GemStone®

GemStone/S 64 Bit "
Programming Guide

Version 3.7
September 2023

@G[Ml/\l_l\

SYSTEMS

GemStone/S 64 Bit 3.7 Programming Guide

INTELLECTUAL PROPERTY OWNERSHIP

This documentation is furnished for informational use only and is subject to change without notice. GemTalk Systems LLC
assumes no responsibility or liability for any errors or inaccuracies that may appear in this documentation.

Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.

The software installed in accordance with this documentation is copyrighted and licensed by GemTalk Systems under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.

Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of GemTalk Systems.

This software is provided by GemTalk Systems LLC and contributors “as is” and any expressed or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no
event shall GemTalk Systems LLC or any contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS

This software product, its documentation, and its user interface © 1986-2023 GemTalk Systems LLC. All rights reserved by
GemTalk Systems.

PATENTS

GemStone software has been covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent
Number 6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with
persistent object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”.

TRADEMARKS

GemTalk, GemStone, GemBuilder, GemConnect, and the GemStone and GemTalk logos are trademarks or registered
trademarks of GemTalk Systems LLC, or of VMware, Inc., previously of GemStone Systems, Inc.

UNIX is a registered trademark of The Open Group.
Intel is a registered trademarks of Intel Corporation.
Microsoft, Windows, Windows Server, and Azure are registered trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds and others.

Red Hat, Red Hat Enterprise Linux, RHEL, and CentOS are trademarks or registered trademarks of Red Hat, Inc.
AlmaLinux is a trademark or registered trademark of AlmaLinux OS Foundation.

Rocky Linux is a trademark or registered trademark of Rocky Enterprise Software Foundation.

Ubuntu is a registered trademark of Canonical Ltd., Inc.

AIX, Power, POWER, Power8, Power9, and VisualAge are trademarks or registered trademarks of International Business
Machines Corporation.

Apple, Mac, macOS, and Macintosh are trademarks of Apple Inc.

Instantiations is a registered trademarks of Instantiations, Inc.

CINCOM, Cincom Smalltalk, and VisualWorks are trademarks or registered trademarks of Cincom Systems, Inc.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

RabbitMQ is a trademark of VMware, Inc.

Prometheus is a registered trademark of The Linux Foundation.

Grafana is a registered trademark of Raintank, Inc. dba Grafana Labs.

Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. GemTalk Systems cannot attest to the accuracy of all trademark

information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.

GemTalk Systems

15220 NW Greenbrier Parkway
Suite 240

Beaverton, OR 97006

2 GemTalk Systems

Preface

About This Documentation

This manual describes the GemStone Smalltalk language and programming environment
provided by the GemStone/S 64 Bit™ product, and how to use many of the features
available in GemStone Smalltalk.

This manual is intended for users that are at least somewhat familiar with the Smalltalk
programming language and with its programming environment. Appendix A includes an
overview of the Smalltalk language syntax.

Terminology Conventions

The term “GemStone” is used to refer to the server products GemStone/S 64 Bit and
GemStone/S, and the GemStone family of products; the GemStone Smalltalk
programming language; and may also be used to refer to the company, now GemTalk
Systems, previously GemStone Systems, Inc. and a division of VMware, Inc.

Typographical Conventions

This document uses the following typographical conventions:

» Smalltalk methods, GemStone environment variables, operating system file names and
paths, listings, and prompts are shown in monospace typeface.

» Responses from GemStone commands are shown in an underlined typeface.
» Place holders that are meant to be replaced with real values are shown in italic typeface.
» Optional arguments and terms are enclosed in [square brackets].

» Alternative arguments and terms are separated by a vertical bar (|).

GemTalk Systems 3

GemStone/S 64 Bit 3.7 Programming Guide

Executing the Examples

This manual includes many examples. These can be executed using either the Topaz
command-line interface, or using tools such as GemBuilder for Smalltalk (GBS) or another
interface to the GemStone/S server. GBS or other IDE tools provide browsers and related
tools that make it easier to define classes and methods.

The text of the GemStone Smalltalk code examples themselves (excluding the Topaz
commands) is the same whichever way you enter it. The example results commonly but
not always use topaz display conventions, and may be simplified for clarity.

When using Topaz, you must include extra commands to begin and end an example. An
“%” is used to indicate the command is completed and executed, including in examples
that omit a topaz start execution command. Refer to the Topaz Users Guide for more
information on executing code in topaz.

Technical Support

Support Website
gemtalksystems.com

GemTalk’s website provides a variety of resources to help you use GemTalk products:

» Documentation for the current and for previous released versions of all GemTalk
products, in PDF form.

» Product download for the current and selected recent versions of GemTalk software.

» Bugnotes, identifying performance issues or error conditions that you may encounter
when using a GemTalk product.

» Supplemental Documentation and TechTips, providing information and instructions
that are not in the regular documentation.

» Compatibility matrices, listing supported platforms for GemTalk product versions.

We recommend checking this site on a regular basis for the latest updates.

Help Requests

GemTalk Technical Support is limited to customers with current support contracts.
Requests for technical assistance may be submitted online (including by email), or by
telephone. We recommend you use telephone contact only for urgent requests that require
immediate evaluation, such as a production system down. The support website is the
preferred way to contact Technical Support.

Website: techsupport.gemtalksystems.com
Email: techsupport@gemtalksystems.com

Telephone: (800) 243-4772 or (503) 766-4702

4 GemTalk Systems

http://techsupport.gemtalksystems.com
https://gemtalksystems.com

GemStone/S 64 Bit 3.7 Programming Guide

Please include the following, in addition to a description of the issue:

» The versions of GemStone/S 64 Bit and of all related GemTalk products, and of any
other related products, such as client Smalltalk products, and the operating system and
version you are using.

» Exact error message received, if any, including log files and statmonitor data if
appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through Friday,
excluding GemTalk holidays.

24x7 Emergency Technical Support

GemTalk offers, at an additional charge, 24x7 emergency technical support. This support
entitles customers to contact us 24 hours a day, 7 days a week, 365 days a year, for issues
impacting a production system. For more details, contact GemTalk Support Renewals.

Training and Consulting

GemTalk Professional Services provide consulting to help you succeed with GemStone
products. Training for GemStone/S is available at your location, and training courses are
offered periodically at our offices in Beaverton, Oregon. Contact GemTalk Professional
Services for more details or to obtain consulting services.

GemTalk Systems 5

GemStone/S 64 Bit 3.7 Programming Guide

GemTalk Systems

Table of Contents

Chapter 1. Introduction to GemStone

1.1 GemStone Overview.

Multi-User.
Programmable
Scalable
Object Database.
Partition Between Client
Connect to Outside Data

1.2 GemStone Services.
Transactions and Concurrency Control
Login Security and Account Management.
Services To Manage the GemStone Repository
1.3 GemStone Smalltalk

GemStone Sessions . . .

andServer
SOUrces. e

Monitoring your application oo L Lo
Interapplication Communications

1.4 Process Architecture.

Gem Process.
Stone Process
NetLDI.
Shared Page Cache . . .
Extents and Repositories
Transaction Log.

Chapter 2. Class Creation

2.1 Subclass Creation.

GemTalk Systems

Implementation Formats

25

25
25
25
26
26
26
27
28
28
28
29
29
30
30
31
31
31
31
32
32
32
32

33

33
34

GemStone/S 64 Bit 3.7 Programming Guide

Non-Indexable objects. 34

Indexable Objects 34
NonSequencableCollection (NSC) 35

Special. 35

Class Variables and Other Types of Variables 35
Dynamic Instance Variables L. 36
Additional Class Creation Protocol 37

2.2 Creating Classes With Invariant Instances. 39
Per-Object Invariance. L 39
Invariance for All InstancesofaClass 39

2.3 Creating Classes with Special Cases of Persistence 40
Non-Persistent Classes 40
DbTransient 40

2.4 Customer-defined Special classes. 41
Money example 42
Chapter 3. Resolving Names and Sharing Objects 43
31Sharing Objects 43
3.2 The UserProfile’s Symbol List 44
What's In Your Symbol List?. 44
Examining Your Symbol List. 44
Inserting and Removing Dictionaries from Your Symbol List 46
Finding Out Which Dictionary Names an Object 48

The Transient Symbol List, 49
Updating Symbol Lists L 50

3.3 Using Your Symbol Dictionaries 50
Publishers, Subscribers and the Published Dictionary 51
Chapter 4. Collection and Stream Classes 53
4.1 Introductionto Collections. 53
Protocol Common to All Collections 55
CreatingInstances. 55

Enumerating L 55

Collections in multi session environment 56
Conflictingupdates 56

Visibility and ordering oL 56
Collectionclasses 56
Dictionaryclasses 57
Internal Dictionary Structure., 57

Dictionary and KeyValueDictionary 57
KeySoftValueDictionary 57
SequenceableCollectionclasses L ... 58
Copying. e 58

8 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

Array 59
SortedCollection. 59

StreamClasses 60
PositionableStream and Position 0 0L 60

AppendStream Lo 61
ReadByteStream.o Lo 61
UnorderedCollectionclasses 61

Union, Intersection, and Difference. 62

4.2 Reduced-Conflict Collection Classes. 63
ReArray e 63
NSC/UnorderedCollectionclasses., 63
RcldentityBago 63
RcLowMaintenanceldentityBag., 64

ReldentitySet 64
RcKeyValueDictionary. 64
Queueclasses e 64

GsPipe 65

RcPipe 65

RcQueue 65

43GsBitmap 66
GsBitmapsand CHeapmemory 67
GsBitmaps and theirobjects. L. 67
GsBitmaps methods for repository analysis. 67
Bitmapfiles 68

Page order Bitmap files o o 68

4.4 Sorting the objectsina collection. 69
DefaultSort 69

Sorting Applicationobjects o Lo Lo 70

Sorting in multipleorders L 71

SortBlocks 71

Sorting Large Collections 72
Chapter 5. String Classes and Collation 73
5.1 Characters and Unicode. L o 73
Empty string canonicalization. 74

Unicode and the Unicode Database 74
526tringclasses 75
Traditional Strings L Lo 75
UnicodeStrings 76

String equality, ordering, and interoperation 76

Other String-likeclasses o L. 76
Symbol. 76

ByteArray 77

Utf8. . . 77

U6 e 77

GemTalk Systems 9

GemStone/S 64 Bit 3.7 Programming Guide

String protocol. 78
Creating Strings 78

Concatenating Strings. Lo 0 L. 78

Converting between String classes and encodings. 78

String Transformations 79

Equality and Identity 79

Searching and Pattern matching 80

5.3 String Sorting and Collation. oL L L 81
ComparisonMode 82
StringConfiguration. 82
Auto-conversion. L 82

Legacy String Comparison Mode for Traditional Strings. 83
Unicode Comparison Mode and ICU Collation 83
IcuLocale 84

IcuCollator 84

Customizing Sort 85
IcuSortedCollection 87

ICU libraries and versioning. 88

ICU and Unicode versioning 88
IcuLibraryVersion 88

54 Encrypting Strings 89
Chapter 6. Numeric Classes 91
6.11Integers. 91
Smalllnteger 92
Largelnteger 92
PrintingIntegers. L 92

6.2 Binary Floating Point. L L 92
SmallDouble 93

Float. e 93
Signalling Exception rather than returning Exceptional Float 94

Literal Floats. 95
Printing Binary Floating Points 95

6.3 Other Rational Numbers. 96
Fractions 96
SmallFraction. 97

Fraction. 97
ScaledDecimals 97
SmallScaledDecimal L 97

ScaledDecimal 98

FixedPoints. 98
DecimalFloat. 98
Summary of literal syntax L Lo oL 99
Custom numericliterals L L. 99

6.4 Result classes, Conversion, and Rounding. 100

10 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

Conversion 100
Truncationand Rounding L L. 101
6.5Datesand Times 101
Date e 101
SmallDate 101

Instance Creation 102

Formatting for Instance Creation and Printing 102

Time e 102
SmallTime 102

Instance Creation 103

Formatting for Instance Creation and Printing 103

Timeoffset. 103

DateTime 103
Instance Creation 104

Formatting for Instance Creation and Printing 104

DateAndTime. 105
SmallDateAndTime. L L 105

Instance Creation 105

Formatting for Instance Creation and Printing 105

TimeZone 106

6.6 Internationalizing L L L 107
Dates in GemStone logfiles L L L L. 107
Internationalizing Decimal Points using Locale. 107
Smalltalk code requires the period separator 108

6.7Random Numbers L 109
Universally unique identifiers (UUIDs) 109
Random Number Generator 109
Chapter 7. Files and Directories 113
7.1 Accessing Filesusing GsFile 113
Clientvs.Serverfiles. 113
Specifying Files 114
CreatingaFile. 114
OpeningaPFile 115
ClosingaFileorFiles 116
WritingtoaFile. L 116
Reading fromaFile. L 117
Positioning. L L 118

Testing Files. 118
Renaming Files L 118
Removing Files 119
Examining a Directory o o 119
GsFileErrors 120
Loggingtostdout. L 120
Ontheserver (Gem) 121

GemTalk Systems 11

GemStone/S 64 Bit 3.7 Programming Guide

On theclient (GCIclient) 121
72FileSystem 121
FileReference. 121
FileLocator 122
FileSystem 122
Specifying a FileReference 123
Working Directory and other environment-independent paths 123
Reading from and WritingtoaFile. 123
Closing filestreams 124
Fileencodings L 124

Binary Streams.o 124
Operations on Files and Directories. 124
Create. 124

Delete 125

Move 125

Copy. . . o o 125
Rename 125
Informationqueries. Lo L 125
Statusof afileordirectory L L oL 125
Information aboutafile.0 L. 126

File permissions 126
Decomposition of filenameand path 127

Listing Directoriesand Files 127
Supporting Classes 127
FsFileDescriptor 127
ZincStream Classes 128
ErrorClasses 128
Pathclasses. 128
Openingoptions. 128
Storeclasses 128
Resolverclasses 128
FFlsupportclasses. i 128
Chapter 8. Indexes and Querying 129
BLOVerview 130
GemStone Indexesand Queries s 131
Indexes 131
GsQueries. e e 131
Deciding what to optimize 132
Overview of the steps in creating and using indexed queries 132
Managing Indexes. L L 133

Special Syntax for Indexing L. 133
Historic indexing syntax 134
LastElementClass 134
Optimizedclasses 134

12

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

Usingotherclasses, 135

Comparing datatypes 135
Stringsinindexes L L L 135

Redefining Comparison Messages 136

82 Defining Queries. e 137
Query PredicateSyntax L Lo 137
Predicate Terms. 137

Combining Predicates using Boolean Logic 138

Combining Range Predicates 138

Creatinga GsQuery 138

Query Variables. L L 138

83 CreatingIndexes 139
Equality and Identity Indexes. o oL 139
Btreeand Legacy Indexes L L o 140
CreatingtheIndex 140
Equality Indexesonstrings L L L oL 141
Repositories in Legacy String Comparisonmode 142

Repositories in Unicode ComparisonMode 142
ImplicitIndexes. 143
GsIndexOptions e 143
Combiningoptions 144

Defaultoptions L 144

The Options in GsIndexOptions. 144
Reduced-Conflict 145

Optional pathTerms 145

8.4 Results of Executinga GsQuery 146
GsQuery’s Collection protocol 146

GsQuery enumeration methods accepting blocks. 147
Queryresultsas Streams. L L Lo 149
Limitations on streamable queries 149

8.5 Enumerated and Set-valued Indexes. 0. 151
Enumerated path terms in indexes and queries. 151
Restrictions on predicates with enumerated pathTerms 151

Indexes and Queries with collectionsonthepath 151
Set-valued queryresults L L oL 152

Restrictions on predicates in set-valued queries. 152

8.6 ManagingIndexes L L 152
While Indexes are Being Created 152
Queries during index creation. 0 0L 153

Auto-commit Lo 153

Indexes on temporary collections. L L L. 154
Inquiring About Indexes. L L Lo 154
Removing Indexes L L 154

To remove indexes based on a GsIndexSpec. 154

To remove indexes using IndexManager. 155
RebuildingIndexes L o L 155

GemTalk Systems 13

GemStone/S 64 Bit 3.7 Programming Guide

Indexing Errors 156
AuditingIndexes L L 156

8.7 Indexing and Performance. L L oL L L 157
Typeofindex 157
Dataupdates. 157
Formulating queries and performance 158
Auto-optimize L 158

8.8 Historic Indexing APl differences. 158
Index creation using UnorderedCollection protocol 158
Internal legacy vs. btreePlus indexing structures 159

String and Unicode Equality Indexes 159
Reduced-conflict Equality Indexes. 159

Queries using Selection Blocks.o o0 oL 159
Executing Selection Block Queries. 160
Managingindexes. 161
Information aboutindexes o oL 161
RemovingIndexes. 161

Chapter 9. Transactions and Concurrency Control 163
9.1 GemStone’s Conflict Management 163
Noteon Terminology, 163
Snapshot Views and Transactions 164
Transaction State and TransactionModes 166
Reading and Writing in Transactions. 167
Reading and Writing Outside of Transactions. 168

When Should You Commit a Transaction?. 168

Nested In-memory Transactions. 168

9.2 How GemStone Detects and Manages Conflict 169
Concurrency Management. 169
Committing Transactions. 170
Handling Commit Failure in a Transaction 170
Transaction Conflicts 170

More details about transaction conflicts 172
Indexes and Concurrency Control. 172
Aborting Transactions L 173
Updating the View Without Committing or Aborting 173

Being Signaled To Abort 174

Being Signaled to continueTransaction 174

Handlers for abort or continueTransaction notifications 175

9.3 Controlling Concurrent AccesswithLocks 175
Lock Types. 175
ReadLocks 176

WriteLocks. 176
AcquiringLocks. L 177
LockDenial. 177

14 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

Deadlocks 178

Dirty Locks 178

Locking Collections of Objects Efficiently 179
UpgradingLocks L L 181

Locking and Indexed Collections. 181
Removing or Releasing Locks. 182
Releasing Locks Upon Aborting or Committing 182

Inquiring About Locks. Lo o 183
Application Write Locks. L 184

9.4 Classes That Reduce the Chance of Conflict 185
RcCounter. 185
Reduced-Conflict CollectionClasses. 186
RcArray 187

RcldentityBag 187
RcLowMaintenanceldentityBag and RcldentitySet. 188
RcKeyValueDictionary 188

GsPipe 188

RcPipe 188

RcQueue 189

Chapter 10. Object Security and Authorization 191
10.1 How GemStone Security Works. L L L oo 191
Login Authorization L 192

The UserProfile 192

System Privileges. 192
Object-level Security L L 192
GsObjectSecurityPolicy. L Lo 193

10.2 Assigning Objects to Security Policies 195
Default Security Policy and Current Security Policy 195

Objects and Security Policies L L. 196
Configuring Authorization for an Object Security Policy 196

How GemStone Responds to Unauthorized Access 197

Owner, Group, and World Authorization 197

Predefined GsObjectSecurityPolicies. 198
GsObjectSecurityPolicy names 199

Changing the Security Policy foran Object 199

Revoking Your Own Authorization: a Side Effect. 201

Finding Out Which Objects Are Protected by a Security Policy 202

10.3 Application Example. L 202
10.4 Development Example. L L L o 206
10.5 Planning Security Policies for User Access. 206
Protecting the ApplicationClasses 206
CodeModification privilege 206

Planning Authorization for Data Objects. 207

Planning Groups 208

GemTalk Systems 15

GemStone/S 64 Bit 3.7 Programming Guide

Planning Security Policies 210

Developing the Application 210

Setting Up Security Policies for Joint Development 210

Making the Application Accessible for Testing 212

Moving the Application into a Production Environment 213

Security Policy Assignment for User-created Objects. 213

10.6 Privileged Protocol for Class GsObjectSecurityPolicy. 214
Chapter 11. Class versions and Instance Migration 217
111 Versionsof Classes, 217
Defininga New Version 218

New Versions and Subclasses 218

New Versions and ReferencesinMethods 218

Class Variables and Class Instance Variables 219

Class versioning and Classoptions 219

112 ClassHistory 219
Defining a Class as a new version of an existing Class 220
AccessingaClassHistory 221
Assigningtoa Class History 221

113 Migrating Objects 221
Migration Destinations 222
Bypassing the Migration Destination 222

Migrating Instances that Participate inanIndex. 223

Default Instance Variable Mappings 224
Customized Instance Variable Mappings. 225
Transforming Variable Values. 226
Finding Instances 227

Tuning migration and managing memory 228

Using GsBitmaps to manage memory for large resultsets 229

Tuning system resource use when finding instances 229

Committing the migrationinchunks 229

Migrating instances in PageOrder. 230

11.4 Multi-threaded instance migration 232
InstVarMappingArray o L. 232

Example. 233

Chapter 12. Encryption and Validation 235
12.1 Overview for SSL keys and certificates 236
GsTIsCredential 236
Creating a GsTIsCredential. 236
Verifying public/private key pairs 237
Encryption and signing algorithms 237

122 Checksumsand HMAC. L o 238

16 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

Checksums 238

HMAC (Hash-based message authenticationcodes). 238

12.3 Symmetric-Key Encryption Lo o L oo 239
Encryption. L 239

Example 240

12.4 Digital Signatures. L L 240
125 Digital Envelopes. L 241
Creating the GsDigitalEnvelope. 242

Using the GsDigitalEnvelope 243

Chapter 13. Operating System Access 245
13.1 Executing Operating System Commands 246
Privileges and limiting OSaccess. 246
performOnServer: for simplecommands 0 0L 246
Usingothershells. 247

GsHostProcess for more complex interactions 247

Using execute:input: to pass datatostdin, 248

Using fork: for interactive commands 248

Connecting stdin, stdout, and stderr 248

13.2 Setting environment variables. o L0 249
13.3 Creating and Using Sockets 249
GsSocket and GsSignallingSocket oL L oL 250
Establishing the connection 250
Communicationonthesocket. 250

Closing thesocket. 250

Socket Configuration. L. 251
GsSecureSocket. L 251
Certificates, keys, and passphrases 251

Enable or disable verifying CA Certificate. 252

Set certificate, private key, and passphrase 253

Setup the Cipherlist 254

Establishing the connection 255
Communicationonthesocket. 255

Closing thesocket. 255

HTTPS connection 256

Errorhandling 256
GsSocket 256
GsSecureSocket 256
GsSecureSocket pre-shared keys L L L Lo oL 257
TLSversionhandling. 257
Exampleinimage. L 257

13.4 sshand sftpusingOpenSSL. L L L o 258
SSH with GsSshSocket. 258
Creating the SSH connection 258

SSHoperations 258

GemTalk Systems 17

GemStone/S 64 Bit 3.7 Programming Guide

SFTP with GsSftpSocket 259
Creating Sftp connection 259

Sftpoperations. 259
GsSftpRemoteFile for operations on remote files 259
13.5SerializingData L 261
PassiveObject 261

JSON . .o 262
Chapter 14. Signals and Notifiers 265
14.1 Communicating BetweenSessions 0L 265
14.2 Object Change Notification. 266
Setting UpaNotify Set L 266
Adding an Object toa Notify Set. 266

Adding a Collection toa Notify Set 268

Listing Your Notify Set 269

Removing Objects From Your Notify Set 269

Notification of New Objects 269
Receiving Object Change Notification. 270

Reading the Set of Signaled Objects 271

Polling for Changes toObjects. 271
Troubleshooting. 272
Frequently Changing Objects. 272

Special Classes i e 272

Methods for Object Notification. 274

143 Gem-to-Gem Signaling L L o 274
SendingaSignal. L L L 275

Legacy protocol tosend signals 276
ReceivingaSignal. L L 276

Polling. 277

Receiving a Notification. 278

14.4 Other Signal-Related Issues 279
InactiveGem L 279

Dealing With Signal Overflow. 279
Sending Large Amountsof Data. 280

Maintaining Signals and Notification When Users LogOut 280
Chapter 15. Handling Exceptions 281
15.1 The Exception Class Hierarchy. 281
15.2 Signaling Exceptions L o 283
153 Handling Exceptions 284
Dynamic (Stack-Based) Handlers 284
SelectingaHandler L L o 285
Flowof Control 287

18 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

DefaultHandlers 288
Default Actions 289
15.4 The Legacy Exception Handling Framework 290
Dynamic (Stack-Based) Exception Handler 290
Installing a Dynamic (Stack-Based) Exception Handler 290

Default (Static) Exception Handlers 291
Installing a Default (Static) Exception Handler 291
GemStone Event Exceptions. 292
Flowof Control. 293
Signaling Other ExceptionHandlers 295
Removing ExceptionHandlers 295
Recursive Errors. 296
Raising Exceptions L 296
ANSlIntegration L 297
Chapter 16. Performance and Optimization 299
16.1 Profiling Smalltalk Execution 0 oL 300
Timetoexecuteablock 300
CPUTIme e 300
Elapsed Time 300
ProfMonitor. 301
Sampleintervals. 301
Reporting limits. 301
Reports. 302
Temporary resultsfile L o Lo 302
Realvs. CPUtime. 302
Profiling Code. 303
Convenience Profiling of a Blockof Code 303
Background Profiling. 304
Manual Profilingo 304

Saving a ProfMonitor for later analysis. 305

The Profile Report 306
Profiling Beyond Performance 309
Object Creation Tracking. 310
Memory Use Profiling 310

16.2 Clustering Objects for Faster Retrieval 311
Will Clustering Solve the Problem? 311
ClusterBuckets 312
Using Existing Cluster Buckets 312
Creating New Cluster Buckets 313

Cluster Buckets and Concurrency. 313

Cluster Bucketsand Indexing 314
Clustering Objects 314
The Basic Clustering Message 314
Depth-First Clustering 316

GemTalk Systems 19

GemStone/S 64 Bit 3.7 Programming Guide

Assigning Cluster Buckets 316

Clusteringand Memory Use 317

Using Several Cluster Buckets 317

Clustering Class Objects 317

Maintaining Clusters L L 318
Determining an Object’s Location 318

Why Do Objects Move? 319

16.3 Modifying Cache Sizes for Better Performance 320
GemStoneCaches 320
Temporary ObjectSpace 320

Shared PageCache 320

Getting Rid of Non-Persistent Objects 321

16.4 Managing VM Memory. 322
Large Working Set. 322

Class Hierarchy 322

UserAction Considerations. 322

ExportedSet 323

Debugging out of memoryerrors L L. 323

Signal on low memory condition L L oL 323
Methods for Computing Temporary Object Space 324
Statistics for monitoring memory use. 325

16.5 NotTranloggedGlobals 327
16.6 Other OptimizationHints 328
Chapter 17. Working with Classes and Methods 331
17.1 Creating and Removing Methods 331
Defining Simple Accessing and Updating Methods. 331
CompilingMethods. o 332
RemovingMethods L 333
Pragmas e 333
Pragmaclass 334

17.2 Information about Class and Methods 335
Information abouttheClass 335
Information about Instance, Class, and Shared Pool variables. 335
Information about Method Selectors 335
Accessing and Managing Method Categories 336
SpecificMethods 336

173 Transient Methods. 336
17.4 ClassOrganizer. oottt e 337
Examples. L 338

17.5 Handling Deprecated Methods 339
Deprecated handling 339
Deprecationlog 340

Listing deprecated methods 0 0. 340
Determining senders of deprecated methods 340

20

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

17.6 File In and File Out of GemStonecode 341
Fileout 341

Filein. 341
GsFileIn 341
Chapter 18. GemStone System Features 343
181 HiddenSets 343
Sets still accessed via System methods. L L 0oL 344
NotifySet. 344
ExportedDirtyObjs and TrackedDirtyObjs. 344

PureExportSet and GeiTrackedObjs 344

18.2 SessionTemps and access to SessionState 345
SessionState 345

183 Shared Counters 345
AppStatShared Counters L 346
Persistent Shared Counters 346

184 GsEventLog 347
Addingevents. 347

Querying and reporting L L oL 347

Deletingevents L 348

Chapter 19. The Foreign Function Interface 349
19.1 Overview of the Foreign Function Interface., 349
192 Usingthe FFL 350
CLibrary: defining the compiled Cor C++library 350
CCallout: function definitions in GemStone. 350
CHeader: Parsing the Cheaderfile. 351
CDeclaration: Finding detailsona C function 351
Creating a Class and Methods from the CHeader 352
CByteArray: Allocating memory fordata 352
Complex datatypes. 353

Making FFlcalls 353
Executing a CCallout createdbyhand 354

Execute CHeader-generated definition. 354

Arguments and Return Values oo Lo oL 354

String typearguments L L Lo Lo o 355

Variable Arguments L L o 355
CCalloutStructs: Using C Structures passed by value 355
CPointer e 356
ErrnoHandling. 356
CCallin: Creating and invoking callbacks 356
Ctypesymbols 357
Limitations with native code disabled, 359

GemTalk Systems 21

GemStone/S 64 Bit 3.7 Programming Guide

193 Exampleusing ZIib L 359
Parsing theheaderfile 359

Using CHeader wrapper methods to createaclass 364

19.4 Example using CCalloutStructs and variable arguments with RabbitMQ® 366
Hand creation of CCalloutStructs 367

Using CHeader wrapper methods to create CCalloutStructs 368

Further refinement: creating a convenience method. 369

Chapter 20. External Sessions 371
20 10Verview e 371
202 External Sessions 372
Setup the External Session L L L. 372
Creating the External Session 372

Avoiding passwordsincode. oo oL 373

Log in the External Session. 374
ExecutingCode 374
Important caution on Export Set of remote session 376
Exceptions 376

20.3 NRS and Login Parameter Support 377
ForaStone 378

ForaGem. 378

Convenience methods for common arguments 378

20.4 Special Cases of External Sessions. 379
Soloexternal sessions. o 379
Primitive-based external sessionson AIX 380

X509 external sessions 380
Chapter 21. Testing and SUnit 381
21.1 Application Testing 381
Thevalueoftesting 381
Writing good tests. 382

Why SUnit? 383
Portable SUnit classes and GemStone’s SUnitclasses. 383
Terminology: test errors vs. failures. 383

21.2 SUnit example: ExampleSetTest 384
Definethenew testing Class. 384

Define setUp and tearDownmethods. 384

Define the actual testingmethods. 385
Executethetests. L 385
Assertions and other claims in testmethods 386
Checking result value with assert: and deny:. 386

Checking for exceptions with should:raise:. 386

21.3 The SUnit Framework and Implementation 387

22 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

SUnit Core Classes 387
RunningaSingleTest 388
RunningaTestSuite, 389
Appendix A. GemStone Smalltalk Syntax 391
A1 GemStone and ANSI Smalltalk L oo oo 391
GemStone and ANSI limits L L L. 392
A2GemStoneSmalltalk. L Lo 392
HowtoCreateaNew Class. 393
Statements. 393
Comments. 393
Expressions 394

Literals 394

Numeric Literals 395

Character Literals. 395

String Literals 396

Symbol Literals 396

Array Literals 396

Variables and Variable Names 397
Assignment e 398
Message Expressions.o o 398
Reserved and Optimized Selectors 399
Conditionally Optimized Selectors 400

Messages as Expressions. Lo oo 400
Combining Message Expressions. 401
Cascaded Messagesot 402

Array Constructors. L 403

Path EXpressions i 404
Returning Values. L 404
A3Blocks. 405
Blocks with Arguments o 406

Blocks and Conditional Execution 406
FormattingCode L 408

A4 GemStone Smalltalk BNF.o o o 410
GemTalk Systems 23

GemStone/S 64 Bit 3.7 Programming Guide

24

GemTalk Systems

Chapter

Introduction to
GemStone

This chapter introduces you to the GemStone/S 64 Bit™ (GemStone) system. GemStone
provides a distributed, server-based, multi-user, transactional Smalltalk runtime system,
with the ability to partition the application between client and server.

GemStone provides enterprise-quality security, scalability, availability, and services for
managing and monitoring the repository.

1.1 GemStone Overview

Multi-User

GemStone can support thousands of concurrent users, object repositories of hundreds of
gigabytes, and sustained object transaction rates of hundreds of transactions per second.
Server processes manage the system, while user sessions support individual user activities.
Repository and server processes can be distributed among multiple machines, leveraging
shared memory and SMP.

Multiple user sessions can be active at the same time, and each user may have multiple
sessions open. A flexible naming scheme allows separate or shared namespaces for
individual users. Changes that users make to objects are committed in transactions, with
concurrency controls and locks ensuring that multi-user changes to objects are
coordinated. Security is provided at several levels, from login authorization to method
execution privileges and object access privileges.

Programmable

GemStone provides data definition, data manipulation, and query facilities in a single,
computationally complete language — GemStone Smalltalk. The GemStone Smalltalk
language offers built-in data types (classes), operators, and control structures comparable
in scope and power to those provided by languages such as C or Java, in addition to multi-
user concurrency and repository management services. All system-level facilities, such as
transaction control, user authorization, and so on, are accessible from GemStone Smalltalk.

GemTalk Systems 25

GemStone Overview GemStone/S 64 Bit 3.7 Programming Guide

Scalable

Object programming languages such as Smalltalk are highly efficient development tools.
Smalltalk exploits inheritance and code reuse and provides the flexibility of modeling real
world objects with self-contained software modules. Most Smalltalk implementations,
however, are memory based, and objects exist only in a single user’s image.

Like a single-user Smalltalk image, GemStone consists of classes, methods, instances and
meta objects. Persistence is established by attaching new objects to other persistent objects.
All objects are derived from a named root (AllUsers). Objects that have been attached and
committed to the repository are visible to all other authorized users.

However, since the GemStone repository is accessed through disk caches, it is not limited
in size by available memory. A GemStone repository can contain billions of objects, each
with a unique object identifier (known as an OOP — object-oriented pointer).

Object Database

GembStone lets you model information in structures as simple or complex as application
data requires. You can represent data objects in tables, hierarchies, networks, queues, or
any other structure or nested combination of structures that is appropriate.

Because you can represent information in forms that mirror the information’s natural
structure, the translation of user requests into executable queries can be much easier in
GemStone. You do not need to translate users’ keystrokes or menu selections into relational
algebra formulas, calculus expressions and procedural statements before the query can be
executed. See Chapter 8, “Indexes and Querying”.

Partition Between Client and Server

26

GemStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, Java, or any language that makes C calls. Objects created
from any of these languages are interoperable with objects created from the other
languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk classes,
Java classes, and C functions. These GemBuilder™ language interfaces allow you to move
objects between an application program and the GemStone repository, and to connect
client objects to GemStone objects. GemBuilder also provides remote messaging
capabilities, client replicates, and synchronization of changes.

GemStone’s interfaces include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone programming tools,
and a programming interface between the client application code and GemStone.
GemBuilder for Smalltalk contains a set of classes installed in a client Smalltalk image
that provides access to objects in a GemStone repository. Many of the client Smalltalk
kernel classes are mapped to equivalent GemStone classes, and additional class
mappings can be created by the application developer.

GemBuilder for Smalltalk is a separate product, and includes documentation
describing installation and use.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide GemStone Overview

GemBuilder for Java
GemBuilder for Java also has two parts: a set of GemStone programming tools, and a
programming interface between the client application code and GemStone.
GemBuilder for Java is a Java runtime package that provides a message-forwarding
interface between a Java client and a GemStone server, allowing access to objects in a
GembStone repository.

GemBuilder for Javais distributed as a separate product, and includes documentation
describing installation and use.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows programmers
to work with GemStone objects by importing them into the C program using structural

access, or by sending messages to objects in the repository through GemStone
Smalltalk.

GemBuilder for C is distributed with the server product. For more information on
GemBuilder for C, see the GemBuilder for C manual.

GsDevKit
GsDevKit, the open-source development kit for GemStone/S 64 Bit (formerly referred
to as GLASS or Seaside), provides a Pharo-compatible GemStone Smalltalk
environment. With the optional Seaside framework, you can create and deploy
desktop-like web applications.

GsDevKit and Seaside for GemStone are distributed as open-source products via
GitHub. For more information, see gemtalksystems.com/small-business/gsdevkit/.

Rowan and Jadeite
Rowan is an open-source code manager in GemStone, using git as a back end; Jadeite
is a Dolphin-based graphical user interface designed for Rowan. These are ongoing
development projects in preview state.

In addition to these interfaces, GemStone provides a command-line tool that allows you to
interact with server objects, execute code, and perform limited scripting;:

Topaz
Topaz is a GemStone programming environment that provides a scriptable command-
line interface to GemStone Smalltalk. Topaz is most commonly used for performing
repository maintenance operations. Topaz offers access to GemStone without
requiring a window manager or additional language interfaces. You can use Topaz in
conjunction with other GemStone development tools such as GemBuilder for C to
build comprehensive applications.

Topaz is part of the server distribution. For more information on Topaz, see the Topaz
User’s Guide.

Connect to Outside Data Sources

The productivity value of GemStone comes from coding in Smalltalk, but you may need or
want to call out to logic written elsewhere, as for instance specialized C libraries. GemStone
provides several ways to access external code from a GemStone session.

Foreign Function Interface (FFI)
FFI classes with GemStone allow you to invoke functions in existing C libraries. The

GemTalk Systems 27

http://gemtalksystems.com/small-business/gsdevkit/

GemStone Services GemStone/S 64 Bit 3.7 Programming Guide

argument and return data types are defined within GemStone Smalltalk to conform to
the C function definition. The FFI interface is part of the GemStone kernel, and is
documented in Chapter 19, “The Foreign Function Interface”.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks. You can use
GemBuilder for C to write these user actions, and invoke these user actions from
GemStone Smalltalk. The tools supporting user actions are part of the GemStone
kernel, and are documented in the GemBuilder for C manual.

GemConnect (Access to Oracle database)
GemStone uses the User Action mechanism to build the GemConnect™ product,
which provides access to relational database information from GemStone objects.
GemConnect is fully encapsulated and maintained in the GemStone object server.
GemConnect is distributed as a separate product, and includes documentation
describing installation and use.

1.2 GemStone Services

Transactions and Concurrency Control

Each GemStone session defines and maintains a consistent working environment for its
application program, presenting the user with a consistent snapshot view of the object
repository. The user works in an environment in which only his or her changes to objects
are visible. These changes are private to the user until the transaction is committed. The
effects of updates to the object repository by other users are minimized or invisible during
the transaction. GemStone then checks for consistency with other users” changes before
committing the transaction, and refuses to commit conflicting changes.

GemStone provides both optimistic and pessimistic approaches to managing concurrent
transactions, and supports explicit object locking for read or write. To allow users to
modify the same object in ways that do not actually conflict, such as two users adding to a
collection, GemStone extends the Collection class hierarchy by providing reduced-conflict
(Rc) classes that can be used in place of standard collection classes.

For more on transactions and reduced-conflict classes, See Chapter 9, “Transactions and
Concurrency Control”.

Login Security and Account Management

28

Compared to a single-user Smalltalk system, GemStone requires substantially more
security mechanisms and controls. As a tool for server implementation, multi-user
Smalltalk must handle requests from many users running a variety of applications, each of
which can require different accessibility of objects. Authentication and authorization are
the cornerstones of GemStone Smalltalk security.

Login Authentication
Before users can access system resources, they must be authenticated. Logins can be
done from any of the interfaces; in each case, GemStone requires a user ID and a
password, and a corresponding UserProfile must exist in GemStone. Authentication of
the user ID and password can be done using GemStone’s encryption, using UNIX, by
Lightweight Directory Access Protocol (LDAP), or using Kerberos. GemStone uses

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide GemStone Smalltalk

SRP and SSL/TLS to establish secure logins and certain types of interprocess
connections. Authentication and login security features are described in the System
Administration Guide.

Object-level Authorization
To control access to individual objects, GemStone provides object-level authorization.
Authorization enforcement is implemented at the lowest level of basic object access to
prevent users from circumventing the authorization checking. Read and write
authorization can be granted to single objects or groups of objects, for single users or
groups of users. See Chapter 10, “Object Security and Authorization”.

User Privileges
GemStone defines a set of privileges for controlling the use of certain system services.
Privileges determine whether the specific user is allowed to execute certain system
functions, usually ones only performed by the system administrator. Privileges are
described in the System Administration Guide.

Services To Manage the GemStone Repository

GembStone is capable of managing objects shared by thousands of users, running methods
that access billions of objects, and handling queries over large collections of objects by
using indexes. It can support large-scale deployments on multiple machines in a variety of
network configurations. All of this functionality requires a wide array of services for
management of the repository, the system processes, and user sessions. These services are
described in the Systern Administration Guide.

1.3 GemStone Smalltalk

GemStone Smalltalk is tailored to operate in a multi-user environment, with transaction
throughput and client communication as chief considerations. GemStone’s class library is
designed for multi-user access to objects. At the same time, its common characteristics with
other Smalltalks allow you to implement shared business objects with the same language
you use to build client applications. Since the same code can execute either on the client or
on the object server, you can easily move behavior from the client to the server for
application partitioning.

With a limited number of exceptions, GemStone Smalltalk supports the ANSI Smalltalk
standard.

No User Interface

Because GemStone is an object server, GemStone Smalltalk does not provide any classes for
screen presentation or user interface development. Graphical user interfaces, including
those for developing classes and methods as well as runtime user interfaces, are provided
by the client application. The client application uses a GemBuilder interface or a web
interface such as Seaside to communicate and interact with the GemStone server.

A significant part of programming with GemStone is designing the interactions between
various client runtime systems and the GemStone classes, methods, and objects on the
server.

GemTalk Systems 29

GemStone Smalltalk GemStone/S 64 Bit 3.7 Programming Guide

GemStone Sessions

The GemStone interfaces provide access to GemStone objects and mechanisms for running
GemStone methods in the server. This access is accomplished by establishing a session
with the GemStone object server. The process for establishing a session is tailored to the
language or user of each interface. In all cases, however, this process requires identification
of the GemStone object server to be used, the user ID for the login, and other information
required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of that
session, be it low-level object access and creation, or invocation of GemStone Smalltalk
methods.

Sessions allow multiple users to share objects. In fact, different sessions can access the same
repository in different ways, depending on the needs of the applications or users they are
supporting. For example, an employee may only be able to access employee names,
telephone extensions and department names through the human resources application,
while a manager may be able to access and change salary information as well.

Sessions also control transactions, which are the only way changes to the repository can be
committed. However, a passive session can run outside a transaction for better performance
and lower overhead. For example, a stock portfolio application that reports the current
value of a collection of stocks may run in a session outside a transaction until notified that
a price has changed in a stock object. The application would then start a transaction,
commit the change, and recalculate the portfolio value. It would then return to a passive
session state until the next change notification.

A session can be integrated with the application into a single process, called a linked
application. Each application can have only one linked session.

Alternatively, the session can run as a separate process and respond to remote procedure
calls (RPC calls) from the application. These sessions are called RPC applications. An
application may have multiple RPC sessions running simultaneously with each other and
a linked session.

System Management Classes

GemStone Smalltalk provides a number of classes that offer system management
functionality.

» The class System, which has no instances, provides class protocol to manage the
repository and individual session.

» The class Repository, which has a single instance named SystemRepository, provides
protocol for data management functions, such as extent creation and access, backup
and restore, and garbage collection.

» The class UserProfileSet, which has a single instance named AllUsers, provides
protocol to create and manage users.

Monitoring your application

30

GemStone includes statmonitor and Visual Stat Display (VSD) utilities, which allow you to
monitor and record, and view statistics about your application performance. This allows
precise tuning as well as detecting potential problems before they occur. GemStone also

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Process Architecture

includes profiling classes that allow you to optimize and tune your Smalltalk code for
maximum performance.

File In and File Out

GemStone Smalltalk allows you to file out source code for classes and methods, save the
resulting text file, and file it in to another repository. The GemStone class PassiveObject
also allows you to create a text representations of the binary objects, which can be written
to a file and read into another repository.

Interapplication Communications

GemStone Smalltalk provides several ways to send information from one currently logged-
in session to another:

» GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for the
application to repeatedly query the Gem for this information. Notification is optional,
and can be enabled for only those objects in which you are interested.

» Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

1.4 Process Architecture

GemStone provides the technology to build and execute applications that are designed to
be partitioned for execution over a distributed network. GemStone’s architecture provides
both scalability and maintainability. The following sections describe the main aspects of
GemStone architecture.

Gem Process

For each login, a GemStone session is established with a Gem process. The Gem runs
GemStone Smalltalk and processes messages from the client session. It provides the user
with a consistent snapshot view of the repository, and it manages the user’s session,
keeping track of the objects the users has accessed, paging objects in and out of memory as
needed, and performing dynamic garbage collection of temporary objects. A user
application is always connected to at least one Gem, and may have connections to many
Gems. Gems can be distributed on multiple, heterogeneous servers.

In addition to Gem Processes for user sessions, a running GemStone system includes a
number of maintenance Gem processes. These system Gems include the GeGems, which
handle the tasks of collecting objects that are no longer referenced and the SymbolGem,
which centralizes the creation of unique, canonical symbols.

Stone Process

The Stone process is the resource coordinator. One Stone process manages one repository.
The Stone synchronizes activities and ensures consistency as it processes requests to
commit transactions. Individual Gem processes communicate with the Stone through
interprocess channels.

GemTalk Systems 31

Process Architecture GemStone/S 64 Bit 3.7 Programming Guide

NetLDI

Most GemStone configurations will includes a network server process, known as a NetLDI
(Network Long Distance Information). The NetLDI is responsible for starting up
GemStone processes such as Gems, and coordinates startup when GemStone processes are
needed on a node other than the one the Stone is running on.

Shared Page Cache

The shared page cache (SPC) provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. The SPC is a large, contiguous area of
shared memory that is shared by the Stone and each Gem process on that host. Memory is
managed and allocated on pages within this shared memory. A cache is started on each
machine that runs a Stone monitor, Gem session process, or linked application.

The SPC also contains buffers for communications between Gems and the Stone. The
Shared Cache Monitor process initializes the shared memory cache, manages allocation to
the sessions, and dynamically adjusts this allocation to fit the workload. It also makes sure
that frequently accessed objects remain in memory, and that large objects queries do not
flush data from the cache. These controls allow complex applications to be run on the same
repository by multiple users without performance degradation.

Extents and Repositories

Extents are composed of multiple disk files or raw partitions. A repository, which is the
logical storage unit in which GemStone stores objects, is actually an ordered collection of
one or more extents.

Transaction Log

32

GemStone’s transaction log provides complete point-in-time roll-forward recovery. The
transaction log contents are composed by the Gem, and the Stone writes the tranlog using
asynchronous I/O. Commit performance is improved through I/O reduction, because
only log records need to be written, not many object pages. In addition, the object pages
stay in memory to be reused. Transaction logs may be on file systems or on raw devices.

GemTalk Systems

Chapter

2 Class Creation

The first thing you will want to do is create the classes that will implement your
application. This chapter describes class creation protocol, including some special features
that can apply to all instances of a class.

Subclass Creation (page 33)
explains how to define new GemStone classes, class implementation formats and other
ways classes can store data.

Creating Classes With Invariant Instances (page 39)
describes how to make objects invariant.

Creating Classes with Special Cases of Persistence (page 40)
explains how classes can be defined so that their instances or instance variables are not
stored in the repository.

Customer-defined Special classes (page 41)
describes how to customize the GemStone-supplied special classes to define your own
special classes.

2.1 Subclass Creation

Almost every class in the GemStone system understands a message that causes it to create
a subclass of itself.

Example 2.1

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #('AllAnimals')
classInstVars: #('AllOfSpecies')
poolDictionaries: #()
inDictionary: UserGlobals

GemTalk Systems 33

Subclass Creation GemStone/S 64 Bit 3.7 Programming Guide

This subclass creation message establishes a name ('Animal ') for the new class and
provides for three named instance variables ('habitat', 'name', and 'predator'), a
class variable ('AllAnimals"'), and a class instance variable (' Al10fSpecies'). The
new class is installed in the symbolDictionary UserGlobals of the user who executes this
code. You may also include reference to poolDictionaries, if this is useful for your
application. Pool dictionaries are included by value, not by name; in other words, you use
the reference to the pool dictionary, not a String,.

The String used for the new class’s name must follow the general rule for variable names
— that is, it must begin with an alphabetic character and its length must not exceed 1024
characters.

There are a number of subclass creation methods. The first keyword (in the example above,
subclass:) defines the implementation format — more on this in the next section.
Subclass creation methods with additional keywords are provided to provide other
information to use when creating the class.

Some GemStone server classes cannot be subclassed. This is an attribute of the class.
Execute class subclassesDisallowed to determine if a specific class can be subclassed.

Implementation Formats

34

Objects typically encapsulate data and behavior. The behavior is defined as methods on a
class and the data is stored in the object. The data may be stored in named instance
variables, indexed instance variables (Collection elements), or by value in specialized
internal structures.

The implementation format refers to how the basic structure of the objects are defined by
the class, which is done when the class is created. Implementation may be inherited from
the superclass, or by using specific subclass creation methods you can specify the
implementation format of the class.

Non-Indexable objects

Many types of objects have named instance variables, but no indexable variables. Objects
may have up to 2030 named instance variables, which are referred to by name in the code
for that class. This limit includes all inherited instance variables as well as instance
variables defined by the class.

This is the default format; subclass creation methods that begin with the subclass:
keyword will create classes of this format, if another format is not inherited.

Indexable Objects

Indexable objects have a variable number of elements, essentially instance variables that
are referenced by an Integer index; these are may be referred to as indexed instance
variables, varying instance variables, or unnamed instance variables. The number of an
object’s indexed instance variables can increase dynamically at run time, up to 2*°-1 (about
a trillion). There are two general cases of indexable objects:

Pointer-format
Pointer-format indexable objects allow the instance variables to refer to any other
object. Pointer-format objects may also have named instance variables.

Subclass creation methods that create indexed classes with pointer objects begin with
the keyword indexableSubclass:.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Subclass Creation

Byte-format
This format is used for objects with indexed instance variables that are specialized for
storing byte values, Smalllntegers in the range 0...255. Byte-format objects may not
have named instance variables.

Subclass creation methods that create byte indexable classes begin with
byteSubclass:.

You may not create byte-indexable subclasses of pointer-indexable classes, nor vice-versa,
nor can you create indexable subclasses of NSCs.

NonSequencableCollection (NSC)

These classes store data with neither names nor indexes. They are suited to applications in
which access is by value, rather than by name or position. Classes with this format are
subclasses of UnorderedCollection, and are the classes for which Indexes are implemented.

You cannot directly define classes with this format, although you can subclass from
existing kernel classes. Subclasses of NSC classes may have named instance variables, but
not indexed instance variables.

Special

Instances of a number of kernel classes are encoded entirely in the object identifier. Special
objects do not use up an object ID (i.e., are not in the object table), do not take up separate
space in the repository (beyond the original reference itself), and equal values always
compare as identical.

Specials include:
Character, Boolean, UndefinedObject,
Smalllnteger, SmallDouble, SmallFraction,
SmallScaledDecimal, SmallDate, SmallTime, SmallDateAndTime

Many of these have a limited range in which instances are special, and a corresponding
non-special class for out of range values.

You may create a limited number of your own special Classes, by modifying template
classes to encode your application data with 56 bits of the OOP value. This is described
under “Customer-defined Special classes” on page 41.

Class Variables and Other Types of Variables

The implementation formats defined in the last section define several types of instance
variables. Class definitions also include the following variable types:

Class variables
A class variable is a variable whose name and value are shared by a class, all of its
instances, its subclasses, and all of their instances. Both class and instance methods of
the class and its subclasses can refer to the variable. You can think of these variables as
falling somewhere between local and global in their scope.

Class instance variables
A class instance variable is a variable whose name and value are shared by a class, but
not by its instances. Subclasses inherit the variable’s name but not its value. Only class
methods of a class and its subclasses can refer to class instance variables. Class instance

GemTalk Systems 35

Subclass Creation GemStone/S 64 Bit 3.7 Programming Guide

variables are useful when a class and its subclasses need to share the same structure,
but not the same value, for a variable.

Pool variables
The pool variables are an Array of SymbolDictionary instances that are searched when
attempting to bind a variable name during instance method compilation. Pool
variables come after class variables and before globals in precedence. They are
typically used when methods in a number of classes share values.

For example, one could define a SymbolDictionary with a key of #'CR' and a value of
(Character codePoint: 13). If this SymbolDictionary were included in the class
definition as a pool dictionary, then instance methods in the class could use CR as a
way to reference the value and make the code more readable.

Global variables
Global variables are not tied to a class. They may be entries in a SymbolDictionary
referenced in the UserProfile’s SymbolList.

Dynamic Instance Variables

36

In addition to the fixed instance variables, which are the same for every instance of that
class, you may also add dynamic instance variables to most instances.

Dynamic instance variables are key/value pairs that are stored with the instance like other
instance variables, but may be added to specific instances of a class and not to other
instances, without changing the class definition.

You cannot add dynamic instance variables to invariant objects, nor to Specials, nor to
classes or metaclasses.

The maximum number of dynamic instance variables that can be added to an object is 255.
However, the maximum may be lower for classes with many instance variables, since an
object cannot be changed to a large object by adding dynamic instance variables. So, more
exactly, the actual limit for the number of dynamic instance variables is calculated:

(255 min: ((2034 - self class instSize) / 2)
To add a dynamic instance variable, set the value using:
anObject dynamicInstVarAt : nameSymbol put : value

For example, say you have an instance of Animal representing the Bald Eagle. Bald Eagles
are an endangered species, so you might want to add the legal and conservation
information to this instance, but not to other instances of Animals.

theBaldEagle dynamicInstVarAt: #legalStatus
put: 'Bald and Golden Eagle Protection Act'.

You can check what dynamic instance variables have been defined for an object:
topaz 1> printit
theBaldEagle dynamicInstanceVariables
%
an Array
#1 legalStatus

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Subclass Creation

and retrieve the stored value for a dynamic instance variable:
topaz 1> printit
theBaldEagle dynamicInstVarAt: #legalStatus
%
Bald and Golden Eagle Protection Act

If the Bald Eagle was no longer protected and this information was no longer needed, you
could remove the dynamic instance variable

theBaldEagle removeDynamicInstVar: #legalStatus

The name and data for dynamic instance variables are persisted in the repository like any
other instance variable data. Dynamic instance variables allow you to add instance
variables to instance of a class, without the need to migrate. However, dynamic instance
variables are less efficient than named instance variables, and make for code that is more
difficult to maintain.

Note that if you add a dynamic instance variable to an object, it does not impact any
existing equality semantics. If the dynamic instance variable should be considered when
determining if two objects are equal, you must add or update the implementation of = that
applies for that object (which may also involve updating hash); this is not recommended
for GemStone kernel classes, and should be done with caution if there may be existing
instance, since it can cause collection lookup problems.

Additional Class Creation Protocol

In addition to implementation format and variables, there are other features of classes that
can be, or must be, defined when the class is created. These are provided via subclass
creation methods with additional keywords.

The subclass creation methods follow the form in Example 2.2.

Example 2.2

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #('AllOfSpecies')
classInstVars: #('AllAnimals')
poolDictionaries: #()
inDictionary: UserGlobals
newVersionOf: Animal
description: 'Class describing Animals'
options: #()

The newVersionOf : allows you to create a new class that has the same classsHistory as
an existing class; this is covered in detail in Chapter 10. See “Versions of Classes” on
page 217.

The description: keyword allows you to provide documentation as part of the class
definition. You can also explicitly set the comment after the class has been created by using
the comment : method. For example:

Animal comment: 'Class describing Animal, created for the
Programmers Guide'.

GemTalk Systems 37

Subclass Creation GemStone/S 64 Bit 3.7 Programming Guide

The options: keyword allows you to specify a collection of symbols to defined specific
features of the new subclass. The options can include any of these:

#dbTransient See “DbTransient” on page 40 for details. This
option cannot be used in combination with
#instancesNonPersistent or
#instancesInvariant

#disallowGciStore For internal use

#instancesInvariant All instances of this class will be made invariant as
soon as they are committed. If any class is defined
with instancesInvariant, all its subclasses must
also have instancesInvariant.

Cannot be used in combination with
#instancesNonPersistent or #dbTransient

#instancesNonPersistent See “Non-Persistent Classes” on page 40 for
details. This option cannot be used in combination
with #dbTransient or #instancesInvariant

#logCreation Log the creation of this class, including if a new
class instance/ version is not created, to the gem
log or linked topaz output using GsFile
class>>gciLogServer:. This legacy option is
not persistant and not printed; to set class creation
logging for all classes, use SessionTemps
current at: #GsClass_logCreation put:
true.

#modifiable If this symbol is included, the class remains
modifiable after creation. No instances can be
created until you make the class unmodifiable by
sending it the message immediateInvariant

#noInheritOptions If this symbol is included, it must be first, and in
this case options are not inherited from the
superclass nor from an existing version of the
class. This applies to the options
#subclassesDisallowed,
#disallowGciStore, #traverseByCallback,
#dbTransient, #instancesNonPersistent,
and #instancesInvariant

#selfCanBeSpecial This is needed only when modifying superclass
hierarchy above classes with special format. It is
never inherited.

#subclassesDisallowed No subclasses of the newly created class are
permitted.
#traverseByCallback For internal use.

Note that some of these options are handled in specific ways when new versions of classes
are created. Class versioning and history are described in Chapter 11.

For more details on class creation protocol, refer to methods in the image.

38 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Creating Classes With Invariant Instances

In addition to the subclass creation methods described here, there are many other subclass
creation methods in the image, including methods with the keywords
inClassHistory:, isInvariant:, constraints:, isModifiable:, and
instancesInvariant:. These methods are deprecated, and should not be used,
although they remain to avoid problems with filing older code into the current image.

2.2 Creating Classes With Invariant Instances

For data that must not ever be changed, GemStone provides two ways to make objects
invariant or unchangeable. These are object-level invariance, and class-level invariance.

Per-Object Invariance

Any object can be made invariant by sending it the message immediateInvariant (a
method defined by class Object). This mechanism provides a form of write-protecting
objects that is useful for maintaining the integrity of your database. Once
immediateInvariant is sent to an object, no modifications can be made to any of the
object’s instance variables, nor can the size or class of the object be changed. The
immediateInvariant message takes effect immediately, but can be reversed by
aborting the transaction in which it was sent. Once the transaction has been committed,
you cannot reverse the effect of this message. The message isInvariant returns true if
the receiver is invariant; false otherwise.

Invariance for All Instances of a Class

In class-level invariance, the definition of the class specifies that all instances of the class
are invariant. Such an instance can be modified only during the transaction in which it is
created. When the transaction is committed, the instance becomes invariant and no further
modifications can be made to any of its instance variables, nor can the size or class of the
object be changed. This mechanism is useful for supporting literals in methods and in other
limited situations, but is generally more cumbersome than object-level invariance.

Class-level invariance can be specified during class creation by including the
#instancesInvariant symbolin the options: keyword argument. You cannot also
define the class with non-persistent instances (#instancesNonPersistent), nor with
non-persistent instances variable data (#dbTransient).

The following example creates a subclass of Animal whose instances are invariant:

Example 2.3

Animal subclass: 'InvariantAnimal'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
options: (#instancesInvariant)

GemTalk Systems 39

Creating Classes with Special Cases of Persistence GemStone/S 64 Bit 3.7 Programming Guide

2.3 Creating Classes with Special Cases of Persistence

In some cases, you may want either objects or the instance variables of objects to not be
persistent, that is, not be written to disk. For example, you may want to include session-
dependent information that shouldn’t be read by another session, or data that is bulky and
can be recreated easily. There are several ways to handle this.

Non-Persistent Classes

You can define a class as having only non-persistent instances. This means that instances
of this class cannot be committed, so you cannot include references to instances of non-
persistent classes within a persistent data structure.

To create a class with non-persistent instances, in the options: keyword argument,
include the symbol #instancesNonPersistent. You cannot also define the class with
non-persistent instances variables (#dbTransient), nor with invariant instances
(#instancesInvariant).

As discussed under “KeySoftValueDictionary” on page 57, GemStone provides a class
called KeySoftValueDictionary, which allows you to manage non-persistent objects that
are large and take time to create, but can be recreated whenever needed from small, readily
available objects (tokens).

You cannot commit instances of a non-persistent class. If you attempt to do so, GemStone
issues an error that indicates whether the object’s class or a superclass is non-persistent.
(The non-persistent status of a class is inherited by all of its subclasses.)

To determine whether a class’s instances are non-persistent, you can send the following
message:

theClass instancesNonPersistent

This message returns true if the class is non-persistent, false otherwise.

To make all instances of a class non-persistent, send the message:
theClass makeInstancesNonPersistent

Similarly, send this message to make all instances of a class persistent:
theClass makeInstancesPersistent

To make all instances of a class (and all of its subclasses) non-persistent, even if the class is
non-modifiable:

ClassOrganizer makeInstancesNonPersistent: theClass
Similarly, you can send this message to make all instances of a class persistent, even if the
class is non-modifiable:

ClassOrganizer makeInstancesPersistent: theClass

DbTransient

40

Classes can also be defined as DbTransient. Instances of classes that are DbTransient can
be committed — that is, there is no error if they are committed — but their instance
variables are not written to disk. This is useful if you need to encapsulate objects that
should not be persistent, such as semaphores, within object structures that do need to be
persistent and shared.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Customer-defined Special classes

To create a class with DbTransient instances, in the opt ions : keyword argument, include
the symbol #dbTransient. You cannot also define the class with non-persistent instances
(#instancesNonPersistent), nor with invariantinstances (#instancesInvariant).
When a data structure containing an instance of a DbTransient class is committed, the
instance variables of the DbTransient object are written to the repository as nil. Whenever
a DbTransient object is read into a session, all of its instance variables are nil.
Since DbTransient instances are stored only in memory, they are affected by the in-memory
GC operations. (See “Managing VM Memory” on page 322. Also see Chapter 11 of the
System Administration Guide.)
If memory becomes low, the transient objects may be stubbed out of memory. When
needed, itis re-read from the repository. However, all the instance variables will be nil after
are-read. To prevent losing non-nil instance variable values, you should keep a reference
to DbTransient instances in session state.
Since the DbTransient object will remain in memory while referenced from session state,
the reference from session state should be removed when the DbTransient object is no
longer needed, to avoid filling up memory and causing an out of memory error.
Note that while DbTransient objects are only committed once (on creation), and so do not
normally cause concurrency conflicts, if they are clustered the object will be written (still
with all instance variables nil), and could potentially cause a concurrency conflict.
To set a class so all instances are DbTransient, send:

aClass makeInstancesDbTransient

aClass must be a non-indexable pointer class. This will cause any instance of aClass to be
DbTransient. The change takes place immediately.
The following message:

aClass makeInstancesNotDbTransient

will cause instances to be non-DbTransient, that is, allow instance variables to be written
to disk.

2.4 Customer-defined Special classes

Special classes are classes in which all the object data is encoded in the OOP value itself.
GembStone special classes include Character, Smalllnteger, SmallDouble,
SmallDateAndTime, and others.

GemStone also provides 16 predefined, customizable Special classes. Each can encode 56
bits of data. You will need to be convert the actual data you are storing into a 56 bit integer,
and decode back into the data to support your setter and getter instance variables.

The available classes are named Special56bit0-Special56bit15.

To create an application-specific Special class, you will modify one of these class. It is legal
to create an association to this class from the same or another SymbolDictionary, and to
modify the GsObjectSecurityPolicy of the class. The new class will have the name you
define, but you should leave the association with the original name in the Globals
dictionary, for upgrade.

The Special classes include a number of primitives, which are defined on the class, so you
are not limited to this location in the hierarchy. These methods are in a catagory "Base

GemTalk Systems 41

Customer-defined Special classes GemStone/S 64 Bit 3.7 Programming Guide

Methods” and should not be modified. You may add all necessary methods to other
categories within the class to support the specific functions you need.

These are the steps to customize a Special class for your application:

1. Create an association in the target SymbolDictionary from the target name
classNameString to the specific Special56bitN class.

2. AsSystemUser, implement Special56bitN class >> name, and execute
specialClass >> changeNameTo : classNameString. If you want to edit this class as a
non-SystemUser user, you may change it’s securityPolicy using:

specialClass objectSecurityPolicy: anObjectSecurityPolicy

3. Bit-encode the specific data for your special into the 56 available bits, invoking the
Class method value: to create an instance, and the instance method value to read
and decode into your specific data type.

Note that care must be taken for fileout and filein, since the base class methods are a
mixture of GemStone methods and application-specific methods. There are a number of
ways to manage this, depending on your source management tools. The Money example
shows a workaround using customizations to base image fileout.

It is allowed to change the superclass of a Special class; the required primitive methods are
defined in each class, rather than inherited. The new superclass (and each superclass up
through Object) must be created with the #selfCanBeSpecial class creation option.

Money example

42

An example of using this feature is the example at
SGEMSTONE/examples/smalltalk/Money.gs

Which demonstates using Special56bit0 to implement a Special Money class encoding an
amount and an integer currency ID to suport US and Candian Dollars, Euro and Yen. Note
that this is an example class, and does not provide the necessary currency support for a
real-world application.

This example must be filed in as SystemUser. It creates the Money class in the Published
dictionary. Methods on the resulting Money class can be edited by a user with access to the
DataCuratorObjectSecurityPolicy.

GemTalk Systems

Chapter

3 Resolving Names and
Sharing Objects

This chapter describes how GemStone Smalltalk finds the objects to which your programs
refer and explains how you can arrange to share (or not to share) objects with other
GemStone users.

Sharing Objects (page 43)
explains how GemStone Smalltalk allows users to share objects of any kind.

The UserProfile’s Symbol List (page 44)
describes the mechanism that the GemStone Smalltalk compiler uses to find objects
referred to in your programs.

Using Your Symbol Dictionaries (page 50)
discusses how you can enable other users of your application to share information.

3.1 Sharing Objects

GemStone Smalltalk permits concurrent access by many users to the same data objects. For
example, all GemStone Smalltalk programmers can make references to the kernel class
Object. These references point directly to the single class Object —not to copies of Object.

GemStone allows shared access to objects without regard for whether those objects are
files, scalar variables, or collections representing entire databases. This ability to share data
facilitates the development of multi-user applications.

To find the object referred to by a variable, GemStone follows a well-defined search path:
1. The local variable definitions: temporary variables and arguments.

2. Those variables defined by the class of the current method definition: instance, class,
class instance, or pool variables.

3. The symbol list assigned to your current session.

If GemStone cannot find a match for a name in one of these areas, you are given an error
message.

GemTalk Systems 43

The UserProfile’s Symbol List GemStone/S 64 Bit 3.7 Programming Guide

3.2 The UserProfile’s Symbol List

Each GemStone user is associated with an instance of the class UserProfile. This UserProfile
stores such information as the GemStone user name, the encrypted password, and access
privileges. Your UserProfile also contains the instance variable symbolList.

This UserProfile can be used to login multiple sessions at the same time, including logins
by different people in different locations. The way the symbolLists are handled includes
options to accommodate this situation.

What'’s In Your Symbol List?

When creating the UserProfile’s symbol list, the administrator adds specific
SymbolDictionaries to the SymbolList. The SymbolDictionaries contain associations that
define the names of all objects that are globally resolvable by your UserProfile. While this
will vary by application, your symbol list contains at least two dictionaries:

» A “system globals” dictionary called Globals. This dictionary contains some or all of
the GemStone Smalltalk kernel classes (Object, Class, Collection, etc.) and any other
objects to which all of your GemStone users need to refer. Although you can read the
objects in Globals, normally only SystemUser is permitted to modify them.

» A dictionary that is specific to your UserProfile, called UserGlobals. This dictionary
can be used to store objects for your own use and new classes you do not need to
share with other GemStone users. This dictionary also contains GemStone
infrastructure that is UserProfile specific.

Your symbol list will usually include other application-specific dictionaries to hold the
code you are developing. These may be shared with other users, so that you can all read
and modify the objects they contain. An administrator can arrange for a dictionary to be
shared by inserting a reference to that dictionary in each user’s UserProfile symbol list.

While every user will have the shared Globals and a private UserGlobals dictionary, and
by default most users will have the Published dictionary, the list of SymbolDictionaries in
each user’s SymbolList may otherwise be completely different.

Examining Your Symbol List

To get a list of the dictionaries in your symbol list, send your UserProfile the message
dictionaryNames. For example:

Example 3.1

topaz 1> printit
System myUserProfile dictionaryNames
%
UserGlobals
ClassesForTesting
Globals
Published
UserClasses

Ul W |-

44

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide The UserProfile’s Symbol List

The SymbolDictionaries listed in the example have the following function:

» UserGlobals
Contains per-user application and application service objects.

» ClassesForTesting
A user-defined dictionary.

» Globals
Provides access for the GemStone kernel classes.

» Published
Provides space for globally visible shared objects created by a user.

» UserClasses
Usually only present if you are using GemBuilder for Smalltalk (GBS) to replicate
classes to the server. Putting this dictionary before the Globals dictionary allows an
application or user to override kernel classes without changing them. Keeping it
separate from UserGlobals allows a distinction between classes and application
objects.

To list the contents of a symbol dictionary:

» If you are using Topaz, execute an expression that returns the dictionary. Example 3.2
lists the dictionary keys. Alternatively, you could just execute UserGlobals to
examine all keys and values.

» If you are running GBS, select the expression UserGlobals in a GemStone
workspace and execute GS-Inspect it.

Example 3.2

topaz 1> printit
UserGlobals keys
%

a SymbolSet

#1 GcUser

#2 UserGlobals

#3 GsPackagePolicy_Current
#4 PackageLibrary

If you examine all of your symbol list dictionaries, you'll see that most of the kernel classes
are listed. In addition, there are global variables, both public and for internal use. For a
description of GemStone kernel objects, see the appropriate appendix of the System
Administration Guide.

You'll discover that most of the dictionaries refer to themselves. Since the symbol list must
contain all source code symbols that are not defined locally nor by the class of a method,
the symbol list dictionaries need to define names for themselves so that you can refer to
them in your code. Figure 3.1 illustrates that the dictionary named UserGlobals contains an
association for which the key is UserGlobals and the value is the dictionary itself.

GemTalk Systems 45

The UserProfile’s Symbol List GemStone/S 64 Bit 3.7 Programming Guide

The object server searches symbol lists sequentially, taking the first definition of a symbol
it encounters. Therefore, if a name, say “#BillOfMaterials,” is defined in the first dictionary
and in the last, GemStone Smalltalk finds only the first definition.

Figure 3.1 Self-Referencing Symbol Dictionary

ﬁ SymboIDictionarh

(UserGlobals) Metaclass3
#Customer -

#Address —— | Metaclass3

#UserGlobals

- /

You can get the name of a SymbolDictionary by sending name. For example,
topaz 1> printit
System myUserProfile symbolList collect: [:ea | ea name]
%
a Array
#1 UserGlobals
#2 Globals
#3 Published

Inserting and Removing Dictionaries from Your Symbol List

46

Note that, to insert or remove a SymbolDictionary to/from your symbol list, you must
have the necessary system privilege. For details, see "User Accounts and Security" in the
System Administration Guide.

Creating a dictionary is like creating any other object, as the following example shows.
Once you've created the new dictionary, you can add it to your symbol list by sending your
UserProfile the message insertDictionary: aSymbolDict at: anlnt.

For example:
System myUserProfile symbolList
createDictionaryNamed: #NewDict at: 1.

When you specify an index for a new SymbolDictionary, the existing symbol list
dictionaries are shifted as needed to accommodate the new dictionary.

Because the GemStone Smalltalk compiler searches symbol lists sequentially, taking the
first definition of a symbol it encounters, your choice of the index at which to insert a new
dictionary is significant.

The following example places the object MyCollection (a class) in the user’s private
dictionary named MyClassDict. Then it inserts MyClassDict in the first position of the
current Session’s symbolList, which causes the object server to search MyClassDict prior

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide The UserProfile’s Symbol List

to UserGlobals. This means that the GemStone object server will always find
MyCollection in MyClassDict, notin UserGlobals

Example 3.3

Object subclass: 'MyCollection'
instVarNames: #('snakes' 'snails' 'tails')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

! Resolves to UserGlobals
MyCollection instVarNames printString

| myClassDict |
(System myUserProfile resolveSymbol: #MyClassDict)
ifNil:[myClassDict := (System myUserProfile createDictionary:
#MyClassDict)]
ifNotNil:[myClassDict := (System myUserProfile resolveSymbol:
#MyClassDict) valuel].
GsSession currentSession userProfile
insertDictionary: myClassDict at: 1.

Object subclass: 'MyCollection'
instVarNames: #('this' 'that' 'theOther')
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: MyClassDict.

! Now resolves to different class in MyClassDict
MyCollection instVarNames printString

Recall that the object server returns only the first occurrence found when searching the
dictionaries listed by the current session’s symbol list. When you subsequently refer to
MyCollection, the object server returns only the version in MyClassDict (which you
inserted in the first position of the symbol list) and ignores the version in UserGlobals.
If you had inserted MyClassDict after UserGlobals, the object server would only find
the version of MyCollection in UserGlobals

You may redefine any object by creating a new object of the same name and placing itin a
dictionary that is searched before the dictionary in which the matching object resides.
Therefore, inserting, reordering, or deleting a dictionary from the symbol list may cause
the GemStone object server to return a different object than you may expect.

GemTalk Systems 47

The UserProfile’s Symbol List GemStone/S 64 Bit 3.7 Programming Guide

This situation also happens when you create a class with a name identical to one of the
kernel class names.

Avoid redefining any kernel classes in other SymbolDictionaries. Their
implementation may change from one version of GemStone to the next. Creating
a subclass of a kernel class to redefine or extend that functionality is usually more
appropriate.

To remove a symbol dictionary, send your UserProfile the message
removeDictionaryAt: anlnteger, passing in the index of the dictionary you want to
remove.

Finding Out Which Dictionary Names an Object

To find out which dictionary defines a particular object name, send your UserProfile the
message symbolResolutionOf : aSymbol. If aSymbol is in your symbol list, the resultis a
string giving the symbol list position of the dictionary defining aSymbol, the name of that
dictionary, and a description of the association for which aSymbol is a key. For example:

Example 3.4

topaz 1> printit

System myUserProfile symbolResolutionOf: #Bag
%
2 Globals

Bag Bag

If aSymbol is defined in more than one dictionary, symbolResolutionOf: finds only the
first reference.

To find out which dictionaries stores a name for an object and what that name is, send your
UserProfile the message dictionariesAndSymbolsOf : anObject. This message returns
an array of arrays containing the dictionaries in which anObject is stored, and the symbols
which name that object in that dictionary.

Example 3.5 uses dictionariesAndSymbolsOf : to find out which dictionaries in the
symbol list stores a reference to class DateTime.

Example 3.5

48

topaz 1 > printit
| anArray myUserPro |
myUserPro := System myUserProfile.

"Find the first SymbolDictionary containing DateTime."
anArray := (myUserPro dictionariesAndSymbolsOf: DateTime) first.

"Get the name of the SymbolDictionary, which is a key within
itself"

(anArray at: 1) keyAtvValue: (anArray at: 1)

%

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide The UserProfile’s Symbol List

Globals

Note thatdictionariesAndSymbolsOf : may return zero, one, or multiple dictionaries.

The Transient Symbol List

Since the persistent symbolList is shared between all sessions that use that UserProfile to
login, you must use caution in making updates that you don’t want to be picked up by
other logins using the same UserProfile.

This is possible by using the transient symbolList. The transient symbolList is kept in the
singleton instances GsCurrentSession, which you can access using GsSession
currentSession or GsCurrentSession >> currentSession. The instance of
GsCurrentSession is not copied into any client interface nor committed as a persistent
object. Since the transient copy of the symbolList is transient, changes to it cannot incur
concurrency conflicts, nor are they subject to rollback after an abort.

Executing any of the following methods will create a copy of the transient symbolList in
session state:

System class »>> refreshTransientSymbolList
GsCurrentSession >> transientSymbolList: aSymbolList
GsCurrentSession >> transientSymbolList

Before executing any of these methods, GsSession currentSession symbolList
refers to the persistent SymbolList (System myUserProfile symbolList).

After executing any of these methods, GsSession currentSession symbolList
refers to a transient copy of the persistent SymbolList.

Figure 3.2 The GsSession symbolList — a copy of the UserProfile symbolList

persistent
SymbolList

UserProfile

.
A
Y

copy made'-I
on method !

SymbolDictionary

.=="""==s.. execution
,»*”symbolList ~~«

~
~§

transientSymbolList

transient
SymbolList

GsSession
currentSession

Changes to the current session’s symbolList (the transient symbolList) do not affect the
UserProfile symbolList (the persistent symbolList). Thus, the UserProfile symbolList can
continue to serve as a default list for other logins.

GemTalk Systems 49

Using Your Symbol Dictionaries GemStone/S 64 Bit 3.7 Programming Guide

Updating Symbol Lists

GsCurrentSession >> symbolList is used to resolve global names in the image. If
you application may use transient symbolLists, this is the most reliable route to determine
how symbols will resolve in the current session, since it will provide the persistent
symbolList if there is no transient symboList, otherwise the current transient symboList.

When you have a transient symbolList (that is, if you have executed any of the methods
listed on page 49), then you will need to be conscious of how you are updating the
symbolList, to make sure you get the expected behavior.

» If you add a new symbolDictionary to the persistent symbolDictionary but not to the
transient symbolDictionary, and these are different instances, then the new
symbolDictionary is not resolvable using GsCurrentSession >> symbolList,
and so not readily usable by name. This is the case, for example, if you make changes
to the result of System myUserProfile symboList. after executing
GsCurrentSession transientSymbolList

» If you add a new symbolDictionary to the transient symbolDictionary but not to the
persistent symbolDictionary, the new symbolDictionary will be available for the
session, but will disappear when the session logs out. This expression will insert a
dictionary into the transient symbolList, and create the transient symbolList if it was
not previously different than the persistent symbolList:

GsSession currentSession transientSymbolList
createDictionaryNamed:at:

» If you add a new symbolDictionary to both the transient symbolDictionary and to the
persistent symbolDictionary, and you abort your transaction, the new
symbolDictionary will disappear from the persistent symbolDictionary, but remain in
the transient symbolDictionary until the session logs out.

If you want to make changes to both the persistent symbolList, and the transient
symbolList, methods such as this update both the persistent and transient
symbolLists.:

System myUserProfile insertDictionary:at:

3.3 Using Your Symbol Dictionaries

50

As you know, all GemStone users have access to such objects as the kernel classes Integer
and Collection because those objects are referred to by the Globals dictionary that is present
in every user’s symbol list.

If you want GemStone users to share other objects as well, you need to arrange for
references to those objects to be added to the users” symbol lists.

NOTE
To insert or remove a SymbolDictionary to/from your symbol list, or to make any
changes to a UserProfile that is not your own, you must have the necessary system
privilege. For details, see "User Accounts and Security" in the System
Administration Guide.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Using Your Symbol Dictionaries

Publishers, Subscribers and the Published Dictionary

The Published Dictionary, PublishedObjectSecurityPolicy, and the groups Subscribers and
Publishers together provide an example of how to set up a system for sharing objects.

The Published Dictionary is an initially empty dictionary referred to by your UserProfile.
You can use the Published dictionary to "publish" application objects to all users — for
example, symbols that most users might need to access. The Published Dictionary is not
used by GemStone classes; rather, it is available for application use.

The PublishedObjectSecurityPolicy is owned by the Data Curator and has World access set
to none. Two groups have access to the PublishedObjectSecurityPolicy:

» Subscribers have read-only access.
» Publishers have read-write access.

Publishers can create objects in the PublishedObjectSecurityPolicy and enter them in the
Published Dictionary. Then members of the Subscribers group can access the objects.

For example, your system administrator might add each member of a programming team
to the group Publishers. After completing the definition of a new class, a programmer
could make the class available to colleagues by adding it to the Published dictionary.
Because this dictionary is already in each user’s symbol list, whatever you add becomes
visible to users the next time they obtain a fresh snapshot view of the repository. Using the
Published dictionary lets you share these objects without having to put them in Globals,
which contains the GemStone kernel classes, and without the necessity of adding a special
dictionary to each user’s symbol list.

GemTalk Systems 51

Using Your Symbol Dictionaries GemStone/S 64 Bit 3.7 Programming Guide

52 GemTalk Systems

Chapter

4 Collection and Stream
Classes

Collections of objects are key features in an application. GemStone provides a variety of

Collection classes, including both subclasses of Collection, and other implementations of
structures with collection semantics. This chapter describes the main types of collections
that are available.

Strings and ByteArrays are kinds of collections that are specialized to hold characters or
bytes; these are described separately in Chapter 5.

Introduction to Collections (page 53)
introduces the GemStone Smalltalk objects that store groups of other objects, and
describes the different kinds of collections that are available.

Reduced-Conflict Collection Classes (page 63)
describes specialized kinds of classes that avoid conflicts in a multi-user system.

GsBitmap (page 66)
describes GsBitmap, a specialized kind of collection.

Sorting the objects in a collection (page 69)
describes the ways to sort elements in collections.

4.1 Introduction to Collections

Instances of the Collection subclasses are specialized to manage an indeterminate number
of objects as a group using unnamed instance variables.

Collections can be classified by whether or not they maintain a specified order for their
elements, whether or not key-based lookup is supported, and the kinds of objects they can
reference.

Collections can be broadly classified into basic categories:
» Access by Key — the Dictionary Classes

Instances of AbstractDictionary subclasses do not support a specific order for their
elements; elements are stored and retrieved via the at : put : and at : messages, using

GemTalk Systems 53

Introduction to Collections GemStone/S 64 Bit 3.7 Programming Guide

54

arbitrary objects for an element's key. Subclasses of AbstractDictionary are specialized
based on whether key-based lookup uses equality comparison or identity comparison,
the type of key, and the type of value.

Dictionaries can also have named instance variables, if you choose to define them.
» Access by Position — the SequenceableCollection Classes

Instances of SequenceableCollection classes maintain a specific order for their elements
and support storage and retrieval via the at : put : and at : messages using an integer
key (the one-based offset into the elements).

Byte-format classes such as ByteArray and String cannot have named instance
variables. You may define named instance variables for pointer-format subclasses,
such as Array and OrderedCollection.

» Access by Value — the UnorderedCollection Classes

Instances of UnorderedCollection classes —also referred to as Non-Sequenceable
Collections or NSCs—do not have a specific order for their elements, and do not
support storage or retrieval via the at : put : and at : messages. Objects in these
collections are accessed by iterating the collection. UnorderedCollections support
indexes, which allow ordered iteration and fast key-based lookup.

You may define named instance variables for subclasses of one of the
UnorderedCollections subclasses.

» Other kinds of Collection

GemStone includes some collection-like classes that do not inherit from Collection,
such as GsBitmap. The generalizations about collections made in this chapter may or
not apply to such classes.

Efficient Implementations of Large Collections

When you create a collection of more than about 2K objects, or a byte collection larger than
16K, GemStone internally uses a sparse tree implementation to make more efficient use of
resources. These are referred to as "Large Objects", and use internal classes such as
LargeObjectNode. This behavior occurs in a manner that is transparent to you, and you
interact with Large Collections the same as smaller collections; however, these internal
objects may be visible when performing object-based audit and analysis.

Modifying objects in collections

Different kinds of collections use different criteria in which to store and locate objects. Most
dictionaries use a hashed value, the result of sending the #hash message to each key object.
If the result of sending #hash changes, the key may not be found in the collection using
methods such as at:.

The ordering of a SortedCollection depends on the results of sending comparison methods
to the objects in the collection.

If a hash method or comparison method is defined that depends on values in the instance
variables of the objects, and these instance variables are modified, the object may not be
found using lookup methods in the dictionary or sorted collection, though iteration will
still find them. If you change the value of an instance variable of an object in such a
collections, you should remove and re-insert the object in the collection so the lookup
methods will work.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Introduction to Collections

Protocol Common to All Collections

Collection classes understand common protocol, inherited from the abstract superclass
Collection. Collection defines methods that enable you to perform the general collection
operations described in the following sections.

Creating Instances

Collections can be creating using new, new:, with:, and similar protocol. The most basic
way to create a new collection is using the message new. When sent to a Collection class,
this message causes a new instance of the class with no elements (size zero) to be created.
Most kinds of collections can expand as you add additional objects.

new: anlnteger, causes many Collection subclasses to create an instance that is pre-sized
to hold anlnteger elements. This avoids the need to expand the collection when elements
are added. Pre-defining the size during creation is particularly important when creating a
hashed collection that will hold a large number of objects. Hashed collections store
elements in buckets, and the number of buckets must be increased when the number of
objects in the collection reaches a threshold for the number of buckets. These expansions
are expensive, since it requires that each element be re-added to the expanded collection at
the recomputed hashed location.

Several kinds of Collections can be created as literals, using Smalltalk syntax. Arrays,
ByteArrays, Strings and Symbols have literal syntax, and Arrays can also be created at
runtime using Array constructors. ByteArrays, Strings and Symbols are discussed in
Chapter 5.

Enumerating

Collection defines several methods that enable you to loop through a collection’s elements,
evaluating a block for each element in the collection.

» The message do: aBlock is the most general; it evaluates aBlock for each element.

» Methods that iterate through the elements and return collections are collect:,
select:,and reject:.

The class of the result collection is often, but not always, the same kind of collection as
the receiver. The class methods species, speciesForSelect, and
speciesForCollect determine the class of the result.

When sent to SequenceableCollections, these messages preserve the ordering of the
receiver in the result. That is, if element a comes before element b in the receiver, then
element a will come before b in the result.

» The messages detect:, detect:ifNone:, and any iterate to return a single
element, based on the order the collection is enumerated. Enumeration stops after the
an element is found.

» The message anySatisfy: enumerates each element, stopping if any is found that
meet the block criteria; allSatisfy: enumerates, stopping if any is found that does
not meet the block criteria.

To avoid unpredictable consequences, do not add elements to or remove them from a
collection while you are enumerating it.

GemTalk Systems 55

Introduction to Collections GemStone/S 64 Bit 3.7 Programming Guide

Collections in multi session environment

In many cases, you will have collections that need to be accessed by multiple sessions in an
application. Different sessions may need to read the contents or to add, remove, or modify
elements.

Conflicting updates

Due to the transactional nature of GemStone (see Chapter 9, “Transactions and
Concurrency Control”), overlapping updates by two sessions may conflict, in which case
the second update has failed and the work needs to be repeated.

There are some kinds of conflicts that, while they modify the same object, are not really
conflicts in a logical sense. GemStone provides a number of different collection classes that
avoid specific kinds of conflicts; these are described under “Reduced-Conflict Collection
Classes” on page 63.

Visibility and ordering

When you add an element to a collection, this change does not become visible to other users
until you have successfully committed the transaction. While it is important in a multiuser
system to avoid long periods in a transaction prior to commit, the requirements are
application specific and there may be minutes or hours between the time an object is
created and when it is finally committed and visible to other users. Other users, in turn,
must abort or commit before they see the changes.

For ordinary (non-reduced conflict) collections, this means that object changes may
become visible to other users some time after the change is actually made.

For reduced-conflict sequenceable and queue classes, the order of objects in the collection
may depend on the order of the commit, rather than the order of the time in which the
object was created.

Collection classes

56

Collection classes can be grouped by the kinds of access methods they provide and the
kinds of objects their instances can store.

» Dictionary classes, including Dictionary, KeyValueDictionaries, and
KeySoftValueDictionary

» SequenceableCollection classes, including Array, OrderedCollection, and
SortedCollection,

» UnorderedCollection classes, including Bag, IdentityBag, Set, and IdentitySet
» Stream Classes, including ReadStream, WriteStream, and ReadWriteStream.

» Reduced-Conflict Collection Classes, including RcArray, ReldentityBag,
RcldentitySet, RcKeyValueDictionary, RcPipe, and RcQueue.

» Classes that aren’t subclasses of Collection, including GsBitmap.

String classes, including Traditional and Unicode string classes and Symbols, are also
kinds of Collections and understand many kinds of Collection messages. Concerns that are
specific to Strings, including String collation, are described in Chapter 5.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Introduction to Collections

This chapter does not attempt to describe all collection classes or all methods that are
available; it highlights the most commonly used protocol and describes special features.
Review the methods in the image for more details.

Dictionary classes

Dictionaries provide their special facilities by storing key-value pairs instead of simple,
linear lists of objects. The elements in a Dictionary collection are stored and accessed via a
key; each key must be unique within that Dictionary.

While some types of dictionaries are implemented as “a collection of Associations”, the
interface methods return results based on the logical contents, which are the values. Other,
specialized protocol allows you to refer to the key or the value portions of the logical
associations.

Internal Dictionary Structure

For performance reasons, the internal implementation of Dictionary classes varies.
Instances of Dictionary itself consist of a collection of Association objects.
KeyValueDictionary subclasses are implemented differently, as a sequence of keys and
values, which may use CollisionBuckets to hold the actual values. IdentityDictionary is a
sequence of keys and Associations. All these dictionaries understand common protocol,
regardless of implementation.

Dictionary and KeyValueDictionary

Dictionary class uses Associations to store the key/value pair, while subclasses of
KeyValueDictionary are slot-based. KeyValueDictionary has several subclasses, divided
according to the type of key used to access the information:

» IdentityKeyValueDictionary
» IntegerKeyValueDictionary
» StringKeyValueDictionary

» SymbolKeyValueDictionary
» IdentityDictionary

» SymbolDictionary

KeySoftValueDictionary

A KeySoftValueDictionary is a subclass of KeyValueDictionary that allows the virtual
machine to remove entries as needed to free up memory.

Typically, you might use a KeySoftValueDictionary to manage non-persistent objects that
are large and take time to create, but that can be recreated whenever needed from small,
readily available objects (tokens). For example, you might create a KeySoftValueDictionary
to serve as a cache to hold large, expensive objects that are needed repeatedly. Within that
dictionary, the values would be the large calculated objects, and the keys would be the
corresponding tokens. If your application needs a large, expensive object but does not find
it in the KeySoftValueDictionary, you can create the object and add it to the cache so that it
might be available the next time it is needed.

GemTalk Systems 57

Introduction to Collections GemStone/S 64 Bit 3.7 Programming Guide

As memory fills up, the virtual machine might remove some objects from the cache.
(Remember, the contents of the cache are non-persistent and can be recreated.) The virtual
machine may remove keys and values from the KeySoftValueDictionary until adequate
memory is available. For details about how to manage the number of
KeySoftValueDictionary entries, see “Getting Rid of Non-Persistent Objects” on page 321.

Keep in mind the following:

» Entries are removed from a KeySoftValueDictionary only if there are no strong
references to the entry’s value.

» If an entry in a KeySoftValueDictionary is cleared, all other entries that reference this
value directly or indirectly will also have been cleared.

» Before generating an OutOfMemory error, the virtual machine removes all
KeySoftValueDictionary entries that are eligible for removal.

» KeySoftValueDictionary entries are cleared during a mark/sweep operation, but are
not cleared during a scavenge. For more about mark/sweep and scavenge operations,
see the “Managing Growth” chapter of the System Administration Guide.

» A corresponding subclass, IdentityKeySoftValueDictionary, uses identity (rather than
equality) comparison on keys. For details, see the image.

» A KeySoftValueDictionary frequently contains instances of SoftReference. Do not be
tempted to confuse this with the notion of WeakReference found in many Smalltalk
dialects; the two mechanisms are quite different.

SequenceableCollection classes

58

SequenceableCollections, such as Array and OrderedCollection, let you refer to their
elements with integer indexes, and they understand messages such as first and last
that refer to the order of those indexed elements. Adding by default adds to the end of the
collection.

Copying

When copying a very large instance of a subclass of SequenceableCollection, it can be more
efficient to use the method replaceFrom:to:with:startingAt :, which does not fault
the contents into memory. This can improve performance significantly for very large
collections.

This example copies two elements of an array into a different array, overwriting the target
array’s original contents:
| numericArray |
numericArray := Array with: 55 with: 66 with: 77 with: 88.
numericArray replaceFrom: 2 to: 3
with: #(14 2 3 4 5) startingAt: 4.
numericArray
%
an Array
#1 55
#2 4
#3 5
#4 88

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Introduction to Collections

Note that, while the replace method does not itself fault the contents into memory,
displaying the results as in the example also faults the objects into memory.

Array

One of the most important differences between client Smalltalk arrays and a GemStone
Smalltalk array is that GemStone arrays are extensible; you can increase the size of an array
atany time. Sending at : put : will increase the size of the array, as long as the index is only
one greater than the current array size. Other protocol such as addal1l: also increase the
size while adding elements.

It’s also possible to change the size without explicitly storing or removing elements, using
the message size: inherited from class Object. When you lengthen an array with size:,
the new elements are set to nil.

Literal Array and Array Constructors

Arrays can also be created in code without sending instance creation messages, by using
literal array or array constructor syntax.

Since Array constructors perform code at runtime, it is more efficient to use Array literals
if the contents are literals.

Array Literals are created at compile time, and hold other literal objects. These start with
the pound sign, are enclosed in parenthesis and separated by white space. Array literals
are defined by ANSI; syntax is described on page 396. They are invariant.

#('carrot' 'tomato' 'celery')

Array constructors are created at runtime. These are enclosed in curly braces and separated
by a period. Array constructors are GemStone-specific, not defined by ANSI; syntax is
described on page 403.

{ Date today . Time now }

SortedCollection

SortedCollection is a type of SequenceableCollection in which the elements are ordered by
a specific sort order, not by the order in which they were added or by the method used to
add the element. You may not send at :put:, addLast :, or similar methods to a
SortedCollection.

Each instance of SortedCollection is associated with a sortBlock. The default block will sort
elements that can be compared using <=, which includes strings and numbers. You can
also define your own sortBlock, if you want elements ordered by some other criteria, such
as the value of an instance variable.

For more on comparison, sorting, and sort blocks, see “Sorting the objects in a collection”
on page 69.

GemTalk Systems 59

Introduction to Collections GemStone/S 64 Bit 3.7 Programming Guide

Example 4.1

| scrabbleWords |

scrabbleWords := SortedCollection sortBlock:
[:a :b | a size < b size].

scrabbleWords add: 'able'; add: 'zebra'; add: 'jumper';
add: 'yet'.

scrabbleWords

%

aSortedCollection('vet', 'able', 'zebra', 'jumper')

There is overhead in always keeping the collection sorted, so it usually more efficient to
sort the elements only when you need them to be sorted for presentation. Especially for
large collections or collections in which objects are frequently added and removed,
consider using another kind of class to store the elements, then using methods such as
sortWithBlock: to create a new Array with the elements in sorted order.

SortedCollection sortBlocks are compiled code, and as such, may need to be recompiled on
GemStone upgrade. Provided the sortBlock is simple —that it, it does not contain
references to variables outside the scope of the block, nor iterative methods — the recompile
can be done automatically. Since the sortBlock executes for many element pairs during sort,
keeping the sortBlock simple and fast is important for performance in any case.

Stream Classes

A Stream acts like a SequenceableCollection that keeps track of the index most recently
accessed. Streams are often used for reading characters from strings or files, but any kind
of collection can be used with a Stream, and any type of object can be in that collection.

Commonly used Stream classes are ReadStream, WriteStream, and ReadWriteStream,
which come in two variants; the traditional Smalltalk 1-based positional offset, and the
ANSI-compliant portable streams with an 0-based offset.

PositionableStream and Position

PositionableStream, with its subclasses ReadStream and WriteStream, was traditionally
implemented in GemStone with the position indicating an offset from 1; that is, the first
position in the stream was 1.

ANSI specifies, and other Smalltalk dialects use, an offset of 0, so the first position in the
stream is 0.

To allow both sets of classes to be available for use, while either one or the other uses the
actual class name, GemStone includes the multiple sets of classes, implementing both
interfaces. There are four sets of classes, which all exist in the image (and therefore, may
have instances), with only three sets being visible at any time. The following two sets are
always visible:

» Legacy-style PositionableStream classes, compatible with previous GemStone
version’s PositionableStream classes:

PositionableStreamLegacy
ReadStreamLegacy
WriteStreamLegacy

60 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Introduction to Collections

» ANSI-compliant and portable PositionableStream classes:

PositionableStreamPortable
ReadStreamPortable
WriteStreamPortable
ReadWriteStreamPortable

In addition, only one of the following sets is visible, depending on how your system is
configured. These are two distinct sets of instances of Class, with the same name, but
different implementations.
PositionableStream (withlegacy definition and methods)
ReadStream
WriteStream
PositionableStream (with portable definition and methods)
ReadStream
WriteStream

Note that there are other classes within the PositionableStream hierarchies; these examples
are simplified for clarity.

The legacy versions are stored in Globals at: #GemStone_Legacy_Streams. The portable,
ANSI-compatible versions are stored in Globals at: #GemStone_Portable_Streams.

To check what is currently installed, use the following methods:

PositionableStream class »>> isLegacyStreamImplementation
PositionableStream class »>> isPortableStreamImplementation

To install the portable version, use the method:
Stream class >> installPortableStreamImplementation

To install the legacy version, use the method:

Stream class »>> installlegacyStreamImplementation

AppendStream

AppendStream is a kind of Stream that does not maintain a position. It is designed to
optimize a common use-case for streams: composing long, complex blocks of text and
returning the resulting string.

Like WriteStream, you can add strings and characters to an AppendStream, and like any
stream, you can get the entire contents. Many other methods commonly associated with
Stream classes are not available, however.

ReadByteStream

ReadByteStream is a kind of Stream that is optimized for reading strings and ByteArrays.

UnorderedCollection classes

Instances of UnorderedCollection store their elements as an internal, tree-based structure
referred to as an Non-Sequenceable Collection (NSC). The elements have no defined order
within the collection, so methods such as at: and at :put : are disallowed.

UnorderedCollection implements protocol for indexing, which allows for large collections
to be queried and sorted efficiently. Chapter 8, “Indexes and Querying”, describes the
querying/sorting functions in detail. The most efficient way to handle very large
collections is using UnorderedCollection, using GemStone indexes to access the contents.

GemTalk Systems 61

Introduction to Collections GemStone/S 64 Bit 3.7 Programming Guide

UnorderedCollections cannot contain nil as an element; adding nil has no effect.

Commonly used UnorderedCollection concrete classes are Bag, Set, IdentityBag and
IdentitySet. Since Bag and Set use equality for comparisons, for large collections it is much
more efficient to use IdentityBag or IdentitySet, which perform comparisons based on
identity (OOP).

Union, Intersection, and Difference
Subclasses of UnorderedCollection provide messages that perform set arithmetic: union,
set intersection, and set difference.

+ union, returning elements that are in either one, the other, or both.

- difference, returning elements that are in the receiver but not the argument.

* intersection, returning elements that are in both

Example 4.2
| pets rodents |
pets := IdentityBag with: 'dog' with: 'cat' with: 'gerbil'.
rodents := IdentityBag with: 'rat' with: 'gerbil' with: 'beaver'.
pets * rodents
%

anIdentityBag('gerbil')

pets + rodents

%

anIdentityBag('beaver', 'rat', 'gerbil', 'gerbil', 'cat', 'dog')
pets - rodents

%

anIdentityBag('cat', 'dog')

Avoiding faulting contents into memory

If the argument to addAll: is an Array or OrderedCollection, the elements in the
collection are not faulted into memory. For very large collections, or if the objects in the
collection are not in the shared page cache and must be read from disk, this can be a
significant advantage. Using an IdentityBag as an argument to
replaceFrom:to:with:startingAt: allows you to geta copy of the elements without
faulting the contents into memory.

Example 4.3

| bagOfRodents |
bagOfRodents := IdentityBag withAll: #('beaver' 'rat' 'agouti'
'chipmunk' 'guinea pig').
(Array new: 5) replaceFrom: 3 to: 5
with: bagOfRodents startingAt: 1.
anArray(nil, nil, 'guinea pig', 'chipmunk', 'agouti')

62 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Reduced-Conflict Collection Classes

4.2 Reduced-Conflict Collection Classes

GemStone provides a variety of reduced-conflict collection classes. These classes are
similar to the standard collection classes already described, but include additional
processing to avoid transaction conflicts in a multi-user environment.

Each reduced-conflict class has specific types of conflicts they are designed to avoid, and
the amount of internal infrastructure or the cost of resolving a conflict varies. Selection of
an RC class should consider the demands of the application, and also the costs of the
automatic conflict resolution.

For more on transactions and transaction conflicts, see Chapter 9. Further information on
the transactional behavior of these RC classes is under the section “Classes That Reduce the
Chance of Conflict” on page 185.

RcArray

The class RcArray is similar to Array, but no conflict occurs when multiple users add
objects to an RcArray. If a conflict with another update operation on the RcArray occurs,
the add is replayed so that the commit can succeed.

Only the following methods support concurrent updates:
add:
addAll:
at:put: (where no other session affects the element at the at: index)
size: (when size is increased)

NSC/UnorderedCollection classes

RcldentityBag

The class RcldentityBag provides much of the same functionality as IdentityBag, but with
no conflict for multiple sessions that add objects to the bag, and a single session that
removes objects.

Internal implementation

RcldentityBag is internally implemented using an Array of IdentityBags. Each session
number corresponds to two IdentityBags, one for additions to the RcldentityBag, and one
for removed elements. Each logged-in session only modifies the IdentityBags
corresponding to its own session number. Computing the current contents of an
RcldentityBag means combining the add bags, and removing all the remove bags.

Maintenance

The implementation of RcldentityBag means that reclaiming the storage of objects that
have been removed from the bag actually occurs when a session performs later adds or
removes, or after that session logs out, another session logs in as that session number and
performs adds or removes.

If a session adds a great many objects to the RcldentityBag, and then does not do any
further adds or removes; or if it logs out and the following sessions to use that session
number do not perform adds or removes on this bag, then performance can become
degraded and otherwise dereferenced objects in the RcldentityBag cannot be garbage
collected.

GemTalk Systems 63

Reduced-Conflict Collection Classes GemStone/S 64 Bit 3.7 Programming Guide

The message cleanupBag may be sent to the RcldentityBag to process removals for
inactive sessions. This may cause conflicts if a session logs in and adds or removes an
object.

RcLowMaintenanceldentityBag

RcLowMaintenanceldentityBag is similar to RcldentityBag in behavior, but does not
require regular cleanup. Rather than using a per-session subcollection of add and remove
elements, RcLowMaintenanceldentityBag relies on replay to resolve conflicts. Like
RcldentityBag, it has no conflict for multiple sessions that add objects to the bag, and a
single session that removes objects.

The cumbersome name is intended to be temporary, with this implementation replacing
RcldentityBag's subcollection-based implementation in some future release.

RcldentitySet

The class RecldentitySet is similar to IdentitySet, but no conflict occurs when multiple users
add objects to an RcldentitySet. If a conflict with other update operations on the
RcldentitySet occur, the add is replayed so that the commit can succeed.

RcKeyValueDictionary

The class RcKeyValueDictionary provides the same functionality as KeyValueDictionary,
but with no conflict for operations that involve different keys in the dictionary. As long as
the keys are different, multiple sessions can add new keys to the dictionary, remove keys,
or update values.

RcKeyValueDictionary avoids conflict by performing a selective abort and replay of the
modifications to the dictionary.

Queue classes

The Queue classes implement a first-in-first-out (FIFO) queue. These are a kind of
collection that is ordered by the sequence in which objects are added to the collection. The
add: message puts an element at the logical end of the queue, and the remove method
returns the element at the logical head of the queue.

The following example has the same semantics for GsPipe, RcPipe, and RcQueue; the
choice of classes depends on the transactional requirements of your application.

Example 4.4 FIFO Queue

| pipe |
pipe := RcPipe new.
pipe add: 'orange'.
pipe add: 'apple'.
pipe add: 'banana'.
pipe remove.
pipe.
%
aRcPipe('apple', 'banana')

64 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Reduced-Conflict Collection Classes

GsPipe

The class GsPipe implements a first-in-first-out queue, with no conflict when a single
session adds objects to the RcPipe, and only one session removes objects.

Internally, the GsPipe is implemented as a linked list of GsPipeElements. Since adds and
removes only affect the respective ends of the linked list, there is no conflict between add
and remove.

RcPipe

The class RcPipe implements a first-in-first-out queue, with no conflict when multiple
sessions add objects to the RcPipe, and only one session removes objects.

Internally, the RcPipe is implemented as a linked list of GsPipeElements. Unlike with
GsPipe, if a conflict with an add by another session occurs, the add operation is replayed
so that the commit can succeed. Only add: and operations that invoke add: are reduced
conflict.

RcQueue

The class RcQueue implements a first-in-first-out queue, with no conflict when multiple
sessions add objects to the RcQueue, and only one session removes objects.

RcQueue has a more complex internal implementation, which allows it to handle high rates
of concurrent updates without affecting performance. However, some usage conditions
make is necessary to perform manual cleanup

Internal implementation

Internally, RcQueues are implemented using an Array of ReQueueSessionComponents,
each corresponding to a session number. The RcQueueSessionComponents contain
RcQueueEntry instances, one for each object that the session with the corresponding
session number has added to the queue. The RcQueueEntry includes timestamp and
sequence number; the timestamp is used to determine the next object within the entire
queue is next to be returned, and the sequence number is used to track the next element
within the queue for a specific session.

When a next message causes an object to be removed, the removing session updates the
RcQueue’s removal sequence number array corresponding to the
RcQueueSessionComponents in which the removed object was found.

Maintenance

Reclaiming the storage of objects that have been removed from the queue is deferred until
new objects are added by a session with the same session number; this is the way the risk
of conflict is avoided.

If a session adds a great many objects to the queue all at once and then does not add any
more, while another session consumes the objects, performance can become degraded,
particularly from the consumer’s point of view. In order to avoid this, the producer can
send the message cleanupMySession occasionally to the instance of the queue from
which the objects are being removed. This causes storage to be reclaimed from obsolete
objects.

To remove obsolete entries belonging to all inactive sessions, the producer can send the
message cleanupQueue.

GemTalk Systems 65

GsBitmap GemStone/S 64 Bit 3.7 Programming Guide

4.3 GsBitmap

A GsBitmap is quite different than the other collections that have been described. Instances
of GsBitmap are objects that encapsulate an in-memory bitmap, with the presence of an
object in the collection only indicated by the way a bit is set at the index for the oopNumber
of the object.

GsBitmaps cannot be committed, and are designed to optimize performing tasks on very
large numbers of persistent objects. In particular, repository analysis using
allInstances and similar methods can be more easily done using GsBitmaps. The
objects in a GsBitmap are not in temporary object memory, allowing arbitrary large
collections. A number of repository analysis methods return GsBitmap instances, and
instances of GsBitmap can be created from hidden sets (see section 18.1 on page 343).

While GsBitmap can be considered as a collection and implements some Collection
protocol, it does not inherit from Collection. Methods such as add :, remove:, includes:
and do: are implemented specifically for GsBitmap; see the image for specific methods.
You may send asGsBitmap to create a GsBitmap from a collection, provided the collection
only contains objects that are allowed in a GsBitmap; use asArray to collect the objects
corresponding to the OOPs in the GsBitmap.

Since GsBitmap is intended to work with very large collections of objects, it implements set
arithmetic methods, +/union:, -/difference: and */intersect:.

While there are restrictions and caveats to using GsBitmap, there are significant benefits in
memory use. Instances of GsBitmap use C Heap memory, not temporary object memory,
to store the bit array.

The following restrictions apply to GsBitmap:.
» Only committed objects can be added to a GsBitmap.

» Specials, such as Characters, Integers, and SmallDoubles, cannot be added, since they
do not have POM OOPs.

» Objects can appear only once in the bitmap; duplicates are ignored.
» GsBitmaps are ordered in OOP order, regardless of the order they are added.
» GsBitmaps cannot be committed, since the underlying structure is not an object.

» Being in a GsBitmap does not count as a reference to an object, so there is a risk that
objects in a GsBitmap could be garbage collected.

The following example finds all instances of Customer that are not in the AllCustomers

collection:
Example 4.5 GsBitmap
| bmAllInstances bmCustomerColl]
bmAllInstances := SystemRepository allInstances: Customer.
bmCustomerColl := AllCustomers asGsBitmap.

(bmAllInstances difference: bmCustomerColl) asArray.

66 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide GsBitmap

GsBitmaps and C Heap memory

While GsBitmaps do not used temporary object memory, they do still use some memory,
and it is possible to run out of C Heap memory if there is extensive use of large GsBitmaps.

An instance of GsBitmap requires a minimum of 16KB (one page) of C Heap memory,
which can hold up to 2K objects. A GsBitmap’s memory use always grows in 16KB
increments. For GsBitmap instances that contain more than 2K elements, the amount of
memory used will vary, depending on how dense the OOP values are within the leaves of
the internal tree structure. The best case, for very large, dense bitmaps, is about 1 bit per
object. A GsBitmap that contains all the OOP in the repository (GsBitmap
allvalidOops) will take about (System _oopHighWaterMark // 8)bytes of C heap
memory.

GsBitmaps and their objects

There is an important point to note about GsBitmaps; an object in a GsBitmap is not
"referenced" by the GsBitmap in the usual way.

An object in GemStone that is not referenced by other persistent objects or by references
from a session, is subject to garbage collection. In busy systems, the OOP of that object may
be recycled and no longer be in use; and the OOP may be reused by this or another session
for an entirely new object of any class. GemStone collections (other than GsBitmap) have
references to the objects contained within them, which keeps the objects in temporary
collections safe for the life of a session.

Since the references in a GsBitmap are just to the OOPS, not to the objects, objects in a
GsBitmap are not safe; the reference from the bitmap is not sufficient to preserve content
objects from garbage collection, if they are not referenced somewhere else in the
application or session.

If your session performs commits or aborts (including automatic commits or aborts), and
the objects that you are working with may become dereferenced (for example, removed
from the root collection by another session), then your code should be prepared for objects
to no longer exist, or to be a different object than expected.

If an object was garbage collected, and the OOP reused, it may have been used for a critical
internal object, or an important object in your application. Use caution when modifying the
objects returned from a GsBitmap.

GsBitmaps methods for repository analysis

GsBitmap includes methods that enable repository-wide analysis of objects in the
repository. The following methods are available; see the image for other methods.

GsBitmap >> referencedObjects
Returns a new GsBitmap containing the objects directly referenced by the objects
in the receiver.

GsBitmap class >> allvValidOops
Returns a GsBitmap containing the oops of all valid committed objects in the
repository.

GsBitmap class >> transitiveReferences: aCollection
Returns a GsBitmap that contains all the objects which are transitively referenced
from the objects in aCollection.

GemTalk Systems 67

GsBitmap GemStone/S 64 Bit 3.7 Programming Guide

GsBitmap class >> allObjectsExcept: aCollection
Returns a GsBitmap that contains all objects that exist in the repository, which are
not contained in the objects transitively referenced from aCollection.

Bitmap files

In addition to standard collection protocol, GsBitmaps can be written to and read from
disk, using the following methods:

GsBitmap >> writeToFile:
GsBitmap >> readFromFile:
GsBitmap »>> readFromFile:withLimit:startingAt:
You may also query for information on a given bitmap file, using
GsBitmap >> fileInfo:.This method returns an array containing:
» number of oops in the file
» whether the file was written in page order
» number of valid oops
» number of oops that are not allocated, or in the process of being garbage collected
A GsBitmap file contains references to numeric OOPs. The caution about the risk of
unreferenced OOPs being garbage collected and possibly reused, applies even more
strongly when using GsBitmap files. And of course, the likelihood of incorrect results

relates to the amount of garbage collection that has been done during the period between
the time the file was written and when it is read.

Page order Bitmap files

A GsBitmap is inherently in OOP order, so to use GsBitmaps with page order files,
different protocol must be used.

You may write a GsBitmap file in page order using
GsBitmap »>> writeToFileInPageOrder:

The bitmap file written with this method is formatted the same as that written by methods
such as Repository »>> listInstancesInPageOrder:toFile:. Thisformat is
different than the format written by GsBitmap >> writeToFile: and read by
GsBitmap >> readFromFile:*.

To read a page-order GsBitmap file, and preserve the page order by returning values in an
Array, use:

GsBitmap class >> readObjectsFromPageOrderFile: fileName
startingAt: startIndex upTo: endIndex
Reads, validates and returns an array containing the valid oops in page order from
a page-ordered bitmap file. startIndex is the index of the first object (1-based),
endIndex is the index of the last object to return from the file.

68 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Sorting the objects in a collection

4.4 Sorting the objects in a collection

You are likely at some point to want to present the contents of your Collection in a sorted
order. You will have to determine how the objects in your collection should be compared
to each other for the ordering you need.

Default Sort

Many objects, such as strings, numbers, and dates, have an inherent sort ordering; they
respond to <= in a common way, although they cannot always be compared with each
other. If your collection contains only homogenous objects that share an understanding of
<=, you can use messages such as sortAscending, sortDescending, and
asSortedCollection to the collection.

Example 4.6 SmallInteger and String sorting

(Array with: 123 with: 3 with: 99 with: 10) sortDescending

%
anArray(123, 99, 10, 3)

(Array with: '123' with: '3' with: '99' with: '10') sortAscending

%
anArray('10', '123', '3', '99")

The default sort of Strings is case-insensitive, unless the only difference is case in which
uppercase is first. However, in many cases you may need a different ordering, particularly
when languages other than English and character outside the ASCII range are involved.
GemStone provides specialized tools for this, which are described in Chapter 5.

The options depend on the type of data in your collection.

» Sort based on predefined order of the objects. Some objects, such as Strings,
Integers, and DateTimes, have an inherent sort ordering, and GemStone provides
default sorts for Collections that contain only objects that can be compared using <=.

While strings have intuitive sort order, string sorting can be complex. Traditional and
Unicode strings handle some cases differently. String sorting is described in section 5.3

on page 81.
» Sort based on one or more of the predefined order of objects’s instance variable

values. The sort you intend is based on the values in application objects instance
variables, and these values have inherent sort order, such as sorting customers by zip

code.

» Arbitrary Sort. sortBlocks allow you to specify expressions that can order any type of
object according to your specific requirements.

These issues are the same when using a SortedCollection, which always maintains sort
order as elements are added and removed, or when sorting another kind of collection for

presentation.

GemTalk Systems 69

Sorting the objects in a collection GemStone/S 64 Bit 3.7 Programming Guide

Sorting Application objects

Most likely, you will need to sort complex objects in your collection, such as Customers by
name or Addresses by zip code. If the instance variables in your complex objects are objects
that have a defined sort order, you can take advantage of sortAscending:,

sortDescending:,and sortWith:, to provide a specification for the desired sort order.

You may wish to implement <= on your application objects, in which case you can just use
as sortAscending, sortDescending, and asSortedCollection. However, this
provides a single definition of the sort order of your objects that will always be applied.

For example, say we have a class for Employee, and a Globals AIlIEmployees is a collection
that contains instances of Employee:

Example 4.7 Employee class and AllIEmployees

Object subclass: 'Employee'
instVarNames: #('firstName' 'lastName' 'job' 'age')
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals

Employee compileMissingAccessingMethods

UserGlobals at: #AllEmployees put: (IdentityBag
with: (Employee new firstName: 'Lee'; lastName: 'Smith';
job: #librarian; age: 40)
with: (Employee new firstName: 'Kay'; lastName: 'Adams';
job: #clerk; age: 24)
with: (Employee new firstName: 'Al'; lastName: 'Jones';
job: #busdriver; age: 40))

To sort Employees by age and lastName, we can use the sortAscending: method, passing
in the instance variables against which the ascending sort should be done:

Example 4.8

| sorted str |
str:= String new.
sorted := AllEmployees sortAscending: #('age' 'lastName').
sorted do: [:anEmp |
str add: (anEmp age asString); space; add: anEmp lastName; 1f].
str
%
24 Adams
40 Jones
40 Smith

70 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Sorting the objects in a collection

Sorting in multiple orders

For finer control, you can use the sortWith: method, which allows you to define
direction for each instance variable.

Example 4.9
| sorted str |
str := String new.
sorted := AllEmployees sortWith: #('age' 'Ascending'
'lastName' 'Descending').
sorted do: [:anEmp | str add: (i age asString);
add: ' '; add: anEmp lastName; 1f].
str
%
24 Adams
40 Smith

40 Jones

SortBlocks

You can also specify sort ordering by defining a sortBlock. A sortBlock is a two-argument
block that should return true if the first argument should precede the second argument,

and false if not. The expressions within the block are expected to by symmetrical - i.e., for
two specific arguments for which the block returns true, then the block should return false
when the arguments are reversed. If values compare equal, and the block returns the same
results for both argument orders, then the final ordering of the equal elements is arbitrary.

SortedCollection is a type of Collection that includes a sortBlock; SortedCollection class is
discussed under “SortedCollection” on page 59.

You can sort the elements of a collection by creating a SortedCollection using
asSortedCollection: aBlock, or by using methods such as sortWithBlock:. which
return an Array with the sorted contents .

For example, to sort customers by last name:
AllEmployees sortWithBlock: [:a :b |
a lastName <= b lastName]

You can create sort blocks that are as elaborate as you need; however, you should observe
the symmetry of the expression.

For example, this block sorts by lastName, with further sorting by firstName if the
lastNames are the same:
AllEmployees sortWithBlock: [:a :b |
a lastName = b lastName
ifTrue: [a firstName <= b firstName]
ifFalse: [a lastName <= b lastName]

GemTalk Systems 71

Sorting the objects in a collection GemStone/S 64 Bit 3.7 Programming Guide

Sorting Large Collections

When sorting using the above methods, the entire collection must fit into memory. This
may not be practical for very large collections.

To avoid out of memory errors when sorting large collections, you can allow the sort to
issue periodic commits, which will make the sort results persistent. Persistent objects don’t
need to stay in memory the way temporary objects do, which reduces the demand on
memaory.

These intermediate commits are enabled by specifying a persistentRoot for the sort, and by
taking advantage of the IndexManager’s ability to set up autoCommit. IndexManager is a
class that manages Indexes, which you’ll read more about in Chapter 8. You do not need
to have an index on the collection in order to use this feature. However, you do need to set
IndexManager’s autoCommit setting to true. For more information on autoCommit, see
“Auto-commit” on page 153.

For example, the following code sorts AllEmployees collection using
sortWithBlock:persistentRoot:

Example 4.10 Sorting large collections, committed incremental results

UserGlobals at: #SortedEmployees put: Array new.

System commitTransaction.

AllEmployees
sortWithBlock: [:a :b | a lastName <= b lastName]
persistentRoot: SortedEmployees

72

GemTalk Systems

Chapter

5 String Classes and
Collation

String handling is an important part of most applications. While Strings are a type of
Collection, they have a number of unique features and behavior.

Characters and Unicode (page 73)
Describes Characters.

String classes (page 75)
Introduces the GemStone Smalltalk objects that store collections of Characters.

String Sorting and Collation (page 81)
Describes collation, including traditional string collation and collation using the ICU
libraries and Unicode strings.

Encrypting Strings (page 89)
Explains how to encrypt strings.

5.1 Characters and Unicode

A Character is a special object: an object whose value is encoded in the OOP. Literal
Characters are formed with a leading $.

Code point

Each Character has a code or codePoint, which, for lower order Characters, is the ASCII
value. Either of these terms may be used, though ASCII is an incorrect term for the higher
code points. GemStone supports Characters with values from 0 to 16r10FFFF, the full
Unicode range, except for the Unicode reserved range.

The Unicode range of codePoints from 16rD800-16rDFFF is reserved for encoding
leading/trailing surrogate pairs for UTF-16 encoding. These can never be legal Unicode
characters, and as such can never be present in Unicode strings.

To get the Character for a given codePoint, use the Character class methods withvalue:
or codePoint:.

GemTalk Systems 73

Characters and Unicode GemStone/S 64 Bit 3.7 Programming Guide

Attributes

Characters have “type”, and know if they are a digit, letter, separator, or other similar kind.
This information is defined in the Unicode database as the Unicode general category, and
a variety of testing methods are available. The Unicode database also defines the upper and
lower case equivalents, and case conversion methods are available. See the image for a full
list of available protocol.

For example,

$Z isUppercase
true

Su isDigit
false

Collation

Characters are ordered (collated) using internal character tables, which provide a Unicode-
like collation order for Characters up to code point 255. Characters above that are collated
by code point. Character collation can be modified by installing character data tables,
although this use is deprecated.

Character collation is used in collating instances of Traditional string classes, in Legacy
String Comparison Mode. This character-based string collation has limitations outside the
ASCII range; the ICU-library based string collation should be used if the default collation
is not sufficient. For more on collation, see “String Sorting and Collation” on page 81.

Empty string canonicalization

An empty String literal, that is, a String or Unicode? created by evaluating ", is
canonicalized to a predefined kernel OOP; these do not use additional OOPs in the
repository, do not require addiional space, nor affect garbage collection.

If you will be appending to a new empty string, you should start with String new, if the
empty string will remain empty, using a literal String is more efficient.

Unicode and the Unicode Database

74

The Unicode Consortium is an international standards organization that produces the
Unicode Database. Unicode is a commonly used standard which provides unique codes for
all Characters in all Character sets, in the range 0 to 0x10FFFF. It also describes the category
of each Character and relationship between it and other Characters, and provides a default
collation order with the Default Unicode Collation Element Table (DUCET).

For more information on this database, see
http:/ /www.unicode.org/Public/ UNIDATA /UCD.html

The Unicode Consortium provides code charts by script as well as a single master list of all
characters, presented in an ASClI-only, comma-delimited version. The current version of
this database can be found at

http:/ /www.unicode.org/Public/UNIDATA /UnicodeData.txt.

GemStone’s Unicode strings and collation in Unicode Comparison Mode uses external
libraries that support Unicode. Tradtional Strings in Legacy Comparison Mode use a
historic native GemStone implementation that broadly conforms to Unicode, but has not
been updated as the standard has evolved.

GemTalk Systems

http://www.unicode.org/Public/UNIDATA/UCD.html
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

GemStone/S 64 Bit 3.7 Programming Guide String classes

5.2 String classes

A string is a sequence of Characters, implemented as a subclass of CharacterCollection.

Each element in a CharacterCollection is a Character. Since characters may require more
than one byte of storage, the class of string may be transparently converted to an instance
of the class with the appropriate capacity for that Character. The semantics of the
CharacterCollection remain the same; access by index will return the Character at the given
index, regardless of how many bytes the Character actually requires.

A fundamental quality of strings is collation. Since the scope of collation includes equality,
the collation of strings affects a repository in many ways, such as dictionary lookups.
Collation in GemStone has historically been handled using character-based tables. Unicode
string-based collation using ICU open source libraries is included in recent releases and
provides a much richer set of collation features. To ensure that legacy applications function
correctly, GemStone supports both of these encoding/collation schemes.

» Traditional strings and Legacy String Comparison Mode. Traditional strings are
instances of String, DoubleByteString, and QuadByteString. In Legacy String
Comparison Mode, they collate using GemStone character-based tables, as in older
GemStone releases.

» Unicode strings and Unicode Comparison Mode. Unicode strings are instance of
Unicode7, Unicodel6, and Unicode32. These strings use ICU string-based collation. In
Unicode Comparison Mode, they can safely mix with symbols and the Traditional
strings existing in the base image.

Traditional Strings

In Legacy String Comparison Mode, Traditional strings collate using internal character-
based collation tables. When the repository is in Unicode Comparison mode, however,
Traditional strings use ICU-based Unicode collation.

Traditional strings are implemented in three classes:

String
Strings hold Characters with codepoints in the range 0..255 (8 bits).

DoubleByteString
DoubleByteStrings are required when one or more Characters in a string needs more
than one byte of storage. DoubleByteStrings hold Characters with codepoints in the
range 0...16rFFFF (64K).

QuadByteString
QuadByteStrings are required when one or more Characters in a string needs more
than two bytes of storage. QuadByteStrings hold Characters with codepoints in the
range 0...16r10FFFF.

While Traditional strings normally hold human-readable text characters, this is not a
requirement. Generally, raw byte data would be held in an instance of ByteArray, but it
may be more convenient to use a String. In particular, there are cases when an instance of
String will be used to hold raw UTF-8 encoded bytes.

GemTalk Systems 75

String classes GemStone/S 64 Bit 3.7 Programming Guide

Unicode Strings

Unicode strings always use ICU string-based collation. Like Traditional strings, there are
three classes based on range, but note that the codePoint range is different than Traditional
strings.

Unicode?7
A subclass of String, limited to holding Characters with codepoints in the range 0..127
that are represented in 7 bits.

Unicodel6
A subclass of DoubleByteString, holding Characters with codepoints in the range
0...16rFFFF (64K), excluding the range 16rD800-16rDFFF. This range is reserved for
surrogates that allow encoding into UTF-16.

Unicode32
A subclass of QuadByteString, holding Characters with codepoints in the range
0..16r10FFFF. Again, this excludes the range 16rD800-16rDFFF.

Unicode strings should not hold raw byte data.

String equality, ordering, and interoperation

In Legacy String Comparison Mode, Traditional strings and symbols are compared for
equality and ordered using character-based comparison, and equality includes non-
printing characters as well as printing characters.

Unicode strings use the ICU string-based string collation, in which equality does not
consider non-printing characters.

Since Traditional and Unicode string equality rules are different, Traditional strings and
symbols (when the repository is in Legacy String Comparison Mode) may produce
inconsistent results. In this mode it is an error to mix Unicode strings with Traditional
strings or symbols, either for comparison or equality.

Also note that Unicode comparison of Symbols using = uses identity, while >= and <=
compare according to the ICU rules for UnicodeString. Symbol comparison using = may
produce inconsistent results for Symbols containing special characters, such as nuls, that
are not counted by ICU comparison.

Other String-like classes

76

Symbol

A symbol is similar to a string, but each symbol with a unique set of Characters is
guaranteed to have only one canonical instance in GemStone. Symbols are created by a
special process, the SymbolGem, to ensure this uniqueness. Creating a new symbol will
return an existing symbol, if one exists; a new symbol is only created if it has not been
previously defined. Existing symbols cannot be modified.

Like strings, symbols may also contain Characters with values that require more than a
byte of storage, and will convert from class Symbol into DoubleByteSymbols or
QuadByteSymbols as needed. Since symbols are canonical, the class of a symbol always
depends on the contents. While you can create a DoubleByteString with only characters in
the range of String, you cannot create a DoubleByteSymbol that does not contain at least
one character in the DoubleByte range, and the same is true for QuadByteString.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide String classes

All symbols may be viewed by all users. Private information should be maintained in
strings, not in symbols.

Symbols, DoubleByteSymbols, and QuadByteSymbols are restricted to 1024 or fewer
characters.

Symbols that have no references from anywhere in the system may eventually be garbage
collected, if the system is configured to do so. See the System Administration Guide for more
information on symbol garbage collection.

Symbols, like strings, collate using character-based tables in Legacy String Comparison
Mode and using ICU string-based collation in Unicode Comparison Mode. As a result, they
cannot be compared to Unicode strings in Legacy String Comparison Mode.

Symbol equality comparisons with = compare identity, while other comparisons (> >= <
<=) use the ICU string-based collation. GemStone symbols that contain the same printing
characters but different non-printing characters will return false for = but compare true for
>=and <=.

The literal form of a Symbol is specified using a leading #. The body of the symbol may
additionally include single quotes. This is optional for symbols that are legal identifiers
and keywords, but required for symbols that start with a number, include
punctuation/spaces, etc. For example:

#'22 skidoo'

#fooBar

ByteArray

ByteArray is a specialized collection that is restricted to holding Integers between 0 and 255
(inclusive). While ByteArray is not a kind of String, the contents may be interpreted as a
String.
Instances of ByteArray can be creating using literal syntax #[]. For example:

#L 1 2 3 4 1]

Utf8

Utf8 is a subclass of ByteArray. It is not a kind of String, but may easily be converted back
and forth from a traditional or Unicode string. A Utf8 holds the UTF-8 encoded bytes
created by sending encodeAsUTF8 to a string, or by reading encoded data from a GsFile
using contentsAsUTF8. Utf8 instances should not be directly created or edited.

' amas' encodeAsUTF8
anUtf8(197, 164, 97, 109, 97, 115)

Instances of Utf8 can be read from and written to instance of GsFile, which cannot directly
handle characters with codePoints over 256. FileSystem by default reads and writes in
UTF-8 encoding, transparently encoding and decoding to string instances.

Utf16

Utf16, like Utf8 is a subclass of ByteArray that is not a String, but may be converted back
and forth from a traditional or Unicode string. A Utf8 holds UTF-16 encoded bytes
corresponding to a traditional or Unicode String,.

GemTalk Systems 77

String classes GemStone/S 64 Bit 3.7 Programming Guide

String protocol

78

Creating Strings

Strings created as literals, that is, in text encased in single quotes, are invariant; they cannot
be modified after they are created.
In addition to creating strings as literals, you can use the inherited instance creation
methods, such as new: and withAll:. For example:

String withAll: #(Sa $z Su Sr Se).

azure

Concatenating Strings

A string responds to the comma operator by returning a new string in which the argument
to the comma has been appended to the string’s original contents. For example:

'String ' , 'con' , 'catenation'

String concatenation

Although this technique is handy, it’s not very efficient; each #, message send creates a new
instance of String, so this example creates three Strings, returning the final one.

To build a string efficiently, by appending onto the original object, you can use add:,
which modifies the original string. Note that you cannot start with a literal string, since a
literal string is invariant.

For example:

| resultString |

resultString := String new.

resultString add: 'String ';
add: 'con';
add: 'catenation'.

resultString

%

String concatenation

Converting between String classes and encodings

To convert between UTF-8 encoded bytes and the various kinds of string classes, there are
a number of methods:

» Instances of Symbols and Traditional strings can be converted to the lowest-storage
type of Unicode string using asUnicodeString.

» Instances of Symbols and Unicode strings can be converted to the lowest-storage type
of Traditional strings using asString.

» A Traditional string that is composed of raw UTF-8 encoded bytes can be decoded to
a Unicode string using decodeFromUTF8ToUnicode, or to another Traditional
string with decoded bytes, using decodeFromUTF8ToString.

» A Traditional string can be encoded into a String containing the raw UTF-8 encoded
bytes, using encodeAsUTF8IntoString.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide String classes

» To convert from a ByteArray containing UTF-8 or from a Utf8 to a Unicode string, use
decodeFromUTF8ToUnicode, or to convert to a Traditional string, use
decodeFromUTF8ToString.

» Instances of ByteArray and Utf8 may be converted to a Traditional string without
decoding by using bytesIntoString.

» All kinds of strings can be encoded to an instance of Utf8 by using encodeAsUTF8.

String Transformations

CharacterCollection and its subclasses define messages that let you perform various
conversions.

Strings can be converted in case:
» asUppercase creates a new instance with all uppercase letters
» asLowercase creates a new instance with all lowercase letters

» asTitlecase creates a new instance with the first letter of each word capitalized,
the remaining letters lowercase.

» asFoldcase returns a new instance in “fold case”, which is case-free for
comparison, and usually is similar to the lowercase.

For example:
'abcde' asUppercase
ABCDE

You can remove leading and/or trailing whitespace separators using methods such as
trimSeparators. There are a number of variants; see the image for details.
For example:

' abcde ' trimSeparators

'abcde’

Strings can be split using the subStrings: method, which allows you to specify one or more
characters to use as markers.

For example, to split a text into lines with /:
'owa/tagu/siam' subStrings: '/'

anArray('owa', 'tagu', 'siam')

Strings can be converted to numbers and other types of objects as well. For example:

'15' asFloat
15.0

Note that not all Strings can be converted to all kinds of other objects; if the String does not
contain the representation of a number, for example, it's meaningless to convert it to an
Integer, so this will return an error.

Equality and Identity

Traditional strings are equal to each other if they contain the exact same Characters in the
same case; equality is case-sensitive.

GemTalk Systems 79

String classes

GemStone/S 64 Bit 3.7 Programming Guide

Unicode strings compared using = follow the ICU library comparison rules for equality,
which are similar, although any non-whitespace control characters (such as null) are
ignored for the comparison.

As mentioned above, Traditional strings and Unicode strings cannot be compared to each
other for equality using =, when the repository is in Legacy String Comparison Mode. To
compare traditional and Unicode strings in any combination, use
compareTo:collator:, specifying nil for the collator to indicate the default collator.
Strings can be compared for case-insensitive equality using the methods i sEquivalent:
or equalsNoCase:.

Identity in Literal vs. nonliteral

Literal and nonliteral Strings behave differently in identity comparisons. Each nonliteral
String (created, for example, with new, withAll:, or asString) has a unique identity.
That is, two Strings that are equal are not necessarily identical.

| nonlitStringl nonlitString2 |

nonlitStringl := String withAll: #(Sa Sb S$Sc).
nonlitString2 := String withAll: #(Sa Sb S$c).
(nonlitStringl == nonlitString2)

false

However, literal strings that contain the same character sequences and are compiled at the
same time are both equal and identical:

| litStringl 1litString2 |

litStringl := 'abc'.
litString2 := 'abc'.
(litsStringl == litString?2)
true

This distinction can become significant in building sets. If you add both litStringl and
litString2 to the same IdentitySet, the set will contain only one instance of ' abc '; however,
an IdentitySet would include both nonlitString1 and nonlitString?2.

Searching and Pattern matching

CharacterCollection and its subclasses define methods that can tell you whether a string
contains a particular sequence of characters and, if so, where the sequence begins. This
search can be case sensitive, case insensitive, and may include wild cards.

Below are some common methods; see the image for further methods.

Table 5.1 Search and Pattern Match Protocol

Case-insensitive
Case-sensitive Search Search Description
includesString: Return true if the receiver includes
subString subString.
findString: subString || findStringNoCase: Return the index of subString if it
startingAt: anlndex subString exists within the receiver at anlndex
startingAt: anlndex or above, otherwise zero (0).

80

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide String Sorting and Collation

Table 5.1 Search and Pattern Match Protocol

Case-insensitive
Case-sensitive Search Search Description
matchPattern: Return true if the receiver matches
patternArray the specifications in patternArray
findPattern: findPatternNoCase: Return the index of a substring in the
patternArray patternArray receiver that matches the
startingAt: anlndex startingAt: anlndex specifications in patternArray at
anlndex or above, otherwise zero (0).

Pattern Matching Wild Cards

Pattern matching arguments (patternArray) consist of an Array containing combinations of
Strings and the wildcard characters $* and $?. The character $? matches any single
character in the receiver, and $* matches any sequence of characters in the receiver.

This is an example of the use of wildcard characters in pattern matching.

'weimaraner' matchPattern: #('w' S$* 'r')
true

Since $* is interpreted as “any sequence of characters”, this returns true.

Similarly, The following example returns the index at which a sequence of characters
beginning and ending with $r occurs in the receiver.

'weimaraner' findPattern: #('r' $* 'r') startingAt: 1

6

If a wildcard character $* or $? occurs in the receiver or within a string in the argument
array, it is interpreted literally.

The following expressions illustrate what happens when the * is within the string and
interpreted literally:

'w*r' matchPattern: #('weimaraner')

false

'weimaraner' findPattern: #('w*r') startingAt: 1
0

5.3 String Sorting and Collation

While strings clearly have a natural sort order (collation), the details of that order are
complex. Different languages may sort the same set of strings differently, according to the
particular rules in that language. Even within one language, different applications may
want to order string data differently. To complicate matters, some languages may treat
certain sequences of characters as a unit when sorting strings.

Collation depends on the results of a comparison between two strings, which in turn
depends on how the Characters within the string are collated. While this simple view
breaks down with some sorting requirements and linguistic rules, basic string comparison
is adequate for many uses and is faster than the more complete external collation.

GemTalk Systems 81

String Sorting and Collation GemStone/S 64 Bit 3.7 Programming Guide

Comparison Mode

82

The Comparison Mode of a repository controls the way comparisons are done between
instance of Traditional strings. The modes are:

» Legacy String Comparison Mode, the default for new applications.
» Unicode Comparison Mode, enabled in all GsDevKit-based applications.

In Legacy String Comparison Mode, Traditional strings and symbols cannot be compared
to Unicode strings without using special protocol. Collation of Traditional strings and
symbols is using character-based collation.

In Unicode Comparison Mode, Traditional strings and Symbols use ICU string-based
collation, and can interoperate easily with Unicode strings.

A new repository can be easily switched to Unicode Comparison Mode. Since the collation
rules may be subtly different, and affect system operations such as looking up class names
in SymbolDictionaries, changing the mode for existing applications should be done with
great care and thorough testing. To be safe, all indexes and sorted collections should be
rebuilt, and all hashed collections re-hashed. The mode of a repository must be managed
as part of System Administration, not by individual developers on a shared repository.

StringConfiguration

The Comparison Mode is controlled by the Global #StringConfiguration. By default,
StringConfiguration is set to String, and the repository is therefore in Legacy String
Comparison Mode.
To enable Unicode Comparison Mode, as SystemUser, execute:
StringConfiguration enableUnicodeComparisonMode
This returns the previous setting for Unicode Comparison Mode. Note that this commits,
but the current session is not affected; the new mode will take effect for all subsequent
logins.
To enable Legacy String Comparison Mode, as SystemUser, execute:
StringConfiguration disableUnicodeComparisonMode
Again, note that this operation commits, but the change does not affect the current session;
the new mode will take effect for all subsequent logins.
To verify the mode in this repository, execute:
StringConfiguration isInUnicodeComparisonMode

Auto-conversion

When you create or update a kind of Traditional or Unicode string with a Character that
requires more bits than the specific class of string can hold, it is transparently auto-
converted to the appropriate class.

For example, if you add if you add the Euro character (code point 8364) to an instance of
String, which can only hold codePoints up to 255, it will auto-convert to an instance of
DoubleByteString. Likewise, if you add an Yen symbol (codePoint 177) to an instance of
Unicode?, which can only hold codePoints up to 127, it is auto-converted to an instance of
Unicodelé6.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide String Sorting and Collation

When the repository is in Unicode Comparison Mode, an instance of String that would
otherwise auto-convert to an instance of DoubleByteString is converted to an instance of
Unicodel6, for improved comparison and collation since comparisons use the ICU
libraries.

Legacy String Comparison Mode for Traditional Strings

Traditional strings (String, DoubleByteString, and QuadByteString) and symbols (Symbol,
DoubleByteSymbol, and QuadByteSymbol) are collated, in Legacy String Comparison
Mode, by individual character. The comparison of characters with values up to 255 are
done according to the Default Unicode Collation Element Table (DUCET), and Character
256 and above are sorted by codePoint, the Unicode numeric value.

Legacy applications may have installed non-default internal character tables, which
modified the character-based collation. This is no longer recommended; if the default
character-based collation is not sufficient for your application, you should integrate the
ICU string-based collation.

Enabling Unicode Comparison Mode (see “Comparison Mode” on page 82) causes
Traditional strings and symbols to collate following the same rules as Unicode strings. This
section only applies when in Legacy String Comparison Mode, not in Unicode Comparison
Mode.

String ordering using <= (as well as <, >, and >=) is not case-sensitive. When instances of
String, DoubleByteString, and QuadByteString are compared using <= or related
operations, the comparison first is done case-insensitive. If they are found to be equal other
than with respect to case —if the only difference is case —then they are collated according
to the Character Data Table, which specifies uppercase comes before lowercase.

For example:
#('MM' 'c¢' 'Mm' 'mb' 'mM' 'x' 'mm')
sortAscending
anArray('c' 'mb' 'MM' 'Mm' 'mM' 'mm' 'x')

Since ordering is by character, with only case being excluded, the default ordering is
sensitive to accents and other diacritical marks on characters. Characters with diacritical
marks are not related to the base character.

For example, all words beginning with 'Co' and 'co' would sort before all words beginning
with 'Cé' and 'c6":
#('Cér' 'COz' 'Coa' 'cda')
sortAscending
anArray('Coa', 'COz', 'cda', 'Cér')

Unicode Comparison Mode and ICU Collation

Unicode strings, and all strings when in Unicode Comparison Mode, use the ICU
(International Components for Unicode) libraries to provide string-based collation. The
ICU libraries are a widely-used, open-source implementation of language-specific sorting
and collation.

For a complete explanation of the features and subtleties of language-specific collation, you
should refer to documentation on the ICU website, http:/ /icu-project.org/.

The classes IcuLocale and IcuCollator provide an interface to the ICU libraries. Unicode
strings (instance of Unicode?, Unicodel6, and Unicode32) and instances of Utf8 use

GemTalk Systems 83

http://icu-project.org/

String Sorting and Collation GemStone/S 64 Bit 3.7 Programming Guide

84

IcuCollator and IcuLocale to perform sorting operations using the ICU libraries. The
collation is performed by considering the entire string, not on a character-by-character
basis, and requires a specific language and locale to determine the rules for the comparison.

In addition to specific language rules, ICU sorting is highly configurable for other
application-specific sorting requirements.

While collation will vary according to specific language and locale, in general ICU collation
orders characters with diacritical marks with the base character, and sorts lowercase before
uppercase.
For example, using the sorting examples in the previous section and the default collator for
the US, a different sort ordering is produced from that of legacy collation:

#('MM' 'c¢' 'Mm' 'mb' 'mM' 'x' 'mm')

sortAscending
anArray('c', 'mb', 'mm', 'mM', 'Mm', 'MM', 'x')

#('Cér' 'COz' 'Coa' 'cda')
sortAscending
anArray('Coa', 'cda', 'Cér', 'CO0z')

This is the default US collation; by configuring the IcuCollator, however, many other
orderings may be produced.

IcuLocale

Instances of IcuLocale represent a specific language, country, and language variant. The
available IcuLocales are in the shared library and can be listed using IcuLocale
class »>> availableLocales.

A default instance of IcuLocale is instantiated on first reference, and stored in session state.
The default IcuLocale is based on the operating system locale setting for the gem. The
default IcuLocale affects collation, so some care should be taken in configuring the
operating system locale for the gem processes. In applications with distributed locales, it
may be safer to set a default IcuLocale on login, using UserProfile >> loginHook:
(see the System Administration Guide).

To set a specific default IcuLocale, use the method IcuLocale class »>> default:.
This sets the default locale for the session executing this code. While the instance of
IcuLocale can be made persistent, the default IcuLocale does not persist from session to
session.

To determine what IcuLocale is currently in use, use the method IcuLocale >>
default.

IcuLocale default
IcuLocale en_US

IcuCollator

An IcuCollator encapsulates the rules involved in collation for a specific IcuLocale. A
default instance of IcuCollator is instantiated on first reference, based on the default
IcuLocale, and stored in session state.

When comparing instances of Unicode string classes, the comparison always uses an
IcuCollator, using the method compareTo:collator:. If an IcuCollator is not specified,

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide String Sorting and Collation

such as when Unicode string classes are compared using >, the IcuCollator default
is used; which in turn uses IculLocale default.

You can also create an instance of IcuCollator for a specific locale, if you need to use specific
collation rules other than the default. You can do this using IcuCollator class methods
forLocale: anlcuLocale or forLocaleNamed: aString. For example, to create an
IcuCollator for the German language as used in Germany:

IcuCollator forLocaleNamed: 'de_DE'
The actual string comparison is done by the ICU libraries, and follows the ICU comparison

rules for that locale. Collation rules are similar in most western languages, but there are
differences in specific languages.

For example, in the Hungarian language, ‘cs’ is considered a single letter, so words that
start with “cs” are sorted together and follow other words beginning with 'c’. The following
example sets up a collection that is sorted according to Hungarian rules:

Example 5.1 Sorting in Hungarian IcuLocale

| hungarianWords collator |

collator := IcuCollator forLocaleNamed: 'hu_HU'.
hungarianWords := IcuSortedCollection newUsingCollator: collator.
hungarianWords

add: 'csak' asUnicodeString;
add: 'cukor' asUnicodeString;
add: 'comb' asUnicodeString.
hungarianWords
a IcuSortedCollection
sortBlock a ExecBlock2
collator a IcuCollator
#1 comb
#2 cukor
#3 csak

Customizing Sort

IcuCollator includes a number of attributes that can be used to customize the sort. These
attributes work within the specific language rules of the associated IcuLocale.

Keep in mind that while the default values and the descriptions listed in Table 5.2 apply to
most locales, particularly with non-Western scripts, the defaults may be different in
different locales, and the attribute may have different behaviors.

See the ICU site, particularly the pages under http://userguide.icu-project.org/collation,
for more precise descriptions and more detailed documentation.

Table 5.2 IcuCollator Attributes

Attribute name Allowed values Default

alternateHandling | true | false false When true, allows space and
punctuation characters within the
string to be ignored.

GemTalk Systems 85

http://userguide.icu-project.org/collation

String Sorting and Collation

GemStone/S 64 Bit 3.7 Programming Guide

86

Table 5.2 IcuCollator Attributes (Continued)

Attribute name

Allowed values

Default

caseFirst

'off', 'upperFirst', or
lTowerFirst'

'off'

When comparing case, determines
if upper or lowercase is sorted first.
Most locales sort lowercase first
when caseFirst is “off” as well as
when "lowerFirst’.

caseLevel

true | false

false

When true, considers case in the
comparison, even if the strength
would normally not consider case.

frenchCollation

true | false

false

When true, sorts secondary
differences (e.g. differences in
diacritical marks) in reverse order.
This is the collation rule for French.

normalization

true | false

false

Determines whether to normalize
input strings. Useful if input data
may not be -normalized, but
impacts performance.

numericCollation

true | false

false

When true, sorts numeric sequences
within the string by numerical
rather than string comparison; e.g.
sort 100" after 2"

strength

PRIMARY -0
SECONDARY -1
TERTIARY -2
QUARTENARY -4,
or

IDENTICAL - 15

TERTIARY

Determines the level of collation
factors to consider, such as
diacritical marks and case. See
discussion below for more details.

Strength allows degrees of sort, to consider or not consider things like accent characters
and case when performing the sort. The default strength is TERTIARY for most locales (the
main exception being Japanese). The following are the sort strengths:

» PRIMARY sorts by primary differences, ignoring secondary and later differences. The
base letter represents a primary difference, so for example 'a' and 'b'.

» SECONDARY sorts by primary and secondary differences, ignoring tertiary and later
differences. An example of a secondary difference is diacritical differences on the
same base letter, for example 'o' and '6".

» TERTIARY sorts by primary, then secondary, then tertiary differences. Uppercase vs.
lowercase is a tertiary differences. TERTIARY is the default sort order for most

locales.

» QUATERNARY is used in Japanese, where it distinguishes between Japanese
Katakana and Hiragana, and can be used to break ties among separator characters
when alternateHandling is true.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide String Sorting and Collation

» IDENTICAL sorts by the specific character, by codepoints in the NFD (Normalization
Form Canonical Decomposition) form. There is a performance impact with this
strength.

The default sort strength is TERTIARY. As an example, when two strings are compared
using TERTIARY strength, characters in the strings are compared first by the base
character, ignoring any case or diacritical marks. If the base characters are the same, they
are compared by diacritical mark, ignoring case. If both base characters and diacritical
marks are the same, then case is considered. Note that unlike GemStone’s Strings or ASCII
ordering, the default sorts places lowercase before uppercase.

Keep in mind that with lower sort strengths, when a factor such as case is not used, the
relative position in the results of similar strings is not deterministic; the strings compare as
the same, and so their position will depend on the order of the input.

By using the IcuCollator sort attributes, you have a great deal of control over your specific
sorting.

For example, using the alternative handling example, you can sort strings that include
spaces, dashes and other punctuation without considering the punctuation characters
when doing the comparison:

Example 5.2 Sort ignoring punctuation

| blues collator]|

collator := IcuCollator forLocale: IculLocale default.
collator alternateHandling: true.
blues := IcuSortedCollection newUsingCollator: collator.

blues add: (Unicode7 withAll: 'blue berry').
blues add: (Unicode7 withAll: 'blue moon').
blues add: (Unicode7 withAll: 'bluebird').

blues add: (Unicode7 withAll: 'blue bird').
blues add: (Unicode7 withAll: 'blue-bird').
blues add: (Unicode7 withAll: 'bluetooth').

blues

%

a IcuSortedCollection
sortBlock a ExecBlock2
collator a IcuCollator

#1 blue berry
#2 bluebird

#3 blue bird
#4 blue-bird
#5 blue moon
#6 bluetooth

IcuSortedCollection

An IcuSortedCollection is a specialized subclass of SortedCollection for which you do not
set the sortBlock. An IcuSortedCollection may only hold instances of subclasses of
CharacterCollection. It is associated with a IcuCollator, which in turn is associated with an
IcuLocale, and the sorting behavior is specific to the configuration of these instances.
IcuSortedCollections rely on the open-source ICU libraries to perform the comparisons and
produce correctly collated results.

GemTalk Systems 87

String Sorting and Collation GemStone/S 64 Bit 3.7 Programming Guide

Using IcuSortedCollection is recommended if you will have sorted collections containing
Unicode strings. This avoids lookup failures if a different collator is used to lookup than
was used to sort the elements in the collection.

ICU libraries and versioning

88

ICU and Unicode versioning

The Unicode Consortium periodically releases new versions of the Unicode Standard, with
(usually minor) changes in collation and the addition of new characters. The ICU
organization then periodically releases new versions of their libraries reflecting these
changes in the standard. Major GemStone releases include the latest version of the ICU
libraries.

The indexing structures depend on collation encodings from ICU that may change between
versions, even if the collation changes would not otherwise affect the application. So even
in cases where the Unicode differences are minor, the ICU library version loaded in an
application must match the ICU version used to build indexes.

To accommodate the (generally) low value of upgrading to a new ICU library, and the
potentially high cost of rebuilding structures in your application that depend on collation,
GemStone preserves the existing ICU library version over upgrade.

IcuLibraryVersion

The version of the ICU library that is used in a repository is stored under (Globals at:
#IcuLibraryVersion).Thisis astring, which must correspond to one of the versions of
the ICU libraries in the product distribution. When a session logs in, it will select the ICU
shared libraries to load based on the IcuLibraryVersion value.

As with StringConfiguration, IcuLibraryVersion is a global, repository-wide setting that
can be only changed by SystemUser, to avoid the risk of lookup failures and incorrect
query results. It should be managed as part of System Administration, not by individual
developers on a shared repository.

Updating IcuLibraryVersion

To update the version of ICU libraries in your repository, you will need to follow this
procedure:

1. Ensure no other users are on the system
2. Login as SystemUser and execute

Globals at: #IculLibraryVersion put: newVersionString

Commit and logout.
3. Shut down and restart the Stone.

4. Login as DataCurator, or a user with the appropriate object access rights. If you are
using a linked session, you may need to restart the application to allow the new version
of the ICU shared library to be loaded

5. Update any persistent data structures that may be affected. This involves dropping
and rebuilding indexes that involve Unicode strings, resorting SortedCollections, and
resorting any application data structures that depend on Unicode string collation.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Encrypting Strings

6. When this is complete and all changes have been committed, other users may be
allowed to login.

5.4 Encrypting Strings

There are times when you may which to encrypt strings in your repository or for
transmittal to other systems. GemStone provides an interface to Advanced Encryption
Standard (AES) encryption/decryption, provided by the OpenSSL open source libraries
included with GemStone.

The AES specification is available at:_
http:/ /nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

All encryptions/decryptions are in cipher block chaining (CBC) mode; see the AES
specification document for further details.

Encryption and decryption APl methods are provided for 128-bit/16-byte keys, 192-
bit/24-byte keys, and 256-bit/32-byte keys, using the following methods.

Encryption can be done on instances of ByteArray or Uft8, or subclasses of
CharacterCollection. For encryption, you must provide a key that is a ByteArray of the
appropriate size (16, 24, or 32 bytes) containing key bytes, and a salt that is a 16-byte
ByteArray containing salt values.

The following methods encrypt or decrypt using the specified key and salt, return the
encrypted or decrypted result:

aesEncryptWith128BitKey: aKey salt: aSalt
aesDecryptWith128BitKey: aKey salt: aSalt

aesEncryptWith192BitKey: aKey salt: aSalt
aesDecryptWith192BitKey: aKey salt: aSalt

aesEncryptWith256BitKey: aKey salt: aSalt
aesDecryptWith256BitKey: aKey salt: aSalt

These methods place the encrypted or decrypted result into aByteObjOrNil, starting at
offset 1, and resizing if necessary. If aByteObjOrNil is nil, a new instance of the same class
as the receiver will be created containing the results.
aesEncryptWith128BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith128BitKey: aKey salt: aSalt into: aByteObjOrNil

aesEncryptWith192BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith192BitKey: aKey salt: aSalt into: aByteObjOrNil

aesEncryptWith256BitKey: aKey salt: aSalt into: aByteObjOrNil
aesDecryptWith256BitKey: aKey salt: aSalt into: aByteObjOrNil

You may use ByteArray withRandomBytes: N to produce pseudo-random key and
salt values for encryption. For example:

GemTalk Systems 89

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Encrypting Strings GemStone/S 64 Bit 3.7 Programming Guide

Example 5.3 String Encryption

topaz 1> printit
| key salt encrypted |

key := ByteArray withRandomBytes: 32.
salt := ByteArray withRandomBytes: 16.
encrypted := 'My secret string' aesEncryptWith256BitKey: key

salt: salt.
encrypted aesDecryptWith256BitKey: key salt: salt.
%
My secret string

a0 GemTalk Systems

Chapter

6 Numeric Classes

This chapter describes GemStone’s Numeric and Time-related classes.

This includes Numbers, such as Integers, floating point, fractions. Most numbers can be
specified as literals within your code, and most numbers can be used in expressions with,
or converted to, other types of numbers.

Also included are Time-related classes, such as Date, Time, DateTime, and DateAndTime.

Integers (page 91)
Describes classes that represent whole numbers: Smalllnteger and Largelnteger.

Binary Floating Point (page 92)
Describes classes for binary floating point numbers: SmallDouble and Float.
Other Rational Numbers (page 96)

Describes classes for other rational numbers with different ranges and precisions,
including Fraction, FixedPoint, ScaledDecimal, and DecimalFloat.

Dates and Times (page 101)
Describes the classes that represent times.

Internationalizing (page 107)
How to control the display of decimal points.

Random Numbers (page 109)
Information on the set of random number generator classes, providing random
numbers of various purposes.

6.1 Integers

Integers in GemStone are composed of Smalllntegers and Largelntegers. Most Integers you
are likely to use will be SmallIntegers, in the range of -2%0 to 257 -1. Integers outside this
range are represented by Largelntegers. Operations that result in a value outside the
Smalllnteger range transparently result in Largelntegers, and vice-versa

The literal syntax for Integer will create either a Smalllnteger or Largelnteger.

GemTalk Systems 91

Binary Floating Point GemStone/S 64 Bit 3.7 Programming Guide

Integers can be specified using radix notation, using the r or # characters.

For example, to specify the hex Smalllnteger value FF, the following are all valid:
FFri6
FF#16
Number fromString: 'FFrié'
'ff#16' asNumber

Smallinteger

Smalllntegers are special (immediate) objects, that is, the number itself is encoded in the
OOP, making instances of this class both small (since no further storage is required) and
fast. They are also unique, so Smalllntegers of the same value are always identical (==) as
well as equal (=).

SmallIntegers have a range from -2%° to 20 -1, Values outside this range must be
represented as Largelntegers.

Largelnteger

Largelntegers are not special objects; they require an OOP.

Each instance of Largelnteger is stored as an array of bytes, where every 4 bytes represents
a base 4294967296 digit. The first 4 bytes are the sign digit (0 or 1), the next 4 bytes in that
array constitute the least significant base 4294967296 digit, and the last 4 bytes are the most
significant base 4294967296 digit.

Instances of Largelnteger have a maximum size of 4067 digits plus the sign. The maximum
absolute value for a Largelnteger is (2130144 - 1), Attempting to create a Largelnteger that
exceeds this maximum will fail with an Integer overflow error.

Printing Integers

Integers are printed by default, using Integer >> asString, in base 10. You may print
using other bases by invoking printStringRadix: or
printStringRadix:showRadix:.

For example,
1234 printStringRadix: 2
%
1001410100410

-1234 printStringRadix: 16 showRadix: true
%
-16r4D2

6.2 Binary Floating Point

92

Floating point values in GemStone are composed of SmallDoubles and Floats. The most
commonly used floating points will be SmallDoubles. While both SmallDouble and Float
represents 8-byte binary floating point numbers, as defined in IEEE standard 754,
SmallDoubles have a reduced exponent range. Some floating point values therefore can

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Binary Floating Point

only be represented by instances of Float, rather than SmallDouble. Similarly to
Smalllnteger and Largelnteger, GemStone operations return one or the other as needed.

The numerical behavior of instances of Float is implemented by the mathematics package
of the vendor of the machine on which the Gem process is running. There are slight
variations in results with different platform’s implementation of the

IEEE-754 standard.

You can get the components of a floating point value using the methods signBit,
exponent, and mantissa.

SmallDouble

Float

SmallDoubles are special objects; as with Smalllntegers, the number itself is encoded in the
OOP, making instances small and fast. They are also unique, so SmallDoubles of the same
value are identical (==) as well as equal (=).

Each SmallDouble contains a 61 bit value, in IEEE format but with reduced exponent range.
There is 1 sign bit, 8 bits of exponent and 52 bits of fraction. SmallDoubles are always in
big-endian format (both on disk and in memory).

SmallDoubles can represent C doubles that have value zero or that have exponent bits in
range 0x381 to 0x3ff, which corresponds to about 5.0e-39 to 6.0e38; approximately the
range of C 4-byte floats.

Floats are not special objects; they require an OOP.

Each Float contains a 64 bit value in IEEE format, with 1 sign bit, 11 bits of exponent and
52 bits of mantissa. Floats are in cpu-native byte order when in memory, and the byte order
of the extent when on disk.

In addition to the finite numbers, the IEEE standard defines floating point formats to
include Infinity (positive and negative) and NaNs (not a Number), which can be quiet or
signaling. NaNs results from an operations whose result is not a real number, such as:

-23 sgrt

%

PlusQuietNaN

Infinity results from operations that return a value outside the range of representation,
such as:

32.0 / O

%

PlusInfinity

ExceptionalFloats are named, unique instances of Float, not of SmallDouble. Exceptional
Floats include:

PlusInfinity
MinusInfinity
PlusQuietNaN
MinusQuietNaN
PlusSignalingNaN
MinusSignalingNaN

Since the sign of NaNs is not defined, GemStone operations return only positive NaNs;
they do not return MinusQuietNan or MinusSignalingNan.

GemTalk Systems 93

Binary Floating Point GemStone/S 64 Bit 3.7 Programming Guide

An unusual quality of NaNs is that they are not equal to themselves. This means that NaNs
can cause problems if used as keys of hashed equality-based collections.

PlusQuietNaN = PlusQuietNaN
%
false

Signalling Exception rather than returning Exceptional Float

When performing operations on Floats, an ExceptionalFloat may not always be an
appropriate result.

You can determine if a number is an ExceptionalFloat using the message
#isExceptionalFloat.

You can configure your system to signal an exception, rather than return an
ExceptionalFloat. The following are the types of Floating point error conditions that may
arise:

» #divideByZero

» #overflow

» #underflow

» #invalidOperation

» #inexactResult
FloatingPointError has protocol to configure signalling for all or none of these error
conditions, or any subset. For example,

FloatingPointError enableAllExceptions.

FloatingPointError enableExceptions: { #divideByZero }

After enabling exceptions, exceptional conditions will signal errors, rather than returning
an exceptional Float, for the duration of that session.

Example 6.1 Enabling floating point exceptions

topaz 1> printit

3 /7 0.0

%

PlusInfinity

topaz 1> printit

FloatingPointError enableAllExceptions.
%

0

topaz 1> printit

3/ 0.0

%

ERROR 2724 , a FloatingPointError divideByZero
(FloatingPointError)

94 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Binary Floating Point

Literal Floats

Literal numbers in evaluated code that include a decimal point by default create a
SmallDouble or Float. If the value is in the SmallDouble range, a SmallDouble will be
created, otherwise a Float will be created.

Literal floats may be specified using exponential notation. For example, 5.1e3 and 5.1e-3
are valid SmallDouble literals.

ANSI specifies that float values may have exponents e, d, or q. These exponents, as well as
Eand D, are legal in GemStone, but have the same result: a SmallDouble or Float. Likewise,
the ANSI class names FloatE, FloatD, and FloatQ can be used in code, but all resolve to
Float class.

Note that using a plus sign before the exponent is not allowed in literal floats, although it
can be used to create floating points from strings (using Float fromString:). This
avoids ambiguity with Smalltalk dialects that would interpret this as the addition operator.
For example, 5.1E+3, which historically GemStone would interpret as the same as 5.1E3, is
disallowed; code must either omit the +, or include white space to clarify the addition
operator.

Printing Binary Floating Points

SmallDoubles and Floats are printed by default using asString or printString, in the
notation equivalent to the C printf expression %.16g. This provides a maximum of 16
significant digits, rounding the fractional portion and changing to exponent notation if the
whole number portion has more than 16 digits.

You can use asStringUsingFormat : to control the details of how floating point
numbers are formatted when printing. asStringUsingFormat : accepts an Array of
three elements:

» an Integer between -1000 and 1000, specifying a minimum number of Characters in
the result String. Negative arguments pad with blanks to the left, positive arguments
pad to the right. Note that if the value of this element is not large enough to
completely represent the Float, a longer String will be generated.

» an Integer between 0 and 1000, specifying the number of digits to display to the right
of the decimal point. If the printed representation of the float requires fewer
characters, the result is padded with blanks on the right. If the value is insufficient to
completely specify the float, the value is rounded to fit.

» A Boolean indicating whether or not to display the magnitude using exponential
notation. If true, exponential notation is used; if false, decimal notation.

GemTalk Systems 95

Other Rational Numbers GemStone/S 64 Bit 3.7 Programming Guide

For example:

12.3456 asString
%
12.3456

12.3456 asStringUsingFormat: #(-8 2 false)
%
12.35

12.3456 asStringUsingFormat: #(4 10 true)
%
1.2345600000e01

6.3 Other Rational Numbers

For some application, binary floating points are problematic, since there are common
decimal values that cannot be expressed exactly in binary floating point; for example, 5.1
does not have a precise binary floating point representation. This can make computation
results incorrect. For example:

5.1 * 100000

%

509999.9999999999

There are several options to avoid this: Fraction, FixedPoint, ScaledDecimal, and
DecimalFloat. These classes are independent of each other, and each provides different
qualities of precision and range.

Fractions

Fractions precisely represent rational numbers. Fractions are composed of an integer
numerator and an integer denominator. As the ratio of two Integers, fractions can represent
any rational number to an unbounded level of precision.

The display of fractions is as the numerator and denominator separated by the $/
character, which is also the division binary method. Fractions have no literal
representation. An expression such as 1/3, which performs a division of two Integers, will
return a fraction if the result is not an Integer.

(1/3) printString

%

1/3

Any expression, not just division expressions, that could result in fractions will be reduced
automatically, to the lowest fraction or to an Integer.

(5/6) + (1/6)

%

1

96 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Other Rational Numbers

SmallFraction

SmallFractions are special objects, in which the OOP itself encodes the value. As with
SmallDouble and Float, creating a fraction will result in either an instance of SmallFraction
or Fraction, depending on the specific value.

SmallFractions can hold objects with numerators between -536870912 and 536870911, and
denominators from 1 to 134217727.

Fraction

If the numerator or denominator is outside the SmallFraction range, an instance of Fraction
is created. These are not special objects.

ScaledDecimals

ScaledDecimals represent a decimal number to the precision of a fixed number of fractional
digits. ScaledDecimals are composed of an integer mantissa and a power-of-10 scale.

Literal ScaledDecimal or SmallScaledDecimals can be created using the s notation; for
example, 1.53s2. This is not an exponential notation; the 2 here is the scale, and mantissa is
resized appropriately. The values 1.53s2, 1.53s3, and 1.53s4 are all equal.

The number of fractional digits must not be greater than the scale.

For returned values from mathematical operations, ANSI does not precisely specify the
scale of a returned ScaledDecimal. The following rules are used:

» For unary messages, the scale of the result equals the scale of the receiver.

» For a one-argument message, the scale of the result is the greater of the scale of the
receiver and argument. An integer receiver or argument coerced to a ScaledDecimal
should effectively have a scale of zero, meaning the result will have the scale of the
non-coerced ScaledDecimal argument or receiver.

For some mathematical operations, the returned value type is a ScaledDecimal, but the
returned value cannot always be exactly represented as a ScaledDecimal with the correct
scale. In these cases, the results are rounded using the following rules:

» Following the example of IEEE754 float rounding, the ScaledDecimal that is answered
is selected as though we computed the numerically exact value and then chose the
closest representable ScaledDecimal of the scale specified by the rules. If the
numerically exact value falls exactly halfway between two adjacent representable
ScaledDecimal values of the scale specified by the rules, the ScaledDecimal with an
even least significant digit is answered.

SmallScaledDecimal

SmallScaledDecimals are special objects, in which the OOP itself encodes the value. As
with SmallDouble and Float, creating a ScaledDecimal will result in either an instance of
SmallScaledDecimal or ScaledDecimal, depending on the specific value.

SmallScaledDecimals can hold values with a scale <= 31, and a mantissa in the range -2*>
(-1125899906842624) to -2 (1125899906842623).

GemTalk Systems 97

Other Rational Numbers GemStone/S 64 Bit 3.7 Programming Guide

ScaledDecimal

If the scale or mantissa is outside the SmallScaledDecimal range, an instance of
ScaledDecimal is created. These are not special objects. The maximum scale of a
ScaledDecimal is 30000.

While ScaledDecimals represent decimal fractions to the precision specified, most floating
point values cannot be represented exactly by ScaledDecimals. The system will error if
there is an attempt to create a ScaledDecimal with more than 39177 decimal digits.

FixedPoints

FixedPoints, like Fractions, represents rational numbers, but also include information on
how they should be displayed. A FixedPoint is composed of an integer numerator, integer
denominator, and an integer scale. Like Fraction, this allows rational numbers to be
represented with unbounded precision, and since fractional arithmetic is used in
calculations, numerical results do not lose precision. The scale provides automatic
rounding when representing the FixedPoint as a String.

FixedPoint is a legacy format provided for backwards compatibility. New code should use
ScaledDecimal or Fraction.

FixedPoint uses a literal notation using p, such as 1.23p2. This is not an exponential
notation; the 2 here specifies scale. The values 1.23p2, 1.23p3, and 1.23p4 are all equal.

DecimalFloat

98

DecimalFloats represent base 10 floating point numbers, per IEEE standard 854-1987.

Literal DecimalFloats can be specified in exponential notation using the f or F character; for
example, 5.432F2 creates a DecimalFloat equivalent to 543.2.

Objects of class DecimalFloat have 20 digits of precision, with an exponent in the range -
15000 to +15000. The first byte encodes the sign and kind of the floating-point number. Bit
0 is the sign bit. The values in bits 1 through 3 indicate the kind of DecimalFloat:

001x = normal

010x = subnormal

011x = infinity

100x = zero

101x = quiet NaN

110x = signaling NaN

Bytes 2 and 3 encode the exponent as a biased 16-bit number (byte 2 is more significant).
The actual exponent is calculated by subtracting 15000. Bytes 4 through 13 form the
mantissa of the number. Each byte holds two BCD digits, with bits 4 through 7 of byte 4
containing the most significant digit.

Similarly to Float, operations that would not result in a real number, or that produce a
result outside the representable range, result in Exceptional numbers:

DecimalPlusInfinity
DecimalMinusInfinity
DecimalPlusQuietNaN
DecimalMinusQuietNaN
DecimalPlusSignalingNaN
DecimalMinusSignalingNaN

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Other Rational Numbers

You can determine if a number is an ExceptionalFloat using the message
#isExceptionalFloat

Summary of literal syntax

The following table lists the notations that may appear in a literal number.

radix notation

d, D | SmallDouble/Float exponential notation

e, E | SmallDouble/Float exponential notation

f,F DecimalFloat exponential notation

) FixedPoint notation

q SmallDouble/Float exponential notation
S ScaledDecimal notation

T radix notation

Custom numeric literals

You can instruct the compiler to understand a new numerical literal format by sending a
message to your customized subclass of Number to register that format.

The following method provides this registration:
Number »>> parseLiterals: aCharacter exponentRequired: aBoolean

Once this is sent to an instance of a subclass of Number, when the compiler encounters a
numeric value using aCharacter, it will send fromString: to that class.

» The subclass of Number must implement fromString: in such a way as to be able
to read the new literal format, and create the new instance.

» aCharacter must an alphabetic Character with codePoint <= 127, and may not be an
existing numeric literal character as listed in the table on page 99.

» aBoolean indicates if digits following the exponent are required or not.

For example, say you have defined a class ComplexNumber. For the literal format, you
wish to use NiM, where N represent the real part and M represents the imaginary part. So
for example, 4.5+51 would be specified using the literal form 4.5i5.

First, you would define the ComplexNumber> > fromString: method, which will parse
a string of the form NiM and return the new instance of ComplexNumber.

Then, to allow the literals to be included in code, send the following message.
ComplexNumber parselLiterals: $i exponentRequired: true
Now, assuming you have implemented the behavior appropriately, the compiler can
evaluate expressions of the form:
(3.5i5 + 7.14i3) asString

%

10.618.0

GemTalk Systems 99

Result classes, Conversion, and Rounding GemStone/S 64 Bit 3.7 Programming Guide

Once invoked, the new literal format will be recognized until the session logs out.

Note that for subsequent logins, compiled references to that literal will continue to be valid,
but unless the method is invoked again, methods with that literal cannot be recompiled.
Including the invocation of parseLiterals:exponentRequired: in session
initialization code (such as using 1oginHook:) is recommended.

To uninstall a custom literal without logging out, use the same method, passing innil for
aBoolean. For example,

ComplexNumber parselLiterals: $i exponentRequired: nil

6.4 Result classes, Conversion, and Rounding

When a mathematial operation is performed on numeric values, the class of the result
depends on the specific classes of the argument and receiver.

By default, the result will be according to ANS]I, per the following table.

Table 6.2 Default result class for mathematical operations

Argument Argument Argument Argument
Receiver class Integer Float ScaledDecimal Fraction
Integer Integer Float ScaledDecimal | Fraction (may
reduce to
Integer)
Float Float Float Float Float
ScaledDecimal ||ScaledDecimal | Float ScaledDecimal | Fraction (may
reduce to
Integer)
Fraction Fraction (may | Float Fraction (may Fraction (may
reduce to reduce to reduce to
Integer) Integer) Integer)
FixedPoint, Integer Float ScaledDecimal | Fraction
DecimalFlat

So, for example, theresultof 1 * 0.5 is a SmallDouble, and the resultof 1/3 - 1.50s2
is a SmallFraction.

Note that the legacy classes FixedPoint and DecimalFloat do not reliably conform to this
standard; this maintain historic behavior for legacy applications.

Conversion

Conversion is supported between kinds of numbers and from kinds of numbers to String,
using asInteger, asFloat, asFraction, and so on; see the image for specifics. Note
that converting to a ScalledDecimal or FixedPoint requires a scale argument.

100 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Dates and Times

In cases when floating points are involved, the precision limits may result in a converted
value that is slightly different than you might expect.

For example, when printing the following SmallDouble using asStringLegacy (which
uses exponential notation to print all digits of precsion), the printed value varies slightly at
the maximum digits of precision.

1.111222233334444 asStringlLegacy

%

1.1412222333344439E00

Truncation and Rounding

The methods roundTo: and truncateTo:, and related selectors, allow you to reduce
unnecessary fractional parts.

For display, this can also be done using asStringUsingFormat : methods that allow
you to specify the number of digits of a float, for example.

truncateTo: returns the multiple of the argument that is closest to the receiver towards
zero.

roundTo: returns the multiple of the argument that is closest to the receiver in either
direction; if the receiver is exactly between to multiples, the multiple farther from zero is
returned. roundedHalfToEven: allows you to round, and if the receiver is exactly
halfway between multiples, return the even one.

The result of truncateTo: and roundTo: follows the ANSI standard, and conforms to
table on Table 6.2 on page 100. However, for truncation and rounding it is useful to be get
a result that is the class of the argument; since, for example, 3.123 roundTo: 1 returns
a SmallDouble, 3.0.

The methods truncated and rounded perform truncateTo:/roundTo: to1, and
return an Integer. When truncating or rounding other than to 1, you can use the methods
truncateAndCoerceTo: and roundAndCoerceTo :, which return an instance of the
class of the argument.

6.5 Dates and Times

Date

GemStone supports the date-time clases Date, Time, and DateTime and DateAndTime.
Using date-time clases requires taking into account the TimeZone, the current local offset
from UTC (GMT).

An instance of Date describes a month, day and year in time.

Date supports dates after December 31, 1900. While Dates earlier than this can be created
and operated on, they are not tested and not officially supported. Technically legal years
are in the range -2 (-2147483648) to 23! - 1 (2147483647).

SmallDate

An instance of SmallDate is a special (that is, the OOP encodes the value), encoding the day
of year and the year within the OOP. Newly created Date instances are instances of
SmallDate.

GemTalk Systems 101

Dates and Times GemStone/S 64 Bit 3.7 Programming Guide

Time

102

All possible supported Dates can be represented as SmallDates. All newly created
instances of Date are returned as instances of SmallDate, but existing instances of Date
remain in upgraded repositories. Date and SmallDate are interoperable with each other,
and the following discussion uses Date to refer to either Date or SmallDate.

Instance Creation

Date instances can be created from formatted strings or streams, or by using instance
creation methods that allow you to specify the properties. See the image for the available
options. For example:

Date today
Date fromString: '21/07/2023'
Date newDay: 21 month: 'July' year: 2023

Formatting for Instance Creation and Printing

Date supports printing methods and reading methods that use an explicit string-
formatting Array. For Date, this is a 6-element Array that is passed to Date >>
asStringUsingFormat:, or fromString: usingFormat: and related instance
creation methods.

» Elements 1, 2 and 3 are integers that determine the position of the day (1), month (2),
and year (3). So year, month, day would be 3, 2, 1.

» Element 4 is a character for the date separator, such as $/.

» Element 5 is an integer that determines if the month format is printed as a number (1),
three-letter abbreviation (2), or the entire name (3).

» Element 6 is an integer that determines if the year format is the entire number (1), or
only the last two digits (2).

The default is DD/MM/YYYY, equivalent to #(21 3 $/ 1 1). Note that the day is first, not
the US convention of month first.

(Date fromString: '21/07/2023') monthName
'July’

(Date today) asStringUsingFormat: #(3 2 1 $. 1 1)
'2023.07.21"

An instance of Time describes a time of day.

SmallTime

An instance of SmallTime is a special (that is, the OOP encodes the value), in microseconds
resolution, using 56 bits of the OOP. Since there are 86400000000 microseconds in a day, all
possible Times can be represented as SmallTimes. All newly created instances of Time are
returned as instances of SmallTime, but existing instances of Time remain in upgraded
repositories. Time and SmallTime are interoperable with each other, and the following
discussion uses Time to refer to either Time or SmallTime.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Dates and Times

Instance Creation

Time instances can be created from formatted strings or streams, or by using instance
creation methods that allow you to specify details. See the image for the available options.
For example:

Time now
Time fromString: '17:23:05'
Time fromSeconds: 34234

Formatting for Instance Creation and Printing

Explicit string-formatting specifications take the form of a 3-element Array that is passed
to Time >> asStringUsingFormat:,or fromString:usingFormat: and related
instance creation methods. In this array:

» Element 1 is a character for the date separator, such as $:
» Element 2 is a boolean; if true, seconds are included, or false then they are omitted.

» Element 3 is a boolean; if true, then the time is in 12-hour format with am or pm; if
false then the time is in 24-hour format. When using format to create an instance from
a String or Stream, there must be a space before the am/pm.

The default is #($: true false), equivalent to HH:MM:SS.

For example

Time fromString: '23.34' usingFormat: #($. false false)
23:34:00

Time now asStringUsingFormat: #(S$: false true)
'02:30 PM'

Time offset

Time instances themselves have no TimeZone. Class creation methods, and methods that
print or display Times, that have "gmt" in the selector, interpret the time as GMT and apply
the offset from the repository setting for TimeZone current.

For example, in the America/LosAngeles TimeZone:

Time fromStringGmt: '11:30:00'
04:30:00

(Time fromStringGmt: '11:30:00') asStringGmt
'114:30:00"

DateTime

DateTime represents a point in time with millisecond resolution. DateTime supports
points in time after midnight on December 31, 1900 at midnight GMT. While Dates earlier
than this can be created and operated on, they are not tested and not officially supported.

A DateTime includes the year, day of year, milliseconds, and a TimeZone.

GemTalk Systems 103

Dates and Times GemStone/S 64 Bit 3.7 Programming Guide

104

Instance Creation

Date instances can be created from formatted strings or streams, or by using instance
creation methods that allow you to specify the properties. See the image for the available
options. For example,

DateTime now
DateTime fromString: '21/07/2023 23:15:26'

DateTime newWithYear: 2023 month: 7 day: 21 hours: 15
minutes: 26 seconds: 0

Formatting for Instance Creation and Printing

Explicit string-formatting specifications take the form of a Array of elements that is passed
toDateTime >> asStringUsingFormat:,or fromString:usingFormat: and
related instance creation methods.

This Array must have at least 8 elements; 4 additional elements are optional.

In this array:

» Elements 1, 2 and 3 are integers that determine the position of the day (1), month (2),
and year (3). So year, month, day would be 3, 2, 1.

» Element 4 is a character for the date separator, such as $/.

» Element 5 is an integer that determines if the month format is printed as a number (1),
three-letter abbreviation (2), or the entire name (3).

» Element 6 is an integer that determines if the year format is the entire number (1), or
only the last two digits (2).

» Element 7 is a character for the time separator, such as $:

» Element 8 is a boolean, if true the time is included; if false, the time is omitted and
values for elements 7, 9, and 10 are ignored. Elements following this are optional.

» Element 9 is a boolean, if true seconds are included, or false then they are omitted.

» Element 10 is a boolean, if true the time is in 12-hour format with am or pm; if false
then the time is in 24-hour format. When using format to create an instance from a
String or Stream, there must be a space before the am/pm.

» Element 11 is a boolean, if true the time zone information is included; if false it is
omitted.

» Element 12 is a boolean, if true then the print is printed per the time zone in which the
DateTime is created, not in the local time zone. If false then the DateTime is printed
according to the local time zone (TimeZone current).

The defaultis (123 $/ 11 $: true true false false false), equivalent to (DD/MM/YYYY
HH:MM:SS).
For example, to read a non-default formatted string, and create an instance of DateTime,
which then by default prints in the default format:
DateTime fromString: 'January 7 2023 9:45 pm' usingFormat:
#(2 1 3 8 3 1 $: true false true false)
07/01/2023 21:45:00

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Dates and Times

DateAndTime

DateAndTime is the ANSI compliant class that is equivalent to DateTime, and represents
a point in time. DateAndTime instances know their microseconds (plus or minus) since
00:00:00 on January 1 2001, UTC (not counting leap seconds), and the TimeZone offset in
seconds.

There is no restriction on the year range for DateAndTime. DateAndTimes are in the
Gregorian calendar (the common calendar adopted in Europe in 1582). Date times prior to
the adoption of this calendar are given in the retrospective astronomical Gregorian
calendar. The year 1 A.D.is astronomical Gregorian year 1, the year 1 B.C. is astronomical
Gregorian year 0, the year 2 B.C. is astronomical Gregorian year -1, and so on.

DateAndTime instances are always created with a resolution of 6 decimal places,
equivalent to microsecond resolution.

SmallDateAndTime

An instance of SmallDateAndTime is a special (that is, the OOP encodes the value), that
represents DateAndTimes in the range of from January 1, 2001 to May 10, 2072, that have
timezone offsets in integer hours, in the range -16..15. Creating a DateAndTime will return
an instance of SmallDateAndTime if it is within the range, otherwise it will return an
instance of DateAndTime.

Instance Creation

DateAndTime instances can be created from formatted strings or streams, or by using
instance creation methods that allow you to specify details. See the image for the available
options. For example:

DateAndTime now
DateAndTime fromString: '2023-07-21T15:26:00-08:00")

DateAndTime year: 2023 month: 07 day: 21 hour: 15
minute: 26 second: 0 offset: (Duration seconds: -28800)

Formatting for Instance Creation and Printing

The format for reading and printing DateAndTime is
[-1YYYY-MM-DDTHH:MM: SS[.SSSSSS]+hh:mm

where:

» - is a minus sign if the receiver represents a time with a year less than zero, and is
optional.

» DD is the number of complete days, with leading zeros to fill two places

» HH is the number of complete hours, with leading zeros to fill two places

» MM is the number of complete minutes, with leading zeros to fill two places
» SSis. the number of complete seconds, with leading zeros to fill two places

» ..SSSSSS is the fractional part of the number of seconds, and is optional. 1 to 6 digits of
fractional seconds are supported; additional digits may be used but are rounded to 6
digits.

GemTalk Systems 105

Dates and Times GemStone/S 64 Bit 3.7 Programming Guide

» £a+ or-is required
» hh is the number of complete hours of the offset, with leading zeros to fill two places

» mm is the number of complete minutes of the offset, with leading zeros to fill two
places

Sending printString returns all digits of the DateAndTime seconds, while asString
does not print fractional seconds.

For example:

(DateAndTime fromString: '2023-07-21T13:06:15-00:00")
printString
'2023-07-21T13:06:15+00:00"

(DateAndTime fromString: '2023-07-21T13:06:15.12356789-07:00")
printString
'2023-07-21T13:06:15.123568-07:00"

(DateAndTime fromString: '2023-07-21T13:06:15.12356789-07:00")
asString
'2023-07-21T13:06:15-07:00"

TimeZone

Each instance of DateTime includes a reference to a TimeZone object, which handles the
conversion from the internally stored Greenwich Mean Time (GMT)/Coordinated
Universal Time(UTC) and the local time. TimeZones are also used to determine the local
time offset for instances of DateAndTime now.

TimeZones encapsulate the daylight savings time (DST) rules, so a given GMT/UTC time
is adjusted to local time based on TimeZone and the specific date.

Each session has a current TimeZone, which is used to display times, and to create instance
of date and time classes when using methods that do not explicitly specify the TimeZone.

The current TimeZone (TimeZone current) is set from the default TimeZone (TimeZone
default) during login. The default TimeZone is persistent, and can only be updated by
SystemUser. The GemStone distribution comes with the America/Los_Angeles TimeZone
installed as the default TimeZone. This is described in the GemStone/S 64 Bit Installation
Guide, and instructions for updating the current TimeZone are in the System Administration
Guide.

DateTime method selectors and comments refer to GMT, which is the older term;
DateAndTime refers to UTC, which is the current preferred term.

106 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Internationalizing

6.6 Internationalizing

The convention for expressing numbers and dates varies in different countries. GemStone
supports several ways to handle customization from the default display.

Dates in GemStone log files

The timestamps printed in the log headers and in log messages are formatted according to
the current system locale. You can override this using the G5_CFTIME environment
variable. If this is set in the environment for the process, then the setting is used to control
printing in log headers and log messages.

The setting for GS_CFTIME must be a valid strftime format string, and must contain

fields for:
» Month: %m or %b or %B or %h
» Day: %d

» Hour: %H, or %I and %p, or %I and %P
» Minutes: %M
» Seconds: %S

If these criteria are not met, the default date format based on the system’s LOCALE is used,
or otherwise the US-centric date format. See the man page for str£t ime, for details on the
formats.
For example,

EXPORT GS_CFTIME="%Y-%m-%d %H:%M:%S %Z"

Will include lines such as the following in the Gem log header:
| PROCESS ID: 2120954 DATE: 2023-07-21 16:20:53 PDT (UTC -7:00)

| DATEFORMAT: %Y-%m-%d $H:%M:%S %Z

Internationalizing Decimal Points using Locale

The class Locale allows you to obtain operating system locale information and use or
override it in GemStone. GemStone currently only uses the decimalPoint setting, to
provide localized reading and writing of numbers involving decimal points. Updates to
Locale are stored in session state, and only persist for the lifetime of the session. They are
not affected by commit or abort.

To override the operating system locale information, use the following message:

Locale class >> setCategory: categorySymbol locale: LocaleString

Note that the LocaleString passed to setCategory: locale: must be defined on the host
machine. If the given locale is not found, this method will return nil. You can use the UNIX

command locale -a to get a list of all available LocaleStrings. To check the decimal point,
the following method returns the decimalPoint setting for the current Locale:

Locale decimalPoint
%

)

GemTalk Systems 107

Internationalizing GemStone/S 64 Bit 3.7 Programming Guide

108

While there are a number of Locale category symbols, the only ones that are of use in this
release are #1.C_NUMERIC and #LC_ALL, either of which will set the category that affects
the decimal point.
For example, To use decimal localization appropriate for Germany:

Locale setCategory: #LC_NUMERIC locale: 'de_DE'.

To reset to UNIX default value, using period:
Locale setCategory: #LC_ALL locale: 'C'.

Smalltalk code requires the period separator

Note that Smalltalk syntax requires the use of ".” as the decimal point separator, so
expressions involving literal floating point numbers within Smalltalk code require use of
the period, regardless of Locale.

Smalltalk code that includes literal floating point values with a comma separator will fail
to compile, regardless of the Locale settings.

In order to be able to export and input numerical values regardless of the Locale of a
particular session, methods whose printed form includes the decimal point provide the
following set of methods:

(instance method) asStringLocaleC
(class method) fromStringLocaleC:

These methods use a period as a decimal separator, regardless of the current Locale.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Random Numbers

6.7 Random Numbers

Universally unique identifiers (UUIDs)

Universally unique identifiers (UUIDs) provide a practically unique 128-bit number that
does not rely on a registry or a shared resource. UUIDs are generated randomly using the
secure OpenSSL random number generator.

The class GsUuidV4 implements a version 4 UUID as specified in RFC 4122, A Universally
Unique IDentifier (UUID) URN Namespace.

Instances of GsUuidV4 are invariant and cannot be modified.

To create an instance of UUID:
GsUuidV4 class >> new

GsUuidv4 class >> fromString: aluidString
aluidString must be a valid UUID version 4 string in the following format:
XXXXXXXX-XXXXAXKK=V XXX -XXXXXXXXXXXX
where x is any valid lower-case hex digit and V is one of 8,9, a or b.

Random Number Generator

The class Random and its subclasses provide random number generation.

There are two types of random number generation, which correspond to separate subclass
hierarchies. The SeededRandom subclasses provide random numbers generated within
GemStone code, using a starting seed value. The HostRandom subclass provides access to
the host operating system’s /dev/urandom random number generator.

The class hierarchy of the Random classes are:

Object
Random (abstract)
HostRandom
SeededRandom (abstract)
LagiMwcRandom
Lag25000CmwcRandom
Random

The Random class is an abstract superclass for the random number generators. It also can
be used to create an instance of a default random number generator class.

Random new will return an instance of HostRandom, the most basic kind of generator
based on host OS /dev/urandom.

Random seed: will return an instance of LaglMwcRandom. HostRandom does not
support seeds.

While an instance of Lag25000CmwcRandom takes some time to create, it can produce a
more fair and longer-period series of random numbers that are generated much more
quickly than is done by the other Random subclasses.

Once you have an instance of a concrete subclass of Random, you can generate random
numbers or collections of random numbers with the following range and type
specifications:

float - arandom Float in the range [0,1)

GemTalk Systems 109

Random Numbers GemStone/S 64 Bit 3.7 Programming Guide

110

floats: n - acollection of n random floats in the range [0,1)
integer - arandom non-negative 32-bit integer, in the range [0,232-1]
integers: n - acollection of n random non-negative integers in the range [0,2%2-1]

integerBetween: [and: h - arandom integer in the range [L4]. I and / should be
less than approximately 23

integers: nbetween: land: h - a collection of n random integers in the range
[,h]. | and h should be less than approximately 231,

smallInteger - Answer a random integer in the Smalllnteger range,
[_2601260_1]

Subsequent calls to the same instance will generate new random numbers.

You should create an instance of a Random subclass and retain that to generate many
random numbers, rather than creating new instances of a Random subclass.

HostRandom

HostRandom allows access to the host operating system's /dev/urandom random
number generator.

HostRandom is much slower to generate numbers than the other subclasses of Random,
but does not have the overhead of creating an instance. On some platforms,
/dev/urandom may be intended to be a cryptographically secure random number
generator, which none of the other subclasses are. It also has the advantage of not needing
an initial seed, and so is good for generating random seeds for other Random subclasses.

HostRandom uses a shared singleton instance, which is accessed by sending #new to the
class HostRandom. Sending #new has the side effect of opening the underlying file
/dev/urandom. This file normally remains open for the life of the session, but if you wish
to close it you can send #close to the instance, and later send #open to reopen it. If you store
a persistent reference to the singleton instance the underlying file will not be open in a new
session and you must send #open to the instance before asking for a random number.

Since HostRandom is a service from the operating system, it cannot be seeded, and should
not be used when a repeatable random sequence of numbers is needed.

SeededRandom

SeededRandom is an abstract superclass for classes that generate sequences of random
numbers that can be generated repeatedly by giving the same initial seed to the generator.

In addition to creating new instances using the class methods new and seed:, the following
instance methods allow repeatable sequences to be generated:

seed: aSmalllnteger
Sets the seed of the receiver from the given seed, which can be any Smalllnteger.
The subsequent random number sequence generated will be the same as if this
generator had been created with this seed.

fullstate, fullState: stateArray
The internal state of a generator is more than can be represented by a single
Smalllnteger. These messages allow you to retrieve the full state of a generator at
any time, and to restore that state later. The random number sequence generated
after the restoration of the state will be the same as that generated after the retrieval

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Random Numbers

of the state. You might, for instance, allow a generator to get its initial state from
/dev/urandom, then save this state so the random sequence can be repeated later.

LaglMwcRandom

LaglMwcRandom is faster to create than Lag25000CmwcRandom, since it can be seeded

by a single 61-bit Smalllnteger, rather than a seed of more than 800000 bits as required by
Lag25000CmwcRandom. After creation, however, it is slower, and it is not perfectly fair,

and has a shorter period. It can be used when a small number of seeded random numbers
are needed.

Lag25000CmwcRandom

Lag25000CmwcRandom is a seedable random generator with a period of over 1
is a lag-25000 generator using the complementary multiply-with-carry algorithm to
generate random numbers. Its period is so long that every possible sequence of 24994
successive 32-bit integers appears somewhere in its output, making it suitable for
generating random n-tuples where n<24994. Its output is fair in that the number of 0 bits
and 1 bits in the full sequence are equal.

0240833. It

While this generator is recommended for most uses, it is not cryptographically secure, so
for applications such as key generation you should consider using HostRandom, once you
satisfy yourself that HostRandom is secure enough on your operating system.

You can also allow the seed bits to be initialized from the HostRandom, then retrieve that
state by sending #fullState. That state can later be restored by sending the retrieved state
as an argument to #fullState:.

GemTalk Systems 111

Random Numbers GemStone/S 64 Bit 3.7 Programming Guide

112 GemTalk Systems

Chapter

Files and Directories

Many GemStone applications will need to read and write files. GemStone provides two
interfaces; the older GsFile interface, and the new FileSystem interface.

This chapter explains how to use GsFile and FileSystem to read, write, and manage files
and directories.

Accessing Files using GsFile (page 113)
describes the protocol provided by class GsFile to open and close files, read their
contents, and write to them.

FileSystem (page 121)
describes FileSystem, a set of classes ported and adapted from Pharo to support a wide
range of File and Directory operations.

7.1 Accessing Files using GsFile

The class GsFile provides basic protocol to create and access operating system files. Most
functions of GsFile class can also be performed using FileSystem.

This section provides a few examples of the more common operations using GsFile. For
more information, see the GsFile methods in the image.

Instances of GsFile understand most protocol common to Streams.

Client vs. Server files

Many of the methods in GsFile distinguish between files on the client and those on the
server machine. In this context, the term client refers to the machine on which the GCI
interface is executing, and the server refers to the machine on which the Gem is executing.
This terminology is historic, and may be misleading, since the server in this case does not
mean the machine the Stone is running on, if the Gem is remote from the Stone.

In the case of a linked interface, the interface and the Gem execute as a single process, so
the client machine and the server machine are the same.

GemTalk Systems 113

Accessing Files using GsFile GemStone/S 64 Bit 3.7 Programming Guide

In the case of an RPC interface, the interface and the Gem are separate processes, and the
client machine may be different from the server machine. When using GBS or topaz on
Windows, GsFile client methods can operate on files in the Windows file system.

Methods that include "OnServer" operate on server files, accessible in the file system of the
machine that the Gem is running on. Methods that do not mention "OnServer" operate on
files on the machine that the client is running on.

GskFile is implemented in UserActions (for historic reasons), and thus client-side file access
is not supported in external sessions using GsTsExternalSession or GsExternalSession, nor
within code invoked via GciNb* functions.

Specifying Files

Many of the methods in the class GsFile take as arguments a file specification, which is any
string that constitutes a legal file specification in the operating system under which
GemStone is running. Wildcard characters and environment variables are legal in a file
specification.

Specifying Files Using Environment Variables

If you supply an environment variable instead of a full path when using the methods
described in this chapter, the way in which the environment variable is expanded depends
upon whether the process is running on the client or the server machine.

» If you are running a linked interface or you are using methods that create processes
on the server, the environment variables accessed by your GemStone Smalltalk
methods are those defined in the shell under which the Gem process is running,.

» If you are running an RPC interface and using methods that create processes on a
separate client machine, the environment variables are instead those defined by the
remote user account on the client machine on which the application process is
running.

Creating a File

You can create a new operating system file from GemStone Smalltalk, using class methods
to open a GsFile for write or append; these methods will create a file if it does not exist, as
well as returning the open file.

Example 7.1 creates a file named aFileName in the current directory on the server.

Example 7.1
myFilePath := 'aFileName'.
myFile := GsFile openWriteOnServer: myFilePath.

"Here would go code to write data to the file"
myFile close

114

Example 7.2 creates a file named aFileName in the current directory on the client machine.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Accessing Files using GsFile

Example 7.2
myFilePath := 'aFileName'.
myFile := GsFile openWrite: myFilePath.

"Here would go code to write data to the file"
myFile close

These methods return the instance of GsFile that was created, or nil if an error occurred.
See “GsFile Errors” on page 120 for more on how to find the details of why a GsFile
operation returned nil.

Opening a File

GsFile provides a wide variety of protocol to open files. For a complete set of methods, see
the image. These methods return the GsFile instance if successful, or nil if an error occurs..

Table 7.1 GsFile Class Methods to Open Files

Method Description
openReadOnServer: Opens a file on the server for reading.
openReadOnServerCompressed:
openWriteOnServer: Opens a file on the server for writing. Creates a
openWri teOnServerCompressed . new file lf one doeS not EXiSt, or truncates an

existing file to 0.

openAppendOnServer : Opens a file on the server for reading,
appending the new contents instead of
replacing the existing contents. Creates the file
if it does not exist.

openUpdateOnServer: Opens a file on the server for both reading and
writing. Creates the file if it does not exist.

openRead: Opens a file on the client machine for reading.

openReadCompressed:

openWrite: Opens a file on the client machine for writing.

openWriteCompressed: Creates a new file if one does not exist, or

truncates an existing file to 0.

openAppend: Opens a file on the client machine for writing,
appending the new contents instead of
replacing the existing contents. Creates the file
if it does not exist.

openUpdate: Opens a file on the client machine for both
reading and writing. Creates the file if it does
not exist.

GemTalk Systems 115

Accessing Files using GsFile GemStone/S 64 Bit 3.7 Programming Guide

Closing a File or Files

The following methods close the current instance, or multiple open files:

Table 7.2 GsFile Method Summary

Method Description
GsFile class >> Closes all open GsFile instances on the server
closeAllOnServer except stdin, stdout, and stderr.
GsFile >> close Closes the receiver.
GsFile class >> closeAll Closes all open GsFile instances on the client
machine except stdin, stdout, and stderr.

Your operating system limits the number of files a process can concurrently access.
Instances of GsFile automatically have their C state closed when the instance is garbage
collected or when a persistent instance drops out of memory. However, you should still
close files as soon as you are done using them.

Writing to a File

After you have opened a file for writing, you can add new contents to it in several ways.

For example, the instance methods addA11: and nextPutAll: take strings as arguments
and write the string to the end of the file specified by the receiver. The method add: takes
a single character as argument and writes the character to the end of the file. And various
methods such as cr, 1£, and £ £ write specific characters to the end of the file —in this case,
a carriage return, a line feed, and a form feed character, respectively.

The write methods return the number of bytes that were written to the file, or nil if an error
occurs.

For example, the following code writes the two strings specified to the file myFile.txt,
separated by end-of-line characters.

Example 7.3

myFile := GsFile openWrite: 'myFile.txt'.

myFile nextPutAll: 'All of us are in the gutter,'.

myFile cr.

myFile nextPutAll: 'but some of us are looking at the stars.'.
myFile close.

If the text you wish to write contains characters outside the ASCII range (that is, with
codePoints greater than 127), then there are additional considerations.

Text with Characters with codePoints greater than 255 require more than one byte to
represent. These must be encoded before they can be written to a GsFile. Encoding to UTF-
8 is done by using GsFile >> nextPutAllUtf8: or by passing an instance of Utf8 to
the write methods.

116 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Accessing Files using GsFile

For example, the Euro character € has the Unicode value U+20AC.

Example 7.4 Writing the Extended Character € to a File

| myfile str |

myfile := GsFile openWrite: 'extendedCharacterExample.txt'.
str := String new.

str add: 'How to write a Euro character '.

str add: (Character codePoint: 16r20AC).

str add: ' to a file'; 1f.

myfile nextPutAllUtf8: str.

myfile close.

Text with Characters with codePoints in the range of 128..254 have ambiguity between the
legacy output and UTF-8 encoding. Traditionally, GsFiles write Characters as byte data
without encoding or decoding. Most modern systems encode files as UTE-8, and expect
files to be encoded as UTF-8. However, to ensure legacy uses of GsFile do not create invalid
Strings, the GsFile write methods continue to write data as bytes.

While unlikely, it is possible that Characters with codePoints in the range 128..254 could be
either a portion of a UTF-8 encoding or an 8-bit character. Most often, specifying to default
to the incorrect format will result in a badly formed UTF-8 error, or un-decoded bytes.

Since for ASCII Characters (codePoints in the 7-bit range), the legacy output and the UTF-
8 encoding are the same, encoding all writes (and decoding all reads) is an effective way to
remove ambiguity.

Reading from a File

Instances of GsFile can be accessed in many of the same ways as instances of Stream
subclasses. Like streams, GsFile instances also include the notion of a position, or pointer
into the file. When you first open a file, the pointer is positioned at the beginning of the file.
Reading or writing elements of the file ordinarily repositions the pointer as if you were
processing elements of a stream.

A variety of methods allow you to read some or all of the contents of a file from within
GemStone Smalltalk. For example, the contents method (at the end of Example 7.3)
returns the entire contents of the specified file and positions the pointer at the end of the
file.

In Example 7.5, next : into: takes the 12 characters after the current pointer position and
places them into the specified string object. It then advances the pointer by 12 characters.

Example 7.5
| result |
result := String new.
myFile := GsFile openRead: 'myFileName'.

myFile next: 12 into: result.
myFile close
result.

GemTalk Systems 117

Accessing Files using GsFile GemStone/S 64 Bit 3.7 Programming Guide

To read a file containing data encoded in UTF-8, you may read the file as usual, and then
send decodeFromUTF8ToString or decodeFromUTF8ToUnicode to decode the
results. Alternatively, you may use the method

GsFile >> contentsAsUtfS8

which you can then decode from the instance of Utf8 similarly using decodeToString
or decodeToUnicode

Note that when reading files whose contents logically contain Characters with codePoints
larger than 127, you must be aware of the whether the file is encoded in order to decode
appropriately. GsFile reads the bytes and does not distinguish between encoded or un-
encoded contents. A UTF-8 encoded file when read in using a GsFile and not explicitly
decoded will be garbled, and a file written as 8-bit characters that you attempt to decode
will almost always result in a badly formed UTF-8 error.

If you are writing a file in topaz format, for example source code, you may include a header
line in the output file, either:

fileformat utf8
fileformat 8bit

to instruct topaz of the file encoding.

Positioning

You can also reposition the pointer without reading characters, or peek at characters
without repositioning the pointer. The method:

GsFile peek
allows you to view the next character in the file without advancing the pointer.

To advance the pointer without reading the intervening characters, use:
GsFile skip: anlnteger

To determine the position or set the position specifically, use:
GsFile position
GsFile position: anlnteger

Testing Files

The class GsFile provides a variety of methods that allow you to determine facts about a
file.

To test for existence of a file, use:

GsFile exists: aFileNameString
GsFile existsOnServer: aFileNameString

These methods returns true if the file exists, false if it does not, and nil if an error occurred.

Renaming Files

Files on the client or server can be renamed or moved. For example:
GsFile rename: '/tmp/myfile.txt' to: '/tmp/newname.txt'.

GsFile renameFileOnServer: 'SGEMSTONE/data/system.conf'
to: '/users/david/mysystem.conf'.

118 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Accessing Files using GsFile

Removing Files

To remove a file from the client machine, use an expression of the form:

GsFile closeAll.
GsFile removeClientFile: mySpec.

To remove a file from the server machine, use the method removeServerFile: instead.
These methods return the receiver or nil if an error occurred.

Examining a Directory

To get a list of the names of files in a directory, send GsFile the message
contentsOfDirectory: aFileSpec onClient : aBoolean. This message acts very much
like the UNIX 1s command, returning an array of file specifications for all entries in the
directory.

If the argument to the onClient: keyword is true, GemStone searches on the client
machine. If the argument is false, it searches on the server instead.

For example:

Example 7.6

GsFile contentsOfDirectory: 'SGEMSTONE/examples/admin' onClient:
false
%
an Array
#1 /dbf/gsadmin/GS6437/examples/admin/.
#2 /dbf/gsadmin/GS6437/examples/admin/..
#3 /dbf/gsadmin/GS6437/examples/admin/onlinebackup.sh
#4 /dbf/gsadmin/GS6437/examples/admin/archivelogs.sh

If the argument is a directory name, this message returns the full pathnames of all files in
the directory, as shown in Example 7.6. However, if the argument is a filename, this
message returns the full pathnames of all files in the current directory that match the
filename. The argument can contain wildcard characters such as *. The following example
shows a different use of this message.

GsFile contentsOfDirectory: 'SGEMSTONE/ver*' onClient: false

%

an Array

#1 /dbf/gsadmin/GS6432/version.txt

If you wish to distinguish between files and directories, you can use the message
contentsAndTypesOfDirectory:onClient: instead. This method returns an array
of pairs of elements. After the name of the directory element, a value of true indicates a file;
a value of false indicates a directory. For example:

Example 7.7

GsFile contentsAndTypesOfDirectory: 'S$SGEMSTONE/ualib' onClient:
false

%

a Array

GemTalk Systems 119

Accessing Files using GsFile GemStone/S 64 Bit 3.7 Programming Guide

#1 /dbf/gsadmin/GS6433/ualib/.

#2 false

#3 /dbf/gsadmin/GS6433/ualib/..

#4 false

#5 /dbf/gsadmin/GS6433/ualib/liboraapi23-643.so0
#6 true

All the above methods, like most GsFile methods, return nil if an error occurs.

GsFile Errors

GsFile operations return nil in cases where an error occurs during the operation. For this
reason, most GsFile operations should check for nil return. There are separate methods to
check for errors within file operations on server files and client files.

To check for errors in an operation on a server file, the method is GsFile »>»>
serverErrorString. Itis nil if no error has occurred. This error is available until the
next GsFile operation is executed.

Example 7.8

| myFile |
myFile := GsFile openReadOnServer: 'nonexistentfile'.
myFile
ifNil: [GsFile serverErrorString]
ifNotNil: ['Succesfully opened'].
%
No such file or directory : nonexistentfile

To check for similar errors for a client file, use the method lastErrorString. For
example:

Example 7.9

| myFile |
myFile := GsFile openRead: 'privatefile'.
myFile
ifNil: [GsFile lastErrorString]
ifNotNil: ['Succesfully opened'].
%
Permission denied : privatefile

Logging to stdout

GsFile class protocol allows you to write messages to stdout of either the Gem (server) or
the client. Note that for clients running without a console (as may be the case, for example,
using GBS on Windows), linked output may not be accessible.

120 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide FileSystem

On the server (Gem)

GsFile gcilogServer: aString

gciLogServer: writes to stdout of the Gem. For an RPC login, this is the Gem log file.
For a linked login on topaz, this is the console or (when using topaz) an output file as
controlled by an output push command.

On the client (GClI client)

GsFile gcilogClient: aString

gcilLogClient: writes to stdout of the GCI application. This is the console for both
linked and RPC logins (or on topaz, an output file as controlled by an output push
command). If it is not possible to perform GsFile client writes (e.g, if within an external
session or a non-blocking GCI execution), it will fall back to executing gciLogServer:.

7.2 FileSystem

FileSystem is a set of classes, ported and adapted from Pharo, that support operations on
files and directories. FileSystem provides a much more flexible and feature-rich
environment than GsFile.

The term "FileSystem’ can be used to refer to the entire set of classes that support file and
directory operations, or to the specific class named FileSystem. The specific class
FileSystem represents the underlying file environment. Most operations within the
general File System environment use the class FileReference, which represents a file or
directory.

Unlike GsFile, FileSystem is implemented using FFI, which makes it easily extensible to
support specific behavior under different OS platforms. However, FileSystem does not
support operations on the client (that is, on the node on which the GCI client is running);
only operations on the server (the node on which the Gem is running, which may or may
not be the node on which the Stone is running). If you are running an client application on
Windows, for example, you will need to continue to use GsFile to access files on the
Windows client. FileSystem is also not supported on AIX.

FileSystem is still under refinement, and may be missing features or contain unexpected
behavior. The low level support classes in particular may be refactored and/or have
protocol modifications.

FileReference
FileReference is the primary entry point for file and directory operations. A FileReference
represents a file or directory, which may nor may not exist on disk.

File references can be created from Strings or using FileReference or FileSystem class
methods. For example:

'/gshost/test/foo.txt' asFileReference
See “Specifying a FileReference” on page 123 for other options.

Using the FileSystem environment, you do not normally "open" a file; instead, you create
a read or write stream on a file to perform file operations on the contents. Unlike GsFile,
FileReference instances themselves do not understand stream protocol.

GemTalk Systems 121

FileSystem

GemStone/S 64 Bit 3.7 Programming Guide

FileReference includes many methods to get information about a file or directory, access it
for read and write, decompose the filename and path, and file parent and child directories
and files. Many of these are inherited from its superclass, AbstractFileReference.

FileLocator

FileLocator is a sibling class of FileReference, which provides much the same file and
directory behavior inherited from AbstractFileRefernce. It is explicitly designed to allow an
environment-independent specification of paths. The actual physical file or directory is
resolved according to the environment at runtime. This allows you to move code between
environments without requiring explicit management of the paths.

FileLocator provides a number of common environments; these can be listed using
FileLocator class >> supportedOrigins
Class methods are available for the various supportedOrigins, including home,

cache, temp, userData, tranlog, preferences, extentlDirectory, extentl,
documents, desktop, and workingDirectory

To find the resolved value of the FileLocator for your current environment, you can send
the message absolutePath; this returns an instance of a kind of Path.

FileLocator extentl absolutePath printString
Path / 'gshost' / 'GemStone3.7' / 'data' / 'extent(0.dbf'

FileSystem

122

While the primary entry point in the FileSystem environment is FileReference, the class
FileSystem provides additional behavior.

FileSystem includes support for both ordinary disk based file systems (FsDiskFileSystem)
and in-memory file systems (FsMemoryFileSystem). These can be retrieved using class
methods. For example:

FileSystem disk
returns a disk-based FileSystem, which can be used with @ or / to create a
FileReference, e.g. FileSystem disk / '/gshost/test/foo.txt'

FileSystem memory
returns an in memory-based FileSystem, which can be used with @ or / to create a
FileReference, e.g. FileSystem memory / 'foo' / 'bar’.

FileSystem workingDirectory
creates a FileReference to the current working directory (disk-based).

FileSystem instances should not be used to perform file and directory operations; these
instance methods are subject to change or removal in a future version. Obtaining instances
of FileReference or changing the working directory are valid operations for FileSystem
instances.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide FileSystem

Specifying a FileReference

There are many ways to specify a FileReferences to a particular file, using methods on

FileReference, FileSystem, or by creating a FileReference from a String.

The following are all equivalent:
'/gshost/test/foo.txt' asFileReference
FileReference / '/gshost/test/foo.txt'
FileReference / 'gshost' / 'test' / 'foo.txt'
FileReference disk @ '/gshost/test/foo.txt'
FileSystem disk / '/gshost/test/foo.txt'
'/gshost/test/' asFileReference / 'foo.txt'

These all resolve to a FileReference that is printed as:
FileReference disk @ '/gshost/test/foo.txt'

The FileReference and FileSystem / operator and FileSystem @ operator create a new
instance of FileReference with its argument string interpreted as a path or file relative to
the path of the receiver. If the argument string is an absolute path (that is, includes a
leading / in the string), then the new FileReference has that absolute path.

Working Directory and other environment-independent paths

The working directory is a special case of environment-independent path. You can use
working directory as a file location without needing to use using FileLocator.

UsingFileSystem >> workingDirectory, you can create a FileReference can be used
to access or create a file in the directory that is the current working directory when the code
is executed.
For example,

FileSystem workingDirectory / 'myLogFile.txt'
The workingDirectory can be modified using;:

FileSystem disk setWorkingDirectory: aFileReference
The working directory is also accessible from FileLocator, and other environment-
independent root paths can be specified using FileLocator. For example,

FileLocator home / 'output.txt'.
FileLocator temp / 'testLogs' / 'performance.log'

Reading from and Writing to a File

To read from or write to a file, open the file for read or write using;:
aFileReference readStream
aFileReference writeStream
These methods return a kind of ZnStream, which understands standard stream protocol.

rdStream := '/gshost/test/foo.txt' asFileReference readStream.
[rdStream atEnd] whileFalse:

[report add: rdStream nextLine; 1f.].
rdStream close.

These methods have a number of variants. For example, the readStreamIfAbsent: and
writeStreamIfPresent: provide easy checking for some common error conditions.

GemTalk Systems 123

FileSystem GemStone/S 64 Bit 3.7 Programming Guide

Closing file streams

Streams that have been opened should be closed when they are no longer needed.

When closing a writestream, you should call £1ush to ensure all data is written to the file.
wrStream := '/gshost/test/foo.txt' asFileReference writeStream.
wrStream nextPutAll: SystemRepository fileSizeReport; 1f.
wrStream flush; close.

The readstreamDo: and writeStreamDo: variants close the file after the Do : block is
complete, avoiding the need for an explicit close.
'/gshost/test/foo.txt' asFileReference readStreamDo:
[:str |
[str atEnd] whileFalse: [
report add: str nextLine; 1f.]

File encodings

The above methods read the disk file with the default encoding, UTF-8. You can write
instances of kinds of Strings or Unicode strings with Characters outside the ASCII range to
a file, and you read instances of these classes from a file, without having to explicitly
convert them to or from the raw file bytes.

FileReference also supports reading files using GemStone’s legacy 8-bit encoding. To do
this, use the methods that include Encoded:, which takes an instance of a kind of
ZnCharacterEncoder. For example,
rdStream := '/gshost/test/foo.txt' asFileReference
readStreamEncoded: '8bit' asZnCharacterEncoder.
[rdStream atEnd] whileFalse:
[report add: rdStream nextLine; 1f.].
rdStream close.

Binary Streams

You can also read the files as binary, which allows you to do your own processing of the
results. The binary* St ream methods return instance of FsBinaryFileStream, which reads
and writes instances of ByteArray.
rdStream := '/gshost/test/foo.txt' asFileReference
binaryReadStream.
[rdStream atEnd] whileFalse:
[report add: rdStream contents decodeFromUTF8ToString; 1lf].
rdStream close.

Operations on Files and Directories

There are a number of options for operating on files and directories; see the image for the
full set of methods.

Create

createFile
Create the file; signal an exception if the parent does not exist.

124 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide FileSystem

ensureCreateFile
Create the file, if it does not exist, including parents if needed.

createDirectory
Create the directory; signal an exception of the parent does not exist.

ensureCreateDirectory

Create the directory, if does not exist, including parents if needed.

Delete

delete
Delete the file or directory. If the file or directory does not exist, or the directory is
not empty, signal an exception.

ensureDelete - like delete, but does not signal an exception if the file or directory
does not exist.

deleteAll
Delete the file or directory, including all files and directories under the directory.
If the file or directory does not exist, signal an exception

ensureDeleteAll
Similar to deleteAll, but does not signal an error if the file or directory does not
exist.

Move

moveTo : anotherFileReference
Moves the file at location for the receiver to the location of the argument.

Copy

copyTo: anotherFileReference
Copies the receiver’s file or directory to the location specified by the argument.

copyAllTo: anotherFileReference
Copies the receiver’s file or directory, and recursively all children of the directory,
to the location specified by the argument.

Rename

renameTo: newName
Renames the file or directory

Information queries

FileReference contains many methods providing information about a file or directory. The
following methods are available for FileReference and FileLocator.

Status of a file or directory

FileReference methods allow you to test the status of a file or directory.

GemTalk Systems 125

FileSystem GemStone/S 64 Bit 3.7 Programming Guide

Some available testing methods are:

exists
isReadable
isWriteable
isFile
isDirectory
isExecutable

Operations can also be performed based on file status. For example,
ifAbsent : absentBlock

ifExists: existBlock
ifExists: existBlock ifAbsent : absentBlock
ifFile: fileBlock ifDirectory: directoryBlock ifAbsent : absentBlock

Information about a file

FileReference returns information about a file or directory. There are many methods for file
attributes; see the image for available methods.
exec '/gshost/test/foo.txt' asFileReference modificationTime %
2023-02-27 23:17:32.768

exec '/gshost/test/foo.txt' asFileReference size %
1823

File permissions

File permissions use another class, FileSystemPermission, to represent a file or directory’s
permissions. FileSystemPermission includes methods to query for read and write
permission.
exec '/gshost/test/foo.txt' asFileReference permissions %
a FileSystemPermission
posixPermission 420

exec '/gshost/test/foo.txt' asFileReference permissions
printString %
rw-r--r--

exec '/gshost/test/foo.txt' asFileReference permissions

ownerExecute $%
false

126 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide FileSystem

Decomposition of filename and path

Operations on files often need to filter out one segment of a path or filename. FileReference
has a rich set of options to access segments of a path and filename.
exec '/gshost/test/foo.txt.gz' asFileReference basename %
foo.txt.gz

exec '/gshost/test/foo.txt.gz' asFileReference
pathSegments printString %
anArray('gshost', 'test', 'foo.txt.gz')

exec '/gshost/test/foo.txt.gz' asFileReference
extensions printString %
anOrderedCollection('txt', 'gz')

exec '/gshost/test/foo.txt.gz' asFileReference
basenameWithoutExtension: 'gz' %
foo.txt

Listing Directories and Files

FileReference uses the term children for the files and directories that are under the current
FileReference.

For example, the directory /gshost/tests/ contains two files and one subdirectory. The
following reports all children, and only the children that are files.
exec '/gshost/test' asFileReference children printString %
anArray(File @ /gshost/test/foo.txt, File @ /gshost/test/logs,
File @ /gshost/test/bar.txt)

exec '/gshost/test' asFileReference files printString %
anArray(File @ /gshost/test/foo.txt, File @
/gshost/test/bar.txt)

Methods such as allChildren, allFiles and allDirectories will recursively
return all files and/ or directories underneath the receiver.

Supporting Classes

There are a number of classes supporting FileSystem; many of these are for internal use in
supporting FileSystem features. The following are some important subsystems of
FileSystem.

FsFileDescriptor
FsFileDescriptor represents the file itself. This is a lower level support class, however,
it is possible to use this directly.

Within the FileSystem environment, you do not normally "open" a file; instead, you
create a read or write stream (a kind of ZnStream) on a file to perform file operations
on the contents.

FileReference open: methods return an instance of FsFileDescriptor. Instances of
FsFileDescriptor read and write ByteArrays, rather than strings.

GemTalk Systems 127

FileSystem GemStone/S 64 Bit 3.7 Programming Guide

Zinc Stream Classes

Subclasses of ZnObject, including ZnBuffed*Stream, ZnEncoded*Stream, and
Zn*Encoder, provide read and writestream support for FileSystem. Zn*Encoder
streams handle the encoding/decoding from UTF-8 and 8-bit (GemStone legacy)
encoded files, and the creation of Legacy or Unicode String instances.

Error Classes

FsError and its subclasses represent errors associated with FileSystem. FileSystem
exception represent errors related to the FileSystem, FileException and its subclases
represent FileReference/FileLocator errors.

Other errors such as FsUnixError and its subclasses represent low level UNIX file
errors, which are generally handled by public APL

Path classes

Path, RelativePath, and Absolute Path encapsulate a path. A Path can be obtained from
a FileReference and vice versa. While Path is an abstract class, you can use it to create
instances, e.g. Path from: '/ gshost/test/' will return an instance of AbsolutePath.

Opening options

FsFileOpeningOptions and its subclasses provide the operating-system specific
options for opening files.

Store classes

FileSystemStore and subclasses represent the OS file system or memory file system,
with differences for specific operating systems.

Resolver classes

FileSystemResolver and subclasses support resolving various FileLocator origin
options, which vary between operating systems.

FFl support classes

FsLibcInterface and FsCStruct and their subclasses provide the FFI interface to the
operating system file commands.

128 GemTalk Systems

Chapter

Indexes and Querying

This chapter describes GemStone Smalltalk’s indexing and querying mechanism, a system
for efficiently retrieving elements of large collections.

Overview (page 130)
Reviews the concept of relations.

Defining Queries (page 137)
Describes the structure of query predicates, the types of queries, and how to
construct a query.

Creating Indexes (page 139)
Discusses GemStone Smalltalk’s facilities for creating indexes on collections.

Results of Executing a GsQuery (page 146)
How to execute a query and the options for working with the results.

Enumerated and Set-valued Indexes (page 151)
Describes how to create enumerated and collection-valued indexes and queries.

Managing Indexes (page 152)
How to perform index management: find out about indexes in your system,
remove existing indexes, handle errors, and audit indexes.

Indexing and Performance (page 157)
Additional factors that can impact the performance of your queries.

Historic Indexing API differences (page 158)
The older indexing API, using UnorderedCollection methods and select blocks.

GemTalk Systems 129

Overview GemStone/S 64 Bit 3.7 Programming Guide

8.1 Overview

Most applications use one or more databases containing business data, which may be very
large. Individual records in these databases may be added, removed, and/or updated, and
need to be queried in multiple ways for different purposes. All these operations must be
performed quickly and efficiently.

Business Objects

In GemStone, a database is represented as an instance of a collection that holds instances
of business objects. You may have thousands or millions of objects in a collection, and these
objects may be complex composite objects holding many individual strings, dates, number
and other basic data types.

The following example shows simple employee data in table form:

Table 8.1 Employees

First

Name Job Age Address
Fred clerk 40 22313 Main, Dexter, OR
Sophie bus driver 24 540 E. Sixth, Renton, WA
Conan librarian 40 999 Walnut, Hilt, CA
Moppet intern 18 17 SW Oak #6, Portland, OR

In Smalltalk, this can be represented as an Employee class, with instance variables
firstName, job, age, and address; and an Address class, with street, city, and state instance
variables.

Database Collection

The collection itself may be an instance of a number of different types of Collection
subclasses. For scaling, and to support indexes, a subclass of UnorderedCollection is
recommended. Hashed collections such as dictionaries may become unbalanced if too
many elements hash to the same value, and as a collection grows, may require the entire
collection to be rebuilt. Indexed collections such as Array have limitations on adding and
removing elements without affecting the entire collection. UnorderedCollections,
particularly IdentityBag, IdentitySet, RcldentityBag, and RcldentitySet, use an optimized
internal tree structure to hold the elements and are the recommended Collection classes for
use for large databases. Collection classes are described in Chapter 4.

To make it easy to associate behavior with your set of Employees, it is often useful to define
a class SetOfEmployees that is a subclass of IdentitySet. An instance of SetOfEmployees
then can contain instances of Employee, with a reference from UserGlobals or from a class
variable.

130 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Overview

Queries

Since UnorderedCollections aren’t ordered, lookup is by value. For example, to find a
particular Employee, you use select:, detect: or similar messages. For example,

MyEmployees select: [:ea | ea addess state = 'OR']
MyEmployees detect: [:ea | ea firstName = 'Sophie']

These iterative messages may not scale well. For example, for the above select:
expression, for each employee in the collection, the employee object and the address object
must be faulted into memory, and the messages address, state, and = are sent. While this
doesn’t matter for small collections, it can become unreasonably slow for very large
collections; particularly if objects in the collection are not in the shared page cache, and
need to be read from disk.

GemStone Indexes and Queries

Indexes

Indexes and indexed queries provide a way to locate specific objects in a collection by
value. Indexes are created on specific named instance variables, either by identity or by
equality. Creating an index on a collection (e.g. on the instance variable firstName), creates
parallel internal structures which provide a mapping from the indexed value (such as the
firstName "Sophie”) to the root object in the collection (the employee). Using this index,
only a few message sends are needed to lookup the collection element that is the same as,
or less or greater than, a particular value.

Identity indexes support queries that are looking for identical values, while equality
indexes support queries that compare using equality, or greater or less than, a particular
value.

Indexes are created on objects based on instance variables, not on message sends; since the
instance variable relationships are known by the system, indexes can be updated
automatically as elements are added and removed from the collection, and when
references on the path are changed. There are some exceptions to this which require
manually updating the indexes.

Indexes may only be created for instance of subclasses of UnorderedCollection.

GsQueries

To take advantage of an index you have built on your collection, you must perform the
query using GsQuery syntax, rather than select: or similar iteration methods. A query
performed using GsQuery will use indexes, as long as an index exists for the particular
instance variable involved in the query. If an index does not exist, then the GsQuery will
be performed iteratively, with performance similar to the comparable select: or
detect: operation.

When the collection is properly indexed, GsQueries can return results without having to
iterate the collection, fault the intermediate objects into memory, or send messages to each
object.

GsQueries can be used on most kinds of Collection, not only UnorderedCollection.
However, the performance benefit only appears on instances of subclasses of
UnorderedCollection for which the appropriate index or indexes exist.

GemTalk Systems 131

Overview

GemStone/S 64 Bit 3.7 Programming Guide

132

Deciding what to optimize

As with any kind of optimization, it's important to consider the application’s performance
profile, performance requirements, and the entire context, rather than automatically
creating indexes on all possible paths.

The process of creating indexes creates overhead. The additional internal objects created
use some space, and building an index may take some time. As the data in the repository
changes, including objects added to and removed from the collection itself as well as
changes in actual values, the mappings in the index structures need to be updated.
Periodically, indexes should be audit ed to ensure integrity, and rebuilt if necessary;
rebuilds are required for some system upgrades. Indexes must be specifically removed
when the collection is removed, to ensure the internal infrastructure is cleaned up.

While most collections with more than a few thousand objects will see better performance
using indexed queries, it is wise to consider indexes with this overhead in mind. Before
going through the trouble of creating an index, you should determine that the index
provides value. There are a number of factors that strongly influence queries, both iterative
queries and indexed queries. These factors interact with each other and there are other
factors, such as caching, that also influence performance.

» The size of the collection. With smaller collections, iterative performance is fast
enough that indexing provides little benefit. Iterative performance grows linearly
with collection size, while indexed performance increases slowly.

» The length of the path. Longer paths require more lookups and more infrastructure,
and take longer to complete. For longer paths, it is more efficient to cache the value
higher within the object structure.

» The size of the result set. If you have a query that returns a very large number of
results, creating the result set reduces performance; this is particularly so for indexed
queries.

Overview of the steps in creating and using indexed queries

In order to take advantage of efficient indexed queries on your collection, the following
steps need to be done:

a. Determine the queries that can benefit from optimization, and describe them using
query syntax. Query syntax is described starting on page 133.

For example, to query for employees under 21 who live in Oregon, the query string
might be:

(each.age < 21) & (each.address.state = 'OR')

2. Create one or more indexes on the collection, that specify the particular instance
variable path on which you will perform the query. Creating indexes is described
starting on page 140.

To support the above query, you may want to create two indexes, for example:

GsIndexSpec new
equalityIndex: 'each.age' lastElementClass: SmallInteger;
equalityIndex: 'each.address.state' lastElementClass:
String;
createIndexesOn: myEmployees.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Overview

3. Execute the query on that indexed collection, using query protocol. How to define
and execute queries is described starting on page 138.

For example:

(GsQuery fromString: '(each.age < 21) & (each.address.state =

IIORII)I)
on: myEmployees;
queryResult

Managing Indexes

In addition to creating indexes and queries, you will also need to do some management on
your indexes and queries. For example, you should evaluate your indexes for performance,
remove indexes that are no longer needed, and audit indexes to ensure the structures are
correct. Many of these indexing tasks are handled by IndexManager.

Special Syntax for Indexing

GemStone indexing uses several syntactical elements that are either specific to, or
primarily used for, index creation and indexed queries.

Path-dot syntax

Indexes are created, and queries formed, using special syntactic structure called a path,
which designates variables for indexing and describes certain features of the index. Path
syntax uses a period to represent the object/instance variable name relationship.

For example, given a collection of Employees, in which each employee has an address
instance variable, which refers to an Address that has a state instance variable, the path is:

address.state

A longer path is

account.order.address.state

In the simplest case, a path on an instance variable on the collection elements, this is just
the instance variable name. For example:

firstName
You may also specify an empty path, meaning the elements of the root collection itself.

Each instance variable name on the path is a pathTerm. In the above example, address and
state are each pathTerms. Paths can contain a long string of pathTermes, if the elements
of the collection represent a deeply nested tree of objects.

Path-dot syntax can be used anywhere in GemStone code; it is required in index creation
and queries, for which message sends are not allowed.
Initial each

Aninitial 'each. ', where each represents the elements of the collection, is recommended
but optional for GsIndexSpec index creation, and required for GsQueries. For example:

each.address.state

Enumerated pathTerms

A vertical bar | in the path indicates the presence of two alternate instance variables that
will be indexed together, as if they were a single variable.

GemTalk Systems 133

Overview

GemStone/S 64 Bit 3.7 Programming Guide

For example, you might want to search on both name and nickname in a single operation.
This might look like this:

account .name | nickname

Set-value path terms

An asterisk * in the path indicates a collection, which must be an instance of an indexable
class (an instance of a subclass of UnorderedCollection). A set-valued path term may not
be the first term in the path.

For example, if the instance variable children contains an IdentityBag of instances of Child,
and a child has the instance variable age:
children. *.age

Historic indexing syntax

The GsIndexSpec/GsQuery classes provide the general purpose indexing interface. An
older syntax using UnorderedCollection methods to create indexes, and selection blocks
with curly braces to define queries, is an alternate way to use indexes. This older syntax
remains fully supported in order to ensure upgraded applications do not require changes.
However, new features are not available using this historic APL

See section 8.6 on page 152 for information specific to the historic APL

Last Element Class

134

Creating an equality index creates an internal btree that contains the ordered values of the
instance variable that is indexed. For example, an index on firstName creates a btree
containing "Conan’, 'Fred’, and so on. This allows fast lookup of a position in this btree
when performing the query, and values that are equal or greater or less than can be
returned in order as needed.

Building this btree and providing predictable lookup requires that the values be
comparable in well-known and efficient ways. When building indexes, there are choice to
make in balancing the restrictivity of the indexed values vs. the impact of comparison on
query performance.

Performing an identity query creates no such restrictions on the index, since the
comparison is by identity (OOP), and any two objects can be compared this way.

To provide the definition of comparison, equality indexes require specifying the
lastElementClass. This generally restricts the indexed values to instance of this class or of
subclasses of this class, although string classes have some special handling.

Optimized classes

The following classes, and subclasses of these classes, are optimized for indexes. In most
cases, the final element you will create an index on will be one of the following. For legacy
indexes, the index structures encode the value; for btreePlusIndexes, they can perform
optimized comparisons. These classes are subclasses of Magnitude or CharacterCollection.

Character, Smalllnteger, SmallDouble, SmallFraction,
String, DoubleByteString, QuadByteString,
Unicode?7, Unicodel6, Unicode3?2,

Symbol, DoubleByteSymbol, QuadByteSymbol,

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Overview

Time, Date, DateTime, DateAndTime,
Largelnteger, Float, DecimalFloat, ScaledDecimal, FixedPoint, Fraction

Boolean is a special case; it is a special, and so does not require looking in legacy indexes.
However, it does not support optimized Comparison.

Using other classes

You can create indexes where the indexed values are instances of classes other than the
above, including classes you have defined yourself.

Identity indexes on instances of your own classes require no extra work, since they
compare on the identity of the objects.

If you wish to create an index where the values that are instance of application classes that
do not subclasses of basic classes, you must ensure these classes implement comparison
operators, as described on page 136.

Comparing data types

Some cases of data type comparison have special handling in indexes.

» It may be useful to mix strings and symbols, but there is additional cost. While a
string and a symbol can be ordered using <=, a string and a symbol that contain the
same characters are not equal. There are two solutions: using alternate comparison
methods which reduce performance; or optimizing the comparison operators and not
mixing symbols and strings.

» NaN (not a number) are specialized kinds of Float that are not equal to themselves.
As with strings, special handling is required to accommodate NaNs, at the cost of
performance; or NaNs may be disallowed in Float indexes.

» The indexed comparison mechanism considers only the first 900 characters of each
string operand, so two strings that differ only beginning at the 901st character are
considered equal.

» nil is a special case of object that can be compared to any other object. They also
require special handling in indexes. Since the appearance of nil signifies a value that is
not there, less than and greater than comparison results will not include nil values.
Since accommodating nil requires special protocol, nil may also be disallowed.

A nil along the path to an indexed slot is a different issue; such missing sections of a

reference tree are allowed without special handling.

Strings in indexes

Indexing on strings has complications, due to the different collation orders it is possible to
configure. For more on collation, see Chapter 5.

To summarize, strings come in two "flavors":

» Traditional strings (String, DoubleByteString and QuadByteString, which are
interchangeable based on the maximum Character codePoint size). Traditional
strings, in Legacy String Comparison Mode, use character-based collation.

Symbols (Symbol, DoubleByteSymbol and QuadByteSymbol) follow the same
collation rules as Traditional strings.

GemTalk Systems 135

Overview

GemStone/S 64 Bit 3.7 Programming Guide

136

» Unicode strings (Unicode?7, Unicodel6, and Unicode32) always use ICU string-based
collation.

A repository in Legacy String Comparison Mode disallows compare between Unicode
strings and Traditional strings or symbols, to avoid unpredictable results. In this mode,
you cannot mix Traditional and Unicode strings; it is difficult to avoid errors when using
Unicode strings in Legacy String Comparison Mode.

A repository in Unicode Comparison Mode uses Unicode collation for all flavors of strings
and symbols. In this mode, you can use Traditional strings and Unicode strings
interchangeably.

Constraining the indexed variables using lastElementClass is not effective for strings, since
Traditional string, symbol and Unicode string classes inherit by codePoint range rather
than by collation or other behavior. It is allowed, but not recommended, to specify
CharacterCollection (the superclass of all kinds of Strings and Symbols), since (depending
on the mode and index type) it may create an ambiguous indexes.

In both Comparison Modes, specifying a lastElementClass of any of the following will
create an index that includes a cached collator:

Unicode?7, Unicodel6, Unicode32

In Legacy String Comparison Mode, the lastElementClass of any of the following will
permit instance of any of the classes:

String, DoubleByteString, QuadByteString,
Symbol, DoubleByteSymbol, QuadByteSymbol

In Unicode Comparison Mode, the lastElementClass of any of the following will permit
instance of any of the classes:

String, DoubleByteString QuadByteString,
Symbol, DoubleByteSymbol, QuadByteSymbol
Unicode?7, Unicodel6, Unicode32

Note that some optimized indexes disallow mixing Symbols with any kinds of Strings.

Redefining Comparison Messages

If you create an index on values that are instances of your application classes, these classes
must implement the basic comparison operators, at least =, >, <, and <=. You can redefine
one or more of these in terms of another.

The operators must be defined to conform to the following rules:
»Ifa<bandb<c, thena<c.
» Exactly one of these is true:a <b, orb <a,ora=b.
»a<=bifa<bora=bh.
»Ifa=Db,thenb=a.
»Ifa<b,thenb>a.
» If a >=b, then b <= a.

While the indexing subsystem does not use hashing itself, note that redefining = does
requires attention to the hash method to be consistent with the new definition of equality.
Object that are equal must return the same hash value to ensure they behave in a consistent
and logical manner in all use cases.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Defining Queries

8.2 Defining Queries

Before you can define indexes on your collection, you need to determine the ways in which
you will need to search your collection to retrieve elements. The queries you need
determine the details of the indexes to create.

At its simplest, a query consists of the specification of an instance variable common to all
the objects in the collection, a comparison operator, and a literal to which the value is
compared. For example, if you wish to be able to find all employees 21 and older, your
query formula could be something like this:

each.age »>= 21

In this example, every object in the collection (each) has an instance variable age, which
is specified using dot-path notation. The value of that instance variable is compared,
greater than or equal, to the literal Smalllnteger 21.

While this formula is simple, you can formulate queries based on multiple instance
variable values, operators, and constants, and combine them using boolean logic.
However, using this query syntax, you cannot include message sends; the indexes are
based on structural relationships using instance variable names.

For performance and clarity, it is an advantage to use short and simple queries. However,
it may be valuable to compose your queries based on the statement of business logic. This
may mean creating a complicated query that is not in its most efficient form. The final
query will be automatically optimized to a logically equivalent form that is more efficient
for GemStone to execute. See “Formulating queries and performance” on page 158.

Query Predicate Syntax

A query contains a predicate expression, which is a Boolean expression that, when
evaluated with the elements of the collection, returns true or false. In a query, the
expression usually compares an instance variable on the collection objects with another
instance variable or with a constant.

A predicate contains one or more predicate terms — the expressions that specify
comparisons.

Predicate Terms

A term is a Boolean expression containing an operand and usually a comparison operator
followed by another operand. For example, in

each.age >= 18
each.age and 18 are operands, while >= is a comparison operator. The only time you
would not have a comparison operator is if the operand is itself a Boolean (true or false).
Predicate Operands
An operand can be a path (each.age, in this case), a variable name, or a literal (18, in this
example). All GemStone Smalltalk literals except arrays are acceptable as operands.
Predicate Operators

Predicate operators are ==, ~~, =, ~=, <, <=, > and >=. No other operators are permitted in
a GsQuery or selection block query.

GemTalk Systems 137

Defining Queries GemStone/S 64 Bit 3.7 Programming Guide

Combining Predicates using Boolean Logic

If you want retrieval of an element to be contingent on the values of two or more of its
instance variables, you can join several terms using a conjunction operator & (logical AND)
or disjunction operator | (logical OR).

The conjunction operator, &, makes the predicate true if and only if the terms it connects
are true. The disjunction operator, |, makes the predicate true if either one, or both, of the
terms it connects are true.

You may also negate individual predicate terms using not .
Each predicate term must be parenthesized.

For example, the following are legal queries.
(each.name = 'Conan') & (each.job = 'librarian')

(each.age <= 40) | (each.job = 'librarian') not

Combining Range Predicates

Queries that use less than or greater than, such as each.age >= 18, define a starting (or
ending) point in a range query. Specifying both a starting point and ending point creates a
range query. For example,

(18 <= each.age) & (each.age <= 65)
These two terms can be combined into single range predicate.
18 <= each.age <= 65

Range specifications such this can only be defined with this syntax if the operands and
comparison operators truly define a range.

Creating a GsQuery

138

GsQuery is a programmatic way to define a query, allowing you to easily abstract, store
and reuse various aspects of the query.

To create a GsQuery, you create an instance of GsQuery using query predicate syntax. The
most simple way to create a GsQuery is by passing in a string. For example:

GsQuery fromString: 'each.age >= 18'

Since the fromString: protocol requires a string, if the query includes literal strings, you
must include two single quotes within the string. For example:

GsQuery fromString: 'each.firstName = ''Fred'''.

This message will return an instance of GsQuery. Before it can be executed, it must be
bound to a collection:

» Create the GsQuery using fromString:on: creates a GsQuery that is bound to a
particular collection.

» Bind the query before executing using the on: method.
Query Variables

The strings used to define GsQuery instances may contain variables —any element of a
predicate that is are not a literal or path-dot expressions. This allows your query to be
stored and executed later using different values.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Creating Indexes

For example, for a query such as
GsQuery fromString: '18 <= each.age <= 65'

This can be generalized to a query with variables:

GsQuery fromString: 'min <= each.age <= max'.

The resulting formula in the GsQuery includes 'min' and 'max' as variables. These must be
bound to specific values before the query can be executed. Binding is done by sending the
bind:to: message to the query. For the above example, to execute the query:
aQuery := GsQuery fromString: 'min <= each.age <= max'.
aQuery
bind: 'min' to: 18;
bind: 'max' to: 65;
on: myEmployees;
queryResult

Note that the “max” and “min” in the query formula are string elements, and are not
affected by any temporary or instance variables named max or min in the scope of the code
being executed. The only way to resolve max and min are by binding variables.

8.3 Creating Indexes

Queries can be executed without an associated index, but there is no performance benefit.
To execute a query efficiently, you need to also create an index on the instance variables for
the query. These indexes provide a mapping from the specific key values that you are
interested in to the results (the objects in the collection).

The path you provide when creating an index provides the key that is needed to lookup
the value during a query. These keys are the values of a specific instance variables within
the elements of a collection, or the elements of the collection itself. For example, given a
collection of Employees, and the path each.address.state, the objects at the state
instance variable (perhaps two-character Strings) would be the keys.

The values for these keys are the objects in the collection itself, which are the results of the
query using that index. For our example, the values are the instances of Employee in
AllEmployees. When you make an indexed query for Employees with addresses in a given
state, that state key is used to lookup the matching elements (instance of Employee).

Equality and Identity Indexes

Indexes fall into two main types: Equality Indexes and Identity Indexes. Equality indexes
support equality-based queries, including >, >=, <, <=, =, and ~=. Identity indexes support
queries containing identity comparisons, == and ~~.

When creating an index, you specify whether an equality or identity index is created. Since
identity comparisons are done by OOP, not by the object’s contents, they are faster, and the
lastElementClass does not matter; any two objects can be compared for identity.

If you only have an identity index on a variable, but form your query using an equality
operator, the query will not have an index to use (and thus, will iterate the collection).

You may create both equality and identity indexes on the same path.

GemTalk Systems 139

Creating Indexes GemStone/S 64 Bit 3.7 Programming Guide

Btree and Legacy Indexes

GemStone supports two different internal structures; the legacy structures, which includes
a btree and an index dictionary; and the btreePlus structures, which use a btree+ and does
not require the dictionary. The query results are the same for each, of course, but the
performance profile is different.

The decision of which to use impacts your indexing work.

» The best query performance is with btreePlusIndexes with optimizedComparison.
However, optimizedComparison places restrictions on lastElementClass data types,
such that, for example, Strings and Symbols cannot be mixed, and nils and NaN floats
may not be present.

» If your data does not conform to the data type restrictions, using legacy indexes is
recommended.

With a legacy identity index, the index dictionary provides a identity-based lookup for the
key. In a btreePlus identity index, the keys are in a btree. This allows you to stream over
the results of a identity query only when using a btreePlus index.

The index structure you use can be specified for each index, otherwise it relies on the
system or configured default. Since structures are shared between indexes on a collection,
all indexes on a specific collection must use the same internal structure.

Note this is entirely distinct from the historic indexing API (using UnorderedCollection
methods to create indexes); creating indexes using the historic API may create either kind
of internal structure, depending on the current default.

See page 143 for details on how to configure each index type.

Creating the Index

140

Creating an index involves creating an instance of GsIndexSpec and sending messages to
define the index and the parameters and options for that index, then use this spec to create
indexes on a specific collection.

Before creating an index, you must know:
» the paths for the instance variables that you will query on.

» The classes of the values of these instance variables, and if these instances are
homogenous.

» If your queries will be by equality or identity
To create an index using GsIndexSpec, do the following:

1. Create the instance of GsIndexSpec

This is done by executing GsIndexSpec new

2. Define one or more indexes on the spec

To define an index, send an index creation message to the GsIndexSpec, including the
path you want indexed, the class of the last element (for equality indexes), and options
(if used).

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

Creating Indexes

The most general index creation methods include:

equalityIndex:lastElementClass:
identityIndex:

While these methods can be used to create indexes on strings, there are additional
index creation methods are specific to various kinds of string indexes. These methods

have variants that allow you to specify the index options.

Create the index on a specific collection

To actually create the index, send the message createIndexesOn:, providing the

specific collection on which you want to create the indexes.

To put this all together, for example:

GsIndexSpec new

identityIndex: 'each.userId';

equalityIndex: 'each.age' lastElementClass: SmallInteger;
equalityIndex: 'each.address.state' lastElementClass: String;
createIndexesOn: myEmployees.

This creates an identity index on userld, an equality index on age, and another equality

index on address.state, all on the collection myEmployees.

You can view the indexes by recreating the specification from the indexed collection, using

indexSpec. For example:

run
myEmployees indexSpec printString
%
GsIndexSpec new
identityIndex: 'each.userId';
equalityIndex: 'each.age'
lastElementClass: SmallInteger;
equalityIndex: 'each.address.state'
lastElementClass: String;
yourself.

Equality Indexes on strings

Equality indexes on strings present a variety of options and restrictions, depending on:

» If the indexed elements will be Traditional strings, Unicode strings, Symbols, or a

miX.

GemTalk Systems

» If you are using the GsIndexOptions optimized Comparison feature, which is strongly
recommended with btreePlus indexes and disallowed with legacy indexes.

» If the application is in Unicode or Legacy String Comparison Mode.

141

Creating Indexes GemStone/S 64 Bit 3.7 Programming Guide

142

The following methods can be used to create equality indexes on strings and/or symbols.
Note that each has a variants that allow you to specify the index options.
equalityIndex:lastElementClass:
unicodeIndex:
unicodeIndex:collator:
stringOptimizedIndex:
symbolOptimizedIndex:
symbolOptimizedIndex:collator:
unicodeStringOptimizedIndex:
unicodeStringOptimizedIndex:collator:

Which one you should use, and the rules allowing comparisons between different kinds of
data, are different for repositories in Legacy String Comparison Mode or in Unicode
Comparison Mode.

Comparison Modes are described on on page 82.

Repositories in Legacy String Comparison mode

In Legacy String Comparison mode, it is disallowed to compare Traditional and Unicode
strings, so it’s not possible for the indexed variables to contain a mix of Unicode strings and
Traditional strings or Symbols.

Legacy indexes

To create a legacy index on Traditional strings, symbols, or a mix of the two,
use a equalityIndex:* method specifying a lastElementClass of String.

If you are using Unicode strings in Legacy String Comparison Mode,
use a unicodeIndex:* method.

optimizedComparison (btreePlus) index

You cannot create an optimizedComparison index on a mix of types.

If your indexed elements are all Traditional strings,
use a stringOptimizedIndex:* method.

If your indexed elements are all Unicode strings,
use aunicodeStringOptimizedIndex:* method.

If your indexed elements are all Symbols,
use a symbolOptimizedIndex:* method.

Repositories in Unicode Comparison Mode

In Unicode Comparison Mode, Traditional strings are collated exactly like Unicode strings,
and indexes make no distinction between them.

Symbols are also collated like Unicode strings, but due to the definition of equality,
optimizedComparison indexes do make a distinction between strings and symbols.
Legacy indexes

To create a legacy index in Unicode Comparison Mode on Traditional strings, Unicode
strings, symbols, or any mix, use a unicodeIndex:* method, to ensure the collator is
persisted with the index.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Creating Indexes

optimizedComparison (btreePlus) index

optimizedComparison indexes may mix Traditional and Unicode strings, but may not
mix strings and symbols.

If your indexed elements are all Traditional or Unicode strings,
use the method unicodeStringOptimizedIndex:*.

If your indexed elements are all Symbols,
use the method symbolOptimizedIndex:*.

Implicit Indexes

With legacy indexes, the indexing internal structures include a dictionary. This dictionary,
as a side effect, provides de facto identity indexes with some equality indexes: specifically,
for non-terminal pathTerms, and where the lastElementClass is a Special (such as
Character, Smalllnteger, etc; see “Special” on page 35 for specific classes), in which equality
and identity are the same). Such indexes are referred to as implicit indexes.

Since with btreePlusIndexes there is no dictionary, there are also no implicit indexes
defined.

For clarity, and to avoid dependency on side-effects of the internal structures, it is
recommended to explicitly define any identity indexes that you require. There is no risk in
explicitly creating an identity index that would exist as a implicit index.

GsindexOptions

An instance of GsIndexOptions specifies features that will be used when creating a
particular index on a collection. GsIndexSpec index definition methods all have variants
that accept an instance of GsIndexOptions, although some override certain settings. If no
GsIndexOptions is explicitly provided, the session or repository default is used.

The GsIndexOptions defines if the index is a legacy index or a btreePlus index, as well as
other important indexing features. The options available for GsIndexOptions are:

GsIndexOptions class »>> legacyIndex
defines a legacy index structure, and disables btreePlusIndex and
optimizedComparison.

GsIndexOptions class >> btreePlusIndex
defines a btreePlus index structure, and disables legacyIndex.

GsIndexOptions class >> optimizedComparison
adding optimizedComparison is only allowed with btreePlusIndex.

GsIndexOptions class »>> reducedConflict
Instructs the index to create the internal structures as reduced-conflict,
recommended when indexing on a reduced-conflict collection.

GsIndexOptions class >> optionalPathTerms
Instructs the index to allow objects that do not include an indexed instance
variables to be present in the indexed collection.

These options are described in more detail starting on page 144.

GemTalk Systems 143

Creating Indexes GemStone/S 64 Bit 3.7 Programming Guide

Combining options

GsIndexOptions can be combined using the plus operator and removed using the minus
or not operators, with the caveat that not all options are compatible with each other. For
example:

GsIndexOptions legacyIndex + GsIndexOptions reducedConflict

GsIndexOptions btreePlusIndex + GsIndexOptions
optimizedComparison not

If you combine two options that conflict, the later one has precedence.

Default options

Creating an instance of GsIndexOptions, using class methods such as GsIndexOptions
>> legacyIndex, begins with the default, repository-wide GsIndexOptions.

The specific value requested by the class method (such as 1legacyIndex) overwrites the
default only for that setting and its dependents.

For example, using GsIndexOptions legacyIndex will return a GsIndexOptions
instance with legacyIndexes on and both btreePlusIndex and optimized Comparison
disabled, regardless of the default. However, the default GsIndexOptions setting for other
values, such as reducedConflict, will be retained
The initial default GsIndexOptions is:

GsIndexOptions btreePlusIndex + GsIndexOptions optimizedComparison.

In an upgraded application, the system default is set instead to:
GsIndexOptions legacyIndex

to ensure that the behavior does not change from previous releases.

You can manually set the repository-wide default, as SystemUser, by executing
GsIndexOptions class >> default:. Do this with care, since it may affect all indexes that are
created in the future that do not explicitly set all the GsIndexOptions values.

For example, if you have an upgraded application and want to default to btreePlusIndexes
and optimizedComparison, execute
GsIndexOptions default: (GsIndexOptions legacyIndex +
GsIndexOptions reducedConflict)

You may also set a session-wide default that applies only to your session and only until you
log out, using GsIndexOptions class >> sessionDefault:.

The Options in GsindexOptions

The options btreePlusIndex, optimized Comparison, and legacyIndex are used to specify
the index type.

» GsIndexOptions legacylndex enables the classic legacy btree and disables
btreePlusIndex. legacylndex is not compatible with optimizedComparison.

» GsIndexOptions btreePlusIndex enables the btreePlus structures and disables
legacyIndex. For performance, this is normally used with the optimizedComparison
option. btreePlusIndexes without optimizedComparison are somewhat less
performant than legacy indexes in most cases.

144 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Creating Indexes

The following table describes the three combinations:

GsIndexOptions Provides the best query performance, with some-
btreePlusIndex + what slower update performance. There are
GsIndexOptions restrictions on the contents of indexed instance

optimized comparison | variables; nil is not allowed, they cannot mix
strings and symbols, and cannot mix floats and

NaNs.
GsIndexOptions Provides good performance. Data type restrictions
legacyIndex are less strict.
GsIndexOptions Data type restrictions are less strict, but the perfor-
btreePlusIndex mance is not as good as legacyIndex.

Using optimizedComparison, it is disallowed to use a mix of certain kinds of objects in the
collection. The following rules when using optimized Comparison:

» values must be a kind of the last element class.

» nil is not allowed as a value.

» For Float last element class, NaN floats are not allowed as a value.

» For String last element class, Symbols are not allowed as a value.

» For Symbol last element class, Strings are not allowed as a value.
When using the "Optimized" index specification methods to define an index, it overrides
the settings for these three options in the default or argument GsIndexOptions.

Reduced-Conflict

In a multi-user system, reduced-conflict collection classes may help avoid transaction
conflicts if multiple users simultaneously add or remove objects from the collection; for
more on this problem, see “Classes That Reduce the Chance of Conflict” on page 185. For
example, using an RcldentityBag rather than an IdentityBag allows concurrent updates to
the collection itself.

If there are concurrent updates of the same indexed instance variable for different objects
in the collection (for example, the addresses associated with two different customer objects
are both changed), there is not an application object conflict, since the objects are
independent. However, there may be a transaction conflict due to the indexes, since both
addresses are keys in the same indexing structure.

This doesn’t apply to legacy identity indexes, which are always reduced-conflict.

To avoid transaction conflicts from the indexing internal structures, specify that the
indexes are reducedContflict, using GsIndexOptions reducedConflict.
For example:

GsIndexSpec new
equalityIndex: 'each.address'
options: (GsIndexOptions reducedConflict)

Optional pathTerms

A homogenous collection is one in which each element in the indexed collection defines the
instance variable described by the index, for each pathTerm in the indexed path. By
default, indexes require that the collection be homogeneous. If any element does not have

GemTalk Systems 145

Results of Executing a GsQuery GemStone/S 64 Bit 3.7 Programming Guide

the given instance variable, it will raise an error when the element is added to the
collection.

If you want to create an index on a non-homogenous collection, you can define the indexes
with optional pathTerms. For example:

GsIndexSpec new
equalityIndex: 'each.nickName'
options: (GsIndexOptions optionalPathTerms)

When creating an optional pathTerm index, it is not an error when the objects in the
collection do not implement an instance variable specified by the index. For a multi-
pathTerm index, that includes each pathTerm; objects with missing instance variable
definitions for any of the pathTerms in the indexed path are not considered when creating
query results.

Note that this option bypasses some error detection. If you create an index using an
instance variable that does not exist at all (perhaps due to a typing error), then the index is
created correctly and does not report an error, even if it does not create the index you might
have intended to create.

8.4 Results of Executing a GsQuery

146

Once you have defined your query, created the GsQuery, and bound it to a collection, there
are further options in how to access the results of the query.

To simply get the results, you can send queryResult to the instance of GsQuery.

GsQuery >> queryResult will, like selection block queries, return a new instance of
collection of the same class as the base collection, unless protocol such as asArray are used
to specify the class of the results.

Also similarly to selection block queries, queries on instances of reduced-conflict (Rc)
collections, return the equivalent non-Rc collection.

The collection returned from a query has no index structures. Indexes belong to specific
instances of collections, rather than the classes. If you want to perform indexed selections
on the new collection, you must build the necessary indexes on the new collection.

GsQuery’s Collection protocol

GsQuery accepts other Collection protocol, and, provided the query has bound to a
collection and to query variables, the GsQuery instance responds to as if the GsQuery was
a collection of the results of the query. This means that rather than having to put the results
of a query into a temporary variable for further processing, GsQuery can respond directly
to the kinds of message you are likely to send to the query results.

You can convert the type of collection, for example, using asArray or asIdentityBag:
(GsQuery fromString: 'each.address.state = ''OR'''
on: Employees) asArray
Or fetch a single instance from the results:

(GsQuery fromString: 'each.firstName = ''Sophie'''
on: Employees) any

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Results of Executing a GsQuery

Performing one of the collection operations that are provided for GsQuery simplifies your
code, since you may not have to put results in temporary variables. It may or may not allow
you to avoid creating query result objects.

Enumeration methods also allows you to perform code while the query is executing, rather
than waiting for the results.

Caching Query Results

While GsQuery responds to messages as if it was a collection, the results of a query are not
a static collection. By default, each time you execute any GsQuery collection protocol, the
query is performed again. So, for example, sending i sEmpty to a GsQuery before sending
asArray will execute the underlying query twice.

You can cache the results of your GsQuery using GsQueryOptions cacheQueryResult.
By default, it is false. Using this option allows the resultSet of the GsQuery to be cached.
Note that this cache will not reflect changes in the root collection that occurred after the
query was executed; you are responsible for re-running the query if current results are
required.

To create an instance of GsQueryOptions with cacheQueryResult true, use this expression:
GsQueryOptions cacheQueryResult

And use this instance with GsQuery methods that includes the options: keyword.

For example:
query := (GsQuery fromString: 'each.address.state = ''OR'''
options: (GsQueryOptions cacheQueryResult)
on: Employees).
query isEmpty ifTrue: [~'no results'].
report := self createReportingStructure.
query do: [:ea | report updateDataWith: ea].

GsQuery enumeration methods accepting blocks

Among the collection protocol that GsQuery understands are the methods do:, select:,
reject:,collect:,detect: and detect: ifNone:. These may look similar to
iterative queries on the root collection, but since the actual query is already provided by the
GsQuery, the action is quite different.

With GsQuery, these will operate on the result set of the initial query. In essence, you are
adding an additional, non-indexed search criteria to the indexed query. This additional
code will be executed for each element in the collection for which the indexed query
matches, at the time that the index query is examining that result element.
For example, if you have an index on Employee age, and a query such as:

(GsQuery fromString: 'each.age <= 18' on: Employees)
Using this query, you can add an additional search criteria using select :, so that only
Employees who live in Oregon are returned.

(GsQuery fromString: 'each.age <= 18' on: Employees) select:

[:each | each address state = 'OR']

This will return a result set that includes Employees under 18 who live in Oregon.

GemTalk Systems 147

Results of Executing a GsQuery GemStone/S 64 Bit 3.7 Programming Guide

The address message is only sent to the elements (Employees) who are under 18, it is not
executed for every element in the collection. Also note that the state comparison does not
use an index; these are message sends.

Order of results

Provided there is an index on the query path, the enumeration block operates on each

object in the result set in the order specified by the index. However, if you wish to use the
result of the select : or other enumeration method, the result will necessarily be a kind
of UnorderedCollection, and the objects in the returned collection will be not be ordered.

You can still use the enumeration protocol to produce results that are ordered according to
the index, by adding each element to a temporary Array. However, for ordered results, you
may want to stream over the results instead.

Efficiency of query vs. enumeration

It is more efficient to perform an indexed query with multiple predicates using GsQuery,
than to add additional criteria using enumeration methods.

For example, the following code returns a collection of all employees who are 26 or
younger, and who respond false to hasOtherHealthInsurance.
GsQuery fromString: 'each.age <= 26' on: myEmployees)
reject: [:each | each hasOtherHealthInsurance]

This may be useful if you have predicates that require message sends. However, if you can
formulate the second statement as an indexable predicate, it would be more efficient as a
query. If hasOtherHealthInsurance was actually an instance variable, you could write
this as:
(GsQuery fromString: '(each.age <= 26) &
(each.hasOtherHealthInsurance) not' on: myEmployees)
queryResults

Early exit from execution

Since the code in the block provided to select: (and similar methods) is executed for
each element that the indexed query itself would return, this provides a way to exit the
indexed query early. In this block, you can execute any code (as long as it does not modify
the collection or the objects in the collection, in ways that would change the result set). If
it’s no longer useful to continue the search, you can exit the block and potentially save a lot
of time.

For example, say you have a collection of purchase orders, and you are generating a report
of all open purchase orders. If a new order arrives during the period you are executing this
operation, you might want not want to bother producing the already-obsolete report.
(GsQuery fromString: 'each.isOpen' on: MyOrders) do:
[:anOrder |
report add: anOrder description.
self checkForNewOrders ifTrue: [~'report canceled']

]

148 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Results of Executing a GsQuery

Query results as Streams

It may be more useful to return the result of an equality query as a stream, instead of a
collection, especially if the result set is large. Returning the result as a stream not only is
faster, is also avoids the need to have all the result objects in memory simultaneously.

You can stream on an identity query only when using a btreePlusIndex. You cannot stream
on the results of an identity legacylndex.

Streaming on index results return the results in order that is defined by the index, so you
can iterate over the elements that are returned in the order defined by the index, with no
extra effort.

To get the results as a stream, use the message GsQuery >> readStream or
GsQuery »>> reversedReadStream.

These methods return an instance of a specialized subclass of Stream that understand a
limited number of ReadStream protocol. Legal messages to an index stream are:

atEnd

do:

next

reversed

size

skip:
Streams do not automatically save the resulting objects. If you do not save them as you read
them, the results of the query are lost. You should not modify the objects in the base
collection while streaming, nor add or remove objects; doing so can cause an error or
corrupt the stream.

For example, suppose your company wishes to send a congratulatory letter to anyone who
has worked there for thirty years or more. Once you have sent the letter, you have no
further use for the data. Assuming that each employee has an instance variable called
lengthOfService, and there is an index on this, you can use a stream to formulate the query
as follows:
oldTimers := (GsQuery fromString: 'each.lengthOfService >= 30'
on: myEmployees) readStream.
[oldTimers atEnd] whileFalse: [
| anEmployee |
anEmployee := oldTimers next.
anEmployee sendCongratuations.].

Limitations on streamable queries

Streams on query results have certain limitations; for example, the predicate in the query
must be logically streamable. The following restrictions apply:

» It takes a single predicate only; no conjunction of predicate terms is allowed. The
exception is range predicates, which can be combined into a single predicate. For

GemTalk Systems 149

Results of Executing a GsQuery GemStone/S 64 Bit 3.7 Programming Guide

example (each.age > 18) & (each.age <= 65) islegal, since it can be
reformulated as a single range predicate, (18 < each.age <= 65).

» The predicate can contain only one path.

» The collection you are streaming over must have an equality index on the path
specified in an equality predicate; or have an identity btreePlusIndex on the path
specified by an identity predicate.

150 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Enumerated and Set-valued Indexes

8.5 Enumerated and Set-valued Indexes

Enumerated path terms in indexes and queries

Enumerated path terms allow you query over more than one instance variable value in a
single query. This is specified using the vertical bar | in the path term, between the instance
variable names.

The instance variables are treated as alternate choices; if any one of the specified instance
variables matches the search criteria, the predicate evaluates to true.

For example, you might want to search on both first name and nickname in a single
operation. The query might look like this:
(GsQuery fromString: 'each.firstName|nickName = ''Freddie'''
on: MyEmployees) queryResult

When this is executed, the results will include all instances that have either the firstName
equal to ‘Freddie’, or the nickName ‘Freddie’, or both.

In order to optimize this query with an index, you need to create an index on the specific
enumeration, e.g. 'each. firstName |nickName'. An enumerated path term query will
not use an index on the individual instance variables that are enumerated.

Restrictions on predicates with enumerated pathTerms

The semantics of enumerated pathTerms do not allow multiple conjoined predicates using
the same enumerated pathTerm, since each predicate is evaluated separately. (conjoined
predicates are those connected using &).

Indexes and Queries with collections on the path

Your business objects may themselves contain collections; for example, an employee may
contain a collection of children; and you may want to search based on some criteria of the
objects in that collection. As long as this collection is itself indexable, indexes and queries
can include all elements within these contained collections.

Index paths that include collections, and the queries that use these indexes, are generally
referred to as Set-valued indexes and queries for historical reasons, although any kind of
indexable collection, not just Sets, may be used.

When you wish to specify a path containing an instance of a subclass of
UnorderedCollection, the collection is represented by an asterisk *. This syntax may be
used to create indexes and perform queries. Only GsQuery may be used to perform set-
valued queries.

For example, suppose you want to know which of your employees has children of age 18
or younger. To facilitate such queries, each of your employees has an instance variable
named children, which is implemented as a set. This set contains instances of a class that has
an instance variable named age.

To create the index:

GsIndexSpec new
equalityIndex: 'each.children.*.age'
lastElementClass: SmallInteger;
createIndexesOn: myEmployees.

GemTalk Systems 151

Managing Indexes GemStone/S 64 Bit 3.7 Programming Guide

Set-valued query results

When you execute a set-valued query, the results you get will follow the particular
semantics of Set-valued queries. Since there are potentially multiple “true” query results for a
given element in the base collection, the result of a set-valued query such as this can be larger than
the original collection.

For example, consider the following query, using the index created above:

(GsQuery fromString: 'each.children.*.age <= 18'
on: myEmployees) queryResult

In this example, if the root collection myEmployees is a Bag or IdentityBag (rather than a
Set or IdentitySet), and an employee has two children that are under 18, then that employee
will appear in the results (a Bag or IdentityBag) twice. Employees with three minor
children appear in the results three times, and so on. The resulting collection may be
several times as large as the original collection, depending on the details of the query and
data.

If the root collection myEmployees is a Set, which does not allow multiple instances of the
same object, this potential source of confusion does not occur.

Restrictions on predicates in set-valued queries

The semantics of set-valued indexes do not allow multiple conjoined predicates that use
the same set-valued pathTerm, since each predicate is evaluated separately. (conjoined
predicates are those connected using &).

In general, it is recommended to avoid using multiple- set-valued predicate queries,
although some multiple-predicate set-valued queries can be optimized, or avoid the
problem cases, and are safe and therefor allowed.

8.6 Managing Indexes

You may need to find out about all the indexes in your system, and to remove selected
indexes or clean up indexes that were not successfully created. This functionality is
provided by the class IndexManager.

IndexManager has a single instance which provides much of the functionality, accessible
via IndexManager current.

This instance is lazy initialized, and stored in the IndexManager class instance variable
after it is created. Any configuration you do on IndexManager current, therefore, will be
used by all affected operations, if you commit after making the change.

While Indexes are Being Created

152

Indexing a large collection will take some amount of time to create the infrastructure and
tracking for each indexed object.

The message progressOfIndexCreation returns a description of the current status for
an index as it is created.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Managing Indexes

Queries during index creation

While the index is being created, the index is write-locked. Any query that would normally
use the index is performed directly on the collection, by brute force. If a concurrent user
modifies an object that is actively participating in the index at the same time, index creation
is terminated with an error.

Auto-commit

Creating or removing an index creates and / or modifies many objects related to the internal
structures that support indexes. These modifications are uncommitted changes that must
be kept in the session’s memory until these changes are committed. Many uncommitted
changes place a large demand on memory and creates a risk of out of memory conditions.
Chapter 9, “Transactions and Concurrency Control”, explains uncommitted objects and
transactions in more detail, while Chapter 16, “Performance and Optimization” includes
information on object memory use.

To avoid problems during index creation, it is often necessary to set the IndexManager to
autoCommit. When IndexManager is set to autoCommit, it will commit the partially
created index, rather than risk running out of resources and failing the index operation.
By default, autoCommit is false. When you send the following message:

IndexManager autoCommit: true

it configures your IndexManager such that the current transaction is committed during an
indexing operation, whenever any of the following occur:

» The current session receives a signal indicating temporary object memory is almost
full.

» The percentage of temporary object memory in use reaches the IndexManager’s
setting for percentTempObjSpaceCommitThreshold.

The default is 60. This threshold can be changed using IndexManager »>>
percentTempOb jSpaceCommitThreshold: anlnt

» The current session receives a signal to FinishTransaction. This occurs when the
commit record backlog is larger than STN_SIGNAL_ABORT_CR_BACKLOG, and
this session is holding the commit record.

» The number of modified objects in the current transaction reaches the
IndexManager’s setting for dirtyObjectCommitThreshold.

The default is Smalllnteger maximum value, which means this limit is effectively
disabled.This limit can be changed using IndexManager >>
dirtyObjectCommitThreshold: anlnt

When autoCommit is true, a transaction will be started (if necessary) before the indexing
operation begins, and the IndexManager will commit at the completion of the indexing
operation. Note that this means that, even if you are in manual transaction mode and not
in a transaction, index operations will cause changes to be committed to the repository
without you explicitly beginning a transaction.

If you want to enable autoCommit only for the current session, not for all index creation,
you can use

IndexManager sessionAutoCommit: true

GemTalk Systems 153

Managing Indexes GemStone/S 64 Bit 3.7 Programming Guide

Indexes on temporary collections

You may create indexes on temporary collections containing temporary and persistent
objects. However, on abort, any indexes on temporary collections are removed.

Inquiring About Indexes

For a full description of the indexes on a particular collection, send indexSpec to the
collection. This produces a string containing the GsIndexSpec code that would recreate the
same indexes, and provides useful documentation on those indexes.

For example,
myEmployees indexSpec printString
%
GsIndexSpec new
equalityIndex: 'each.age'
lastElementClass: SmallInteger;
equalityIndex: 'each.address.state'
lastElementClass: String;
options: GsIndexOptions reducedConflict;
identityIndex: 'each.userId';
yourself.

The following IndexManager messages allow you to inquire about all indexes in the
repository.

» getA11NSCRoots
Returns a collection of all UnorderedCollections in the repository that have indexes.
» usageReport

Returns a report on all indexes on all UnorderedCollections in the repository.

Removing Indexes

There are a number of ways to remove indexes.

Since indexing internal structures create references to the indexed collection and to objects
in the collection, before dereferencing a collection, you should be sure to remove all
indexes on the collection. This allows the collection to be garbage collected.

To remove indexes based on a GsindexSpec

As you can create indexes based on an instance of GsIndexSpec, you can also use that
specification to remove these indexes.

GsIndexSpec >> removelIndexesFrom: aCollection

This method removes the indexes described by the GsIndexSpec from the collection
aCollection. If any of the indexes do not exist, they are not removed and no error is returned.

This is most useful in combination with the method that creates the spec from the existing
collection. For example:
(MyEmployees indexSpec)
removeIndexesFrom: MyEmployees.

154 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Managing Indexes

To remove a single index, you may edit the specification code printed by indexSpec, or
create a simple GsIndexSpec with information to remove a single index:

(GsIndexSpec new
equalityIndex: 'each.age' lastElementClass: Object)
removeIndexesFrom: MyEmployees.

To remove indexes using IndexManager

IndexManager, which provides a system-wide view of all the indexes in the repository,
provides a number of methods to remove indexes both individually, by collection, and
globally.

IndexManager >> removeEqualityIndexFor: aCollection on: aPathString

Removes an equality index from the collection aCollection with the indexed path
described by aPathString. If the path specified does not exist, this method returns an
error. Implicit indexes are not removed.

IndexManager »>> removeldentityIndexFor: aCollection on: aPathString

Removes the identity index from the collection aCollection with the indexed path
described by aPathString. If the path specified does not exist, this method returns an
error. Implicit indexes are not removed.

IndexManager >> removeAllIndexesOn: aCollection

Removes all explicitly created indexes from the collection aCollection. Implicit indexes
that were created by these elements participating in other indexed collections are not
removed.

IndexManager »>> removeAllIndexes

Removes all indexes on all UnorderedCollections, including all implicit and partial
indexes.

IndexManager »>> removeAllTracking

Removes all indexes on all UnorderedCollections, and all object tracking. While this is
the fastest way and most complete way to remove indexing infrastructure, if you are
using modification tracking for any other purpose, that tracking will be removed as
well.

Rebuilding Indexes

When objects that participate in an index are modified, the related indexing infrastructure
must be updated. This causes some overhead. If you are performing an operation that will
modify a large number of objects that participate in multiple indexes, such as a large
migration, it may be more efficient to remove some or all of the indexes on the collection
before performing the migrate, and rebuild those indexes after the migration is complete.

It is also sometimes required to remove and rebuild indexes as part of a GemStone
upgrade; certain changes in GemStone kernel classes require you to either rebuild specific
kinds of, or all, indexes. Any requirement to do this will be included in upgrade
instructions in the Installation Guide for the version of GemStone to which you are
upgrading.

To remove and rebuild indexes, you can extract and save the GsIndexSpec, and reuse that
after the operation is complete.

GemTalk Systems 155

Managing Indexes GemStone/S 64 Bit 3.7 Programming Guide

For example:
| mySpec |
mySpec := myCollection indexSpec.
mySpec removeAllIndexesFrom: myCollection.
<perform migration or other operation>
mySpec createIndexesOn:myCollection

Using IndexManager >> getAlINSCRoots, you may extend this example to retrieve
the GsIndexSpec for each collection in the repository, which will allow you to remove and
rebuild the indexes.

Indexing Errors

To ensure that indexing structures are consistent, some kinds of errors that may occur
during index creation will disable commits. Before creating an index, it is advisable to
commit any work in progress, to avoid losing any work if an indexing error does occur.

For example, if you create an index on a collection and one or more of the objects that
participate in the index do not implement the instance variable on the path, it will raise an
error (unless using optionalPathTerms, as described on page 145).

If an error occurs partly through index creation, and the autoCommit status (see “Auto-
commit” on page 153) means that some portion of the index creation was committed, a
collection may have unusable partial indexes. These indexes must be manually removed.

The following IndexManager instance methods allow you to remove incomplete indexes,
while not affecting any complete, usable indexes:

IndexManager current removeAllIncompleteIndexes

Removes all incomplete indexes on all UnorderedCollections.
IndexManager current removeAllIncompleteIndexesOn: anNSC
Removes all incomplete indexes on the specified UnorderedCollection.

If you modify objects that participate in an index, try to commit your transaction, and your
commit operation fails, query results can become inconsistent. If this occurs, abort the
transaction and try again.

Auditing Indexes

156

Indexes should be audited regularly, as part of your regular application maintenance, to
ensure there are no problems.

You can audit the internal indexing structures for a particular collection by executing:
aCollection auditIndexes

This audits all the indexes, explicit and implicit, on the given collection. If indexes are
correct, this method returns 'Indexes are OK' or 'Indexes are OK and the receiver
participates in one or more indexes.". If there are no indexes on the collection, a message
such as 'No indexes are present.' is returned.

In the case of failure, a list of specific problems is returned.

You can audit all indexes in the entire repository at once using;:

IndexManager current nscsWithBadIndexes

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Indexing and Performance

which will return an IdentitySet containing all collections that fail auditIndexes.
Depending on the number of indexed collections in your system, this may take a
considerable time to run.

In the rare case of a problem reported, the usual way to resolve the problem is to remove
and rebuild the affected indexes. In some cases, removing all indexes on the collection may
succeed even if the internal problems prevent a single index being removed.

8.7 Indexing and Performance

The value of Indexes is to improve performance, of course. It is always recommended to
perform tests to verify performance improvements.

Indexing improves query performance dramatically (in most cases), but does have a
negative impact on updating the indexed data, since the indexes must be kept up to date.

Type of index

The performance characteristics of btreePlus and legacy indexes are quite different.

btreePlus indexes without optimized comparison are usually slower than other kinds of
indexes. If your desired index cannot support optimizedComparison, you should use a
legacyIndex.

btreePlus optimizedComparison indexes are usually considerably faster than a legacy
index, but they create a somewhat larger negative impact on data updates.

Data updates

Asyour application is in use and the data in the indexed collection changes, the index must
be updated. While normally indexing a large collection speeds up queries performed on
that collection and has little effect on other operations, there are cases in which maintaining
the index can cause a performance bottleneck.

For example, you may notice slower than acceptable performance if you are making a great
many modifications to the instance variables of objects that participate in an index, and
more than one of the following is true:

» the path of the index is long;
» the object occurs many times within the indexed IdentityBag or Bag
» the object participates in many indexes

Even so, indexing a large collection is still likely to improve performance unless more than
one of these circumstances holds true. If you do experience a performance problem, you
can work around it in one of two ways:

If you have created relatively few indexes but are modifying many indexed objects, it may
be worthwhile to remove the indexes, modify the objects, and then re-create the indexes.

If you are making many modifications to only a few objects, or if you have created a great
many indexes, it is more efficient to commit frequently during the course of your work.
That is, modify a few objects, commit the transaction, modify a few more objects, and
commit again.

GemTalk Systems 157

Historic Indexing API differences GemStone/S 64 Bit 3.7 Programming Guide

Formulating queries and performance

The most efficient queries are the ones in which the first predicate will return the smallest
result set. This is sometimes easy for a human to determine, but the query cannot predict
this without actually running the query. Queries should be manually reviewed for these
kinds of domain-specific optimizations.

For example, you might want to query for current orders for a particular customer.
(each.status = #current) & (each.customer.name = 'Smith')

If your application is likely to have only a few current orders, then this is more efficient.
However, if you are likely to have many current orders, but only a few customers named
Smith, it would be more efficient for you to write the formula in reverse order.

Auto-optimize

Queries, by default, are optimized before execution; for example, the not operator is
transformed into the logical equivalent by changing the comparison operator.

In addition, the predicates are reordered as follows, from left to right:

1. predicates involving indexed paths.

2. predicates with identity comparisons on paths without indexes.

3. predicates with equality comparisons on paths without indexes.

Auto-optimize can be disable using the instance of GsQueryOptions that is associated with
each query. The GsQueryOptions instance controls optimization and other query features.
In addition to the various specific optimizations performed, GsQueryOptions controls if
automatic query optimization is done; the default is to do auto-optimization.

8.8 Historic Indexing API differences

In older versions of GemStone/S and GemStone/S 64 Bit, indexes and queries used a more
limited API based on UnorderedCollection methods and a block-like query syntax. This
API remains fully supported and interoperates with the GsIndexSpec/GsQuery API, with
some limitations. A number of features are not supported by the older API.

Index creation using UnorderedCollection protocol

158

UnorderedCollection provides protocol to create indexes. This creates the same index
structures as GsIndexSpec, but does not provide access to some index features.

The following index creation methods are defined on UnorderedCollection:

createIdentityIndexOn:
createEqualityIndexOn:withLastElementClass:

The path argument is the same as the path used to create a GsIndexSpec index, however
you may not include the initial "each".

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Historic Indexing API differences

For example, the following three statements create the same indexes that were created on
page 141.

myEmployees createIdentityIndexOn: 'userId'.
myEmployees
createEqualityIndexOn: 'age'
withLastElementClass: SmallInteger.
myEmployees
createEqualityIndexOn: 'address.state'
withLastElementClass: String.

Enumerated and set-value indexes and queries are not supported using historic API.

Internal legacy vs. btreePlus indexing structures

The used of legacyIndex or btreePlusIndex/optimizedComparison is based on the default
GsIndexOptions. Whatever the session or system default is will determine the type of
index being created

String and Unicode Equality Indexes
Indexes on various kinds of strings follow the same rules as GsIndexSpec string indexes,
with the exception that the optimized indexes cannot be created this way.

To create unicode indexes, specify a lastElementClass of any Unicode string class
(Unicode?, Unicode 16, or Unicode32). Since no collator can be specified, the index will be
created using the current default IcuCollator.

Reduced-conflict Equality Indexes

An Rc Equality Index is a type of Equality Index in which internal indexing structures are
reduced-conflict. This avoids some transaction conflicts when creating an index on a
reduced-conflict (RC) collection, such as RecldentityBag. Reduced-conflict classes are
described in “Indexes and Concurrency Control” on page 172. Rc Equality indexes are
described under “Reduced-Conflict” on page 145.

Using UnorderedCollection index creation protocol to create an index, the message is:
createRcEqualityIndexOn:withLastElementClass:

Queries using Selection Blocks

Selection blocks are a kind of block specialized for queries, using curly braces instead of
brackets. The compiler understands this syntax and creates the selection block instance
when the code or method is compiled.

A selection block query might be written like this:
{:each | each.address.state = 'OR'}

Selection blocks are quite restrictive:
» A selection block has exactly one argument

» Message sends are not allowed in a selection block; you can only use the dot syntax to
specify instance variables of the argument.

» The code inside the block is limited to predicates as described under “Query
Predicate Syntax” on page 137, with additional limitations below.

GemTalk Systems 159

Historic Indexing API differences GemStone/S 64 Bit 3.7 Programming Guide

160

» Set valued and enumerated syntax are not allowed in a selection bock

» Range predicate syntax are not allowed in a selection block, although you may
specify the same operation by conjoining two separate predicates.

» Selection block queries do not allow the | (disjunction operator), nor the not
operator.

» Selection block can only be used as arguments to the methods select:, reject:,
detect:,detect:ifNone:, or selectAsStream:.

» Selection block queries are not optimized.

In selection block queries, you can reference temporary, instance or other variables within
the block, and these are resolved at runtime as in ordinary blocks.

Executing Selection Block Queries

A selection block is used with select:, reject:, detect:, detect:ifNone:, or
selectAsStream: to perform the query over a collection.
For example:

Employees select: {:each | each.address.state = 'OR'}
These have the same semantics as with standard blocks executed on a collection. For
example, reject: will return a result set that includes all elements for which the block
evaluation would return false. The results are in a collection the same class as the base
collection (unless species or speciesForSelect specifies a different class, as with the
RC classes).

The collection returned from a query has no index structures. If you want to perform
indexed selections on the new collection, you must build the necessary indexes on the new
collection.

Results as a stream

To get the results as a stream, use UnorderedCollection >> selectAsStream:.This
returns an instance of RangeIndexReadStream, which understands the following
messages:

next
Returns the next value on a stream of range index values.

atEnd
Returns true if there are no more elements to return through the logical iteration of
the stream.

reversed
Create a ReversedRangelndexReadStream based on the receiver, allowing you to
stream over the results from last to first.
Creating a GsQuery from a selection block

If you have existing code that includes selection block queries, you can use those selection
blocks to create the instances of GsQuery.

For example,
GsQuery fromSelectBlock: {:each | each.address.state = 'OR'}

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Historic Indexing API differences

This can be bound using on:, or created using fromSelectBlock:on:, similar to how
you create and bind a GsQuery from a string.

Managing indexes

Information about indexes

Sending indexSpec to the collection provides a complete description of the indexes on a
collection, and can be used for information without using the GsIndexSpec API; the extra
details provided by indexSpec can be ignored.

You can also send messages to the collection that will return quick information on indexed
paths.

equalityIndexedPaths and identityIndexedPaths
Returns, respectively, the equality indexes and the identity indexes on the
receiver’s contents. Each message returns an array of strings representing the
paths in question.

For example, the following expression returns the paths into myEmployees that
bear equality indexes:

myEmployees equalityIndexedPaths
%
anArray('age', 'address.state')

kindsOfIndexOn: aPathNameString
Returns information about the kind of index present on an instance variable within
the elements of the receiver. The information is returned as one of these symbols:
#none, #identity, #equality, #identity AndEquality.

equalityIndexedPathsAndConstraints
Returns an array in which the odd-numbered elements are the elements of the
path, and the even-numbered elements are the constraints specified when creating
an index using the keyword withLastElementClass:.

Removing Indexes

Removing indexes can be done using the GsIndexSpec

You may send methods to the indexed collection directly to remove one or all indexes.

UnorderedCollection >> removeEqualityIndexOn: aPathString
Removes an equality index from the path indicated by aPathString. If the path
specified does not exist, this method returns an error. Implicit indexes are not
removed.

UnorderedCollection >> removeIdentityIndexOn: aPathString
Removes the identity index on the specified path. If the path specified does not
exist, this method returns an error. Implicit indexes are not removed.

UnorderedCollection >> removeAllIndexes
Removes all explicitly created indexes from the receiver. Implicit indexes that were
created by these elements participating in other indexed collections are not
removed.

GemTalk Systems 161

Historic Indexing API differences GemStone/S 64 Bit 3.7 Programming Guide

162 GemTalk Systems

Chapter

9 Transactions and
Concurrency Control

GemStone users can share code and data objects by maintaining common dictionaries that
refer to those objects. However, if operations that modify shared objects are interleaved in
any arbitrary order, inconsistencies can result.

This chapter describes how GemStone manages concurrent sessions to prevent
inconsistencies resulting from multiple concurrent updates.

GemStone’s Conflict Management (page 163)
introduces the concept of a transaction and describes how it interacts with each user’s
view of the repository.

How GemStone Detects and Manages Conflict (page 169)
describes how commit conflicts are detected and reported and how to handle and
avoid conflicts.

Controlling Concurrent Access with Locks (page 175)
discusses the kinds of lock you can use to prevent conflict.

Classes That Reduce the Chance of Conflict (page 185)
describes the classes that help reduce the likelihood of a conflict.

9.1 GemStone’s Conflict Management

GembStone prevents conflict between users by encapsulating each session’s operations
(computations, stores, and fetches) in units called transactions. The operations that make up
a transaction act on what appears to you to be a private view of GemStone objects. When
you tell GemStone to commit the current transaction, GemStone tries to merge the modified
objects in your view with the shared object store.

Note on Terminology

GemStone’s terminlogy differs from commonly used DBMS terminlogy. A GemStone
"view" is a consistent representation of all objects in the repository at a given point in time;
essentially a snapshot. This document uses the term "snapshot view" for clarity.

GemTalk Systems 163

GemStone’s Conflict Management GemStone/S 64 Bit 3.7 Programming Guide

GemStone uses the term "commit record" for the internal structure that tracks what
composes a view or snapshot. This term may be used equivalently to view; for example,
the oldest commit record is the oldest snapshot view of the repository.

Snapshot Views and Transactions

164

As shown in Figure 9.1, every user session maintains its own consistent snapshot view of
the repository state. Objects that the repository contained at the beginning of your session
are preserved in your snapshot view, even if you are not using them —and even if other
users’ actions have rendered them obsolete. The storage that those objects are using cannot
be reclaimed until you commit or abort your transaction. Depending upon the
characteristics of your particular installation (such as the number of users and the commit
frequency), this burden can be trivial or significant.

When you log in to GemStone, you get a snapshot view of the latest repository state. After
login, you may start a transaction automatically or manually, or remain outside of
transaction. The repository snapshot view you get on login is updated when you begin a
transaction or abort. When you commit a transaction, your changes are merged with other
changes to the shared data in the repository, and your snapshot view is updated. When
you obtain a new snapshot view of the repository, by commit, abort, or continuing, any
new or modified objects that have been committed by other users become visible to you.

The transaction mode controls if a transaction is automatically started, or if you must
manually begin a transaction. For details, see “Committing Transactions” on page 170.)

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

GemStone’s Conflict Management

Figure 9.1 View States

modify an
objec

modifications and
updated objects
modified by others

Start
ﬁ
———>| View does not exist
ﬁ
llog in
log out View of current :
committed repository -
commit
modify an transaction
abort object
transaction
commit
log out View of your transaction
modifications
modify an@ continue Y
object transaction Does commit Yes
succeed?
Y No
log out View of your <

abort transction

(A

Q continue
transaction

GemTalk Systems

165

GemStone’s Conflict Management GemStone/S 64 Bit 3.7 Programming Guide

Transaction State and Transaction Modes

166

A GembStone session is always either in a transaction or not in a transaction. When in
transaction, changes can be committed to the repository. When not in transaction, you can
make changes to objects in the repository, but these changes cannot be committed.

A session that is in transaction may be in one of a number of transaction levels, depending
on if nested transactions are involved.

When not in transaction, the session may merely be not in transaction, or it may be in the
specialized transactionless mode. In transactionless mode, the session is not in transaction,
but its snapshot view may be updated automatically at any time. Transactionless mode is
primarily for idle sessions that do not need consistent repository data, since objects may
change at any time; the topics that this chapter discusses, for the most part, do not apply to
transactionless mode sessions.

The transaction modes provide different behavior with respect to starting new
transactions. When in automatic transaction mode, the session is always in transaction.
When in manual transaction mode, you may be in transaction or not in transaction,
depending on specific messages your session sends.

The following are the GemStone transaction modes:

Automatic transaction mode

In this mode, GemStone begins a transaction when you log in, and starts a new one after
each commit or abort message. In this default mode, you are in a transaction the entire time
you are logged into a GemStone session. Use caution with this mode in busy production
systems, since your session will not receive the signals that your snapshot view is causing
a strain on system resources.

This is the default transaction mode on login.
To change to automatic transaction mode, send the message:
System transactionMode: #autoBegin

This aborts the current transaction and starts a new transaction.

Manual transaction mode

In this mode, you can be logged in and be outside of a transaction. You explicitly control
whether your session starts a transaction, makes changes, and commits. Although a
transaction is started for you when you log in, you can set the transaction mode to manual,
which aborts the current transaction and leaves you outside a transaction. You can
subsequently start a transaction when you are ready to start making changes that you wan
to commit. Manual transaction mode provides a method of minimizing the transactions,
while still managing the repository for concurrent access.

In manual transaction mode, you can browse classes, data, and other objects in the
repository, and make computations based upon object values. You cannot, however, make
your changes permanent, nor can you add any new objects you may have created while
outside a transaction. You can start a transaction at any time during a session; you can carry
temporary results that you may have computed while outside a transaction into your new
transaction, where they can be committed, subject to the usual constraints of conflict-
checking.

To change to manual transaction mode, send the message:
System transactionMode: #manualBegin

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide GemStone’s Conflict Management

This aborts the current transaction and leaves the session not in transaction.

To begin a transaction, execute

System beginTransaction
This message gives you a fresh snapshot view of the most recent state of the repository and
starts a transaction. When you commit or abort this new transaction, you will again be

outside of a transaction until you either explicitly begin a new one or change transaction
modes.

Transactionless mode

In transactionless mode, you remain outside a transaction. This mode is intended primarily
for idle sessions. If all you need to do is browse objects in the repository, transactionless
mode can be a more efficient use of system resources. However, you are at risk of obtaining
inconsistent repository data.
To change to transactionless transaction mode, send the message:

System transactionMode: #transactionless

This aborts the current transaction and leaves the session out of transaction.

Determining transaction mode and transaction state

To determine the transaction mode you are in, send the message:
System transactionMode
To determine the transaction level you are at, send the message:
System transactionLevel
A transaction level of 1 or more means your session is in transaction, with values greater
than 1 indicating the number of levels of transaction. A transaction level of 0 is not in
transaction, while -1 indicates transactionless.
You can determine whether you are currently in a transaction by sending the message:
System inTransaction

This message returns true if you are in a transaction and false if you are not.

Reading and Writing in Transactions

GemStone considers the operations that take place in a transaction (or outside of a
transaction) as reading or writing objects. Any operation that sends a message to an object,
or accesses any instance variable of an object, is said to read that object. An operation that
stores something in one of an object’s instance variables is said to write the object. While
you can read without writing, writing an object always implies reading it. GemStone must
read the internal state of an object in order to store a new value in the object.

Operations that fetch information about an object also read the object. In particular,
fetching an object’s size, class, or security policy reads the object. An object also gets read
in the process of being stored into another object.

The following expression sends a message to obtain the name of an employee and so reads
the object:

theName := anEmployee name. "reads anEmployee"

The following example reads aName in the same operation that anEmployee is written:
anEmployee name: aName. "writes anEmployee, reads aName"

GemTalk Systems 167

GemStone’s Conflict Management GemStone/S 64 Bit 3.7 Programming Guide

Some less common operations cause objects to be read or written. For example, assigning
an object to a new object security policy, using the message
assignToObjectSecurityPolicy:, writes the object and reads both the old and the
new GsObjectSecurityPolicy. Modifying an object that participates in an index may write
support objects built and maintained as part of the indexing mechanism.

For the purposes of detecting conflict among concurrent users, GemStone keeps separate
sets of the objects you have written during a transaction and the objects you have only read.
These sets are called the write set and the read set; the read set is always a superset of the
write set.

Reading and Writing Outside of Transactions

Outside of a transaction, reading an object is accomplished precisely the same way. You
can write objects in the same way as well, but you cannot commit these changes to make
them a permanent part of the repository.

When Should You Commit a Transaction?

Most applications create or modify objects in logically separate steps, combining trivial
operations in sequences that ultimately do significant things. To protect other users from
reading or using intermediate results, you want to commit after your program has
produced some stable and usable results. Changes become visible to other users only after
you’'ve committed.

Your chance of being in conflict with other users increases with the time between commits.

Nested In-memory Transactions

168

Within a transaction, GemStone allows you to group units of work into logical transactions,
which can be committed or aborted within the given session. These logical transactions can
be nested with up to 16 levels of nesting (including the outer level actual transaction).
When the full set of changes are ready to be committed, committing the outer transaction
will make the changes persistent and detect any conflicts.

While the same protocol is used to commit the actual (outer) transaction and the nested
transactions, the semantics are different. A commit of a nested transaction does not detect
conflicts with changes by other users, does not update current session state, and does not
make the changes persistent if the session exits unexpectedly or recoverable on system
shutdown. Abort of a nested transaction returns the session to the state it was in at the
beginning of the nested transaction, without updating the session’s snapshot view with
any changes by other users.

When transactions are discussed, unless specified otherwise, it only refers to an outer level
actual transaction, not to a nested transaction.

To begin a nested transaction, use
System beginNestedTransaction

You should be already in transaction when executing this method.

Executing commit, commitTransaction, abort, or abortTransaction whenina
nested transaction preserve or discard in-memory changes and return to the parent level
of transaction. The same protocol is used at the outer level, actual transaction to perform
the commit or abort.

continueTransaction cannot be used when in a nested transaction.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide How GemStone Detects and Manages Conflict

You can commit or abort all levels of nested transactions at once, including performing the
outer level actual commit or abort, using the messages:

System commitAll
System abortAll

9.2 How GemStone Detects and Manages Conflict

GembStone detects conflict by comparing your write set with those of all other transactions
that committed since your transaction began. The following conditions signal a possible
concurrency conflict:

» An object in your write set is also in the write set of another transaction —a write-write
conflict. Write-write conflicts can involve only a single object.

» An object in your write set is also in another session’s dependency list—a write-
dependency conflict. An object belongs to a session’s dependency list if the session has
added, removed, or changed a dependency (index) for that object. For details about
how GemStone creates and manages indexes on collections, see Chapter 8, “Indexes
and Querying”.

If a write-write or write-dependency conflict is detected, then your transaction cannot
commit; you must abort, and try again. The following section describes some approaches
to handling this kind of situation.

Concurrency Management
As the application designer, you determine your approach to concurrency control.

» Using the optimistic approach to concurrency control, you simply read and write
objects as if you were the only user. The object server detects conflicts with other
sessions only at the time you try to commit your transaction. Your chance of being in
conflict with other users increases with the time between commits and the size of your
write set.

Although easy to implement in an application, this approach entails the risk that you
might lose the work you’ve done if conflicts are detected and you are unable to
commit.

» Using the pessimistic approach to concurrency control, you detect and prevent
conflicts by explicitly requesting locks that signal your intentions to read or write
objects. By locking an object, other users are unable to use the object in a way that
conflicts with your purposes. If you are unable to acquire a lock, then someone else
has already locked the object and you cannot use the object. You can then abort the
transaction immediately instead of doing work that can’t be committed.

» Using reduced-conflict (RC) classes in places where write-write conflicts are likely. RC
classes use internal structures and additional logic to allow a commit to succeed in
spite of a write-write conflict, when the changes do not actually conflict with each
other.

The GemStone reduced-conflict classes include: RcCounter, RcldentityBag,
RcldentitySet, RcArray, RcPipe, RcQueue, and RcKeyValueDictionary. See “Classes
That Reduce the Chance of Conflict” on page 185.

GemTalk Systems 169

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.7 Programming Guide

Committing Transactions

Committing a transaction has two effects:

» It makes your new and changed objects visible to other users as a permanent part of
the repository.

» It makes visible to you any new or modified objects that have been committed by
other users in an the most recent state of the repository.

When you tell GemStone to commit your transaction, the object server performs these
actions:

1. Checks whether other concurrent sessions have committed transactions that modify an
object that you modified during your transaction.

2. Checks to see whether other concurrent sessions have added, removed, or changed
indexes on an object that you have modified during your transaction.

3. Checks for locks set by other sessions that indicate the intention to modify objects that
you have read.

If none of these conditions is found, GemStone commits the transaction.

The methods System class >> commit or System class »>> commitTransaction
commit the current transaction.

System commitTransaction returns true if GemStone commits your transaction and
false if the commit fails and it cannot commit.

System commit performs the same commit, but returns true if GemStone commits your
transaction and signals an error if it fails to commit.

Handling Commit Failure in a Transaction

If GemStone refuses to commit your transaction, the transaction read or wrote an object
that another user modified and committed to the repository (or involved in indexing
operations) since your transaction began. Because you can’t undo a read or a write
operation, simply repeating the attempt to commit will not succeed.

You must abort the transaction in order to get a new snapshot view of the repository and,
along with it, an empty read set and an empty write set. A subsequent attempt to run your
code and commit can succeed. If the competition for shared data is heavy, subsequent
transactions can also fail to commit. In this situation, locking objects that are frequently
modified by other transactions gives you a better chance of committing.

Transaction Conflicts

170

To find why your transaction failed to commit, you can send the message:
System transactionConflicts

This method returns a symbol dictionary that contains an Association whose key is
#commitResult and whose value is one of the following symbols:

#commitResult value Meaning

#readOnly There were no modified objects to commit, so the
commit did not do writes.
In this case, commitTransaction returns true.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide

How GemStone Detects and Manages Conflict

#success Commit was successful.

#rcFailure The replay of changes to instances of Rc classes
failed.

#dependencyFailure Commit failed, concurrency conflict on
dependencyMap.

#failure Commit failed.

#retryFailure Commit failed, and the previous commit attempt
failed with an rcFailure.

#commitDisallowed Commits were disallowed for other errors.

#retryLimitExceeded Up to 15 retry attempts are allowed.

#symbolFailure Commit failed due to a Symbol creation failure.

#lockFailure Commit failed to do a lock failure.

The remaining Associations in the dictionary, if any, are used to report the conflicts found.
Each Association’s key indicates the kind of conflict detected; its associated value is an
Array of OOPs for the objects that are conflicting.

Table 9.1 lists the possible keys for the conflict.

Table 9.1 Transaction Conflict Keys

Key

Meaning

#'Read-Write'

StrongReadSet and WriteSetUnion conflicts, with
the RcReadSet subtracted.

#'Write-Write'

WriteSet and WriteSetUnion conflicts.

#'WriteWrite_minusRcReadSet'

the same as #'Write-Write', but with the RcReadSet
subtracted.

#'Write-Dependency'

WriteSet and DependencyChangeSetUnion conflicts.

#'Write-WriteLock'

WriteSet and WriteLockSet conflicts.

#'Write-ReadLock'

WriteSet and ReadLockSet conflicts.

#'Rc-Write-Write'

Logical Write-Write conflict on instances of a
reduced conflict class.

#'RcReadSet'

The RcReadSet

#'Synchronized-Commit'

Details of the synchronized commit failure.

If there are no conflicts for the transaction, the returned symbol dictionary has no

additional Associations.

Contflict sets are cleared at the beginning of a commit or abort and thus can be examined
until the next commit, continue, or abort.

NOTE

If you save a reference to the conflict set, be sure to clear this references to avoid
making the conflict set persistent.

To determine whether the current transaction has write-write conflicts, you can send the
following message before attempting to commit the transaction:

System currentTransactionHasWWConflicts

GemTalk Systems

171

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.7 Programming Guide

Similarly, to determine whether the current transaction has write-dependency conflicts,
you can send this message:

System currentTransactionHasWDConflicts

If the above message returns true, you can send the appropriate message to obtain a list of
write-write (or write-dependency) conflicts in the current transaction:

System currentTransactionWWConflicts (write-write)
or:

System currentTransactionWDConflicts (write-dependency)

More details about transaction conflicts

The information provided by transactionConflicts lets you know the objects that
were committed by another session, but does not help in tracking down which session or
user committed the changes that were the cause of the conflict. You can enable tracking in
your session that lets you collect these details, but this must be enabled before your commit
performs a commit that fails. Determining the session whose commit caused the conflict
has performance overhead, so it is not recommended that you run this way by default, but
it can be useful when you have ongoing conflicts that are difficult to track down.

To enable tracking, set the runtime-only configuration parameter
GemCommitConflictDetails to true. For example,

System gemConfigurationAt: #GemCommitConflictDetails put: true

Then, once the commit fails, execute the method System class »>»>
detailedConflictReportString, which returns a string containing information
about the conflicting other commit. For example,
System detailedConflictReportString
%
Commit failed , failure
Attempt to commit at: 2023-05-14 15:39:55.959
1 Write-Write Conflicts
(12200193(a SymbolDictionary))
1 commits by other sessions
session 7 at 2023-05-14 15:39:45.607 userId DataCurator
(12200193(a SymbolDictionary))

Indexes and Concurrency Control

172

It is also possible that you can encounter conflict on the internal indexing structures used
by GemStone. For example, if two transactions modify the salaries of different employees
that participate in the same indexed set, it is possible that both transactions will modify the
same internal indexing structure and therefore conflict, despite the fact that neither
transaction has explicitly accessed an object written by the other transaction. It is true even
if the collection itself is an Rc collection and does not encounter transaction conflicts.

To check this possibility, examine the dictionary returned by evaluating System
transactionConflicts (described on page 171). If that dictionary includes any
Associations whose key is #'Write-Dependency', you have experienced a conflict on some
portion of an indexing structure. In that case, you can abort the transaction and try the
modification again.

If you encounter conflicts in the internal indexing structures, you can create a reduced-
conflict index. See “Reduced-Conflict” on page 145.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide How GemStone Detects and Manages Conflict

Aborting Transactions

If GemStone refuses to commit your modifications, your snapshot view remains intact with
all of the new and modified objects it contains. However, your repository now also
includes other users” modifications to objects that are visible to you, but that you have not
modified.

You must take some action to save the modifications in your session or in a file outside
GemStone.

Then you need to abort the transaction. This discards all of the modifications from the
aborted transaction, and gives you a new snapshot view containing all shared, committed
objects. Depending on the activities of other users, you can repeat your operations using
the new values and commit the new transaction without encountering conflicts.

The messages abort or abortTransaction discard the modified objects in your
snapshot view. If you are in automatic transaction mode, these messages also begin a new
transaction.

Aborting a transaction discards any changes you have made to shared objects during the
transaction. However, work you have done within your own object space is not affected by
an abortTransaction. GemStone gives you a new snapshot view of the repository that
does not include any changes you made to permanent objects during the aborted
transaction —because the transaction was aborted, your changes did not affect objects in
the repository. The new snapshot view, however, does include changes committed by
other users since your last transaction started.

Objects that you have created in the GemBuilder for Smalltalk object space, outside the
repository, remain until you remove them or end your session.

Updating the View Without Committing or Aborting

The message System continueTransaction gives you a new, up-to-date snapshot
view of other users’ committed work, without discarding the objects you have modified in
your current session.

The message cont inueTransaction returns true if a commit on your transaction would
succeed, or false if a commit would fail. After continueTransaction returns false, you
may examine the results of System transactionConflicts to see what objects have
conflicts.

Unlike commitTransaction and abortTransaction, continueTransaction does
not end your transaction. It has no effect on object locks, and it does not discard any
changes you have made or commit any changes. Objects that you have modified or created
do not become visible to other users.

Work you have done locally within your own interface is not affected by a
continueTransaction. Objects that you have created in your own application remain.
Similarly, any execution that you have begun continues, unless the execution explicitly
depends upon a successful commit operation.

Note that if you were unable to commit your transaction due to conflicts, you cannot use
continueTransaction until you abort the transaction.

GemTalk Systems 173

How GemStone Detects and Manages Conflict GemStone/S 64 Bit 3.7 Programming Guide

174

Being Signaled To Abort

As mentioned earlier, being in a transaction incurs certain costs. When you are in a
transaction, GemStone waits until you commit or abort before it attempts to reclaim
obsolete objects in your snapshot view. While you are in a transaction, your session will not
be signalled to abort, nor is it subject to losing it's snapshot view of the repository or being
terminated as a result of sigAbort mechanisms. A session in transaction may cause your
repository to grow until it runs out of disk space.

When you are outside of a transaction, GemStone warns you when your snapshot view is
outdated, and this is imposing a burden on the system, by sending your session the
TransactionBacklog notification. You are allowed a certain amount of time to abort
your current snapshot view, as specified in the STN_GEM_ABORT_TIMEOUT parameter
in your configuration file. When you abort your current snapshot view (by sending the
message System abort or System abortTransaction), GemStone can reclaim
storage and you get a fresh snapshot view of the repository.

If you do not respond within the specified time period, the object server sends your session
the exception RepositoryViewLost and then terminates the Gem.

Work that you have done locally (such as references to objects within your application) is
retained, and you still cannot commit work to the repository when running outside of a
transaction. However, you must read again those objects that you had previously read
from the repository, and recompute the results of any computations performed on them,
because the object server no longer guarantees that the application values are valid.

Your GemStone session controls whether it is signalled to abort by receiving the
TransactionBacklog notification when it is out of transaction. To enable receiving it, send
the message:

System enableSignaledAbortError

To disable receiving it, send the message:
System disableSignaledAbortError

To determine whether receiving this notification is currently enabled or disabled, send the
message:

System signaledAbortErrorStatus

This method returns true if the notification is enabled, and false if it is disabled. By default,
GemStone sessions disable receiving this notification. The GemBuilder interfaces may
change this default. If you wish to be notified, then you must explicitly enable the signaled
abort error, and re-enable it after each time the signal is received.

Being Signaled to continueTransaction

As described earlier, when you are in a transaction, GemStone does not signal the session
to abort, nor are you subject to losing your snapshot view of the repository. This entails a
risk that your repository may grow until it runs out of disk space.

To avoid this problem, you can enable your GemStone session to receive the
TransactionBacklog notification when you are in transaction. This prompts your
session that it is now holding the oldest snapshot view of the repository, and potentially
causing your repository to grow. When your session receives this signal, it may execute a
continueTransaction, or abort or commit its changes.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Controlling Concurrent Access with Locks

Your GemStone session controls whether it receives the TransactionBacklog
notification when in transaction. To enable receiving it, send the message:

System enableSignaledFinishTransactionError

To disable receiving it, send the message:

System disableSignaledFinishTransactionError

To determine whether receiving this error message is currently enabled or disabled, send
the message:

System signaledFinishTransactionErrorStatus

This method returns true if the notification is enabled, and false if it is disabled. By default,
GemStone sessions disable receiving this notification. If you wish to be notified, then you
must explicitly enable it after each time the signal is received.

Handlers for abort or continueTransaction notifications

Not only do you need to enable the receipt of the notification to abort or
continueTransaction, you must also set up a signal handler to take the appropriate action.
Sending enableSignaledAbortError and
enableSignaledFinishTransactionError control whether you receive the
TransactionBacklog notification when you are not in transaction or when you are in
transaction, respectively. The handler for the TransactionBacklog notification needs to take
both possible situations into account.

9.3 Controlling Concurrent Access with Locks

If many users are competing for shared data in your application, or you can’t tolerate even
an occasional inability to commit, then you can implement pessimistic concurrency control

by using locks.

Locking an object is a way of telling GemStone (and, indirectly, other users) your intention
to read or write the object. Holding locks prevents transactions whose activities would
conflict with your own from committing changes to the repository. Unless you specify
otherwise, GemStone locks persist across aborts as well as commits. If you lock on an object
and then abort, your session still holds the lock after the abort. Aborting the current
transaction (and starting another, if you are in manual transaction mode) gives you an up-
to-date value for the locked object without removing the lock.

Remember, locking improves one user’s chances of committing only at the expense of other
users. Use locks sparingly to prevent an overall degradation of system performance.

Lock Types

GemStone provides two kinds of locks you may use on any objects: read and write. A
session may hold only one kind of lock on an object at a time.

GemStone also provides another type of lock, applicationWriteLock, which is limited to a
single unique lock object; it provides similar locking, but is used to provide a mutex. While
the applicationWriteLock behaves similarly to read and write locks, it is used differently is
discussed separately starting on page 184.

GemTalk Systems 175

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.7 Programming Guide

Read Locks

Holding a read lock on an object means that you can use the object’s value, and then
commit without fear that some other transaction has committed a new value for that object
during your transaction. Another way of saying this is that holding a read lock on an object
guarantees that other sessions cannot:

» acquire a write lock on the object, or
» commit if they have written the object.

To understand the utility of read locks, imagine that you need to compute the average age
of a large number of employees. While you are reading the employees and computing the
average, another user changes an employee’s age and commits (right at the end of a
birthday party). You have now performed the computation using out-of-date information.
You can prevent this frustration by read-locking the employees at the outset of your
transaction; this prevents changes to those objects.

Multiple sessions can hold read locks on the same object. A maximum of 1 million read
locks can be held concurrently. Because locking incurs a cost at commit time, you should
keep the aggregate number of locked objects as small as possible.

NOTE
If you have a read lock on an object and you try to write that object, your attempt
to commit that transaction will fail.

Write Locks

Holding a write lock on an object guarantees that you can write the object and commit. That
is, it ensures that you won't find that someone else has prevented you from committing by
writing the object and committing it before you, while your transaction was in progress.
Another way of looking at this is that holding a write lock on an object guarantees that
other sessions cannot:

» acquire either a read or write lock on the object, or
» commit if they have written the object.

Write locks are useful, for example, if you want to change the addresses of a number of
employees. If you write-lock the employees at the outset of your transaction, you prevent
other sessions from modifying one of the employees and committing before you can finish
your work. This guarantees your ability to commit the changes.

Write locks differ from read locks in that only one session can hold a write lock on an object.
In fact, if a session holds a write lock on an object, then no other session can hold any kind
of lock on the object. This prevents another session from receiving the assurance implied
by a read lock; that the value of the object it sees in its snapshot view will not be out of date
when it attempts to commit a transaction.

176 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Controlling Concurrent Access with Locks

Acquiring Locks

The kernel class System is the receiver of all lock requests. The following statements
request one lock of each kind:

Example 9.1

System readLock: SharedDictionary.
System writeLock: myEmployees.

When locks are granted, these messages return System.

Commits and aborts do not necessarily release locks, although locks can be set up so that
they will do so. Unless you specify otherwise, once you acquire a lock, it remains in place
until you log out or remove it explicitly. (Subsequent sections explain how to remove
locks.)

When a lock is requested, GemStone grants it unless one of the following conditions is true:

» You do not have suitable authorization. Read locks require read authorization; write
locks require write authorization.

» The object is an instance of Smalllnteger, Boolean, Character, SmallDouble, or nil.
Trying to lock these special objects is meaningless.

» The object is already locked in an incompatible way by another session (remember,
only read locks can be shared).

Variants of the readLock: and writeLock: messages allow you to lock collections of
objects en masse. For details, see “Locking Collections of Objects Efficiently” on page 179.

Lock Denial

If you request a lock on an object and another session already holds a conflicting lock on it,
then GemStone denies your request; GemStone does not automatically wait for locks to
become available.

If you use one of the simpler lock request messages (such as readLock:), lock denial
generates an error. If you want to take some automatic action in response to the denial, use
a more complex lock request message, such as this:
System readLock: anObject

ifDenied: [blockl]

ifChanged: [block2].

A lock denial causes GemStone to execute the block argument to i f£Denied:. The method
in Example 9.2 uses this technique to request a lock repeatedly until the lock becomes
available.

GemTalk Systems 177

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.7 Programming Guide

Example 9.2

Object subclass: #Dummy
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
options: #()
%
method: Dummy
getReadLockOn: anObject tries: numTries
"This method tries to lock anObject. If the lock is denied,
it tries again, making up to numTries attempts."
| n |
n := 1.
[n <= numTries] whileTrue: [
System readLock: anObject
ifDenied: [System sleep: 1.]
ifChanged: [System abortTransaction.].
n:=n + 17].
AN(System myLockKind: anObject) = #read
%
UserGlobals at: #testObject put: Object new.
System commitTransaction.
%

Dummy new getReadLockOn: testObject tries: 3
%

Deadlocks

You may never succeed in acquiring a lock, no matter how long you wait. Furthermore,
because GemStone does not automatically wait for locks, it does not attempt deadlock
detection. It is your responsibility to limit the attempts to acquire locks in some way. For
example, you can write a portion of your application in such a way that there is an absolute
time limit on attempts to acquire a lock. Or you can let users know when locks are being
awaited and allow them to interrupt the process if needed.

Dirty Locks

If another user has written an object and committed the change since your transaction
began, then the value of the object in your snapshot view is out of date. Although you may
be able to acquire a lock on the object, it is a dirty lock because you cannot use the object and
commit, despite holding the lock.

178 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Controlling Concurrent Access with Locks

This condition is trapped by the argument to the i fChanged: keyword following read
lock request message:

System readLock: anObject
ifDenied: [blockl]
ifChanged: [block2].

Like its simpler counterpart, this message returns System if it acquires a lock on anObject
without complications. It generates an error if the user has no authorization for acquiring
thelock, or selects one of the blocks passed as arguments and executes that block, returning
the block’s value.

For example, if a conflicting lock is held on anObject, this message executes the block given
as an argument to the keyword ifDenied:. Similarly, if anObject has been changed by
another session, it executes the argument to i £Changed :. The following sections provide
some suggestions about the code such blocks might contain. For example:

Example 9.3

System readLock: anObject
ifDenied: []
ifChanged: [System abortTransaction]

To minimize your chances of getting dirty locks, lock the objects you need as early in your
transaction as possible. If you encounter a dirty lock in the process, you can keep track of
the fact and continue locking. After you finish locking, you can abort your transaction to
get current values for all of the objects whose locks are dirty. See Example 9.4.

Example 9.4

| dirtyBag |
dirtyBag := IdentityBag new.
myEmployees do: [:anEmp |
System readLock: anEmp
ifDenied: []
ifChanged: [dirtyBag add: anEmp]].
dirtyBag isEmpty
ifTrue: [~true]
ifFalse: [System abortTransaction].

Your new transaction can then proceed with clean locks.

Locking Collections of Objects Efficiently

In addition to the locking request messages for single objects, GemStone provides
messages to request locks on an entire collection of objects. If the objects you need to lock
are already in collections, or if they can be gathered into collections without too much
work, it is more efficient to use the collection-locking methods than to lock the objects
individually.

The following statements request locks on each of the elements of two different collections:

GemTalk Systems 179

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.7 Programming Guide

Example 9.5

UserGlobals at: #myArray put: Array new;
at: #myBag put: IdentityBag new.

System readLockAll: myArray.
System writeLockAll: myBag.

180

The messages in Example 9.5 are similar to the simple, single-object locking-request
messages (such as readLock:) that you've already seen. If a clean lock is acquired on each
element of the argument, these messages return System. If you lack the proper
authorization for any object in the argument, GemStone generates an error and grants no
locks.

The difference between these methods and their single-object counterparts is in the
handling of other errors. The system does not immediately halt to report an error if an
object in the collection is changed, or if a lock must be denied because another session has
already locked the object. Instead, the system continues to request locks on the remaining
elements, acquiring as many locks as possible. When the method finishes processing the
entire collection, it generates an error. In the meantime, however, all locks that you
acquired remain in place.

You might want to handle these errors from within your GemStone Smalltalk program
instead of letting execution halt. For this purpose, class System provides collection-locking
methods that pass information about unsuccessful lock requests to blocks that you supply
as arguments. For example:

System writeLockAll: aCollection ifIncomplete: aBlock

The argument aBlock that you supply to this method must take three arguments. If locks
are not granted on all elements of aCollection (for any reason except authorization failure),
the method passes three arrays to aBlock and then executes the block.

» The first array contains all elements of aCollection for which locks were denied.
» The second array contains all elements for which dirty locks were granted.

» The third array is empty, and is there for compatibility with previous versions of
GembStone.

You can then take appropriate actions within the block. See Example 9.6.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Controlling Concurrent Access with Locks

Example 9.6

classmethod: Dummy
handleDenialOn: deniedObjs
A deniedObjs
%
classmethod: Dummy
getWriteLocksOn: aCollection
System writeLockAll: aCollection
ifIncomplete: [:denied :dirty :unused |
denied isEmpty ifFalse: [self handleDenialOn: denied].
dirty isEmpty ifFalse: [System abortTransaction]]

%

System readLockAll: myEmployees

%

Dummy getWriteLocksOn: myEmployees
%

Upgrading Locks

On occasion, you might want to upgrade a read lock to a write lock. For example, you might
initially intend to read an object, only to discover later that you must also write the object.

However, if you have a read lock on an object, you cannot successfully write that object. If
you attempt to do so, your attempt to commit that transaction will fail.

GembStone currently provides no built-in support for upgrading locks. However, to ensure
your ability to commit, you can remove the read lock you currently hold on an object and
then immediately request a write lock.

It is important to request the upgraded lock immediately, because between the time that
the lock is removed, and the time that the upgraded lock is requested, another session has
the opportunity to lock the object, or to write it and commit.

Locking and Indexed Collections

When indexes are present, locking can fail to prevent conflict. The reasons are similar to
those discussed in the section “Indexes and Concurrency Control” on page 172. Briefly,
GemStone maintains indexing structures in your snapshot view and does not lock these
structures when an indexed collection or one of its elements is locked. Therefore, despite
having locked all of the visible objects that you touched, you can be unable to commit.

Specifically, this means that:

» if an object is either an element of an indexed collection, or participates in an index
(meaning it is a component of an element bearing an index);

» and another session can access the object, an indexed collection of which the object is a
member, or one of its predecessors along the same indexed path;

» then locking the object does not guarantee that you can commit after reading or
writing the object.

Therefore, don’t rely on locking an object if the object participates in an index.

GemTalk Systems 181

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.7 Programming Guide

Removing or Releasing Locks

182

Once you lock an object, its default behavior is to remain locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through aborts and
commits. In general, remove a lock on an object when you have used the object, committed
the resulting values to the repository, and no longer foresee an immediate need to maintain
control of the object.
Class System provides the following messages for removing locks:
System removeLock: anObject
Removes any lock you might hold on a single object. If anObject is not locked,
GemStone does nothing. If another session holds a lock on anObject, this message has
no effect on the other session’s lock.

System removeLockAll: aCollection
Removes any locks you might hold on the elements of a collection.

If you intend to continue your session, but the next transaction is to work on a different set
of objects, you might wish to remove all the locks held by your session. Class System
provides two mechanisms for doing so.

System commitTransaction; removeLocksForSession

Attempts to commit the present transaction and removes all locks it holds, even if the
commit does not succeed.

System commitAndReleaselocks

Attempts to commit your transaction and release all the locks you hold in a single
operation. If your transaction fails to commit, all locks are held instead of released.

Releasing Locks Upon Aborting or Committing

After you have locked an object, you can add it to either of two special sets. One set
contains objects whose locks you wish to release as soon as you commit your current
transaction. The other set contains objects whose locks you wish to release as soon as you
either commit or abort your current transaction. Executing cont inueTransaction does
not release the locks in either set.

The following statement adds a locked object to the set of objects whose locks are to be
released upon the next commit:

System addToCommitReleaseLocksSet: aLockedObject
The following statement adds a locked object to the set of objects whose locks are to be
released upon the next commit or abort:

System addToCommitOrAbortReleaseLocksSet: aLockedObject
The following statement adds the locked elements of a collection to the set of objects whose
locks are to be released upon the next commit:

System addAllToCommitReleaseLocksSet: aLockedCollection
The following statement adds the locked elements of a collection to the set of objects whose
locks are to be released upon the next commit or abort:

System addAllToCommitOrAbortReleaseLocksSet: aLockedCollection
NOTE
If you add an object to one of these sets and then request an updated lock on it, the
object is removed from the set.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Controlling Concurrent Access with Locks

You can remove objects from these sets without removing the lock on the object. The
following statement removes a locked object from the set of objects whose locks are to be
released upon the next commit:

System removeFromCommitReleaseLocksSet: aLockedObject

The following statement removes a locked object from the set of objects whose locks are to
be released upon the next commit or abort:

System removeFromCommitOrAbortReleaseLocksSet: aLockedObject

The following statement removes the locked elements of a collection from the set of objects
whose locks are to be released upon the next commit:

System removeAllFromCommitReleaseLocksSet: aLockedCollection

The following statement removes the locked elements of a collection from the set of objects
whose locks are to be released upon the next commit or abort:

System removeAllFromCommitOrAbortReleaseLocksSet: alockedCollection

You can also remove all objects from either of these sets with one message. The following
statement removes all objects from the set of objects whose locks are to be released upon
the next commit:

System clearCommitReleaseLocksSet

The following statement removes all objects from the set of objects whose locks are to be
released upon the next commit or abort:

System clearCommitOrAbortReleaseLocksSet

The statement System commitAndReleaseLocks also clears both sets if the transaction
was successfully committed.

Inquiring About Locks

GemStone provides messages for inquiring about locks held by your session and other
sessions. Most of these messages are intended for diagnostic use, but some may be useful
to ordinary applications.

The message sessionLocks gives you a complete list of all the locks held by your session.
This message returns a three-element array. The first element is an array of read-locked
objects; the second is an array of write-locked objects, and the third is "deferred unlocks",
objects that have been unlocked, but the request is waiting for another session to release
the commit token.

For example, the following code uses this information to remove all write locks held by the
current session:

System removeLockAll:
(System sessionLocks at: 2)

Other useful messages systemLocksQuick, systemLocks, systemLocksReport, and
systemLocksDetailedReport, which report locks on all objects held by all sessions
currently logged in to the repository. Note that these methods do not report on locks that
other sessions are holding on their temporary objects — that is, objects that they have never
committed to the repository. These objects are not visible to your session, so they are
unlikely to be a cause of commit conflict.

Another lock inquiry message, lockOwners: anObject, is useful if you've been unable to
acquire a lock because of conflict with another session. This message returns an array of
Smalllntegers representing the sessions that hold locks on anObject. The method in

GemTalk Systems 183

Controlling Concurrent Access with Locks GemStone/S 64 Bit 3.7 Programming Guide

Example 9.7 uses lockOwners: to build an array of the userIDs of all users whose
sessions hold locks on a particular object.

Example 9.7

classmethod: Dummy
getNamesOfLockOwnersFor: anObject
| userIDArray sessionArray |
sessionArray := System lockOwners: anObject.
userIDArray := Array new.
sessionArray do:

[:aSessNum | userIDArray add:

(System userProfileForSession: aSessNum) userId].

AuserIDArray
%

Dummy getNamesOfLockOwnersFor:
(myEmployees detect: {:e | e.name = ’Conan’ })
%

You can test to see whether an object is included in either of the sets of locked objects whose
locks are to be released upon the next abort or commit operation. The following statement
returns true if anObject is included in the set of objects whose locks are to be released upon
the next commit:

System commitReleaseLocksSetIncludes: anObject

The following statement returns true if anObject is included in the set of objects whose locks
are to be released upon the next commit or abort:
System commitOrAbortReleaseLocksSetIncludes: anObject

For information about the other lock inquiry messages, see the methods on System class in
the image.

Application Write Locks

184

Unlike read and write locks, application write locks can only be placed on a single object

per lock queue (there are ten lock queues available). The object can be any persistent non-
special object; the first time an application lock write is invoked on a lock queue, the object
that is locked is registered for that lock queue, and all subsequent uses of that lock queue
can only lock this particular object until the next Stone restart.

This allows it to be used as a mutex, or simplifies serializing modifications to a single
critical object, such as a collection.

The call to acquire an application write lock also does not return until the lock is acquired,
or the lock wait times out. This frees you from having to repeatedly request a lock if it is
not immediately available. The timeout is controlled by the configuration parameter
STN_OBJ_LOCK_TIMEOUT.

To set an application write lock on an object, send the message:

System waitForApplicationWriteLock: lockObject
queue: lockldx
autoRelease: aBoolean

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Classes That Reduce the Chance of Conflict

lockIdx must be a Smalllnteger between 1 and 10, depending on which lock queue is being
used. If aBoolean is true, the lock is released automatically on commit or abort, otherwise
you must manually remove the lock when you are done.

This method errors if you attempt to lock a temporary object or AllSymbols, otherwise
returns an integer code, one of the following;:

1 - lock granted

2071 - undefined lock (lockldx out of range)

2074 - dirty; the lock object written by other session since start of this transaction
2075 - lock denied (lockObject is an invalid object)

2418 - lock not granted, deadlock

2419 - lock not granted, wait for lock timed out

9.4 Classes That Reduce the Chance of Conflict

Often, concurrent access to an object is structural, but not semantic. GemStone detects a
conflict when two users access the same object, even when respective changes to the objects
do not collide.

For example, when two users both try to add something to a bag they share, GemStone
perceives a write-write conflict on the second add operation, although there is really no
reason why the two users cannot both add their objects. As human beings, we can see that
allowing both operations to succeed leaves the bag in a consistent state, even though both
operations modify the bag. A situation such as this causes commit conflicts that could
potentially be avoided.

GemStone provides a number of reduced-conflict classes that you can use instead of their
regular counterparts in applications that might otherwise experience too many
unnecessary conflicts. Using these classes allows a greater number of transactions to
commit successfully, but “reduced conflict” does not mean “no conflict.” For example,
while two users should be able to add different objects to a shared collection, the code can’t
be expected to resolve the problem of two users attempting to remove the same object.

When a conflict does occur - for example, two users attempting to remove the same object -
this is a normal conflict. The second user will see a commit failure with a transaction
conflict. When the commit fails, the user loses all changes made to the Rc object during the
current transaction, and the persistent state remains in the state left by the earlier user who
made the conflicting changes.

Reduced-conflict classes are not always appropriate; some of them require more storage,
and may require maintenance under some usage conditions, or may cause commits to take
longer to complete under some usage conditions.

RcCounter

The class RcCounter can be used instead of a simple number in order to keep track of the
amount of something. It allows multiple users to increment or decrement the amount at the
same time without experiencing conflicts.

The class RcCounter is not a kind of number. It encapsulates a number — the counter — but
it also incorporates other intelligence; you cannot use an RcCounter to replace a number
anywhere in your application. It only increments and decrements a counter.

GemTalk Systems 185

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.7 Programming Guide

For example, imagine an application to keep track of the number of items in a warehouse
bin. Workers increment the counter when they add items to the bin, and decrement the
counter when they remove items to be shipped. This warehouse is busy; if each concurrent
increment or decrement operation produced a conflict, work slows unacceptably.

Furthermore, the conflicts are mostly unnecessary. Most of the workers can tolerate a
certain amount of inaccuracy in the value of the bin count at any time. They do not need to
know the exact number of items in the bin at every moment; they may not even worry if
the bin count goes slightly negative from time to time. They may simply trust that the data
is not completely up-to-date, and that their fellow workers have added to the bin in the
time since the data was last refreshed. For such an application, an RcCounter is helpful.

Instances of RcCounter understand messages such as increment, decrement, and
value. For additional protocol, see the image.

For example, assuming that binCount refers to an instance of RcCounter, the following
operations can take place concurrently from different sessions without causing a conflict:

Example 9.8

Isession 1

binCount incrementBy: 36.

System commitTransaction.

%

!session 2

binCount incrementBy: 24.

System commitTransaction.

%

!session 3

binCount decrementBy: 48
ifLessThan: 0
thenExecute: [~'Not enough widgets to ship today.'].

System commitTransaction.

%

This can result in some variable behavior, depending on the timing of the operations.

For example, if the starting binCount is 0, and these operations happen concurrently, then
session 3 will not perform the decrement, and the final binCount will be 60.

However, if session 1 and 2 have committed their increment operations, and session 3
updated its snapshot view prior to executing the code, then session 3 will perform the
decrement and the final binCount will be 12.

Reduced-Conflict Collection Classes

186

GemStone provides a variety of reduced-conflict collection classes:
» RcArray, providing Array-like semantics
» RcKeyValueDictionary, producing dictionary-like semantics

» ReldentityBag, RcLowMaintenanceldentityBag, and ReldentitySet, providing
IdentityBag- and IdentitySet-like semantics.

» GsPipe, RcPipe, and RcQueue, providing queue semantics

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Classes That Reduce the Chance of Conflict

In addition to varying collection semantics, individual classes have specific types of
conflicts they are designed to avoid, and the amount of internal infrastructure or the cost
of resolving a conflict varies. Selection of an RC class should consider the demands of the
application and also the costs of the automatic conflict resolution.

RcArray, GsPipe, RcPipe, RcKeyValueDictionary, ReldentitySet and
RcLowMaintenanceldentityBag provide reduced-conflict by automatic replay; when
performing specific supported operations, if conflict occurs, the changes can be replayed,
slowing down the commit by the second session but allowing the commit to occur.

In cases where there are likely to be many concurrent updates, there is a risk of developing
a backlog of sessions replaying the operations; application in which a high degree of
concurrent operations are expected may benefit by using an RcQueue or RecldentityBag.
RcldentityBag and RcQueue provide add and remove sets for each session. This avoids the
risk of conflict between sessions at the cost of additional time required to access elements,
and some use patterns may require periodic manual cleanup.

RcArray

The class RcArray provides much of the same functionality as Array. However, no conflict
occurs on instances of RcArray with:

» Multiple producers: any number of users are adding objects to the array.

If a conflict with other update operations on the RcArray occur, the add is replayed so that
the commit can succeed. Only methods that add elements at the end of the RcArray
support concurrent updates. During conflict resolution, commit order determines the
order of the elements in the RcArray.

Because implementation relies on the replay of the adds when there are conflicts, high
levels of concurrency have a risk of creating a backlog, when a convoy of sessions are all
trying to commit their additions to the RcArray. For applications with expected high rates
of concurrency, consider using an RcQueue to accumulate the additions, and have a single
gem process remove elements from the RcQueue, and put them in an RcArray.

RcldentityBag

The class RcldentityBag provides much of the same functionality as IdentityBag. No
conflict occurs on instances of RcldentityBag with:
» Multiple producers: any number of users are adding objects .
» Limited multiple consumers: one user removes an object from the bag, or multiple
users remove objects but only one tried to remove the last or only occurrence of an
object.

When multiple sessions remove different occurrences of the same object, it may take a little
longer to commit the second transaction.

RcldentityBag uses per-session add and remove subcollections to avoid conflict. Each
session adds to its individual subcollection, and removals of these items are tracked in a
parallel bag.

If you create an index on an RcldentityBag, you should also create a reduced-conflict index,
otherwise the underlying index structure may have a conflict. However, even an indexed
instance of RcldentityBag reduces the possibility of a transaction conflict, compared to an
instance of IdentityBag, indexed or not.

GemTalk Systems 187

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.7 Programming Guide

188

RcLowMaintenanceldentityBag and RcldentitySet

The class RcLowMaintenanceldentityBag and RcldentitySet provide much of the same
functionality as IdentityBag and IdentitySet. No conflict occurs on instances of
RcLowMaintenanceldentityBag or RcldentitySet with:

» Multiple producers: any number of users are adding objects.

» Single consumer: one user removes objects.
RcLowMaintenanceldentityBag and RecldentitySet avoid conflict by performing a selective
abort and replay of adds. If more than one user removes objects, they are likely to
experience a commit failure with a transaction conflict. Instances of

RcLowMaintenanceldentityBag and RcldentitySet may have indexes on their contents. It
is recommended to create a reduced-conflict index.

RcKeyValueDictionary

The class RcKeyValueDictionary provides the same functionality as KeyValueDictionary.
No conflict occurs on instances of RcKeyValueDictionary with:

» Limited multiple producers: any number of users add keys and values to the
dictionary, as long as the keys do not already exist in the dictionary.

» Limited multiple consumers: any number of users remove keys from the dictionary, as
long as only one user removes the same key at a time.

RcKeyValueDictionary avoids conflict by performing a selective abort and replay of the
modifications to the dictionary. A session that would otherwise have a commit failure due
to a transaction conflict may take slightly longer to complete the commit.

GsPipe

The class GsPipe implements a first-in-first-out queue with a single producer and a single
consumer. No conflict occurs on instances of GsPipe with:

» Single producer: only one user at a time adds objects to the pipe.
» Single consumer: only one user at a time removes an object from the pipe.

GsPipe avoids commit conflict between adds and removes by the nature of its
implementation, since modifying the head or tail of a linked list doesn’t cause conflict.

RcPipe

The class RcPipe implements a first-in-first-out queue with multiple producers and a single
consumer. No conflict occurs on instances of RcPipe with:

» Multiple producers: any number of users are adding objects to the RcPipe.

» Single consumer: only one user at a time removes an object from the RcPipe.

RcPipe avoids conflict by performing a selective abort and replay of adds to the pipe. If
more than one user removes objects from the pipe, they are likely to experience a commit
failure with a transaction conflict. When the commit fails, the user loses all changes made
to the pipe during the current transaction, and the pipe remains in the state left by the
earlier user who made the conflicting changes.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Classes That Reduce the Chance of Conflict

RcQueue

The class RcQueue approximates the functionality of a first-in-first-out queue. ReQueues
are multiple-producer, single-consumer. No conflict occurs with:

» Multiple producers: any number of users are adding objects to the queue.
» Single consumer: only one user at a time removes an object from the queue.

RcQueue uses per-session add and remove subcollections to avoid conflict. Each session’s
modifications are only to its own add and remove subcollections; the RcQueue calculates
the next element based on the contents of the individual session subcollections.

RcQueue approximates a first-in-first-out queue, but it cannot implement such
functionality exactly because of the nature of repository snapshot views during
transactions.

An object added to an RcQueue is ordered in the queue according to the time it is added to
the RcQueue, but it only becomes visible to other sessions when the session commits. If

objects in the RcQueue are "consumed" as soon as they appear, then it is possible for more
recently created elements to be consumed before older ones that were not yet committed.

For example, suppose one user adds object A at 10:20, but waits to commit until 10:50.
Meanwhile, another user adds object B at 10:35 and commits immediately. A third user
viewing the queue at 10:30 will see neither object A nor B. At 10:35, object B will become
visible to the third user. At 10:50, object A will also become visible to the third user, and
will furthermore appear earlier in the queue, because it was created first.

GemTalk Systems 189

Classes That Reduce the Chance of Conflict GemStone/S 64 Bit 3.7 Programming Guide

190 GemTalk Systems

Chapter

0 Object Security and
Authorization

This chapter explains how to set up object security policies to restrict read and write
access to application objects.

It covers:

How GemStone Security Works (page 191)
describes the Gemstone object security model.

Assigning Objects to Security Policies (page 195)
summarizes the messages for reporting your current security policy, changing your
current policy, and assigning a policy to simple and complex objects.

Application Example (page 202) and Development Example (page 206)
provides examples for defining and implementing object security for your projects.

Privileged Protocol for Class GsObjectSecurityPolicy (page 214)
defines the system privileges for creating or changing security policy authorization.

10.1 How GemStone Security Works

GembStone provides security at several levels:
» Login authorization keeps unauthorized users from gaining access to the repository;

» Privileges limit ability to execute special methods affecting the basic functioning of
the system (for example, the methods that reclaim storage space); and

» Object level security allows individual users, specific groups of users, and all users to
have read, write, or no access to each object in the repository.

» Object Filtering provides further object level security, by allowing you to control the
transmission of each object to a remote cache. This features is only available with X509
logins, which include additional security for Gems running on insecure remote nodes.
See the GemStone/S 64 Bit X509-Secured GemStone System Administration Guide for more
information.

GemTalk Systems 191

How GemStone Security Works GemStone/S 64 Bit 3.7 Programming Guide

Login Authorization

You log into GemStone through any of the interfaces provided: GemBuilder for Smalltalk,
GemBuilder for Java, Topaz, or the C interface (see the appropriate interface manual for
details). Whichever interface you use, GemStone requires the presentation of a user ID (a
name or some other identifying string) and a password. If the user ID and password pair
match the user ID and password pair of someone authorized to use the system, GemStone
permits interaction to proceed; if not, GemStone severs the logical connection.

The GemStone system administrator, or someone with equivalent privileges (see below),
establishes your user ID and (depending on the login authentication used) your password,
when he or she creates your UserProfile. The GemStone system administrator can also
configure a GemStone system to monitor failures to log in, and to note the attempts in the
Stone log file after a certain number of failures have occurred within a specified period of
time. A system can also be configured to disable a user account after a certain number of
failed attempts to log into the system through that account. See the GemStone System
Administration Guide for details.

The UserProfile

Each instance of UserProfile is created by the system administrator. The UserProfile is
stored with a set of all other UserProfiles in a set called AllUsers. The UserProfile contains:

» Your UserID and Password.

» The SymbolList used for resolving symbols when compiling, including
SymbolDictionaries such as Globals and UserGlobals. Chapter 3, “Resolving Names
and Sharing Objects”, discuses these topics.

» The groups to which you belong

» The privileges you may have.

» A default GsObjectSecurityPolicy to assign your session at login, or nil.
See the System Administration Guide for instructions on creating UserProfiles, defining
groups, and assigning users to groups.

System Privileges

Actions that affect the entire GemStone system are tightly controlled by privileges to use
methods or access instances of the System, UserProfile, GsObjectSecurityPolicy, and
Repository classes, and to modify code. Privileges are given to individual UserProfile
accounts to access various parts of GemStone or perform important functions such as
storage reclamation.

The privileged messages for the System, UserProfile, GsObjectSecurityPolicy and
Repository Classes are described in the image, and their use is discussed in the System
Administration Guide.
Object-level Security
GemStone object-level security allows you to:
» abstractly group objects;

» specify who owns the objects;

192 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide How GemStone Security Works

» specify who can read them; and
» specify who can write them.

Each site designs a custom scheme for its data security. Objects can be secured for selective
read or write access by a group or individual users. Objects can also be left unsecured, so
any user can read or modify them. Not restricting access will improve performance for sites
with fewer security requirements.

The GemStone class GsObjectSecurityPolicy facilitates this security.

GsObjectSecurityPolicy

Each object's header includes a 16-bit unsigned security policy Id that specifies the
GsObjectSecurityPolicy to which the object has been assigned. (In previous releases, object
security policies were known as Segments; references to Segment now mean
GsObjectSecurityPolicy).

All objects assigned the same security policy have exactly the same protection. That is, if
you can read or write one object assigned to a certain policy, you can read or write them all.

There are several ways that access to objects is controlled by the security policy:

» Each policy is owned by a single user, and all objects assigned the same security
policy have the same owner. The owner has write and read access to all objects
associated with the security policy.

» A security policy has a setting for world; this allows every authorized GemStone user
to have read, write, or no access to all the objects associated with a security policy

» Groups of users can be defined, and these groups can be configured to have read,
write, or no access to all the objects associated with a security policy.

In addjition, an object may also have no security policy, in which case its security policy Id
is zero. This means that there are no restrictions on access to this object; any logged-in user
can read and write this object.

Whenever an application tries to access an object, GemStone compares the object’s
authorization attributes in the security policy associated with the object with those of the
user whose application is attempting access. If the user is appropriately authorized, the
operation proceeds. If not, GemStone returns an error notification.

The user’s group membership and security policy authorization control access to objects,
as shown by Figure 10.1.

GemTalk Systems 193

How GemStone Security Works

GemStone/S 64 Bit 3.7 Programming Guide

Figure 10.1 User Access to Application ObjectSecurityPolicyA

(User 1 1) Can write Employee
GsAdmin data, since Owner has
write access.
(~
User 2 Can read Employee

data, since it is world
Groups: Payroll, read.

Admin

anEmployee

anEmployee

J\
S

Can write Employee

data, since Personnel

group has write access.
J

P
User 3

Groups: Admin,
Personnel

ObjectSecurityPolicyA
Owner: GsAdmin, Write access
GroupsRead:

GroupsWrite: Personnel

World: Read access

Three users access this application:

» The System Administrator, GsAdmin, owns ObjectSecurityPolicy A and can read and

write the objects assigned with it.

» User3 belongs to the Personnel group, which authorizes read and write access to

ObjectSecurityPolicyA’s objects.

» User2 doesn’t belong to a group that can access ObjectSecurityPolicy A, but can still
read those objects, because ObjectSecurityPolicy A gives read authorization to all

GemStone users.

Because security policies are objects, access to a GsObjectSecurityPolicy object is controlled
by the security policy it is assigned to, exactly like access to any other object.
GsObjectSecurityPolicy instances are usually assigned to the
DataCuratorObjectSecurityPolicy. The authorization information stored in the
GsObjectSecurityPolicy instance, which controls access to the objects assigned with that
security policy, does not control access to the policy object itself.

Objects do not “belong” to an security policy. It is more correct to say that objects are
associated with a security policy. Although objects know which policy they are assigned
to, security policies do not know which objects are assigned to them. Security policies are
not meant to organize objects for easy listing and retrieval. For those purposes, you must
turn to symbol lists, which are described in Chapter 3, “Resolving Names and Sharing

Objects”.

194

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Assigning Objects to Security Policies

10.2 Assigning Objects to Security Policies

For security policy authorizations to have any effect, you must assign some objects to the
security policies whose authorizations you have set up.

Default Security Policy and Current Security Policy

In your UserProfile, you may be assigned a default security policy, or this may be left
empty. When you login to GemStone, your Session uses this default security policy as your
current security policy. Any objects you create are assigned to your current security policy;
if you do not have a current security policy, the new objects do not have a security policy,
and so have world read and write access.

Class UserProfile has the message defaultObjectSecurityPolicy, which returns
your default GsObjectSecurityPolicy (or nil). Sending the message
currentObjectSecurityPolicy: to System changes your current security policy:

Example 10.1

| aPolicy myPolicy |

myPolicy := System myUserProfile
defaultObjectSecurityPolicy.

aPolicy := GsObjectSecurityPolicy new.

System commitTransaction.

"change my current security policy to aPolicy"

System currentObjectSecurityPolicy: aPolicy

Only committed instances of GsObjectSecurityPolicy can be used.

If you commit after changing the security policy, the new GsObjectSecurityPolicy remains
your current security policy until you change the security policy again or log out. If you
abort after changing your current security policy, your current security policy is reset from
your UserProfile’s default security policy.

Unnamed GsObjectSecurityPolicies are often stored in a UserProfile, but named
GsObjectSecurityPolicies are stored in symbol dictionaries like other named objects.
Private security policies are typically kept in a user’s UserGlobals dictionary; security
policies for groups of users are typically kept in a shared dictionary.

Example 10.2
| myPolicy |
"get default security policy"
myPolicy := System myUserProfile defaultObjectSecurityPolicy.

"compare with current"

myPolicy = System currentObjectSecurityPolicy
%

true

GemTalk Systems 195

Assigning Objects to Security Policies GemStone/S 64 Bit 3.7 Programming Guide

Objects and Security Policies

GemStone object security is defined for objects. Your security scheme must be defined to
protect sensitive data in separate objects, either by itself or as a member object of a
customer class. Since each object has separate authorization, each object must be assigned
separately.

Compound Objects

Usually, the objects you are working with are compound, and each part is an object in its
own right, with its own security policy assignment. For example, look at anEmployee in
Figure 10.2. The contents of its instance variables (name, salary, and department) are
separate objects that can be assigned to different security policies. Salary is assigned to
ObjectSecurityPolicyC, which enforces more restricted access than ObjectSecurityPolicyA.

Figure 10.2 Multiple Security Policy Assignments for a Compound Object

ObjectSecurityPoIicyA anEmp|oyee
Owner: GsAdmin, Write access , <

GroupsRead: “,
GroupsWrite: Personnel

s,
.

World: Read access \‘\
department

ObjectSecurityPolicyC

Owner: GsAdmin, Write access O
GroupsRead: Personnel salaryHistory
GroupsWrite: Payroll <

World: None

Collections

When you assign collections of objects to security policies, you must distinguish the
container from the items it contains. Each of the items must also be assigned to the proper
policy. Distinguishing between a collection and the objects it contains allows you to create
collections most elements of which are publicly accessible, while some elements are
sensitive.

Configuring Authorization for an Object Security Policy

196

Object security polices store authorization information that defines what a particular user
or group member can do to the objects with that policy. Three levels of authorization are
provided:

» write — A user can read and modify any of the objects with that security policy and
create new objects associated with the policy.

» read — A user can read any of the objects with that security policy, but cannot modify
(write) them or add new ones.

» none — A user can neither read nor write any of the objects with that security policy.

By assigning a security policy to an object, you give the object the access information
associated with that policy. Thus, all objects with a security policy have exactly the same

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Assigning Objects to Security Policies

protection; that is, if you can read or write one object with to a certain policy, you can read
or write them all.

Controlling authorizations at the security policy level rather than storing the information
in each object makes them easy to change. Instead of modifying a number of objects
individually, you just modify one security policy object. This also keeps the repository
smaller, eliminating the need for duplicate information in each of the objects.

How GemStone Responds to Unauthorized Access

GemStone immediately detects an attempt to read or write without authorization and
responds by stopping the current method and issuing an error. When you successfully
commit your transaction, GemStone verifies that you are still authorized to write in your
current security policy. If you are no longer authorized to do so, GemStone issues an error,
and your default security policy once again becomes your current security policy. If you
are no longer authorized to write in your default security policy, GemStone terminates
your session, and you are unable to log back in to GemStone. If this happens, see your
system administrator for assistance.

Owner, Group, and World Authorization

A GsObjectSecurityPolicy controls what access a user has to associated objects. Access can
be separately assigned for:

» a security policy’s owner
» groups of users (by name)
» the world of all GemStone users

Whenever a program tries to read or write an object, GemStone compares the object’s
authorization attributes with those of the user who is attempting to do the reading or
writing. If the user has authorization to perform the operation, it proceeds. If not,
GemStone returns an error notification.

These categories overlap. The owner of a security policy is also in the world of all
GemStone users, and may also be in one or more groups that have other access
authorization. When determining a user's authorization, the most permissive or generous
authorization will be allowed and other, more restrictive authorizations, will be ignored.
Thus, if world authorization is #read, but the user is a member of a group with #write
authorization, then the world authorization will be ignored.

Owner Authorization

Each GsObjectSecurityPolicy has an owner. The owner of a policy may be assigned read,
write, or no access in the security policy, and therefore to the objects associated with this
security policy. Usually, the owner of a policy has write authorization, but this isn’t
required (unless this is the default security policy for that user). Users may own more than
one security policy.

The message GsObjectSecurityPolicy >> ownerAuthorization:
anAuthorizationSymbol is used to set and clear authorization for the owner of the security
policy. The message GsObjectSecurityPolicy >> ownerAuthorization returns
the authorization for the owner of the security policy.

GemTalk Systems 197

Assigning Objects to Security Policies GemStone/S 64 Bit 3.7 Programming Guide

Group Authorization

Groups are an efficient way to ensure that a number of GemStone users all will share the
same level of access to objects in the repository, and all will be able to manipulate certain
objects in the same ways.

Groups are typically organized as categories of users who have common interests or needs;
for example, Payroll or Personnel.

The global collection AllGroups, a collection of instances of UserProfileGroup, defines all
groups in the system. Membership in a group is granted either by adding the UserProfile
to the UserProfileGroup, by adding the group to the user’s UserProfile groups.

The message GsObjectSecurityPolicy>>authorizationForGroup: group
returns the rights for users in that group.

The message GsObjectSecurityPolicy>>groupsWithAuthorization:
anAuthSymbol returns the names of groups that have a particular level of access (#read,
#write, or #none) for the receiver security policy.

To set group access, use the message GsObjectSecurityPolicy>>group:
groupNameString authorization: anAuthSymbol. For example, to set the group
authorization as shown in Example 10.3, use the following:

anObjectSecurityPolicy group: 'Managers' authorization: #read

World Authorization

In addition to storing authorization for its owner and for groups, a security policy can also
be told to authorize or to deny access by all GemStone users (the world.)

The message GsObjectSecurityPolicy>>worldAuthorization returns the rights
for all users. A corresponding message,
GsObjectSecurityPolicy>>worldAuthorization: anAuthSymbol, sets the
authorization for all GemStone users. For example:

anObjectSecurityPolicy worldAuthorization: #none

Predefined GsObjectSecurityPolicies

198

The initial GemStone repository has eight GsObjectSecurityPolicies, with the following Ids:
1. SystemObjectSecurityPolicy

This security policy is defined in the Globals dictionary, and is owned by the
SystemUser. All GemStone users, represented by world access, are authorized to read,
but not write, objects associated with this security policy. The group #System is
authorized to write to objects in this policy.

2. DataCuratorObjectSecurityPolicy

This security policy is defined in the Globals dictionary, and is owned by the
DataCurator. All GemStone users, represented by world access, are authorized to read,
but not write, objects associated with this security policy. The group
#DataCuratorGroup is authorized to write in this security policy.

Objects in the DataCuratorObjectSecurityPolicy include the Globals dictionary, the
SystemRepository object, all GsObjectSecurityPolicy objects, AllUsers (the set of all

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Assigning Objects to Security Policies

GemStone UserProfiles), AllGroups (the collection of groups authorized to read and
write objects in GemStone security policies), and each UserProfile object.

NOTE:
When GemStone is installed, only the DataCurator is authorized to write in this
security policy. To protect the objects in DataCuratorObjectSecurityPolicy from
unauthorized modification, only administrative users should have write access.

3. GsTimeZoneObjectSecurityPolicy

The initial repository does not use this Id. Repositories that have been converted from
earlier GemStone/S server products use this for the
GsTimeZoneODbjectSecurityPolicy.

4. GslIndexingObjectSecurityPolicy
This security policy is used by the indexing subsystem.
5. SecurityDataObjectSecurityPolicy

This security policy is used by the system for passwords for UserProfiles, and other
highly protected information.

6. PublishedObjectSecurityPolicy
This security policy is used for objects in the Published symbol dictionary.
7. GcUserObjectSecurityPolicy, the GsObjectSecurityPolicy for the GcUser user.
8. NamelessObjectSecurityPolicy, the GsObjectSecurityPolicy for the Nameless user.

9. CodeLibrarianUserObjectSecurityPolicy, the GsObjectSecurityPolicy for the
CodeLibrarianUser.

10. HostAgentUserObjectSecurityPolicy, the GsObjectSecurityPolicy for the
HostAgentUser.

11. ObjectFiltersObjectSecurityPolicy

The GsObjectSecurityPolicy that contains ObjectFilters, which are used for further
object protection with X509 logins.

For repositories that have been converted from certain earlier versions, there may also be
GsObjectSecurityPolicy with id 20, with world write.

GsObjectSecurityPolicy names

Most of the system security policies have Symbolic references in Globals and can the name
can be used in code. SecurityPolicies may have names (which are stored in a dynamic
instance variable); most system security policies have names set. When defining a new
object security policy, you may send name : to make it more easily identifiable. This does
not itself create a global reference.

Changing the Security Policy for an Object

If you have the authorization, you can change the accessibility of an individual object by
assigning a different security policy to it.

The message Object >> objectSecurityPolicy returns the security policy that
protects that receiver, or nil if the receiver does not have an associated security policy:

GemTalk Systems 199

Assigning Objects to Security Policies GemStone/S 64 Bit 3.7 Programming Guide

Example 10.3

UserGlobals objectSecurityPolicy
DataCuratorObjectSecurityPolicy(#2 in Repository SystemRepository,
Owner DataCurator write, Group DataCuratorGroup write, World read)

The message Object >> objectSecurityPolicy: anObjectSecurityPolicy assigns
anObjectSecurityPolicy as the security policy for the receiver. You also use this method to
remove the security policy, so the receiver object has world read and write access. You
must have write authorization for both security policies, that of the receiver and the
argument. Assuming the necessary authorization, this example assigns a new security
policy to class Employee:

Employee objectSecurityPolicy: aPolicy.

You may override the method objectSecurityPolicy: for your own classes,
especially if they have several components.

For objects having several components, such as collections, you may assign all the
component objects to a specified security policy when you reassign the composite object.
You can implement the message objectSecurityPolicy: to perform these multiple
operations. Within the method objectSecurityPolicy: for your composite class, send
the message assignToObjectSecurityPolicy: to the receiver and each object of
which it is composed.

For example, an objectSecurityPolicy: method for the class Menagerie might
appear as shown in Example 10.4. The object itself is assigned to another security policy
using the method assignToObjectSecurityPolicy:. Its component objects, the
animals themselves, have internal structure (names, habitats, and so on), and therefore call
Animal’s objectSecurityPolicy: method, which in its turn sends the message
assignToObjectSecurityPolicy: to each component of anAnimal, ensuring that
each animal is properly and completely reassigned to the new security policy.

Example 10.4

Array subclass: 'Menagerie'
instVarNames: #()
classVars: #()
classInstVars: #()
poolDictionaries: {}
inDictionary: UserGlobals

%

method: Menagerie
objectSecurityPolicy: aPolicy
self assignToObjectSecurityPolicy: aPolicy.
self do: [:eachAnimal |
eachAnimal objectSecurityPolicy: aPolicy]

o°

200

Special objects — Smalllnteger, SmallDouble, Character, Boolean, and nil — are assigned
the SystemObjectSecurityPolicy and cannot be assigned another security policy.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Assigning Objects to Security Policies

Security Policy Ownership

Each GsObjectSecurityPolicy has an owner —by default, the user who created it. An
security policy’s owner always has control over who can access the security policy’s
objects. As a security policy’s owner, you can alter your own access rights at any time, even
forbidding yourself to read or write objects with that security policy.

You might not be the owner of your default security policy. To find out who owns a
security policy, send it the message owner. The receiver returns the owner’s UserProfile,
which you may read, if you have the authorization:

Example 10.5

"Return the userId of the owner of the default security policy for
the current Session."
| aUserProf myDefaultPolicy |
"get default security policy"
myDefaultPolicy := System myUserProfile
defaultObjectSecurityPolicy.
myDefaultPolicy ifNotNil:
["return its owner’s UserProfile"
aUserProf := myDefaultPolicy owner.
"request the userId"
aUserProf userId]
%
useri

Every security policy understands the message owner : allserProfile. This message assigns
ownership of the receiver to the person associated with allserProfile. The following
expression, for example, assigns the ownership of your default security policy to the user
associated with alserProfile:

System myUserProfile defaultObjectSecurityPolicy owner:
aUserProfile

In order to reassign ownership of a security policy, you must have write authorization for
the DataCuratorObjectSecurityPolicy. Because of the way separate authorizations for
owners, groups and world combine, changing access rights for the any one of them may or
may not alter a particular user’s rights to a security policy.
CAUTION
Do not, under any circumstances, attempt to change the authorization of the
SystemObjectSecurityPolicy.

Revoking Your Own Authorization: a Side Effect

You may occasionally want to create objects and then take away authorization for
modifying them.
CAUTION
Do not remove your write authorization for your default security policy or your
current security policy. If you lose write authorization for your default security
policy, you will not be able to log in again.

GemTalk Systems 201

Application Example GemStone/S 64 Bit 3.7 Programming Guide

Finding Out Which Objects Are Protected by a Security Policy

It may be useful for you to be able to find all the objects that are protected by a particular
security policy. An expression of the form:

SystemRepository listObjectsInObjectSecurityPolicies: anArray

takes as its argument an array of security policy IDs, and returns an array of arrays. Each
inner array contains all objects whose security policy ID is equal to the corresponding
security policy ID element in the argument anArray. Instances to which you lack read
authorization are omitted without notification.

Note that this method aborts the current transaction and scans the object header of each
object in the repository.

If the result set is very large, there is a risk of out of memory errors. To avoid the need to
have the entire result set in memory, the following methods are provided:

Repository »>> listObjectsInObjectSecurityPolicyToHiddenSet:
anObjectSecurityPolicyld

This method puts the set of all objects in the specified security policy in the
ListInstancesResult hidden set. (a hidden set is an internal memory structure that, while
not an object, is treated as one).

To enumerate the hidden set, you can use this method:

System >> hiddenSetEnumerate: hiddenSetld 1imit : maxElements

using a hiddenSetld of 1, which is the number of the “ListInstancesResult” hidden set in
GemStone/S 64 Bit v3.7. This hidden set number is subject to change in new releases; to
determine which hidden sets are in a particular release, use the GemStone Smalltalk

method System Class »>> HiddenSetSpecifiers. For more on hidden sets, see
“Other Optimization Hints” on page 328.

You can also list objects that are protected by a particular security policies to an external
binary file, which can later be read into a hidden set. To do this, use the method:
Repository »>> listObjectsInObjectSecurityPolicies: anArray
toDirectory: aString

This method scans the repository for the instances protected by the security policies in
anArray and writes the results to binary bitmap files in the directory specified by aString.
Binary bitmap files have an extension of . bm and may be loaded into hidden sets using
class methods in System.

Bitmap files are named:
objectSecurityPolicy<ObjectSecurityPolicyld>-objects.bm

where ObjectSecurityPolicyld is the security policy ID.

The result is an Array of pairs. For each element of the argument anArray, the result array
contains ObjectSecurityPolicyld, numberOfinstances. The numberOflnstances is the total
number written to the output bitmap file.

10.3 Application Example

The structure of the user community determines how your data is stored and accessed.
Regardless of their job titles, users generally fall into three categories:

202 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Application Example

» Developers define classes and methods.
» Updaters create and modify instances.
» Reporters read and output information.

When you have a group of users working with the same GemStone application, you need
to ensure that everyone has access to the objects that should be shared, such as the
application classes, but you probably want to limit access to certain data objects.

Figure 10.3 shows a typical production situation. In this example, all the application users
need access to the data, but different users need to read some objects and write others. So
most data goes into ObjectSecurityPolicy A, which anyone can look at, but only the
Personnel group or owner can change. ObjectSecurityPolicyC is set up for sensitive salary
data, which only the Payroll group or owner can change, and only they and the Personnel
group can see. You don’t want anyone to accidentally corrupt the application classes, so
they go into ObjectSecurityPolicyF, which no one can change.

Figure 10.3 Application Objects Assigned with Three Security Policies

General Employee | ObjectSecurityPolicyA

Empl
Data Owner: GsAdmin, Write access ancmployeg
Everyone needs to see | GroupsRead:

Personnel can update.

information, but only | Groupswrite: Personnel
World: Read access
department

Salary Data ObjectSecurityPolicyC
Keep private; only

Personnel and Payroll Owner: GsAdmin, Write access
GroupsRead: Personnel
can read, and only GroupsWrite: Payroll

Payroll can write World: None

|

Application]) -
Classes ObjectSecurityPolicyF

Everyone needs to use, Owner: GsAdmin, Read access
: World: Read
but no production Address
users should modify. class

Given a set of users with different roles in the application, Figure 10.4 and Figure 10.5
indicate how group membership and security policy authorization control access to
application objects:

class

Employee
class

GemTalk Systems 203

Application Example GemStone/S 64 Bit 3.7 Programming Guide

Figure 10.4 User Access to Application ObjectSecurityPolicyA

s N
User GsAdmin

> J
User Pat
Groups: Payroll,

Admin

ObjectSecurityPolicyA
Owner: GsAdmin, Write access
GroupsRead:

GroupsWrite: Personnel
World: Read access

(User Frances
Groups: Admin
&

|\

J

\/

p
User Logan

Groups: Admin,
Personnel

Four users access this application:

» The System Administrator, GsAdmin, owns both security policies and can read and
write the objects assigned with them.

» Logan belongs to the Personnel group, which authorizes her to read and write objects
associated with ObjectSecurityPolicyA, and read objects associated with
ObjectSecurityPolicyC.

» Pat can read and write the objects assigned with ObjectSecurityPolicyC, because he
belongs to the Payroll group. He doesn’t belong to a group that can access
ObjectSecurityPolicy A, but he can still read those objects, because
ObjectSecurityPolicy A gives read authorization to all GemStone users.

» Frances does not belong to a group that can access either security policy. She can read
the objects assigned with ObjectSecurityPolicy A, because it allows read access to all
GembStone users. She has no access at all to ObjectSecurityPolicyC.

Pat and Logan are sometimes updaters and sometimes reporters, depending on the type of
data. Frances is strictly a reporter.

204 GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Application Example

Figure 10.5 User Access to Application ObjectSecurityPolicyC

User GsAdmin
(. _J
e)
User Pat
Groups: Payroll,

Admin ObjectSecurityPolicyC

Owner: GsAdmin, Write access
GroupsRead: Personnel
GroupsWrite: Payroll

World: None

ster Frances
Groups: Admin
g

J

\/

P
User Logan
Groups: Admin,

Personnel

ObjectSecurityPolicyB is associated with the classes and methods for the application. These
are world read, so all users can read these objects. No one, not even GsAdmin, can modify
the classes.

GemTalk Systems 205

Development Example GemStone/S 64 Bit 3.7 Programming Guide

10.4 Development Example

Up to now, this discussion has been limited to applications in a production environment,
but issues of access and security arise at each step of application development. During the
design phase you need to consider the security policies needed for the application life
cycle: development, testing, and production.

The access required at each stage is a subset of the preceding one, as shown in Figure 10.6.

Figure 10.6 Access Requirements During an Application’s Life Cycle

ﬁ)evelopers: write access to all application objects \

f Testers: read access to classes and methods, \
write access to test data

Users: read access to classes and public
methods, read, write or no access to
specific data.

N 2,

10.5 Planning Security Policies for User Access

206

As you design your application, decide what kind of access different end users will need
for each object.

Protecting the Application Classes

All the application users need read access to the application classes and methods, so they
can execute the methods. To prevent accidental damage to them, however, you probably
want to limit write access. The CodeModification privilege is required to create or modify
classes and methods. You can further limit write access using security policies. You may
even want to change the owner’s authorization to read, until changes are required.

Like other objects, classes and their methods are assigned to security policies on an object-
by-object basis. You may keep separate subsections of your application in different security
policies, with different write authorizations, if you want.

CodeModification privilege

All application developers will need to have CodeModification privilege. This is in
addition to the ability to read and write the appropriate security policies. Without
CodeModification privilege, you cannot compile methods or classes, add new methods,

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Planning Security Policies for User Access

add a Class to a SymbolDictionary, or perform other operations required for application
development.

Application users, on the other hand, should not have CodeModification privilege, since
they will not be modifying methods or classes. This allows you to protect the application
code for inadvertent (or intentional) damage or modification, even if you do not want to
implement object level security.

Planning Authorization for Data Objects

Authorization for data objects means protecting the instances of the application’s classes,
which will be created by end users to store their data. You can begin the planning process
by creating a matrix of users and their required access to objects. Table 10.1 shows part of
such a matrix, which maps out access to instances of the class Employee and some of its
instance variables.

Security is easier to implement if it is built into the application design at the beginning, not
added later. In the following sections, planning for the third stage, end user access, comes
first. Following the planning discussion comes the implementation instructions, which
explain how to set up security policies for the developers, extend the access to the testers,
and finally move the application into production.

Remember that in effect you have four options, shown on the matrix as:
W — need to write (also allows reading)

R — need to read, must not write

N — must not read or write

blank — don’t need access, but it won’t hurt

Table 10.1 Access for Application Objects Required by Users

Users

System | Human | Employee Customer
Objects Admin. | Resource | Records | Payroll | Mktg | Sales | Support

R
R

anEmployee

name

position

dept.

manager
dateHired

salary

salesQuarter

salesYear

vacationDays

s ===z ===
SRR A ===
S R R R D D D = =
z| Z| R R SRR R R R
Z|\z\z Z|z|Z

zlz s|s|z®® = ===
zZ|z\zZ|z|Z

sickDays

GemTalk Systems 207

Planning Security Policies for User Access GemStone/S 64 Bit 3.7 Programming Guide

World Access

To begin analyzing your access requirements, check whether the objects have any Ns. For
objects that do, world authorization must be set to none.

If you have people who need read access to nonsensitive information, give world read
authorization to those objects. In this example, world can have read access to anEmployee,
name, position, dept., and manager. The objects can still be protected from casual browsing
by storing them in a dictionary that does not appear in everyone’s symbol list. This does
not absolutely prevent someone from finding an object, but it makes it difficult. For more
information, see Chapter 3, “Resolving Names and Sharing Objects”.

Owner

By default, the owner has write access to the objects protected by a security policy. To
choose an owner, look for a user who needs to modify everything. In terms of the basic user
categories described earlier, the owner could be either an administrator or an updator. This
depends on the type of objects that will be assigned to the security policy.

In Table 10.1 the system administrator is the user who needs write access. So the system
administrator is made the owner, with full control of all the objects. The DataCurator and
SystemUser logins are available to the system administrator. The DataCurator is not
automatically authorized to read and write all objects, however. Like any other user
account, it must be explicitly authorized to access objects in security policies it does not
own. Although the SystemUser can read and write all objects, it should not be used for
these purposes.

Planning Groups

The rest of the access requirements must be satisfied by setting up groups. The thing to
remember about groups is that they do not reflect the organization chart; they reflect
differences in access requirements. Because the number of possible authorization
combinations is limited, the number of groups required is also limited.

First look at the existing access to anEmployee, name, position, dept., and manager, as
shown in Table 10.2. By making the system administrator the owner with write
authorization and assigning read authorization to world, you have already satisfied the
needs of five departments.

Table 10.2 Access to the First Five Objects Through Owner and World Authorization

208

Users
System | Human | Employ. Customer
Objects Admin. | Resource | Records | Payroll | Mktg | Sales | Support
Employee \ W W R R
name \%Y W W R R
position w \u \W R R
dept. \ 4 \ R R
manager W \ 4 R R

write access as owner or no access as world

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Planning Security Policies for User Access

You still need to provide authorization for the Human Resources and Employee Records

departments. In every case, they need the same access (see Table 10.1) so you only have

to create one group for the two departments. This group, named Personnel, requires write
authorization for the objects in Table 10.2.

Now look at the existing access to the rest of the objects. These objects store more sensitive
information, so access requirements of different users are more varied. Assigning write
authorization to owner and none to world has completely satisfied the needs of three
departments, as shown in Table 10.3.

Table 10.3 Access to the Last Six Objects Through Owner and World Authorization

Users
System | Human | Employ. Customer
Objects Admin. | Resource | Records | Payroll | Mktg | Sales | Support
dateHired \ W W R N R N
salary 4 R R W N N N
salesQuarter | W R R R N W N
salesYear \ R R R N \Y N
vacationDays | W Y Y N N N N
sickDays W \ \ N N N N

write access as owner or no access as world

Two more departments, Human Resources and Employee Records, are already set up to
access as the Personnel group. As shown in Table 10.4, this group needs write
authorization to dateHired, vacationDays, and sickDays, which they must be able to read
and modify. They need read authorization to salary, salesQuarter, and salesYear, which
they must read but cannot modify.

Table 10.4 Access to the Last Six Objects Through the Personnel Group

Users

System | Human | Employ. Customer

Objects Admin. | Resource | Records | Payroll | Mktg | Sales | Support
dateHired W 4 W R N R N
salary A R R 4 N N N
salesQuarter | W R R R N \%Y N
salesYear W R R R N W N
vacationDays | W W W N N N N
sickDays \ \ 4 N N N N

read or write access as Personnel group

GemTalk Systems 209

Planning Security Policies for User Access GemStone/S 64 Bit 3.7 Programming Guide

Now the Payroll and Sales departments still require access to the objects, as shown in
Table 10.3. Because these departments’ needs don’t match anyone else’s, they must each
have a separate group.

Table 10.5 Access to the Last Six Objects Through the Payroll and Sales Groups

Users
System | Human | Employ. Customer
Objects Admin. | Resource | Records | Payroll | Mktg | Sales | Support
dateHired W W 4 R N R N
salary 4 R R 4 N N N
salesQuarter | W R R R N \%\Y N
salesYear W R R R N 4 N
vacationDays | W W W N N N N
sickDays 4 4 W N N N N

read or write access as Payroll or Sales group

In all, this example only requires three groups: Personnel, Payroll, and Sales, even though
it involves seven departments.

Planning Security Policies

When you have been through this exercise with all your application’s prospective objects
and users, you are ready to plan the security policies. For easiest maintenance, use the
smallest number of security policies that your required combinations of owner, group, and
world authorizations allow. You don’t need different security policies with duplicate
functionality to separate particular objects, like the application classes and data objects.
Remember that symbol lists, not security policies, are used to organize objects for listing
and retrieval.

In this example you need six security policies, as shown in Figure 10.7. Notice that each one
has different authorization.

Developing the Application

210

During application development you implement two separate schemes for object
organization: one for sharing application objects by the development team and one
controlling access by the end users. In addition, you may need to allow access for the
testers, who may need different access to objects.

Once you have planned the security policies and authorizations you want for your project,
you can refer to procedures in the System Administration Guide for implementing that plan.

Setting Up Security Policies for Joint Development

To make joint development possible, you need to set up authorization and references so
that all the developers have access to the classes and methods that are being created. Create
anew symbol dictionary for the application and put it in everyone’s symbol list; make sure
it includes references to any shared security policies. If only developers are using the

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Planning Security Policies for User Access

repository, you can give world access to shared objects, but if other people are using the
repository, you must set up a group for developers.

You can organize security policy assignments in various ways:

» Full access to all personal security policies. Give all the developers their own default
security policies to work in. Give everyone in the team write access to all the security
policies. Because the objects you create are typically assigned to your default security
policy, this method may be the simplest way to organize shared work.

» Read access to all personal security policies. Set up the same as above, except give
everyone read access to the security policies. If each developer is doing a separate
module, read access may be enough. Then everyone can use other people’s classes,
but not change them. This has the advantage of enforcing the line between application
and data.

» Full access to a shared security policy. Give all developers the same default security
policy, writable by everyone. This is an easy, informal way to share objects.

» Full access to a shared security policy plus private security policies. Developers
work in their own default security policies and reassign their objects to the shared
security policy when they are finished. This lets you share a collection, for example,
but keep the existing elements private, so that other developers could add elements
but not modify the elements you have already created. To share a collection this way,
assign the collection object itself to the accessible security policy. The collection has
references to many other objects, which can be associated with other security policies.
Everyone has the references, but they get errors if they try to access objects with non-
readable security policies. You might also choose to share an application symbol
dictionary, so that other developers can put objects in it, without making the objects
themselves public.

GemTalk Systems 211

Planning Security Policies for User Access

GemStone/S 64 Bit 3.7 Programming Guide

Figure 10.7 Security Policies Required for User Access to Application Objects

ObjectSecurityPolicyA
Owner: GsAdmin, Write access
GroupsRead:

GroupsWrite: Personnel

World: Read access

‘éz

anEmployee

ObjectSecurityPolicyB
Owner: GsAdmin, Write access
GroupsRead: Payroll, Sales
GroupsWrite: Personnel

World: None

gé

department
dateHired
department

i

i

ObjectSecurityPolicyC
Owner: GsAdmin, Write access
GroupsRead: Personnel
GroupsWrite: Payroll

World: None

ObjectSecurityPolicyD

Owner: GsAdmin, Write access
GroupsRead: Personnel, Payroll
GroupsWrite: Sales

World: None

salesQuarter

salesYear

j o

A

ObjectSecurityPolicyE
Owner: GsAdmin, Write access
GroupsRead: None
GroupsWrite: Personnel
World: None

|

A

ObjectSecurityPolicyF
Owner: GsAdmin, Read access
World: Read

Employee
class

Making the Application Accessible for Testing

Testers need to be able to alternate between two distinct levels of access:

» Full access. As members of the development team, they need read access to all the
classes and methods in the application, including the private methods. Testers also
need write access to their test data.

» User-level access. They need a way to duplicate the user environment, or more
likely several environments created for different user groups.

212

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Planning Security Policies for User Access

This can be done by setting up a tester group and one or more sample user groups during
the development phase. For testing the user environment, the application must already be
set up for multi-user production use, as explained in the following section.

Moving the Application into a Production Environment

When you have created the application, it is time to set it up for a multi-user environment.
A GembStone application is developed in the repository, so all you have to do to install an
application is to give other users access to it. This means implementing the rest of your
application design, in roughly the reverse order of the planning exercise. To give other
users authorization to use the objects in the application:

Create the security policies.

Create the necessary user groups specified in up-front development, if they don’t exist.

1.
2
3. Assign the required owner, world, and group authorizations to the security policies.
4. Assign testers to the user groups and complete multi-user testing.

5

Assign any end users that need group authorization to the user groups.
6. Assign the application’s objects to the security policies you created.

You also have to give users a reference to the application so they can find it. An application
dictionary is usually created with references to the application objects, including its
security policies. A reference to this dictionary usually must appear in the users’ symbol
lists. For more information on the use of symbol dictionaries, see the discussion of symbol
resolution and object sharing in Chapter 3, “Resolving Names and Sharing Objects”.

Security Policy Assignment for User-created Objects

Because security policy assignment is on an object-by-object basis, it is important to know
how objects are assigned. When the objects are being created by end users of an
application, as in this example, you may want to partially or fully automate the process of
security policy assignment. Depending on the needs of the local site, you can implement
various mechanisms to ensure data security, prevent accidental damage to existing data,
or simply avoid misplaced data.

Assign a Specified Security Policy to the User Account

Set up users with the proper security policy by default. This is a simple way to assure that
someone who creates objects in a single security policy doesn’t misplace them. To make it
impossible to change security policies, rather than just unlikely, you also have to close
write access for group and world to all the other security policies.

This solution would work for the Sales and Payroll groups in the example (Figure 10.7).
They need read access to several security policies, but they only write in one.

The drawback of this solution is that the user can only use one security policy.

Develop the Application to Create the Data Objects

Your best choice is to create objects in the correct security policy, using the
GsObjectSecurityPolicy>>setCurrentWhile: method. With this method, the
application stores data objects in the proper security policies. This provides the most
protection. Besides guaranteeing that the objects end up in the proper security policy, this
prevents users from accidentally modifying objects they have created. It also prevents

GemTalk Systems 213

Privileged Protocol for Class GsObjectSecurityPolicy GemStone/S 64 Bit 3.7 Programming Guide

them from reading the data that other users enter, even when everyone is creating
instances of the same classes.

10.6 Privileged Protocol for Class GsObjectSecurityPolicy

214

Privileges stand apart from the security policy and authorization mechanism. Privileges are
associated with certain operations: they are a means of stating that, ordinarily, only the
DataCurator or SystemUser is to perform these privileged operations. The DataCurator
can assign privileges to other users at his or her discretion, and then those users can also
perform the operations specified by the particular privilege.

NOTE
Privileges are more powerful than security policy authorization. Although the
owner of a security policy can always use read/write authorization protocol to
restrict access to objects protected by a security policy, the DataCurator can
override that protection by sending privileged messages to change the
authorization scheme.

The following message to GsObjectSecurityPolicy always requires special privileges:

new (class method)
newInRepository: (class method)

You can always send the following messages to the security policies you own, but you
must have special privileges to send them to other security policies:

group:authorization:
ownerAuthorization:
worldAuthorization:

For changing privileges, UserProfile defines two messages that also work in terms of the
privilege categories described above. The message addPrivilege: aPrivString takes a
number of strings as its argument, including the following;:

'DefaultObjectSecurityPolicy'
'ObjectSecurityPolicyCreation'
'ObjectSecurityPolicyProtection'

For a full list of privileges, see the System Administration Guide chapter on User
Management.

To add security policy creation privileges to your UserProfile, for example, you might do
this:

System myUserProfile addPrivilege: 'ObjectSecurityPolicyCreation'.
This gives you the ability to execute GsObjectSecurityPolicy new.

A similar message, privileges:, takes an array of privilege description strings as its

argument. The following example adds privileges for security policy creation and

password changes:

System myUserProfile privileges:
#('ObjectSecurityPolicyCreation' 'UserPassword')

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide Privileged Protocol for Class GsObjectSecurityPolicy

To withdraw a privilege, send the message deletePrivilege: aPrivString. Asin
preceding examples, the argument is a string naming one of the privilege categories. For
example:

System myUserProfile deletePrivilege:
'ObjectSecurityPolicyCreation'

Because UserProfile privilege information is typically protected by a security policy that
only the data curator can modify, you might not be able to change privileges yourself. You
must have write authorization to the DataCuratorObjectSecurityPolicy, or be a member of
DataCuratorGroup, in order to do so.

For direction and information about configuring user accounts, adding user accounts and
assigning security policies to those accounts, and checking authorization for user accounts,
see the System Administration Guide.

GemTalk Systems 215

Privileged Protocol for Class GsObjectSecurityPolicy GemStone/S 64 Bit 3.7 Programming Guide

216 GemTalk Systems

Chapter

1 Class versions and
Instance Migration

Although you designed your schema with care and thought, after using it for a while you
will probably find a few things you would like to improve. Furthermore, even if your
design was perfect, real-world changes usually require changes to the schema sooner or
later.

This chapter discusses the mechanisms GemStone Smalltalk provides to allow you to
make changes in your schema and manage the migration of existing objects to the new
schema.

Versions of Classes (page 217)
defines the concept of a class version and describes two different approaches you can
take to specify one class as a version of another.

ClassHistory (page 219)
describes the GemStone Smalltalk class that encapsulates the notion of class
versioning.

Migrating Objects (page 221)
explains how to migrate either certain instances, or all of them, from one version of a
class to another while retaining the data that these instances hold, including
transforming the data as needed.

Multi-threaded instance migration (page 232)
describes how to perform simple migrations more quickly by creating mappings and
performing the migration in a single operation.

11.1 Versions of Classes

In order to create instances of a class, the class must be invariant, and invariant classes
cannot be modified, except in some specific ways. While you defined your schema to be as
complete as you could at the time you created the classes, inevitably further changes are
needed. You may now have instances of invariant classes populating your database and a
need to modify your schema by redefining certain of these classes.

GemTalk Systems 217

Versions of Classes GemStone/S 64 Bit 3.7 Programming Guide

To support this schema modification, GemStone allows you to define different versions of
classes. Every class in GemStone has a class history —an object that maintains a list of all
versions of the class—and every class is listed in at least one class history, the class history
for the class itself. You can define as many different versions of a class as required, and
declare that the different versions belong to the same class history. You can migrate some
or all instances of one version of a class to another version when you need to. The values
of the instance variables of the migrating instances are retained if you have defined the new
version to do so.

Defining a New Version

In GemStone Smalltalk classes have versions. Each version is a unique and independent
class object, but the versions are related to each other through a common class history. The
classes need not share a similar structure, nor even a similar implementation. The classes
need not even share a name, although it is less confusing if they do, or if you establish and
adhere to some naming convention.

If you define a new class in a SymbolDictionary that already contains an existing class with
the same name, it automatically becomes a new version of the previously existing class.
This is the most common way of creating new class versions. Instances that predate the
creation of the new version remain unchanged, and continue to access the old class’s
methods, although tools such as GemBuilder may provide options to automatically
migrate instances to the new class. Instances created after the redefinition have the new
class’s structure and access to the new class’s methods.

When you define a class, the class creation protocol includes an option to specify the
existing class of which the new class is a version. See the keyword newVersionOf:.

New Versions and Subclasses

When you create a new version of a class—for example, Animal —subclasses of the old
version of Animal still point to the old version of Animal as their superclass (unless you
are using a tool which provides the option to automatically version and recompile
subclasses). If you wish these classes to become subclasses of the new version, you need to
recompile the subclass definitions to make new versions of the subclasses, specifying the
new version of Animal as their superclass.

One way to do this is to file in the subclasses of Animal after making the new version of
Animal (assuming the new version of the superclass has the same name).

New Versions and References in Methods

218

When you create a new version of a class (such as Animal) you typically want your
existing code to use the new version rather than the old version. That is , without being
recompiled, existing methods containing code like the following should create an instance
of the new version rather than of the old version of Animal class:

pet := Animal new.

As long as the new class version replaces an existing class in the same SymbolDictionary,
then references from existing methods will be automatically updated to the new class
version.

GemTalk Systems

GemStone/S 64 Bit 3.7 Programming Guide ClassHistory

This works because a compiled method does not directly reference a global (e.g., the class
Animal), butreferences a SymbolAssociation in a SymbolDictionary. When you originally
compile the method, it resolves the name using an expression similar to the following:

System myUserProfile resolveSymbol: #theClassName

The compiled method includes the resulting SymbolAssociation, whose key is the name of
the global and whose value is the class (or other object). The value can be updated at any
time, for example when you create a new version of a class.

This tiny performance penalty is what allows global variables to vary. If you have a global
that you know will be constant, then you can reference the value directly from a compiled
method by making the SymbolAssociation invariant before compiling the method.

While the Symbol Association is updated with the new value by versioning the class within
the same SymbolDictionary, keep in mind that under some circumstances you may have a
SymbolAssociation that does not reference the latest version, or the version you expect. If
you have a newer class with the same name in a different SymbolDictionary, or if you
delete and recreate the class, the Symbol Association will continue to point to the older
class.

Class Variables and Class Instance Variables

Adding a Class Variable does not require a new version of your class, but adding a class
instance variable does.

When you create a new version of a class, the values in any Class variables or Class
Instances variables in the old class are referenced by the new class as well. By default, all
versions of a class refer to the same objects referenced from Class or Class instance
variables.

Class versioning and Class options

When you define a class with the same name and variables, but with a different set of
options (passed in via the options: keyword to the class creation method), it does not
always need to create a new version of the class.

See page 37 for a description of the class options and how they can be used for specific class
behavior.

Class options are automatically inherited by new version or by an updated version, unless
the first element in opt