
Topaz User’s Guide
for GemStone/S 64 Bit™
S Y S T E M S

Version 3.6
November 2020

GemStone/S 64 Bit 3.6 Topaz User’s Guide
INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems LLC
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.
This software is provided by GemTalk Systems LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2020 GemTalk Systems LLC. All rights reserved by
GemTalk Systems.

PATENTS
GemStone software is or has been covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture” (1998-
2018), Patent Number 6,360,219 “Object queues with concurrent updating” (1998-2018), Patent Number 6,567,905 “Generational
garbage collector with persistent object cache” (2001-2021), and Patent Number 6,681,226 “Selective pessimistic locking for a
concurrently updateable database” (2001-2021).

TRADEMARKS
GemTalk, GemStone, GemBuilder, GemConnect, and the GemTalk logo are trademarks of GemTalk Systems LLC, or of
VMware, Inc., previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Solaris, Java, and Oracle are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a registered
trademark of SPARC International, Inc.
Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, Windows, and Windows Server are registered trademarks of Microsoft Corporation in the United States and other
countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
Ubuntu is a registered trademark of Canonical Ltd., Inc., in the U.S. and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER6, POWER7, and POWER8 and VisualAge are trademarks or registered trademarks of International Business
Machines Corporation.
Apple, Mac, MacOS, and Macintosh are trademarks of Apple Inc., in the United States and other countries.
CINCOM, Cincom Smalltalk, and VisualWorks are trademarks or registered trademarks of Cincom Systems, Inc.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
GemTalk Systems LLC
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems

Preface
About This Manual
This manual describes Topaz, the command-line interface for GemStone/S 64 Bit™. You
can use Topaz with the other GemStone development tools to build and maintain
comprehensive database applications.

Topaz is especially useful for database administration tasks and batch-mode procedures.
Because it is command driven and generates character-based output on standard output
channels, Topaz offers access to GemStone without requiring a window manager or
additional language interfaces.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit and
GemStone/S, and the GemStone family of products; the GemStone Smalltalk
programming language; and may also be used to refer to the company, now GemTalk
Systems, previously GemStone Systems, Inc. and a division of VMware, Inc.

Technical Support

Support Website
gemtalksystems.com

GemTalk’s website provides a variety of resources to help you use GemTalk products:

 Documentation for the current and for previous released versions of all GemTalk
products, in PDF form.

 Product download for the current and selected recent versions of GemTalk software.
GemTalk Systems 3

https://gemtalksystems.com

GemStone/S 64 Bit 3.6 Topaz User’s Guide
 Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

 Supplemental Documatation and TechTips, providing information and instructions
that are not in the regular documentation.

 Compatibility matrices, listing supported platforms for GemTalk product versions.

We recommend checking this site on a regular basis for the latest updates.

Help Requests
GemTalk Technical Support is limited to customers with current support contracts.
Requests for technical assistance may be submitted online (including by email), or by
telephone. We recommend you use telephone contact only for urgent requests that require
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: techsupport.gemtalksystems.com

Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702

Please include the following, in addition to a description of the issue:

 The versions of GemStone/S 64 Bit and of all related GemTalk products, and of any
other related products, such as client Smalltalk products, and the operating system and
version you are using.

 Exact error message received, if any, including log files and statmonitor data if
appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.

24x7 Emergency Technical Support
GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.

Training and Consulting
GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.
4 GemTalk Systems

http://techsupport.gemtalksystems.com

Table of Contents
Chapter 1. Getting Started with Topaz 9

1.1 Getting started with Topaz . 9
Overview of a GemStone Session. 10
Remote Versus Linked Versions . 10
Invoking Topaz . 11
Topaz Commands . 11
Logging In to GemStone . 12

Logging In Linked . 13
Logging In RPC . 14

Setting Up a Login Initialization File .topazini . 16
Error handling and output. 17
Alternatives to automatic initialization . 17
Special care needed when setting gemnetid in .topazini 17

Multiple Concurrent GemStone Sessions . 17
Multiple sessions in the RPC version of Topaz 18
Multiple sessions in the Linked version of Topaz. 18
Topaz sessions vs. GemStone sessions . 19

Transaction state . 19
Other Types of Logins . 20

X509-Secured . 20
Solo Scripting . 20

Multiple Execution Environments . 21
1.2 Interacting with Topaz . 21

Help Command. 21
Interrupting Topaz and GemStone . 21
Logging Out. 22
Leaving Topaz . 22

1.3 Executing GemStone Smalltalk Expressions . 22
Strings vs. Unicode strings . 23
GemTalk Systems 5

GemStone/S 64 Bit 3.6 Topaz User’s Guide
Controlling the Display of Results . 23
Display Level. 23
Setting Limits on Object Displays . 24
Displaying Variable Names, OOPs, and Byte Values 25

Committing and Aborting Transactions . 26
Importing files: topaz commands and GemStone code 26
Handling text outside the ASCII range . 27
Capturing Your Topaz Session In a File . 27

Writing to multiple log files . 28
1.4 Using Topaz for Scripting . 29

Topaz commands in text files . 29
Embedding Topaz within shell scripts . 30
Topaz Solo for Scripting . 30

Object creation and memory use. 31
Topaz solo connecting to a running stone . 31
Scripting with topaz solo using she-bang . 31
Topaz Solo Scripting using bash to pass arguments 32
Invoking Operating System Functionality from Topaz 33

1.5 Using Topaz for Code Development . 35
Creating Methods . 35
Using a Text Editor to Edit Methods . 36
Listing Methods, Categories, and other information 37
Filing Out Classes and Methods . 38

Code outside the ASCII range . 38
1.6 Advanced Topaz features . 39

Structural Access To Objects . 39
Examining Instance Variables with Structural Access. 39

Specifying Objects . 40
Object Specification Formats . 40

Topaz Variables . 41
Creating Variables . 41
Displaying Current Variable Definitions 42
Clearing Variable Definitions . 43

Sending Messages . 43

Chapter 2. Debugging Your GemStone Smalltalk Code 45

2.1 Step Points and Breakpoints . 45
Breakpoints . 46

2.2 Examining the GemStone Smalltalk Call Stack . 47
Proceeding After a Breakpoint. 49
Examining and Modifying Temporaries and Arguments 49
Select a Context for Examination and Debugging 50
Multiple Call Stacks . 51

2.3 Debugging in a different Gem. 52
6 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide
Chapter 3. Command Dictionary 55

ABORT . 56
ALLSTACKS . 57
BEGIN . 58
BREAK . 59
CATEGORY . 62
CLASSMETHOD . 63
COMMIT . 64
CONTINUE/C . 65
DEBUGGEM . 66
DEBUGRUN . 67
DEFINE . 68
DISASSEM . 69
DISPLAY . 70
DOIT. 74
DOWN . 75
DUMPOBJ. 76
EDIT . 77
ENV . 79
ERRORCOUNT . 80
EXEC . 81
EXIT . 82
EXITIFNOERROR . 83
EXPECTBUG . 84
EXPECTERROR . 85
EXPECTVALUE . 88
FILEFORMAT . 90
FILEOUT . 91
FR_1 . 92
FR_CLS . 93
FRAME . 94
GCITRACE . 95
HELP . 96
HIERARCHY . 97
HISTORY . 98
IFERR . 99
IFERR_CLEAR .101
IFERR_LIST . .102
IFERROR .103
IMPLEMENTORS .104
INPUT . .105
INSPECT .106
INTERP .107
LEVEL . .108
LIMIT .109
LIST .110
LISTW / L. .115
LITERALS. .116
LOADUA . .117
LOGIN. .118
GemTalk Systems 7

GemStone/S 64 Bit 3.6 Topaz User’s Guide
LOGOUT. . 119
LOGOUTIFLOGGEDIN . 120
LOOKUP. . 121
METHOD . 124
NBRESULT . 125
NBRUN . 126
NBSTEP . 127
OBJ1 / OBJ2 . 128
OBJ1Z / OBJ2Z . 129
OBJECT . 130
OMIT . 132
OUTPUT . 135
PAUSEFORDEBUG. . 137
PKGLOOKUP . 138
POLLFORSIGNAL . 139
PRINTIT . 140
PROTECTMETHODS . 141
QUIT . 142
RELEASEALL . 143
REMARK . 144
REMOVEALLCLASSMETHODS . 145
REMOVEALLMETHODS . 146
RUN . 147
RUNBLOCK . 148
RUNENV envId . 149
SEND . 150
SENDERS . 151
SET . 152
SHELL . 160
STACK . 161
STATUS . 165
STEP . 166
STK . 167
STRINGS . 168
STRINGSIC . 169
SUBCLASSES . 170
SUBHIERARCHY . 171
TEMPORARY . 172
TFILE . 174
THREAD. . 175
THREADS . 176
TIME . 177
TMETHOD . 178
TOPAZWAITFORDEBUG . 179
UNPROTECTMETHODS . 180
UP. . 181
WHERE . 182

Appendix A. Topaz Command-Line Syntax 183
8 GemTalk Systems

Chapter

1 Getting Started with
Topaz
Topaz is a linear interface for GemStone/S 64 Bit™ that provides scripting and command-
line access to the GemStone system. Topaz does not require a windowing system, and so
is a useful interface for batch work and for many system administration functions.

This chapter explains how to run Topaz and how to use some of the most important Topaz
commands.

To run Topaz, GemStone/S 64 Bit must be installed on your system. You must have an
running repository monitor (Stone) that is the same version of GemStone as Topaz, and in
some cases an accessible network service process (NetLDI). The GemStone/S 64 Bit
Installation Guide explains how to install these components.

In most cases, your environment should contain a definition of the $GEMSTONE
environment variable and your execution path should include the GemStone binary
directory $GEMSTONE/bin.

Examples throughout this book were created on a UNIX system. Topaz is also available
with the GemStone/S 64 Bit Windows Client distribution, which allows Topaz to run on
Windows, logging in remotely to a GemStone server running on UNIX. Topaz on
Windows cannot login in linked mode, nor with a Gem session on Windows. Otherwise,
Topaz operates similarly on UNIX and Windows. Differences are noted in the text.

1.1 Getting started with Topaz
Topaz provides an environment in which you can login a GemStone session and use that
session to find out information about GemStone, and to execute Smalltalk code. To perform
any server interaction, you must first log in. All server interaction is performed using the
logged-in session. The sessions that Topaz uses are the same as sessions acquired via any
other GemStone interface, such as GemBuilder for Smalltalk (GBS).
GemTalk Systems 9

Getting started with Topaz GemStone/S 64 Bit 3.6 Topaz User’s Guide
Overview of a GemStone Session
A GemStone session consists of four parts, as shown in Figure 1.1. These are:

An application, in this case, Topaz.

One repository and repository monitor (Stone), and the associated server processes.
An application has one repository to hold its persistent objects.

At least one GemStone session, or Gem process. All applications, including Topaz,
must communicate with the repository through Gem processes. A Gem provides a
work area within which objects can be used and modified. Several Gem processes can
coexist, communicating with the repository through a single Stone process.

Figure 1.1 GemStone Object Server Components

�������
	�
�������

�������������
������
���

�������	��

�	�������

�������

�	�
���

���������!
"#�����

�����

Remote Versus Linked Versions
Figure 1.1 includes the two types of topaz sessions -- Remote Procedure Call (RPC) and
Linked. With a Topaz RPC login, the Topaz application and the Gem session that provides
the repository services exist in two separate processes. In a linked login, the Topaz
application process includes the Gem session. These two types of sessions and
configuration details are described in more detail in the System Administration Guide for
GemStone/S 64 Bit.

To allow control over the use of linked logins, GemStone client libraries and Topaz provide
separate versions; one which allows RPC logins only, the other allowing Linked and RPC.

Topaz RPC is the default, although you may specify the -r command line argument.
You can run multiple RPC sessions from the Topaz RPC executable, but linked
sessions are not possible.

Topaz Linked requires specifying the -L or -l command line argument to topaz. You
can run a single linked session and multiple RPC sessions from the linked topaz
executable.
10 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Getting started with Topaz
In Figure 1.2, notice that the Topaz startup banner’s PROGRAM line refers to Remote
Session. In a linked login, it will say Linked Session.

Under Windows, only the RPC version of Topaz is available. The Gem, which is part of the
server code, can only run on a server platform.

The examples in this chapter can be executed equally well from either linked or RPC Topaz.

For additional command-line options, see Appendix A.

Invoking Topaz
To invoke Topaz, simply type topaz on the command line. The program responds by
printing its copyright banner and issuing a prompt, as shown in Figure 1.2.

Figure 1.2 Topaz Banner and Prompt

unix> topaz
 __
| GemStone/S64 Object-Oriented Data Management System |
| Copyright (C) GemTalk Systems 1986-2019 |
| All rights reserved. |
+--+
| PROGRAM: topaz, Linear GemStone Interface (Remote Session) |
| VERSION: 3.6.0, Mon Oct 19 22:04:14 2020 |
| COMMIT: 2020-10-19T17:31:08-07:00 925e19317f5ac852dd751da32230481ad24c31 |
| BUILT FOR: x86-64 (Linux) |
| RUNNING ON: 8-CPU lark x86_64 (Linux 4.15.0-117-generic #118-Ubuntu SMP Fri |
| Sep 4 20:02:41 UTC 2020) |
| PROCESSOR: 4-core Intel(R) Xeon(R) CPU W3565 @ 3.20GHz (Bloomfield) |
| MEMORY: 18049 MB |
| PROCESS ID: 31009 DATE: 10/19/2020 18:33:07 PDT (UTC -7:00) |
| USER IDS: REAL=gsuser (534) EFFECTIVE=gsuser (534) LOGIN=gsuser (534) |
|__|
topaz>

Topaz Commands
Topaz interaction is performed by sending commands. Each command begins with a
keyword, and may have optional or required arguments. Some commands are only
meaningful in certain contexts. Chapter 3 provides a list of the commands you will be
using and the options and arguments for each command.

The first thing you will do is use the set command to provide login parameters, and use the
login command to perform the login to GemStone. This is described in more detail in the
next section.

The commands and keywords in Topaz are case-insensitive; so for example, the command
login can be entered as LOGIN or Login. Arguments to topaz commands, however, such
as user names or the names of Smalltalk classes, will follow their specific rules for case
sensitivity.

You can abbreviate many Topaz command to uniqueness, so for example you can type log
instead of login. Some commands such as logout may not be abbreviated, to avoid
GemTalk Systems 11

Getting started with Topaz GemStone/S 64 Bit 3.6 Topaz User’s Guide
accidental use. The colon indicating arguments is often omitted, and the examples in this
manual generally do not include the colon.

To enter an argument to a Topaz command that includes white space, enclose it within
single quotes. For example, a username such as 'Issac Newton' requires quotes, while
Issac_Newton does not.

Normally, each topaz command is on a separate line, and the command is terminated by
the return at the end of the line. For most commands, you can include multiple topaz
commands on a single line by separating each expression with a semicolon (;), however,
commands that interpret the rest of the line in specific ways, such as run, do not allow this
usage. Commands may not be longer than 64K characters.

Any text following a command that does not have arguments, or text following the
argument, is ignored; topaz will print a warning to that effect after executing the valid
portion of the line.

Logging In to GemStone
The first step in establishing a connection to GemStone and logging in is to give Topaz
some information about the GemStone repository you will be using. To log in to the
repository you must provide the Stone’s name, and a valid GemStone user name and
password.

Note
This section does not apply to X509-Secured GemStone, which takes a completely
different set of login parameters. Logins using X509-Secured GemStone are
described in the GemStone/S 64 Bit X509-Secured GemStone Administration
Guide.

Here are the parameters to be established to log in to GemStone through Topaz:

GemStone name. This the name of the Stone process to login into, and, optionally,
the name of the network node on which it resides. The default name is gs64stone. If
your Stone process is named gs64stone and is running on the local node, and the
Gem process will also run on the local node, you don’t have to set the GemStone
name.

Otherwise, specify the name of the Stone. If the node where the Stone is running is not
the one where the Gem will run, you also need the name of the Stone host and perhaps
the type of network connection between the Stone and Gem hosts. To specify a process
named gs64stone running on node central, you can use a network resource string
of the form !@central!gs64stone.

For details on using NRS and NRS syntax, see the System Administration Guide for
GemStone/S 64 Bit.

This is configured using the set command: set gemstone stonename.

GemStone user name and password. These are defined within the GemStone server.
You can log in using your personal username and password, created by your
GemStone Administrator, or as predefined GemStone system users such as
DataCurator.

These are configured using the set command, set username gemStoneUserName and
set password gemStoneUserPassword. You may abbreviate and combine them as
set user gemStoneUserName pass gemStoneUserPassword.
12 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Getting started with Topaz
You may omit the argument to the set password command, in which case you will
be prompted to enter the password.

The default password for predefined GemStone users such as DataCurator is
swordfish. However, it is strongly recommended that this is changed, to provide
some basic system security.

host user name and password. The UNIX name and password for the account on the
server that will own the Gem process. These are needed only for RPC sessions, and
only if the NetLDI is configured to require this for authentication. More information
on NetLDI modes can be found in the System Administration Guide for GemStone/S 64
Bit.

These are configured using the set command, set hostusername osUserName and
set hostpassword osPassword. You may abbreviate and combine them as
set hostuser osUserName hostpass osPassword.

You may omit the argument to the set hostpassword command, in which case you
will be prompted to enter the password.

GemStone service name. For the RPC version the default is gemnetobject. You
may also use gemnetdebug, if you are debugging memory issues, or the name of a
customized version of the gemnetobject script that you have created.

For the linked version of Topaz, do not set gemnetid, nor set the gemnetid to ''.
NOTE

If you are running the linked version of topaz, and set gemnetid to
gemnetobject, all your sessions will be RPC, in spite of having invoked the
linked version. Use -L to start linked topaz to avoid this issue.

The GemStone service name is configured using the set command set gemnetid
serviceName. The gem service can be provided an NRS, in order to specify that the Gem
process is running on a remote node. To do this, for the gemnetid, specify a network
resource string (NRS) of the form
!@<remoteNode>#netldi:<netldiName>!gemnetobject.

For example,

!@lark.gemtalksystems.com#netldi:gs64ldi!gemnetobject.

Additional NRS directives and gemnetobject arguments can be included. For details on
using NRS and NRS syntax and the gemnetobject utility, see the System
Administration Guide for GemStone/S 64 Bit.

Logging In Linked
Use the Topaz set command to establish the parameters. For example:

topaz> set gemstone gs64stone
topaz> set username Isaac_Newton
topaz> set password
GemStone Password? (type the GemStone password for Issac_Newton)

You may supply several of these login parameters on a single command line in any order.
except that a password must follow the user name that it is associated with; and parameter
names may be abbreviated. Instead of the above three statements, you could just enter:

topaz> set gemstone gs64stone user Isaac_Newton pass gravity
GemTalk Systems 13

Getting started with Topaz GemStone/S 64 Bit 3.6 Topaz User’s Guide
When logging in linked, do not set the gemnetid parameter. Any values set for
hostusername and hostpassword are ignored.

You are now ready to issue the login command, connecting your Topaz session to the
GemStone repository.

topaz> login
[Info]: LNK client/gem GCI levels = 36000/36000
--- 09/26/2020 11:21:22.943 PDT Login
[Info]: User ID: DataCurator
[Info]: Repository: gs64stone
[Info]: Session ID: 5 login at 09/26/2020 11:51:22.948 PDT
[Info]: GCI Client Host:
[Info]: Page server PID: -1
[Info]: using libicu version 58.2
[Info]: Gave this process preference for OOM killer: wrote to
/proc/24238/oom_score_adj value 250
[09/26/2020 11:51:22.951 PDT]
 gci login: currSession 1 linked session
successful login
topaz 1>

Logging In RPC
For RPC login, there are additional parameters you may or may not need to specify,
depending on how the NetLDI is set up.

The Stone name and the username and password are needed:
topaz> set gemstone gs64stone
topaz> set username Isaac_Newton
topaz> set password
GemStone Password? (type the GemStone password for Issac_Newton)

If your NetLDI requires host authentication, you will need to provide the host login
credentials. These settings can be skipped if the NetLDI is in guest mode.

topaz> set hostusername newtoni
topaz> set hostpassword
Host Password? (type the unix password for newtoni)

When you are running the RPC version of Topaz, by default gemnetid is set to
gemnetobject, which is sufficient for login when the Stone, NetLDI and Gem are all
running on the same node. If the Stone is running on another node, and the NetLDI is not
named gs64ldi, you may need to include further details:

topaz> set gemnetid !@lark#netldi:54321!gemnetobject

You are now ready to issue the login command:
topaz> login
[09/26/2020 11:44:05.849 PDT]
 gci login: currSession 1 rpc gem processId 20964 socket 6
successful login
topaz 1>

Topaz displays a session number in its prompt once you have logged in. In topaz RPC,
where multiple logins are allowed, the prompt will indicate which session is the current
one.
14 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Getting started with Topaz
To see your current login settings and other information about your Topaz session, type
status:
topaz 1> status

Current settings are:
 display : 0
 byte limit: 0 lev1bytes: 0
 omit bytes
 include deprecated methods in lists of methods
 display instance variable names
 display oops omit alloops omit stacktemps
 oop limit: 0
 omit automatic result checks
 omit interactive pause on errors
 omit interactive pause on warnings
 listwindow: 20
 stackpad: 45 singlecolumn: Off tab (ctl-H) equals 8 spaces when

listing method source
 transactionmode autoBegin
 using line editor
 line editor history: 100
 topaz input is from a tty on stdin
EditorName________ vi
CompilationEnv____ 0
Source String Class String
fileformat 8bit (tty stdin is utf8)
SessionInit On
EnableRemoveAll On
CacheName_________ 'TopazR'

Connection Information:
UserName___________ 'Isaac_Newton'
Password __________ (set)
HostUserName_______ 'newtoni'
HostPassword_______ (set)
NRSdefaults________ '#netldi:gs64ldi'
GemStone___________ 'gs64stone'
GemStone NRS_______ '!#encrypted:newtoni@password#server!gs64stone'
GemNetId___________ 'gemnetobject'
GemNetId NRS_______ '!#encrypted:newtoni@password!gemnetobject'

Browsing Information:
Class_____________
Category__________ (as yet unclassified)
GemTalk Systems 15

Getting started with Topaz GemStone/S 64 Bit 3.6 Topaz User’s Guide
Setting Up a Login Initialization File .topazini
You can streamline the login process by creating an initialization file that contains the set
commands needed for logging in. When you invoke Topaz, it automatically executes those
commands for you. If you insert set password and hostpassword commands without
parameters, Topaz automatically prompts you for the necessary values.

You may also explicitly specify a path for a topazini file on the command line where you
started up the Topaz executable. Using this option overrides any topazini files that Topaz
would otherwise use.
% topaz -I /gemstone/utils/mylogin.topazini

If you want to run Topaz non-interactively, you must explicitly specify both the GemStone
and host passwords in this initialization file.

CAUTION:
Entering your passwords in a file can pose a security risk.

The Topaz initialization file shown in Figure 1.3 performs most of the same functions as the
interactive commands shown in the previous discussion.

Figure 1.3 Topaz Initialization File

set gemstone gs64stone
set username Isaac_Newton
set password gravity
set hostusername 'newtoni'
set hostpassword calculus
login

If you choose not to include your password in an initialization file, Topaz will start up with
prompts, for example.
GemStone Password? Type your password. It will not be echoed.
topaz 1>

Table 1.1 Topaz Initialization File Names

Platform

Name of Topaz
Initialization

File
Locations searched for

initialization file

UNIX .topazini Current directory, then user’s home directory

Windows topazini.tpz Current directory, then user’s home directory. If
home directory is undefined, uses home
directory of the account that started Windows,
if any, or C:\users\default.
16 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Getting started with Topaz
Error handling and output
Commands that are executed from a login initialization file are not echoed to the display.
However, if an error occurs, the output is reported to the topaz display, so you can
determine the cause of the problem. In this case, the password and host password are
struck out, for security.

Alternatives to automatic initialization
If a topaz initialization file exists in one of the search directories, it will be executed each
time topaz is started. You can prevent this by starting Topaz using the -i argument, which
suppresses loading of an initialization file.

You can also explicitly provide the initialization file to use on the topaz command line, by
using the -I command, passing in the name of the initialization file. If you name your file
other than the default, or locate this file in a directory other than the ones searched for, you
can control the specific one you wish to load.

This also allows you to have multiple initialization files for different uses.

See Appendix A for more details on command line options.

Special care needed when setting gemnetid in .topazini
Use caution in including commands to set the gemnetid in a .topazini file. For example,
using a line such as:

set gemnetid gemnetobject

The .topazini file is executed for RPC topaz, and for linked topaz started using the -l option.
If this line is present in a .topazini file, and that .topazini file is executed by topaz -l, the
effect is to turn the linked login into an RPC login.

When linked topaz is started using the -L option, set gemnetid commands in .topazini files
are ignored. For this reasons, using -L rather than -l is recommended. Otherwise there is
no difference between starting linked topaz using topaz -l vs. topaz -L.

For more on the behavior of gemnetid in linked and RPC topaz, see under gemnetid
starting on page 154.

Multiple Concurrent GemStone Sessions
Topaz can keep several independent GemStone sessions alive simultaneously. This allows
you to switch from one session to another, for instance to access more than one GemStone
repository. Both RPC and linked versions of Topaz allow you to run multiple sessions by
using the login and set session commands; however, you can only have one linked session
at a time. While you can login both RPC and linked session from the linked version of
topaz, the RPC version of topaz does not allow linked sessions.
GemTalk Systems 17

Getting started with Topaz GemStone/S 64 Bit 3.6 Topaz User’s Guide
Multiple sessions in the RPC version of Topaz
The following example shows how you might login a second session to a different
GemStone server, make the new session your current session, then return to the original
session. With the RPC version of Topaz, all sessions are always RPC.

topaz> login
[09/26/2020 12:34:02.292 PDT]
 gci login: currSession 1 rpc gem processId 95
successful login
topaz 1> set gemstone !@srv2!gs64stone
topaz 1> set username Isaac_Newton
Warning: GemStone is clearing previous GemStone password.
GemStone password? <password typed here but not echoed>
topaz 1> login
[09/26/2020 12:34:05.548 PDT]
 gci login: currSession 2 rpc gem processId 141
successful login
topaz 2> exec UserGlobals at: #myVar put: 1 %
1
topaz 2> set session 1
topaz 1>

Multiple sessions in the Linked version of Topaz
If you use the topaz -L or -l command to invoke Topaz, you may run multiple sessions, but
only one of them may be linked. Normally, this is the first session that logs in. In order to
run two sessions, you must specify a value for gemnetid, and provide OS credentials if
your server configuration requires this, so you can get an RPC login.

If you are running linked topaz, and you first login an RPC session, then wish to login the
linked session, you will need to clear the setting for gemnetid. For example:

topaz> set gemnetid gemnetobject
topaz> login
[09/26/2020 14:40:49.338 PDT]
 gci login: currSession 1 rpc gem processId 31427 socket 6
successful login
topaz 2> set gemnetid ''
topaz 2> login
[Info]: LNK client/gem GCI levels = 36000/36000
--- 09/26/2020 14:37:56.603 PDT Login
[Info]: User ID: DataCurator
[Info]: Repository: gs64stone
[Info]: Session ID: 5
[Info]: GCI Client Host: <Linked>
[Info]: Page server PID: -1
[Info]: Gave this VM preference for OOM killer, Wrote to
/proc/4458/oom_adj value 250
[09/26/2020 14:37:56.609 PDT]
 gci login: currSession 1 linked session
successful login
topaz 1>
18 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Getting started with Topaz
The messages displayed during login indicate if the session is linked or RPC.

Topaz sessions vs. GemStone sessions
Notice that the Topaz prompt always shows the number of the current session. These
sequential session numbers are assigned by your individual Topaz environment, and do
not correspond to the session numbers that are assigned by the GemStone server to each
logged-in session.

To get a list of current GemStone sessions and the users who own them, you can execute
the GemStone Smalltalk expression System currentSessionNames. For example:

topaz 1> printit
System currentSessionNames
%
session number: 2 UserId: GcUser
session number: 3 UserId: GcUser
session number: 4 UserId: SymbolUser
session number: 5 UserId: DataCurator
session number: 6 UserId: Isaac_Newton
session number: 7 UserId: Isaac_Newton
session number: 8 UserId: Gottfried_Leibniz

The GcUser session (or sessions) represent the garbage collection processes that usually
(though not always) operate when GemStone is active. The SymbolUser session represents
the process that administers Symbols to ensure canonicality.

This list includes all sessions that are currently logged into the GemStone system, not only
the sessions within your Topaz environment.

Transaction state
GemStone is a transactional system. The process of making persistent changes in the
GemStone repository require that you begin a transaction, make the changes, then commit
the transaction.

To make this easier, GemStone provides automatic transaction mode (autoBegin). In this
mode, the session is always in transaction. Each commit or abort automatically starts a new
transaction.

When you login through Topaz, your session is in automatic transaction mode. This allows
you to make changes and commit them without having to explicitly start a transaction.

However, being in transaction on a system in which other users are also committing
changes incurs a risk. GemStone must maintain your transactional view of the repository
as long as you are in the transaction and do not commit or abort. These commit records
require space in the repository, and in a rapidly changing system, an idle session in
transaction can create a “commit record backlog”. Under worst-case conditions, this can
cause the repository to fill up with this old data, run out of space, and shut down. If you
are logging into a system that is in use, avoid remaining logged in and idle.

If you use topaz to log into a multiple-user system, you may wish to configure your system
to default to not being in a transaction; this mode is manual transaction mode
(manualBegin). In manual transaction mode, you are out of transaction until you explicitly
begin a transaction (either by the begin command, or by executing a Smalltalk expression
such as System beginTransaction), and when you commit, your session becomes out
of transaction.
GemTalk Systems 19

Getting started with Topaz GemStone/S 64 Bit 3.6 Topaz User’s Guide
You can set topaz to be in manual transaction mode:
topaz> set transactionmode manualBegin
no transaction was in progress, transaction mode changed to
manualBegin

Note that if you are logged in, using this command will abort any transaction in progress,
so it is better to execute this before login. You may wish to add this to the .topazini
initialization file; see details starting on page 16.

You can also change the default for the entire system, by using the Stone configuration
parameter STN_GEM_INITIAL_TRANSACTION_MODE. This sets the initial transaction
mode for all sessions logging in, and may be particularly beneficial in production systems
in which an inadvertent login can create problems.

See the System Administration Guide for GemStone/S 64 Bit for more information on
managing transactions, handling sigAborts, and configuring
STN_GEM_INITIAL_TRANSACTION_MODE.

WARNING
Idle topaz sessions should not be left in transaction in active multi-user systems.
Even if the session is not in transaction and does not cause serious problems, your
stale commit record requires extra work for the stone, and sessions may be
terminated.

Other Types of Logins

X509-Secured
The GemStone server supports both traditional password-based login, and X509 secured
certificate-based logins. These two types of login use a disjoint set of login parameters.
When any of the traditional login parameters are set, all the X509 login parameters are
unset, and vice versa. When you intend to authenticate using X509 certificates, do not set
any of the following: username, password, hostusername, hostpassword, gemstone,
gemnetid, or solologin

For X509 login, the following are required: cert, cacert, key, netldi

and the following are optional: logfile, directory, and extragemargs

You must also create the appropriate keyfiles, and have a Stone that is running with a
keyfile that allows X509 logins.

X509-Secured topaz and other logins are described in detail in the X509-Secured GemStone
System Administration Guide.

Solo Scripting
Topaz supports login without a running Stone, for scripting. See “Topaz Solo for Scripting”
on page 30.
20 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Interacting with Topaz
Multiple Execution Environments
The GemStone server has multiple compilation/execution environments available, which
define separate environments for method lookup and code execution.

The default, and the location of the GemStone kernel, is environment 0. Most applications
will only use environment 0 and can disregard references to execution environments.

The environmentId is set using commands:
set compile_env: anInteger

env anInteger

Most topaz commands operate on the current environment, and many accept an optional
argument specifying the environmentId; see the command comments for exceptions.

1.2 Interacting with Topaz

Help Command
You can type help at the Topaz prompt for information about any Topaz command. For
example:

topaz 1> help time

TIME

The first execution of TIME during the life of a topaz
process displays current date and time from the operating
system clock, total CPU time used by the topaz process.

Subsequent execution of TIME will display in addition
elapsed time since the previous TIME command, CPU time used
by the topaz process since the previous TIME command.

Topic?

You may enter further help topics at the Topic> prompt.

The enter key brings you back to the topaz command prompt.

For a full list of help topics, use help without specifying an argument.

Interrupting Topaz and GemStone
The Ctrl-C key combination interrupts Topaz and GemStone:

When Topaz is awaiting input from your terminal, such as when you’re entering a
command, you can enter Ctrl-C to terminate entry of the command and prepare
Topaz for accepting a new command.

When GemStone is compiling or executing some GemStone Smalltalk code sent to it
by Topaz, such as in a printit command, typing Ctrl-C sends a request to GemStone to
interrupt its activities as soon as possible. GemStone stops execution at the conclusion
of the current method, and Topaz displays the message: A soft break was
received.
GemTalk Systems 21

Executing GemStone Smalltalk Expressions GemStone/S 64 Bit 3.6 Topaz User’s Guide
Logging Out
To log out from your current GemStone session, just type logout.

topaz 1> logout
topaz>

Logging out implicitly aborts your transaction.

Leaving Topaz
To leave Topaz and return to your host operating system, just type exit:

topaz> exit

If you are still logged in when you type exit, this will implicitly abort all your transactions
and log out all active sessions.

You can also use quit, which has the same effect as exit.

These commands can include return values to the operating system shell; see exit (page 82)
or quit (page 142) for details.

1.3 Executing GemStone Smalltalk Expressions
There are a number of commands allowing you to execute Smalltalk expressions: run,
printit, doit, and exec. The following use of printit, for example, creates an instance of
DateTime representing the current Date and Time:

topaz 1> printit
DateTime now
%
a DateTime
 year 2020
 dayOfYear 38
 milliseconds 83048864
 timeZone a TimeZone

All of the lines after the printit command and before a line in which % is the first character
are sent to GemStone for execution as GemStone Smalltalk code. Topaz then displays the
result and prompts you for a new command.

The doit, run, and printit commands differ in the way the output is displayed; this is
described in the next section.

The exec command allows the expression to be entirely on one line, which can improve
readability of input and output files when there are many brief lines to be executed. For
example:

topaz 1> exec DateTime now %
a DateTime
 year 2020
 dayOfYear 38
 milliseconds 67995686
 timeZone a TimeZone
22 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Executing GemStone Smalltalk Expressions
If there is an error in your code, Topaz displays an error message instead of a legitimate
result. You can then retype the expression with errors corrected, or use the Topaz edit
function to correct and refine the expression.

Strings vs. Unicode strings
GemStone Smalltalk supports two set of string classes; traditional Strings, including String,
DoubleByteString and QuadByteString; and Unicode strings, including Unicode7,
Unicode16, and Unicode32. Traditional Strings are native GemStone, while Unicode
strings rely on the ICU libraries to provide sophisticated national language support. Both
sets of string classes support the full Unicode character range. String classes are described
in more detail in the Programming Guide for GemStone/S 64 Bit.

When you execute a Smalltalk expression in Topaz that creates a string object, the class of
this object depends on the Topaz setting for SourceStringClass. The default is String, in
which case a traditional string is created, of the lowest order in which all Characters of the
result can be contained. Or it can be set to Unicode16, in which case a Unicode string is
created, either a Unicode7, Unicode16, or Unicode32.

topaz 1> set sourcestringclass unicode16
topaz 1> display oops
topaz 1> exec 'hello' %
[4582145 sz:5 cls: 154369 Unicode7] hello

For further details, see sourcestringclass on page 158.

When a repository is in Unicode Comparison Mode, topaz detect this on login, and
automatically changes the sourcestringclass to Unicode16, and the fileformat to utf8, and
prints a message on this change on the topaz console. See the Programming Guide for
GemStone/S 64 Bit for details on Unicode Comparison Mode.

Controlling the Display of Results
The result of the Smalltalk expression is returned to Topaz, and this object is displayed on
the topaz console. Topaz provides several options to allow you to control the level of detail
that is displayed for the object.

Display Level
When Topaz displays a result object, it always displays the object itself, but the display of
the name and value of each instance variable is controlled by the level and the topaz
command used to execute the code.

A level of 0 indicates that only the object itself is displayed; level 1 displays the object and
its instance variables, level 2 include the instance variables of the instance variables of the
object, and so on.

The printit command always displays results with level 1:
topaz 1> printit
DateTime now
%
a DateTime
 year 2020
 dayOfYear 38
 milliseconds 83048864
 timeZone a TimeZone
GemTalk Systems 23

Executing GemStone Smalltalk Expressions GemStone/S 64 Bit 3.6 Topaz User’s Guide
This display is one level deep: the instance variables are displayed, but not the instance
variables of any complex objects in the instance variable values.

The doit command displays 0 levels:
topaz 1> doit
DateTime now
%
09/26/2020 15:04:35

The run command uses the current level setting to display the results. By default, this is 0,
and produces the same display as the doit command. You can set the level explicitly using
the level command, to display more of the object.

For example, at the default level 0, the run command produces the same display as the doit
command:

topaz 1> level 0
topaz 1> run
DateTime now
%
09/26/2020 15:05:23

Setting the level to 2 would give this view:
topaz 1> level 2
topaz 1> run
DateTime now
%
a DateTime
 year 2020
 dayOfYear 38
 milliseconds 83121913
 timeZone a TimeZone
 transitions an Array
 leapSeconds nil
 stream nil
 types nil
 charcnt nil
 standardPrintString PST
 dstPrintString PDT
 dstStartTimeList an IntegerKeyValueDictionary
 dstEndTimeList an IntegerKeyValueDictionary

As you can see, setting the display level to 2 causes Topaz to display each instance variable
for the objects that are within each of DateTime’s instance variables. If the display level
setting is high enough and the object to be displayed is cyclic (that is, if it contains itself in
an instance variable), Topaz will faithfully follow the circularity, displaying the object
repeatedly.

Setting Limits on Object Displays
By default, Topaz attempts to display all of a result, no matter how long. So for example if
an expression returns a collection, every item in the collection will be displayed.
24 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Executing GemStone Smalltalk Expressions
The limit oops controls how much Topaz displays of pointer or NSC objects, such as
Arrays and Sets, that come back as a result. Similarly, limit bytes command controls how
much Topaz displays of a byte object (instance of String or one of String’s subclasses) that
comes back as a result. To avoid

The following example shows how you could use limit bytes to make Topaz limit the
display to the first 4 bytes:

topaz 1> limit bytes 4
topaz 1> printit
'this and that'
%
this
...(9 more bytes)

Setting the limit to 0 restores the default condition.

Displaying Variable Names, OOPs, and Byte Values
Two complementary commands, display and omit, control some features of how objects
are displayed in topaz. For more details on the options, see display (page 70).

OOP Values
It’s useful in debugging to be able to examine the numeric object identifiers that GemStone
uses internally. If you tell Topaz to display oops, it prints a bracketed object header with
each object, which looks like this:
[21336065 sz:3 cls: 110849 Symbol]

Each object header contains:

The object’s OOP (a 64-bit unsigned integer)

the object’s size, calculated by summing all of its named, indexed, and unordered
instance variable fields

the OOP of the object’s class and the class name

For example:
topaz 1> display oops
topaz 1> printit
DateTime now
%
[42370305 sz:4 cls: 118785 DateTime] a DateTime
 year [16138 sz:0 cls: 74241 SmallInteger] 2020 == 0x7e1
 dayOfYear [2266 sz:0 cls: 74241 SmallInteger] 38 == 0x11b
 milliseconds [594793738 sz:0 cls: 74241 SmallInteger] 74349217 =

= 0x46e7aa1
 timeZone [10528513 sz:12 cls: 13530113 TimeZone] a TimeZone

You can turn off the display of OOPs by typing omit oops at the Topaz prompt.
GemTalk Systems 25

Executing GemStone Smalltalk Expressions GemStone/S 64 Bit 3.6 Topaz User’s Guide
Byte Values
Topaz ordinarily displays byte objects such as Strings literally, with no additional
information. If you enter display bytes or display decimalbytes, Topaz includes the
hexadecimal or decimal value of each byte. For example:

topaz 1> display bytes
topaz 1> exec 'this and that' %
1 'this and that' 74 68 69 73 20 61 6e 64 20 74 68 61 74

Entering omit bytes or omit decimalbytes restores the default display mode.

Committing and Aborting Transactions
To commit a transaction while using Topaz, you can execute the GemStone Smalltalk
expression System commitTransaction within a printit command, or you can enter
the Topaz commit command:
topaz 1> commit
Successful commit

Similarly, you abort a transaction by executing the GemStone Smalltalk expression
System abortTransaction within a printit command, or by entering abort at the
Topaz command prompt. Entering abort does not reset Topaz system definitions, such as
your current class and category.

The topaz command begin, or executing System beginTransaction, may also be used
to begin a transaction if you are not in automatic transaction mode, or to abort your
transaction.

Although you can abbreviate most Topaz commands and parameter names, commit,
abort, and begin (as well as some others such as quit and exit) must be typed in full.

Importing files: topaz commands and GemStone code
The Topaz interactive environment takes its input from standard input, such as your
terminal. You can also use the input command to make Topaz take its input from a file.
Topaz treats the lines in the input file as if they were entered on the command line; this file
may contain commands to perform work, or code to be filed in; there is no difference.

For example, the following command, would make Topaz read and execute the commands
in a file called animal.gs in your UNIX $HOME directory:

topaz 1> input $HOME/animal.gs

The UNIX environment variable $HOME is expanded to the full filename before the input
command is carried out.

When you have code that was filed out of GemStone, the input command allows you to
load this code into another Stone. You will need to check for errors and commit to make
the code persistent.

topaz 1> input $HOME/animal.gs
<input by default echos all input>
topaz 1 +> errorcount
0
topaz 1 +> commit
Successful commit

Input files can be nested. The prompt adds a + to indicate the depth of nesting of input files.
26 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Executing GemStone Smalltalk Expressions
Batch processing goes very quickly. It is a good idea to record your topaz session to a file,
use output push, so you can check for errors. This is described starting on page 27.

Handling text outside the ASCII range
Character with codepoints between 128 and 255 are outside the ASCII range, but the
codepoints only require one byte. Since UTF-8 encoding is identical only for characters
with up to 7 bits, how Characters in this range are encoded in a text file or paste buffer
depends on how your system is configured.

If all your code and text file contents, and all commands entered via scripts, are limited to
the ASCII range, there is no difference in behavior and your system requires no further
configuration.

Terminal input such as pasting into your command line is always decoded from UTF-8. If
you are copying from a text editor, and the text you are pasting includes characters outside
the range, ensure that the copy buffer encoding is UTF-8.

Text files that are input into Topaz are interpreted based on Topaz’s fileformat setting. The
default is 8BIT. With this setting, text files are interpreted as 8-bit extended ASCII, the way
GemStone historically has encoded this range.

With the setting of UTF8, text files are assumed to be encoded as UTF-8, and it will attempt
to decode any bytes in the 128-255 range.

To input text files that are encoded as UTF-8 into Topaz, use:
topaz> fileformat UTF8

If you use any characters with codepoints over 127, the fileformat must be set according
to the encoding of the input file, otherwise the results will be corrupted.

If you have logged in, and topaz detects that the repository is in Unicode mode, then it will
automatically change the fileformat to UTF8. For more information on Unicode mode, see
the Programming Guide for GemStone/S 64 Bit.

The same considerations apply for text files output from topaz. Log files produced by the
output command are always encoded as UTF-8. Code fileouts produced by the topaz
fileout command include a header line specifying the file format, so these files can be filed
in again without problems.

Topaz displays characters in the range 0-31 using caret notation, for example, Character cr
is displayed as ^M. The exceptions are Character lf and Character tab, which control
display as designed. Characters with codePoints 128-159 and Characters with codePoints
over 255 are displayed using C\Java hex format, for example, \u012c.

Capturing Your Topaz Session In a File
It’s often useful to keep a record of your interactions with GemStone during testing and
debugging, and when executing scripts to simplifying finding errors.

You can do this with the Topaz command output. This command causes Topaz to write all
input and output to a named file as well as to standard input and standard output (your
terminal).
GemTalk Systems 27

Executing GemStone Smalltalk Expressions GemStone/S 64 Bit 3.6 Topaz User’s Guide
For example, either of these lines cause all subsequent interactions to be captured in a file
called animaltest.log:

topaz 1> output animaltest.log

topaz 1> output push animaltest.log

Using output alone or output push, if the file you name doesn’t exist, Topaz creates it.
Under UNIX, if you name an existing file, Topaz will overwrite the previous file.

To add output to an existing file without losing its current contents, use output append, or
precede the file name with an ampersand (&). For example:

topaz 1> output push &animaltest.log

To have topaz create a new file if a file with the given name already exists, use pushnew:
topaz 1> output pushnew animaltest.log

If animaltest.log already exists, the file animaltest_1.log is created.

To stop writing to the current log, use output pop.
topaz 1> output pop

Writing to multiple log files
As the command names push and pop imply, Topaz can maintain a stack of up to 20
output files. Topaz input and results are written to each file on the stack.

You can specify topaz only write only to the file on the top of the stack using the keyword
only.

For example:
topaz 1> output push animaltest.log only

The keyword only will also prevent the results of any topaz commands from being
displayed on your screen; they will only be written to the log file.

The following sequence would capture one set of commands in the file mathtest.log,
and a second set of commands in mathtest2.log:

topaz 1> ! Capture the next command and result in mathtest.log
topaz 1> output push mathtest.log
topaz 1> time
09/26/2020 14:49:47.558 PDT
CPU time: 0.013 seconds
topaz 1> exec 5 * 8 %
40
topaz 1> ! Capture the next command and result in mathtest2.log
topaz 1> output push mathtest2.log only
topaz 1> time
topaz 1> exec 5 * 9 %
topaz 1> ! Close mathtest2.log and resume using mathtest.log
topaz 1> output pop

Notice that the result of the second time and the result of 45 did not appear on the screen.
If the second push command line did not have the only keyword, the entire sequence
would have been recorded in mathtest.log, and the second command duplicated in
mathtest2.log.
28 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Using Topaz for Scripting
Also notice the use of the exclamation mark ! in this example, to indicate a comment line.
You can use either exclamation point or pound sign as the first character in a line, or the
command remark, to begin a comment. Comments are important for annotating Topaz
input files created for batch processing or testing.

1.4 Using Topaz for Scripting
The Topaz commands that are entered interactively to login and execute code can be stored
in external text files. When these files are input into topaz, the command are executed, just
as if they were entered interactively. These files of topaz commands can login to GemStone
and perform GemStone code, input other topaz files, invoke operating system
functionality, and perform error checking and logging.

However, topaz does not provide flow of control. If you have complicated queries,
sequences of repository updates, reports, or administrative tasks that you repeat on a
regular basis, you can combine topaz with bash shell processing, or use GemStone itself to
provide the flow of control.

Topaz commands in text files
To perform automatic repository administrative operations, such as backup or
markForCollection, you may create topaz scripts. These can be embedded within shell
scripts which are invoked automatically.

For example, this might be the content of a text file script that runs markForCollection, with
the name runmfc.topaz:

set user DataCurator password swordfish gemstone gs64stone
login
! run garbage collection mark/sweep
exec SystemRepository markForCollection %
exit

You can execute this script by starting topaz and inputting the file.
topaz 1> input runmfc.topaz

For more automation, this file can be specified as an input to the topaz command itself,
using the -I or -S topaz argument.

For example:
unix> topaz -I runmfc.topaz > MFC.out

The -I suppresses the use of a .topazini and suppresses output; while -S does read a
.topazini (which can be suppressed manually by also specifying -i), and does not
suppress output (which can be suppressed manually by also specifying -q).
GemTalk Systems 29

Using Topaz for Scripting GemStone/S 64 Bit 3.6 Topaz User’s Guide
Embedding Topaz within shell scripts
You can embed the topaz code within a UNIX shell script, to create a file that can be easily
executed on the command line.

#! /bin/bash
#set -x
$GEMSTONE/bin/topaz -il <<EOF >>MFC.out
set user DataCurator password swordfish gemstone gs64stone
login
! run garbage collection mark/sweep
exec SystemRepository markForCollection %
exit
EOF

Topaz Solo for Scripting
A solo login is a special kind of login, which does not require a running Stone. This allows
a Gem session to start up and execute GemStone Smalltalk code (based on reading from a
GemStone extent file), without any connection to a Stone. Without a Stone, a solo session
is single-user, and changes to persistent objects cannot be committed. Solo sessions cannot,
for example, run markForCollection in their own environments, nor execute methods that
make or restore backups.

By default, a solo login uses the read-only extent in the GemStone distribution
($GEMSTONE/bin/extent0.dbf). However, you can configure it, by setting the Stone
configuration parameter GEM_SOLO_EXTENT, to use another single extent file that
contains scripting code or that contains your application code and data, provided that the
following are true for the repository extent:

The extent must not part of a multi-extent repository

The extent file must either have read-only file permissions, or it will be exclusive-
locked by the solo session.

If not read-only, the extent repository must have been previously cleanly shutdown
by the Stone

To login solo from topaz linked or RPC, execute set solologin on, then login.

For example:
topaz> set solologin on
topaz> login
[Info]: LNK client/gem GCI levels = 36000/36000
[Info]: Read-Only Repository:
/lark1/users/gsadmin/3.6/bin/extent0.dbf
[Info]: using libicu version 58.2
[Info]: Gave this process preference for OOM killer: wrote
to /proc/20027/oom_score_adj value 250
[03/26/2020 16:40:33.628 PDT]
 gci login: currSession 1 linked session
successful Solo login
topaz 1>

Any setting for gemstone is not used.
30 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Using Topaz for Scripting
In topaz RPC, you may perform a solo login while also logged into a GemStone Stone,
provided the extent file used by the Solo session is not in use by another solo session.

Object creation and memory use
Each Solo RPC or linked Gem also opens a 10MB read-write temporary file,
/tmp/gemRO_<pid>_extent1.dbf, which is deleted on logout or process exit.

Object creation in a Solo session is limited to temporary object memory, but you may create
objects as needed up to the limit of memory. To ensure there is sufficient memory, you
may:

Set a larger value for GEM_TEMPOBJ_CACHE_SIZE in the configuration file used by
the topaz or Gem session.

For linked sessions, use -T cachesize on the topaz command line.

For RPC sessions, include -T cachesize in the NRS gemnetid login parameter. For
example,

topaz> set gemnetid 'gemnetobject -T 200000'

Topaz solo connecting to a running stone
While a solo session cannot run operations such as markForCollection, it can establish
an ExternalSession to a running Stone and invoke operations such as
markForCollection remotely.

See the Programming Guide for GemStone/S 64 Bit for details on GsTsExternalSession and
GsExternalSession.

Scripting with topaz solo using she-bang
You may create executable text files containing GemStone code, and execute these in a solo
session at the command line. The following restrictions apply:
The environment variable $GEMSTONE must be set
she-bang scripts execute in a solo session, that is, do not log into a running stone.
she-bang scripts run in a linked topaz session
no topaz command line options can be passed in
No .topazini files are read

The first line of the she-band can be defined two ways:

#!/usr/bin/env topaz
$GEMSTONE/bin must be on the machine executable search path.

#!fullPathToExecutable/topaz
GEMSTONE/bin does not need to be on the machine executable search path, but
fullPathToExecutable must be the full path, not including environment variables.
GemTalk Systems 31

Using Topaz for Scripting GemStone/S 64 Bit 3.6 Topaz User’s Guide
For example, if you define a executable text file, myscript, with the following contents:
#!/usr/bin/env topaz
set u DataCurator p swordfish
login
run
 | files sz |
 files := GsFile

contentsOfDirectory: '$GEMSTONE/data/tranlog*.dbf'
onClient: false.

 sz := 0.
 files do: [:ea | sz := sz + (GsFile sizeOfOnServer: ea)].
 'tranlogs consume ', (sz / 1024) asInteger asString, ' KB'.
%

This file can be executed, with or without a running stone, to report the sum total size of
tranlog files in the given directory.

Note that this will (in a default configuration) execute using the empty distribution extent,
and checks the file sizes on disk rather than using any internal representation in the
repository that is actually generating the transaction logs.

Topaz exits when the script completes.

Topaz Solo Scripting using bash to pass arguments
By using bash to invoke topaz, you can perform topaz scripting that can include command
line arguments. This uses a number of topaz features.

the topaz -q argument suppresses output, as does passing in the script using the -S
argument.

Logins can be normal, that is topaz can login to a running stone, or solo. The
advantage of solologin is that the script can run GemStone code whether or not the
Stone is running, and without impact on anything going on in the Stone.

topaz command line arguments passed in after a -- are available from Smalltalk code
using System commandLineArguments.

The following example uses three files to demonstrate writing a command-line script that
executes GemStone Smalltalk code. The top-level bash script invokes topaz with the login
information in a topaz initialization file and the actual script file, passing in a single
argument. For simplicity, this example does no error checking. An actual script, of course,
should check that the arguments are present and valid.

Example 1.1 Example bash script

Contents of executable gettranlogspace:
#!/bin/bash
export GEMSTONE=/lark1/users/gsadmin/3.6
$GEMSTONE/bin/topaz -lq -I $GEMSTONE/scripts/myini -S

$GEMSTONE/scripts/reporttranlogspace.tpz -- $1

This invokes linked topaz (-l), passing in the initialization file (-I) and the script file (-S).
The use of the -q flag suppresses topaz output that will clutter the output. Arguments
following -- are passed to topaz, in this case, the bash shell’s (0-based) second element.
32 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Using Topaz for Scripting
By setting $GEMSTONE explicitly and specifying the path to topaz, there is no need to
perform GemStone environment setup before executing this script - it can be run in any
environment.

Contents of file myini:
set user DataCurator pass swordfish
set gemstone gs64stone
set solologin on

This sets solo login, so no stone login is required. This script logs in as DataCurator, but
creating a specific user with limited privileges would be sufficient, since the script will only
perform limited operations.

Contents of file reporttranlogspace.tpz:
login
run
 | dir files sz |
 dir := System commandLineArguments last.
 files := GsFile
 contentsOfDirectory: dir
 onClient: false.
 sz := 0.
 files do: [:ea | sz := sz + (GsFile sizeOfOnServer: ea)].
 GsFile gciLogClient: dir, ': tranlogs consume total ',

(sz / 1024) asInteger asString, ' KB'.
%
logout
exit

The use of System commandLineArguments gets the full set of tokens that invoked
topaz, so the last element is the bash argument. Again, no error checking is done.

Executing the example:
unix> ./gettranlogspace /lark1/users/gsadmin/tranlogs
/lark1/users/gsadmin/tranlogs: tranlogs consume total 98477 KB

Invoking Operating System Functionality from Topaz
From within topaz, you can easily execute operating system commands, or escape to an
operating system shell and execute commands directly on the command line. To do this,
invoke the topaz shell command.

You can enter your operating system command on the shell command line, as for example:
topaz> shell echo $GEMSTONE
/lark1/users/gsadmin/GemStone64Bit3.6.0-x86_64.Linux

topaz>
GemTalk Systems 33

Using Topaz for Scripting GemStone/S 64 Bit 3.6 Topaz User’s Guide
Or you can enter shell with no arguments, in which case you can interactively enter a
sequence of operating system commands. When you are done, type exit or control-D to
returns to topaz.

topaz> shell
% echo $GEMSTONE
/lark1/users/gsadmin/GemStone64Bit3.6.0-x86_64.Linux
% exit

topaz>

You can, of course, also execute operating system functionality from GemStone Smalltalk
using:

topaz 1> run
System performOnServer: codeToBeExecuted
%

34 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Using Topaz for Code Development
1.5 Using Topaz for Code Development
Topaz, in conjunction with methods in GemStone Smalltalk, can be used to examine and
write classes and methods.

Creating Methods
Creating a class is done using GemStone Smalltalk class creation protocol. For more on
class creation, refer to the GemStone Programming Guide.

For example,
topaz 1> printit
Object subclass: 'Animal'
 instVarNames: #('name' 'favoriteFood' 'habitat')
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
%
a metaAnimal
 superClass a metaObject
 format 0
 instVarsInfo 1125899906846723
 instVarNames an Array
 constraints an Array
 classVars nil
 methDicts a GsMethodDictionary
 poolDictionaries nil
 categorys a GsMethodDictionary
 primaryCopy nil
 name Animal
 classHistory a ClassHistory
 transientMethDicts an Array
 destClass nil
 timeStamp a DateTime
 userId DataCurator
 extraDict a SymbolDictionary
 classCategory nil
 subclasses nil

Once you have a class, you can create methods for it in topaz.

You can begin the definition of an instance method by issuing the method: command at the
Topaz prompt. This command takes a single argument: the name of the class for which the
method will be compiled.

topaz 1> set category 'Accessing'
topaz 1> method: Animal
habitat

"Return the value of the instance variable 'habitat'."
^habitat

%

GemTalk Systems 35

Using Topaz for Code Development GemStone/S 64 Bit 3.6 Topaz User’s Guide
A class method definition is similarly initiated by the Topaz command classmethod:. For
example:

topaz 1> set category 'Instance creation'
topaz 1> classmethod: Animal
returnAString

"Returns an empty String"
^String new

%

Topaz maintains state for the Class and method category, so if you have multiple methods,
you do not need to specify these values for each method definition. Expressions such as the
above will set the Class and the category, and this will be used for subsequent methods
until changed.

To set the current class, use the set class command:
topaz 1> set class Animal

To set the current category, use the set category command:
topaz 1> set category Updating

If the category you name doesn’t exist, Topaz creates it when you compile the method.

You can examine your current class and category settings by typing status.
topaz 1> status

Current settings are:
(display of current settings and connection information appears here)

browsing information:
Class_____________ Animal
Category__________ Updating

Once you’ve established a class and a category, you can define a method simply:
topaz 1> method:
habitat: newValue

"Modify the value of the instance variable 'habitat'."
habitat := newValue

%

Like the text of a printit command, the text of a method definition is terminated by the first
line that starts with the % character. As soon as you enter the %, Topaz sends the method’s
text to GemStone for compilation and inclusion in the selected class and category.

Using a Text Editor to Edit Methods
The edit command allows you to use a host text editor to edit GemStone Smalltalk
expressions, including method text.

To use the edit function, you must first have established the name of the host editor you
wish to use. Topaz can read the UNIX environment variable EDITOR, if you have it set.
Otherwise, use the Topaz set editorname command, interactively or in your Topaz
initialization file.
topaz 1> set editorname vi

Then, to edit the text of the last printit command, you need only do this:
topaz 1> edit last
36 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Using Topaz for Code Development
Topaz opens your editor, as a subprocess, on the text of the last command that defined
Smalltalk expressions: including printit, exec, run, doit, method, and classmethod. When
you exit the editor, Topaz saves the edited text in a temporary file and asks you whether
you’d like to compile the altered code. If you type y or yes, Topaz effectively reissues your
command with the new text.

For example, to edit the existing instance method habitat: in the current class, you
would enter edit as shown below:

topaz 1> edit method habitat:

To edit an existing class method, use an expression of the form:
topaz 1> edit classmethod returnAString

To create an entirely new method with the editor, you can enter edit new method or edit
new classmethod.

Listing Methods, Categories, and other information
The topaz list command provides a way to find out information about classes and methods,
as well as other information about your system.

To list the instances method selectors for a class, use list selectors:
topaz 1> list selectors
 habitat
 habitat:

To see the categories and methods that are in the current class, use list categoriesin. Topaz
lists all of the class and instance method selectors in the selected class by category.

topaz 1> list categoriesin
----------------- Instance Methods:
category (as yet unclassified)
 habitat
category Updating
 habitat:
----------------- Class Methods:
category (as yet unclassified)
 returnAString

To list the source code of an instance method, use list method:
topaz 1> list method: habitat:
habitat: newValue
"Modify the value of the instance variable 'habitat'."
habitat := newValue

A parallel command, list classmethod:, lists the source of the given class method.

Other list options allow you to examine the classes in one or all of your symbol list
dictionaries or to examine the methods in some class other than the current class. The list
command by itself is used in debugging, to display source for a method on the current
execution stack. For more information, see the options described under list starting on
page 110.
GemTalk Systems 37

Using Topaz for Code Development GemStone/S 64 Bit 3.6 Topaz User’s Guide
Filing Out Classes and Methods
You will commonly want to file out GemStone Smalltalk code at some level of granularity,
by Method, Method Category, Class, or SymbolDictionary. Some reasons to do this are:

transport your code to other GemStone systems,

perform global edits and recompilations,

produce paper copies of your work, and

recover code that would otherwise be lost when you are unable to commit.

GemStone fileouts are in topaz executable form. You can process this text using editors or
other operating system utilities and then execute it with the Topaz input command.

Fileouts are commonly done using GemStone Smalltalk methods, including Class
fileOutMethod:on:, Class fileOutCategory:on:, Class fileOutClassOn:, and
similar methods; and ClassOrganizer
fileOutClassesAndMethodsInDictionary:on:. For more information on these
methods, see the methods in the image.

Fileout can also be performed using the Topaz fileout command. For example, the
following command:

topaz 1> fileout class: Animal toFile: animal.gs

would create in the file animal.gs, a Topaz script containing a definition of class Animal
and all of its categories and methods. Here is how animal.gs would look:

fileformat 8Bit
set sourcestringclass String
run
Object subclass: 'Animal'

instVarNames: #('name' 'favoriteFood' 'habitat')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

%
category: 'Updating'
method: Animal
habitat: newValue

"Modify the value of the instance variable 'habitat'."
habitat := newValue

%
...

“Filing in” this script with the input command would create a new class Animal exactly
like the original.

In addition to class:, the fileout command has other subcommands, to allow you to fileout
a method or other granularity of code. For more details, see the options under fileout
starting on page 91.

Code outside the ASCII range
The fileout command encodes the resulting file according to the current fileformat setting.
By default, this is 8BIT, specifying 8-bit extended ASCII.
38 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Advanced Topaz features
If your application code contains characters outside the ASCII range (with values over 127),
you may want to fileout your code encoded as UTF-8. This setting is required if you will
file out text with any Characters with values over 255; characters with these values cannot
be filed out as 8BIT.

To configure your system to fileout in UTF-8:
topaz 1> fileformat UTF8

The current fileformat and SourceStringClass settings are automatically added to the
results of fileout. This ensures that the same format is used to filein as was used to fileout.
Do not removes these statements, unless you are certain the correct settings will be used on
any later filein; the incorrect settings can cause the input to be corrupted.

1.6 Advanced Topaz features
The features previously described to manage your session, execute Smalltalk server code,
and accept input from and write to files, are sufficient for most application needs.

Topaz also provides additional features that support sophisticated debugging of
GemStone Smalltalk code and streamline access to specific objects.

Structural Access To Objects
In your GemStone Smalltalk programs, you should generally access the values stored in
objects only by sending messages. During debugging, however, it’s sometimes useful to be
able to read an instance variable or store a value in it without sending a message. For
example, if an instance variable is normally read only by a message with side effects, it
won’t do to examine its value during debugging by sending that message.

To allow you to “peek” and “poke” at objects without passing messages, Topaz provides
the commands object at: and object at:put:.

Examining Instance Variables with Structural Access
The command object at: returns the value of an instance variable within an object at some
integral offset. Suppose, for example, that you had created an instance of Animal:

topaz 1> printit
UserGlobals at: #MyAnimal put: Animal new.
%
an Animal

name nil
favoriteFood nil
habitat nil

topaz 1> printit
MyAnimal habitat: 'water'
%
an Animal

name nil
favoriteFood nil
habitat water
GemTalk Systems 39

Advanced Topaz features GemStone/S 64 Bit 3.6 Topaz User’s Guide
The following example shows how you could use object at: to display the value of
MyAnimal’s third instance variable.

topaz 1> object MyAnimal at: 3
water

You can string together at: parameters after object to descend as far as you like into the
object of interest.

topaz 1> object MyAnimal at: 3 at: 1
$w

As far as at: is concerned, named, indexed, and unordered instance variables are all
numbered, with named instance variables appearing first, followed by indexed instance
variables, then unordered instance variables. E.g., if an indexed object also had three
named instvars, the first indexable field would be addressed with object at: 4. Offsets into
the unordered portions of NSCs are not consistent across add: or remove: commands.

Specifying Objects
As you have seen, objects can be identified within an object command by global GemStone
Smalltalk variable names. This is only one of several ways you can specify objects in Topaz
commands.

Object Specification Formats
@integerOop

An unsigned 64-bit decimal OOP value that denotes an object.

integer
An Integer.

float
A Float object (C double-precision Float). The syntax for literal floating point numbers
in Topaz commands is:

[sign]digits[.[digits][E[sign]digits]]

$character
A literal Character.

aVariableName
This can be either a GemStone Smalltalk variable name (such as a Class name, or a
variable set in a SymbolDictionary), a local variable created with the defin.e command,
or a predefined Topaz variable. See “Topaz Variables” on page 41

** The object that was the result of the last execution.

^ The current class (as defined by the most recent set class, list categoriesIn:, method:,
classmethod:, or fileout command).

'aLiteralString'
A literal String.

#aLiteralSynbol
A literal Symbol (no white space allowed).

#'a Quoted Symbol'
A quoted literal Symbol.
40 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Advanced Topaz features
Example 1.2 Using OOP and * (last result) specifications

topaz 1> display oops
topaz 1> object Animal
[1337089 sz:19 cls: 150617 Animal class] Animal class
 superClass [72193 sz:19 cls: 206081 Object class] Object class
 format [2 sz:0 cls: 74241 SmallInteger] 0
 instVars [26 sz:0 cls: 74241 SmallInteger] 3
 instVarNames [1335297 sz:3 cls: 66817 Array] an Array

...
topaz 1> ! Look at first element of instVarNames array
topaz 1> object @1335297 at: 1
[1248257 sz:4 cls: 110849 Symbol] name
topaz 1> ! Look at first character of first instvarname
topaz 1> omit oops
topaz 1> object ** at: 1
$n

Note that when you look at the first element of the instVarNames array, you need to use
the OOP returned by your own GemStone system, which is very unlikely to be @1335297.

Topaz Variables
Topaz lets you refer to any object in a command by using the OOP of that object. Long
numerical OOPs are difficult to work with, so Topaz also allows you to define local Topaz
variables to refer to the OOPs by name. This is done using the define command.

Since Topaz is flexible about resolving strings to names, use some care in choosing the
names of variables. Names that are set using define take precedence over Smalltalk
variable names (such as the names of Classes), and over the Topaz build-in variables (see
the next section).

Creating Variables
The following example shows the use of the Topaz define command to create a reasonable
name for an object previously known by its OOP.

topaz 1> display oops
topaz 1> object Animal
[1337089 sz:19 cls: 1337601 Animal class] Animal class
 superClass [72193 sz:19 cls: 206081 Object class] Object class
 format [2 sz:0 cls: 74241 SmallInteger] 0
 instVars [26 sz:0 cls: 74241 SmallInteger] 3
 instVarNames[1335297 sz:3 cls: 66817 Array] an Array
...
topaz 1> define animalVars @1335297
topaz 1> omit oops
topaz 1> object animalVars at: 1
name

A local variable must begin with a letter or an underscore, can be up to 255 characters in
length, and cannot contain white space. Local variables are case-sensitive.
GemTalk Systems 41

Advanced Topaz features GemStone/S 64 Bit 3.6 Topaz User’s Guide
If additional tokens follow define’s second parameter, Topaz will try to interpret them as
a message to the object represented by the second parameter. For example:

topaz 1> define thirdvar animalVars at: 3
topaz 1> object thirdvar
habitat

Note that Topaz does not parse message expressions exactly as the GemStone Smalltalk
compiler does; Topaz requires you to separate tokens with white space.

All Topaz object specification formats (described above in “Specifying Objects”) are legal
in define commands. For example:

topaz 1> define sum 1.0e1 + 500
topaz 1> define mystring 'this and that'
topaz 1> define mycharacter $z

Displaying Current Variable Definitions
To see all current local variable definitions, just type define with no arguments:

topaz 1> define
Current definitions are:

mycharacter = 142538
mystring = 150133
sum = 147709
thirdvar = 114793
animalVars = 147682

CurrentMethod = nil
ErrorCount = 2
CurrentCategory = nil
CurrentClass = nil
LastResult = nil
LastText = nil
myUserProfile = 1458177

define reports values as OOPs rather than literals; so an ErrorCount of 2 means that there
were zero errors.

In this status report there are two sections. User-defined local variables are listed first,
followed by the topaz predefined variables. These are local variables that Topaz
automatically creates for you:

CurrentMethod—the OOP of the current method (set by lookup or list)

ErrorCount—the OOP of the count of Topaz and GemStone errors since Topaz started.

CurrentCategory—the OOP of the current category

CurrentClass—the OOP of the current class

LastResult—the OOP of the last execution result

LastText—the OOP of the text of the last GemStone Smalltalk expression executed or
compiled

myUserProfile—the OOP of UserProfile for the current session’s login.

You cannot modify the definitions of these predefined variables with define.
42 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Advanced Topaz features
Clearing Variable Definitions
To clear a definition, type define aVarName with no second argument.

For example:
topaz 1> define abc 'this string'
topaz 1> object abc
this string
topaz 1> define abc
topaz 1> object abc
GemStone could not find an object named abc.

Sending Messages
In addition to the usual ways of sending messages with Smalltalk code, Topaz allows you
to send messages to an object identified by any of the means described in “Specifying
Objects” on page 40. This lets you use OOPs or Topaz variables directly.

For example:
topaz 1> send @71425 class
a Metaclass

superClass a Metaclass
format 1040
...
categories a GsMethodDictionary
secondarySuperclasses nil
thisClass UndefinedObject class

The send command’s first argument is an object specification identifying a receiver. That
argument is followed by a message expression built almost as it would be in GemStone
Smalltalk. Here’s another example:

topaz 1> send 2 - 1
1

There are some differences between send syntax and GemStone Smalltalk expression
syntax.

Only one message send can be performed at a time with send.

Cascaded messages, parenthetical messages, and the like are not recognized by this
command.

Each item must be delimited by one or more spaces or tabs.
GemTalk Systems 43

Advanced Topaz features GemStone/S 64 Bit 3.6 Topaz User’s Guide
44 GemTalk Systems

Chapter

2 Debugging Your
GemStone Smalltalk
Code
Topaz can maintain up to eight simultaneous GemStone Smalltalk call stacks that provide
information about the GemStone state of execution. Each call stack consists of a linked list
of method or block contexts. Topaz provides debugging commands that enable you to:

Step through execution of a method. After each step, you can examine the values of
arguments, temporaries, and instance variables.

Inspect or change the values of arguments, temporaries, and receivers in any context
on the call stack, then continue execution. This means that you can find out what the
system was doing at the time a soft break, a breakpoint, or an error interrupted
execution.

Set, clear, and examine GemStone Smalltalk breakpoints. When a breakpoint is
encountered during normal execution, you can issue Topaz commands to explore the
contexts on the stack.

This chapter introduces you to the Topaz debugging commands and provides some
examples. For a detailed description of each of these commands, see Chapter 3.

2.1 Step Points and Breakpoints
For the purpose of determining exactly where a step will go during debugging, a
GemStone Smalltalk method can be decomposed into step points. The locations of step
points also determine where breakpoints can be set, although not all step points are legal
for breakpoints.

Generally, step points correspond to the message selector and, within the method,
message-sends, assignments, and returns of nonatomic objects. Compiler optimizations,
however, may occasionally result in a different, nonintuitive step point, particularly in a
loop.

The Topaz list steps method: command lists the source code of a given instance method
and displays all step points (allowable breakpoints) in that source code.

For example:
GemTalk Systems 45

Step Points and Breakpoints GemStone/S 64 Bit 3.6 Topaz User’s Guide
Example 2.1 listing step points in a method

topaz 1> set class Dictionary
topaz 1> list steps method: removeKey:ifAbsent:
 removeKey: aKey ifAbsent: aBlock
 * ^^ 1,2 *******
 "Removes the Association with key equal to aKey from the receiver and returns
 the value of that Association. If no Association is present with key
 equal to aKey, evaluates the zero-argument block aBlock and returns the
 result of that evaluation."

 | anAssoc |
 anAssoc:= self removeKey: aKey otherwise: nil .
 * ^4 ^3 *******
 anAssoc == nil ifTrue:[
 * ^5 *******
 aBlock == nil ifTrue:[^ nil].
 * ^6 ^7 *******
 ^aBlock value
 * ^9 ^8 *******
].
 ^ anAssoc value
 * ^11 ^10 *******

As shown here, the position of each method step point is marked with a caret (^) and a
number.

If you use the Topaz step command to step through this method, the first step stops
execution at the beginning of the method. The next step takes you to the point where
removeKey:otherwise: is about to be sent to self. Stepping again would execute that
message-send and halt execution at the point where anAssoc is about to be assigned.
Another step would cause that assignment to be happen, and then halt execution just
before the message == is sent to anAssoc.

The call stack becomes active, and the debugging commands become accessible, when you
execute GemStone Smalltalk code containing a breakpoint (as well as when you encounter
an error).

You can use the break command to set a method breakpoint at a particular step point
within a method.

While you can set a breakpoint on any method, methods with optimized selectors, such as
Boolean>>ifTrue: never hit the break points unless you invoke them with perform:
or one of the GciPerform... functions, because sends of special selectors are optimized by
the compiler. Note that in the step points listed above for Dictionary >>
removeKey:ifAbsent:, above, there are no step points on ifTrue:.

Breakpoints
You can use the break command to establish method breakpoints within your GemStone
Smalltalk code:

break aClassName >> aSelector [@ stepNumber]
break aClassName class >> aSelector [@ stepNumber]
46 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Examining the GemStone Smalltalk Call Stack
For example:
topaz 1> break GsFile class >> openRead: @ 2

Establishes a breakpoint at step point 2 of the class method openRead: for GsFile. There
are a number of ways to specify the specific class and method: see break on page 59 for
details.

The break list command allows you to see all breakpoints set
topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2

In the break list result, each breakpoint is identified by a break index. To disable a
breakpoint, supply that break index as the single argument to the break disable command:

topaz 1> break disable 2
topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ -2 (disabled)
3: String >> < @ 2

A similar command line reenables the break point:
topaz 1> break enable 2

To delete a single breakpoint, supply that break index as the argument to the break delete
command:

topaz 1> break delete 2

To delete all currently set breakpoints, type the following command:
topaz 1> break delete all

2.2 Examining the GemStone Smalltalk Call Stack
When you execute the code on which you have enabled a breakpoint, execution pauses. For
example, if we put a breakpoint on the setter method for Animal’s instance variable #name:
topaz 1 > break Animal >> name:

Then run this code:
topaz 1 > run
Animal new name: 'Dog'
%
a Breakpoint occurred (error 6005), Method breakpoint encountered.
1 1 Animal >> name: @1 line 1

You can display all of the contexts in the active call stack by issuing the where, stk or stack
commands with no arguments. The where and stk command display a summary call stack,
with one line for each context. Use the stack command to display method arguments and
temporaries. When using the stack command, the volume of output displayed is controlled
by the current level setting.

This is an example of the where summary:
topaz 1> where
==> 1 Animal >> name: @1 line 1
2 Executed Code @3 line 1
GemTalk Systems 47

Examining the GemStone Smalltalk Call Stack GemStone/S 64 Bit 3.6 Topaz User’s Guide
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

With display oops active, the where command provides more detail for each frame:
topaz 1> display oops
topaz 1> where
==> 1 Animal >> name: @1 line 1 [methId 25534209]
2 Executed Code @3 line 1 [methId
25504513]
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1 [methId 4912641]
 [GsProcess 27551489]

Using the stack command provides additional information about the instance and
temporary variable names and values for each context. With level 0 (the default), only the
variable values themselves are displayed. This example is with display oops.

topaz 1> stack
==> 1 Animal >> name: @1 line 1 [methId 25534209]
 receiver [25517313 sz:3 cls: 27556097 Animal] a Animal
 name [20 sz:0 cls: 76289 UndefinedObject] nil
 favoriteFood [20 sz:0 cls: 76289 UndefinedObject] nil
 habitat [20 sz:0 cls: 76289 UndefinedObject] nil
 newValue [25481729 sz:3 cls: 74753 String] Dog
2 Executed Code @3 line 1 [methId
25504513]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1 [methId 4912641]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil

With 1, or higher s, the variables for each instance variable is included in the display for
stack. For example, with omit oops:

topaz 1> omit oops
topaz 1> level 1
topaz 1> stack
==> 1 Animal >> name: @1 line 1
 receiver a Animal
 name nil
 favoriteFood nil
 habitat nil
 newValue Dog
2 Executed Code @3 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

The display of each context includes:

an indicator of the active context, a preceding ==>

the number of the context;

the OOP of the GsMethod (if display oops is active)

the class of the method invoked
48 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Examining the GemStone Smalltalk Call Stack
the selector of the method

the current step point within the method, indicated by @anInteger

line number of the step point within the source code

for the stack command, the receiver, parameters and temporaries for this context
(including method temporaries and OOPs, if display oops is active).

The display is governed by the setting of other Topaz commands such as limit, level, and
display or omit.

Proceeding After a Breakpoint
When GemStone Smalltalk encounters a breakpoint during normal execution, Topaz halts
and waits for your reply. Topaz provides commands for continuing execution, and for
stepping into and over message-sends.

continue
Tells GemStone Smalltalk to continue execution from the context at the top of the stack,
if possible. If execution halts because of an authorization error, for example, then the
virtual machine can’t continue. As an option, the continue command can replace the
value on the top of the stack with another object before it attempts to continue
execution.

c
Same as continue.

step over
Tells GemStone Smalltalk to advance execution to the next step point (message-send,
assignment, etc.) in the active context or its caller, and halt. The active context is
indicated by the ==> in the stack; it is the context specified by the last frame, up, down
or another command. Initially it is the top of the stack (the first context in the list).

step into
Tells GemStone Smalltalk to advance execution to the next step point (message-send,
assignment, etc.) and halt. If the current step point is a message-send, then execution
will halt at the first step point within the method invoked by that message-send.

Notice how this differs from step over; if the next message in the context contains step
points itself, execution halts at the first of those step points. That is, the virtual machine
“steps into” the new method instead of silently executing that method’s instructions
and halting after the method has completed. The next step over command will then
take place within the context of the new method.

Examining and Modifying Temporaries and Arguments
The Topaz temporary command lets you examine or modify the values of temporaries in
the active context. If, for example, the method under inspection had a temporary variable
named count, that currently had a value of 5, you could obtain its value by typing
temporary and the variable name:

topaz 1> temporary count
5

GemTalk Systems 49

Examining the GemStone Smalltalk Call Stack GemStone/S 64 Bit 3.6 Topaz User’s Guide
Similarly, you can use the temporary command to assign a new value to a temporary
variable:

topaz 1> temporary count 8

For example, the following code sets a breakpoint, executes code, views and updates the
value of a temporary variable, then continues execution to return the results of the code;
which has been changed during debugging.
topaz 1> break classmethod String withAll:
topaz 1> run
String withAll: 'abc'
%
a Breakpoint occurred (error 6005), Method breakpoint encountered.
1 String class >> withAll: @1 line 1
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString abc
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil
topaz 1> temporary
 aString abc
topaz 1> temporary aString 'xyz'
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString xyz
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil
topaz 1> continue
xyz

Select a Context for Examination and Debugging
The Topaz commands frame, up, and down, as well as stack up, stack down, and stack
scope, let you redefine the active context (used by the temporary, stack, and list
commands) within the current call stack. Consider the call stack we examined earlier, with
level 0 and omit oops:

topaz 1> stack
==> 1 Animal >> name: @1 line 1
 receiver anAnimal
 newValue Dog
2 Executed Code @3 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil
50 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Examining the GemStone Smalltalk Call Stack
The active context is indicated by ==>. You can also show the active context by using the
frame command with no arguments:

topaz 1> frame
1 Animal >> name: @1 line 1
 receiver anAnimal
 newValue Dog

The following command selects the caller of this context as the new active context:
topaz 1> frame 2
2 Executed Code @3 line 1
 receiver nil

Now confirm that Topaz redefined the active context:
topaz 1> where
1 Animal >> name: @1 line 1
==> 2 Executed Code @3 line 1
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

You can also use up and down commands to make a different frame the active context.

Multiple Call Stacks
By default, when you continue executing code and encounter another breakpoint, the
original call stack is lost.

The Topaz command stack save lets you retain the previous stack. This needs to be
invoked for each stack you want to save.

The Topaz command stack all lets you display your list of saved call stacks. This display
includes the top context of every call stack:

topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
 1: 1 AbstractException >> _signalWith: @6 line 25
*2: 1 Executed Code @3 line 1

The asterisk (*) indicates the active call stack, if one exists. If there are no saved stacks, a
message to that effect is displayed.

When you type the stack change command, Topaz sets the active call stack to the call stack
indicated by the integer in the stack all command output, and displays the newly selected
call stack:

topaz 1> stack change 1
Stack 1 , GsProcess 27447553
1 AbstractException >> _signalWith: @6 line 25
GemTalk Systems 51

Debugging in a different Gem GemStone/S 64 Bit 3.6 Topaz User’s Guide
2.3 Debugging in a different Gem
Normally, you will debug problems that you encounter within your running topaz session.
However, you can also connect to another Gem (the executing session) from another topaz
session (the debugging session), to debug a problem in the executing session. This is
particulalry useful when the executing session is executing via a script.

To do this, the executing Gem (the Gem with the problem that you wish to debug) must be
configured to start a separate thread in the VM that listens for the command to connect.
This can be done in two ways.

Before login of the executing session, set the configuration parameter
GEM_LISTEN_FOR_DEBUG = true;. With this defined, during login the Gem will
print a line to the stdout (the linked console or gem log file):

Listening for debug: DEBUGGEM pid random32BitDebugToken

By invoking System class>>listenForDebugConnection in the executing
session. This method returns the random32BitDebugToken. token (a random 32-bit
integer), that is the argument to the call to attach. To get the PID of the gem, which is
also required for login, invoke System class >> gemProcessId in the remote
Gem (the Gem you will be debugging).

In order to debug, you must also have the OOP of the instance of GsProcess that is
executing and encounteres an error or breakpoint in the executing session. This is printed
when you have display oops set, and enter a where or stk command. When setting up the
executing session, include these commands:

display oops
iferr 1 where

Then, in the debugging session, make the calls to connect, specifying both the PID of the
executing Gem session, and the token.

topaz> DEBUGGEM pid random32BitDebugToken
successful attach
topaz 1>

If the connection is successful, the debugging session will have debugging control over the
executing session.

If a Smalltalk execution is in progress, the equivalent of a soft break occurs in the
executing Gem, and the debugging gem can examine the stack. Operations that
modify the stack, such as step are disallowed, and the debugging session cannot
commit.

If execution is not in progress, the debugging gem takes control and further servicing
of GCI calls or topaz commands in the executing session are blocked.

If a fetch or store traversal is in progress, the debugging session will get control after
this completes.

When you are done debugging, use the logout command (or continue) in the debugging
session will close that session and allow the executing session to continue.
52 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Debugging in a different Gem
For example, say you have a shell script with the following contents:
topaz -il -C 'GEM_LISTEN_FOR_DEBUG=TRUE' << EOF

set user DataCurator password swordfish gemstone gs64stone
login
display oops
iferr 1 where
iferr 2 topazwaitfordebug
exec { 'foo' } at: 3 %
logout
exit

EOF

When this shell script is executed, the executing topaz session will encounter the index-out-
of-bounds error, print the error information, and wait for the debugging session to attach.

In the executing session:
<login details>
Listening for debug: DEBUGGEM 21213 10219491105650816486
successful login
topaz 1> display oops
topaz 1> iferr 1 where
topaz 1> iferr 2 topazwaitfordebug
topaz 1> exec { 'foo' } at: 3 %
ERROR 2003 , a OffsetError occurred (error 2003),
reason:objErrBadOffsetIncomplete, max:1 actual:3
topaz > exec iferr 1 : where
==> 1 OffsetError (AbstractException) >> _signalWith: @5 line
25
2 OffsetError (AbstractException) >> signal @2 line 47
3 Array (Object) >> _error:args: @15 line 11
4 Array (Object) >> _errorIndexOutOfRange: @2 line 6
5 Array >> at: @4 line 12
6 Executed Code @2 line 1
7 GsNMethod class >> _gsReturnToC @1 line 11
 [GsProcess 42086145]
topaz > exec iferr 2 : topazwaitfordebug
11/05/2020 16:45:37.423 PST
 Waiting for debugger to attach, topaz process 21213 gem
process 21213

To attach to this, you will need to start another topaz, execute the debuggem command,
followed by stack set. The information needed for these commands is in bold in the above
output from the executing session.

Startup topaz and attach to the executing session:
topaz> debuggem 21213 10219491105650816486
successful attach
topaz 1> stack set @42086145
GemTalk Systems 53

Debugging in a different Gem GemStone/S 64 Bit 3.6 Topaz User’s Guide
At this point you can get the stack trace and examine variables.
topaz 1> where
==> 1 OffsetError (AbstractException) >> _signalWith: @5 line
25
2 OffsetError (AbstractException) >> signal @2 line 47
3 Array (Object) >> _error:args: @15 line 11
4 Array (Object) >> _errorIndexOutOfRange: @2 line 6
5 Array >> at: @4 line 12
6 Executed Code @2 line 1
7 GsNMethod class >> _gsReturnToC @1 line 11
topaz 1> frame 5
5 Array >> at: @4 line 12
 receiver a Array
 #1 foo
 anIndex 3
(skipped 2 evaluationTemps)

When you are done debugging in the debugging session, execute the logout command.
This detaches the debugger and allows the executing session to proceed.
54 GemTalk Systems

Chapter

3 Command Dictionary
This chapter provides descriptions of each Topaz command, in alphabetical order.

Command Syntax
Most Topaz commands can be abbreviated to uniqueness. For example, set password: can
be shortened to set pass. Exceptions to this rule are a few commands whose actions can
affect the success or failure of your current transaction and, thus, the integrity of your data:
abort, begin, commit, exit, and so on. Commands that cannot be abbreviated are described
in the individual command documentation.

If a command abbreviation is ambiguous, it is not executed. Note however that if a
command’s first letters are abbreviated and this matches another command, the other
command is executed; for example, the l form of listw, and the c form of continue.

Topaz commands are case-insensitive. Time, TIME, and time are understood by Topaz as
the same command. However, arguments you supply to Topaz commands may be subject
to case-sensitivity constraints. For example, the commands category: animal and category:
Animal specify two different categories, since GemStone Smalltalk is case-sensitive. The
same is true of UNIX path names, user names, and passwords.

Objects passed as arguments to Topaz commands can usually be specified using the
formats described in “Specifying Objects” on page 40.

Command lines can have as many as 511 characters. You can stop a command at any time
by typing Ctrl-C. Topaz may take a moment or two before responding.
GemTalk Systems 55

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
ABORT
Aborts the current GemStone transaction. Your local variables (created with the define
command) may no longer have valid definitions after you abort.

If your session is outside a transaction, use abort to give you a new view of the repository.

This command cannot be abbreviated.
56 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
ALLSTACKS
Print the stacks of all instances of GsProcess that are known to the ProcessorScheduler
instance in the VM and stacks associated with previous topaz stack save commands.

See also threads on page 176.
GemTalk Systems 57

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
BEGIN
Begins a GemStone transaction. If the session is already in a transaction, this has the effect
of an abort. The begin command is only useful if your session is not in automatic
transaction mode, i.e., in manual or transactionless transaction mode.

You can change transaction mode using the method System class >> transactionMode:
with an argument of #autoBegin, #manualBegin, or #transactionless, or by using the topaz
set transactionmode command (page 159).

This command cannot be abbreviated.

Example
topaz 1> set transactionmode manualbegin
transaction aborted and mode changed to manualBegin
topaz 1> begin
<perform database operations>
topaz 1> commit
Successful commit
58 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
BREAK

break aSubCommand
Establishes or displays a method breakpoint within GemStone Smalltalk code.
Subcommands are method, classmethod, list, enable, disable, and delete. For more
information about using breakpoints, see Chapter 2‚ “Debugging Your GemStone
Smalltalk Code”.

Setting Breakpoints
You can set breakpoints on a method, or at any step point within a method. Step points
includes assignments, message sends, and method returns. To display the step points for a
method, use the list steps command.

In the following commands, the argument @ stepPoint specifies the step point within that
method where the break is to occur. If you omit the step point, the breakpoint is established
at step 1 of the method.

You may not set method breakpoints in any method whose sole function is to perform any
of the following actions: return self, return nil, return true, return false, return or update
the value of an instance variable, return the value of a literal, or return the value of a literal
variable (that is, a class variable, a pool variable, or a variable defined in your symbol list).

You can specify the method using method/classmethod, or using the >> syntax.

break method classSpecification methodName [@ stepPoint]

break classmethod classSpecification methodName [@ stepPoint]

break method methodSpecification [@ stepPoint]

break classmethod methodSpecification [@ stepPoint]

break @ stepPoint

classSpecification can be defined in these ways:

className The name of the class that implements methodName.

@integer An unsigned 64-bit decimal OOP value that denotes the class.

** The class that was the result of the last execution.

^ The current class, as defined by the most recent set class (or
other command that sets the current class)

methodSpecification is an unsigned 64-bit decimal OOP value of a GsNMethod instance,
which defines both the class and method.

The @ stepPoint format applies after certain other commands that set a specific selected
method, such as lookup and list.

The break command accepts the >> syntax to specify a method, using the following forms:

break className >> methodName [@ stepPoint]

break className class >> methodName [@ stepPoint]

break className (implementationClassName) >> methodName [@ stepPoint]
GemTalk Systems 59

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
break className class (implementationClassName) >> methodName [@ stepPoint]

The implementationClassName specifies that the method lookup begins with
implementationClassName, normally a superclass of className. This style is used in topaz
stack summaries, and allows paste in of lines from the stack.

Examples
The following expressions set breaks in the same method, the KeyValueDictionary instance
method at:put:. The same patterns apply for class methods.

break KeyValueDictionary >> at:put: @ 1

break @79361 >> at:put: @ 2

break IdentityDictionary (KeyValueDictionary) >> at:put: @ 3

break method KeyValueDictionary at:put: @ 4

break method @79361 at:put: @ 5

set class KeyValueDictionary
break method ^ at:put: @ 7

exec KeyValueDictionary %
break method ** at:put: @ 6

break method @5094401 @ 8

lookup KeyValueDictionary >> at:put:
break @9

Displaying Breakpoints
break list

Lists all currently set breakpoints. In the display, each breakpoint is identified by a
break index for subsequent use in break disable, break enable, and break delete
commands.

Disabling and Enabling Breakpoints
break disable anIndex

Disables the breakpoint identified by anIndex in the break list command.

break disable all
Disables all currently set breakpoints.

break enable anIndex
Reenables the breakpoint identified by anIndex in the break list command.

break enable all
Reenables all disabled breakpoints.
60 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
Deleting Breakpoints
break delete anIndex

Deletes the breakpoint identified by anIndex in the break list command.

break delete all
Deletes all currently set breakpoints.

Examples
topaz 1> break method GsFile nextLine

Establishes a breakpoint at step point 1 of the instance method nextLine for GsFile.
topaz 1> break classmethod GsFile openRead: @ 2

Establishes a breakpoint at step point 2 of the class method openRead: for GsFile.
topaz 1> set class String
topaz 1> break method ^ < @ 2

Establishes a breakpoint at step point 2 of the instance method “<” for the current
class (String).

topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2
topaz 1> break disable 2
topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2 (disabled)
3: String >> < @ 2
topaz 1> break enable 2
topaz 1> break list
1: GsFile >> nextLine @ 1
2: GsFile class >> openRead: @ 2
3: String >> < @ 2
topaz 1> break delete 1
topaz 1> break list
2: GsFile class >> openRead: @ 2
3: String >> < @ 2
topaz 1> break delete all
topaz 1> break list
No breaks set
GemTalk Systems 61

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
CATEGORY

category: aCategoryName
Sets the current category, the category for subsequent method compilations. If you try to
compile a method without first selecting a category, the new method is inserted in the
default category “as yet unspecified.” This command has the same effect as the set
category: command.

If the category you name doesn’t already exist, Topaz creates it when you first compile a
method. If you wish to include spaces in the category name you specify, enclose the
category name in single quotes.

Specifying a new class with set class does not change your category. However, when you
edit or fileout a method, that method’s category becomes the current category.

The current category is cleared by the logout, login, and set session commands.
topaz 1> category: Accessing
topaz 1> category: 'Public Methods'
62 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
CLASSMETHOD

classmethod [: aClassName]
Compiles a class method for the class whose name is given as a parameter. The class of the
method you compile is automatically selected as the current class. If you don’t supply a
class name, the method is compiled for the current class (as defined by the most recent set
class:, list categoriesin:, method:, classmethod:, removeAllMethods,
removeAllClassMethods, or fileout class: command).

Text of the method should follow this command on subsequent lines. The method text is
terminated by the first line that contains a % character as the first character in the line. For
example:

topaz 1> classmethod: Animal
returnAString

^String new
%

Topaz sends the method’s text to GemStone for compilation and inclusion in the current
category of the specified class. If you haven’t yet selected a current category, the new
method is inserted in the default category “as yet unspecified.”
GemTalk Systems 63

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
COMMIT
Ends the current GemStone transaction and stores your changes in the repository.

This command cannot be abbreviated.
64 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
CONTINUE/C

continue [anObjectSpec]
c [anObjectSpec]

Attempts to continue GemStone Smalltalk execution on the active call stack after
encountering a breakpoint, a pause message, or a user-defined error. The call stack
becomes active, and the continue command becomes accessible, when you execute
GemStone Smalltalk code containing a breakpoint.

continue
Attempts to continue execution.

continue anObjectSpec
Replaces the value on the top of the stack with anObjectSpec and attempts to continue
execution.

The argument anObjectSpec can be specified using any of the formats described in
“Specifying Objects” on page 40.

For more information about breakpoints, see the discussion of the break command on
page 59, or see Chapter 2‚ “Debugging Your GemStone Smalltalk Code”.

For information about replacing the value on the top of the stack, see the GciContinueWith
function in the GemBuilder for C Manual

For information about Object’s pause method, see the method comments for
Object>>pause.

For information about user-defined errors, see the discussion of error-handling in the
Programming Guide for GemStone/S 64 Bit. User manuals for the GemStone interfaces, such
as GemBuilder for Smalltalk, also contain discussions of error-handling.
GemTalk Systems 65

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
DEBUGGEM

debuggem processId token
Takes two integer arguments, a processId and a token.

The processId must be the PID of a gem or topaz -l, running on localhost, which was either
configured with GEM_LISTEN_FOR_DEBUG=true, or which has previously executed
System class >> listenForDebugConnection.

The token is a random integer printed by that target gem process to its log file (or stdout
and current .out file of the topaz -l), or returned by System class >>
listenForDebugConnection.

debuggem attempts to attach to the target gem and create a topaz session in this topaz
process which has debugging control over the target gem.

If Smalltalk execution is in progress in the target gem, it is interrupted with equivalent of
GciSoftBreak() and the resulting stack can be examined by the topaz session created by
debuggem.

If execution is not in progress, then the debuggem topaz gets control of the target gem,
blocking further GCI calls from the target gem's client or blocking further topaz commands
from the target's topaz -l.

If a fetch or store traversal is in progress, the debuggem topaz will get control of the target
gem when the traversal completes.

While a topaz session from debuggem is control of a target gem, commit by the target gem
is not allowed.

logout or continue will close the topaz session created by debuggem and release the target
gem or topaz -l to continue execution and servicing of GCI or topaz commands.

Certain topaz commands such as break, step, stack trim that would alter the stack are
disallowed in the debuggem session; the stack from the synthesized soft break can be
examined and then continued with continue or logout.

debuggem cannot be abbreviated, it must be typed in full.

For more information, see “Debugging in a different Gem” on page 52.
66 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
DEBUGRUN
Like run, but sets flags so that execution will stop at the first step point within the source
text. The text following the debugrun, and up to the first line that contains a % as the first
character in the line, is sent to GemStone for execution as GemStone Smalltalk code.

Execution stops at the first step point within this code, and you may use the step command
(page 166) to step through execution.

For example:
topaz 1> debugrun
Time now
%
a Breakpoint occurred (error 6002), Single-step breakpoint encountered.
1 1 Executed Code @1 line 1
topaz 1> step
a Breakpoint occurred (error 6002), Single-step breakpoint encountered.
1 1 Executed Code @2 line 1
topaz 1> step into
a Breakpoint occurred (error 6002), Single-step breakpoint encountered.
1 1 Time class >> now @2 line 1
topaz 1> step into
a Breakpoint occurred (error 6002), Single-step breakpoint encountered.
1 1 Time class >> now @3 line 9
topaz 1> step into
a Breakpoint occurred (error 6002), Single-step breakpoint encountered.
1 1 DateAndTime class (DateAndTimeANSI class) >> now @2 line 1
...

See Chapter 2‚ “Debugging Your GemStone Smalltalk Code”, for more information on
breakpoints and debugging code.

debugrun cannot be abbreviated, it must be typed in full
GemTalk Systems 67

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
DEFINE

define [aVarName [anObjectSpec [aSelectorOrArg]...]]
Defines local Topaz variables that allow you to refer to objects in commands such as send
and object.

All Topaz object specification formats (as described in “Specifying Objects” on page 40) are
legal in define commands. The variable name aVarName must begin with a letter (a..z or
A..Z) or an underscore, can be up to 255 characters in length, and cannot contain white
space.

You may not redefine the topaz predefined variables CurrentMethod, ErrorCount,
CurrentCategory, CurrentClass, LastResult, LastText, and myUserProfile.

define
Lists all current local variable definitions.

define aVarName
Deletes the definition of the variable aVarName.

define aVarName anObjectSpec
Define a local variable whose value is result of anObjectSpec.

define aVarName anObjectSpec aSelectorOrArg ...
Sends a message to the object specified by anObjectSpec, and saves the result as a local
variable with the name aVarName.

For example:
topaz 1> define CurrentSessions System currentSessionNames
topaz 1> define UserId myUserProfile userId
topaz 1> define
Current definitions are:
 UserId = 2673409
 CurrentSessions = 33659905

 CurrentMethod = nil
 ErrorCount = 2
 CurrentCategory = nil
 CurrentClass = nil
 LastResult = nil
 LastText = nil
 myUserProfile = 1458177

Topaz tries to interpret all command line tokens following anObjectSpec as a message to the
specified object.
68 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
DISASSEM

disassem [aClassParameter] aParamValue
The disassem command allows you to disassemble the specified GsNMethod, displaying
the assembly code instructions.

The disassem command is intended for use in a linked (topaz -L) session only. If the
session is remote, the output goes to stdout of the remote Gem, which is the gem log.

disassem @anOop
Disassemble the method or code object with the specified oop.

disassem method: aSelectorSpec
Disassemble the specified instance method for the class previous set by the set class
command.

disassem classmethod: aSelectorSpec
Disassemble the specified class method for the class previous set by the set class
command.
GemTalk Systems 69

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
DISPLAY

display aDisplayFeature
The display and omit commands control the display of Gemstone Smalltalk objects and
other features related to output.

The display command turns on these display attributes, and the omit command turns
them off.;

alloops
display alloops

If display alloops is set, enables the display of OOPs of classes along with class names
in object display, and displaying the oops of primitive specials. Also causes the OOPs
of classes to be printed by stack display and method lookup commands, and enables
the printing of evaluation temporary objects in stack frame printouts from the frame
command.

Default: omit alloops

bytes
display bytes

When displaying byte-format objects such as Strings and ByteArrays, include the
hexadecimal value of each byte.

Default: omit bytes

for example,
topaz 1> exec #[97 98 99] %
 1 'abc' 61 62 63

classoops
display classoops

Legacy; equivalent to display alloops.

decimalbytes
display decimalbytes

When displaying byte-format objects such as Strings and ByteArrays, include the
decimal value of each byte.

Default: omit decimalbytes

for example,
topaz 1> exec #[97 98 99] %
 1 'abc' 97 98 99

deprecated
display deprecated

For topaz commands such as strings and senders, which return lists of methods,
display deprecated causes those results to include methods which contain sends of
deprecated, deprecated:, or deprecatedNotification:.
70 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
Default: display deprecated

Deprecated methods are those that send one of the following messages:
deprecated
deprecated:
deprecatedNotification:

For example, the method concurrencyMode is deprecated:
topaz 1> implementors concurrencyMode
System class >> concurrencyMode
topaz 1> omit deprecated
topaz 1> implementors concurrencyMode
(Omitted 1 deprecated methods)

flushoutput
display flushoutput

enables immediate flushing of topaz output files other than stdout. display
flushoutput causes an fflush() call to be made to each active topaz log file (files
specified by output push) other than stdout, after each line of topaz output is written.
This allows a tail -f to have a more up-to-date view of a topaz output file.

Default: omit flushoutput

errorcheck
display errorcheck

Allows Topaz programs to automatically record the results of error checking. Using
this command creates the ./topazerrors.log file or opens the file to append to it,
if it already exists.

As long as display errorcheck is set, every time ErrorCount is incremented, a summary
of the error is added to topazerrors.log. The summary includes the line number
in the Topaz output file, if possible. If the only output file open is stdout, then line
numbers are not available. To close the topazerrors.log file, use the
omit errorcheck command. Subsequent results are not recorded.

Default: omit errorcheck

lineeditor
display lineeditor

Enables the use of the Topaz line editor, using the open source linenoise library. This
is not available on Windows.

The number of lines of history kept for the lineeditor is controlled using the set history
command (page 155).

The status command includes one of the followings lines to indicate if the lineeditor is
in use:
using line editor
not using line editor

Default: display lineeditor
GemTalk Systems 71

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
oops
display oops

For each object, displays a header containing the object’s OOP (a 64-bit unsigned
integer), the object’s size (the sum of its named, indexed, and unordered instance
variable fields), and the OOP of the object’s class.

The oops of certain primitive special objects, such as Characters, SmallIntegers,
Booleans, and nil, do not display their oops. To enable display of their oops, use
display alloops.

Default: omit oops

names
display names

For each of an object’s named instance variables, displays the instance variable name
along with its value.

When instance variable name display is off, named instance variables appear as i1, i2,
i3, and so on.

Default: display names

pauseonerror
display pauseonerror

When an error occurs, if Topaz is receiving input from a terminal, displays the
message:

Execution has been suspended by a "pause" message.
Topaz pausing after error, type <return> to continue, ctl-C to
quit ?

and waits for the user to press the Return key to continue execution. Pressing Ctrl-C
ends the pause and stops the processing of input files altogether.

If display resultCheck is also set, then Topaz only pauses when the result or error is
contrary to the current resultCheck, expectvalue, and expecterror settings.

The status command includes one of the followings lines to indicate status of this
attribute:
display interactive pause on errors
omit interactive pause on errors

Default: omit pauseonerror

pauseonwarning
display pauseonwarning

When a compiler warning occurs, and if the topaz stdin is from a terminal, then write
a message "Pausing after warning ..." to stdout, and wait for an end of line on stdin
before continuing topaz execution. A ctl-C on stdin will terminate the pause and
terminate further processing of input files.

The status command includes one of the followings lines to indicate status:
display interactive pause on warnings
omit interactive pause on warnings

Default: omit pauseonwarning
72 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
pushonly
display pushonly

Enables the effect of the only keyword in an output push command. Does not effect
output to stdout within a topaz -S script. To disable this effect, use the omit pushonly
command.

Default: display pushonly

resultcheck
display resultCheck

Allows Topaz programs to check input values and record the results. This command
creates the ./topazerrors.log file or opens the file to append to it, if it already
exists. Specifying display resultCheck is equivalent to setting expectvalue
true, except that it affects the behavior of all run and printit commands, not only the
next one.

As long as display resultCheck is set, every time ErrorCount is incremented, a
summary of the error is added to topazerrors.log. This includes the line number
in the Topaz output file, if possible. If the only output file open is stdout, then line
numbers are not available. To close the file, use the omit resultCheck command.
Then the results of a successful run or printit command will no longer be checked,
unless an expectvalue command precedes the printit command.

Default: omit resultcheck

singlecolumn
display singlecolumn

rather than displaying large numbers (more than eight) of method and temporary
variable definitions with a debugger stack frame in columns, display in a single
column.

Default: omit singlecolumn

stacktemps
display stacktemps

enables the display of stack frames to include un-named evaluation temps which have
been allocated by bytecodes within the method.

Default: omit stacktemps

versionedclassnames
When display versionedclassnames is set, which is the default, topaz includes
[verionNumber] following the class name, for instances of classes that are not the last
one in the classHistory of that class. This is limited to when display oops is also set.

zerobased
display zerobased

Shows offsets of instance variables as zero-based when displaying objects. With
display zerobased, offsets are zero-based, with omit zerobased, offsets are one-based.

Default: omit zerobased (offsets are one-based, as in Smalltalk) .
GemTalk Systems 73

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
DOIT
Sends the text following the doit command to the object server for execution and displays
the OOP of the resulting object. If there is an error in your code, Topaz displays an error
message instead of a legitimate result. GemStone Smalltalk text is terminated by the first
line that contains a % as the first character in the line. For example:
topaz 1> doit
2 + 1
%
result oop is 26

The text executed between the doit and the terminating % can be any legal GemStone
Smalltalk code, and follows all the behavior documented in the Programming Guide for
GemStone/S 64 Bit.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if any
breakpoints are set, execution defaults to interpreted mode. Otherwise, execution defaults
to using native mode.

For details about GemStone configuration parameters, see the System Administration Guide.

Note that doit always displays results at level 0, regardless of the current display level
setting (page 108). The doit command does not alter the current level setting.
74 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
DOWN

down [anInteger]
Moves the active frame down within the current stack, and displays the frame selected as
a result. The optional argument anInteger specifies how many frames to move down. If no
argument is supplied, the scope will go down one frame. See also stack down on page 163.

The frame displayed includes parameters and temporaries for the frame, unlike the results
displayed by stack down.

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
==> 4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> down
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
 receiver 1

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
==> 3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
GemTalk Systems 75

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
DUMPOBJ
dumpobj anObjectSpecification

This command does a low-level dump of an object, the node of a large object, or the node
of an IdentityBag. For a byte format object, it displays the integer values of the bytes. This
command cannot be abbreviated

For example
topaz 1> dumpobj Globals
aSymbolDictionary
 #1 657
 #2 112
 #3 20260
 #4 1013
 #5 nil
 #6 anIdentityCollisionBucket
 #7 ReadWriteStreamPortable
 #8 aSymbolAssociation
 #9 nil
 #10 anIdentityCollisionBucket
 #11 PositionableStreamPortable
 #12 aSymbolAssociation
 #13 nil
 #14 anIdentityCollisionBucket
 #15 ReadStreamLegacy
 #16 aSymbolAssociation
 ...
76 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
EDIT

edit aSubCommandOrSelector [aSelector]
Allows you to edit GemStone Smalltalk source code. You can create or modify methods or
blocks of code to be executed. You can also edit the text of the last run, printit, doit,
method:, or classmethod: command.

Before you can use this command, you must first establish the name of the host operating
system editor you wish to use. You can do this by setting the host environment variable
EDITOR or by invoking the Topaz set editorname command interactively or in your Topaz
initialization file.

Do not use the edit command for batch processing. Instead, use the method: and
classmethod: commands to create methods in batch processes, and the run, printit or doit
commands to execute blocks of code in batch.

If you supply any parameter to edit, other than one of its subcommands, Topaz assumes
that you are naming an existing instance method to be edited.

Creating or Modifying Blocks of GemStone Smalltalk Code
edit last

Allows you to edit the text of the last run, printit, doit, method:, or classmethod:
command. (You can inspect that text before you edit by issuing the Topaz command
object LastText.) Topaz opens, as a subprocess, the editor that you’ve selected. When
you exit the editor, Topaz saves the edited text in its temporary file and asks you
whether you’d like to compile and execute the altered code. If you tell Topaz to execute
the code, it effectively reissues your run or printit command with the new text.

edit new text
Allows you to create a new block of GemStone Smalltalk code for compilation and
execution. This is similar to edit last, but with a new text object.

Creating or Modifying GemStone Smalltalk Methods
edit new

If you type edit new with no additional keywords, Topaz assumes that you want to
create a new instance method for the current class.

edit new method
Allows you to create a new instance method for the current class and category. Before
you can use this command, you must first use set class to select the current class. If you
haven’t yet selected a current category, the new method is inserted in the default
category, “as yet unspecified.”

edit new classmethod
Allows you to create a new class method for the current class and category. Before you
can use this command, you must first use set class to select the current class. If you
haven’t yet selected a current category, the new method is inserted in the default
category, “as yet unspecified.”

edit selectorSpec
GemTalk Systems 77

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
edit method: selectorSpec
Allows you to edit the source code of an existing instance method. Before you can use
this command, you must first use set class to select the current class. The category of
the method you edit is automatically selected as the current category. For example:

topaz 1> set class Animal
topaz 1> edit habitat

edits the instance method in class Animal whose selector is habitat.

edit classmethod: selectorSpec
Allows you to edit the source code of an existing class method. Before you can use this
command, you must first use set class to select the current class. The category of the
method you edit is automatically selected as the current category.
78 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
ENV

env [anInteger]
Sets the compilation environmentId used for method compilations, lookups of senders and
implementors, and run, printit, etc. anInteger must be between 0 and 255 and is 0 by
default. Values other than 0 are invoked in additional execution environments and are
used in specialized applications.

With no arguments, prints the current compilation environmentId.

The compilation environment may also be set using the commend set compile_env:.
GemTalk Systems 79

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
ERRORCOUNT
Displays the Topaz errorCount variable, which stores the number of errors made in all
sessions since you started Topaz. This includes GemStone Smalltalk errors generated by
compiling or a run or printit command, as well as errors in Topaz command processing.

If expecterror is specified immediately before a compile or execute command (run, printit,
doit, method:, classmethod:, send, or commit) and the expected error occurs during the
compile or execute, the ErrorCount is not incremented. The ErrorCount is not reset by
login, commit, abort, or logout.

You can use the errorcount command at the topaz> prompt before you log in, as well as
after login.
topaz> errorcount
0

It is equivalent to
topaz 1> object ErrorCount

except that errorcount does not require a valid session.

This command cannot be abbreviated.
80 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
EXEC
Sends the text following the exec command to GemStone for execution as GemStone
Smalltalk code, and displays the result.

The exec command, unlike related commands such as run and printit, accept text on the
same line as the exec command itself, up to a % character on that line. If there is no % on
the exec command line, subsequent lines are included as part of the Smalltalk code to be
executed, up to a % character appearing as the first character in a line.

For example:
topaz 1> exec 2 + 2 %
4

The text executed between the exec and the terminating % can be any legal GemStone
Smalltalk code, and follows the behavior documented in the Programming Guide for
GemStone/S 64 Bit.

If there is an error in your code, Topaz displays an error message instead of a legitimate
result.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if any
breakpoints are set, execution defaults to interpreted mode. Otherwise, execution defaults
to using native mode. For details about GemStone configuration parameters, see the System
Administration Guide.

Like run, exec uses the current display level setting (page 108).
GemTalk Systems 81

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
EXIT

exit[aSmallInt | anObjectSpec]
Leaves Topaz, returning to the parent process or operating system. If you are still logged
in to GemStone when you type exit, this aborts your transactions and logs out all active
sessions.

You can include an argument (a SmallInteger, or an object specification that resolves to a
SmallInteger) to specify an explicit exitStatus for the Topaz process. Only 8 bits of the
integer are returned. To get valid return values, the argument should always resolve to a
value in the range 0..255.To use an object specification, including errorcount, you must be
logged in when the exit command is executed.

If you do not specify an argument, the exitStatus will be either 0 (no errors occurred during
Topaz execution) or 1 (there was a GCI error or the Topaz errorCount was nonzero).

For example:
topaz 1> exec (42 - 3) %
topaz 1> exit **
Logging out session 1.
--- 08/11/2020 14:11:53.619 PDT Logging out
unix> echo $?
39

exit is ignored when reading a file using input, when stdin is a tty. If topaz stdin is
redirected to a file and the file does not end with a quit or exit, topaz considers EOF on
stdin to be an error, and will result in a non-zero topaz exit status.

This command cannot be abbreviated.

To exit from topaz with an exit status directly from Smalltalk code, you can use the
ExitClientError class. For example,

topaz 1> run
ExitClientError

signal: 'Disallowed Operation'
status: 34

%
ERROR 3004 , a ExitClientError occurred (error 3004), ,

Disallowed Operation (ExitClientError)
Logging out session 1.
--- 08/11/2020 15:21:17.137 PDT Logging out
82 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
EXITIFNOERROR
If there have been no errors — either GemStone Smalltalk errors or Topaz command
processing errors — in any session since you started Topaz, this command has the same
effect as exit 0 (described on page 82). Otherwise, this command has no effect.

This command cannot be abbreviated.
GemTalk Systems 83

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
EXPECTBUG

expectbug bugNumber value resultSpec [integer] | error
errCategory errNumCls [resultSpec [resultSpec]..]
Specifies that the result of the following execution results in the specified answer (either a
value or an error). If the expected result occurs, Topaz prints a confirmation message and
increments the error count.

The expectbug command is intended for use in self-checking scripts to verify the existence
of a known error. Only one expectbug command (at most) can be in effect during a given
execution. Topaz honors the last expectbug command issued before the execution occurs.
Expectbug can be used in conjunction with the expecterror and expectvalue
commands—an expectbug command does not count against the maximum of five such
expecterror and expectvalue commands permitted.

bugNumber is a parameter identifying the bug or behavior you expect to see. In most cases
this would be a number, but it can equally well be a character string. (If it contains
white space, enclose the string in single quotes.) The parameter is included in the
confirmation message.

resultSpec is specified as in the expectvalue command (described on page 88).

errorCategory and errNumCls
are specified as in the expecterror command (described on page 85).

For example, suppose you know that the ‘*’ operator has been reimplemented in a way that
returns the erroneous answer ‘5’ for the expression ‘2 * 3’. You can use the expectbug
command in a script to verify that the bug is present:

topaz 1> expectbug 123 value 5
topaz 1> printit
2 * 3
%
5
BUG EXPECTED: BUG NUMBER 123

If the expected bug does not occur, Topaz checks for an expecterror or expectvalue
command that matches the answer received. If it finds a match, Topaz displays a “FIXED
BUG” message. If not, the error is reported in the same way the expecterror or expectvalue
command would report it (“ERROR: WRONG VALUE” for example). If no expecterror or
expectvalue commands are in effect, execution proceeds without comment.
84 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
EXPECTERROR

expecterror anErrorCategory anErrorNumCls [anErrorArg
[anErrorArg] ...]
Indicates that the next compilation or execution is expected to result in the specified error.
If the expected result occurs, Topaz reports the error in the conventional manner but does
not increment its error count and allows execution to proceed without further action or
comment.

If the execution returns a result other than the expected error (including unexpected
success), Topaz increments the error count and invokes any iferror actions that have been
established.

Up to five expecterror or expectvalue commands may precede an execution command. If
the result of the execution satisfies any one of them, the error count variable is not
incremented. This mechanism allows you to build self-checking scripts to check for errors
that can’t be caught with GemStone Smalltalk exception handlers.

expecterror must be reset for each command; it is only checked against a single return
value. expecterror is normally used before the commands run, printit, doit, method:,
classmethod:, commit, and send.You must also use it before executing continue after a
breakpoint.

anErrorCategory must be a Topaz object specification that evaluates to the object identifier
of an error category; normally, GemStoneError.

anErrorNumCls must be a Topaz object specification that evaluates either to a SmallInteger
legacy error number, or to the object identifier of a subclass of Abstract Exception.

All Topaz object specification formats (as described in “Specifying Objects” on page 40) are
legal in expecterror commands.

The following example shows an expecterror command followed by the expected error.
Note that although the error is reported, the error count is not incremented.

topaz 1> errorcount
0
topaz 1> expecterror GemStoneError MessageNotUnderstood
topaz 1> printit
1 x
%
ERROR 2010 , a MessageNotUnderstood occurred (error 2010), a
SmallInteger does not understand #'x' (MessageNotUnderstood)
topaz 1> errorcount
0

GemTalk Systems 85

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
If execution returns unanticipated results, Topaz prints a message (in this example,
“ERROR: WRONG CLASS of Exception”), then invokes the actions established by the
iferror command (in this example, a stack dump) and bumps the error count:

topaz 1> errorcount
0
topaz 1> iferror where
topaz 1> expecterror GemStoneError MessageNotUnderstood
topaz 1> printit
1 / 0
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
(ZeroDivide)
ERROR: WRONG CLASS of Exception, does not match expected class
topaz > exec iferr 1 : where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
topaz 1> errorcount
1

Further arguments to EXPECTERROR
In addition to the error category and class, you may optionally specify additional
arguments. The expecterror argument values are tested against the argument values
returned with the error. If one or more of the argument values do not match, errorcount is
incremented. .

In additional to standard object specification formats, you may use additional formats to
specify instances of classes as error arguments:

%className An instance of the class className.

/className An instance of the class className or an instance of any of its subclasses. (In
other words, an instance of a ‘kind of’ className.)

If anErrorArg is specified as a String or Symbol (enclosed in single quotes and/or with a
leading #), then it will be regarded as matching if the result if the two are equal (=).

Otherwise, Topaz regards it as matching the result if the two are identical (==).

You may omit arguments, which will not count as an error. If you specify more expecterror
arguments than the actual error returns, then errorcount will be incremented. To match
any error argument, use /Object.
86 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
For example:
topaz 1> errorcount
2
topaz 1> expecterror GemStoneError OffsetError %Array 3 6
topaz 1> run
 (Array new: 3) at: 6
%
ERROR 2003 , a OffsetError occurred (error 2003),
reason:objErrBadOffsetIncomplete, max:3 actual:6 (OffsetError)
topaz 1> errorcount
2

GemTalk Systems 87

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
EXPECTVALUE

expectvalue anObjectSpec [anInt]
Indicates that the result of the following compilation or execution is expected to be a
specified value, denoted by anObjectSpec. If it is not, the error count is incremented. Up to
five expectvalue or expecterror commands may precede an execution command. If the
result of the execution satisfies any one of them, the error count variable is not
incremented.

expectvalue must be reset for each command; it is only checked against a single return
value. expectvalue is normally used before the commands run, printit, doit, method:,
classmethod:, commit, and send. You must also use it before executing continue after a
breakpoint.

All Topaz object specification formats (as described in “Specifying Objects” on page 40”)
are legal in expectvalue commands. In addition, this command takes further formats that
allow you to specify instances of classes:

%className
An instance of the class className.

%@OOPOfClass
An instance of the class that has the OOP OOPOfClass.

/className
An instance of the class className or an instance of any of its subclasses. (In other
words, an instance of a ‘kind of’ className.)

/@OOPOfClass
An instance of the class that has the OOP OOPOfClass, or an instance of any of its
subclasses.

If anObjectSpec is specified as a String or Symbol (enclosed in single quotes and/or with a
leading #), then it will be regarded as matching if the result if the two are equal (=).

Otherwise, Topaz regards it as matching the result if the two are identical (==).

If the anInt argument is present, the result of sending the method size to the result of the
following execution must be the integer anInt.

The commit command has an internal result of true for success and false for failure. All
other Topaz commands have an internal result of true for success and @0 for failure.

The following example uses expectvalue to test that the result of the printit
command is a SmallInteger. The expected result is returned, so execution proceeds without
comment:

topaz 1> expectvalue %SmallInteger
topaz 1> printit
2 * 5
%
10
88 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
If execution returns unanticipated results, Topaz prints a message (in this example,
“ERROR: WRONG VALUE”), then invokes the actions established by the iferror command
(in this example, a stack dump) and bumps the error count:

topaz 1> errorcount
0
topaz 1> iferror stack
topaz 1> expectvalue %SmallInteger
topaz 1> printit
2 * 5.5
%
1.1000000000000000E+01
ERROR: WRONG VALUE
Now executing the following command saved from "iferror":

stack
Stack is not active
topaz 1> errorcount
1

GemTalk Systems 89

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
FILEFORMAT

fileformat 8bit | utf8
This command controls the interpretation of Character data for input and fileout, to allow
strings containing Characters with codepoints over 255 to be input and output.

This is meaningful if you are using text that contains any Characters with values over 127.
Characters 127 and below are 7-bit, and the code points are the same as the UTF-8 encoded
values, and so are not affected by this setting.

Characters in the range of 128-255 can be read and written with their 8-bit codepoints, or
read and written encoded as UTF-8; these produce different results. So if such text is
written as UTF8, it must be read in with a fileformat of UTF8 in order to get correct results,
and similarly both written and read as 8-bit in order to recreate the same text.

To avoid misinterpretation of fileouts, the fileout command writes a fileformat command
at the start of the fileout. A fileformat command within a file only has effect within that file
and any nested files.

Note that this setting does not apply to files produced by the output command. output
push, etc. write files in UTF-8 format, regardless of the setting for fileformat.

The following options are supported:

utf8
fileformat utf8

Sets the fileformat to UTF-8. Code that is filed out using fileout is encoded in UTF-8,
and files read using input are interpreted as being UTF-8 and are decoded accordingly.

8bit
fileformat 8bit

Sets the fileformat to 8-bit, for compatibility with older releases. Code that is filed out
using fileout is not encoded. Fileout of code containing Characters with codePoints
over 255 will error.

The default at topaz startup is 8BIT. After login, if the repository’s value for
#StringConfiguration resolves to Unicode16, this will change the fileformat to UTF8.

Input from stdin that is a tty is always interpreted as UTF-8; changing the FILEFORMAT
of a tty stdin to 8BIT is not allowed.
90 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
FILEOUT

fileout [command] clsOrMethod [tofile: filename
[format: fileformat]]
Writes out class and method information in a format that can be fed back into Topaz with
the input command. Subcommands are used to specify whether to file out the entire class,
or specific method or methods. If none of the defined subcommands follow the fileout,
then the next word is assumed to be a selector for an instance method on the current class.

By default, the fileout command outputs the fileout text to stdout. To direct this to a file,
follow the specification of what to fileout with the tofile: keyword. For example:

topaz 1> fileout class: Object toFile: object.gs

If you specify a host environment name such as $HOME/foo.bar as the output file, Topaz
expands that name to the full filename. If the output file does not include an explicit path
specification, Topaz writes to the named file in the directory where you started Topaz.

When using the tofile: keyword, you may also optionally specify the format: keyword.
This must be either 8bit or UTF8, and specifies whether the file is written out in bytes, or
encoded in UTF-8. This overrides the current topaz setting for fileformat.

All fileout output generated from the fileout command include commands setting the
fileformat and set sourcestringclass, based on the current settings or the format:
command.

fileout class: [aClassName]
Writes out the class definition and all the method categories and their methods. To
write out the definition of the current class, type:

topaz 1> fileout class: ^

If you omit the class name parameter, the current class is written out.

The class that you file out becomes the current class for subsequent Topaz commands.

fileout category: aCategoryName
Writes out all the methods contained in the named category for the current class.

fileout classcategory: aCategoryName
Writes out all the class methods contained in the named category for the current class.

fileout classmethod: selectorSpec
Writes out the specified class method (as defined for the current class). The category of
that method will automatically be selected as the current category.

fileout method: selectorSpec
Writes out the specified method (as defined for the current class). The category of that
method will automatically be selected as the current category.

fileout selectorSpec
Writes out the specified method (as defined for the current class). You may use this
form of the fileout command (that is, you may omit the method: keyword) only if the
selector that you specify does not conflict with one of the other fileout keywords. For
example, to file out a method named category:, you would need to explicitly include
the method: keyword.
GemTalk Systems 91

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
FR_1

fr_1 [anInteger]
Similar to the frame command (described on page 94), but for large numbers (more than
eight) of method and temporary variables, these are displayed one per line rather than in
four columns.

This command cannot be abbreviated.
92 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
FR_CLS

fr_cls [anInteger]
Similar to the frame command (described on page 94), but also displays OOPs of classes
along with class names in the specified stack frames.

This command cannot be abbreviated.
GemTalk Systems 93

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
FRAME

frame [anInteger]
Moves the active frame to the frame specified by anInteger, within the current stack, and
displays the frame selected as a result. The display includes parameters and temporaries.

If no argument is supplied, displays the current frame.

See also stack scope on page 162, the up command on page 181 and the down command
on page 75.

For example:
topaz 1> printit
{ 1 . 2} do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, An attempt was made to divide 1 by
zero. (ZeroDivide)

topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> frame 4
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
==> 4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> frame 7
7 Executed Code @2 line 1
 receiver nil
94 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
GCITRACE

gcitrace aFileName
Turns GCI tracing on. Subsequent GCI calls are logged to the file aFileName. If aFileName is
'' (empty string), then turns GCI tracing off.

This command cannot be abbreviated.
GemTalk Systems 95

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
HELP

help [aTopicName]
Invokes a hierarchically-organized help facility that can provide information about all
Topaz commands. Enter ? at a help prompt for a list of topics available at that level of the
hierarchy. Help topics can be abbreviated to uniqueness.

To display help text for fileout:
topaz 1> help fileout

To display help text for last:
topaz 1> help edit last

Press Return at a help prompt to go up a level in the hierarchy until you exit the help
facility.
96 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
HIERARCHY

hierarchy [aClassName] [environmentId]

Prints the class hierarchy up to Object for the specified class, in the specified
environmentId, or the current environmentId if no environmentId is specified.

If you do not specify a class, Topaz prints the hierarchy for the current class.

Example
topaz 1> hierarchy SmallFraction
Object
 Magnitude
 Number
 AbstractFraction
 SmallFraction

See Also
subhierarchy (page 171)
GemTalk Systems 97

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
HISTORY

history [anInteger]
Displays the specified number of recently executed commands, as listed in the Topaz line
editor history. Has no effect if the line editor is not enabled. (Not available on Windows.)

The set history command (page 152) establishes the maximum number of command lines
to retain in the Topaz line editor history.

Example
topaz 1> history
0 login
1 run
2 2 / 0
3 %
4 stk
5 display oops
6 stk
7 frame 3
8 history
98 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
IFERR

iferr bufferNumber [aTopazCommandLine]
The iferr command works whenever an error is reported and the ErrorCount variable is
incremented.

This command saves aTopazCommandLine in the post-error buffer specified by
bufferNumber as an unparsed Topaz command line. There are 10 buffers; bufferNumber must
be an integer between 1 and 10, inclusive.

The post-error buffer commands apply under any of the following conditions:

an error occurs (other than one matching an expecterror command and other than
one during parsing of the iferr command)

a result fails to match an expectvalue command

a result matches an expectbug command

Whenever any of these conditions arise, any non-empty post-error buffers are executed.
Execution starts with buffer 1, and proceeds to buffer 10, executing each non-empty post-
error buffer in order. This allows you to execute a number of handling commands. For
example:

topaz 1> iferr 1 where
topaz 1> iferr 2 allstacks
topaz 1> iferr 3 topazwaitfordebug

If an error occurs while executing one of post-error buffers, execution proceeds to the next
non-empty post-error buffer. Error and result checking implied by display resultcheck,
display errorcheck, expectvalue, etc., are not performed while executing from post-error
buffers.
If a post-error buffer contains a command that would terminate the topaz process, then
later buffers will have no effect. If a post-error buffer contains a command that would
terminate the session, execution later buffers will be attempted but they will not have a
session, unless one of the contains “login”.

To remove the contents of a specific post-error buffer, enter iferr bufferNumber without a
final argument. The command iferr_clear will clear all buffers.

The iferr_list command will display the contents of all post-error buffers.

The following examples demonstrate how to use expecterror to test the kind of error that
is returned from Smalltalk code execution, so you can conditionally avoid triggering the
iferr command.

The following reports an error, but does not perform the iferr operations:
topaz 1> iferr 1 stk
topaz 1> expecterror GemStoneError MessageNotUnderstood
topaz 1> exec 2 foo %
ERROR 2010 , a MessageNotUnderstood occurred (error 2010), a
SmallInteger does not understand #'foo'
topaz 1>
GemTalk Systems 99

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
But in the following, since divide-by-zero is an unexpected error, does print the stack:
topaz 1> iferr 1 stk
topaz 1> expecterror GemStoneError MessageNotUnderstood
topaz 1> exec 2 / 0 %
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 2 by zero
ERROR: WRONG CLASS of Exception, does not match expected class
topaz > exec iferr 1 : stk
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 GsNMethod class >> _gsReturnToC @1 line 11

This command cannot be abbreviated.
100 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
IFERR_CLEAR
The iferr_clear command clears all the post-error command buffers.

For details on the post-error command buffers, see the iferr command on page 99.

This command cannot be abbreviated.
GemTalk Systems 101

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
IFERR_LIST
The iferr_list command prints all the non-empty post-error command buffers.

For details on the post-error command buffers, see the iferr command on page 99.

This command cannot be abbreviated.
102 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
IFERROR

iferror [aTopazCommandLine]
The iferror command saves aTopazCommandLine to the post-error command buffer 1, or
when used without an argument, clearing buffer 1.

The command:
topaz 1> iferror stack

has the same effect as:
topaz 1> iferr 1 stack

For details iferr and the post-error command buffers, see page 99.

This command cannot be abbreviated.
GemTalk Systems 103

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
IMPLEMENTORS

implementors selectorSpec
Displays a list of all classes that implement the given selectorSpec (either a String or a
Symbol). For example:

topaz 1> implementors asByteArray
Collection >> asByteArray
MultiByteString >> asByteArray
String >> asByteArray

This command is equivalent to the following:
topaz 1> doit
ClassOrganizer new implementorsOfReport: aString
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default. For details about GemStone configuration
parameters, see the System Administration Guide.
104 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
INPUT

input [aFileName | pop]
Controls the source from which Topaz reads input. Normally Topaz reads input from
standard input (stdin). This command causes Topaz to take input from a file or device of
your choice.

If you specify a host environment name such as $HOME/foo.bar as the input file, Topaz
expands that name to the full filename. If you don’t provide an explicit path specification,
Topaz looks for the named input file in the directory where you started Topaz.

When input commands are echoed, as they are by default, the topaz prompt indicates that
the given command is located in a particular level of nested file by including a + (plus sign)
for each level of file input nesting.

For example, assuming aFile contains a series of commands which include import
nestedFile:

topaz 1> input aFile
topaz 1 +> <commands in aFile>
topaz 1 +> input nestedFile
topaz 1 ++> <commands in nestedFile>
topaz 1 +> <further commands in aFile>

input aFileName
Reads input from the specified file. This pushes the current input file onto a stack and
starts Topaz reading from the given file. There is a limit of 20 nested input aFileName
commands. If you exceed the limit, an error is displayed, and execution continues in
the current file.

input pop
Pops the current input file from the stack of input files and resumes reading from the
previous file. If there is no previous file, or the previous file cannot be reopened, Topaz
once again takes its input from standard input.
GemTalk Systems 105

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
INSPECT

inspect [anObjectSpec]
Sends the message describe to the designated object.

This command is equivalent to the following
topaz 1> send anObjectSpec describe
%

106 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
INTERP
Sends the text following the interp command to GemStone for execution as GemStone
Smalltalk code, and displays the result.

This command is identical to the run command (page 147), except that the interp command
does not use native code, the Smalltalk code execution is interpreted.

GemStone Smalltalk text is terminated by the first line that contains a % as the first character
in the line. For example:

topaz 1> interp
2 + 2
%
4

The text executed between the interp and the terminating % can be any legal GemStone
Smalltalk code, and follows the behavior documented in the Programming Guide for
GemStone/S 64 Bit.

This command cannot be abbreviated.
GemTalk Systems 107

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
LEVEL

level anIntegerLevel
Sets the Topaz display level; that is, this command tells Topaz how much information to
include in the result display. A level of 1 (the default) means that the first level of instance
variables within a result object will be displayed. Similarly, a level of 2 means that the
variables within those variables will be displayed. Setting the level to 0 inhibits the display
of objects (though object headers will still be displayed if you specify display oops). The
maximum display level is 10000.

Note the following:

The run command (page 147) displays results using the current display level, as set
by the level command.

The doit command (page 74) always displays results at level 0, regardless of the
current display level.

The printit command (page 140) always displays results at level 1, regardless of the
current display level.
108 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
LIMIT

limit [bytes | oops | lev1bytes] anInteger
Tells Topaz how much of any individual object to display in GemStone Smalltalk results.
The display can be limited by OOPs, to control the number of objects displayed (for
example, the number of elements in a collection). It can also be limited by bytes, to control
the number of bytes of byte objects, such as Strings, that are displayed.

For example, limit bytes 100 would tell Topaz to only display 100 bytes of any String (or
other byte object).

A limit of 0 tells Topaz to not limit the size of the output. This is the default.

If the amount that would be displayed is limited by limit bytes setting, the display indicates
missing text using ...(NN more bytes). If the number of objects is limited by a limit oops
setting, then it prints ... NN more instVars.

bytes
limit anInteger
limit bytes anInteger

Tells Topaz how much of any byte object (instance of String or one of String’s
subclasses) to display in GemStone Smalltalk results.

If anInteger is non-zero, then when displaying frame temporaries, or when displaying
an object with a display level of 1 or greater, any byte-valued instance variable with a
byte object value will be limited to one line (about 80 characters) of output. To display
the full contents of that byte object (up to the limit set by anInteger), use the object
command.

For debugging source code, we suggest limit bytes 5000.

oops
limit oops anInteger

Tells Topaz how much of any pointer or nonsequenceable collection to display in
GemStone Smalltalk results.

lev1bytes
limit lev1bytes anInteger

When the topaz level is set to 1 or greater, this limit controls how many bytes to display
of instVar values and frame temporaries. If lev1bytes is set to zero, then the value of
"limit bytes" is used for instVar values and frame temporaries.
GemTalk Systems 109

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
LIST
The list command is used in conjunction with the set and edit commands to browse
through dictionaries, classes, and methods in the repository. The list command is also
useful in debugging.

When no arguments are included on the command line, the list command lists the source
code for the currently selected stack frame, as selected by the most recent lookup, up,
down, or frame command.

Browsing Dictionaries and Classes
dictionaries
list dictionaries

Lists the SymbolDictionaries in your GemStone symbol list. This executes the
GemStone Smalltalk method UserProfile>>dictionaryNames.

classesIn:
list classesIn: aDictionary

Lists the classes in aDictionary. For example,

topaz 1> list classesIn: UserGlobals

lists all of the classes in your UserGlobals dictionary.

classes
list classes [subStringPattern]

Lists all of the classes in all of the dictionaries in your symbol list.

To limit the displayed classes, you can include an argument subStringPattern. Only
results that match, case insensitive, some portion of the subStringPattern are displayed.
For example,
topaz 1> list classes cert
GsX509Certificate
GsX509CertificateChain

categoriesIn:
list categoriesIn: [aClass]

Lists all of the instance and class method selectors for class aClass, by category, and
establishes aClass as the current class for further browsing.

If you omit the class name parameter, method selectors are listed by category for the
current class.

icategories
list icategories [className]

Lists all of the instance method selectors for the named class, by category. If you specify
a class name, that class becomes the current class for subsequent Topaz commands. If
you omit the class name parameter, lists the categories of the current class.
110 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
ccategories:
list ccategories: [className]

Lists all of the class method selectors for the named class, by category. If you specify a
class name, that class becomes the current class for subsequent Topaz commands. If
you omit the class name parameter, lists the categories of the current class.

selectors
list selectors [token]

Lists selectors of all instance methods in the current class, for which the argument token
is a case-insensitive substring of the selector. If token is omited, list all instance method
selectors in the current class. May be abbreviated as list sel.

For example,
topaz 1> set class Array
topaz 1> list sel at:p
 at:put:
 _at:put:
 _basicAt:put:

cselectors
list cselectors [token]

Lists selectors of all class methods in the current class, for which the argument token is
a case-insensitive substring of the selector. . If token is omited, list all class method
selectors in the current class. May be abbreviated as list csel.

primitives
list primitives [token]

Lists selectors of all class methods in the current class that invoke primitives. If token is
specified, only return the selectors that contain a case-insenstive substring matching
the given token string. May be abbreviated as list prim.

cprimitives
list cprimitives [token]

Lists selectors of all instance methods in the current class that invoke primitives. If
token is specified, only return the selectors that contain a case-insenstive substring
matching the given token string. May be abbreviated as list cprim.

Listing Methods
list with no arguments lists the source code of the active method context. See Chapter 2,
“Debugging Your GemStone Smalltalk Code”‚ starting on page 45.

list @anObjectSpec
Lists the source code of the GsNMethod or ExecBlock with the specified objectId. That
method, or the block’s home method, becomes the default method for subsequent
list or disassem commands.
GemTalk Systems 111

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
method:
list method: selectorSpec

Lists the category and source code of the specified instance method selector for the
current class. You can also enter this command as list imethod.

classmethod:
list classmethod: selectorSpec

Lists the category and source of the given class method selector for the current class.
You can also enter this command as list cmethod: or list cmethod.

imethod:
list imethod: is the equivalent to list method:.

linenumbers
list linenumbers

This is an additional option to one of the above commands, preceeding the method
specification. When this is used, the line number is included in the listing. For example:

topaz 1> set class String
topaz 1> list linenumbers method: includesValue:
 1 includesValue: aCharacter
 2
 3 "Returns true if the receiver contains aCharacter, false
otherwise.
 4 The search is case-sensitive."
 5
 6 <primitive: 94>
 7 aCharacter _validateClass: AbstractCharacter .
 8 ^ self includesValue: aCharacter asCharacter .

Listing Step Points
step
list step

Lists the source code of the current frame, and display only the step point
corresponding to the step point of the current frame.

steps
list steps

Lists the source code of the current frame, and displays step points in that source code.
112 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
list steps method: selectorSpec
Lists the source code of the specified instance method for the current class, and
displays all step points (allowable breakpoints) in that method. For example:

topaz 1> set class String
topaz 1> list steps method: includesValue:

includesValue: aCharacter
 * ^1 *******

"Returns true if the receiver contains aCharacter, false
otherwise. The search is case-sensitive."

<primitive: 94>
aCharacter _validateClass: AbstractCharacter .
 * ^2 *******
 ^ self includesValue: aCharacter asCharacter .
 * ^5 ^4 ^3 *******

You can use the break command to set method breakpoints before assignments,
message sends, or method returns. As shown here, the position of each method step
point is marked with a caret and a number. Each line of step point information is
indicated by asterisks (*).

For more information about method step points, see Chapter 2, “Debugging Your
GemStone Smalltalk Code”‚ starting on page 45.

list steps classmethod: selectorSpec
Lists the source code of the specified class method for the current class, and displays
all step points in that method.

stepips
list stepips

list stepips, list stepips method:, and list stepips classmethod:
list source code and display the IPs (instructions pointers) of the step points. These
commands are intended for low-level debugging and not normally useful for customer
development debugging.

Listing Breakpoints
In addition to list breaks, you can use the break list command to list all currently set
breakpoints. For more information about using breakpoints, see Chapter 2, “Debugging
Your GemStone Smalltalk Code”‚ starting on page 45.

breaks
list breaks

Lists the source code of the current frame, and displays the step points for the method
breakpoints currently set in that method. Disabled breakpoints are displayed with
negative step point numbers.
GemTalk Systems 113

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
list breaks method: selectorSpec
Lists the source code of the specified instance method for the current class, and
displays the method breakpoints currently set in that method. For example:

topaz 1> list breaks method: <
< aCharCollection
 "Returns true if the receiver collates before the
argument. Returns false otherwise.
The comparison is case-insensitive unless the receiver
and argument are equal ignoring case, in which case
 upper case letters collate before lower case letters.
 The default behavior for SortedCollections and for
the sortAscending method in UnorderedCollection is
consistent with this method, and collates as follows:

#('c' 'MM' 'Mm' 'mb' 'mM' 'mm' 'x') asSortedCollection

 yields the following sort order:

'c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x'
"
<primitive: 28>
aCharCollection _stringCharSize bitAnd: 16r7) ~~ 0 ifTrue:[

 ^ (DoubleByteString withAll: self) < aCharCollection .
].

aCharCollection _validateClass: CharacterCollection .
* ^2 *******
^ aCharCollection > self

list breaks classmethod: selectorSpec
Lists the source code of the specified class method for the current class, and displays
the method breakpoints currently set in that method.
114 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
LISTW / L

listw
l

For the method implied by the current stack frame, limit the list to the number of source
lines defined by the set listwindow command. The list is centered around the current
insertion point for the frame.

For example:
topaz 1> stk
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> frame 4
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0

topaz 1> listw
 / aNumber

 "Returns the result of dividing the receiver by aNumber."

 <primitive: 10>
 (aNumber _isInteger) ifTrue:[
 (aNumber == 0) ifTrue: [^ self _errorDivideByZero].
 * ^6

 ^ Fraction numerator: self denominator: aNumber
].
 ^ super / aNumber

The listw command cannot be abbreviated, other than by l.
GemTalk Systems 115

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
LITERALS

literals anObject
Reports all methods in which anObject is contained as a literal reference. anObject is
typically a String, Symbol, or Number.

literals is equivalent to:
topaz 1> exec ClassOrganizer new literalsReport: anObject %

for example,
topaz 1> Literals TimeZone
TimeZone >> =
TimeZone class >> default:
TimeZone class >> fromLinux
TimeZone class >> fromSolaris
116 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
LOADUA

loadua aFileName
Loads the application user action library specified by aFileName. This command must be
used before login.

This command cannot be abbreviated.

User action libraries contained user-defined C functions to be called from GemStone
Smalltalk. See the GemBuilder for C manual for information about dynamically loading user
action libraries.
GemTalk Systems 117

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
LOGIN
Lets you log in to a GemStone repository. Before you attempt to log in to GemStone, you’ll
need to use the set command—either interactively or in your Topaz initialization file—to
establish certain required login parameters. The required parameters for network
communications are:

set gemnetid:
name of the GemStone service on the host computer (defaults to gemnetobject for
the RPC version (topaz command) or gcilnkobj for the linked version (topaz
command)

set gemstone:
name of the Stone (repository monitor) process, if necessary including node and
protocol information in the form of a network resource string (NRS). See the System
Administration Guide for more on NRS syntax and usage.

set username:
your GemStone user ID.

set password:
your GemStone password.

set hostusername:
your user account on the host computer. Required for the RPC version of Topaz or for
RPC sessions spawned by the linked version.

set hostpassword:
your password on the host computer. Required for the RPC version of Topaz or for
RPC sessions spawned by the linked version of Topaz.

Topaz allows you to run your Gem (GemStone session), Stone (repository monitor), and
Topaz processes on separate network nodes. For more information about this, see the
discussion of set gemnetid and set gemstone.

If you are using linked Topaz (topaz -L), also note the following:

If the gemnetid is explicitly set, Topaz starts an RPC session instead of a linked one.

Topaz can only be linked with a single GemStone session process. If you issue the
login command to create multiple sessions, you must set gemnetid, and the new
sessions are RPC rather than linked.

You cannot use the set command to run Gem and Topaz on separate nodes for the
linked session (obviously). However, you may still run the Stone process on a
separate node. For any RPC sessions started from the linked version, you may run the
Gems on separate nodes from Topaz.

For more information about logging in to GemStone, read the section “Logging In to
GemStone” on page 12. The set command is described on page 152.
118 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
LOGOUT
Logs out the current GemStone session. This command aborts your current transaction.
Your local variables (created with the define command) will no longer have valid
definitions when you log in again.

This command cannot be abbreviated.
GemTalk Systems 119

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
LOGOUTIFLOGGEDIN
If logged in, logs out the current GemStone session. If there is no current session, does not
increment the Topaz error count.

As with the logout command (page 119), this command aborts your current transaction.
Your local variables (created with the define command) will no longer have valid
definitions when you log in again.

This command cannot be abbreviated.
120 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
LOOKUP

lookup (meth | method | cmeth | cmethod) selector [envId]

lookup className [class] [(implementingclass)] >> selector [envId]
The lookup command to search upwards through the hierarchy of superclasses to locate
the implementation of a given method selector. If no envId is specified, the current
compilation environment env is used.

There are two ways to specify the class, selector, and if it is a class or instance method:

using the set command to specify the class, and either method or classmethod to
indicate a class or instance method;

using className [class] >> to identify this information

All arguments to lookup are case sensitive.

The selector argument is string or symbol with the full method selector. The following are
all acceptable selector specifications:

lookup hash

lookup 'hash'

lookup #hash

lookup #'hash'

Or you may use syntax such as:
lookup SmallInteger >> +

lookup String class >> new

The lookup command also accepts the text generated in stack frame, so you can copy and
paste from a stack frame to lookup a method.

lookup String (SequenceableCollection) >> at:ifAbsent:

Using this syntax, implementingClass is used as the starting point for lookup, and the class
argument is ignored.

Related commands include senders and implementors.

Finding and Listing Methods
lookup classmethod selector

Lists the source code of the specified class method for the current class, or searching
the superclasses, the first superclass that implements this method. (May be abbreviated
as lookup cmeth.)

lookup method selector
Lists the source code of the specified instance method for the current class, or searching
the superclasses, the first superclass that implements this method. (May be abbreviated
as lookup meth.)
GemTalk Systems 121

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
topaz 1> set class Symbol
topaz 1> lookup meth match:

category: 'Comparing'
method: CharacterCollection
match: prefix

"Returns true if the argument prefix is a prefix of the
 receiver, and false if not. The comparison is
 case-sensitive."

self size == 0 ifTrue: [^ prefix size == 0].
^ self at: 1 equals: prefix
%

lookup className >> selector
Lists the source code of the specified instance method for the given class, or searching
its superclasses, the first superclass that implements this method. (The className
argument may not be meth, method, cmeth, or classmethod.)

lookup className class >> selector
Lists the source code of the specified class method for the class className, or searching
its superclasses, the first superclass that implements this method. (The className
argument may not be meth, method, cmeth, or classmethod.)

lookup className (implementingClass) >> selector
Lists the source code of the specified instance method for the class implementingClass,
or searching its superclasses, the first superclass that implements this method. (The
className argument may not be meth, method, cmeth, or classmethod.)

lookup className (implementingClass) class >> selector
Lists the source code of the specified class method for the class implementingClass, or
searching its superclasses, the first superclass that implements this method. (The
className argument may not be meth, method, cmeth, or classmethod.)

Pasting from stack frames
When you are stepping through code or examining the call stack for an error, topaz
displays stack frames containing the individual message sends. You can cut and paste the
printed methods into the lookup command, to lookup the source code that was executed.
122 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
For example:
topaz 1> run
1 / 0
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
(ZeroDivide)

topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

select the section of the line after the frame number and before the step point, and use that
as an argument to lookup:
topaz 1> lookup SmallInteger (Number) >> _errorDivideByZero
 category: 'Error Handling'
method: Number
_errorDivideByZero

"Generates a divide by 0 error."

^ ZeroDivide new _number: 2026 ; reason:
'numErrIntDivisionByZero';
 dividend: self ;
 signal
%

GemTalk Systems 123

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
METHOD

method[: aClassName]
Compiles an instance method for the class whose name is given as a parameter. The class
of the method you compile will automatically be selected as the current class. If you don’t
supply a class name, the method is compiled for the current class, as defined by the most
recent set class:, list categoriesin:, method:, classmethod:, removeAllMethods,
removeAllClassMethods, or fileout class: command.

Text of the method should follow this command on subsequent lines. The method text is
terminated by the first line that contains a % character as the first character in the line. For
example:

topaz 1> method: Animal
habitat

^habitat
%

Topaz sends the method’s text to GemStone for compilation and inclusion in the current
category of the specified class. If you haven’t yet selected a current category, the new
method is inserted in the default category, “as yet unspecified.”
124 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
NBRESULT
Wait for and display the result of a previous nbrun call. This call may be preceded by a set
session to switch to the session of an outstanding nbrun; otherwise, the current Topaz
session is used.

May be immediately preceded by expectvalue or expectbug, provided that the expect
commands contain only Integers or numerically coded OOPS (i.e. @NNN), so that no
GemStone code is executed before the nbresult.

If the nbrun has compilation errors, those will be displayed by the nbresult. If there is no
outstanding nbrun for the session the result is:
 [276 sz:0 cls: 76289 UndefinedObject] remoteNil

Note that nonblocking operations do block in linked sessions, and in a linked session the
result with no outstanding nbrun is nil, not remoteNil.

This command is the equivalent of calling the GemBuilder for C function GciNbEnd.
GemTalk Systems 125

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
NBRUN
Similar to run, but execution is nonblocking, so the application can proceed with non-
GemStone tasks while the expression is executed. To get the results of the execution, use
nbresult.

In a linked session, nbrun is blocking (necessarily). In this case a warning message is
displayed. For example:

topaz 1> nbrun
Time now
%
Current session not remote, nbrun executing synchronously
topaz 1> nbresult
09:48:17

nbrun should not be immediately preceded by expect commands, since this command has
no result. May be followed by a set session and another nbrun to start an execution in
another session.

The text of this command is not accessible from edit last.

This command is the equivalent of calling the GemBuilder for C function GciNbExecute.
126 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
NBSTEP
Similar to step, but execution is nonblocking. To get the results of the execution, use
nbresult.

In a linked session, nbstep is blocking (necessarily). In this case a warning message is
displayed.

Should not be immediately preceded by expect commands, since this command has no
result. May be followed by a set session and another nbrun or nbstep to start an execution
in another session.

This command is the equivalent of calling the GemBuilder for C function GciNbStep.
GemTalk Systems 127

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
OBJ1 / OBJ2

obj1anObjectSpec

obj2 anObjectSpec
Equivalent to the object command, but with the following difference: results are displayed
at level 1 (if obj1) or level 2 (if obj2), with offsets of instance variables shown as one-
based. After execution, previous settings for level and omit|display zerobased are
restored.

These commands cannot be abbreviated.
128 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
OBJ1Z / OBJ2Z

obj1z anObjectSpec

obj2z anObjectSpec
Equivalent to the object command, but with the following difference: results are displayed
at level 1 (if obj1) or level 2 (if obj2), with offsets of instance variables shown as zero-
based. After execution, previous settings for level and omit|display zerobased are
restored.

These commands cannot be abbreviated.
GemTalk Systems 129

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
OBJECT

object anObjectSpec [at: anIndex [put: anObjectSpec]]
Provides structural access to GemStone objects, allowing you to peek and poke at objects
without sending messages. The first anObjectSpec argument is an object specification in one
of the Topaz object specification formats. All formats described in “Specifying Objects” on
page 40 are legal in object commands.

You can use local variables (created with the define command) in object commands. The
local definition of a symbol always overrides any definition of the symbol in GemStone.
For example, if you defined the local variable thirdvar, and your UserGlobals dictionary
also defined a GemStone symbol named thirdvar, the definition of that GemStone
symbol would be ignored in object commands.

object anObjectSpec at:anIndex
Returns the value of an instance variable within the designated object at the specified
integer offset. You can string together at: parameters after object to descend as far as
you like into the object of interest.

As far as object at: is concerned, named and indexed instance variables are both
numbered, and indexed instance variables follow named instance variables when an
object has both. That is, if an indexable object also had three named instance variables,
the first indexed field would be addressed with object theIdxObj at:4.

Unordered collections (NSCs) are also considered indexable via object at:.

object anObjectSpec at: anIndex put: anotherObjectSpec
Lets you store values into instance variables. This command stores the second
anObjectSpec object into the first anObjectSpec object at the specified integer offset.

You cannot store into an NSC with object at: put:, although you can scrutinize its
elements with object at:.

CAUTION
Because object at: put: bypasses all the protections built into the GemStone
Smalltalk kernel class protocol, you risk corrupting your repository whenever you
permanently modify objects with this command.

The following example shows how you could use object at: put: to store a new String in
MyAnimal’s habitat instance variable:
topaz 1> object MyAnimal at: 3 put: 'pond'
an Animal

name nil
favoriteFood nil
habitat pond

Like object at:, the object at: put: command can take a long sequence of parameters.
For example:

topaz 1> object MyAnimal at: 3 at: 1 put: $l
liver

This example stores the character “l” into the first instance variable of MyAnimal’s third
instance variable.
130 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
With this command you can store Characters or SmallIntegers in the range from 0—255
(inclusive) into a byte object. You can also store other byte objects such as Strings. For
example:

topaz 1> object 'this' at: 5 put: ' and that'
this and that

The object at: put: command behaves differently for objects with byte-array and pointer-
array implementations. You may store the following kinds of objects into byte-array type
objects:

Character. This stores the character ‘9’:
topaz 1> object '123' at: 1 put: $9

SmallInteger. This stores a byte with the value 48:
topaz 1> object '123' at: 1 put: 48

Byte arrays. This stores ’b’ and ’c’ at offsets 2 and 3:
topaz 1> object '1234' at: 2 put: 'bc'
GemTalk Systems 131

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
OMIT

omit aDisplayFeature
The display and omit commands control the display of Gemstone Smalltalk objects and
other features related to output.

The display command turns on these display attributes, and the omit command turns
them off.;

For more details on these attributes and the default values, see the display command on
page 70.

alloops
omit alloops

Disables the display of OOPs of classes along with class names in object display and of
the oops of primitive specials, stopping the effect of display alloops.

bytes
omit bytes

When displaying byte-format objects, do not include the decimal or hexadecimal value
of each byte.

classoops
omit classoops

Legacy; equivalent to omit alloops.

decimalbytes
omit bytes

When displaying byte-format objects, do not include the decimal or hexadecimal value
of each byte.

deprecated
omit deprecated

For topaz commands such as strings and senders, which return lists of methods, omit
deprecated causes those results to omit methods which contain sends of deprecated,
deprecated:, or deprecatedNotification:.

errorcheck
omit errorcheck

Disables automatic result recording, stopping the effect of display errorcheck. Closes
the ./topazerrors.log file.

flushoutput
omit flushoutput

displays the immediate flushing of topaz output files other than stdout.
132 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
lineeditor
omit lineeditor

Disables the use of the Topaz line editor, stopping the effect of display lineeditor.
Always disabled on Windows.

names
omit names

For each of an object’s named instance variables, do not display the instance variable’s
name along with its value. When you have issued omit names, named instance
variables appear as i1, i2, i3, etc.

oops
omit oops

Do not display OOP values with displayed results.

pauseonerror
omit pauseonerror

Disables pauses in Topaz execution after errors, stopping the effect of display
pauseonerror.

pauseonwarning
omit pauseonwarning

Disables pause in Topaz execution after a compiler warning occurs.

pushonly
omit pushonly

Disables the effect of the only keyword in an object push command, stopping the
effect of display pushonly.

resultcheck
omit resultCheck

Disables automatic result checking, stopping the effect of display resultCheck.
Closes the ./topazerrors.log file and stops checking the results of successful run,
printit, etc. commands. You can still check the result of an individual run command
by entering an expectvalue command just before it.

singlecolumn
omit singlecolumn

Disables effect of display singlecolumn.

stacktemps
omit stacktemps

Disables effect of display stacktemps.

versionedclassnames
omit versionedclassnames

Disable the display of the class version for instances of classes that are not the last one
in the classHistory of that class.
GemTalk Systems 133

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
zerobased
omit zerobased

Shows offsets of instance variables as one-based when displaying objects.To show
offsets as zero-based, use the display zerobased command.
134 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
OUTPUT

output [push | append | pushnew | pop] aFileName [only]
Controls where Topaz output is sent. Normally Topaz sends output to standard output
(stdout): generally the topaz console. This command redirects all Topaz output to a file (or
device) of your choice.

If you specify a host environment name such as $HOME/foo.bar as the output file, Topaz
expands that name to the full filename. If you don’t provide an explicit path specification,
Topaz output is sent to the named file in the directory where you started Topaz.

Output is written with UTF-8 encoding, regardless of the current state of fileformat
(page 90).

As the command names push and pop imply, Topaz can maintain a stack of up to 20
output files, with current interactions captured in each file.

output aFileName
output push aFileName

Sends output to the specified file, as well as echoing to stdout. If the file you name
doesn’t yet exist, Topaz will create it. If you name an existing file, Topaz overwrites it.

To append output to an existing file, precede the file name with an ampersand (&), or
use append instead of push.

If you use output without a subsequent push, pushnew, append, or pop, then push is
assumed and the following token is used as the filename.

The command push must be typed in full, it cannot be abbreviated.

output append aFileName
Sends output to the specified file, as well as echoing to stdout. If the file you name
doesn’t yet exist, Topaz will create it. If you name an existing file, Topaz will append
to it. This behavior is the same as output push &aFileName.

The command append must be typed in full, it cannot be abbreviated.

output pushnew aFileName
Sends output to the specified file, as well as echoing to stdout. If the file you name
doesn’t exist, Topaz will create it. If you name an existing file, Topaz will create a new
file. For a filenames of the form foo.out, the new filename will be foo_N.out, where
where N is some integer between 1 and 99 (inclusive), and where foo_N.out did not
previously exist. If more than 1000 versions of the file exist, the oldest version will be
overwritten.

The command push must be typed in full, it cannot be abbreviated.

only
The above output commands will send output to both stdout and the each file on the stack.
Using the only command both limits output to only go to the specific named file, and turns
off the echo of results to stdout.
GemTalk Systems 135

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
output aFileName only
output push aFileName only
output append aFileName only
output pushnew aFileName only

Sends output to the specified file, but does not echo that output to stdout.

pop
output pop

Stops output to the current output file (that is, the file most recently named in an
output push command). The file is closed, and output is again sent to the previously
named output file.

The command pop must be typed in full, it cannot be abbreviated.
136 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
PAUSEFORDEBUG

pausefordebug [errorNumber]
Provided to assist internal debugging of a session.

With no argument, this command has no effect.

This command cannot be abbreviated.
GemTalk Systems 137

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
PKGLOOKUP

pkglookup (meth | method| cmeth| cmethod) selectorSpec

pkglookup className [class] selectorSpec
Similar to the lookup command, but with one key exception: pkglookup looks first in
GsPackagePolicy state, then in the persistent method dictionaries for each class up the
hierarchy. The pkglookup command does not look at transient (session method)
dictionaries.

For details, see the description of the lookup command on page 121.
138 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
POLLFORSIGNAL

pollforsignal
Provided to assist debugging signal handling.

This command causes topaz to wait for out-of-band activity from the Gem processing,
using GciPollForSignal. It can be interrupted by control-C.
GemTalk Systems 139

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
PRINTIT
Sends the text following the printit command to GemStone for execution as GemStone
Smalltalk code, and displays the result. If there is an error in your code, Topaz displays an
error message instead of a legitimate result. GemStone Smalltalk text is terminated by the
first line that contains a % as the first character in the line. For example:

topaz 1> printit
2 + 2
%
4

The text executed between the printit and the terminating % can be any legal GemStone
Smalltalk code, and follows all the behavior documented in the GemStone/S Programming
Guide.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if any
breakpoints are set, execution defaults to interpreted mode. Otherwise, execution defaults
to using native mode.

For details about GemStone configuration parameters, see the System Administration Guide.

Note that printit always displays results at level 1, regardless of the current display level
setting (page 108). The printit command does not alter the current level setting. The run
command (page 147) displays according to the current level setting, and the doit command
(page 74) displays results at level 0.
140 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
PROTECTMETHODS
After this command, all subsequent method compilations during the current session must
contain either a <protected> or <unprotected> directive.

Used for consistency checking in filein scripts.

This command cannot be abbreviated.
GemTalk Systems 141

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
QUIT

quit [aSmallInt | anObjectSpec]
Leaves Topaz, returning to the operating system. If you are still logged in to GemStone
when you type quit, this aborts your transaction and logs out all active sessions.

You can include an argument (a SmallInteger, or an object specification that resolves to a
SmallInteger) to specify an explicit exitStatus for the Topaz process. Only 8 bits of the
integer are returned. To get valid return values, the argument should always resolve to a
value in the range 0..255. To use an object specification, including errorcount, you must be
logged in when the quit command is executed.

If you do not specify an argument, the exitStatus will be either 0 (no errors occurred during
Topaz execution) or 1 (there was a GCI error or the Topaz errorCount was nonzero).

quit is ignored when reading a file using input, when stdin is a tty. If topaz stdin is
redirected to a file and the file does not end with a quit or exit, topaz considers EOF on
stdin to be an error, and will result in a non-zero topaz exit status.

This command cannot be abbreviated.

The command has the same behavior as exit. for more information and examples, see exit
on page 82.
142 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
RELEASEALL
Empty Topaz's internal buffer of object identifiers (the export set). Objects are placed in the
export set as a result of object creation and certain other object operations. releaseall is
performed automatically prior to each run, doit, printit, or send.

For more information, see the GemBuilder for C Manual. releaseall is equivalent to the
GemBuilder for C call GciReleaseOops.
GemTalk Systems 143

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
REMARK

remark commentText
Begins a remark (comment) line. Topaz ignores all succeeding characters on the line.

You can also use an exclamation point (!) or pound sign (#) as the first character in the line
to signal the beginning of a comment.

topaz 1> remark this is a comment
topaz 1> ! another comment
topaz 1> # and yet another one

Comments are important in annotating Topaz batch processing files, such as test scripts.
144 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
REMOVEALLCLASSMETHODS

removeallclassmethods [aClassName]
Removes all class methods from the class whose name you give as a parameter. The
specified class automatically becomes the current class.

If you don’t supply a class name, the methods are removed from the current class, as
defined by the most recent set class:, list categoriesin:, method:, or classmethod:
command.

This command removes all methods in all compilation environments, not just env 0.

This command cannot be abbreviated.
GemTalk Systems 145

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
REMOVEALLMETHODS

removeallmethods [aClassName]
Removes all instance methods from the class whose name you give as a parameter. The
specified class automatically becomes the current class.

If you don’t supply a class name, the methods are removed from the current class, as
defined by the most recent set class:, list categoriesin:, method:, or fileout class:
command.

This command removes all methods in all compilation environments, not just env 0.

This command cannot be abbreviated.
146 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
RUN
Sends the text following the run command to GemStone for execution as GemStone
Smalltalk code, and displays the result.

If there is an error in your code, Topaz displays an error message instead of a legitimate
result.

GemStone Smalltalk text is terminated by the first line that contains a % as the first character
in the line. For example:

topaz 1> run
2 + 2
%
4

The text executed between the run and the terminating % can be any legal GemStone
Smalltalk code, and follows all the behavior documented in the GemStone/S Programming
Guide.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if any
breakpoints are set, execution defaults to interpreted mode. Otherwise, execution defaults
to using native mode. For details about GemStone configuration parameters, see the System
Administration Guide.

The run command is similar to printit, with one significant difference. The run command
uses the current display level setting (page 108), whereas printit always displays the result
as if level 1 were the most recent level command.
GemTalk Systems 147

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
RUNBLOCK
The topaz command runblock is primarily intended to support internal debugging.

runblock takes two arguments on the command line, and the following lines up to the next
% must be the source for a block with between 0 and 10 block variables. The arguments are
both objects per object specification format, see “Specifying Objects” on page 40.

The first argument is used for self in the block, and can be anything that can be specified
on the command line.

The second argument must specify an Array of size N, N <= 10, where N is the number of
argument variables. This second argument can be specified using ** or @OOP, or named in
UserGlobals.

Example
topaz 1> run
 { 5 . 66 }.
%
a Array
 #1 5
 #2 66
topaz 1> runblock 'abc' **
 [:a :b | self copy , a asString , b asString]
%
abc566
148 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
RUNENV envId
Similar to run, but takes one integer argument >= 0 and <= 255, specifying compilation
environment for the code to execute in. The argument takes precedence over the value set
by env or set compile_env.

If GEM_NATIVE_CODE_ENABLED=FALSE in the gem configuration file, or if any
breakpoints are set, execution defaults to interpreted mode, otherwise execution defaults
to using native code.
GemTalk Systems 149

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
SEND

send anObjectSpec aMessage
Sends a message to an object.

The send command’s first argument is an object specification identifying a receiver. The
object specification is followed by a message expression built almost as it would be in
GemStone Smalltalk, by mixing the keywords and arguments. For example:

topaz 1> level 0
topaz 1> send System myUserProfile
a UserProfile
topaz 1> send 1 + 2
3
topaz 1> send @10443 deleteEntry: @33234

There are some differences between send syntax and GemStone Smalltalk expression
syntax. Only one message send can be performed at a time with send. Cascaded messages
and parenthetical messages are not recognized by this command. Also, each item must be
delimited by one or more spaces or tabs.

All Topaz object specification formats (as described in “Specifying Objects” on page 40) are
legal in send commands.

If the configuration parameter GEM_NATIVE_CODE_ENABLED is set to FALSE, or if any
breakpoints are set, execution defaults to interpreted mode. Otherwise, execution defaults
to using native mode.

For details about GemStone configuration parameters, see the System Administration Guide.
150 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
SENDERS

senders selectorSpec
Displays a list of all classes that are senders of the given selectorSpec (either a String or a
Symbol). For example:

topaz 1> senders asByteArray
ByteArray >> copyReplaceAll:with:
ByteArray >> copyReplaceFrom:to:with:

This command is equivalent to the following
topaz 1> doit
ClassOrganizer new sendersOfReport: aString
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default. For details about GemStone configuration
parameters, see the System Administration Guide.
GemTalk Systems 151

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
SET

set aTopazParameter [aParamValue]
The set command allows you to set session-specific values for your topaz session. This
includes the GemStone login parameters, and settings that affect your topaz user interface.

You can combine two or more set items on one command line, and you can abbreviate
token names to uniqueness. For example:

topaz 1> set gemstone gs64stone user DataCurator

cacert
set cacert: aCaCertFilePath

Sets the path to the trusted X509 certificate authority (CA) certificate to be used to
validate certificates presented by peers. The certificate must be in PEM format.

This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, gemnetid, or
solologin).

cachename
set cachename: aString

Sets the current cachename, which applies to subsequent logins for all sessions. This
cache name is recorded in the cache statistics collected by statmonitor for viewing in
VSD. The name must be 31 characters or less, and is truncated if too long. The
cachename can also be set using the command line -u argument. The colon is not
required.

Using set cachename or the -u option has advantages over the programmatic
assignment using System class >> cacheName:. Setting the name prior to login
allows statistics to be collected and displayed under a single meaningful name, rather
than being split between the initial default name and a later meaningful name.

category
set category: aCategory

Sets the current category, the category for subsequent method compilations. You must
be logged in to use this command. If you try to compile a method without first selecting
a category, the new method is inserted in the default category “as yet
unspecified.” The set category: command has the same effect as the category:
command.

If the specified category does not already exist, Topaz will create it when you first
compile a method.

Specifying a new class with set class does not change your category. However, when
you edit or fileout a method, that method’s category becomes the current category.

The current category is cleared by the logout, login, and set session commands.
152 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
cert
set cert: aCertFilePath

Sets the path to the X509 certificate to be used for login. The certificate must be in PEM
format. The file may contain multiple certificates which comprise a certificate chain.
The user certificate must be the first certificate in the file and may be followed by
certificate authority (CA) certificates. All certificates must be ordered within the file
such that the a given certificate is signed by the certificate which follows it.

This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, gemnetid, or
solologin).

class
set class: aClassName

Sets the current class. You must be logged in to use this command. After setting the
current class, you can list its categories and methods with the list categories command.
You can select a category to work with through either the set category: or category:
command.

The current class may also be redefined by the list categoriesin:, method:,
classmethod:, removeAllMethods, removeAllClassMethods, and fileout class:
commands.

The current class is cleared by the logout, login, and set session commands, or by
executing set class nil.

To display the name of the current class, issue the set class command without a class
name.

compile_env
set compile_env: anInteger

Sets the compilation environmentId used for method compiliations and run, printit,
etc. anInteger must be between 0 and 255 and is 0 by default. The compilation
environment may also be set using the commend env.

directory
set directory: directoryPath

Set the name of the working directory for the RPC gem created by an X509 login.

This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, gemnetid, or
solologin).

editorname
set editorname: aHostEditorName

Sets the name of the editor you want to use in conjunction with the edit command. For
example:

topaz 1> set editorname: vi

The default is set from your $EDITOR environment variable, if it is defined.
GemTalk Systems 153

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
enableremoveall
set enableremoveall onOrOff

When set enableremoveall is set to ON, it enables the commands removeallmethods
and removeallclassmethod. When it set to OFF, these commands have no effect. The
default is ON.

envvar
set envvar: varName varValue

Set an enviroment variable value in the topaz process. For example,

topaz 1 > set envvar MyRootDir /users/gdmin/project

The word envvar cannot be abbreviated.

extragemargs
set extragemargs: aStringOfArgs

Sets a list of extra command line arguments to be used when starting an RPC gem for
an X509 login.

This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, or gemnetid).

gemnetid
set gemnetid: aServiceName

aServiceName is a network resource string specifying the name of the GemStone service
(that is, the host process to which your Topaz session will be connected) and its host
computer.

For the RPC version of Topaz the default gemnetid parameter is gemnetobject. You
may also use gemnetdebug or your own custom gem service. RPC versions of Topaz
cannot start linked sessions.

For linked Topaz (started with topaz -L or -l), the default gemnetid is gcilnkobj. Use
the status command to verify that this parameter is gcilnkobj. This makes the first
session to log in a linked session. It is only possible to have one linked session per topaz
process.

This command, like other set options, can be used in a .topazini initialization file
that is executed when topaz starts up. When using topaz -L, any option to gemnetid
within a .topazini file is ignored

When using linked topaz, if gemnetid is explicitly set to a gem service such as
gemnetobject, login starts RPC sessions. Note that when you login an RPC session
that way, the configuration parameters reported for the linked session do not apply;
the rules governing configuration parameters for RPC sessions take effect.

You can run your GemStone session (Gem), repository monitor (Stone) process, and
your Topaz processes on separate nodes in your network. The one exception is the
linked Topaz session, when Topaz and the Gem run as a single process. Network
resource strings allow you to designate the nodes on which the Gem and Stone
processes run. For example, a Gem process called gemnetobject on node lichen could
be described in network resource string syntax as:

!@lichen!gemnetobject
154 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
To specify a Gem running on the current node, omit the node portion of the string, and
specify only the Gem name: gemnetobject. See the System Administration Guide for
more on NRS syntax and usage.

This setting is used only by traditional logins and is cleared if any X509 login
parameters are set. (cert, cacert, key, netldi, logfile, directory, or extragemargs)

gemstone
set gemstone: aGemStoneName

Specifies the name of the GemStone you want to log in to. The standard name is
gs64stone.

You can run your GemStone session (Gem), repository monitor (Stone) process, and
your Topaz processes on separate nodes in your network. The one exception is the
linked Topaz session, when Topaz and the Gem run as a single process. Network
resource strings allow you to designate the nodes on which the Gem and Stone
processes run. For example, a Stone process called gs64stone on node lichen could
be described in network resource string syntax as:

!@lichen!gs64stone

To specify a Stone running on the same node as the Gem, omit the node portion of the
string, and specify only the Stone name: gs64stone. See the System Administration
Guide for more on NRS syntax and usage.

This setting is used only by traditional logins and is cleared if any X509 login
parameters are set. (cert, cacert, key, netldi, logfile, directory, or extragemargs)

history
set history: anInt

Sets the history size of the Topaz line editor. The argument anInt may be between 0 and
1000, inclusive. Not available on Windows.

hostpassword
set hostpassword: aPassword

Sets the host password to be used when you next log in. If you don’t include the host
password argument on the command line, Topaz prompts you for it. Prompted input
taken from the terminal is not echoed. This lets you put a set hostpassword: command
in your Topaz initialization file so that Topaz automatically prompts you for your
password. Note, however, that this command must follow the set hostusername:
command.

For a linked Topaz session, set hostpassword has no effect, because no separate Gem
process is created on the host computer. The password is required, however, if you
spawn new sessions while you are running linked Topaz, because the additional
sessions are always RPC Topaz.

This setting is used only by traditional logins and is cleared if any X509 login
parameters are set. (cert, cacert, key, netldi, logfile, directory, or extragemargs)

hostusername
set hostusername: aUsername

Sets the account name you use when you log in to the host computer. When you run
Topaz, a Gem (GemStone session) process is started on the host computer specified by
GemTalk Systems 155

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
the set gemnetid: command. The set hostusername: command tells Topaz which
account you want that process to run under.

To clear the hostusername field, enter:
topaz 1> set hostusername *

For a linked Topaz session, set hostusername has no effect, since no separate Gem
process is created on the host computer.)

This setting is used only by traditional logins and is cleared if any X509 login
parameters are set. (cert, cacert, key, netldi, logfile, directory, or extragemargs)

inconversion
set inconversion

For use only by repository upgrade scripts in $GEMSTONE/upgrade. Sets the interal
variable GciSupDbInConversion to TRUE.

inputpauseonerror
set inputpauseonerror: onOrOff

The argument must be a case-insensitive string, ON or OFF. If ON, and stdin is a tty,
then the first input command issued interactively will transition topaz to display
pauseonerror. This remains in effect until topaz input returns to stdin, at which point
the previous state of display pauseonerror is restored.

The default is OFF

May not be abbreviated.

key
set key: privateKeyPath

For an X509 login, sets the path to the private key for the certificate specified by the SET
CERT: command. The key must be in PEM format and must not be protected by a
passphrase.

This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, gemnetid, or
solologin).

limit
set limit: anInt

Sets the limit on the number of bytes to display. The equivalent of limit bytes anInt

listwindow
set listwindow: anInt

Defines the maximum number of source lines to be listed by the listw / l command
(page 115).

logfile
set logfile: pathAndFilename

For an X509 login, sets the name of the RPC gem's log file.
156 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, gemnetid, or
solologin).

netldi
set netldi: hostOrIp:portOrServiceName

Sets the host and port for the netldi to be used for X509 certificate login. The argument
format must include the hostName or the IP of the NetLDI host, and the listening port
number of NetLDI service name, separated by a colon character. For example,

set netldi devhost.acme.com:54321

This setting is used only by X509 logins and is cleared if traditional login parameters
are set (username, password, hostusername, hostpassword, gemstone, or gemnetid).

nrsdefaults
set nrsdefaults: aNRSheader

Sets the default components to be used in network resource string specifications. The
parameter aNRSheader is a network resource string header that may specify any NRS
modifiers’ default values. The initial value of nrsdefaults is the value of the
GEMSTONE_NRS_ALL environment variable. The Topaz status command shows the
value of nrsdefaults unless it is the empty string.

password
set password: aGemStonePassword

Sets the GemStone password to be used when you next log in. If you don’t include the
password argument on the command line, Topaz prompts you for it. Prompted input
is taken from the terminal and not echoed. This lets you put a set password: command
in your Topaz initialization file so that Topaz will automatically prompt you for your
password. Note, however, that this command must follow the set username: command.

This setting is used only by traditional logins and is cleared if any X509 login
parameters are set. (cert, cacert, key, netldi, logfile, directory, or extragemargs)

session
set session: aSessionNumber

Connects Topaz to the session whose ID is aSessionNumber. When you log in to
GemStone, Topaz displays the session ID number for that connection. This command
allows you to switch among multiple sessions. (The Topaz prompt always shows the
number of the current session.)

If you specify an invalid session number, an error message is displayed, and the
current session is retained.

This command clears the current class and category. After you switch sessions with set
session, your local variables (created with the define command) no longer have valid
definitions.

sessioninit
set sessionInit ONorOFF

Provided to allow the execution of GsCurrentSession >> initialize to be
skipped during login, in the case of upgrade or other special cases in which code
GemTalk Systems 157

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
invoked by GsCurrentSession cannot be executed and logins cannot complete. This
requies that the Stone configuration parameter STN_ALLOW_NO_SESSION_INIT be
enabled, which can be done at runtime by SystemUser.

This should be left at the default, ON, except for such exceptional cases.

singlecolumn
set singlecolumn: onOrOff
When stacks are printed, methods that have more than eight method arguments and
temporary variables print their variables in four columns. The default is off. After
executing set solologin: on, each variable will be displayed on a single line.

solologin
set solologin: onOrOff
The argument must be a case-insensitive string, ON or OFF. When ON, subsequent
logins will be Solo, using the extent0.dbf specified by the GEM_SOLO_EXTENT config
item. The default is OFF.

Setting solo login to on clears the X509 parameters; only traditional logins with set user
and set password settings are legal for solo login.

May be abbreviated as SOLO.

sourcestringclass
set sourcestringclass: ClassRangeSpecifier

Sets the class of strings used to instantiate Smalltalk source strings generated by the
run, printit, doit, edit, method, and classmethod commands. This includes any literal
strings in the evaluated code.

This command expects one argument, which must be String orUnicode16. The options
are:

set sourcestringclass String
New instances of literal strings are created as instances of String,
DoubleByteString, or QuadByteString.

set sourcestringclass Unicode16
New instances of literal strings are created as instances of Unicode7, Unicode16, or
Unicode32.

The Topaz status command shows the current setting.

On topaz startup, sourcestringclass is set to String. On login, the setting will be
updated from the setting for #StringConfiguration in the GemStone Globals
SymbolDictionary. If #StringConfiguration resolves to Unicode16, then
sourcestringclass will be set to Unicode16.

To avoid misinterpretation of fileouts, the fileout command writes a set
sourcestringclass command at the start of the fileout. A set sourcestringclass
command within a file only has effect within that file and any nested files.

stackpad
set stackpad: anInt

Defines the minimum size used when formatting lines in a stack display. The
argument anInt may be between 0 and 256, inclusive. (Default: 45)
158 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
stackpad cannot be abbreviated.

tab
set tab: anInt

Defines the number of spaces to insert when translating a tab (CTRL-I) character when
printing method source strings. The argument anInt may be between 1 and 16,
inclusive. (Default: 8)

transactionmode
set transactionmode aMode

Set the current session’s transaction mode, and set the transaction mode to this mode
after each subsequent login. Must be one of (case-insensitive) autoBegin, manualBegin,
or transactionless.

This command does an abort. If in a transaction, any uncommitted changes in the
transaction will be lost. If the new mode is autoBegin, then a new transaction will be
started.

username
set username: aGemStoneUsername

Establishes a GemStone user ID for the next login attempt.

This setting is used only by traditional logins and is cleared if any X509 login
parameters are set. (cert, cacert, key, netldi, logfile, directory, or extragemargs)
GemTalk Systems 159

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
SHELL

shell [aHostCommand]
spawn [aHostCommand]

When issued with no parameters, this command creates a child process in the host
operating system, leaving you at the operating system prompt. To get back into Topaz, exit
the command shell by typing Control-D (from the UNIX Bourne or Korn shells), typing
logout (from the UNIX C shell), or typing exit (from a DOS shell).

For example, on Windows:
topaz 2> shell
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\GS64\32> dir *.txt
 Volume in drive C is Windows7_OS
 Volume Serial Number is 9ECC-468B

 Directory of C:\GS64\32

02/11/2014 04:38 PM 54,298 open_source_licenses.txt
02/11/2014 04:38 PM 3,209 PACKING.txt
02/11/2014 04:38 PM 104 version.txt
 3 File(s) 57,611 bytes
 0 Dir(s) 135,272,591,360 bytes free

C:\GS64\32>exit

topaz 2>

On UNIX systems, a shell command issued without parameters creates a shell of whatever
type is customary for the user account (C, Bourne, or Korn).

If you supply parameters on the shell command line, they pass to a subprocess as a
command for execution, and the output of the command is shown.

For example:
topaz 1> shell startnetldi -v
startnetldi 3.6.0 COMMIT: 2020-10-17T17:31:08-07:00
925e19317f5ac852dd751da32230481ad24c31a7

When issued with parameters, shell always creates a shell of the system default type
(either Bourne or Korn).

spawn is the same as shell, and is included for compatibility with previous versions.
160 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
STACK

stack [aSubCommand]
Topaz can maintain up to 500 simultaneous GemStone Smalltalk process call stacks that
provide information about the GemStone state of execution. Each call stack consists of a
linked list of contexts.

The call stack becomes active, and the stack command becomes accessible, when you
execute GemStone Smalltalk code containing a breakpoint. The stack command allows you
to examine and manipulate the contexts in the active call stack.

Debugging usually proceeds on the active call stack, but you may also save the active call
stack before executing other code, and return to it later.

This command cannot be abbreviated.

Display the Active Call Stack
stack

Displays all of the contexts in the active call stack, starting with the active context. For
each context in the stack display, the following items are displayed:

 the level number

 the class of the GsNMethod

 selector of the method

 the environmentId (not used by Smalltalk)

 the current step point (that is, assignment, message send, or method return) within
the method

 the line number of the current step point within the source code of the method

 the receiver and parameters for this context.

 the method temporaries (if display oops/alloops is active)

 the OOP of the GsNMethod (if display oops/alloops is active)

The resulting display is governed by the setting of other Topaz commands such as
limit, level, and display/omit subcommands.

Any further commands that execute GemStone Smalltalk code: run, printit, send, doit,
step, edit last, or edit new text, discards the active call stack unless stack save is
executed.

stack anInt
Displays contexts in the active call stack, starting with the active context. The argument
anInt indicates how much of the stack to display. For example, if anInt is 1, this
command shows only the active context. If anInt is 2, this command also shows the
caller of the active context, etc.
GemTalk Systems 161

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
Example 3.1 Example of stack display

topaz 1> run
{ 1 . 2 } do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
(ZeroDivide)

topaz 1> stack
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
 receiver a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
 handleInCextensionBool nil
 res nil
(skipped 1 evaluationTemps)
2 ZeroDivide (AbstractException) >> signal @2 line 47
 receiver a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
 receiver 1
4 SmallInteger >> / @6 line 7
 receiver 1
 aNumber 0
5 [] in Executed Code @2 line 1
 self nil
 receiver anExecBlock1
 x 1
6 Array (Collection) >> do: @5 line 10
 receiver anArray
 aBlock anExecBlock1
 i 1
(skipped 4 evaluationTemps)
7 Executed Code @2 line 1
 receiver nil
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

Display or Redefine the Active Context
stack scope

Displays the current context (Scope is an alternate older name for context or frame). For
example:

topaz 1> stack scope
1 AbstractException >> _signalWith: @6 line 25

stack scope anInt
Redefines the active context within the active call stack and displays the new context.
The integer 1 represents the current context, while the integer 2 represents the caller of
the active context.
162 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
stack up
Moves the current context up one level toward the top of the stack and displays the
new context.

stack down
Moves the current context down one level away from the top of the stack and displays
the new context.

stack set aGsProcess
The argument is an object specification that resolves to a GsProcess. Make that
aGsProcess the currently active stack for debugging.

stack terminate
Sends #terminate to the GsProcess of the current stack, if the stack is not owned by the
scheduler.

stack trim
Trims the stack so that the current context becomes the new top of the stack. Execution
resumes at the first instruction in the method at the new top of the stack. If that method
has been recompiled, stack trim installs the new version of the method. The new top
of the stack must not represent the context of an ExecutableBlock.

For more about this, see the method comments for
GsProcess>>_trimStackToLevel: and
GsProcess>>_localTrimStackToLevel:.

If the stack is trimmed, any resumption of execution will take place in interpreted
mode.

Save the Active Call Stack During Further Execution
When you have an active call stack, and execute any of the commands run, printit, send,
doit, edit last, or edit new text, it results in the current call stack being discarded.

stack save
Save the active call stack before executing any of the commands that normally clear the
stack:.

stack nosave
Cancel the previous stack save.

Display All Call Stacks
stack all

Displays your list of saved call stacks. The list includes the top context of every call
stack (stack 1). For example:

topaz 1> stack all
0: 1 Animal >> habitat @1 line 1
1: 1 AbstractException >> _signalWith: @6 line 25
*2: 1 Executed Code @3 line 1

The * indicates the active call stack, if one exists. If there are no saved stacks, a message
to that effect is displayed.

Equivalent to threads (page 176)
GemTalk Systems 163

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
Redefine the Active Call Stack
stack change anInt

Sets the active call stack to the call stack indicated by anInt in the stack all command
output, and displays the top context of the newly selected call stack.

Equivalent to thread anInt (page 175).

For example:
topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
 1: 1 AbstractException >> _signalWith: @6 line 25
*2: 1 Executed Code @3 line 1
topaz 1> stack change 1
Stack 1 , GsProcess 27447553
1 AbstractException >> _signalWith: @6 line 25
topaz 1> stack all
 0: 1 Animal >> habitat @1 line 1
*1: 1 AbstractException >> _signalWith: @6 line 25
 2: 1 Executed Code @3 line 1

stack set aGsProcessSpecification
The argument is an object specification that resolves to a GsProcess. This GsProcess is
made the active call stack for debugging.

Remove Call Stacks
stack delete aStackInt

Removes the call stack indicated by aStackInt in the stack all command output.

Topaz maintains up to eight simultaneous call stacks. If all eight call stacks are in use,
you must use this command to delete a call stack before issuing any of the following
commands: run, printit, send, doit, edit last, or edit new text.

Equivalent to thread anInt clear (page 175)

stack delete all
Removes all call stacks.

Terminate the process
stack terminate

Sends #terminate to the GsProcess of the current stack, if the stack is not owned by the
scheduler.
164 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
STATUS
Displays your current login settings and other information about your Topaz session.
These settings are set to default values when Topaz starts, and may be modified using the
set (page 152) command, display (page 70) and omit (page 132), and using individual
commands such as level (page 108) , limit (page 109), and fileformat (page 90).

For example:
topaz 1> status

Current settings are:
 display : 0
 byte limit: 0 lev1bytes: 0
 omit bytes
 include deprecated methods in lists of methods
 display instance variable names
 display oops omit alloops omit stacktemps
 oop limit: 0
 omit automatic result checks
 omit interactive pause on errors
 omit interactive pause on warnings
 listwindow: 20
 stackpad: 45 singlecolumn: Off tab (ctl-H) equals 8 spaces when
listing method source
 transactionmode autoBegin
 using line editor
 line editor history: 100
 topaz input is from a tty on stdin
EditorName________ vi
CompilationEnv____ 0
Source String Class String
fileformat 8bit (tty stdin is utf8)
SessionInit On
EnableRemoveAll On
CacheName_________ 'TopazR'

Connection Information:
UserName___________ 'Isaac_Newton'
Password __________ (set)
HostUserName_______ 'newtoni'
HostPassword_______ (set)
NRSdefaults________ '#netldi:gs64ldi'
GemStone___________ 'gs64stone'
GemStone NRS_______ '!#encrypted:newtoni@password#server!gs64stone'
GemNetId___________ 'gemnetobject'
GemNetId NRS_______ '!#encrypted:newtoni@password!gemnetobject'

Browsing Information:
Class_____________
Category__________ (as yet unclassified)
GemTalk Systems 165

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
STEP

step (over | into | thru)
Advances execution to the next step point (assignment, message send, or method return)
and halts. You can use the step command to continue execution of your GemStone
Smalltalk code after an error or breakpoint has been encountered. For examples and other
useful information, see Chapter 2, “Debugging Your GemStone Smalltalk Code”‚ starting
on page 45.

step
Equivalent to step over.

step over
Advances execution to the next step point in the current frame or its caller. The current
frame is the top of the stack or the frame specified by the last frame, up, down, stack
scope, stack up, or stack down command.

step into
Advances execution to the next step point in your GemStone Smalltalk code.

step thru
Advances execution to the next step point in the current frame, or its caller, or the next
step point in a block for which current frame's method is the home method.
166 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
STK

stk [aSubCommand]
Similar to stack, but does not display parameters and temporaries for each frame. All
frames for the active call stack are displayed, with the current active frame indicated by an
arrow.

For more information on s, see the stack command on page 161.

This command cannot be abbreviated.
topaz 1> printit
{ 1 . 2} do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, An attempt was made to divide 1 by
zero. (ZeroDivide)
topaz 1> stk
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
GemTalk Systems 167

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
STRINGS

strings selectorSpec
Displays a list of all methods that contain the given selectorSpec (either a String or a Symbol)
in their source string, and class comments in which the text includes selectorSpec.

Search is case-sensitive; for a case-insensitive search, see stringsic. This command cannot
be abbreviated.

For example:
topaz 1> strings ChangeUserId
UserProfile >> privileges
UserProfile >> userId:password:
UserProfile >> _privileges
UserProfile class >> _initPrivilegeNames
UserProfileSet >> _oldUserId:newUserId:for:

The strings command is equivalent to the following:
topaz 1> run
| org |
org := ClassOrganizer new.
org stringsReport: aString ignoreCase: false

includeClassComments: true
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default.For details about GemStone configuration
parameters, see the System Administration Guide.
168 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
STRINGSIC

stringsic selectorSpec
Displays a list of all methods that contain the given selectorSpec (either a String or a Symbol)
in their source string, and class comments that include selectorSpec.

This search is case-insensitive; for a case-sensitive search, see the strings command. This
command cannot be abbreviated.

The stringsic command is equivalent to the following:
topaz 1> run
| org | org := ClassOrganizer new.
org stringsReport: 'referencesToLiteral:' ignoreCase: true

includeClassComments: true
%

This command may use significant temporary object memory. Depending on your
repository, you may need to increase the value of the GEM_TEMPOBJ_CACHE_SIZE
configuration parameter beyond its default. For details about GemStone configuration
parameters, see the System Administration Guide.
GemTalk Systems 169

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
SUBCLASSES

subclasses [aClassName]
Prints immediate subclasses of the specified class. If you don’t specify a class name, prints
subclasses of the current class.
topaz 1> subclasses MultiByteString
DoubleByteString
QuadByteString

topaz 1> set class DoubleByteString
topaz 1> subclasses
DoubleByteSymbol
Unicode16

For command to print the complete hierarchy, see subhierarchy on page 171.
170 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
SUBHIERARCHY

subhierarchy [aClassName]
Print print a hierarchy report for all subclasses of the specified class. If you don’t specify a
class name, prints hierarchy report for the current class.

Example
topaz 1> subhierarchy MultiByteString
MultiByteString
 DoubleByteString
 DoubleByteSymbol
 Unicode16
 QuadByteString
 QuadByteSymbol
 Unicode32

See Also
hierarchy (page 97)
GemTalk Systems 171

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
TEMPORARY

temporary [aTempName[/anInt] [anObjectSpec]]
Displays or redefines the value of one or more temporary variables in the current frame of
the current stack. For examples and other useful information, see Chapter 2, “Debugging
Your GemStone Smalltalk Code”‚ starting on page 45.

All Topaz object specification formats (as described in “Specifying Objects” on page 40) are
legal in temporary commands.

temporary
Displays the names and values of all temporary objects in the current frame.

temporary aTempName
Displays the value of the first temporary object with the specified name in the current
frame.

topaz 1> temporary preferences
preferences an Array

temporary aTempName anObjectSpec
Redefines the specified temporary in the current frame to have the value anObjectSpec.

temporary anInt
Displays the value of the temporary at offset n in the current frame. Use this form of
the command to access a temporary with a duplicate name, because temporary
aTempName always displays the first temporary with the specified name.

temporary anInt anObjectSpec
Redefines the temporary at offset n in the current frame to have the value anObjectSpec.

For example, to view the temporary variable values:

topaz 1> break classmethod String withAll:
topaz 1> run
String withAll: 'abc'
%
a Breakpoint occurred (error 6005), Method breakpoint encountered.
1 String class >> withAll: @1 line 1
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString abc
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil
172 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
and to modify the value of the temporary:
topaz 1> temporary aString 'xyz'
topaz 1> stack
==> 1 String class >> withAll: @1 line 1
 receiver String
 aString xyz
2 Executed Code @2 line 1
 receiver nil
3 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
 receiver nil

the method will return the modified value:
topaz 1> continue
xyz

When the Topaz command display oops has been set, temporaries displayed as .tN are
un-named temporaries private to the virtual machine. The example below displays the
temporaries used in evaluation of the optimized to:do:, both as shown by the frame
command and by the temporary command.
topaz 1> run
| a |
1 to: 25 do: [:j | a := j. a pause]
%
...
topaz 1> display oops
topaz 1> frame 5
5 Executed Code @4 line 2 [methId 25464833]
 receiver [20 sz:0 cls: 76289 UndefinedObject] nil
 a [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 j [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t1 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t2 [202 sz:0 cls: 74241 SmallInteger] 25 == 0x19
 .t3 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t4 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
topaz 1> temporary
 a [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 j [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t1 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t2 [202 sz:0 cls: 74241 SmallInteger] 25 == 0x19
 .t3 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
 .t4 [10 sz:0 cls: 74241 SmallInteger] 1 == 0x1
GemTalk Systems 173

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
TFILE

tfile aFile
Input a tonel format class definition or class extension file. The methods within the file are
all compiled.

The Class specified in the file must already exist (i.e. class definition execution is not
attempted).
174 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
THREAD

thread [anInt] [clear]
Displays the currently selected GemStone process from among the stack saved from the
last error, or from those retrieved by the most recent threads command.

topaz 1> thread
Stack 0 , GsProcess 27462401
1 Animal >> habitat @1 line 1

thread anInt
Changes the currently selected GemStone process. You can specify an integer value
from among those shown in the most recent threads command.

topaz 1> thread 1
Stack 1 , GsProcess 27447553
1 AbstractException >> _signalWith: @6 line 25

thread anInt clear
Clears the selected GsProcess from the Topaz stack cache.
GemTalk Systems 175

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
THREADS

threads [clear]
Force any dirty instances of GsProcess cached in VM stack memory to be flushed to object
memory. It then executes a message send of

ProcessorScheduler >> topazAllProcesses

and retrieves and displays the list of processes.
topaz 1> threads

0: 27462401 debug
=> 1: 27447553 debug (topaz current)

2: 27444225 debug

threads clear
Clears the Topaz cache of all instances of GsProcess.
176 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
TIME
The first execution of time during the life of a topaz process displays current date and time
from the operating system clock, total CPU time used by the topaz process.

Subsequent execution of time will display in addition elapsed time since the previous time
command, CPU time used by the topaz process since the previous time command.

The time command can be executed when not logged in as well as after login.

Example
topaz 1> time
02/06/2019 13:37:13.545 PST
CPU time: 0.035 seconds
topaz 1> run
Array allInstances size
%
23515
topaz 1> time
02/06/2019 13:37:48.459 PST
CPU time: 0.232 seconds
Elapsed Real time: 8.649 seconds
Elapsed CPU time: 0.083 seconds
GemTalk Systems 177

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
TMETHOD
Compile a method from tonel format used by the Rowan open source project. This is
intended for interactive use.

topaz 1 > tmethod
{ #category : 'test' }
TestClass >> version[

^5
]

This compiles the method using the class from the tonel method definition (in the example,
TestClass), and using the current compilation environment. It does not affect topaz's
current class.

The closing] must be the first character on a line.
178 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
TOPAZWAITFORDEBUG
Waits forever in a sleep loop until a debugger is attached to continue execution.

This can be a C debugger (gdb, etc.), or if in linked topaz that is configured with
GEM_LISTEN_FOR_DEBUG, another topaz session attaching via debuggem.

This command should be used with caution; it may require an OS-level kill to terminate the
process. Intended for use in debugging; see “Debugging in a different Gem” on page 52
and the debuggem (page 66) and iferr (page 99) commands.
GemTalk Systems 179

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
UNPROTECTMETHODS
Cancels the effect of protectmethods, which is used for consistency checking in filein
scripts.

This command cannot be abbreviated.
180 GemTalk Systems

GemStone/S 64 Bit 3.6 Topaz User’s Guide Command Syntax
UP

up [anInteger]
In the current stack, change the current frame to be the caller of the current frame, and
display the new selected frame. The optional argument anInteger specifies how many
frames to move up. If no argument is supplied, the scope will go up one frame.

The behavior is similar to stack up, except that stack up does not accept an argument, and
the frame display for stack up does not includes parameters and temporaries for the frame.
stack up is described on page 163.
topaz 1> run
{ 1 . 2 } do: [:x | x / 0]
%
ERROR 2026 , a ZeroDivide occurred (error 2026),
reason:numErrIntDivisionByZero, attempt to divide 1 by zero
(ZeroDivide)
topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

topaz 1> up 4
5 [] in Executed Code @2 line 1
 self nil
 receiver anExecBlock1
 x 1

topaz 1> where
1 ZeroDivide (AbstractException) >> _signalWith: @5 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
==> 5 [] in Executed Code @2 line 1
6 Array (Collection) >> do: @5 line 10
7 Executed Code @2 line 1
8 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1
GemTalk Systems 181

Command Syntax GemStone/S 64 Bit 3.6 Topaz User’s Guide
WHERE

where [anInteger | aString]
Displays the current call stack, with one line per frame.

where
Displays all lines of the current call stack. Equivalent to the stk command.

topaz 1> where
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
4 SmallInteger >> / @6 line 7
5 Executed Code @2 line 1
6 UndefinedObject (GsNMethod class) >> _gsReturnToC @1 line 1

where anInteger
Displays the specified number of frames of the stack, starting with the current frame.

topaz 1> where 3
==> 1 ZeroDivide (AbstractException) >> _signalWith: @6 line 25
2 ZeroDivide (AbstractException) >> signal @2 line 47
3 SmallInteger (Number) >> _errorDivideByZero @6 line 7

where aString
Searches all frames in the current stack, and displays only those for which the output
of where for that frame matches a case-sensitive search for aString anywhere in that
frame's output (not including the frame number or ==> marker at the start of the
frame's line). The current frame is set to the first frame matched by the search.

The string must not begin with a decimal digit, whitespace, or any of the three
characters (' + -), and must not contain whitespace. To specify a string that contains
digits or whitespace characters, enclose it in single-quotes. For example:

topaz 1> where error
==> 3 SmallInteger (Number) >> _errorDivideByZero @6 line 7
182 GemTalk Systems

Appendix

A Topaz Command-Line
Syntax
This section presents the formal command syntax and the available command-line options.

By default the topaz command invokes an RPC executable. This is the same as specifying
the -r option on the topaz command line:

topaz [-r] [-q] [-i | -I topazini] [-S scriptFile] [-n hostName:netldiName] [-u useName]
[-X caCertPaths] [-- other args]

When invoked with the -L or -l option, Topaz runs in linked mode. The command line
accepts additional options that apply only when starting linked version:

topaz -l | -L [-q] [-i | -I topazini] [-S scriptFile] [-u useName] [-e exeConfig]
[-z systemConfig] [-T tocSizeKB] [-C configParams] [-- other args]

In linked topaz (topaz -l or -L), you may also login RPC sessions, as well as login a single
linked session. Settings that only apply to linked sessions (-e, -z, -T, and -C) do not apply
for RPC sessions started from linked topaz.

topaz can also provides usage and version information:

topaz -h | -v

-C configParams Provides configuration parameters, in configuration file syntax,
that override settings in the configuration files. Only applies to
linked sessions (RPC sessions may use the -C syntax in the
Gem’s NRS).
For example,
topaz -l -C 'GEM_TEMPOBJ_CACHE_SIZE = 1GB;
GEM_TEMPOBJ_OOMSTATS_CSV = TRUE;'

-e exeConfig The GemStone executable configuration file. This only applies
to linked sessions. See “Executable Configuration File” on
page 309.

-h Displays a usage line and exits.

-i Ignore the initialization file, .topazini.
GemTalk Systems 183

GemStone/S 64 Bit 3.6 Topaz User’s Guide
-I topazini Specify a complete path and file to a topazini initialization files,
and use this rather then any .topazini in the default location.

-l Invoke the linked version of Topaz.

-L Invoke the linked version of Topaz, and do not apply any
command set gemnetid that may appear in the .topazini file or
a file passed in using -I.

-n hostName:netldiName For a login using X509-Secured GemStone only, to specify the
NetLDI to spawn the Gem, part of the X509-secured GemStone
login parameters. The host name or IP, and the netldi name or
listening port, for an X509-secured NetLDI.

-q Start Topaz in quiet mode, suppressing printout of the banner
and other information.

-r Invoke the RPC (remote procedure call) version of Topaz.

-S scriptFile Specifies a script file that will be processed with INPUT.

-T tocSizeKB The GEM_TEMPOBJ_CACHE_SIZE that will be used.
Overrides any settings provided in configuration files passed as
arguments with the -e or -z options. Only applies to linked
sessions.

-u useName Sets the cache name, as recorded by statmonitor for viewing in
VSD. This is also useful for identifying processes in OS utilities
such as top or ps.

-v Prints version and exits.

-X CaCertPaths For a login using X509-Secured GemStone only, to set
certificates. Requires additional infrastructure to be running,
including X509-secured NetLDIs and caches. The argument
must specify three paths in the defined order: cacert, chained
key for user, and private key for user.
For example:
-X 'stoneCA-dev.cert.pem;DataCurator.chain.pem
;DataCurator.privkey.pem'

-z systemConfig The GemStone system configuration file (applies only to linked
sessions). See “System Configuration File” on page 308.

-- otherArgs Arbitrary text arguments otherArgs may be included after the
“--” end of arguments marker, which must follow any of the
above topaz arguments are included.
184 GemTalk Systems

	1 Getting Started with Topaz
	1.1 Getting started with Topaz
	Overview of a GemStone Session
	Remote Versus Linked Versions
	Invoking Topaz
	Topaz Commands
	Logging In to GemStone
	Logging In Linked
	Logging In RPC

	Setting Up a Login Initialization File .topazini
	Error handling and output
	Alternatives to automatic initialization
	Special care needed when setting gemnetid in .topazini

	Multiple Concurrent GemStone Sessions
	Multiple sessions in the RPC version of Topaz
	Multiple sessions in the Linked version of Topaz
	Topaz sessions vs. GemStone sessions

	Transaction state
	Other Types of Logins
	X509-Secured
	Solo Scripting

	Multiple Execution Environments

	1.2 Interacting with Topaz
	Help Command
	Interrupting Topaz and GemStone
	Logging Out
	Leaving Topaz

	1.3 Executing GemStone Smalltalk Expressions
	Strings vs. Unicode strings
	Controlling the Display of Results
	Display Level
	Setting Limits on Object Displays
	Displaying Variable Names, OOPs, and Byte Values

	Committing and Aborting Transactions
	Importing files: topaz commands and GemStone code
	Handling text outside the ASCII range
	Capturing Your Topaz Session In a File
	Writing to multiple log files

	1.4 Using Topaz for Scripting
	Topaz commands in text files
	Embedding Topaz within shell scripts
	Topaz Solo for Scripting
	Object creation and memory use

	Topaz solo connecting to a running stone
	Scripting with topaz solo using she-bang
	Topaz Solo Scripting using bash to pass arguments
	Invoking Operating System Functionality from Topaz

	1.5 Using Topaz for Code Development
	Creating Methods
	Using a Text Editor to Edit Methods
	Listing Methods, Categories, and other information
	Filing Out Classes and Methods
	Code outside the ASCII range

	1.6 Advanced Topaz features
	Structural Access To Objects
	Examining Instance Variables with Structural Access

	Specifying Objects
	Object Specification Formats

	Topaz Variables
	Creating Variables
	Displaying Current Variable Definitions
	Clearing Variable Definitions

	Sending Messages

	2 Debugging Your GemStone Smalltalk Code
	2.1 Step Points and Breakpoints
	Breakpoints

	2.2 Examining the GemStone Smalltalk Call Stack
	Proceeding After a Breakpoint
	Examining and Modifying Temporaries and Arguments
	Select a Context for Examination and Debugging
	Multiple Call Stacks

	2.3 Debugging in a different Gem

	3 Command Dictionary
	Command Syntax
	ABORT
	ALLSTACKS
	BEGIN
	BREAK
	CATEGORY
	CLASSMETHOD
	COMMIT
	CONTINUE/C
	DEBUGGEM
	DEBUGRUN
	DEFINE
	DISASSEM
	DISPLAY
	DOIT
	DOWN
	DUMPOBJ
	EDIT
	ENV
	ERRORCOUNT
	EXEC
	EXIT
	EXITIFNOERROR
	EXPECTBUG
	EXPECTERROR
	EXPECTVALUE
	FILEFORMAT
	FILEOUT
	FR_1
	FR_CLS
	FRAME
	GCITRACE
	HELP
	HIERARCHY
	HISTORY
	IFERR
	IFERR_CLEAR
	IFERR_LIST
	IFERROR
	IMPLEMENTORS
	INPUT
	INSPECT
	INTERP
	LEVEL
	LIMIT
	LIST
	LISTW / L
	LITERALS
	LOADUA
	LOGIN
	LOGOUT
	LOGOUTIFLOGGEDIN
	LOOKUP
	METHOD
	NBRESULT
	NBRUN
	NBSTEP
	OBJ1 / OBJ2
	OBJ1Z / OBJ2Z
	OBJECT
	OMIT
	OUTPUT
	PAUSEFORDEBUG
	PKGLOOKUP
	POLLFORSIGNAL
	PRINTIT
	PROTECTMETHODS
	QUIT
	RELEASEALL
	REMARK
	REMOVEALLCLASSMETHODS
	REMOVEALLMETHODS
	RUN
	RUNBLOCK
	RUNENV envId
	SEND
	SENDERS
	SET
	SHELL
	STACK
	STATUS
	STEP
	STK
	STRINGS
	STRINGSIC
	SUBCLASSES
	SUBHIERARCHY
	TEMPORARY
	TFILE
	THREAD
	THREADS
	TIME
	TMETHOD
	TOPAZWAITFORDEBUG
	UNPROTECTMETHODS
	UP
	WHERE

	A Topaz Command-Line Syntax

