Default Handlers
As described above, a dynamic (stack-based) handler protects a particular block of code
that exists in the same method as the handler. This is appropriate when you only want to
handle a particular exception during execution of the protected code. When the protected
block finishes executing, the handler is no longer in effect.

There are, however, other exceptions that could happen at any time for reasons entirely
unrelated to your code — for example, being notified that the disk is full (RepositoryError)
or that another Gem is sending you a signal (InterSessionSignal). For such exceptions, you
can establish a default (or static) handler.

Since ANSI does not provide a direct API for adding and removing default handlers at
runtime, GemStone provides the following methods to deal with default handlers in the
context of the ANSI framework.

Exception class >> addDefaultHandler: aOneArgumentBlock
Returns a GsExceptionHandler that understands the message remove and adds
the new handler to the beginning of the defaultHandlers list. After
aOneArgumentBlock (equivalent to the second argument to on:do:) is invoked, the
argument (an instance of Exception or one of its subclasses) responds
appropriately to pass and outer seamlessly between stack-based and default
handlers.
264 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Handling Exceptions
AbstractException class >> defaultHandlers
Returns a SequenceableCollection (or subclass) of GsExceptionHandler instances
that will catch instances of the receiver (typically, a subclass of AbstractException).
The result does not include any legacy static handlers (as discussed on page 267).
This collection may be empty and typically is a subset of the installed default
(static) handlers.

GsExceptionHandler >> remove
Since a default handler is not tied to a specific block of code, once installed it
remains in effect until explicitly removed (or until the session logs out). This
method removes (and returns) the default handler if it is found. If it is not found,
returns nil.

For example, the following code sets a default handler for an AlmostOutOfMemoryError.
Note that this will handle the almost out of memory by performing a commit, which could
commit unexpected, when the asynchronous signal occurs; and that commit may not free
up memory and avoids entirely running out of memory.

Example 14.4 Set a default handler for almost out of memory

AlmostOutOfMemoryError addDefaultHandler: [:ex |
GsFile gciLogClient: ex messageText.
System commit.
AlmostOutOfMemoryError enable.
ex resume].

AlmostOutOfMemoryError enable.
%

See also the table on page 268, and the example on page 300.

Default Actions
The third line of defense for an exception (after dynamic and default handlers) occurs
when the virtual machine sends the message defaultAction to the signaled exception.
Because defaultAction is implemented in AbstractException, every exception will
eventually be handled. The ultimate default action (in AbstractException) is to stop the
GemStone Smalltalk interpreter and pass the exception back to the client (to be handled by
Topaz, GemBuilder, or another application).

Exception subclasses can override this method to provide alternate behavior. For example,
the default action for Notification is to ignore the notification and return nil from the
signal: message. For Deprecated, the default action is to log information; for
MessageNotUnderstood, the default action is to retry the original action.

To define a default handler for a new exception, add a defaultAction method to your
new exception class.
GemTalk Systems 265

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.6 Programming Guide
14.4 The Legacy Exception Handling Framework
ANSI exception handling, as described previously, is the primary mechanism for dealing
with errors in your programs. The legacy handler protocol is deprecated, and all exceptions
are now raised as ANSI exceptions. While we strongly encourage the use of ANSI protocol,
legacy protocol may be used to raise and handle ANSI exceptions.

Dynamic (Stack-Based) Exception Handler
In ANSI, a dynamic (stack-based) exception handler is associated with an ExecBlock. By
contrast, a dynamic legacy exception handler is associated with a method being executed.
These exception handlers live and die with their associated method contexts—when the
method returns, control is passed to the next method and the exception handler is gone.

Each exception handler is associated with one method context, but each method context
can have a stack of associated exception handlers. The relationship is diagrammed in
Figure 14.4.

Figure 14.4 Method Contexts and Associated Handlers

��
"������
�#

��
"������
�#

��
"������
�#

"���	��
��#

"���	��
��#

"���	��
��#

"���	��

"���	��
��#
 ��	

����'��	,
������,
��'�,

�!�����
��5

&&
&

�

�
�5

Installing a Dynamic (Stack-Based) Exception Handler
To define a legacy dynamic (stack-based) handler for an exception, use the class method
Exception category:number:do:.

The argument to the category: keyword is ignored.

The argument to the number: keyword is the specific error number you wish to
catch, which can be nil (to catch all exceptions).

The argument to the do: keyword is a four-argument block you wish to execute
when the error is raised.

 The first argument to the four-argument block is the instance of Exception that was
signaled.
266 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The Legacy Exception Handling Framework
 The second argument to the four-argument block is always GemStoneError.

 The third argument to the four-argument block is an error number.

 The fourth argument to the four-argument block is the data passed in when
invoking the error.

If your exception handler does not specify an error number (an error number of nil), then
it receives control in the event of any exception.

The exception handler in Example 14.5 catches the GemStone exception ZeroDivide and
returns either PlusInfinity or MinusInfinity, depending on the sign of the dividend.

Example 14.5

| a b c |
a := 0.
Exception

category: GemStoneError
number: 2026
do: [:ex :cat :num :args |

"Return a value as a result of the #'/' message"
ex dividend * 1.0e0 / 0].

"This might give a ZeroDivide error,
depending on the value of a"
b := -10 / a.
c := b * 3.
c

NOTE
Keep the handler as simple as possible, because you cannot receive any additional
errors while the handler executes. Normally your handler should never terminate
the ongoing activity and change to some other activity.

Default (Static) Exception Handlers
A default (static) exception handler is a final line of defense—if you define one, it will take
control in the event of any error for which no other handler has been defined. A static
exception handler executes without changing in any way the stack, or the return value of
the method that called it. Static exception handlers are therefore useful for handling errors
that appear at unpredictable times, such as the errors listed in Table 14.1. You can use a
static exception handler as you would an interrupt handler, coding it to change the value
of some global variable, perhaps, so that you can determine that an error did, in fact, occur.

Installing a Default (Static) Exception Handler
To define a default (static) exception handler, use the Exception class method
installStaticException:category:number:.

The argument to the installStaticException: keyword is the block you wish to
execute when the error is raised.

The argument to the category: keyword is ignored.
GemTalk Systems 267

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.6 Programming Guide
The argument to the number: keyword is the specific error number you wish to
catch.

The following exception handler, for example, handles the error #abortErrLostOtRoot:

Example 14.6

UserGlobals at: #tx3 put:
 ("Handle lost OT root"
 Exception
 installStaticException: [:ex :cat :num :args |
 System abortTransaction.
]
 category: nil
 number: 3031
 subtype: nil
).

To remove the handler, execute:
self removeExceptionHandler: (UserGlobals at: #tx3).

GemStone Event Exceptions
The errors in Table 14.1 are sometimes called event exceptions. Although they are not true
errors, their implementation is based on the GemStone error mechanism. For examples that
use these event exceptions, also called signals, see Chapter 13‚ “Signals and Notifiers”.

In Table 14.1, the legacy error symbol (and number) is listed along with the corresponding
current exception class.

NOTE
The array LegacyErrNumMap (in Globals) describes the mapping of legacy (pre-
3.0) error numbers to ANSI exception classes (as described in
Chapter 14‚ “Handling Exceptions”).

Table 14.1 Common GemStone Event Exceptions

Exception class
Legacy symbol (and number) Description

TransactionBacklog

#rtErrSignalAbort (6009)
#rtErrSignalFinishTransaction
(6012)

When System inTransaction returns false (running
outside a transaction), Stone requested Gem to abort. This
error is generated only if you have executed either
System enableSignaledAbortError or
TransactionBacklog enableSignalling.
When System inTransaction returns true (the session
is in transaction), Stone has requested the session to
commit, abort, or continue (with continueTransaction) the
current transaction. This error is received only if you have
executed either
System enableSignaledFinishTransactionError
or TransactionBacklog enableSignalling.
268 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The Legacy Exception Handling Framework
Flow of Control
Exception handlers with no explicit return operate like interrupt handlers—they return
control directly to the method from which the exception was raised. You must write all
default (static) exception handlers this way, because the stack usually changes by the time
they catch an error. Dynamic (stack-based) exception handlers can also be written to
behave that way, like the one in Example 14.5 on page 267. See Figure 14.5.

ObjectsCommittedNotification

#rtErrSignalCommit (6008)

An element of the notify set was committed and added to
the signaled objects set. This error is received only if you
have executed either
System enableSignaledObjectsError or
ObjectsCommittedNotification
enableSignalling

InterSessionSignal

#rtErrSignalGemStoneSession
(6010)

Your session received a signal from another GemStone
session. This error is received only if you have executed
either
System enableSignaledGemstoneSessionError or
InterSessionSignal enableSignalling.
InterSessionSignal arguments:
1. The session ID of the session that sent the signal.
2. An integer representing the signal.
3. A message string.

AlmostOutOfMemory

#rtErrSignalAlmostOutOfMemory
(6012)

Temporary object memory for the session is almost full.
The error is deferred if in user action or index maintenance.
This error is enabled by default, but has no effect; you must
also execute AlmostOutOfMemory
enableNotification, or set a default handler. After a
signal is received, it must be reenabled using
AlmostOutOfMemory enable.

AlmostOutOfMemoryError

(6013)

Temporary object memory for the session is almost full.
The error is deferred if in user action or index maintenance.
This error is not enabled by default. After a signal is
received, it must be reenabled using
AlmostOutOfMemoryError enable.

RepositoryError

#rtErrTranlogDirFull (2339)

All available transaction log directories or partitions are
full. This error is received if you are DataCurator or
SystemUser, otherwise only if you have executed
System enableSignalTranlogsFull.

RepositoryViewLost

#abortErrLostOtRoot (3031)

While running outside a transaction, Stone requested Gem
to abort. Gem did not respond in the allocated time, and
Stone was forced to revoke access to the object table.

Table 14.1 Common GemStone Event Exceptions

Exception class
Legacy symbol (and number) Description
GemTalk Systems 269

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.6 Programming Guide
Figure 14.5

0����-���'��8�;�<

���
�����'��	,��'�,

0#��!
����
%�
"��
�=

�!

�#���
�������

����
������

Default Flow of Control in Legacy Exception Handlers

Sometimes, however, this is not useful behavior—the application may simply have to raise
the same error again. In dynamic (stack-based) exception handlers, it can be useful instead
to return control to the method that defined the handler.

You can accomplish this by defining an explicit return (using the return character ^) in the
block that is executed when the exception is raised. For example, the method in
Example 14.7 redefines how the GemStone exception #ZeroDivide is to be handled.

Example 14.7

| a b c |
a := 0.
Exception

category: GemStoneError
number: 2026
do: [:ex :cat :num :args |
"Return from this method with a String"
^'zero divide'
].

"When a is zero, the error will be caught and the method will
return without assigning any value to b or c"
b := -10 / a.
c := b * 3.
c

Figure 14.6 shows the flow of control in Example 14.7.
270 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The Legacy Exception Handling Framework
Figure 14.6

0����-���'��8�;�<

���
�����'��	,��'�,

0#��!
����
%�
"�=

�!

�#���
�������

����
������

Dynamic (Stack-Based) Exception Handler with Explicit Return

Signaling Other Exception Handlers
Under certain circumstances, your exception handler can choose to pass control to a
previously defined exception handler, one that is below the present exception handler on
the stack. To do so, your exception handler can send the message
resignal:number:args:.

The argument to the resignal: keyword is ignored.

The argument to the number: keyword is the specific error number you wish to
signal.

The argument to the args: keyword is an array of information you wish to pass to
the exception handler. This is the array whose elements might be used to build the
error message.

Removing Exception Handlers
You can define an exception so that it removes itself after it has been raised, using the
Exception instance method remove. In conjunction with the resignal: mechanism
described in the previous section, remove allows you to set up your application so that
successive occurrences of the same error (or category of errors) are handled by successively
older exception handlers that are associated with the same context.

For example, suppose we execute the following code:
GemTalk Systems 271

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.6 Programming Guide
Example 14.8

| x y |
Exception

category: GemStoneError
number: 2026
do: [:ex :cat :num :args | ex remove. 'first result'].

Exception
category: GemStoneError
number: 2026
do: [:ex :cat :num :args | ex remove. 'second result'].

x := 1 / 0. "handled by the second (most recent) handler"
y := 2 / 0. "handled by the first handler; the second was removed"
Array with: x with: y.
%
anArray('second result', 'first result')

The first occurrence of the error executes the most recent exception defined. The exception
then removes itself, so that the next occurrence of the same error executes the exception
handler stacked previously within the same method context. This exception handler
returns an array of two strings, as shown here.

Recursive Errors
If you define an exception handler broadly to handle many different errors, and you make
a programming mistake in your exception handler, the exception handler may then raise
an error that calls itself repeatedly. Such infinitely recursive error handling eventually
reaches the stack limit. The resulting stack overflow error is received by whichever
interface you are using.

If you receive such an error, check your exception handler carefully to determine whether
it includes errors that are causing the problem.

Raising Exceptions
Legacy methods for raising exceptions can be used, but raise ANSI exceptions.

To raise an exception, use the class method System signal:args:
signalDictionary:.

The argument to the signal: keyword is the specific error number you wish to
signal.

The argument to the args: keyword is an array of information you wish to pass to
the exception handler. This is the array whose elements are passed to the handler.

The argument to the signalDictionary: keyword is ignored.

To raise the generic exception defined for you in ErrorSymbols as #genericError, use the
class method System genericSignal:text:args:, or one of its variants.

The argument to the genericSignal: keyword is an object you can define to
further distinguish between errors, if you wish. Alternatively, it can be nil.
272 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide The Legacy Exception Handling Framework
The argument to the text: keyword is a string you can use for an error message. It
will appear in GemStone’s error message when this error is raised. It can be nil.

The argument to the args: keyword is an array of information you wish to pass to
the exception handler, as described above.

Other variants of this message are System genericSignal:text:arg: for errors
having only one argument, or System genericSignal:text: for errors having no
arguments.

ANSI Integration
The ANSI and legacy frameworks should work together so that signaling an ANSI
exception is caught by a legacy exception handler. Example 14.9 shows a sample use of a
legacy handler to catch signaled ANSI exceptions.

Example 14.9

method: Employee
legacyMethod

self doA.
"Install a legacy handler"
Exception

category: nil
number: nil
do: [:ex :cat :num :args |

self handlerCode.
self shouldReturn ifTrue: [

^self returnValue.
].
self continueValue.

].
self doB.
"Signal an ANSI error"
instVar1 := Error signal: 'something bad happened!'.
self doC.
^instVar2.

%

When this method is invoked, it calls doA before installing the exception handler. After the
exception handler is installed, the method calls doB. If any exception is signaled during the
execution of doB, the handler is invoked.

Next, an explicit error is invoked, using the ANSI protocol. This signaled ANSI exception
is caught by the legacy exception handler installed earlier in the method. After evaluating
the handlerCode, the handler decides whether to return from the method or continue. If
it returns, the result of returnValue is returned. If it continues, the result of
continueValue is stored in instVar1, and the method proceeds with doC and finally
returns instVar2.
GemTalk Systems 273

The Legacy Exception Handling Framework GemStone/S 64 Bit 3.6 Programming Guide
274 GemTalk Systems

Chapter

15 Performance and
Optimization
GemStone Smalltalk includes several tools to help you tune your applications for faster
performance.

Profiling Smalltalk Execution (page 276)
Profiling tools that allow you to pinpoint the problem areas in your application code.

Clustering Objects for Faster Retrieval (page 287)
How to cluster objects that are often accessed together so that many of them can be
found in the same disk access.

Modifying Cache Sizes for Better Performance (page 296)
How to increase or decrease the size of various caches in order to minimize disk access
and storage reclamation.

Managing VM Memory (page 298)
Issues to consider when managing temporary object memory, and presents techniques
for diagnosing and addressing OutOfMemory conditions.

NotTranloggedGlobals (page 303)
Optimize certain operations by avoiding writing tranlog entries.

Other Optimization Hints (page 304)
Allow operations on large collections without using temporary object memory.
GemTalk Systems 275

Profiling Smalltalk Execution GemStone/S 64 Bit 3.6 Programming Guide
15.1 Profiling Smalltalk Execution
Many things impact performance, and cache size and disk access often have the largest
impact on application performance. However, your GemStone Smalltalk code can also
affect the speed of your application. There are a number of tools to help you identify issues
and optimize your code.

Time to execute a block
If you simply want to know how long it takes a given block to return its value, you can use
GemStone Smalltalk methods that execute a block and return a number.

CPU Time
The familiar method System class >> millisecondsToRun: takes a zero-argument
block as its argument and returns the time in milliseconds required to evaluate the block.

topaz 1> run
System millisecondsToRun: [
 System performOnServer: 'ping -c1 gemtalksystems.com']
%
0

For microseconds resolution use the parallel microsecondsToRun:

topaz 1> run
System microsecondsToRun: [
 System performOnServer: 'ping -c1 gemtalksystems.com']
%
484

Elapsed Time
Time class >> millisecondsElapsedTime: works similarly, but returns the
elapsed rather than the CPU time required.

topaz 1> run
Time millisecondsElapsedTime: [
 System performOnServer: 'ping -c1 gemtalksystems.com']
%
20

To get further resolution, use Time class >> secondsElapsedTime:, which returns
a float with system-dependent resolution. For example, to get a result in microseconds:

topaz 1> run
((Time secondsElapsedTime: [
 System performOnServer: 'ping -c1 gemtalksystems.com']) *

1000000) asInteger
%
19961
276 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Profiling Smalltalk Execution
ProfMonitor
The ProfMonitor class allows you to sample the methods that are executed in a given block
of code and analyze the percentage of total execution time represented by each method.
When an instance starts profiling, it will take a method call stack at specified intervals for
a specified period of time. When it is done, it collects the results and returns them in the
form of a string formatted as a report.

ProfMonitorTree is a subclass of ProfMonitor, that by default returns an execution tree
report or reports, in addition to the reports generated by ProfMonitor. By specifying the
desired reports in arguments to ProfMonitor, these tree reports can be also generated from
ProfMonitor.

Sample intervals
ProfMonitor, by default, will take a sample every millisecond (1 ms). You can specify the
interval at which ProfMonitor takes samples using the instance methods interval: or
intervalNs:, or class methods with these keywords. interval: specifies milliseconds,
while intervalNs: specifies the interval in nanoseconds (a nanosecond is a billionth of a
second). The minimum interval is 1000 nanoseconds.

It may be convenient to refer to Table 15.1 when determining the sample interval and
reading the results:

Table 15.1 Subsecond time conversions

seconds
milliseconds

ms
microseconds

μs
nanoseconds

ns

Reporting limits
By default, ProfMonitor reports every method it found executing. It is usually useful to
limit the reporting of methods to the ones that appear more frequently, to reduce clutter in
the results and allow you to focus on what is taking the most time.

To limit the reporting results, set the lower limit using the instance method
reportDownTo: limit or methods with the keyword downTo:. Each result at the limit or
larger is included in the report.

These methods accept a limit of either an integer, which is an absolute number of samples,
or a SmallDouble, which defines a percentage of the total number of samples.

For example, a downTo: of 50 would specify that the reports include information for every
method that was sampled at least 50 times, regardless of whether the number of samples
was 100 or 1000. A downTo: of 0.50 would specify that the reports include information for
methods that were sampled 50% of the time or more; if the total number of samples is 100,
this would be 50 actual samples, for a sample set size of 1000, this would be 500 samples.

1 1000 1,000,000 1,000,000,000

1 1000 1,000,000

1 1000
GemTalk Systems 277

Profiling Smalltalk Execution GemStone/S 64 Bit 3.6 Programming Guide
Reports
ProfMonitor provides profiling results in the form of a string, containing up to six
individual reports that analyze the profiling raw data in different ways. The desired
reports to be output can be specified using methods with the reports: keyword. By
specifying reports, you can also enable object creation tracking.

Available reports include:

#samples—sample counts report, labeled STATISTICAL SAMPLING RESULTS.

#stackSamples—stack sampling report, labeled STATISTICAL STACK SAMPLING

RESULTS.

#senders—method senders report, labeled STATISTICAL METHOD SENDERS RESULTS.

#objCreation—object creation report, labeled OBJECT CREATION REPORT.
Including this in the reports: argument enables object tracking.

#tree—method execution tree report, labeled STACK SAMPLING TREE RESULTS.
Including this in the reports: argument causes ProfMonitorTree to be used for
profiling.

#objCreationTree—object creation tree report, labeled OBJECT CREATION TREE
REPORT. Including this in the reports: argument enables object tracking and causes
ProfMonitorTree to be used for profiling.

The default reports that are provided depend on the initial class specified;

ProfMonitor defaults to { #samples . #stackSamples . #senders }

ProfMonitorTree defaults to { #samples . #stackSamples . #senders .
#tree }

Temporary results file
ProfMonitor stores its results temporarily in a file with the default filename
/tmp/gempid.tmp. You can specify a different filename by using ProfMonitor’s instance
creation method newWithFile: and variants. This file is deleted by profiling block
methods, profileOff, and reportAfterRun* methods. Note that if the Gem that is
executing profiling terminates abnormally, it may leave this file behind; such files must be
manually deleted.

Real vs. CPU time
Profiling operates by taking samples of the stack at intervals specified by the interval:
or intervalNs: arguments. Generally, this specifies that samples are taken at the given
intervals in CPU time, which provides information about the relative performance of
operations based on how much CPU time they use.

It is also possible to profile based on real time, in which case samples are taken after the
specified interval of real time has elapsed. This can detect performance issues that are not
based on CPU execution, such as a sleep:, and expose the performance impact of disk
access and other performance issues external to the code executing.

Sampling time is one of the options that is defined by the setOptions: keyword, either
the convenience profiling methods or the instance method. You may include #real or #cpu
in this array.
278 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Profiling Smalltalk Execution
Profiling Code

Convenience Profiling of a Block of Code
ProfMonitor provides several methods that allow you to profile a block of code and report
the results with a single class method.

The following profiling methods are available:
monitorBlock:

monitorBlock:reports:

monitorBlock:intervalNs:

monitorBlock:intervalNs:options:

monitorBlock:downTo:

monitorBlock:downTo:interval:

monitorBlock:downTo:intervalNs:

monitorBlock:downTo:intervalNs:options:

monitorBlock:downTo:intervalNs:reports:

The following defaults apply:

When no downTo: keyword is provided, the default is 1; each method sampled is
reported.

When no interval: or intervalNs: keyword is provided, the default is 0.5ms
(500 microseconds).

When no options: are provided, #CPU is used.

When no reports: are specified, the default is {#samples . #stackSamples .
#senders} for ProfMonitor, and {#samples . #stackSamples . #senders .
#tree} for ProfMonitorTree.

For example, to take samples every millisecond, and only report methods that were
sampled at least 10 times:

ProfMonitor
monitorBlock: [100 timesRepeat:

[System myUserProfile dictionaryNames]]
downTo: 10
interval: 1

For a more detailed report, you could take samples every 1/10 of a millisecond; this
interval is 100000 nanoseconds. This creates many more samples; to make it easier to
control the reporting limit we’ll use a percent, and only include methods whose number of
samples was 20% or more of the total.

ProfMonitor
monitorBlock: [100 timesRepeat:

[System myUserProfile dictionaryNames]]
downTo: 0.2
intervalNs: 100000

These two reports will give you similar results, but since there are many more samples, the
effect of chance sampling error will be less. The choice of sampling interval and report limit
GemTalk Systems 279

Profiling Smalltalk Execution GemStone/S 64 Bit 3.6 Programming Guide
depends on the specific code you are profiling. You may need to run a number of iterations,
starting with a more coarse-grained profile and refining for subsequent runs.

Background Profiling
To sample blocks of code, the quick profiling methods are sufficient. You can also explicitly
start and stop profiling, allowing you to profile any arbitrary sequence of GemStone
Smalltalk statements.

To start and stop profiling, use the class method profileOn, which create an instances of
ProfMonitor and starts profiling; when you are done, the instance method profileOff
stops profiling and reports the results.

For example:
run
UserGlobals at: #myMonitor put: ProfMonitor profileOn.
%

run
100 timesRepeat: [System myUserProfile dictionaryNames].
%

run
(UserGlobals at: #myMonitor) profileOff.
%

Manual Profiling
You can also create and configure the instance of ProfMonitor. To profile in this way,
perform the following steps:

Step 1. Create instance using ProfMonitor new, newWithFile:,
newWithFile:interval:, or newWithFile:intervalNs:.

Step 2. Configure it as desired, using instance methods including interval:,
intervalNs:, setOptions:, and traceObjectCreation:.

Step 3. start profiling using the instance method startMonitoring.

Step 4. execute your code.

Step 5. stop profiling using the instance method stopMonitoring.

Steps 3, 4 and 5 can also be done using runBlock:.

Step 6. gather results and report, using reportAfterRun or
reportAfterRunDownTo:.
280 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Profiling Smalltalk Execution
For example:
| aMonitor |
aMonitor := ProfMonitor newWithFile:

'$GEMSTONE/data/profMon.dat'.
aMonitor interval: 2.
aMonitor setOptions: {#objCreation}.
aMonitor startMonitoring.
100 timesRepeat: [System myUserProfile dictionaryNames].
aMonitor stopMonitoring.
aMonitor reportAfterRun.

Saving a ProfMonitor for later analysis
ProfMonitor raw data is written to a disk file, and as long as the disk file is available, you
may save the instance of ProfMonitor and it will reopen its file to perform the analysis later
or in a different session.

To ensure that the file is saved, use methods such as runBlock:, which do not
automatically create the report and delete the file.

For example:
run
UserGlobals at: #aProfMon put:
 (ProfMonitor runBlock: [

200 timesRepeat: [System myUserProfile dictionaryNames]
]).

%
commit
logout
login
run
aProfMon reportAfterRun
%

GemTalk Systems 281

Profiling Smalltalk Execution GemStone/S 64 Bit 3.6 Programming Guide
The Profile Report
The profiling methods discussed in the previous sections return a string formatted as a
report. The following example shows a sample run and the resulting report.

Example 15.1

topaz 1> printit
ProfMonitor
 monitorBlock:[
 200 timesRepeat:[System myUserProfile dictionaryNames]]

reports: { #samples . #stackSamples . #senders . #tree}
%
================
STATISTICAL SAMPLING RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms
report limit threshold: 2 hits / 2.2%
0 pageFaults 2061 objFaults 0 gcMs 824413 edenBytesUsed

 tally % class and method name
------ ----- --------------------------------------
 23 24.21 Array >> _at:
 22 23.16 IdentityDictionary >> associationsDo:
 18 18.95 block in SymbolList >> names
 18 18.95 AbstractDictionary >> _at:
 11 11.58 block in AbstractDictionary >> associationsDetect:ifNone:
 2 2.11 Object >> _basicSize
 1 1.05 11 other methods
 95 100.00 Total

================
STATISTICAL STACK SAMPLING RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms
report limit threshold: 2 hits / 2.2%
0 pageFaults 2061 objFaults 0 gcMs 824413 edenBytesUsed

 total % class and method name
------ ----- --------------------------------------
 95 100.00 GsNMethod class >> _gsReturnToC
 95 100.00 executed code
 95 100.00 ProfMonitor class >> monitorBlock:downTo:
 95 100.00 ProfMonitor >> monitorBlock:
 94 98.95 block in executed code
 94 98.95 UserProfile >> dictionaryNames
 94 98.95 SymbolList >> namesReport
 94 98.95 SymbolList >> names
 94 98.95 AbstractDictionary >> associationsDetect:ifNone:
 94 98.95 IdentityDictionary >> associationsDo:
 29 30.53 block in AbstractDictionary >> associationsDetect:ifNone:
 23 24.21 Array >> _at:
 18 18.95 block in SymbolList >> names
 18 18.95 AbstractDictionary >> _at:
 2 2.11 Object >> _basicSize
282 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Profiling Smalltalk Execution
 1 1.05 2 other methods
 95 100.00 Total

================
STATISTICAL METHOD SENDERS RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms
report limit threshold: 2 hits / 2.2%

 % % Parent
 self total total local Method
 Time Time ms % Child
------ ------ ------ ----- -----------

= 0.0 100.0 90.0 0.0 GsNMethod class >> _gsReturnToC
 90.0 100.0 executed code

 90.0 100.0 GsNMethod class >> _gsReturnToC
= 0.0 100.0 90.0 0.0 executed code
 90.0 100.0 ProfMonitor class >> monitorBlock:downTo:

 90.0 100.0 executed code
= 0.0 100.0 90.0 0.0 ProfMonitor class >> monitorBlock:downTo:
 90.0 100.0 ProfMonitor >> monitorBlock:

 90.0 100.0 ProfMonitor class >> monitorBlock:downTo:
= 0.0 100.0 90.0 0.0 ProfMonitor >> monitorBlock:
 89.1 98.9 block in executed code
 0.9 1.1 ProfMonitor >> startMonitoring

 89.1 100.0 ProfMonitor >> monitorBlock:
= 0.0 98.9 89.1 0.0 block in executed code
 89.1 100.0 UserProfile >> dictionaryNames

 89.1 100.0 block in executed code
= 0.0 98.9 89.1 0.0 UserProfile >> dictionaryNames
 89.1 100.0 SymbolList >> namesReport

 89.1 100.0 UserProfile >> dictionaryNames
= 0.0 98.9 89.1 0.0 SymbolList >> namesReport
 89.1 100.0 SymbolList >> names

 89.1 100.0 SymbolList >> namesReport
= 0.0 98.9 89.1 0.0 SymbolList >> names
 89.1 100.0 AbstractDictionary >> associationsDetect:ifNone:

 89.1 100.0 SymbolList >> names
GemTalk Systems 283

Profiling Smalltalk Execution GemStone/S 64 Bit 3.6 Programming Guide
= 0.0 98.9 89.1 0.0 AbstractDictionary >> associationsDetect:ifNone:
 89.1 100.0 IdentityDictionary >> associationsDo:

 89.1 100.0 AbstractDictionary >> associationsDetect:ifNone:
= 23.2 98.9 89.1 23.4 IdentityDictionary >> associationsDo:
 1.9 2.1 Object >> _basicSize
 27.5 30.9 block in AbstractDictionary >> associationsDetect:ifNone:
 21.8 24.5 Array >> _at:
 17.1 19.1 AbstractDictionary >> _at:

 27.5 100.0 IdentityDictionary >> associationsDo:
= 11.6 30.5 27.5 37.9 block in AbstractDictionary >> associationsDetect:ifNone:
 17.1 62.1 block in SymbolList >> names

 21.8 100.0 IdentityDictionary >> associationsDo:
= 24.2 24.2 21.8 100.0 Array >> _at:

 17.1 100.0 block in AbstractDictionary >> associationsDetect:ifNone:
= 18.9 18.9 17.1 100.0 block in SymbolList >> names

 17.1 100.0 IdentityDictionary >> associationsDo:
= 18.9 18.9 17.1 100.0 AbstractDictionary >> _at:

 1.9 100.0 IdentityDictionary >> associationsDo:
= 2.1 2.1 1.9 100.0 Object >> _basicSize

================
STACK SAMPLING TREE RESULTS
elapsed CPU time: 90 ms
monitoring interval: 1.0 ms
report limit threshold: 2 hits / 2.2%

 100.0% (95) executed code [UndefinedObject]
 100.0% (95) ProfMonitor class >> monitorBlock:downTo: [ProfMonitor class]
 100.0% (95) ProfMonitor >> monitorBlock: [ProfMonitor]
 98.9% (94) block in executed code [ExecBlock0]
 | 98.9% (94) UserProfile >> dictionaryNames
 | 98.9% (94) SymbolList >> namesReport
 | 98.9% (94) SymbolList >> names
 | 98.9% (94) AbstractDictionary >> associationsDetect:ifNone: [SymbolDictionary]
 | 98.9% (94) IdentityDictionary >> associationsDo: [SymbolDictionary]
 | 30.5% (29) block in AbstractDictionary >> associationsDetect:ifNone: [ExecBlock1]
 | | 18.9% (18) block in SymbolList >> names [ExecBlock1]
 | 24.2% (23) Array >> _at: [IdentityCollisionBucket]
 | 18.9% (18) AbstractDictionary >> _at: [SymbolDictionary]
 | 2.1% (2) Object >> _basicSize [IdentityCollisionBucket]
284 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Profiling Smalltalk Execution
As you can see, the report is in four sections, corresponding to the requested reports:

#samples: STATISTICAL SAMPLING RESULTS

#stackSamples: STATISTICAL STACK SAMPLING RESULTS

#senders:STATISTICAL METHOD SENDERS RESULTS

#tree: STACK SAMPLING TREE RESULTS

Each section includes the same set of methods that the profile monitor encountered when
it checked the execution stack every millisecond; the report is presented to give different
views of this data.

Keep in mind that these numbers are based on sampling, and depending on the size and
number of samples, may not exactly reflect the actual percentage of time spent in each
method and will likely vary from run to run. Also, if you make external calls to the OS, to
user actions or other C libraries, this will also distort results for the invoking method.

Profiling Beyond Performance
Profiling as previously described is focused on the performance of a block of code.
ProfMonitor provides additional options that let you track other things that are going on,
alongside your code execution, that can impact application performance. These are:

number of persistent and temporary objects created

number of object faults by this Gem

number of page faults by this Gem

space used in the temporary object "eden" space

time spent in in-memory garbage collection

To profile these attributes, use profiling methods with the setOptions: keyword, specify
the option that you want to profile.

When profiling these options, you get one or more standard time-based reports along with
the specific attribute profile or profiles. This allows you to correlate with the basic
performance over a specific execution run.

Type of Profile Options Keyword Units
Default time

profiling

Object creation #objCreation #cpu

Object faults #objFaults faults #real

Page faults #pageFaults faults #real

GC operations #gcTime milliseconds #cpu

Temporary memory
eden space

#edenUsage bytes #real
GemTalk Systems 285

Profiling Smalltalk Execution GemStone/S 64 Bit 3.6 Programming Guide
Object Creation Tracking
Object creation tracking is enabled in a number of ways:

#objCreation in the setOptions: array;

Specifying #objCreation or #objCreationTree in the reports: array; or by

using the ProfMonitor instance method traceObjectCreation:.

When object creation tracking is enabled, after the standard report sections, an additional
section is included to report the count and object creation.

For example:

Example 15.2 Object creation report

OBJECT CREATION REPORT:
elapsed CPU time: 40 ms
monitoring interval: 2.0 ms

tally class of created object
 call stack
------ ---

 600 String class
 - - - -
 500 SmallInteger >> asString
 500 SymbolList >> namesReport
 500 UserProfile >> dictionaryNames
 500 executed code
 500 GsNMethod class >> _gsReturnToC
 - - - -
 100 String class >> new
 100 SymbolList >> namesReport
 100 UserProfile >> dictionaryNames
 100 executed code
 100 GsNMethod class >> _gsReturnToC
------ ---

 100 Array class
 - - - -
 100 SymbolList >> names
 100 SymbolList >> namesReport
 100 UserProfile >> dictionaryNames
 100 executed code
 100 GsNMethod class >> _gsReturnToC

Memory Use Profiling
While object creation is the most important way to profile a Gem’s use of memory,
ProfMonitor provides several other options to allow you to track the impact of the
operations by methods on the Gem’s memory use.
286 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Clustering Objects for Faster Retrieval
Using the following keys in the setOptions: argument changes the profiling to the
specific kind of profile. Only one of these can be used at a time.

#objFaults—profiles object faults

#pageFaults—profiles page faults

#edenSpace—profiles eden space, the area of temporary objects memory into which
new temporary objects are put.

#gcTime—profiles the time spent in in-memory garbage collection, as tracked by the
cache statistic TimeInScavenges.

By default, for object faults, page faults, and eden space, the sampling frequency is
calculated in real time, rather than CPU time. This can be changed by also including #cpu
in the setOptions: array. Garbage collection time is sampled by default in CPU time.

When using these option, the first two reports describe faults, rather than milliseconds. The
third report provides millisecond performance information to allow correlation with the
faulting data.

15.2 Clustering Objects for Faster Retrieval
As you’ve seen, GemStone ordinarily manages the placement of objects on the disk
automatically—you’re never forced to worry about it. Occasionally, you might choose to
group related objects on secondary storage to enable GemStone to read all of the objects in
the group with as few disk accesses as possible.

Because an access to the first element usually presages the need to read the other elements,
it makes sense to arrange those elements on the disk in the smallest number of disk pages.
This placement of objects on physically contiguous regions of the disk is the function of
class Object’s clustering protocol. By clustering small groups of objects that are often
accessed together, you can sometimes improve performance.

Clustering a group of objects packs them into disk pages, each page holding as many of the
objects as possible. The objects are contiguous within a page, but pages are not necessarily
contiguous on the disk.

Will Clustering Solve the Problem?
Clustering objects solves a specific problem—slow performance due to excessive disk
accessing. However, disk access is not the only factor in poor performance. In order to
determine if clustering will solve your problem, you need to do some diagnosis. You can
use GemStone’s VSD utility to find out how many times your application is accessing the
disk. VSD allows you to chart system statistics over time to better understand the
performance of your system. See the VSD User’s Guide for more information on using VSD.

The following statistics are of interest:

PageReads — how many pages your session has read from the disk since the session
began

PageWrites — how many pages your session has written to the disk since the
session began
GemTalk Systems 287

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.6 Programming Guide
You can examine the values of these statistics before and after you commit each transaction
to discover how many pages it read in order to perform a particular query, and to
determine the number of disk accesses required by the process of committing the
transaction.

It is tempting to ignore these issues until you experience a problem such as an extremely
slow application, but if you keep track of such statistics on a regular (even if intermittent)
basis, you will have a better idea of what is “normal” behavior when a problem crops up.

Cluster Buckets
You can think of clustering as writing the components of their receivers on a stream of disk
pages. When a page is filled, another is randomly chosen and subsequent objects are
written on the new page. A new page is ordinarily selected for use only when the previous
page is filled, or when a transaction ends. Sending the message cluster to objects in
repeated transactions will, within the limits imposed by page capacity, place its receivers
in adjacent disk locations. (Sending the message cluster to objects repeatedly within a
transaction has no effect.)

The stream of disk pages used by cluster and its companion methods is called a bucket.
GemStone captures this concept in the class ClusterBucket.

If you determine that clustering will improve your application’s performance, you can use
instances of the class ClusterBucket to help. All objects assigned to the same instance of
ClusterBucket are to be clustered together. When the objects are written, they are moved to
contiguous locations on the same page, if possible. Otherwise the objects are written to
contiguous locations on several pages.

Once an object has been clustered into a particular bucket and committed, that bucket
remains associated with the object until you specify otherwise. When the object is
modified, it continues to cluster with the other objects in the same bucket, although it might
move to another page within the same bucket.

Using Existing Cluster Buckets
By default, a global array called AllClusterBuckets defines seven instances of
ClusterBucket. Each can be accessed by specifying its offset in the array. For example, the
first instance, AllClusterBuckets at: 1, is the default bucket when you log in. This
bucket is invariant—you cannot modify it.

The second, third, and seventh cluster buckets in the array can be used for whatever
purposes you require and can all be modified.

The GemStone system makes use of the fourth, fifth, and sixth buckets of the array
AllClusterBuckets:

AllClusterBuckets at: 4 is the bucket used to cluster the methods associated
with kernel classes.

AllClusterBuckets at: 5 is the bucket used to cluster the strings that define
source code for kernel classes.

AllClusterBuckets at: 6 is the bucket used to cluster other kernel objects such
as globals.

You can determine how many cluster buckets are currently defined by executing:
System maxClusterBucket
288 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Clustering Objects for Faster Retrieval
A given cluster bucket’s offset in the array specifies its clusterId. A cluster bucket’s clusterId
is an integer in the range of 1 to (System maxClusterBucket).

NOTE
For compatibility with previous versions of GemStone, you can use a clusterId as
an argument to any keyword that takes an instance of ClusterBucket as an
argument.

You can determine which cluster bucket is currently the system default by executing:
System currentClusterBucket

You can access all instances of cluster buckets in your system by executing:
ClusterBucket allInstances

You can change the current default cluster bucket by executing an expression of the form:
System clusterBucket: aClusterBucket

Creating New Cluster Buckets
You are not limited to the predefined instances of ClusterBucket. You can create new
instances of ClusterBucket with the simple expression ClusterBucket new.

This expression creates a new instance of ClusterBucket and adds it to the array
AllClusterBuckets. You can then access the bucket in one of two ways. You can assign it a
name:
UserGlobals at: #empClusterBucket put: (ClusterBucket new)

You could then refer to it in your application as empClusterBucket. Alternatively, you can
use the offset into the array AllClusterBuckets. For example, if this is the first cluster bucket
you have created, you could refer to it this way:

AllClusterBuckets at: 8

(Recall that the first seven elements of the array are predefined.)

You can determine the clusterId of a cluster bucket by sending it the message clusterId.
For example:

empClusterBucket clusterId
8

You can access an instance of ClusterBucket with a specific clusterId by sending it the
message bucketWithId:.

You can create and use as many cluster buckets as you need; up to thousands, if necessary.
NOTE

For best performance and disk space usage, use no more than 32 cluster buckets in
a single session.

Cluster Buckets and Concurrency
Cluster buckets are designed to minimize concurrency conflicts. As many users as
necessary can cluster objects at the same time, using the same cluster bucket, without
experiencing concurrency conflicts. Cluster buckets do not contain or reference the objects
clustered on them -- the objects that are clustered keep track of their bucket. This also
avoids problems with authorizations.

However, creating a new instance of ClusterBucket automatically adds it to the global
array AllClusterBuckets. Adding an instance to AllClusterBuckets causes a concurrency
GemTalk Systems 289

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.6 Programming Guide
conflict when more than one transaction tries to create new cluster buckets at the same
time, since all the transactions are all trying to write the same array object.

To avoid concurrency conflicts, you should design your clustering when you design your
application. Create all the instances of ClusterBucket you anticipate needing and commit
them in one or few transactions.

To facilitate this kind of design, GemStone allows you to associate descriptions with
specific instances of ClusterBucket. In this way, you can communicate to your fellow users
the intended use of a given cluster bucket with the message description:. For example:

Example 15.3

UserGlobals at: #empClusterBucket put: (ClusterBucket new).
empClusterBucket description: 'Use this bucket for

clustering employees and their instance variables.'

As you can see, the message description: takes a string of text as an argument.

Changing the attributes of a cluster bucket, such as its description or clusterId, writes that
cluster bucket and thus can cause concurrency conflict. Only change these attributes when
necessary.

NOTE
For best performance and disk space usage as well as avoiding concurrency
conflicts, create the required instances of ClusterBucket all at once, instead of on
a per-transaction basis, and update their attributes infrequently.

Cluster Buckets and Indexing
Indexes on instance of subclasses of UnorderedCollection are created and modified using
the cluster bucket associated with the specific collection, if any. To change the clustering of
an indexed collection:

1. Remove its index.

2. Recluster the collection.

3. Re-create its index.

Clustering Objects
Class Object defines several clustering methods. One method is simple and fundamental.
Another method is more sophisticated and attempts to order the receiver’s instance
variables as well as writing the receiver itself.

The Basic Clustering Message
The basic clustering message defined by class Object is cluster. For example:

myObject cluster

This simplest clustering method simply assigns the receiver to the current default cluster
bucket; it does not attempt to cluster the receiver’s instance variables. When the object is
next written to disk, it will be clustered according to the attributes of the current default
cluster bucket.
290 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Clustering Objects for Faster Retrieval
If you wish to cluster the instance variables of an object, you can define a special method
to do so.

CAUTION
Do not redefine the method cluster in the class Object, because other methods
rely on the default behavior of the cluster method. You can, however, define a
cluster method for classes in your application if required.

Suppose, for example, that you defined class Name and class Employee as shown in
Example 15.4.

Example 15.4

Object subclass: 'Name'
instVarNames: #('first' 'middle' 'last')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

Object subclass: 'Employee'
instVarNames: #('name' 'job' 'age' 'address')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals.

The following clustering method might be suitable for class Employee. (A more purely
object-oriented approach would embed the information on clustering first, middle, and last
names in the cluster method for Name, but such an approach does not exemplify the
breadth-first clustering technique we wish to show here.)

Example 15.5

method: Employee
clusterBreadthFirst

self cluster.
name cluster.
job cluster.
address cluster.
name first cluster.
name middle cluster.
name last cluster.
^false

%

| Lurleen |
Lurleen := Employee new name: (Name new first: #Lurleen);

job: 'busdriver'; age: 24; address: '540 E. Sixth'.
Lurleen clusterBreadthFirst
GemTalk Systems 291

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.6 Programming Guide
The elements of byte objects such as instances of String and Float are always clustered
automatically. A string’s characters, for example, are always written contiguously within
disk pages. Consequently, you need not send cluster to each element of each string
stored in job or address; clustering the strings themselves is sufficient. Sending cluster to
individual special objects (instances of SmallInteger, Character, Boolean, SmallDouble, or
UndefinedObject) has no effect. Hence no clustering message is sent to age in the previous
example.

After sending cluster to an Employee, the Employee is clustered as follows:
anEmp aName job address first middle last

cluster returns a Boolean value. You can use that value to eliminate the possibility of
infinite recursion when you’re clustering the variables of an object that can contain itself.
Here are the rules that cluster follows in deciding what to return:

If the receiver has already been clustered during the current transaction or if the
receiver is a special object, cluster declines to cluster the object and returns true to
indicate that all of the necessary work has been done.

If the receiver is a byte object that has not been clustered in the current transaction,
cluster writes it on a disk page and, as in the previous case, returns true to indicate
that the clustering process is finished for that object.

If the receiver is a pointer object that has not been clustered in the current transaction,
cluster writes the object and returns false to indicate that the receiver might have
instance variables that could benefit from clustering.

Depth-First Clustering
clusterDepthFirst differs from cluster only in one way: it traverses the tree
representing its receiver’s instance variables (named, indexed, or unordered) in depth-first
order, assigning each node to the current default cluster bucket as it is visited. That is, it
writes the receiver’s first instance variable, then the first instance variable of that instance
variable, then the first instance variable of that instance variable, and so on to the bottom
of the tree. It then backs up and visits the nodes it missed before, repeating the process until
the whole tree has been written.

After sending clusterDepthFirst to an Employee, the Employee is clustered as
follows:

anEmp aName first middle last job address

Assigning Cluster Buckets
Both cluster and clusterDepthFirst use the current default cluster bucket. If you
wish to use a specific cluster bucket instead, you can use the method
clusterInBucket:. For example, the following expression clusters aBagOfEmployees
using the specific cluster bucket empClusterBucket:

aBagOfEmployees clusterInBucket: empClusterBucket

In order to determine the cluster bucket associated with a given object, you can send it the
message clusterBucket. For example, after executing the example above, the following
example would return the value shown below:

aBagOfEmployees clusterBucket
empClusterBucket
292 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Clustering Objects for Faster Retrieval
Clustering and Memory Use
Clustering tags objects in memory so that when the next successful commit occurs, the
objects are clustered onto data pages according to the method specified. After an object has
been clustered, it is considered to be “dirty”. If you cluster a large number of objects, you
may need to increase temporary object memory to avoid running out of session memory.
See “Managing VM Memory” on page 298.

Using Several Cluster Buckets
When you want to write a loop that clusters parts of each object in a group into separate
pages, it is helpful to have multiple cluster buckets available.

Suppose that you had defined class SetOfEmployees and class Employee as in
Example 15.4 on page 291. Suppose, in addition, that you wanted a clustering method to
write all employees contiguously and then write all employee addresses contiguously.

With only one cluster bucket at your disposal, you would need to define your clustering
method as shown in Example 15.6. In this approach, each employee is fetched once for
clustering, then fetched again in order to cluster the employee’s address.

Example 15.6

method: SetOfEmployees
clusterEmployees

self do: [:n | n cluster].
self do: [:n | n address cluster].

%
myEmployees clusterEmployees

Clustering Class Objects
Clustering provides the most benefit for small groups of objects that are often accessed
together — for example, a class with its instance variables. Those instance variables of a
class that describe the class’s variables are often accessed in a single operation, as are the
instance variables that contain a class’s methods. Therefore, class Behavior defines the
following special clustering methods for classes:

Table 15.2 Clustering Protocol

clusterBehavior Clusters in depth-first order the parts of the
receiver required for executing GemStone
Smalltalk code (the receiver and its method
dictionary).

clusterDescription Clusters in depth-first order those instance
variables in the receiver that describe the
structure of the receiver’s instances. (Does not
cluster the receiver itself.) The instance variables
clustered are instVarNames, classVars, categories,
and class histories.
GemTalk Systems 293

Clustering Objects for Faster Retrieval GemStone/S 64 Bit 3.6 Programming Guide
The code in Example 15.7 clusters class Employee’s structure-describing variables, then its
class methods, and finally its instance methods.

Example 15.7

| behaviorBucket descriptionBucket |
behaviorBucket := AllClusterBuckets at: 4.
descriptionBucket := AllClusterBuckets at: 5.
System clusterBucket: descriptionBucket.
Employee clusterDescription.
System clusterBucket: behaviorBucket.
Employee class clusterBehavior.
Employee clusterBehavior.

The following clusters all of class Employee’s instance methods except for address and
address:
Employee clusterBehaviorExceptMethods: #(#address #address:).

Maintaining Clusters
Once you have clustered certain objects, they do not necessarily stay clustered in the same
way forever. If you edit some of the objects in the data structure, the edited object will be
placed on a new page in the same clusterBucket. The performance benefit of clustering is
that the objects are on the same page, but since the clusterBucket will span multiple pages,
the objects may be in the same clusterBucket but not on the same page.

You may therefore wish to check an object’s location, especially if you suspect that such
declustering is causing your application to run more slowly than it used to.

Determining an Object’s Location
To enable you to check your clustering methods for correctness, Class Object defines the
message page, which returns an integer identifying the disk page on which the receiver
resides. For example:

anEmp page
2539

Disk page identifiers are returned only for temporary use in examining the results of your
custom clustering methods—they are not stable pointers to storage locations. The page on
which an object is stored can change for several reasons, as discussed in the next section.

For special objects (instances of SmallInteger, Character, Boolean, SmallDouble, or
UndefinedObject), the page number returned is 0.

clusterBehaviorExceptMethods:

aCollectionOfMethodNames
This method can sometimes provide a better
clustering of the receiving class and its method
dictionary by omitting those methods that are
seldom used. This omission allows frequently
used methods to be packed more densely.

Table 15.2 Clustering Protocol (Continued)
294 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Clustering Objects for Faster Retrieval
Why Do Objects Move?
The page on which an object is stored can change for any of the following reasons:

A clustering message is sent to the object or to another object on the same page.

The current transaction is aborted.

The object is modified.

Another object on the page with the object is modified.

As your application updates clustered objects, new values are placed on secondary storage
using GemStone’s normal space allocation algorithms. When objects are moved, they are
automatically reclustered within the same clusterId. If a specific clusterId was specified, it
continues to be used; if not, the default clusterId is used.

If, for example, you replace the string at position 2 of the clustered array ProscribedWords,
the replacement string is stored in a page separate from the one containing the original,
although it will still be within the same clusterId. Therefore, it might be worthwhile to
recluster often-modified collections occasionally to counter the effects of this
fragmentation. You’ll probably need some experience with your application to determine
how often the time required for reclustering is justified by the resulting performance
enhancement.
GemTalk Systems 295

Modifying Cache Sizes for Better Performance GemStone/S 64 Bit 3.6 Programming Guide
15.3 Modifying Cache Sizes for Better Performance
As code executes in GemStone, committed objects must be fetched from disk or from cache,
and temporary objects must be managed. This is handled transparently by the GemStone
repository monitor. The performance of your application can be affected both by the tuning
of the caches, and the structure and usage patterns of your application.

GemStone Caches
GemStone uses two kinds of caches: temporary object space and the shared page cache.

Temporary Object Space
The temporary object space cache is used to store temporary objects created by your
application. Each Gem session has a temporary object memory that is private to the Gem
process and its corresponding session. When you fault persistent (committed) objects into
your application, they are copied to temporary object memory.

Some of the temporary objects in the cache may ultimately become permanent and reside
on the disk, but probably not all of them. Temporary objects that your application creates
merely in order to do its work reside in temporary object space until they are no longer
needed, when the Gem’s garbage collector reclaims the storage they use.

It is important to provide sufficient temporary object space. At the same time, you must
design your application so that it does not create an infinite amount of reachable temporary
objects. Temporary object memory must be large enough to accommodate the sum of live
temporary objects and modified persistent objects. It that sum exceeds the allocated
temporary object memory, the Gem can encounter an OutOfMemory condition and
terminate.

The amount of memory allocated for temporary object space is primarily determined by
the GEM_TEMPOBJ_CACHE_SIZE configuration option. You should increase this value for
applications that create a large number of temporary objects — for example, applications
that make heavy use of the reduced conflict classes or sessions performing a bulk load.

You will probably need to experiment somewhat before you determine the optimum size
of the temporary object space for the application. The default of 10000 (10 MB) should be
adequate for normal user sessions. For sessions that place a high demand on the temporary
object cache, such as upgrade, you may wish to use 100000 (i.e., 100 MB).

For a more exhaustive discussion of the issues involved in managing the size of temporary
object memory, and a general discussion of garbage collection, see the “Garbage
Collection” chapter of the System Administration Guide.

For details about how to set the size of GEM_TEMPOBJ_CACHE_SIZE in the Gem
configuration file, see the “GemStone Configuration Options” appendix of the System
Administration Guide.

Shared Page Cache
The shared page cache is used to hold the object table—a structure containing pointers to all
the objects in the repository—and copies of the disk pages that hold the objects with which
users are presently working. The system administrator must enable the shared page cache
in the configuration file for a host. The single active Stone process per repository has one
296 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Modifying Cache Sizes for Better Performance
shared page cache per host machine. The shared page cache is automatically enabled for
the host machine on which the Stone process is running.

Whenever the Gem needs to read an object, it reads into the shared page cache the entire
page on which an object resides. If the Gem then needs to access another object, GemStone
first checks to see if the object is already in the shared page cache. If it is, no further disk
access is necessary. If it is not, it reads another page into the shared page cache.

For acceptable performance, the shared page cache should be large enough to hold the
entire object table. You can determine the size of the object table by examining the results
of a pageaudit (see the System Administration Guide), which includes the number and size
required of various kinds of pages in the repository, including the kinds of object table
pages.

To get the best possible performance, make the shared page cache as large as possible.

The amount of memory allocated for the shared page cache is determined by the
SHR_PAGE_CACHE_SIZE_KB configuration parameter (in the Stone configuration file). This
is described in the System Administration Guide (Appendix A, GemStone Configuration
Options).

By default, only the system administrator is privileged to set this parameter, which is set at
repository startup. However, if a Gem session is running remotely and it is the first Gem
session on its host, its configuration file sets the size of the shared page cache on that host.

Getting Rid of Non-Persistent Objects
As discussed in Chapter 4, you can create instances of KeySoftValueDictionary to enable
your session to free up temporary object memory as needed. The entries in a
KeySoftValueDictionary are non-persistent; that is, they cannot be committed to the
database. When there is a demand on memory, you can configure GemStone to clear non-
persistent entries as needed during a VM mark/sweep garbage collection.

The action taken during mark/sweep depends on two configuration parameters, along
with startingMemUsed — the percentage of temporary object memory in-use at the
beginning of the VM mark/sweep.

Case 1: GEM_SOFTREF_CLEANUP_PERCENT_MEM < startingMemUsed < 80%

If startingMemUsed is greater than GEM_SOFTREF_CLEANUP_PERCENT_MEM but less
than 80%, the VM mark/sweep will attempt to clear an internally determined number
of least recently used SoftReferences (non-persistent entries). Under rare
circumstances, you might choose to specify a minimum number
(GEM_KEEP_MIN_SOFTREFS) that will not be cleared.

Case 2: startingMemUsed < GEM_SOFTREF_CLEANUP_PERCENT_MEM

No SoftReferences will be cleared.

Case 3: startingMemUsed > 80%

VM mark/sweep will attempt to clear all SoftReferences.

For more about these and other configuration parameters, see the “GemStone
Configuration Options” appendix of the System Administration Guide.

Several cache statistics may also be of interest: NumSoftRefsCleared, NumLiveSoftRefs,
and NumNonNilSoftRefs. For more about these statistics, see the “Monitoring GemStone”
chapter of the System Administration Guide.
GemTalk Systems 297

Managing VM Memory GemStone/S 64 Bit 3.6 Programming Guide
15.4 Managing VM Memory
As mentioned earlier in this chapter, each Gem session has a temporary object memory that
is private to the Gem process and its corresponding session. When you fault persistent
(committed) objects into your application, they are copied to temporary object memory.

It is important to provide sufficient temporary object space. At the same time, you must
design your application so that it does not create an infinite amount of reachable temporary
objects. Temporary object memory must be large enough to accommodate the sum of live
temporary objects and modified persistent objects. If that sum exceeds the allocated
temporary object memory, the Gem can encounter an OutOfMemory condition and
terminate.

There is a limit on how large a transaction can be, either in terms of the total size of
previously committed objects that are modified, or of the total size of temporary objects
that are transitively reachable from modified committed objects. For large applications,
you may need to commit incrementally, rather than waiting to commit all at once.

The remainder of this chapter discusses issues to consider when allocating and managing
temporary object memory, and presents techniques for diagnosing and addressing
OutOfMemory conditions. This section assumes you have read the general discussion of
memory organization in the “Managing Memory” chapter of the System Administration
Guide.

Large Working Set
If your application requires a large working set of committed objects in memory, you can
configure the pom area to be large (compared to other object spaces) without having an
adverse effect on in-memory garbage collection. To do this, increase the setting for the
configuration parameter GEM_TEMPOBJ_POMGEN_SIZE. For details on how to do this, see
the System Administration Guide, Appendix A.

Class Hierarchy
If your application references a very deep class hierarchy, you may need to adjust the
memory configuration accordingly to allow a larger temporary object memory. When an
object is in memory, its class is also faulted into the perm area of temporary object memory,
along with the class’s superclass, extending up through the hierarchy all the way to Object.
While this approach provides for significantly faster message lookups, it also increases the
consumption of temporary object memory.

For example, the default configuration provides 1 MB for the perm area. Each class
consumes about 400 bytes (including the metaclass). Thus, the default configuration can
accommodate about 2500 classes in memory at once.

UserAction Considerations
NOTE

Do not compact the code region of temporary object memory while a UserAction
is executing.

When using GemBuilder for C, you may encounter an OutOfMemory error within an
UserAction in either of the following situations:
298 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Managing VM Memory
The UserAction faults in a large number of methods via GciPerform.

The UserAction compiles a large number of anonymous methods via GciExecute.

Exported Set
The Export Set is a collection of objects for which the Gem process has handed out its OOP
to one of the interfaces (GCI, GBS, objects returned from topaz run commands). Objects in
the export set are prevented from being garbage collected by any of the garbage collection
processes (that is, by a Gem’s in-memory collection of temporary objects,
markForCollection, or the epoch garbage collection). The export set is used to guarantee
referential integrity for objects only referenced by an application, that is, objects that have
no references to them within the Gem.

The application program is responsible for timely removal of objects from the export set.
The contents of the export set can be examined using hidden set methods defined in class
System.

In general, the smaller the size of the export set, the better the performance is likely to be.
There are several reasons for this relationship. The export set is one of the root sets used for
garbage collection. The larger the export set, the more likely it is that objects that would
otherwise be considered garbage are being retained. One threshold for performance is
when the size of the export set exceeds 16K objects. When its size is smaller than 16K
objects, the export set is a small object in object memory. When its size is larger than 16K,
the export set becomes a large object, implemented as a tree of small objects in memory.

The configuration parameter #GemDropCommittedExportedObjs will allow committed
object to be removed from the export set when memory is low, at the expense of having to
re-fault these object when they are needed.

Debugging out of memory errors
If you find that your application is running out of temporary memory, you can set several
GemStone environment variables to help you identify which parts of your application are
triggering OutOfMemory conditions. These environment variables allow you to obtain
multiple Smalltalk stack printouts and other useful information before your application
runs out of temporary object memory. For example, it displays now many objects of each
class are in temporary memory.

Details on these environment variables are provided in the System Administration Guide,
and they are listed in the $GEMSTONE/sys/gemnetdebug file, which is a debug version
of the gemnetobject script. gemnetdebug enables some, but not all, available memory
related environment variables. By using gemnetdebug instead of gemnetobject in your
RPC login parameters, you can generate memory logging information. For help with
analysis, contact GemTalk Technical Support.

Once you’ve identified the cause/s of the problem, you can modify your application to
reduce the demand on memory, or adjust your GemStone configuration options to provide
a larger amount of memory.

Signal on low memory condition
When a session runs low on temporary object memory, there are actions it can take to avoid
running out of memory altogether; for example, the session may commit or abort, or
discard temporary objects.
GemTalk Systems 299

Managing VM Memory GemStone/S 64 Bit 3.6 Programming Guide
By enabling handling for AlmostOutOfMemoryError, an application can take
appropriate action before memory is entirely full. This exception is asynchronous, so may
be received at any time memory use is greater than the threshold the end of an in-memory
markSweep. However, if the session is executing a user action, or is in index maintenance,
the error is deferred and generated when execution returns.
After an AlmostOutOfMemoryError notification is delivered, the handling is
automatically disabled. Handling must be reenabled each time the signal occurs. Handling
this signal is enabled by executing either of the following:

AlmostOutOfMemoryError enable

The default the default threshold (the amount of memory that is used) is 90%. You can
specify a different threshold using,

AlmostOutOfMemoryError enableAtThreshold: integerBetween1And125

When you enable this error, when your temporary object memory is 90% full, your session
will get an error; but the session will not terminate with an out of memory error. You can
take such steps as are needed to recover temporary object space (this will likely happen
automatically as temporary variables in your executing code will be available for reclaim).

You may also set an handler block to take specific action, such as commit or abort, on an
AlmostOutOfMemoryError. The following example shows how you can catch an
AlmostOutOfMemoryError, automatically commit your work, and resume execution.

Example 15.8 Commit on out of memory

AlmostOutOfMemoryError enable.
[code]

on: AlmostOutOfMemoryError
do: [:ex |

GsFile gciLogClient: ex messageText.
System commit.
AlmostOutOfMemoryError enable.
ex resume.
].

AlmostOutOfMemory is similar to AlmostOutOfMemoryError, but is a notification
rather than an error. The semantics are similiar; however, to allow the
AlmostOutOfMemory to be effective, you must also enable signalling by sending
AlmostOutOfMemory enableNotification.

Methods for Computing Temporary Object Space
To find out how much space is left in the old area of temporary memory, the following
methods in class System (category Performance Monitoring) are provided:

System _tempObjSpaceUsed
Returns the approximate number of bytes of temporary object memory being
used to store objects.

System _tempObjSpaceMax
Returns the size of the old area of temporary object memory; that is, the
approximate maximum number of bytes of temporary object memory that are
300 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Managing VM Memory
usable for storing objects. When the old area fills up, the Gem process may
terminate with an OutOfMemory error.

System _tempObjSpacePercentUsed
Returns the approximate percentage of temporary object memory that is being
used to store temporary objects. This is equivalent to the expression:

(System _tempObjSpaceUsed * 100) //
System _tempObjSpaceMax.

Note that it is possible for the result to be slightly greater than 100%. Such a
result indicates that temporary memory is almost completely full.

To measure the size of complex objects, you might create a known object graph containing
typical instances of the classes in question, and then execute the following methods at
various points in your test code to get memory usage information:

CAUTION
Do not execute this sequence in your production code!

Example 15.9

System _vmMarkSweep.
System _tempObjSpaceUsed.

Statistics for monitoring memory use
You can monitor the following statistics to better understand your application’s memory
usage. The statistics are grouped here with related statistics, rather than alphabetically.

Table 15.3 Statistics Related to the Objects Copied into Memory

ObjectsRead The number of committed objects copied into VM
memory since the start of the session.

ClassesRead The number of classes copied into the perm
generation area of VM memory since the start of the
session.

MethodsRead The number of GsNMethods copied into the code
generation area of VM memory since the start of the
session.

ObjectsRefreshed The number of committed objects in VM memory that
have been re-read from the shared page cache after
transaction boundaries, since the start of the session.

Table 15.4 Statistics Related to Mark/Sweeps and Scavenges

NumberOfMarkSweeps The number of mark/sweeps executed by the in-
memory garbage collector.

NumberOfScavenges The number of scavenges executed by the in-memory
garbage collector. Only updated at mark/sweeps.

TimeInMarkSweep The real time (in milliseconds) spent in in-memory
garbage collector mark/sweeps.
GemTalk Systems 301

Managing VM Memory GemStone/S 64 Bit 3.6 Programming Guide
Symbol Creation
When a new symbol is needed (which may just be from evaluating a code snippet that
includes a symbol), it is created by the SymbolGem. The SymbolGem process runs in the
background and is responsible for creating all new Symbols, based on session requests that

TimeInScavenge The real time (in milliseconds) spent in in-memory
garbage collector scavenges. Only updated at
mark/sweeps.

Table 15.5 Statistics Related to Object Memory Regions

CodeCacheSizeBytes Total size in bytes of copies of GsNMethods that are
in the code generation area and ready for execution,
as of the end of mark/sweep.

NewGenSizeBytes The number of used bytes in the new generation at
the end of mark/sweep.

OldGenSizeBytes The number of used bytes in the old generation at
the end of mark/sweep.

PomGenSizeBytes The number of used bytes in the pom generation area
at the end of mark/sweep. Pom generation holds
clean copies of committed objects.

PermGenSizeBytes The number of used bytes in the perm generation
area at the end of mark/sweep. Perm generation
holds copies of Classes.

MeSpaceUsedBytes The number of bytes occupied by the remembered
set (remSet), in-memory oopMap, and in-use map
entries.

MeSpaceAllocatedBytes The number of bytes allocated for the remembered
set (remSet), in-memory oopMap, and map entries.

Table 15.6 Statistics Related to Stubbing

NumRefsStubbedMarkS
weep

The number of in-memory references that were
stubbed (converted to a POM objectId) by in-
memory mark/sweep.

NumRefsStubbedScaven
ge

The number of in-memory references that were
stubbed (converted to a POM objectId) by in-
memory scavenge.

Table 15.7 Statistics Related to Garbage Collection

CodeGenGcCount The number of times the code generation area has
been garbage collected.

PomGenScavCount The number of times scavenge has thrown away the
oldest pom generation space.

Table 15.4 Statistics Related to Mark/Sweeps and Scavenges
302 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide NotTranloggedGlobals
are managed by the Stone. You can examine the following statistics to track the effect of
symbol creation activity on temporary object memory.

Table 15.8 Statistics Related to Symbol Creation

NewSymbolRequests The number of symbol creation requests by a
session to the symbol creation gem.

NewSymbolsCount The number of symbol creation requests by a
session that did not resolve to an already committed
symbol.

TimeWaitingForSymbols Cumulative elapsed time (in milliseconds) waiting
for symbol creation requests to be processed.

Table 15.9 Other Statistics

ExportedSetSize The number of objects in the ExportSet (see
page 299).

TrackedSetSize The number of objects in the Tracked Objects Set, as
defined by the GCI. You can use GciReleaseObjs to
remove objects from the Tracked Objects Set. For
details, see the GemStone/S 64 Bit GemBuilder for C
manual.

DirtyListSize The number of modified committed objects in the
temporary object memory dirty list.

WorkingSetSize The number of objects in memory that have an
objectId assigned to them; approximately the number
of committed objects that have been faulted in plus
the number that have been created and committed.

TempObjSpacePercentUs
ed

The approximate percentage of temporary object
memory for this session that is being used to store
temporary objects. If this value approaches or
exceeds 100%, sessions will probably encounter an
OutOfMemory error. This statistic is only updated at
the end of a mark/sweep operation.
Compare with System
_tempObjSpacePercentUsed, which is computed
whenever the primitive is executed.

15.5 NotTranloggedGlobals
All changes to the repository are written to the transaction logs when the transaction is
committed, to ensure these changes are recoverable in case of unexpected shutdown, and
to allow these changes to be applied to warm standby copies of the repository. However,
you may have data that you will be committing changes to, but that does not need to be
recovered in case of system crash or corruption. For this kind of data, you can avoid the
overhead of writing each change to the transaction logs, and the disk space required for the
transaction logs to archive large amounts of non-critical data.
GemTalk Systems 303

Other Optimization Hints GemStone/S 64 Bit 3.6 Programming Guide
For objects that are intended to be persistent, but not log changes in the transaction logs,
there must be no reference from persistent objects, and the reference should be from the
variable NotTranloggedGlobals. This is in the Globals SymbolDictionary.

For example:
NotTranloggedGlobals at: #perfLog put: PerformanceLogger new.

If the object in NotTranlogGlobals is reachable from AllUsers (the regular root for all
persistent objects), it will generate an error on commit.

On system crash or unexpected shutdown, the state of the objects reachable from
NotTranloggedGlobals will be as was recorded in the most recent checkpoint prior to the
shutdown; changes made after that checkpoint will be lost. If the repository is restored
from backup, and transaction logs applied, the state of these objects will be as of the time
the backup was taken; all changes made since the backup was taken are lost.

15.6 Other Optimization Hints
While optimization is an application-specific problem, we can provide a few ideas for
improving application performance:

Arrays tend to be faster than sets. If you do not need the particular semantics that a
set affords, use an array instead.

The following Number classes are listed in decreasing order of performance:

SmallInteger
SmallDouble
Float
LargeInteger
ScaledDecimal
DecimalFloat

Avoid coercing integers to floating point numbers. Although GemStone Smalltalk can
easily handle mixing integers and floating point numbers in computations, the
coercion required can be time-consuming.

If you create an instance of a Dictionary class (or subclass) that you intend to load
with values later, create it to be approximately the final required size in order to avoid
rehashing, which can significantly slow performance.

Prefer methods that invoke primitives, if possible, or methods that cause primitives to
be invoked after fewer intermediate message-sends. (For information on writing your
own primitive methods, see the GemBuilder for C manual.)

Prefer message-sends over path notation, where possible. (This is not possible in
indexed queries, however.)

Prefer simpler blocks to more complex blocks. The most efficient blocks refer only to
one or more literals, global variables, pool variables, class variables, local block
arguments, or block temporaries; they also do not include a return statement.

Less efficient blocks include a return statement and can also refer to one or more of the
pseudovariables super or self, instance variables of self, arguments to the enclosing
304 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Other Optimization Hints
method, temporary variables of the enclosing method, block arguments, or block
temporaries of an enclosing block.

The least efficient blocks enclose a less efficient block of the kind described in the above
paragraph.

Blocks provided as arguments to the methods ifTrue:, ifFalse:,
ifTrue:ifFalse:, ifFalse:ifTrue:, whileFalse:, and whileTrue: are
specially optimized. Unless they contain block temporary variables, you need not
count them when counting levels of block nesting.

Use optimized selectors whenever possible. For example, iterations using to:do are
specially optimized; using to:do: instead of another collection iteration method
avoids a message send and a level of block nesting, possibly avoiding the cost of using
a block altogether. A list of optimized selectors is under “Reserved and Optimized
Selectors” on page 363.

In the same way, for fastest performance in iterating over Collections, use the to:do:
or to:by:do: methods to iterate, rather than do: or other collection iteration
methods

Append to rather than concatenate strings. String >> , creates a new string that
combines the receiver and argument, while String >> add: modifies the receiver.
This is much more efficient in memory use, although otherwise performance is
similar.

If you have a choice between a method that modifies an object and one that returns a
modified copy, use the method that modifies the object directly if your application
allows it. This creates fewer temporary objects whose storage will have to be
reclaimed.

Avoid generating temporary objects whose storage will need to be reclaimed. Storage
reclamation can slow your application significantly.

Keep repository files on a disk reserved for their use, if possible. Particularly avoid
putting repository files on the disk used for swapping.

For large applications, you may need to commit incrementally, rather than waiting to
commit all at once. There is a limit on how large a transaction can be, either in terms
of the total size of previously committed objects that are modified, or of the total size
of temporary objects that are transitively reachable from modified committed objects.

Consider trade-offs in indexing. While indexes can improve query performance on
large collections, there is overhead. If the collection has fewer than about 2000 objects,
the extra overhead in internal objects and index maintenance may not be worth
negligible performance gain in queries.
GemTalk Systems 305

Other Optimization Hints GemStone/S 64 Bit 3.6 Programming Guide
306 GemTalk Systems

Chapter

16 Working with Classes
and Methods
An object responds to messages defined and stored with its class and its class’s
superclasses. The classes named Object, Class, and Behavior are superclasses of every
class. Although the mechanism involved may be a little confusing, the practical
implication is easy to grasp — every class understands the instance messages defined by
Object, Class, and Behavior.

This chapter provides an overview of the Behavior methods that are inherited by all
classes, and so can be used to programmatically create and access methods, categories,
pool dictionaries and variables for your classes.

Creating and Removing Methods (page 307)
describes the protocol in class Behavior for adding and removing methods.

Information about Class and Methods (page 311)
describes the protocol in class Behavior for examining the method dictionary of a class.

ClassOrganizer (page 313)
describes the protocol in class Behavior for examining, adding, and removing method
categories.

Handling Deprecated Methods (page 314)
How to locate and clean up references to methods that have been deprecated.

16.1 Creating and Removing Methods
Class Behavior defines messages for creating methods and removing methods.

Defining Simple Accessing and Updating Methods
Class Behavior provides an easy way to define simple methods for establishing and
returning the values of instance variables. For each instance variable named by a symbol
in the argument array, the message compileAccessingMethodsFor: arrayOfSymbols
creates one method that sets the instance variable’s value and another method that returns
GemTalk Systems 307

Creating and Removing Methods GemStone/S 64 Bit 3.6 Programming Guide
it. These methods are added to the categories “Accessing” (return the instance variable’s
value) and “Updating” (set its value).

For example, this invocation of the method:
Animal compileAccessingMethodsFor: #(#name)

has the same effect as the following topaz:
category: 'Accessing'
method: Animal
name

^name
%
category: 'Updating'
method: Animal
name: aName
 name := aName
%

You can also use compileAccessingMethodsFor: to define class methods for
accessing class, class instance and pool variables, by sending
compileAccessingMethodsFor: to the class of the class that defines the variables of
interest.

The similar method compileMissingAccessingMethods will create accessing
methods for any instance variables for which accessor methods with the standard selector
do not already exist.

Compiling Methods
Class Behavior defines the basic method for compiling a new method for a class and
adding the method to the class’s method dictionary.

An invocation of the method has this form:
aClass compileMethod: sourceString

dictionaries: arrayOfSymbolDicts
category: aCategoryNameString
environmentId: 0

The first argument, sourceString, is the text of the method to be compiled, beginning with
the method’s selector. The second argument, arrayOfSymbolDicts, is an array of
SymbolDictionaries to be used in resolving the source code symbols in sourceString. Under
most circumstances, you will probably use your symbol list for this argument. The third
argument names the category to which the new method is to be added.

environmentId specifies one of potentially multiple compile environments, provided for
Ruby implementations; it is normally 0 for Smalltalk applications. You can omit this
keyword, and methods within Smalltalk will default to an environmentId of 0.
308 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Creating and Removing Methods
The following code compiles an accessor method named habitat for the class Animal,
adding it to the category “Accessing”:

Animal
compileMethod:

'habitat
"Return the value of the habitat instance variable"
^habitat'

dictionaries: (System myUserProfile symbolList)
category: 'Accessing'

 environmentId: 0

When you write methods for compilation in this way, remember to double each
apostrophe within the source string.

If compileMethod:... executes successfully, it adds the new method to the receiver. If
the source string contains errors, this method signals a CompileError, with details on the
specific causes of the failure.

Removing Methods
You can remove a method by sending removeSelector: to a class or metaclass.

The following examples remove instance and class methods, respectively:
Animal removeSelector: #habitat

Animal class removeSelector:#newWithName:favoriteFood:habitat:

To remove all methods in a method category, as well as the category itself, use
removeCategory: categoryName. For example,

Animal removeCategory: 'Accessing'

Pragmas
A pragma is a literal selector or keyword message pattern that occurs between angle
brackets at the start of a method after any temporaries. Pragmas are useful to provide
metadata about methods.

Specifying a pragma is done using unary or keyword method selector syntax, and may
include arguments that are literals - they may not include variables. For example,

<foo: 123 >
<foo: 5 bar: 'update'>
<bar>

While they follow method selector syntax, they are symbol literals within the method, not
message sends. A primitive directives in GemStone looks like a pragma, but is not;
primitive: is a reserved word in the first pragma in a method.

You may include multiple pragmas on one or multiple lines.
GemTalk Systems 309

Creating and Removing Methods GemStone/S 64 Bit 3.6 Programming Guide
Example 16.1 Compiling a method with pragmas

Animal
compileMethod:

'checkHabitat
<version: 2.1> <AnimalManagement>
^self habitat isPreferred'

dictionaries: (System myUserProfile symbolList)
category: 'Operations'

 environmentId: 0

Pragma class
The Pragma class provides a way to find out information about pragmas. An instance of
Pragma references the method that defines it, and the keyword and argument or
arguments.

Pragma class methods provide search capabilities. Pragma >> allNamed:in: returns a
collection of all Pragmas with the given keyword in methods in the given class.

For example:
(Pragma allNamed: #AnimalManagement in: Animal)

first method
 GsNMethod Animal>>checkHabitat

Sending GsNMethod >> pragmas will return an array of instances of Pragma.
310 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Information about Class and Methods
16.2 Information about Class and Methods
Classes Behavior and Class define messages that let you discover information about a class,
such as the class’s instance variables, selectors, and categories. The class ClassOrganizer
provides searching over methods in the image.

For full protocol, see the image.

Information about the Class
Protocol in Class provides listing of superclasses and subclasses:

Class >> allSubclasses

Class >> allSuperclasses

Class >> allInstances

Each class also has a class comment and a category. This information can be accessed and
updated using:

Class >> comment

Class >> comment: aString

Class >> category

Class >> category: aString

Information about Instance, Class, and Shared Pool variables
Protocol in Behavior allows you to discover the class variables names, instance variable
names, and shared pools defined for a given class, or for that class and all its superclasses.

Behavior >> classVarNames

Behavior >> allClassVarNames

Behavior >> instVarNames

Behavior >> allInstVarNames

Behavior >> sharedPools

Behavior >> allSharedPools

Information about Method Selectors
Protocol in Behavior allows you to discover the selectors for the methods in a class, or in
that class and its superclasses, and query on particular selectors.

Behavior >> selectors

Behavior >> allSelectors

Behavior >> includesSelector: aSelector

Behavior >> canUnderstand: aSelector

Behavior >> whichClassIncludesSelector: aSelector
GemTalk Systems 311

Transient Methods GemStone/S 64 Bit 3.6 Programming Guide
Accessing and Managing Method Categories
The methods in a class are associated with a method category, which is used to organize
and document the method but does not affect execution. Method categories can be
managed programmatically using the following methods in Behavior:

Behavior >> categoryNames

Behavior >> selectorsIn: categoryName

Behavior >> categoryOfSelector: selector

Behavior >> addCategory: categoryName

Behavior >> removeCategory: categoryName

Behavior >> renameCategory: categoryName to: newCategoryName

Behavior >> moveMethod: aSelector toCategory: categoryName

Specific Methods
Each method is compiled into an instance of GsNMethod. You can query a class for its
methods, and get source code and other information about the method.

To get the source code for a method, use:
Behavior >> sourceCodeAt: aSelector

To retrieve the compiled method itself, use:
Behavior >> compiledMethodAt: aSelector

This returns an instance of GsNMethod, from which you can then get source code. For
example,

(Animal compiledMethodAt: #habitat) sourceString

Some GsNMethod methods that may be particularly useful are:
GsNMethod >> sourceString

GsNMethod >> sourceStringToFirstComment

GsNMethod >> selector

16.3 Transient Methods
Defining a method creates a persistent method on that class, and in most cases, the classes
you are using are shared with other users. You can modify a method in an individual
transaction, and you will be able to use your modification within that transaction, but any
commit will make that change persistent and visible to other users.

For cases in which private modifications to methods in shared classes are useful, using
special protocol allows you to compile methods that are only visible to a single session for
the life of that session, and are unaffected by commit or abort.

The method must already exist, you cannot create an entirely new method this way. You
must also have write permission for the object security policy of the class of the method;
this avoids creating a security hole.

To create a transient method, use:
Behavior >> compileTransientMethod:dictionaries:environmentId:
312 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide ClassOrganizer
This method is similar to compile:dictionaries:environmentId:, except that the
compiledMethod is installed into the transient method dictionary for the receiver. The
method created this way will exist in your image until logout. If you wish to remove them
sooner, use one of the following:

Behavior >> removeTransientSelector:environmentId:

Behavior >> removeTransientSelector:environmentId:ifAbsent:

16.4 ClassOrganizer
ClassOrganizer provides useful methods to analyze your repository and perform
operations such as searching for senders, receivers, or implementors, and string searches
over method source. While usually you would perform these operations using GBS (or
another Smalltalk IDE), ClassOrganizer provide the ability to do customized analysis and
reporting.

ClassOrganizer provides both reporting methods, which return formatted Strings, and
query methods, which return collections of symbols or instances of GsNMethods that can
be used for further analysis and reporting.

For example, to get a report of all the senders of the #asDecimalFloat selector:
ClassOrganizer new sendersOfReport: #asDecimalFloat
%
AbstractFraction >> asDecimalFloat
DecimalFloat >> integerPart
DecimalFloat >> rem:
DecimalFloat >> _coerce:
FixedPoint >> asDecimalFloat
ScaledDecimal >> asDecimalFloat
SmallFloat >> asDecimalFloat

If you want to perform more analysis on the methods or add additional reporting, send
sendersOf:, which will return two arrays, the first an array of GsNMethods, the second
the offset into the source code. For example

(ClassOrganizer new sendersOf: #asDecimalFloat) printString
%
anArray(anArray(GsNMethod AbstractFraction>>asDecimalFloat,
GsNMethod DecimalFloat>>integerPart, GsNMethod
DecimalFloat>>rem:, GsNMethod DecimalFloat>>_coerce:, GsNMethod
FixedPoint>>asDecimalFloat, GsNMethod
ScaledDecimal>>asDecimalFloat, GsNMethod
SmallFloat>>asDecimalFloat), anArray(225, 102, 309, 161, 104,
1052, 85))

See the image for the full set of protocol that ClassOrganizer understands.

For example, the following code looks for all methods that are send the message
subclassResponsibility:, and makes sure all subclasses override that
GemTalk Systems 313

Handling Deprecated Methods GemStone/S 64 Bit 3.6 Programming Guide
implementation. This example will return false positives, however, since it does not
distinguish abstract classes.

| clsOrg meths report |
clsOrg := ClassOrganizer new.
report := String new.
meths := (clsOrg sendersOf: #subclassResponsibility:) at: 1.
meths do:
 [:srMeth |
 (clsOrg subclassesOf: srMeth inClass) do:
 [:subcls |
 ((srMeth selector ~= #subclassResponsibility) and:

[(subcls whichClassIncludesSelector: srMeth selector) =
srMeth inClass]) ifTrue: [

 report
 add: subcls name asString;
 add: ' does not override ';
 add: srMeth inClass asString;
 add: '>>';
 add: srMeth selector asString;
 lf
].
]
].
report

16.5 Handling Deprecated Methods
As GemStone features change, some methods may no longer be appropriate, or the method
names may be incorrect or misleading. To allow obsolete methods to continue to function
and provide a gentle transition to new methods, these obsolete methods may be
deprecated.

Deprecated methods may be removed in future major releases, although some deprecated
methods may remain in the image for longer periods for the convenience of existing
applications.

Usually, deprecated methods will continue to work exactly as they did in the previous
releases. However, in some cases the old behavior may not be meaningful in a new version;
the deprecated method will continue to work as similarly as possible, but there may be
differences.

Behavior may also change for existing methods. With any new release, you should review
the Release Notes for changes in behavior as well as for newly deprecated methods.

Deprecated methods in GemStone are indicated by:

Officially deprecated method include a call to deprecated:.

Deprecated methods are in method category with a name including 'Deprecated'.

Deprecation may be mentioned in the method comment. This may indicate an
intention to deprecate.
314 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Handling Deprecated Methods
Private methods, in a category with a name including 'Private', or which begin with an
underscore, or which the method comment says private, may or may not be deprecated
prior to removal. It is strongly recommended to avoid calling private methods.

Kernel methods that call deprecated: provide a string, which will generally include the
class and selector, the version in which this method was deprecated, and the method that
replaces it or some other indications of alternate action.

Since deprecated methods are subject to removal in major releases, it is important to keep
your application updated so that no deprecated methods are called.

Deprecated handling
By default, nothing happens when a deprecated method is called; the call to deprecated:
has no action. This is most convenient when you first upgrade or convert to a new release
of GemStone.

After you have updated your application references to deprecated methods, you can
enable Deprecation handling, which can be configured to error or to log all calls to any
deprecated methods. By running with this setting, you can locate and fix calls you may
have missed, or confirm that you have indeed fixed all calls.

Changing deprecation handling can only be done by a user with write permission for the
DataCurator object security policy. Once committed, the setting affects all users of the
repository.

There are several levels of action that can be taken when a deprecated method is called:

Do nothing — calls to deprecated methods are execute the same as any other method.
This is the default.

To turn off any action on deprecation that you have previously enabled, execute:
Deprecated doNothingOnDeprecated

Raise an exception —calls to deprecated methods signal an exception.

To enable this, execute:
Deprecated doErrorOnDeprecated

Log the call — when a call to a deprecated method occurs, the call to the deprecated
method is logged to the deprecation log file, and execution continues. There is no
impact on the application, other than performance.

To enable this, execute:
Deprecated doLogOnDeprecated

Log the call stack — when a call to a deprecated method occurs, the call to the
deprecated method and the call stack are logged to the deprecation log file, and
execution continues. There is no impact on the application, other than performance.

To enable this, execute:
Deprecated doLogStackOnDeprecated
GemTalk Systems 315

Handling Deprecated Methods GemStone/S 64 Bit 3.6 Programming Guide
Deprecation log
When deprecations are configured to write to a log, a file named DeprecatedPID.log is
created in the same location as a the gem log for an RPC login.

This file continues to grow and must be manually deleted. Logging methods or call stacks
consumes resources and can noticeably affect performance, and use significant disk space.
Methods called repeatedly, such as calls from within sort blocks, are particularly likely to
impact the application.

Listing deprecated methods
You can find all currently deprecated methods in a particular version by executing :

ClassOrganizer new sendersOfReport: #deprecated:

Determining senders of deprecated methods
For each deprecated method, you can use development tools to determine if you have any
senders within your application. In addition to GBS or other IDE tools, you can use
ClassOrganizer methods.

For example, having determined that setSegmentId: has been deprecated, you can
execute the following to find all senders of that selector within your application:

ClassOrganizer sendersOfReport: #setSegmentId:

Since deprecation only applies to a method associated with a specific class, and this search
looks for all senders of the selector, you will have to examine the list to determine if the call
is actually deprecated. This is the consequence of how typing is handled in Smalltalk. For
example, String >>+ is deprecated, but Integer >>+ is not.

Also note that this technique will not find methods that are symbols sent to perform:
statements, in code in client applications that is sent to GemStone for execution, or in topaz
scripts.
316 GemTalk Systems

Chapter

17 GemStone System
Features
This chapter describes some features and internal structures that provide specialized
behavior.

These structures are intended for use by experienced GemStone programmers.

Hidden Sets (page 317)
Describes HiddenSets, a non-persistent way to manage objects using bitmaps.

SessionTemps and access to Session State (page 319)
Ways to keep session-temporary data available for the life of a session.

Shared Counters (page 319)
Integer counters that can be shared between sessions. Both non-persistent and
persistent counters are available.

GsEventLog (page 321)
Easily track errors, trace code and record objects in a multi-session environment.

17.1 Hidden Sets
GemStone’s internal bitmap structures that hold OOPs efficiently and with minimal
memory demands are encapsulated by instances of GsBitmap. Specific internal bitmaps are
accessible to the image via the hidden set API in System class.

For historic reasons, some repository scan methods are available that write results
temporarily to a hidden set. These results can be converted to a GsBitmap for processing,
with the advantages of avoiding overloading temporary object memory. While there are
replacement methods that return GsBitmaps directly, you may still encounter methods
that put the results in a hidden set, rather than returning a GsBitmap

For example, while the method allInstances: returns a GsBitmap, the equivalent
method listInstancesToHiddenSet: puts the results of a listInstances operation into
a specific hidden set (in this case, hidden set 1) The following code shows the call to this
method, and how to use hidden set protocol to migrate each object:
GemTalk Systems 317

Hidden Sets GemStone/S 64 Bit 3.6 Programming Guide
Example 17.1

SystemRepository listInstancesToHiddenSet: MyClass.
bm := GsBitmap newForHiddenSet: (GsBitmap hiddenSetIdAsSymbol: 1).
[bm size > 0]

whileTrue:
[
| resultBatch |
resultBatch := bm removeCount: 1024.
resultBatch do: [:aMyClass | aMyClass migrate].
System commitTransaction.
].

For more on working with instances of GsBitmap, see “GsBitmap” on page 64.

The specific set symbolic names that are accessible from GsBitmap are listed in the method
GsBitmap class >> hiddenSetSpecifiers. Many of these are read-only.

Note that the method System >> HiddenSetSpecifiers lists integer indexes of
hidden set IDs. This list is ordered differently than the symbolic names in GsBitmap
specifiers; the index offsets are not interchangeable. You can look up a GsBitmap identifier
based on a hidden set integer id using the method GsBitmap class >>
hiddenSetIdAsSymbol:.

Sets still accessed via System methods
The following internal sets may be accessed using System methods and respond to some
hidden set protocol:

NotifySet
The #NotifySet is System hidden set 25.

The #NotifySet has an interface in class System with methods in the Notification category;
clearNotifySet, addToNotifySet:, etc.

ExportedDirtyObjs and TrackedDirtyObjs
#ExportedDirtyObjs is System hidden set 22.
#TrackedDirtyObjs is System hidden set 23.

The methods gciDirtyObjsInit and gciTrackedObjsInit enable dirty and tracked
object sets, respectively. Use getAndClearGciDirtySet:into: to retrieve the results.

PureExportSet and GciTrackedObjs
#PureExportSet is System hidden set 39
#GciTrackedObjs is System hidden set 40.

Methods in class System, category ’Gci Set Support’ allow you to add and remove objects
from these hidden sets. Note you must initialize the dirty set using gciDirtyObjsInit
before adding or removing from GciTrackedObjs.
318 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide SessionTemps and access to Session State
17.2 SessionTemps and access to Session State
Data in GemStone is either temporary or persistent. While most temporary data is only
retained for as long as the method is executing, or until the session updates its commit
record by committing or aborting, you may sometimes want data that is not persistent and
not shared, so does not risk transaction conflicts, but remains unaffected by transaction
status.

Session-specific data of this kind can be put into SessionTemps. SessionTemps current
provides access to a kind of SymbolDictionary; elements in the SessionTemps dictionary
remain until the session logs out or exits, are not affected by commit or abort, and are not
visible outside of the session.

For example, if you wish to open a log file and leave it open:
SessionTemps current at: #Log put:

(GsFile openAppend: 'myFile.log')

Actual code, of course, would do more error checking. To write to the file, use code similar
to this:

(SessionTemps current at: #Log)
nextPutAll: 'a message for the log file'.

Objects in SessionTemps use temporary object memory, and the objects cannot be removed
from memory by in-memory garbage collection. While there is no limit on how much data
can be stored in SessionTemps, if your session reaches the memory limit and exits, that data
will be lost.

SessionState
SessionTemps uses a slot in the internal Session State structure, which is primarily
provided for use by the kernel. Access to customer-available SessionState slots is provided
primarily for legacy uses, but may be useful depending on application requirements.

SessionState is accessed by integer index, with slots 1 to 1994 available for use. The
SessionState array is variable size, and will grow as needed.

The following methods can be used to read and update SessionState:
System >> sessionStateAt: anIndex

System >> sessionStateAt: anIndex put: anObject

System >> sessionStateSize

17.3 Shared Counters
There are two types of Shared Counters available; AppStat Shared Counters and Persistent
Shared Counters.

AppStat Shared Counters provide a way for sessions on the same shared cache to read and
update a set of counters. These counters are stored in the shared cache and are not
persistent across cache restart. They are not visible to sessions on different shared page
caches - that is, a session on the stone’s cache and a session on a remote cache cannot access
the same Shared Counters. Values are also not recoverable from tranlogs.
GemTalk Systems 319

Shared Counters GemStone/S 64 Bit 3.6 Programming Guide
Persistent shared counters are stored in the repository, and are visible to all sessions on all
shared caches. On repository recovery or restore, the values of persistent shared caches are
restored.

AppStat Shared Counters
Shared counters allow multiple sessions on the same SPC to read and update a common
counter value.

Shared counters are indexed from 0 to (System numSharedCounters - 1), which is set by
the configuration parameter SHR_PAGE_CACHE_NUM_SHARED_COUNTERS. The default
value for SHR_PAGE_CACHE_NUM_SHARED_COUNTERS is 1900. Each counter is protected
by a unique spinlock. The index of the first counter is 0.

Shared counters may be set to any signed 64 bit integer value, in the range:
 -263 (-9223372036854775808) to 263 - 1 (9223372036854775807)
If you increment or decrement so that the result would be outside the range of a signed 64-
bit integer, the value will be set to the minimum or maximum; directly setting an out of
range value will result in an error.

Shared counters are transient, that is, they do not persist across cache restart.

Shared counter values are recorded by statmonitor when using the -n option and recorded
as AppStats.

The following methods may be used to read and update shared counters. For details, see
the method comments in the image.

System class >> numSharedCounters

System class >> sharedCounter: index

System class >> sharedCounter: index setValue: value

System class >> sharedCounter: index incrementBy: amount

System class >> sharedCounter: index decrementBy: amount

System class >> sharedCounter: index decrementBy: amount
withFloor: floorValue

System class >> sharedCounterFetchValuesFrom: firstCounter
to: lastCounter

Persistent Shared Counters
Persistent shared counters allow all sessions in a repository to read and update a set of
counters. Persistent shared counters are globally visible to all sessions on all shared page
caches.

There are 1536 persistent shared counters, numbered from 1 to 1536. The index of the first
counter is 1.

Persistent shared counters may be set to any signed 64 bit integer value, in the range:
 -263 (-9223372036854775808) to 263 - 1 (9223372036854775807)
No limit checks are done when incrementing or decrementing a counter. If you increment
or decrement so that the result would be outside the range of a signed 64-bit integer, the
value will “rollover” and the overflow bits will be lost. Directly setting an out of range
value will result in an error.
320 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GsEventLog
Values of all persistent shared counters are stored in the repository and in tranlog records.
They are persistent through Stone restart, and recovered on Stone crash, restore from
backup, and restore from tranlog.

Persistent shared counters are independent of database transactions. Updates to counters
are visible immediately and not affected by aborts.

Each update to a persistent shared counter causes a roundtrip to the Stone; but reading the
value is handled by the gem (and the page server, if remote), and does not cause a
roundtrip to the stone.

The following methods may be used to read and update persistent shared counters. For
details, see the method comments in the image.

System class >> numberOfPersistentSharedCounters

System class >> persistentCounterAt: index put: value

System class >> persistentCounterAt: index

System class >> persistentCounterAt: index incrementBy: amount

System class >> persistentCounterAt: index decrementBy: amount

17.4 GsEventLog
GsEventLog is a shared, reduced-conflict logging tool that allows multiple sessions to:

record errors and informational messages to a single location

flexibly include objects as well as text

easily and flexibly query and sort by particular attributes.

A GsEventLog class variable holds a instance of GsEventLog, which in turn holds a
collection of log entries, which are instances of kinds of GsEventLogEntry. It is allowed for
user applications to create custom subclasses of GsEventLogEntry.

Each event has a priority. Built in priorities are fatal, error, warning, info, debug, and trace;
these are stored internally as integers.

The entries are stored in an instance of RcArray, allowing concurrent writes of log entries.
Note that the order of elements is based on the order in which the commits occurred, while
entry timestamps reflect the time at which the entry was created.

Adding events
GsEventLog may hold both application (user) events and system events. User entries can
be added in two ways: class convenience methods such as logError:, logInfo:, etc., or
by creating an instance of GsEventLogEntry and sending addToLog. A commit is required
to make the log entry persistent.

System events should be added only by GemStone code. In this release, GemStone code
does not write System events.

Querying and reporting
To create a string containing text representation of the entire contents, send

GsEventLog current report
GemTalk Systems 321

GsEventLog GemStone/S 64 Bit 3.6 Programming Guide
To search for a subset of entries with particular attributes
(GsEventLog current entriesSatisfying: aBlock) report

Deleting events
GsEventLog is not reduced conflict for delete. It is recommended to lock the log using
GsEventLog >> acquireGsEventLogLock. The lock is cleared automatically on
commit.

You can clear all events using GsEventLog current deleteAllEntries. By querying for
specific methods, you can delete those methods using deleteEntry: or
deleteEntries:.

It is possible to restrict modifying or removing events. To do this, execute
GsEventLog entriesUnmodifiable

After this is executed, new entries to the log are made invariant and the standard delete
methods will not delete them. However, they are not protected from delete using private
delete protocol.

System events are also protected from modification or delete, other than using private
delete protocol.

Example 17.2 Debugging code using GsEventLog

topaz 1> run
[GsEventLog logDebug: 'About to perform divide by zero'.
 1 / 0.
 GsEventLog logDebug: 'After divide by zero'.
 true]

on: Error
do: [:ex | GsEventLog logObject: ex. ex resume].

%
true
topaz 1> run
GsEventLog current report
%
'2017-07-13 16:36:44.3820 24198 Trace About to perform divide by zero
2017-07-13 16:36:44.3821 24198 Trace a ZeroDivide occurred (error
 2026), reason:numErrIntDivisionByZero, attempt to divide 1 by zero
 a ZeroDivide occurred (error 2026), reason:numErrIntDivisionByZero,
 attempt to divide 1 by zero
2017-07-13 16:36:44.3822 24198 Trace After divide by zero
'

322 GemTalk Systems

Chapter

18 The Foreign Function
Interface
This chapter describes the Foreign Function Interface (FFI) classes and methods, and how
you can use them to build and interface to an existing C library.

Overview of the Foreign Function Interface (page 323)
The purpose and use of the FFI.

FFI Core Classes (page 324)
Describes the FFI related classes and data types.

FFI Wrapper Utilities (page 327)
Instructions for using FFI utilities to define FFI classes for your library.

18.1 Overview of the Foreign Function Interface
For certain applications, you may need to provide functionality that is not readily available
within GemStone Smalltalk. Such functionality might include interactions with third-party
products such as these:
Access to hardware, such as a bar code reader
Access to software that provides a service, such as the zlib compression library
Data encryption
Screen graphics
Interaction with Oracle, mySQL, or other databases

To interact with third-party products such as these, you can use the FFI to make C library
calls from within GemStone Smalltalk. Using the FFI, you can access C functions in external
libraries without the need to write UserActions.

NOTE
With UserActions, your code is checked against function prototypes of the
external library that you’re calling. With the FFI, no such checking takes place.
GemTalk Systems 323

FFI Core Classes GemStone/S 64 Bit 3.6 Programming Guide
18.2 FFI Core Classes
The core FFI defines six classes: CLibrary, CFunction, CPointer, CByteArray, CCallout, and
CCallin.

CLibrary
An instance of CLibrary corresponds to a C compiled library. Instances of CLibrary are
created using:

CLibrary class >> named:libraryName

passing in the path and name of the C shared library to be loaded. The platform-specific
extension (such as .so) is optional.

CCallout
Individual functions within a CLibrary are represented by instances of CCallout. To create
a CCallout, the following class methods are available:

library: aCLibrary name: aName result: resType args: argumentTypes

library: aCLibrary name: aName result: resType args: argumentTypes
varArgsAfter: varArgsAfter

name: aName result: resType args: argumentTypes

name: aName result: resType args: argumentTypes varArgsAfter: varArgsAfter

For these methods, aCLibrary may be an instance of CLibrary, an Array of
CLibraries, or nil. Passing nil for aCLibrary will cause search of the loaded libraries
for a function of this name. aName is a String providing the name of the specific
function. resType is the return type of the function, and argumentTypes is an array
of zero or more symbols describing the types of the argument for this function.

varArgsAfter is -1 if the number of arguments to the function is fixed. If the function
prototype ends with an ellipsis (‘...’), indicating that the function takes a variable
number of arguments, then varArgsAfter indicates the one-based index of the last
fixed argument. (If varArgsAfter is 0, there are no fixed arguments.)

To indicate a symbol version for the callout, use the method version:. The argument will
be used as third arg to dlvsym().

The following instance method is used to invoke the function described by the instance of
CCallout:

callWith: argsArray

To get the value of the C global variable errno that was saved by the most recent call to
callWith:, use the CCallout class method:

errno
324 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide FFI Core Classes
C type symbols
Table 18.1 lists the symbols used for creating resType (result type) and argumentTypes
arguments when creating CCallouts. See the comments in the method CCallout class
>>library:name:result:args:.

Table 18.1 C Type

Return type Argument type

#int64 Integer. The C function returns
an int64.

Integer

#uint64 Integer. The C function returns
a uint64.

Integer

#int32 Integer. The C function returns
a signed C integer 32 bits.

Integer

#uint32 Integer. The C function returns
an unsigned C integer, 32 bits
or smaller.

Integer

#int16 Integer Integer

#uint16 Integer Integer

#int8 Integer Integer

#uint8 Integer Integer

bool true or false. C function
returns zero or non-zero C
integer of any size.

Boolean

#double SmallDouble or Float. The C
function returns a C double.

SmallDouble or Float

#float SmallDouble or Float. The C
function returns a C float.

SmallDouble or Float

#'char*' nil or a String The corresponding arg must be a String.
The body is copied to C memory before
call and copied from C memory (and
possible grown/shrunk) after call. C
memory will not be valid after the call
finishes.

#void nil

#ptr nil or a CPointer The corresponding arg must be one of:
nil, in which case C NULL is passed.
a CByteArray, in which case the

address of the body is passed.
a CPointer, in which case the

encapsulated pointer is passed.

#'&ptr' The corresponding arg must be a
CPointer. The CPointer’s value will be
passed and updated on return.
GemTalk Systems 325

FFI Core Classes GemStone/S 64 Bit 3.6 Programming Guide
Functions using varArgs normally may have a maximum of 20 variable arguments. This
limit is lower if native code is disabled for this session, as described in the following
section.

Limitations with native code disabled
If the generation of native code is disabled, there are further limitations:

Functions using varArgs may have a maximum of four fixed and 10 total arguments.

Functions not using varArgs are limited to a maximum of 15 total arguments.

Arguments and results of C type float are not supported.

Functions with one or more args of C type double are limited to a maximum of four
arguments.

CCallin cannot be used

Native code generation is on by default, but may be configured to be disabled or becomes
disabled when breakpoints are set. See the System Administration Guide for more
information on native code generation.

CCallin
A CCallin represents a signature for a C function to be called by C code. The resulting
CCallin may be used as a type within the argumentTypes array when defining a CCallout.

CByteArray
A CByteArray represents an allocation of C memory. When objects such as pointers or
strings are passed to or from C functions, creating a CByteArray, with memory malloc’ed,
ensures that the memory will be valid following the call.

#'const char*' The corresponding arg must be nil (to
pass NULL) or a String (body is copied
to C memory before call) C memory
will not be valid after the call finishes.

#'const
UChar*'

The corresponding arg must be nil (to
pass NULL) or a Unicode string (body
is copied to C memory in UTF16 form
before call). C memory will not be valid
after the call finishes.

#'UChar*' The arg must be a Unicode string (body
is copied to C memory in UTF16 form
before call) The C memory copy has a
codepoint zero appended. The copy
back may grow or shrink the arg, and
may become the arg to a Uncode16 or a
Unicode32.

Table 18.1 C Type (Continued)

Return type Argument type
326 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide FFI Wrapper Utilities
CFunction
CFunction is an abstract superclass representing the type signature of a C function. It has
two subclasses, CCallout and CCallin.

CPointer
CPointer encapsulates a C pointer that does not have auto-free semantics. New instances
are created by CFunction calls with result type #ptr, and are also used for certain
arguments of CFunctions.

18.3 FFI Wrapper Utilities
While it is possible to manually construct FFI calls using the core classes described above
in section 18.2 on page 324, it involves analysis of the various header files and is usually
tedious and error-prone. The typical header file includes many other header files, and the
typical C program involves many defines, typedefs, and other definitions.

NOTE
The following examples use zlib, a commonly available software library for data
compression that is available on many platforms. The examples are based on zlib
v1.2.8 on Linux; with other versions of zlib.h or on other platforms, you may need
to experiment. Documentation on zlib is available at
http://zlib.net/manual.html.

CHeader
To help in the process of constructing FFI calls, GemStone includes a class, CHeader, that
does the required analysis of a header file. You can parse a header file by using the
methods:

CHeader class >> path: headerFileOrPath
You may pass in the full path and name of a header file, or the header file name. If
the headerFileOrPath does not fully specify a file, will look in the system search
path, including the current directory, /usr/include/, and
/usr/local/include/. These paths are also used to locate any files that are
parsed due to include statements.

CHeader class >> path: headerFileOrPath searchPath: aPath
Search for headerFileOrPath and its include files by looking first in aPath, and then
in the current directory and the system search path.

CHeader class >> path: headerFileOrPath searchPaths: collOfPaths
Search for headerFileOrPath and its include files by searching first in the directories
in collOfPaths in order, then in the current directory and the system search path.

You may lookup the search path using:
CPreprocessor new allSearchPaths

The following example analyzes a a header file and stores the result in a variable in
UserGlobals:
GemTalk Systems 327

http://zlib.net/manual.html

FFI Wrapper Utilities GemStone/S 64 Bit 3.6 Programming Guide
Example 18.1 Create a CHeader for zlib.h

topaz 1> run
UserGlobals at: #'ZLibHeader' put:

(CHeader path: '/usr/include/zlib.h').
%

Since zlib.h is in /usr/include/, on the system search path, the following also lookup
the header file:

(CHeader path: 'zlib.h')

(CHeader path: 'zlib.h' searchPath: '/usr/include/')

(CHeader path: 'zlib.h' searchPaths: {'/usr/include/'})

(CHeader path: 'include/zlib.h' searchPath: '/usr/')

(CHeader path: 'include/zlib.h' searchPaths: {'/usr/'})

Once you have a CHeader object, you can get information about the various things defined
in the header file and those it includes.

Example 18.2 CDeclaration for compress()

topaz 1> run
(ZLibHeader functions at: 'compress')
%
a CDeclaration
 header a CHeader
 name compress
 storage extern
 linkageSpec nil
 type int32
 count nil
 pointer 0
 fields nil
 parameters a Array
 enumTag nil
 isConstant false
 includesCode false
 isVaryingArgCount false
 bitCount nil
 source extern int compress (Bytef *dest, uLongf

*destLen, const Bytef *source, uLong sourceLen)
 file /usr/include/zlib.h
 line 1060

While the compress() function is directly in zlib.h, this isn’t necessarily the case.
Functions that are defined in any header file that is #included in the parsed header file also
will have definitions in the instance of CHeader.
328 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide FFI Wrapper Utilities
For example, on Linux the zlib.h file #includes unistd.h, so functions such as
getcwd() also have definitions in the instance of CHeader:

topaz 1> run
(ZLibHeader functions at: 'getcwd') file.
%
/usr/include/unistd.h

On other platforms, zlib.h may not #include unistd.h. In this case, the definition is not
included in ZLibHeader. In this case (if you wanted to access these functions from
GemStone), you could create a separate instance of CHeader for unistd.h:

topaz 1> run
UserGlobals at: #'UnistdLibHeader'

put: (CHeader path: '/usr/include/unistd.h').
%

Note that parsing the header file does not give you the location of the actual C library file
that you will be calling. Normally when to write an interface to specific libraries, you
would be provided the library names and locations as well as the header files.

Simple function call – getcwd()
To take an example that is in unistd.c, viewing the source for the getcwd() function
declaration will let us see the argument declarations.

topaz 1> run
(ZLibHeader functions at: 'getcwd') source
%
extern char *getcwd (char *__buf, size_t __size) __attribute__

((__nothrow__ , __leaf__)) ;

This tells us that the function takes two arguments, a pointer to a string and an integer, and
returns a pointer to a string. Knowing that the function defined by this header is in libc,
and the library path and filename is /lib/x86_64-linux-gnu/libc.so.6, we can
manually create a call to this function:

Example 18.3 CCallout to invoke getcwd()

topaz 1> run
| string ccallout_getcwd |
string := String new: 200.
ccallout_getcwd := CCallout library:

(CLibrary named: '/lib/x86_64-linux-gnu/libc.so.6')
name: 'getcwd'
result: #'char*'
args: #(#'char*' #'uint64').

string := ccallout_getcwd callWith:
(Array with: string with: string size).

%

It’s important to note the way arguments are defined, since C handles memory differently
from Smalltalk. The temporary string that is created as an argument to the function must
be created with a size larger than the expected result. This is required for heap space to be
allocated for the C function; if it is not large enough, the function will error. Also keep in
GemTalk Systems 329

FFI Wrapper Utilities GemStone/S 64 Bit 3.6 Programming Guide
mind that it’s very important that the specified size of the string in the second argument
not be larger than the actual size of the string. The C function will write results to memory
limited by the second argument.

getcwd() updates the argument as well as returning a value; both contain the same string,
but different instances. In both cases String’s size is now the actual size of the returned
String, truncated from the original size of 200.

More complex function call – compress()
A more complex example is the ZLib function compress(). This is defined in zlib.h as
follows:

ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen));

You can view a simplified definition using the CHeader printString:
topaz 1> run
(ZLibHeader functions at: 'compress') printString
%
extern int32 compress(uint8 *dest, uint64 *destLen, const uint8
*source, uint64 sourceLen)

This tells us that compress() takes four arguments:

 a pointer to a destination buffer

 a pointer to the length of the destination buffer

 a pointer to the source data

 the length of the source data

The function compresses the source data and places the result in the destination buffer. The
destination length is updated with the space actually used. The function returns a flag
indicating success or the type of error experienced.

We can manually create a call to this function using the core classes described in 16.1:
CCallout

library: (CLibrary
named: '/lib/x86_64-linux-gnu/libz.so.1')

name: 'compress'
result: #'int32'
args: #(#'ptr' #'ptr' #'const char*' #'uint64').

This creates an object that can be used to call the compress() function in the library. The
constructor takes four arguments: (1) an instance of CLibrary; (2) the name of the function;
(3) the result type; and (4) a list of the types of the arguments.

In order to call the function from Smalltalk we need to create the arguments. The source
string and the source length are easy–they are just instances of a Smalltalk String and
Integer. The destination and destination length are a bit more complex. They are both
pointers to memory locations where the function will retrieve information (destLen starts
as the available length of the destination buffer) as well as return information (dest, where
the result is placed, and destLen, the amount of dest actually used).

In general, C libraries cannot deal directly with Smalltalk objects since the format is
different and objects can move in memory with various garbage collection operations. As
part of making the C function call, the virtual machine converts the Smalltalk objects to C
data and constructs a C stack before making the C library call. For many objects this works
330 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide FFI Wrapper Utilities
fine; as we saw in the getcwd() example above, simple String and Integer objects are
handled properly. But when an argument is a pointer to a chunk of memory in which the
C library will place arbitrary data, we need to explicitly allocate that space and pass a
pointer to it.

The class CByteArray represents a chunk of memory that is outside the Smalltalk object
space (it is on the "heap"), and when an instance of CByteArray is passed as a #'ptr' type,
the virtual machine puts a pointer to the space on the stack before making the function call.
There are methods in CByteArray to place various Smalltalk objects in the allocated
memory and to retrieve Smalltalk objects from the memory.

To allocate memory for the destination buffer, we can do the following:
dest := CByteArray gcMalloc: 100.

The gcMalloc constructor says to create space on the heap (outside of Smalltalk's object
memory) and create a Smalltalk object (in object memory) that references the external
memory. The heap memory will be automatically freed when the Smalltalk object is
garbage collected. We don't need to put anything into the memory since the compress()
function will not retrieve anything from the buffer. We pick a size that is enough to hold
the expected result (we made an educated guess for this example; in real use we could get
a better estimate by calling compressBound() with the source length).

To allocate memory for the destination size, and put a value in the location, we can do the
following:

dest_size := CByteArray gcMalloc: 8.
dest_size uint64At: 0 put: destination size.

This allocates 8 bytes in the heap and puts the integer 100 (or whatever size we have
allocated for the destination buffer) in that memory location (starting at a zero-based offset
of 0). When we call the function we will pass a pointer to the number, not the number itself.
This is so we provide a place for the function to tell us the amount of the destination buffer
actually used (reusing the memory we allocated). After we make the call we can get the size
back from the memory location:

used := dest_size uint64At: 0.

Once we know the amount of the destination actually used, we can extract the zip data.
Note that the zip data is generic binary data, not a string, and may include bytes with a
value of 0 (so cannot be treated as a C-string). Note that we are again dealing with zero-
based offsets since our underlying structures are C memory:

compressed := destination byteArrayFrom: 0 to: used - 1.

We can put this all together and pass a source string to be compressed:
GemTalk Systems 331

FFI Wrapper Utilities GemStone/S 64 Bit 3.6 Programming Guide
Example 18.4 CCallout to invoke compress()

topaz 1> run
| ccallout_compress source dest dest_size result used
compressed |
ccallout_compress := CCallout

library: (CLibrary
named: '/lib/x86_64-linux-gnu/libz.so.1')

name: 'compress'
result: #'int32'
args: #(#'ptr' #'ptr' #'const char*' #'uint64').

source := 'The quick brown fox jumped over the lazy dog'.
dest := CByteArray gcMalloc: 100.
dest_size := CByteArray gcMalloc: 8.
dest_size uint64At: 0 put: dest size.
result := ccallout_compress callWith:

(Array with: dest with: dest_size with: source with: source
size).
used := dest_size uint64At: 0.
compressed := dest byteArrayFrom: 0 to: used - 1.

%

If the result is zero (Z_OK), then the function executed successfully, and compressed will
reference a ByteArray that contains the compressed data.

Creating a Smalltalk class
The CHeader object can also be used to create a new Smalltalk class and automatically
generate methods to invoke the C functions.

The method CHeader >> wrapperForLibraryAt: can be used to create a Smalltalk
class with default name and methods for each function. The default name is the library
name without the ‘lib’, so for zlib.h, the resulting class name is simply “Z”.

When creating Smalltalk methods that allow arguments to be passed to the C function in
the generated interface methods, each function argument is represented with “_:”. So for
example for the getcwd() function, which as two arguments, the equivalent Smalltalk
method is:

getcwd_: buffer _: size

To generate a wrapper class for the zlib library, in the most simple case you could use the
following code:
332 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide FFI Wrapper Utilities
Example 18.5 Create wrapper class using default

topaz 1> run
| header wrapperClass wrapper |
header := CHeader path: '/usr/include/zlib.h'.
wrapperClass := header wrapperForLibraryAt:

'/lib/x86_64-linux-gnu/libz.so.1'.
wrapperClass initializeFunctions.
UserGlobals at: wrapperClass name put: wrapperClass.

%

After this is executed, you can use a code browser to view the class-side methods that
create the CCallout instances, and the instance-side methods that call the functions.

As mentioned earlier, the header file may include many functions beyond that provided in
the library – all the functions that are defined in the referenced include files. And we can
call any of these functions through this library, due to the way the C function lookup
occurs.

For example, the function getpid() is defined to take no arguments and return a 32-bit
number. This makes it very easy to call once we have defined a wrapper class:

Example 18.6 Invoke Z function getpid

topaz 1> run
Z new getpid

%
22753

We probably don’t want to allow the Z class to have access to every function that is
included – for example, it might be better not to have access to sethostid(), which
changes the current machine's Internet number. It’s better to be more selective about what
functions to include in the wrapper. It’s also desirable to have a more descriptive name for
the library wrapper class.

The method CHeader>> wrapperNamed:forLibraryAt:select: allows you to
specify the name and a select block to determine the specific library to include. The select
block should evaluate to a Boolean that indicates whether or not to include the particular
function.

For example, to create a wrapper for various compress functions, you could do the
following:
GemTalk Systems 333

FFI Wrapper Utilities GemStone/S 64 Bit 3.6 Programming Guide
Example 18.7 Create wrapper class specifying name and functions

topaz 1> run
| header class |
UserGlobals removeKey: #'ZLib' ifAbsent: [].
header := CHeader path: '/usr/include/zlib.h'.
class := header

wrapperNamed: 'ZLib'
forLibraryAt: '/lib/x86_64-linux-gnu/libz.so.1'
select: [:each |

each name includesString: 'compress'].
class initializeFunctions.
UserGlobals at: class name put: class.

%

This code creates a wrapper class, ZLib, that contains only four functions: compress(),
uncompress(), compress2(), and compressBound(), all the ones that happen to
include the string “compress”. The select block may be considerably more complex,
depending on which specific functions you want to include.

To invoke compress using the Zlib class rather than manually creating a CCallout:.

Example 18.8 Invoke Zlib function compress()

topaz 1> run
| source destination dest_size result used compressed |
source := 'The quick brown fox jumped over the lazy dog'.
destination := CByteArray gcMalloc: 100.
dest_size := CByteArray gcMalloc: 8.
dest_size uint64At: 0 put: destination size.
result := ZLib new
 compress_: destination
 _: dest_size
 _: source
 _: source size.
used := dest_size int64At: 0.
compressed := destination byteArrayFrom: 0 to: used - 1.
compressed

%
x\u9c^KÉHU(,ÍLÎVH*Ê/ÏSHË¯PÈ*Í-HMQÈ/K-R(^AÊç$VU*¤ä§^C.k\u93^P0
334 GemTalk Systems

Chapter

19 External Sessions
GemStone/S 64 Bit incorporates a number of classes that facilitate spawning and
managing external sessions. This chapter describes these classes and how to use them

External Sessions (page 336)
How to create and use external sessions

NRS and Login Parameter Support (page 341)
describes how to setup the login parameters and define NRS strings

Special Cases of External Sessions (page 342)
Special cases of external sessions, such as solo sessions.

19.1 Overview
External sessions allow you to execute Smalltalk code in separate Gems, which may run
on different servers and log in as different users to different repositories, including
repositories running different versions of GemStone. This allows you do to things such as
partitioning work among multiple gems or managing separate repositories.

GemStone includes:

GsTsExternalSession, using GciTsLibrary based on the thread-safe library
libgcits* described by gcits.hf and GciTsLibrary. This is the recommended
external session class. Logging into repositories running a different version of
GemStone is only supported with GsTsExternalSession.

GsExternalSession, using GciLibrary based on libgci* described by gci.hf.

GsLegacyExternalSession, which provides a limited subset of external session
behavior using the GciInterface class. This is needed for environment that do not
support the FFI, such as AIX.

While the API for these classes is similar, there are some differences, which are mentioned
in the text.
GemTalk Systems 335

External Sessions GemStone/S 64 Bit 3.6 Programming Guide
19.2 External Sessions
To use an external session, you must create an instance of the external session class,
GsTsExternalSession, GsExternalSession, or a subclass; with the appropriate login
parameters. Sending login to this instance creates a new Gem session that is logged into the
Stone specified by the login parameters. This may be the same stone as the originating Gem
or a different Stone.

You can then send messages to the instance of external session, which will be executed on
the remote Gem.

After you have executed operations on the remote Gem, you must logout, to ensure the
remote Gem is terminated and does not continue to use resources.

You cannot persist instances of kinds of AbstractExternalSession in the repository.

Setup the External Session
The login parameters you configure are the same as when logging in via topaz or other
interfaces: the Stone’s NRS, the Gem’s NRS, and the userId and password that the external
session will login as. If your login requires host username and host password, these are also
required and are provided as part of the NRS arguments.

The Stone and Gem NRS may be provided as strings using GemStone’s standard NRS
syntax, described in the System Administration Guide appendix C. For convenience, you
may also use instances of the class GsNetworkResourceString, which makes it easier to
compose complicated NRS Strings. See section 19.3 on page 341 for classes that make
composing NRS easier.

Creating the External Session
To create the external session, create an instance and specify instances of
GsNetworkResourceString or NRS strings. The following examples show equivalents
using GsNetworkResourceString and NRS strings.

Default -- logging in to the same stone as the originating gem
GsTsExternalSession class >> newDefault creates a new instance of
GsTsExternalSession, based on the login parameters of the originating Gem (with the
exception of the password, which defaults to 'swordfish'). You then only have to apply any
parameters that are different.

For example:
GsTsExternalSession newDefault

username: 'Newton';
password: 'gravity';
yourself
336 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide External Sessions
Using NRS strings
GsTsExternalSession class >> gemNRS:stoneNRS:username:password:
allows you to specify the require login parameters. These can be strings or instances of
GsNetworkResourceString.

GsTsExternalSession
gemNRS: '!@santiam#netldi:gs64ldi!gemnetobject'
stoneNRS: '!@santiam!gs64stone'
username: 'Newton'
password: 'gravity'

With GsNetworkResourceString
GsTsExternalSession

gemNRS: (GsNetworkResourceString
gemNRSForNetLDI: 'gs64ldi' onHost: 'santiam')

stoneNRS: (GsNetworkResourceString
stoneNRSForStoneName: 'gs64stone' onHost: 'santiam')

username: 'Newton'
password: 'gravity'

When logging into a different version of GemStone
Logging into a Stone that is a running a different version of GemStone is not supported
with GsExternalSession, only with GsTsExternalSession, and is only supported with a
limited number of recent GemStone versions.

You must use a method that specifies the GciTsLibrary version to be used, for example:
| sess |
sess := GsTsExternalSession

parameters: nil
 library: (GciTsLibrary
 newForVersion: '3.5.4'
 product: '/lark/users/gsadmin/GemStone64_354').
sess

stoneNRS: '!#netldi:ldi_354!stone354';
username: 'DataCurator';
password: 'swordfish';
gemNRS: '!#netldi:ldi_354!gemnetobject'.

Log in the External Session
To login, send #login to the configured external session:

myExternalSession login

Login creates a remote Gem session that is logged in and in transaction in the specified
Stone, either the same Stone as the originating Gem session, or a different Stone. If the
remote Gem is logged into a Stone that is in active use, you must manage the Gem
appropriately to avoid creating a commit record backlog in that Stone; avoid leaving
remote Gems logged in and idle, and ensure that the code you execute commits or aborts
regularly.

To logout, send #logout to the logged-in external session:
myExternalSession logout.
GemTalk Systems 337

External Sessions GemStone/S 64 Bit 3.6 Programming Guide
Executing Code
Code to be executed by the remote Gem can be passed as strings or blocks. These can be
executed synchronously or asynchronously.

Code in Strings
To synchronously execute code contained in a string, use the method executeString:.

For example:
myExternalSession executeString:
'SystemRepository fullBackupTo: '

'/backups/gs/bkup20-08-23.dat'''.

Code in Blocks
What is actually sent to the remote Gem is always in the form of a String, but methods are
provided that accept blocks containing the code to execute in the remote Gem. The source
strings for these block will be passed to the remote Gem. This allows Smalltalk tools to
manage the source, detect senders, and so on, which is not possible with strings.

To use blocks, the blocks must be able to compile in both the originating Gem and the
remote Gem in which you intend them to execute, although the block’s code is not
necessarily meaningful in the originating session. Any variable resolution, etc. in the blocks
will be resolved again in the environment of the remote Gem when the block is compiled
after being transmitted as a string, and if the variables cannot be resolved in the remote
Gem, it will result in an error.

Code in block can also be executed synchronously or asynchronously.

To synchronously execute code contained in a block, use:
executeBlock: aNoArgBlock
executeBlock: aOneArgBlock with: aValue
executeBlock: aTwoArgBlock with: aValue with: anotherValue
executeBlock: aBlock withArguments: aCollectionOfValues

These methods execute the source code contained in the given block, and return
the result of executing that code.

When passing arguments to the block, the arguments values must be objects for which
the printString allows the correct object state to be recreated in the remote session. This
is true for all objects, including specials, strings, integers and floats; use caution to
avoid unexpected conversion or loss of information, as well as errors.

Return Values
After code is executed in the remote Gem, the result is returned to the originating session.

If the result of the expression is a special (Character, Boolean, SmallInteger, SmallFloat,
etc.), or a String, Symbol, or ByteArray, the results are converted into the appropriate object
in the originating Gem.

Expressions that return another type of object will return an Array containing the OOP of
the result, the OOP of the class of the result, and the size of the result (for
GsExternalSession, only the OOP of the result is returned). This should be avoided, except
when performing additional remote operations on returned OOPs. The returned OOP is
for the value of the result in the remote Gem, which may not exist or be resolvable in the
originating Gem; and OOP lookup has an inherent risk of unexpected results.
338 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide External Sessions
When the result is not a special, then the OOP of the result is placed in the ExportSet of the
remote Gem. See “Important caution on Export Set of remote session” on page 340.

Since the evaluation is done in a separate Gem process, any transient changes in the remote
Gem are not visible in the originating Gem. In order for persistent changes in the remote
Gem to be visible to the originating Gem, the remote Gem must commit the changes, and
the originating Gem must abort.

Asynchronous Execution
The executeString: and executeBlock: methods block the originating Gem until
execution completes. To execute the remote code asynchronously and return control
immediately to the originating Gem, the following equivalent methods are available:

forkString: aString
forkBlock: aNoArgBlock
forkBlock: aOneArgBlock with: aValue
forkBlock: aTwoArgBlock with: aValue with: anotherValue

When you execute asynchronously, an external call is in progress, and the methods you can
invoke on the remote session are limited:

isResultAvailable
Check whether the current call in progress has finished and save the result if it
has.

lastResult
Answer the result received when the last isResultAvailable answered true,
which includes after a waitForResult operation completed.

waitForResult
Wait for the external Gem to complete the current operation.

waitForResultForSeconds: numSeconds
Wait up to numSeconds seconds for the external Gem to complete the current
operation.

waitForResultForSeconds: numSeconds otherwise: aBlock
Wait up to numSeconds seconds for the external Gem to complete the current
operation. If the operation does not complete within that time, answer the result of
evaluating aBlock.

Operations on remote objects
If you perform a remote operation that returns an OOP, you can send specific selectors to
that remote object by OOP.

send: selector to: anOop
Send the given selector to the object in the external session with the OOP anOop.

send: selector to: anOop withArguments: anArrayOfValues
Send the given selector to the object represented by the given OOP, which is an
OOP in the external session, and pass the Array of arguments.

The OOPs of the arguments are passed to the remote Gem. These arguments must be
specials, or persistent objects that exist on both the calling and remote sessions, otherwise
it will result in an error.
GemTalk Systems 339

External Sessions GemStone/S 64 Bit 3.6 Programming Guide
Important caution on Export Set of remote session
For objects other than specials (Integers, Characters, etc.) that are returned by the remote
Gem, the remote Gem adds these objects to its export set. This includes Strings and other
byte collections, Exceptions returned by the remote Gem, and other objects that are
returned as OOPs. These OOPs remain in the export set of the remote Gem, and will not be
garbage collected, until that Gem is logged out. These OOPS can be removed manually
from the export set using Hidden Set protocol.

Although Strings and similar byte-format results and exceptions are converted into new
String (or appropriate) instances in the calling Gem (with a new OOP), the OOP of the
original String on the remote Gem remains in the external Gem’s export set.

Exceptions
The class GciError and GciLegacyError are provided to represent errors during remote
execution. If the code being executed on the remote session encounters an exception, this
is raised as a GciError in the calling session, or a GciLegacyError if using
GsLegacyExternalSession.

Since remote debugging is not possible with this interface, the stack of the error is included
with the error description.

For example, given the following code which triggers an error on the remote session:
result := [myExternalSession executeString: '1/0']

on: GciError
do: [:ex | ex description].

The result in the calling session will be:
GciError: a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
1 AbstractException >> _signalWith: @5 line 25
 receiver size:0 a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by z
 inCextensionArg nil
 res nil
 .t1 size:0 a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by z
2 AbstractException >> signal @2 line 47
 receiver size:0 a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by z
 .t1 size:0 a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by z
 .t2 nil
3 Number >> _errorDivideByZero @6 line 7
 receiver 1
 .t1 size:0 a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by z
 .t2 size:0 a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by z
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0
 .t1 1
340 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide NRS and Login Parameter Support
5 Executed Code @2 line 1
 receiver nil
 .t1 1
 .t2 0
6 GsNMethod class >> _gsReturnToC @1 line 11
 receiver oop:144897 GsNMethod

19.3 NRS and Login Parameter Support
GemStone logins require a number of parameters. The Stone name, and the Gem service,
are specified in the form of a Network resource string, or NRS. NRS includes a number of
features; the NRS syntax is documented in theSystem Administration Guide, Appendix C.

While you may compose strings in standard NRS syntax for your external session logins,
if you are unfamiliar with NRS syntax, the GsNetworkResourceString class provides a way
to compose sophisticated NRS strings by specifying the individual building blocks.

The NRS Strings to specify a Stone are different than the strings used to specify a Gem
service. The class GsNetworkResourceString supports variables for both sets of arguments;
you will need to pass in the correct arguments for a Stone or Gem service.

For a Stone
body: the name of the Stone.

node: not needed for a remote Stone running on localhost. Otherwise, the name or
IP address of the remote Stone’s node.

netldi: not needed if the NetLDI serving the remote Stone is running as gs64ldi.
Otherwise the name or port of the NetLDI serving the remote Stone.

For example:
(GsNetworkResourceString new
 node: 'santiam';
 netldi: '51234';
 body: 'gs64stone';
 yourself) printString
'!@santiam#netldi:51234!gs64stone'

For a Gem
body: the name of the gem service (e.g. 'gemnetobject' or 'gemnetdebug'). Gem

service arguments such as gemnetobject -C can be included here.

node: not needed if the Gem will run on localhost. Otherwise, the name or IP
address of the node that the remote Gem will run on.

netldi: not needed if the NetLDI serving the remote Stone is running as gs64ldi.
Otherwise the name or port of the NetLDI serving the remote Stone.

authorization: if the remote Netldi is not running in guest mode, the host userId
and host password of the account that will own the remote Gem.

log: optional, specifies a log file for the remote Gem.
GemTalk Systems 341

Special Cases of External Sessions GemStone/S 64 Bit 3.6 Programming Guide
dir: optional, specifies a working directory for the remote Gem.

For example:
(GsNetworkResourceString new
 node: 'santiam';
 netldi: '51234';
 authorization: 'user@passwd';
 body: 'gemnetobject';
 yourself) printString
'!@santiam#auth:user@passwd#netldi:512345!gemnetobject'

Convenience methods for common arguments
There are a number of class methods that allow you to pass in specific required elements
of an NRS. In addition to these specific listed methods, see the image for other variants.

gemNRS
Creates a Gem NRS that uses the default Gem script, which will expect to find
gs64ldi on localhost; the equivalent of 'gemnetobject'

gemNRSForNetLDI: nameOrPort onHost: gemhostname
Creates a Gem NRS to run the Gem process on the host named gemhostname and
with the NetLDI of nameOrPort with the standard gem script gemnetobject; the
equivalent of '!@gemhostname#netldi:nameOrPort!gemnetobject'

stoneNRS
Creates a Stone NRS for a Stone named gs64stone, which should be running on
localhost.

stoneNRSForStoneName: aStoneName onHost: stoneHostName
Creates a Stone NRS for aStoneName, which should be running on stoneHostName;
the equivalent of '!@stoneHostName!aStoneName'.

19.4 Special Cases of External Sessions

Solo external sessions
Using a "solo" session, you can perform most GemStone operations without accessing a
Stone. An external session can be logged in solo either on the same host or another host and
does not have a login to any stones, regardless of a Stone name pass into the NRS for
gemstone.

By default, solo sessions use the read-only empty distribution extent; this can be
configured to use another extent file, provided the following are true:

The extent must not part of a multi-extent repository

The extent file must either have read-only file permissions, or it will be exclusive-
locked by the solo session.

The extent repository must have been previously cleanly shutdown by the Stone

To login solo, the only thing necessary is to send loginSolo rather than login. Note that
the login parameters include the stone name, but this is ignored.
342 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Special Cases of External Sessions
The configuration parameter GEM_SOLO_EXTENT specifies the extent file to be used by
a Solo session. This defaults to the clean, read-only extent within the distribution,
$GEMSTONE/bin/extent0.dbf. You can pass in another extent file by specifying the -C
argument to gemnetobject. For example:

Example 19.1 Passing a custom extent to a solo login

| myExternalSession |
myExternalSession := GsTsExternalSession
 gemNRS: 'gemnetobject -C GEM_SOLO_EXTENT=$GEMSTONE/archive.dbf'
 stoneNRS: nil
 username: 'DataCurator'
 password: 'swordfish'.
myExternalSession loginSolo.

Primitive-based external sessions on AIX
GsExternalSession uses the FFI GciLibrary to implement its functionality. On platforms on
which the FFI GCI library cannot be used, instances of GsLegacyExternalSession provides
external sessions. AIX is the only known environment where this class must be used.

X509 external sessions
The classes GsTsX509ExternalSession and GsX509ExternalSession, along with
GemStoneX509Parameters, allow you to create an external session login using X509-
Secured GemStone. See the GemStone/S 64 Bit X509-Secured GemStone System Administration
Guide for details on how to set this up.
GemTalk Systems 343

Special Cases of External Sessions GemStone/S 64 Bit 3.6 Programming Guide
344 GemTalk Systems

Chapter

20 The SUnit Framework
SUnit is a minimal yet powerful framework that supports the creation of automated unit
tests. This chapter discusses the importance of repeatable unit tests and illustrates the ease
of writing them using SUnit.

This chapter is adapted from “SUnit Explained” by Stéphane Ducasse
(http://www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf)
and is used by permission.

Why SUnit? (page 345)
introduces the SUnit framework and its benefit to the application developer.

Testing and Tests (page 346)
describes the general goals of automated testing.

SUnit by Example (page 347)
presents a step-by-step example that illustrates the use of SUnit.

The SUnit Framework (page 350)
describes the core classes of the SUnit framework.

Understanding the SUnit Implementation (page 351)
explores key aspects of the implementation by following the execution of a test and test
suite.

20.1 Why SUnit?
Writing tests is an important way of investing in the future reliability and maintainability
of your code. Tests should be repeatable, automated, and cover a precise functionality to
maximize their potential.

SUnit was developed originally by Kent Beck and was extended by Joseph Pelrine and
others. SUnit is not limited to the Smalltalk community; versions of XUnit (as the general
framework is called) exist in many other languages.

Testing and building regression test suites is not new; it is common knowledge that
regression tests are a good way to catch errors. Extreme Programming has brought a new
GemTalk Systems 345

http://www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf

Testing and Tests GemStone/S 64 Bit 3.6 Programming Guide
emphasis to this discipline by making testing a foundation of its methodology. The
Smalltalk community has a long tradition of testing, due to the incremental development
supported by its programming environment. However, once you write tests in a
workspace or as example methods, there is no easy way to keep track of them and to
automatically run them. Unfortunately, tests that you cannot automatically run are less
likely to be run. Moreover, having a code snippet to run in isolation often does not readily
indicate the expected result. The value of SUnit is that it provides a code framework to
describe the context of your tests as well as to run them automatically. With a set of SUnit
tests, you can quickly add tests that become part of an automated test suite. This represents
a vast improvement over writing small code snippets in an ephemeral workspace.

20.2 Testing and Tests
Many traditional development methodologies include testing as a step that follows coding,
and this step is often cut short when time pressures arise. Yet development of automated
tests can save time, since having a suite of tests is extremely useful and allows one to make
application changes with much higher confidence.

Automated tests play several roles. First, they are an active and always synchronized
documentation of the functionality they cover. Second, they represent the developer’s
confidence in a piece of code. Tests help you quickly find defects introduced by changes to
your code. Finally, writing tests at the same time or even before writing code forces you to
think about the functionality you want to design. By writing tests first, you have to clearly
state the context in which your functionality will run, the way it will interact with other
code, and, more important, the expected results. Moreover, when you are writing tests, you
are your first client and your code will naturally improve.

The culture of tests has always been present in the Smalltalk community; a typical practice
is to compile a method and then, from a workspace, write a small expression to test it. This
practice supports the extremely tight incremental development cycle promoted by
Smalltalk. However, because workspace expressions are not as persistent as the tested code
and cannot be run automatically, this approach does not yield the maximum benefit from
testing. Moreover, the context of the test is left unspecified so the reader has to interpret the
obtained result and assess whether it is right or wrong.

It is clear that we cannot tests all the aspects of an application. Covering a complete
application is simply impossible and should not be the goal of testing. Even with a good
test suite, some defect can creep into the application and be left hidden waiting for an
opportunity to damage your system. While there are a variety of test practices that can
address these issues, the goal of regression tests is to ensure that a previously discovered
and fixed defect is not reintroduced into a later release of the product.

Writing good tests is a technique that can be easily learned by practice. Let us look at the
properties that tests should have to get a maximum benefit:

Repeatable. We should be able to easily repeat a test and get the same result each
time.

Automated. Tests should be run without human intervention. You should be able to
run them during the night.

Tell a story. A test should cover one aspect of a piece of code. A test should act as a
specification for a unit of code.
346 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide SUnit by Example
Resilient. Changing the internal implementation of a module should not break a test.
One way to achieve this property is to write tests based on the interfaces of the tested
functionality.

In addition, for test suites, the number of tests should be somehow proportional to the bulk
of the tested functionality. For example, changing one aspect of the system might break
some tests, but it should not break all the tests. This is important because having 100 tests
broken should be a much more important message for you than having 10 tests failing.

By using “test-first” or “test-driven” development, eXtreme Programming proposes to
write tests even before writing code. While this is counter-intuitive to the traditional
“design-code-test” mindset, it can have a powerful impact on the overall result. Test-
driven development can improve the design by helping you to discover the needed
interface for a class and by clarifying when you are done (the tests pass!).

The next section provides an example of an SUnit test.

20.3 SUnit by Example
Before going into the details of SUnit, let’s look at a step-by-step example. The example in
this section tests the class Set, and is included in the SUnit distribution so that you can read
the code directly in the image.

Step 1: Define the Class ExampleSetTest
Example 20.1 defines the class ExampleSetTest, a subclass of TestCase.

Example 20.1

TestCase subclass: 'ExampleSetTest'
instVarNames: #(full empty)
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: Globals

The class ExampleSetTest groups all tests related to the class Set. It establishes the context
of all the tests that we will specify. Here the context is described by specifying two instance
variables, full and empty, that represent a full and empty set, respectively.

Step 2: Define the Method setUp
Example 20.2 presents the method setUp, which acts as a context definer method or as an
initialize method. It is invoked before the execution of any test method defined in this class.
Here we initialize the empty instance variable to refer to an empty set, and the full
instance variable to refer to a set containing two elements.
GemTalk Systems 347

SUnit by Example GemStone/S 64 Bit 3.6 Programming Guide
Example 20.2

ExampleSetTest>>setUp
empty := Set new.
full := Set with: 5 with: #abc.

This method defines the context of any tests defined in the class. In testing jargon, it is
called the fixture of the test.

Step 3: Define Three Test Methods
Example 20.3 defines three methods on the class ExampleSetTest. Each method represents
one test. If your test method names begin with test, as shown here, the framework will
collect them automatically for you into test suites ready to be executed.

Example 20.3

ExampleSetTest>>testIncludes
self assert: (full includes: 5).
self assert: (full includes: #abc).

ExampleSetTest>>testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1.

ExampleSetTest>>testRemove
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5).

The testIncludes method tests the includes: method of a Set. After running the
setUp method in Example 20.2, sending the message includes: 5 to a set containing 5
should return true.

Next, testOccurrences verifies that there is exactly one occurrence of 5 in the full set,
even if we add another element 5 to the set.

Finally, testRemove verifies that if we remove the element 5 from a set, that element is no
longer present in the set.

Step 4: Execute the Tests
Now we can execute the tests, using either Topaz or one of the GemBuilder interfaces. To
run your tests, execute the following code:

(ExampleSetTest selector: #testRemove) run.

Alternatively, you can execute this expression:
ExampleSetTest run: #testRemove.

Developers often include such an expression as a comment, to be able to run them while
browsing. See Example 20.4.
348 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide SUnit by Example
Example 20.4

ExampleSetTest>>testRemove
"self run: #testRemove"
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5).

To debug a test, use one of the following expressions:
(ExampleSetTest selector: #testRemove) debug.

or
ExampleSetTest debug: #testRemove.

Examining the Value of a Tested Expression
The method TestCase>>assert: requires a single argument, a boolean that represents
the value of a tested expression. When the argument is true, the expression is considered
to be correct, and we say that the test is valid. When the argument is false, then the test
failed. The method deny: is the negation of assert:. Hence

aTest deny: anExpression.

is equal to
aTest assert: anExpression not.

Finding Out If an Exception Was Raised
SUnit recognizes two kinds of defects: not getting the correct answer (a failure) and not
completing the test (an error). If it is anticipated that a test will not complete, then the test
should raise an exception. To test that exceptions have been raised during the execution of
an expression, SUnit offers two methods, should:raise: and shouldnt:raise:. See
Example 20.5.

Example 20.5

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #abc] raise: Error.

In the example provided by SUnit, the exception is provided via the TestResult class
(Example 20.6). Because SUnit runs on a variety of Smalltalk dialects, the SUnit framework
factors out the variant parts (such as the name of the exception). If you plan to write tests
that are intended to be cross-dialect, look at the class TestResult.

Example 20.6

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: TestResult error.
self should: [empty at: 5 put: #abc] raise: TestResult error.
GemTalk Systems 349

The SUnit Framework GemStone/S 64 Bit 3.6 Programming Guide
Because GemStone Smalltalk has a legacy exception framework that uses numbers to
identify exceptions, a subclass of TestCase is provided, GSTestCase, which overrides
should:raise: to allow a number argument for the expected error type.

Example 20.7

GSExampleSetTest>>testIllegal
self should: [empty at: 5] raise: 2007.
self should: [empty at: 5 put: #abc] raise: 2007.

Having provided an example of writing and running a test, we now turn to an
investigation of the framework itself.

20.4 The SUnit Framework
SUnit is implemented by four main classes: TestSuite, TestCase, TestResult, and
TestResource. See Figure 20.1. (Note that this is an object composition diagram, not a class
hierarchy diagram.)

Figure 20.1

TestSuite
run
resources
addTest:

TestResource

isAvailable
setUp
tearDown

TestResult
passedCount
failureCount
errorCount

TestCase
setUp
tearDown
assert:

runCount
tests

deny:
should:raise:
shouldnt:raise:
selector: (C)
run
resources

tests

The SUnit Core Classes

TestSuite
The class TestSuite represents a collection of tests. An instance of TestSuite contains zero
or more instances of subclasses of TestCase and zero or more instances of TestSuite. The
classes TestSuite and TestCase form a composite pattern in which TestSuite is the
composite and TestCase is the leaf.

TestCase
The class TestCase represents a family of tests that share a common context. The context is
specified by instance variables on a subclass of TestCase and by the specialization method
setUp, which initializes the context in which the test will be executed. The class TestCase
also defines the method tearDown, which is responsible for cleanup, including releasing
350 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Understanding the SUnit Implementation
the objects allocated by setUp. The method tearDown is invoked after the execution of
every test.

TestResult
The class TestResult represents the results of a TestSuite execution. This includes a
description of which tests passed, which failed, and which had errors.

TestResource
Recall that the setUp method is used to create a context in which the test will run. Often
that context is quite inexpensive to establish, as in Example 20.2 seen earlier, which creates
two instances of Set and adds two objects to one of those instances.

At times, however, the context may be comparatively expensive to establish. In such cases,
the prospect of re-establishing the context for each run of each test might discourage
frequent running of the tests. To address this problem, SUnit introduces the notion of a
resource that is shared by multiple tests.

The class TestResource represents a resource that is used by one or more tests in a suite, but
instead of being set up and torn down for each test, it is established once before the first test
and reset once after the last test. By default, an instance of TestSuite defines as its resources
the list of resources for the TestCase instances that compose it.

As shown in Example 20.8, a resource is identified by overriding the class method
resources. Here, we define a subclass of TestResource called MyTestResource. We
associate it with MyTestCase by overriding the class method resources to return an
array of the test classes to which it is associated.

Example 20.8

MyTestCase class>>resources
"associate a resource with a testcase"
^ Array with: MyTestResource.

As with a TestCase, we use the method setUp to define the actions that will be run during
the setup of the resource.

20.5 Understanding the SUnit Implementation
Let’s now look at some key aspects of the implementation by following the execution of a
test. Although this understanding is not necessary to use SUnit, it can help you to
customize SUnit.

Running a Single Test
To execute a single test, we evaluate the expression

(TestCase selector: aSymbol) run.

The method TestCase>>run creates an instance of TestResult to contain the result of
the executed tests, and then invokes the method TestCase>>run:, which in turn invokes
the method TestResult>>runCase:. See Figure 20.2.
GemTalk Systems 351

Understanding the SUnit Implementation GemStone/S 64 Bit 3.6 Programming Guide
Figure 20.2 TestCase instance methods run and run: (source code)

TestCase>>run
| result |
result := TestResult new.
self run: result.

ensure: [TestResource resetResources: self resources].
^result.

TestCase>>run: aResult
aResult runCase: self.

The runCase: method (Figure 20.9) invokes the method TestCase>>runCase, which
executes a test. Without going into the details, TestCase>>runCase pays attention to the
possible exception that may be raised during the execution of the test, invokes the
execution of a TestCase by calling the method runCase, and counts the errors, failures,
and passed tests.

Example 20.9 TestResult instance method runCase: (source code)

TestResult>>runCase: aTestCase
[aTestCase runCase.
self addPass: aTestCase]

on: self class failure , self class error
do: [:ex | ex sunitAnnounce: aTestCase toResult: self]

As shown in Figure 20.10, the method TestCase>>runCase calls the methods setUp
and tearDown.

Example 20.10 TestCase instance method runCase (source code)

TestCase>>runCase
self resources do: [:each | each availableFor: self].
[self setUp.
self performTest]
ensure: [self tearDown]

Running a TestSuite
To execute more than a single test, we invoke the method TestSuite>>run on a TestSuite
(see Figure 20.11). The class TestCase provides the functionality to build a test suite from
its methods. The expression MyTestCase suite returns a suite containing all the tests
defined in the class MyTestCase.

The method TestSuite>>run creates an instance of TestResult, verifies that all the
resource are available, then invokes the method TestSuite>>run: to run all the tests
that compose the test suite. All the resources are then reset.
352 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Understanding the SUnit Implementation
Example 20.11 TestSuite instance methods run and run: (source code)

TestSuite>>run
| result |
result := TestResult new.
[self run: result]

ensure: [TestResource resetResources: self resources].
^result

TestSuite>>run: aResult
self tests do: [:each |

self sunitChanged: each.
each run: aResult]

The class TestResource and its subclasses use the class method current to keep track of
their currently created instances (one per class) that can be accessed and created. This
instance is cleared when the tests have finished running and the resources are reset. The
resources are created as needed. See Figure 20.12.

Example 20.12 TestResource class methods isAvailable and current (source code)

TestResource class>>isAvailable
^self current notNil

TestResource class>>current
current isNil ifTrue: [current := self new].
^current
GemTalk Systems 353

Understanding the SUnit Implementation GemStone/S 64 Bit 3.6 Programming Guide
354 GemTalk Systems

Chapter

A GemStone Smalltalk
Syntax
This appendix outlines the syntax for GemStone Smalltalk and introduces the important
kinds of GemStone Smalltalk objects.

GemStone and ANSI Smalltalk (page 355)
The relationship between GemStone Smalltalk and the ANSI Smalltalk standard.

GemStone Smalltalk (page 356)
An overview of the Smalltalk Syntax.

Blocks (page 368)
How blocks are used in GemStone Smalltalk.

GemStone Smalltalk BNF (page 373)
GemStone Smalltalk BNF

A.1 GemStone and ANSI Smalltalk
GemStone’s programming language, GemStone Smalltalk, is a dialect of the Smalltalk
programming language. The Smalltalk language standard is defined by an ANSI Smalltalk
standard. While GemStone follows this standard, there are places where either for
historical reasons or by choice, GemStone Smalltalk does not follow the ANSI standard.

Some known places in which GemStone Smalltalk does not conform to the ANSI standard:

GemStone Array sizes are not fixed; an Array may increase in size by 1 when an
operation assign to an index not more than 1 larger than the current size.

GemStone Array constructors using {} are not part of the standard.

Integer >> asInteger truncates rather than rounds.

The Fixed point literal syntax with ‘p’ is not part of the standard.
GemTalk Systems 355

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
GemStone and ANSI limits
The limits in GemStone, such as the maximum length of an identifier, are generally higher
than the ANSI minimum requirement. While this makes working in GemStone more
flexible, adhering to the ANSI limits, or the limits for other Smalltalk dialects, makes it
easier to port GemStone code to other platforms.

Table 1.1 Implementation Limits

GemStone limit
ANSI minimum

upper limit

Length of identifiers 1024 200

Length of binary selectors 1024 2

Total length of keyword selectors
(including colons)

1024 500

Number of named instance
variables per object (including
inherited)

2030 127

Number of class variables per class no limit 1000

Number of methods per behavior no limit 1000

Number of arguments per method
or block

255 15

Number of temporary variables per
method or block

1013 15

Total number instance variables
(system-wide)

no limit 65535

A.2 GemStone Smalltalk
Every object is an instance of a class, taking its methods and its form of data storage from
its class. Defining a class thus creates a kind of template for a whole family of objects that
share the same structure and methods. Instances of a class are alike in form and in
behavioral repertoire, but independent of one another in the values of the data they
contain.

Classes are much like the data types (string, integer, etc.) provided by conventional
languages; the most important difference is that classes define actions as well as storage
structures. In other words, Algorithms + Data Structures = Classes.

Smalltalk provides a number of predefined classes that are specialized for storing and
transforming different kinds of data. Instances of class Float, for example, store floating-
point numbers, and class Float provides methods for doing floating-point arithmetic.
Floats respond to messages such as +, -, and reciprocal.
356 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
Instances of class Array store sequences of objects and respond to messages that read and
write array elements at specified indices.

The Smalltalk classes are organized in a treelike hierarchy, with classes providing the most
general services nearer the root, and classes providing more specialized functions nearer
the leaves of the tree. This organization takes advantage of the fact that a class’s structure
and methods are automatically conferred on any classes defined as its subclasses. A
subclass is said to inherit the properties of its parent and its parent’s ancestors.

GemStone Smalltalk is case-sensitive; that is, names such as “SuperClass,” “superclass,”
and “superClass” are treated as unique items by the GemStone Smalltalk compiler.

How to Create a New Class
Classes are created using a number of class creation methods, defined on the class Class.
For example, following message expression makes a new subclass of class Object, the class
at the top of the class hierarchy:

Object subclass: 'Animal'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

This subclass creation message establishes a name (’Animal’) for the new class and installs
the new class in a Dictionary called UserGlobals. The String used for the new class’s name
must follow the general rule for variable names — that is, it must begin with an alphabetic
character and its length must not exceed 1024 characters. Installing the class in UserGlobals
makes it available for use in the future—you need only write the name Animal in your code
to refer to the new class. For more on class creation, see Chapter 2.

Statements
The basic syntactic unit of a Smalltalk program is the statement. A lone statement needs no
delimiters; multiple statements are separated by periods:

a := 2.
b := 3.

In a group of statements to be executed en masse, a period after the last statement is
optional.

A statement contains one or more expressions, combining them to perform some reasonable
unit of work, such as an assignment or retrieval of an object.

Comments
GemStone Smalltalk usually treats a string of characters enclosed in quotation marks as a
comment—a descriptive remark to be ignored during compilation. Here is an example:

"This is a comment."

 A quotation mark does not begin a comment in the following cases:

Within another comment. You cannot nest comments.

Within a string literal (see page 360). Within a GemStone Smalltalk string literal, a
“comment” becomes part of the string.
GemTalk Systems 357

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
When it immediately follows a dollar sign ($). GemStone Smalltalk interprets the first
character after a dollar sign as a data object called a character literal (see page 359).

A comment terminates tokens such as numbers and variable names. For example,
GemStone Smalltalk would interpret the following as two numbers separated by a space
(by itself, an invalid expression):

2" this comment acts as a token terminator"345

Expressions
An expression is a sequence of characters that Smalltalk can interpret as a reference to an
object. Some references are direct, and some are indirect.

Expressions that name objects directly include both variable names and literals such as
numbers and strings. The values of those expressions are the objects they name.

An expression that refers to an object indirectly by specifying a message invocation has the
value returned by the message’s receiver. You can use such an expression anywhere you
might use an ordinary literal or a variable name. This expression:

2 negated

has the value (refers to) -2, the object that 2 returns in response to the message negated.

The following sections describe the syntax of GemStone Smalltalk expressions and tell you
something about their behavior.

A GemStone Smalltalk expression can contain a combination of the following:

a literal

a variable name

an assignment

a message expression

an array constructor

a path

a block

The following sections discuss each of these kinds of expression in turn.

Literals
A literal expression is a representation of some object such as a character or string whose
value or structure can be written out explicitly. The kinds of GemStone Smalltalk literals
are:

numbers

characters

strings

symbols

arrays of literals
358 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
Numeric Literals
In Smalltalk, literal numbers look and act much like numbers in other programming
languages. Like other Smalltalk objects, numbers receive and respond to messages. Most
of those messages are requests for arithmetic operations. In general, Smalltalk numeric
expressions do the same things as their counterparts in other programming languages. For
example:

5 + 5

returns the sum of 5 and 5.

A literal floating point number must include at least one digit after the decimal point:
5.0

You can express very large and very small numbers compactly with scientific notation. To
raise a number to some exponent, simply append the letter “e” and a numeric exponent to
the number’s digits. For example:

8.0e2

represents 800.0. The number after the e represents an exponent (base 10) to which the
number preceding the e is to be raised. The result is always a floating point number. Here
are more examples:

1e-3 represents 0.001
1.5e0 represents 1.5

The literal numeric type GemStone/S 64 Bit supports are:

“e”, “E”, “d” and “D” for floating point literals (SmallDouble or Float)

“f” and “F” for DecimalFloat literals

“s” for ScaledDecimal literals

“p” for FixedPoint literals

For details, see “GemStone Smalltalk Lexical Tokens” on page 375.

To represent a number in a nondecimal base literally, write the number’s base (in decimal),
followed by the radix “r” or character "#", and then the number itself. Here, for example, is
how you could write octal 23 and hexadecimal FF:

8#23
16rFF

The largest radix available is 36.

Character Literals
A Smalltalk character literal represents a character, such as one of the symbols of the
alphabet. To create a character literal, write a dollar sign ($) followed by the character’s
alphabetic symbol. Here are some examples:

$b $B $4 $? $$

If a nonprinting ASCII character such as a tab or a form feed follows the dollar sign,
Smalltalk creates the appropriate internal representation of that character.

GemStone Smalltalk interprets this statement, for example, as a representation of ASCII
character 32:

$. "Creates the character representing a space (ASCII 32)"
GemTalk Systems 359

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
In this example, the period following the space acted as a statement terminator. If no space
had separated the dollar sign from the period, GemStone Smalltalk would have interpreted
the expression as the character literal representing a period.

String Literals
Literal strings represent sequences of characters. They are instances of the class String,
described in Chapter 4‚ “Collection and Stream Classes”.A literal string is a sequence of
characters enclosed by single quotation marks. These are literal instances of String:

'Intellectual passion drives out sensuality.'
'A difference of taste in jokes is a great strain

 on the affections.'

When you want to include apostrophes in a literal string, double them:
'You can''t make omelettes without breaking eggs.'

GemStone Smalltalk faithfully preserves control characters when it compiles literal strings.
The following example creates a String containing a line feed (ASCII 10), the end-of-line
character:

'Control characters such as line feeds
 are significant in literal strings.'

Strings may hold characters with values up to 255, that is, characters that can be
representing in a single byte. Characters themselves may have values much higher. If a
string includes any characters larger than 255, it is converted to a DoubleByteString. If any
of the characters require more than two bytes, it becomes a QuadByteString. For example,
this is a DoubleByteString:

'Škoda'

Symbol Literals
A literal Symbol is similar to a literal String. It is a sequence of characters preceded by a
pound sign (#). For example:

#stuff
#nonsense
#may_24_thisYear

Literal Symbols specified in this way must be legal identifiers or keywords: they must
begin with a letter, contain only alphanumeric characters, underscore, and colon. A Symbol
can contain other characters, or start with a number: in this case, they must be preceded by
a pound sign (#) and must also be delimited by single quotation marks. For example:

#'Gone With the Wind'

As with strings that contain characters that require more than a byte to represent,
DoubleByteSymbol and QuadByteSymbol are used for symbol literals that include
characters with values over 255.

Array Literals
Arrays can hold objects of any type, and they respond to messages that read and write
individual elements or groups of elements.

A literal Array can contain only other literals—Characters, Strings, Symbols, other literal
Arrays, and three “special literals” (true, false, nil). The elements of a literal Array are
360 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
enclosed in parentheses and preceded by a pound sign (#). White space must separate the
elements.

Here is an Array that contains two Strings, a literal Array, and a third String:
#('string one' 'string two' #('another' 'Array') 'string3')

The following Array contains a String, a Symbol, a Character, a Number, and a Boolean:
#('string one' #symbolOne $c 4 true)

ByteArray literals are similar, but may only hold SmallIntegers in the range 0 to 255, and
use square brackets instead of parenthesis.

For example:
#[99 97 116]

Besides Array literals, you may also specify Array constructors in your code, which are
used similarly, but follow quite different rules. For a discussion of array constructors, see
page 366.

Variables and Variable Names
A variable name is a sequence of characters of either or both cases. A variable name must
begin with an alphabetic character or an underscore (“_”), but it can contain numerals.
Spaces are not allowed, and the underscore is the only acceptable punctuation mark. Here
are some permissible variable names:

zero
relationalOperator
Top10SolidGold
A_good_name_is_better_than_precious_ointment

Most Smalltalk programmers begin local variable names with lowercase letters and global
variable names with uppercase letters. When a variable name contains several words,
Smalltalk programmers usually begin each word with an uppercase letter (sometimes
called “camelcase”). You are free to ignore either of these conventions, but remember that
Smalltalk is case-sensitive. The following are all different names to Smalltalk:

VariableName
variableName
variablename

Variable names can contain up to 1024 characters.

Declaring Temporary Variables
GemStone Smalltalk requires you to declare new variable names (implicitly or explicitly)
before using them. The simplest kind of variable to declare is the temporary variable.
Temporary variables are so called because they are defined only for one execution of the
set of statements in which they are declared.

To declare a temporary variable, you surround it with vertical bars as in this example:
| myTempVariable |
myTempVariable := 2.

You can declare at most 1013 temporary variables for a set of statements. Once declared, a
variable can name objects of any kind.
GemTalk Systems 361

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
To store a variable for later use, or to make its scope global, you must put it in one of
GemStone’s shared dictionaries that GemStone Smalltalk uses for symbol resolution. For
example:

| myTempVariable |
myTempVariable := 2.
UserGlobals at: #MyPermanentVariable put: myTempVariable.

Subsequent references to MyPermanentVariable return the value 2.

Pseudovariables
You can change the objects to which most variable names refer simply by assigning them
new objects. However, five GemStone Smalltalk variables have values that cannot be
changed by assignment; they are therefore called pseudovariables. They are:

nil

Refers to an object representing a null value. Variables not assigned another value
automatically refer to nil. nil is an instance of UndefinedObject.

true

Refers to the object representing logical truth. true is an instance of Boolean.

false

Refers to the object representing logical false. false is an instance of Boolean.

self

Refers to the receiver of the message, which differs according to the context. self may
be used anywhere a method argument or method temporary would be used, except
self is not allowed on the left side of an assignment. When self is used in code that is
not part of a method, it resolves to nil.

super

Refers to the receiver of the message, but the search for the method to execute will start
in the superclass of the class in which the sending method was compiled. super may
only be used as the receiver of a message send, in code within a method.

Assignment
Assignment statements in Smalltalk look like assignment statements in many other
languages. The following statement assigns the value 2 to the variable MightySmallInteger:

MightySmallInteger := 2.

The next statement assigns the same String to two different variables (C programmers may
notice the similarity to C assignment syntax):

nonmodularity := interdependence := 'No man is an island'.

Message Expressions
Smalltalk objects communicate with one another by means of messages. Most of your effort
in Smalltalk programming will be spent in writing expressions in which messages are
passed between objects. This subsection discusses the syntax of those message expressions.
362 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
You have already seen several examples of message expressions:
2 + 2
5 + 5

In fact, the only GemStone Smalltalk code segments you have seen that are not message
expressions are literals, variables, and simple assignments:

2 "a literal"
variableName "a variable"
MightySmallInteger := 2. "an assignment"

The ubiquity of message-passing is one of the hallmarks of object-oriented programming.

Messages
A message expression consists of:

an identifier or expression representing the object to receive the message,

one or more identifiers called selectors that specify the message to be sent, and

(possibly) one or more arguments that pass information with the message (these are
analogous to procedure or function arguments in conventional programming).
Arguments can be written as message expressions.

Reserved and Optimized Selectors
GemStone represents selectors internally as symbols, and almost all symbols that confirm
to the unary, binary, or keyword selector patterns are acceptable as a selectors. For details
on legal selectors, see the BNF on page 373.

There are a few selectors that have been reserved for the sole use of the GemStone kernel
classes. The compiler will not allow you to compile methods with reserved selectors.

Those selectors are reserved:

In addition, the following methods are optimized or inlined in the class SmallInteger:
+ - * = ~= < <= > >=

Redefinitions in the class SmallInteger are ignored (or, in some cases, ignored if native code
is enabled).

==
__inProtectedMode
_and:
_downTo:by:do:
_downTo:do:
_gsReturnNoResult
_gsReturnNothingEnableEvents
_isArray
_isExceptionClass
_isExecBlock
_isFloat
_isInteger
_isNumber
_isOneByteString
_isRange
_isRegexp

_isRubyHash
_isScaledDecimal
_isSmallInteger
_isSymbol
_leaveProtectedMode
_or:
_stringCharSize
~~
and:
ifFalse:
ifFalse:ifTrue:
ifNil:
ifNil:ifNotNil:
ifNotNil:
ifNotNil:ifNil:
ifTrue:

ifTrue:ifFalse:
isKindOf:
or:
repeat
timesRepeat:
to:by:do:
to:do:
untilFalse
untilFalse:
untilTrue
untilTrue:
whileFalse
whileFalse:
whileTrue
whileTrue:
GemTalk Systems 363

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
Messages as Expressions
In the following message expression, the object 2 is the receiver, + is the selector, and 8 is
the argument:

2 + 8

When 2 sees the selector +, it looks up the selector in its private memory and finds
instructions to add the argument (8) to itself and to return the result. In other words, the
selector + tells the receiver 2 what to do with the argument 8. The object 2 returns another
numeric object 10, which can be stored with an assignment:

myDecimal := 2 + 8.

The selectors that an object understands (that is, the selectors for which instructions are
stored in an object’s instruction memory or “method dictionary”) are determined by the
object’s class.

Unary Messages
The simplest kind of message consists only of a single identifier called a unary selector. The
selector negated, which tells a number to return its negative, is representative:

7 negated
-7

 Here are some other unary message expressions:
9 reciprocal. "returns the reciprocal of 9"
myArray last. "returns the last element of Array myArray"
DateTime now. "returns the current date and time"

Binary Messages
Binary message expressions contain a receiver, a single selector consisting of one or two
nonalphanumeric characters, and a single argument. You are already familiar with binary
message expressions that perform addition. Here are some other binary message
expressions (for now, ignore the details and just notice the form):

8 * 8 "returns 64"
4 < 5 "returns true"
myObject = yourObject "returns true if myObject and

yourObject have the same value"

Keyword Messages
Keyword messages are the most common. Each contains a receiver and up to 15 keyword
and argument pairs. In keyword messages, each keyword is a simple identifier ending in
a colon.

In the following example, 7 is the receiver, rem: is the keyword selector, and 3 is the
argument:

7 rem: 3 "returns the remainder from the division of 7 by 3"

Here is a keyword message expression with two keyword-argument pairs:
| arrayOfStrings |
arrayOfStrings := Array new: 4.
arrayOfStrings at: (2 + 1) put: 'Curly'.
"puts 'Curly' at index position 3 in the receiver"
364 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
In a keyword message, the order of the keyword-argument pairs (at:arg1 put:arg2) is
significant.

Combining Message Expressions
In a previous example, one message expression was nested within another, and
parentheses set off the inner expression to make the order of evaluation clear. It happens
that the parentheses were optional in that example. However, in GemStone Smalltalk as in
most other languages, you sometimes need parentheses to force the compiler to interpret
complex expressions in the order you prefer.

Combinations of unary messages are quite simple; GemStone Smalltalk always groups
them from left to right and evaluates them in that order. For example:

9 reciprocal negated

is evaluated as if it were parenthesized like this:
(9 reciprocal) negated

That is, the numeric object returned by 9 reciprocal is sent the message negated.

Binary messages are also invariably grouped from left to right. For example, GemStone
Smalltalk evaluates:

2 + 3 * 2

 as if the expression were parenthesized like this:
(2 + 3) * 2

This expression returns 10. It may be read: “Take the result of sending + 3 to 2, and send
that object the message * 2.”

All binary selectors have the same precedence. Only the sequence of a string of binary
selectors determines their order of evaluation; the identity of the selectors doesn’t matter.

However, when you combine unary messages with binary messages, the unary messages
take precedence. Consider the following expression, which contains the binary selector +
and the unary selector negated:

2 + 2 negated
0

This expression returns the result 0 because the expression 2 negated executes before the
binary message expression 2 + 2. To get the result you may have expected here, you would
need to parenthesize the binary expression like this:

(2 + 2) negated
-4

Finally, binary messages take precedence over keyword messages. For example:
myArrayOfNums at: 2 * 2

would be interpreted as a reference to myArrayofNums at position 4. To multiply the
number at the second position in myArrayOfNums by 2, you would need to use
parentheses like this:

(myArrayOfNums at: 2) * 2
GemTalk Systems 365

GemStone Smalltalk GemStone/S 64 Bit 3.6 Programming Guide
Summary of Precedence Rules
1. Parenthetical expressions are always evaluated first.

2. Unary expressions group left to right, and they are evaluated before binary and
keyword expressions.

3. Binary expressions group from left to right, as well, and take precedence over keyword
expressions.

4. GemStone Smalltalk executes assignments after message expressions.

Cascaded Messages
You will often want to send a series of messages to the same object. By cascading the
messages, you can avoid having to repeat the name of the receiver for each message. A
cascaded message expression consists of the name of the receiver, a message, a semicolon,
and any number of subsequent messages separated by semicolons.

For example:
| arrayOfPoets |
arrayOfPoets := Array new.
(arrayOfPoets add: 'cummings'; add: 'Byron'; add: 'Rimbaud';
yourself)

is a cascaded message expression that is equivalent to this series of statements:
| arrayOfPoets |
arrayOfPoets := Array new.
arrayOfPoets add: 'cummings'.
arrayOfPoets add: 'Byron'.
arrayOfPoets add: 'Rimbaud'.
arrayOfPoets

You can cascade any sequence of messages to an object. And, as always, you are free to
replace the receiver’s name with an expression whose value is the receiver.

Array Constructors
Most of the syntax described in this chapter so far is standard Smalltalk syntax. However,
GemStone Smalltalk also includes a syntactic construct called a Array constructor. An Array
constructor is similar to a literal array, but its elements can be written as nonliteral
expressions as well as literals. GemStone Smalltalk evaluates the expressions in an Array
constructor at run time.

Array constructors look a lot like literal Arrays; the differences are that array constructors
are enclosed in braces and have their elements delimited by periods.

The following example shows an Array constructor whose last element, represented by a
message expression, has the value 4.

"An Array constructor"
{'string one' . #SymbolOne . $c . 2+2}

NOTE
The Array constructor is not part of the Smalltalk standard. You should avoid its
use in any code that might be ported to an other Smalltalk dialect. Instead, use a
message send constructor such as Array class >> #with:, such as
Array with: 'string one' with: $c with: 2+2.
366 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk
Because any valid GemStone Smalltalk expression is acceptable as an array constructor
element, you are free to use variable names as well as literals and message expressions:

| aString aSymbol aCharacter aNumber |
aString := 'string one'.
aSymbol := #symbolOne.
aCharacter := $c.
aNumber := 4.
{aString . aSymbol . aCharacter . aNumber}

The differences in the behavior of array constructors versus literal arrays can be subtle. For
example, the literal array:

#(123 huh 456)

is interpreted as an array of three elements: a SmallInteger, aSymbol, and another
SmallInteger. This is true even if you declare the value of huh to be a SmallInteger such as
88, as shown in this example:

| huh |
huh := 88.
#(123 huh 456)
[20176897 sz:3 cls: 66817 Array] an Array
 #1 [986 sz:0 cls: 74241 SmallInteger] 123 == 0x7b
 #2 [27086593 sz:3 cls: 110849 Symbol] huh
 #3 [3650 sz:0 cls: 74241 SmallInteger] 456 == 0x1c8

The same declaration used in an array constructor, however, produces an array of three
SmallIntegers:

| huh |
huh := 88.
{ 123 . huh . 456 }
[20192001 sz:3 cls: 66817 Array] an Array
 #1 [986 sz:0 cls: 74241 SmallInteger] 123 == 0x7b
 #2 [706 sz:0 cls: 74241 SmallInteger] 88 == 0x58
 #3 [3650 sz:0 cls: 74241 SmallInteger] 456 == 0x1c8

Path Expressions
With the exception of Array constructors, most of the syntax described in this chapter so
far is standard Smalltalk syntax. GemStone Smalltalk also includes a syntactic construct
called a path. A path is a special kind of expression that returns the value of an instance
variable.

A path is an expression that contains the names of one or more instance variables separated
by periods; a path returns the value of the last instance variable in the series. The sequence
of the names reflects the order of the objects’ nesting; the outermost object appears first in
a path, and the innermost object appears last. The following path points to the instance
variable name, which is contained in the object anEmployee:
anEmployee.name

The path in this example returns the value of instance variable name within anEmployee.
GemTalk Systems 367

Blocks GemStone/S 64 Bit 3.6 Programming Guide
If the instance variable name contained another instance variable called last, the
following expression would return the value of last:
anEmployee.name.last

NOTE
Use paths only for their intended purposes. Although you can use a path
anywhere an expression is acceptable in a GemStone Smalltalk program, paths are
intended for specifying indexes, formulating queries, and sorting. In other
contexts, a path returns its value less efficiently than an equivalent message
expression. Paths also violate the encapsulation that is one of the strengths of the
object-oriented data model. Using them can circumvent the designer’s intention.
Finally, paths are not standard Smalltalk syntax. Therefore, programs using them
are less portable than other GemStone Smalltalk programs.

Returning Values
Previous discussions have spoken of the “value of an expression” or the “object returned
by an expression.” Whenever a message is sent, the receiver of the message returns an
object. You can think of this object as the message expression’s value, just as you think of
the value computed by a mathematical function as the function’s value.

You can use an assignment statement to capture a returned object:
| myVariable |
myVariable := 8 + 9. "assign 17 to myVariable"
myVariable "return the value of myVariable"
17

You can also use the returned object immediately in a surrounding expression:
"puts 'Moe' at position 2 in arrayOfStrings"
| arrayOfStrings |
arrayOfStrings := Array new: 4.
(arrayOfStrings at: 1+1 put: 'Moe'; yourself) at: 2

And if the message simply adds to a data structure or performs some other operation
where no feedback is necessary, you may simply ignore the returned value.

A.3 Blocks
A GemStone Smalltalk block is an object that contains a sequence of instructions. The
sequence of instructions encapsulated by a block can be stored for later use, and executed
by simply sending the block the unary message value. Blocks find wide use in GemStone
Smalltalk, especially in building control structures.

A literal block is delimited by brackets and contains one or more GemStone Smalltalk
expressions separated by periods. Here is a simple block:

[3.2 rounded]

 To execute this block, send it the message value.
[3.2 rounded] value
3

368 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Blocks
When a block receives the message value, it executes the instructions it contains and
returns the value of the last expression in the sequence. The block in the following example
performs all of the indicated computations and returns 8, the value of the last expression.

[89*5. 3+4. 48/6] value
8

You can store a block in a simple variable:
| myBlock |
myBlock := [3.2 rounded].
myBlock value.
3

or store several blocks in more complex data structures, such as Arrays:
| factorialArray |
factorialArray := Array new.
factorialArray at: 1 put: [1];

at: 2 put: [2 * 1];
at: 3 put: [3 * 2 * 1];
at: 4 put: [4 * 3 * 2 * 1].

(factorialArray at: 3) value
6

Because a block’s value is an ordinary object, you can send messages to the value returned
by a block.

| myBlock |
myBlock := [4 * 8].
myBlock value / 8
4

The value of an empty block is nil.
[] value
nil

Blocks are especially important in building control structures. The following section
discusses using blocks in conditional execution.

Blocks with Arguments
You can build blocks that take arguments. To do so, precede each argument name with a
colon, insert it at the beginning of the block, and append a vertical bar to separate the
arguments from the rest of the block.

Here is a block that takes an argument named myArg:
[:myArg | 10 + myArg]

To execute a block that takes an argument, send it value: anArgument. For example:
| myBlock |
myBlock := [:myArg | 10 + myArg].
myBlock value: 10.
20
GemTalk Systems 369

Blocks GemStone/S 64 Bit 3.6 Programming Guide
The following example creates and executes a block that takes two arguments. Notice the
use of the two-keyword message value:value:.

| divider |
divider := [:arg1 :arg2 | arg1 / arg2].
divider value: 4 value: 2
2

A block assigns actual parameter values to block variables in the order implied by their
positions. In this example, arg1 takes the value 4 and arg2 takes the value 2.

Variables used as block arguments are known only within their blocks; that is, a block
variable is local to its block. A block variable’s value is managed independently of the
values of any similarly named instance variables, and GemStone Smalltalk discards it after
the block finishes execution. This example illustrates this:

| aVariable |
aVariable := 1.
[:aVariable | aVariable] value: 10.
aVariable
1

You cannot assign to a block variable within its block. This code, for example, would elicit
a compiler error:

"The following expression attempts an invalid assignment
to a block variable."
[:blockVar | blockVar := blockVar * 2] value: 10

Blocks and Conditional Execution
Most computer languages, GemStone Smalltalk included, execute program instructions
sequentially unless you include special flow-of-control statements. These statements
specify that some instructions are to be executed out of order; they enable you to skip some
instructions or to repeat a block of instructions. Flow of control statements are usually
conditional; they execute the target instructions if, until, or while some condition is met.

GemStone Smalltalk flow of control statements rely on blocks because blocks so
conveniently encapsulate sequences of instructions. GemStone Smalltalk’s most important
flow of control structures are message expressions that execute a block if or while some
object or expression is true or false. GemStone Smalltalk also provides a control structure
that executes a block a specified number of times.

Conditional Selection
You will often want GemStone Smalltalk to execute a block of code only if some condition
is true or only if it is false. GemStone Smalltalk provides the messages ifTrue: aBlock and
ifFalse: aBlock for that purpose. This example contains both of these messages:

5 = 5 ifTrue: ['yes, five is equal to five'].
yes, five is equal to five

5 > 10 ifFalse: ['no, five is not greater than ten'].
no, five is not greater than ten

In the first of these examples, GemStone Smalltalk initially evaluates the expression (5 =
5). That expression returns the value true (a Boolean), to which GemStone Smalltalk then
sends the selector ifTrue:. The receiver (true) looks at itself to verify that it is, indeed, the
370 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide Blocks
object true. Because it is, it proceeds to execute the block passed as an argument to
ifTrue:, and the result is a String.

The receiver of ifTrue: or ifFalse: must be Boolean; that is, it must be either true or
false. In the above example, the expressions (5 = 5) and (5 > 10) returned true and
false, respectively, because GemStone Smalltalk numbers know how to compute and
return those values when they receive messages such as = and >.

Two-Way Conditional Selection
You will often want to direct your program to take one course of action if a condition is met
and a different course if it isn’t. You could arrange this by sending ifTrue: and then
ifFalse: in sequence to a Boolean (true or false) expression. For example:

2 < 5 ifTrue: ['two is less than five'].
two is less than five

2 < 5 ifFalse: ['two is not less than five'].
nil

However, GemStone Smalltalk lets you express the same instructions more compactly by
sending the single message ifTrue: block1 ifFalse: block2 to an expression or object
that has a Boolean value. Which of that message’s arguments GemStone Smalltalk executes
depends upon whether the receiver is true or false. In this example, the receiver is true:

2 < 5 ifTrue: ['two is less than five']
ifFalse: ['two is not less than five'].
two is less than five

Conditional Repetition
You will also sometimes want to execute a block of instructions repeatedly as long as some
condition is true, or as long as it is false. The messages whileTrue: aBlock and
whileFalse: aBlock give you that ability. Any block that has a Boolean value responds
to these messages by executing aBlock repeatedly while it (the receiver) is true
(whileTrue:) or false (whileFalse:).

Here is an example that repeatedly adds 1 to a variable until the variable equals 5:
| sum |
sum := 0.
[sum = 5] whileFalse: [sum := sum + 1].
sum
5

GemTalk Systems 371

Blocks GemStone/S 64 Bit 3.6 Programming Guide
The next example calculates the total payroll of a miserly but egalitarian company that
pays each employee the same salary.

| totalPayroll numEmployees salariesAdded standardSalary |
totalPayroll := 0.00.
salariesAdded := 0.
numEmployees := 40.
standardSalary := 5000.00.
[salariesAdded < numEmployees] whileTrue:

[totalPayroll := totalPayroll + standardSalary.
salariesAdded := salariesAdded + 1].

totalPayroll
200000.0

Blocks also accept two unary conditional repetition messages, untilTrue and
untilFalse. These messages cause a block to execute repeatedly until the block’s last
statement returns either true (untilTrue) or false (untilFalse).

The following example uses untilTrue (rather than whileFalse:).
| sum |
sum := 0.
[sum := sum + 1. sum = 5] untilTrue.
sum
%
5

When GemStone Smalltalk executes the block initially (by sending it the message value),
the block’s first statement adds one to the variable sum. The block’s second statement asks
whether sum is equal to 5; since it isn’t, that statement returns false, and GemStone
Smalltalk executes the block again. GemStone Smalltalk continues to reevaluate the block
as long as the last statement returns false (that is, while sum is not equal to 5).

The descriptions of classes Boolean and Block in the image describe these flow of control
messages and others.

Formatting Code
GemStone Smalltalk is a free-format language. A space, tab, line feed, form feed, or carriage
return affects the meaning of a GemStone Smalltalk expression only when it separates two
characters that, if adjacent to one another, would form part of a meaningful token.

In general, you are free to use whatever spacing makes your programs most readable. The
following are all equivalent:

{'string one'.2+2.'string three'.$c.9*arglebargle}

{ 'string one' . 2+2 . 'string three' . $c . 9*arglebargle }

{ 'string one'.
 2 + 2.
 'string three'.
 $c.
 9 * arglebargle }
372 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk BNF
A.4 GemStone Smalltalk BNF
This section provides a complete BNF description of GemStone Smalltalk. Here are a few
notes about interpreting the grammar:

A = expr

This defines the syntactic production ‘A’ in terms of the expression on the right side of
the equals sign.

B = C | D

The vertical bar ‘|’ defines alternatives. In this case, the production “B” is one of either
“C” or “D”.

C = '<'

A symbol in accents is a literal symbol.

D = F G

A sequence of two or more productions means the productions in the order of their
appearance.

E = [A]

Brackets indicate zero or one optional productions.

F = { B }

Braces indicate zero or more occurrences of the productions contained within.

G = A | (B|C)

Parentheses can be used to remove ambiguity.

In the GemStone Smalltalk syntactic productions in Figure A.1, white space is allowed
between tokens. White space is required before and after the ‘_’ character.

Figure A.1 GemStone Smalltalk BNF

AExpression = Primary [AMessage { ';' ACascadeMessage }]
ABinaryMessage = [EnvSpecifier] BinarySelector Primary [UnaryMessages]
ABinaryMessages = ABinaryMessage { ABinaryMessage }
ACascadeMessage = UnaryMessage | ABinaryMessage | AKeyWordMessage
AKeyWordMessage = [EnvSpecifier | RubyEnvSpecifier]

AKeyWordPart { AKeyWordPart }
AKeyWordPart = KeyWord Primary UnaryMessages { ABinaryMessage }
AMessage = [UnaryMessages] [ABinaryMessages] [AKeyWordMessage]
AnyTerm = Operand [Operator Operand]
Array = '(' { ArrayItem } ')'
ArrayBuilder = '#[' [AExpression { ',' AExpression }] ']'
 (exists only if System configurationAt:#GemConvertArrayBuilder is true)
ArrayItem = Number | SymbolArrayItem | SymbolLiteral | StringLiteral |

CharacterLiteral | Array | ArrayLiteral | ByteArrayLiteral
ArrayLiteral = '#' Array
Assignment = VariableName ':=' Statement | VariableName ' _ ' Statement
BinaryMessage = [EnvSpecifier | RubyEnvSpecifier] BinarySelector Primary

[UnaryMessages]
BinaryMessages = BinaryMessage { BinaryMessage }
GemTalk Systems 373

GemStone Smalltalk BNF GemStone/S 64 Bit 3.6 Programming Guide
BinaryPattern = BinarySelector VariableName
Block = '[' [BlockParameters] [Temporaries] Statements ']'
BlockParameters = { Parameter } '|'
ByteArrayLiteral = '#' '[' [Number { Number }] ']'
 (exists only if System configurationAt:#GemConvertArrayBuilder is false)
CascadeMessage = UnaryMessage | BinaryMessage | KeyWordMessage
CurlyArrayBuilder = '{' [AExpression { '.' AExpression }] '}'
Expression = Primary [Message { ';' CascadeMessage }]
KeyWordMessage = [EnvSpecifier | RubyEnvSpecifier] KeyWordPart {

KeyWordPart }
KeyWordPart = KeyWord Primary UnaryMessages { BinaryMessage }
KeyWordPattern = KeyWord VariableName { KeyWord VariableName }
KeyWordPragma = PragmaPair [PragmaPair]
Literal = Number | NegNumber | StringLiteral | CharacterLiteral |

SymbolLiteral | ArrayLiteral | SpecialLiteral | ByteArrayLiteral
Message = [UnaryMessages] [BinaryMessages] [KeyWordMessage]
MessagePattern = UnaryPattern | BinaryPattern | KeyWordPattern
Method = MessagePattern [Primitive] MethodBody
MethodBody = [Pragmas] [Temporaries] [Statements]
NegNumber = '-' Number
Operand = Path | Literal | Identifier
Operator = '=' | '==' | '<' | '>' | '<=' | '>=' | '~=' | '~~'
ParenStatement = '(' Statement ')'
ParenTerm = '(' AnyTerm ')'
Pragma = '< PragmaBody '>'
PragmaBody = UnaryPragma | KeyWordPragma
Pragmas = Pragma [Pragma]
Predicate = (AnyTerm | ParenTerm) { '&' Term }
Primary = ArrayBuilder | CurlyArrayBuilder | Literal | Path | Block |

SelectionBlock | ParenStatement | VariableName
Primitive = '<' ['protected' | 'unprotected'] ['primitive:' Digits] '>'
PragmaPair = (KeyWordNotPrimitive | BinarySelector) PragmaLiteral
UnaryPragmaIdentifier is any Identifier except 'protected', 'unprotected',

'requiresVc'
PragmaLiteral = Number | NegNumber | StringLiteral | CharacterLiteral |

SymbolLiteral | SpecialLiteral
SelectionBlock = '{' Parameter '|' Predicate '}'
Statement = Assignment | Expression
Statements = { [Pragmas] { Statement '.' } } [Pragmas] [['^']

Statement ['.' [Pragmas]]]
Temporaries = '|' { VariableName } '|'
Term = ParenTerm | Operand
UnaryMessage = [EnvSpecifier] Identifier
UnaryMessages = { UnaryMessage }
UnaryPattern = Identifier
UnaryPragma = SpecialLiteral | UnaryPragmaIdentifier

GemStone Smalltalk lexical tokens are shown in Figure A.2. No white space is allowed
within lexical tokens.
374 GemTalk Systems

GemStone/S 64 Bit 3.6 Programming Guide GemStone Smalltalk BNF
Figure A.2 GemStone Smalltalk Lexical Tokens

BinaryExponent = ('e' | 'E' | 'd' | 'D' | 'q') ['-'] Digits
BinarySelector = SelectorCharacter [SelectorCharacter]
Character = Any Ascii character with ordinal value 0..255
CharacterLiteral = '$' Character
Comment = '"' { Character } '"'
DecimalExponent = ('f' | 'F') ['-'] Digits
Digit = '0' | '1' | '2' | ... | '9'
Digits = Digit {Digit}
EndOfSource = the end of the method source string
Exponent = BinaryExponent | DecimalExponent | ScaledDecimalExponent |

FixedPointExponent
EnvSpecifier = '@env' Digits ':'

(no white space before or after Digits)
FractionalPart = '.' Digits [Exponent]
FixedPointExponent = 'p' [['-'] Digits]
Identifier = SingleLetterIdentifier | MultiLetterIdentifier
KeyWord = Identifier ':'
KeyWordNotPrimitive is any KeyWord other than 'primitive:'
Letter = 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z' | '_'
MultiLetterIdentifier = Letter (Letter | Digit) { Letter | Digit }
Number = RadixedLiteral | NumericLiteral
Numeric = Digit | 'A' | 'B' | ... | 'Z'
NumericLiteral = Digits ([FractionalPart] | [Exponent])
Numerics = Numeric { Numeric }
Parameter = ':' VariableName

(white space allowed between : and variableName)
Path = Identifier '.' PathIdentifier { '.' PathIdentifier }
PathIdentifier = Identifier | '*'
RadixedLiteral = Digits ('#' | 'r') Numerics
ScaledDecimalExponent = 's' [['-'] Digits]
ScdExponTerminator = '"' | WhiteSpace | ',' | ')' | ']' | '}' | '.' |

';' | EndOfSource
SelectorCharacter = '+' | '-' | '\' | '*' | '~' | '<' | '>' | '='

| '|' | '/' | '&' | '@' | '%' | ',' | '?' | '!'
SingleLetter 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z'
SingleLetterIdentifier = SingleLetter
SpecialLiteral = 'true' | 'false' | 'nil' | '_remoteNil'
StringLiteral = "'" { Character | "''" } "'"
Symbol = Identifier | BinarySelector | (Keyword { Keyword })
SymbolArrayItem = Identifier | (KeyWord { KeyWord })
SymbolLiteral = '#' (Symbol | StringLiteral)
VariableName = Identifier
GemTalk Systems 375

	1 Introduction to GemStone
	1.1 GemStone Overview
	Multi-User
	Programmable
	Scalable
	Object Database
	Partition Between Client and Server
	Connect to Outside Data Sources

	1.2 GemStone Services
	Transactions and Concurrency Control
	Login Security and Account Management
	Services To Manage the GemStone Repository

	1.3 GemStone Smalltalk
	GemStone Sessions
	Monitoring your application
	Interapplication Communications

	1.4 Process Architecture
	Gem Process
	Stone Process
	NetLDI
	Shared Page Cache
	Extents and Repositories
	Transaction Log

	2 Class Creation
	2.1 Subclass Creation
	Implementation Formats
	Class Variables and Other Types of Variables
	Dynamic Instance Variables
	Additional Class Creation Protocol

	2.2 Creating Classes With Invariant Instances
	Per-Object Invariance
	Invariance for All Instances of a Class

	2.3 Creating Classes with Special Cases of Persistence
	Non-Persistent Classes
	DbTransient

	3 Resolving Names and Sharing Objects
	3.1 Sharing Objects
	3.2 The UserProfile’s Symbol List
	What’s In Your Symbol List?
	Examining Your Symbol List
	Inserting and Removing Dictionaries from Your Symbol List
	Finding Out Which Dictionary Names an Object
	The Transient Symbol List
	Updating Symbol Lists

	3.3 Using Your Symbol Dictionaries
	Publishers, Subscribers and the Published Dictionary

	4 Collection and Stream Classes
	4.1 Introduction to Collections
	Protocol Common to All Collections
	Creating Instances
	Enumerating

	Collections in multi session environment
	Conflicting updates
	Visibility and ordering

	Collection classes
	Dictionary classes
	Internal Dictionary Structure
	Dictionary and KeyValueDictionary
	KeySoftValueDictionary

	SequenceableCollection classes
	Copying
	Array
	SortedCollection

	Stream Classes
	PositionableStream and Position
	AppendStream

	UnorderedCollection classes
	Union, Intersection, and Difference

	4.2 Reduced-Conflict Collection Classes
	RcArray
	NSC/UnorderedCollection classes
	RcIdentityBag
	RcLowMaintenanceIdentityBag
	RcIdentitySet

	RcKeyValueDictionary
	Queue classes
	GsPipe
	RcPipe
	RcQueue

	4.3 GsBitmap
	GsBitmaps and C Heap memory
	GsBitmaps and their objects
	GsBitmaps methods for repository analysis
	Bitmap files

	4.4 Sorting the objects in a collection
	Default Sort
	Sorting Application objects
	Sorting in multiple orders

	SortBlocks
	Sorting Large Collections

	5 String Classes and Collation
	5.1 Characters and Unicode
	Unicode and the Unicode Database

	5.2 String classes
	Traditional Strings
	Unicode Strings
	String equality, ordering, and interoperation
	Other String-like classes
	Symbol
	ByteArray
	Utf8

	String protocol
	Creating Strings
	Concatenating Strings
	Converting between String classes and encodings
	String Transformations
	Equality and Identity
	Searching and Pattern matching

	5.3 String Sorting and Collation
	Comparison Mode
	StringConfiguration

	Legacy String Comparison Mode for Traditional Strings
	Unicode Comparison Mode and ICU Collation
	IcuLocale
	IcuCollator
	Customizing Sort
	IcuSortedCollection

	ICU libraries and versioning
	ICU and Unicode versioning
	IcuLibraryVersion

	5.4 Encrypting Strings

	6 Numeric Classes
	6.1 Integers
	SmallInteger
	LargeInteger
	Printing Integers

	6.2 Binary Floating Point
	SmallDouble
	Float
	Signalling Exception rather than returning Exceptional Float

	Literal Floats
	Printing Binary Floating Points

	6.3 Other Rational Numbers
	Fractions
	SmallFraction
	Fraction

	ScaledDecimals
	SmallScaledDecimal
	ScaledDecimal

	FixedPoints
	DecimalFloat
	Summary of literal syntax
	Custom numeric literals

	6.4 Dates and Times
	Date
	SmallDate
	Instance Creation
	Formatting for Instance Creation and Printing

	Time
	SmallTime
	Instance Creation
	Formatting for Instance Creation and Printing
	Time offset

	DateTime
	Instance Creation
	Formatting for Instance Creation and Printing

	DateAndTime
	SmallDateAndTime
	Instance Creation
	Formatting for Instance Creation and Printing

	TimeZone

	6.5 Internationalizing
	Dates in GemStone log files
	Internationalizing Decimal Points using Locale

	6.6 Random Numbers
	Universally unique identifiers (UUIDs)
	Random Number Generator

	7 Indexes and Querying
	7.1 Overview
	GemStone Indexes and Queries
	Indexes
	GsQueries
	Deciding what to optimize
	Overview of the steps in creating and using indexed queries
	Managing Indexes

	Special Syntax for Indexing
	Historic indexing syntax

	Last Element Class
	Optimized classes
	Using other classes
	Comparing data types
	Strings in indexes
	Redefining Comparison Messages

	7.2 Defining Queries
	Query Predicate Syntax
	Predicate Terms
	Combining Predicates using Boolean Logic
	Combining Range Predicates

	Creating a GsQuery
	Query Variables

	7.3 Creating Indexes
	Equality and Identity Indexes
	Btree and Legacy Indexes
	Creating the Index
	Equality Indexes on strings
	Repositories in Legacy String Comparison mode
	Repositories in Unicode Comparison Mode

	Implicit Indexes
	GsIndexOptions
	Combining options
	Default options
	The Options in GsIndexOptions
	Reduced-Conflict
	Optional pathTerms

	7.4 Results of Executing a GsQuery
	GsQuery’s Collection protocol
	GsQuery enumeration methods accepting blocks
	Query results as Streams
	Limitations on streamable queries

	7.5 Enumerated and Set-valued Indexes
	Enumerated path terms in indexes and queries
	Restrictions on predicates with enumerated pathTerms

	Indexes and Queries with collections on the path
	Set-valued query results
	Restrictions on predicates in set-valued queries

	7.6 Managing Indexes
	While Indexes are Being Created
	Queries during index creation
	Auto-commit

	Indexes on temporary collections
	Inquiring About Indexes
	Removing Indexes
	To remove indexes based on a GsIndexSpec
	To remove indexes using IndexManager
	Rebuilding Indexes

	Indexing Errors
	Auditing Indexes

	7.7 Indexing and Performance
	Type of index
	Data updates
	Formulating queries and performance
	Auto-optimize

	7.8 Historic Indexing API differences
	Index creation using UnorderedCollection protocol
	Internal legacy vs. btreePlus indexing structures
	String and Unicode Equality Indexes
	Reduced-conflict Equality Indexes

	Queries using Selection Blocks
	Executing Selection Block Queries

	Managing indexes
	Information about indexes
	Removing Indexes

	8 Transactions and Concurrency Control
	8.1 GemStone’s Conflict Management
	Views and Transactions
	Transaction State and Transaction Modes
	Reading and Writing in Transactions
	Reading and Writing Outside of Transactions
	When Should You Commit a Transaction?
	Nested In-memory Transactions

	8.2 How GemStone Detects and Manages Conflict
	Concurrency Management
	Committing Transactions
	Handling Commit Failure in a Transaction
	Transaction Conflicts
	More details about transaction conflicts
	Indexes and Concurrency Control
	Aborting Transactions
	Updating the View Without Committing or Aborting
	Being Signaled To Abort
	Being Signaled to continueTransaction

	Handlers for abort or continueTransaction notifications

	8.3 Controlling Concurrent Access with Locks
	Lock Types
	Read Locks
	Write Locks

	Acquiring Locks
	Lock Denial
	Deadlocks
	Dirty Locks
	Locking Collections of Objects Efficiently
	Upgrading Locks

	Locking and Indexed Collections
	Removing or Releasing Locks
	Releasing Locks Upon Aborting or Committing

	Inquiring About Locks
	Application Write Locks

	8.4 Classes That Reduce the Chance of Conflict
	RcCounter
	Reduced-Conflict Collection Classes
	RcArray
	RcIdentityBag
	RcLowMaintenanceIdentityBag and RcIdentitySet
	RcKeyValueDictionary
	GsPipe
	RcPipe
	RcQueue

	9 Object Security and Authorization
	9.1 How GemStone Security Works
	Login Authorization
	The UserProfile

	System Privileges
	Object-level Security
	GsObjectSecurityPolicy

	9.2 Assigning Objects to Security Policies
	Default Security Policy and Current Security Policy
	Objects and Security Policies
	Configuring Authorization for an Object Security Policy
	How GemStone Responds to Unauthorized Access
	Owner, Group, and World Authorization

	Predefined GsObjectSecurityPolicies
	GsObjectSecurityPolicy names
	Changing the Security Policy for an Object
	Revoking Your Own Authorization: a Side Effect
	Finding Out Which Objects Are Protected by a Security Policy

	9.3 Application Example
	9.4 Development Example
	9.5 Planning Security Policies for User Access
	Protecting the Application Classes
	CodeModification privilege
	Planning Authorization for Data Objects
	Planning Groups
	Planning Security Policies
	Developing the Application
	Setting Up Security Policies for Joint Development
	Making the Application Accessible for Testing
	Moving the Application into a Production Environment

	Security Policy Assignment for User-created Objects

	9.6 Privileged Protocol for Class GsObjectSecurityPolicy

	10 Class versions and Instance Migration
	10.1 Versions of Classes
	Defining a New Version
	New Versions and Subclasses
	New Versions and References in Methods
	Class Variables and Class Instance Variables
	Class versioning and Class options

	10.2 ClassHistory
	Defining a Class as a new version of an existing Class
	Accessing a Class History
	Assigning to a Class History

	10.3 Migrating Objects
	Migration Destinations
	Bypassing the Migration Destination

	Migrating Instances that Participate in an Index
	Default Instance Variable Mappings
	Customized Instance Variable Mappings
	Transforming Variable Values
	Finding Instances
	Tuning migration and managing memory
	Using GsBitmaps to manage memory for large result sets
	Tuning system resource use when finding instances
	Committing the migration in chunks
	Migrating instances in Page Order

	11 Encryption and Validation
	11.1 Overview for SSL keys and certificates
	GsTlsCredential
	Creating a GsTlsCredential
	Verifying public/private key pairs
	Encryption and signing algorithms

	11.2 Checksums and HMAC
	Checksums
	HMAC (Hash-based message authentication codes)

	11.3 Symmetric-Key Encryption
	Encryption
	Example

	11.4 Digital Signatures
	11.5 Digital Envelopes
	Creating the GsDigitalEnvelope
	Using the GsDigitalEnvelope

	12 File I/O and Operating System Access
	12.1 Accessing Files
	Specifying Files
	Creating a File
	Opening a File
	Closing a File or Files
	Writing to a File
	Reading from a File
	Positioning

	Testing Files
	Renaming Files
	Removing Files
	Examining a Directory
	GsFile Errors

	12.2 Executing Operating System Commands
	Simple Commands
	Using other shells

	More complex interactions
	Restictions on OS access

	12.3 Setting environment variables
	12.4 File In and File Out
	Fileout
	Filein

	12.5 PassiveObject
	12.6 Creating and Using Sockets
	GsSocket
	Establishing the connection
	Communication on the socket
	Closing the socket
	Socket Configuration

	GsSecureSocket
	Certificates, keys, and passphrases
	Enable or disable verifying CA Certificate
	Set certificate, private key, and passphrase
	Setup the Cipher list
	Establishing the connection
	Communication on the socket
	Closing the socket
	HTTPS connection

	Error handling
	GsSocket
	GsSecureSocket

	13 Signals and Notifiers
	13.1 Communicating Between Sessions
	13.2 Object Change Notification
	Setting Up a Notify Set
	Adding an Object to a Notify Set
	Adding a Collection to a Notify Set
	Listing Your Notify Set
	Removing Objects From Your Notify Set

	Notification of New Objects
	Receiving Object Change Notification
	Reading the Set of Signaled Objects

	Polling for Changes to Objects
	Troubleshooting
	Frequently Changing Objects
	Special Classes

	Methods for Object Notification

	13.3 Gem-to-Gem Signaling
	Sending a Signal
	Receiving a Signal

	13.4 Other Signal-Related Issues
	Inactive Gem
	Dealing With Signal Overflow
	Sending Large Amounts of Data

	Maintaining Signals and Notification When Users Log Out

	14 Handling Exceptions
	14.1 The Exception Class Hierarchy
	14.2 Signaling Exceptions
	14.3 Handling Exceptions
	Dynamic (Stack-Based) Handlers
	Selecting a Handler
	Flow of Control
	Default Handlers
	Default Actions

	14.4 The Legacy Exception Handling Framework
	Dynamic (Stack-Based) Exception Handler
	Installing a Dynamic (Stack-Based) Exception Handler

	Default (Static) Exception Handlers
	Installing a Default (Static) Exception Handler
	GemStone Event Exceptions

	Flow of Control
	Signaling Other Exception Handlers
	Removing Exception Handlers
	Recursive Errors

	Raising Exceptions
	ANSI Integration

	15 Performance and Optimization
	15.1 Profiling Smalltalk Execution
	Time to execute a block
	CPU Time
	Elapsed Time

	ProfMonitor
	Sample intervals
	Reporting limits
	Reports
	Temporary results file
	Real vs. CPU time

	Profiling Code
	Convenience Profiling of a Block of Code
	Background Profiling
	Manual Profiling
	Saving a ProfMonitor for later analysis

	The Profile Report
	Profiling Beyond Performance
	Object Creation Tracking
	Memory Use Profiling

	15.2 Clustering Objects for Faster Retrieval
	Will Clustering Solve the Problem?
	Cluster Buckets
	Using Existing Cluster Buckets
	Creating New Cluster Buckets
	Cluster Buckets and Concurrency
	Cluster Buckets and Indexing

	Clustering Objects
	The Basic Clustering Message
	Depth-First Clustering
	Assigning Cluster Buckets
	Clustering and Memory Use
	Using Several Cluster Buckets
	Clustering Class Objects

	Maintaining Clusters
	Determining an Object’s Location
	Why Do Objects Move?

	15.3 Modifying Cache Sizes for Better Performance
	GemStone Caches
	Temporary Object Space
	Shared Page Cache

	Getting Rid of Non-Persistent Objects

	15.4 Managing VM Memory
	Large Working Set
	Class Hierarchy
	UserAction Considerations
	Exported Set
	Debugging out of memory errors
	Signal on low memory condition
	Methods for Computing Temporary Object Space
	Statistics for monitoring memory use

	15.5 NotTranloggedGlobals
	15.6 Other Optimization Hints

	16 Working with Classes and Methods
	16.1 Creating and Removing Methods
	Defining Simple Accessing and Updating Methods
	Compiling Methods
	Removing Methods
	Pragmas
	Pragma class

	16.2 Information about Class and Methods
	Information about the Class
	Information about Instance, Class, and Shared Pool variables
	Information about Method Selectors
	Accessing and Managing Method Categories
	Specific Methods

	16.3 Transient Methods
	16.4 ClassOrganizer
	16.5 Handling Deprecated Methods
	Deprecated handling
	Deprecation log
	Listing deprecated methods
	Determining senders of deprecated methods

	17 GemStone System Features
	17.1 Hidden Sets
	Sets still accessed via System methods
	NotifySet
	ExportedDirtyObjs and TrackedDirtyObjs
	PureExportSet and GciTrackedObjs

	17.2 SessionTemps and access to Session State
	SessionState

	17.3 Shared Counters
	AppStat Shared Counters
	Persistent Shared Counters

	17.4 GsEventLog
	Adding events
	Querying and reporting
	Deleting events

	18 The Foreign Function Interface
	18.1 Overview of the Foreign Function Interface
	18.2 FFI Core Classes
	CLibrary
	CCallout
	C type symbols
	Limitations with native code disabled
	CCallin
	CByteArray
	CFunction
	CPointer

	18.3 FFI Wrapper Utilities
	CHeader
	Creating a Smalltalk class

	19 External Sessions
	19.1 Overview
	19.2 External Sessions
	Setup the External Session
	Creating the External Session

	Log in the External Session
	Executing Code
	Important caution on Export Set of remote session
	Exceptions

	19.3 NRS and Login Parameter Support
	For a Stone
	For a Gem
	Convenience methods for common arguments

	19.4 Special Cases of External Sessions
	Solo external sessions
	Primitive-based external sessions on AIX
	X509 external sessions

	20 The SUnit Framework
	20.1 Why SUnit?
	20.2 Testing and Tests
	20.3 SUnit by Example
	Examining the Value of a Tested Expression
	Finding Out If an Exception Was Raised

	20.4 The SUnit Framework
	20.5 Understanding the SUnit Implementation
	Running a Single Test
	Running a TestSuite

	A GemStone Smalltalk Syntax
	A.1 GemStone and ANSI Smalltalk
	GemStone and ANSI limits

	A.2 GemStone Smalltalk
	How to Create a New Class
	Statements
	Comments
	Expressions
	Literals
	Numeric Literals
	Character Literals
	String Literals
	Symbol Literals
	Array Literals

	Variables and Variable Names
	Assignment
	Message Expressions
	Reserved and Optimized Selectors
	Combining Message Expressions
	Cascaded Messages
	Array Constructors
	Path Expressions
	Returning Values

	A.3 Blocks
	Blocks with Arguments
	Blocks and Conditional Execution
	Formatting Code

	A.4 GemStone Smalltalk BNF

